UC Davis
Computer Science

Title
Evolution vs. Intelligent Design in Program Patching

Permalink
https://escholarship.org/uc/item/3z8926kg

Author
Devanbu, Premkumar Thomas

Publication Date
2013-10-01

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, availalbe at https://creativecommons.org/licenses/by-nc/4.0/

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/3z8926ks
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/

Evolution vs. Intelligent Design in Program Patching

Yuriy Brun
School of Computer Science
University of Massachusetts
Ambherst, MA, USA
brun@cs.umass.edu

Claire Le Goues
Inst. for Software Research
Carnegie Mellon University

Pittsburgh, PA, USA

legoues@cs.cmu.edu

ABSTRACT

While fixing bugs requires significant manual effort, recent research
has shown that genetic programming (GP) can be used to search
through a space of programs to automatically find candidate bug-
fixing patches. Given a program, and a set of test cases (some
of which fail), a GP-based repair technique evolves a patch or a
patched program using program mutation and selection operators.
We evaluate GenProg, a well-known GP-based patch generator, us-
ing a large, diverse dataset of over a thousand simple (both buggy
and correct) student-written homework programs, using two dif-
ferent test sets: a white-box test set constructed to achieve edge
coverage on an oracle program, and a black-box test set developed
to exercise the desired specification. We find that GenProg often
succeeds at finding a patch that will cause student programs to pass
supplied white-box test cases; however, that the solution quite of-
ten overfits to the supplied tests and doesn’t pass all the black-box
tests. In contrast, when students patch their own buggy programs,
these patches tend to pass the black-box tests as well. We also find
that the GenProg-generated patches lack enough diversity to benefit
from a kind of bagging, in which a plurality vote over a population
of GP-generated patches outperforms a randomly chosen individual
patch. We report these results and additional relationships between
GenProg’s success and the size and complexity of the manual and
automatic patches.

1. INTRODUCTION

Software permeates many aspects of our lives, transforming, for
example, healthcare, business, and communication. Ensuring that
software is of high quality has thus become vitally important. Un-
fortunately, debugging and improving software quality is quite ex-
pensive. A 2013 study estimates the global cost of debugging as
$312 billion and that developers spend half their time debugging [10].
In 2008, on average, it took human developers 28 days to resolve a
security bug [37] and new bugs are reported faster than developers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WOODSTOCK ’97 El Paso, Texas USA

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Earl Barr
Dept. of Computer Science
University College London
London, UK
e.barr@ucl.ac.uk

Ming Xiao
Dept. of Computer Science
University of California
. Davis, CA, USA
minxiao@ucdavis.edu

P. Devanbu
Dept. of Computer Science
University of California
Davis, CA, USA
devanbu@ucdavis.edu

can handle them [3].

Recently developed automated bug-fixing techniques [12,13,15,
18,23,24,26,27,31,33,39,41,43,44] have the potential to reduce
costs and improve software quality. Recent studies speak to this
potential while raising new questions about the acceptability of au-
tomatically generated patches to humans. The GenProg tool [44]
quickly and cheaply generated patches for 55 out of 105 historical
bugs in open-source C programs [26], while the PAR tool showed
comparable results on 119 bugs in Java programs [24]. At the same
time, the latter study showed that patches generated by PAR and
GenProg are considered acceptable by humans 23% (27 out of 119)
and 13% (16 out of 119) of the time, respectively. Meanwhile,
machine-patched code is slightly less maintainable than human-
patched code, though the trend is mitigated entirely by the use of
automatically-synthesized documentation [19]. These modest but
encouraging successes suggest great promise for automated bug
fixing while making evident that significant work remains to un-
derstand and improve the quality of the patches such techniques
produce.

GenProg employs a genetic programming (GP) metaheuristic to
search the space of code patches for a particular bug in a program.
First, GenProg locates potentially defective code regions using ex-
isting fault localization techniques. Next, GenProg generates a pop-
ulation of potential patches for the buggy program. The patches
can delete defective code, or replace or augment the defective code
with code extracted from other regions of the defective program.
GenProg employs genetic mutation, breeding, and selection opera-
tors, using test-passing behavior as fitness, over this population. As
discussed above, this approach has been quite successful.

In general, however, search-based problem-solving approaches
run the risk of overfitting solutions to the objective function [32]
(a test suite, in this case). Consider organisms that develop highly
specific adaptations to fit their environments (e.g., the koala to eu-
calyptus groves). Such creatures can become vulnerable if envi-
ronmental conditions shift. By analogy, it is possible that patches
generated by an evolutionary fitness-seeking process will be spe-
cific to the given test cases, and not fare as well with different tests.
By contrast, an intelligently designed fix, constructed by a human
who holistically considers the requirements (rather than just a few
known target test cases), might be robust enough to pass a larger
variety of tests. Our goal here is to evaluate this phenomenon, and
seek mitigations as applicable.

Our experimental setting is a large, diverse dataset of over a thou-
sand failing, student-written programs, all submitted as homework
in a freshman programming class, and all with student-written, bug-

fixing patches. While admittedly, our dataset is homogenous in that
all our programs, bugs, and fixes are written by beginner program-
mers, it is rich in other ways, such as the availability of human-
written fixes, and many different implementations, both buggy and
correct, for the same specification. The programs’ small size allows
us to better understand how GenProg succeeds and fails, which
would be more difficult on large, complex programs. Further, and
critically, the conclusions we draw about GenProg’s failures on
these simple programs are very likely to generalize to larger, more
complex programs: If GenProg cannot effectively patch simple
bugs in simple programs, it is unlikely to be successful with com-
plex bugs.

We evaluate GenProg in this setting using two different test suites,
one for training and one for testing. We developed these suites
using different approaches: We constructed the training suite us-
ing a white-box coverage approach; whenever feasible, we used
an automated coverage tool, KLEE [11], to generate these suites.
‘We constructed the test suite using a black-box coverage approach,
using the homework descriptions as requirements. We used, as a
starting point, buggy student programs that failed to pass all the
tests in the training suite, and evaluated whether (1) GenProg could
patch the buggy programs to pass all the tests in the training suite;
(2) the patched programs would also pass all the tests in the test
suite; (3) whether the population of patched programs arising from
each student buggy program contained, within itself, enough diver-
sity to pass all the tests in the test suite, and (4) if minimizing the
patches affected their quality.

We offer the following four contributions:

1. Alarge-scale evaluation of automatically generated bug patches.

This evaluation uses GenProg to fix over a thousand student-
written, naturally buggy programs, and compares the gener-
ated patches to human-written ones.

2. An evaluation of the tendency of evolved patches to over
adapt to provided test cases, and thus show brittleness in the
face of new test cases.

3. Anexploration of whether a population of automatically patched

programs offers useful diversity that can be used to improve
automatic patching techniques.

4. A benchmark of programs with bugs that were written by real
humans, albeit beginner programmers, and human-written
patches for those bugs. This benchmark can be invaluable
in evaluating and improving future automatic patching tech-
niques.

The rest of this paper is structured as follows. Section 2 dis-
cusses the background of evaluation of automated patch generation
techniques. Section 3 outlines our experimental design. Section 4
presents our dataset. Section 5 details our experimental results and
Section 6 qualitatively demonstrates our findings on one example
datapoint. Finally, Section 7 acknowledges threats to the validity
of our results, Section 8 places our work in the context of related
research, and Section 9 summarizes our contributions.

2. BACKGROUND

Automatically patching bugs [5,42] has gained significant atten-
tion since the introduction of GenProg [44] and ClearView [33].
The primary difference between these approaches is that GenProg
uses mutation to generate many candidate patches, whereas Clear-
View mines invariants of good executions and then generates can-
didates that enforce those invariants on the bad executions. Both
techniques then check the candidates via testing. Other automated
patching techniques use constraints to build a single patch that is

correct by construction through the use of formal verifications or
programmer-provided contracts or specifications (e.g. [23,41]). Since
then, each of these approaches has generated new patching tech-
niques [12,13,15,18,23,24,26,27,31,39,41,43].

In this paper, we focus on the automated techniques that gener-
ate many candidate patches or repaired programs and then validate
them using tests. This paradigm includes GenProg and Clearview,
but typically not those techniques that provide correctness guaran-
tees with respect to a user-provided specification. These techniques
are often grounded in search-based software engineering [22], search-
ing through a space of possible programs to find one that satisfies a
set of conditions. GenProg in particular uses GP to search through
candidate patches that selectively mutate the buggy program. Gen-
Prog takes as input a buggy program and a set of tests, some of
which fail. Then, GenProg generates a population of small ran-
dom patches. After computing a fitness score for each mutant —
the number of tests the patch causes the buggy program to pass
— GenProg keeps only the fittest mutants, recombining and edit-
ing them using GP mechanisms, until either a mutant causes the
program to pass all the tests or a preset time or resource limit is
achieved. Because GP is a random search technique, GenProg is
typically run multiple times, on different random seeds, in an effort
to repair a single bug.

There are three key challenges to GenProg’s goal. First, there are
many places in the program that may be mutated. GenProg tackles
this challenge by using existing fault localization techniques to pri-
oritize mutating program constructs (such as statements in C) that
are executed exclusively by the failing test case(s) over those that
are also executed by the passing executions (under the assumption
that lines that execute on faulty tests are more likely to contain the
bug). Second, there are many ways in which code may be mu-
tated. GenProg tackles this challenge by limiting the mutations to
line deletions or copying lines of code from elsewhere in the same
program (under the assumption that if your code has a bug, there
is a good chance it had the same bug elsewhere, and you already
fixed it there). Third, metaheuristic search strategies, GP in partic-
ular, to code is prone code bloat [20]. That is, the patches GenProg
produces, while causing the program to pass all the supplied test
cases, is likely to also contain extra code that affects only the be-
havior not tested by the supplied test cases. GenProg tackles this
challenge by using delta debugging [45] to minimize the amount of
code affected by the patch that passes all tests.

There have been several evaluations of GenProg’s effectiveness.
The first, on 9 bugs that occurred during real development in 9
open-source programs of 1K to 22K LoC (plus one toy example
buggy program), showed that an average GenProg run succeeded
at finding a patch 59% of the time, and GenProg was able to fix all
9 bugs [44]. A more recent study evaluated the technique on 105
bugs taken systematically from the repositories of 8 open-source C
programs of 62K to 2.8M LoC, and showed that GenProg patched
52% (55 out of the 105) of the failures [26]. An independent
evaluation of the technique on 119 bugs from 6 open-source Java
programs of 28K to 180K LoC showed that 13% (16 out of the
119) of GenProg’s bug patches were considered acceptable by hu-
mans [24]. Another recent study [19], found that GenProg patches
are slightly less maintainable than human-written patches, but that
automatically-synthesized documentation can reverse this trend en-
tirely.

These evaluations have demonstrated that for a fairly small num-

ber of bugs in medium-sized programs, GenProg can generate patches;

however, humans do not often consider those patches acceptable on
their own. In contrast, our goal is to evaluate GenProg on a much
larger set of bugs (albeit we were forced to significantly reduce the

size of the programs to achieve a large-enough set of bugs) and,
particularly, to explore whether GenProg patches overfit to the sup-
plied tests, which we believe could be the reason humans do not
find many patches acceptable.

GenProg, and many other related bug patching techniques, rely
on randomized algorithms. Evaluating systems that involve ran-
domized algorithms is particularly difficult and requires paying spe-
cial attention to the sample sizes, statistical tests, cross-validation,
and uses of bootstrapping. In our work, we tried to be consistent
with the guidelines for evaluating randomized algorithms [4] to en-
hance the credibility of our findings. Specifically, we used a large
sample of over a thousand buggy student programs, attempted to
control for a variety of potential influencers in our experiments, and
used fixed-effects regression models (Section 5.1) and two sample
tests (Section 5.3) along with false-discovery rate correction to lend
statistical support to our findings.

3. RESEARCH QUESTIONS AND
EXPERIMENTAL DESIGN

We are interested in examining how well GenProg works on
patching bugs. This section describes our experimental setup and
hypotheses, and Section 4 will describe our dataset. While we de-
sign these experiments to be agnostic of the dataset, and thus more
easily repeatable on other datasets, we assume that for each subject
program specification we have (1) multiple buggy solutions, (2) a
human-written patch (some successful, others perhaps not) for each
buggy solution, and (3) a single reference oracle solution that sat-
isfies the specification. The bugginess of the buggy solutions may
vary greatly. In our experiments, we allowed the buggy solutions
to pass anywhere from only one to all-but-one of the program tests
we describe next.

3.1 Developing Test Suites

For each subject program, we first develop two suites of tests:
a white-box and a black-box suite. The white-box test suite is
based on an oracle program whose output is, by definition, the cor-
rect output the program should exhibit. The white-box test suite
achieves edge coverage (also called branch coverage) on the ora-
cle. Whenever possible, we create the white-box test suite using
KLEE, a symbolic execution tool that automatically generates tests
that achieve high coverage [11]. When KLEE fails to find a cover-
ing test suite (typically because of the lack of a suitable constraint
solver), we construct a test suite manually to achieve edge coverage
on the oracle.

The black-box test suite is based only on the program specifi-
cation, or description. We construct this test suite manually, using
equivalence partitioning: We carefully separate the input space into
several equivalent partitions, based on the specification, and select
one input from each category. For example, for a program that com-
putes the median of three numbers, we would provide tests with the
median as the first, second, and third input, and also tests with two
equal inputs, and all three equal inputs.

The white-box and black-box test suites are developed indepen-
dently. They provide two separate descriptions of the desired pro-
gram behavior: one to provide a target to allow GenProg to evolve
a patch, and the other to provide a way to challenge and evaluate
the evolved patch.

While the white-box and black-box suites are the same for all
buggy versions of each subject program, we also develop a smaller
training set for each buggy version. The training set is a subset of
that subject program’s white-box suite, of size either 25%, 50%,
75%, or 100% of the cardinality of the white-box suite. The train-

ing suite is such that the buggy program passes at least % of the tests
in the suite, but also fails at least one test. The goal of the training
set is to provide a larger diversity of challenge for GenProg: Patch-
ing a program that conforms to a smaller number of tests is easier
than to a larger number. Thus, the training set allows us to evaluate
GenProg’s ability on varying levels of challenge. (As we describe
in Section 4, selecting this training suite can also be helpful in find-
ing buggy versions in a revision history of development.)

3.2 GenProg Effectiveness

First, given a program, a suite of tests that program passes, and
a suite of tests that program fails, we set out to measure how often
GenProg finds a patched program that passes all the supplied tests.

Research Question 1: How often does GenProg find a so-
lution that patches a buggy program to pass all the training
tests? How does the rate of success depend on the severity of
the flaws of the buggy program?

For each of the buggy programs, we run GenProg, giving it ac-
cess to the training test suite. Since on each seed, GenProg either
produces a patch, or times out, and since we plan to run our ex-
periments on a large dataset, to optimally utilize the computing re-
sources (e.g., to not spend a lot of computing trying many seeds
on a version that GenProg will always time out on), we developed
a progressive patching strategy that attempted anywhere between
5 and 55 runs per buggy version. We first run each GenProg on 5
seeds. If GenProg is unable to generate a patch on these runs, we
mark that version as patched by GenProg 0% of the time. However,
for each successful patching, we allow GenProg five more tries. We
continue this process until either we run out of tries, or we reach 10
successful runs (and thus 10, not necessarily distinct patches). This
allows us to spend less time focusing on unsuccessful runs, and
achieve more precision in GenProg’s success rates for the buggy
versions that are neither trivial nor nearly impossible for GenProg.
Having said this, in our experience, with extremely rare exceptions,
GenProg either produced a successful patch on nearly every run, or
was unable to produce a patch on every run.

We compute two measures of success: (1) the fraction of the
buggy versions for which GenProg was able to produce at least
one patch, and (2) the fraction of the GenProg runs for each buggy
version that succeeded in producing a patch. Further, we examine
how the level of difficulty — fraction of the training suite of tests
the buggy version fails — affects these two success measures.

3.3 GenProg Solution Specificity

Mutation and natural selection mechanisms in evolution drive
populations of organisms toward high fitness within their ecosys-
tem. Analogously, GenProg uses a GP metaheuristics that drives its
patch evolution toward passing all the given test cases. The ques-
tion then naturally arises, “Does this evolutionary process produce
patches that are overly specific to the given test cases?”

Research Question 2: How often are the patches produced by
GenProg over-specific to the tests made available to GenProg,
and fail to generalize to a larger set of tests, and to the program
specification? Do human-written patches generalize better?

Using the training suite and the black-box suite, we create two
independent evaluation criteria of the patches. GenProg attempts to
patch the buggy program having access only to the training suite.

Then, we evaluate the patch GenProg generates on the black-box
suite to determine how well the patch satisfies the program specifi-
cation.

Recall that for some buggy programs, the training suite is equal
to the entire white-box suite, while for others, GenProg’s challenge
of finding a program that passes all the black-box tests is greater,
as it is given fewer tests that define the program’s behavior. As in-
complete test suites are typical in real life, this represents a realistic
situation. It further allows us to explore the relationship between
the amount of guidance given to GenProg, in terms of complete-
ness of the test suite, and the generality of GenProg’s patches. This
leads us to answer the following question:

Research Question 3: How does the generality of the
GenProg-generated patch depend on the fraction of the white-
box test suite provided to GenProg?

3.4 GenProg Solution Diversity

The previous experiment explores if GenProg-generated patches
ovetfit to the training suite uses to evolve the patch. Even if the
patches do overfit, there is a silver lining: Since GenProg uses ran-
domness in its evolutionary approach, it is possible that a group of
patches better represents the desired program behavior than each
patch individually. In other words, while each of multiple patches
may overfit, they each may perform properly on some large subset
of the desired behavior, and only overfit — perform improperly —
on a relatively smaller subset of that behavior. Further, the for any
two patches, the subsets of the behavior for which they misbehave
may differ. If true, this would allow using a collection of patches
together, running all of them on each input and then having them
vote on the correct result. If the overfitting is diverse enough, this
n-version patch would outperform individual patches.

N-version programming [14] suffers when the versions lack di-
versity, as is typically the case with human-written code [25]. Knight
and Levison found that independently developing several different
versions of the same program, the errors programmers made did not
appear to be independent. In our scenario, the patches are evolved
automatically by an essentially randomized algorithm, presenting
a reasonable setting to expect that the evolved fixes might be rel-
atively independent. It is our goal to evaluate the diversity of the
GenProg-generated patches for this purpose.

The procedure for creating the n-version program P, is as fol-
lows: For each buggy program version %, which partially passes a
training suite of tests, run GenProg on P, with P,’s training suite of
tests to generate n > 3, distinct patched program versions LP; Py
Then create a new program, %,, that on the set of inputs 7, runs each
of IPI} ...%P; on i, and returns the most frequently returned output
by those programs. If two or more return values are equally most-
frequent, return one at random.

We then evaluate P, on the black-box test suite, and compare
its success to the success of each buggy version, each individual
GenProg-generated fix, and the human-written patch. This allows
us to answer the following research question:

Research Question 4: Does the population of GenProg-
generated patches (on different random seeds) have enough
diversity to benefit from a kind of bagging, in which a plural-
ity vote outperforms a randomly chosen individual? How does
the success of the plurality vote compare to that of the original
buggy version, the individual GenProg-generated fixes, and
the human-written patches?

tests

program | LoC white-box black-box computation

checksum| 13 10 6 checksum of a string
digits 15 10 6 digits of a number

grade 19 9 9 grade from numeric score
median 24 6 7 median of 3 numbers
smallest 20 8 8 minimum of 4 numbers
syllables 23 10 6 count syllables in a word

Figure 1: Summary of our dataset’s subject programs and test
cases.

3.5 GenProg Patch Minimization Effectiveness

Instead of using diversity to mask solutions that overfit, it may be
possible to eliminate the overfitting from individual patches. Gen-
Prog offers one mechanism that may help to do so: minimization.
While GenProg uses patch minimization, via delta debugging [45],
to reduce code bloat, minimizing the patch may also reduce over-
fitting. Intuitively, a small change to a program is less likely to
encode special behavior that handles just the supplied tests in a
separate way. Instead, a small change is more likely to encode a
generalization of the requirements.

On the other hand, it also possible that minimizing the patch
makes it overfit even more strongly to the supplied tests because in
some sense, minimizing removes any code that isn’t specific to the
supplied tests the patch makes pass.

Research Question 5: Does minimizing the GenProg-
generated patches affect the specificity of the patches?

To answer this research question, we measured the effect of min-
imization of the patches on the black-box suite passing rates. An
increase in the passing rate means the minimization decreased over-
fitting, whereas a decrease in the passing rate means the oppo-
site. We also compared the minimized patches against the human-
written patches.

4. THE DATASET: PROGRAMS AND TESTS

This section describes the programs we used to evaluate Gen-
Prog. We first describe the programs in general, and then how we
obtained and selected buggy versions of those programs.

4.1 The Programs

Our dataset is drawn from an introductory C programming class
(ECS 30, at UC Davis) with an enrollment of about 200 students.
There are six different programming assignments (see Figure 1).
Each assignment consists of the students, individually, writing a
program that satisfies a provided set of requirements. The require-
ments were of relatively high quality: A good deal of effort was
spent to make them as clear as possible, given that their role in a
beginning programming class. Further, the students were taught
to first understand the requirements, then design, then code, and
finally test their submissions.

For submitting each assignment, each student has access to a
unique git repository; to submit the assignments, the students push
their changes into these repositories via git push. The students
may submit as many times as they desire, until the deadline. There
are no penalties for multiple submissions.

On every submission, a system called GRADEBOT runs the stu-
dent program against a collection of test cases. The student pro-

training buggy

program suite size versions attempts
0.25 26 989

ehecksum 0.50 25 1,204
4 0.75 24 1,067

1.00 20 121

0.25 85 1,844

disits 0.50 76 2,831
18 0.75 71 3,266
1.00 70 454

0.25 81 2,129

ade 0.50 79 2,220

& 0.75 75 2,862
1.00 66 302

0.25 62 5,102

edian 0.50 62 3,972
0.75 62 4,422

1.00 30 265

0.25 55 1,643

allest 0.50 55 1,841
smatles 0.75 20 1,635
1.00 19 166

0.25 38 2,123

0.50 37 1,624

syllables 0.75 42 1,344
1.00 32 153

total 1212 43,579

Figure 2: Summary of the buggy program versions we found
for every size of the training suite (as a fraction of the white-
box suite size). Each buggy version was the latest submission
that passed at least half, but not all of the training suite. The
attempts column lists how many attempts were made in total to
patch buggy versions at that level.

gram output is compared against the output of an instructor-written
oracle. (The comparison to oracle’s output is insensitive to whites-
pace and capitalization). GRADEBOT tells the student the total
number of tests run and how many of those tests the submission
passed, but no other information about the tests. The homework
grade is proportional to the fraction of tests the latest submission
(before the deadline) passes.

GRADEBOT requires students to pass all tests to receive full
credit. Students can, at all times, query the oracle for the correct
output on a student-supplied input, but students do not know the
test cases used by the GRADEBOT. When students find that their
submission fails a test, they are forced to consider their program
carefully, in light of the requirements, to see what they are miss-
ing. Thus, the students’ patches and repairs are driven more by the
requirements, rather than by specific tests. Therefore, the student-
written solutions provide intelligently designed programs to com-
pare against the patches produced by GenProg.

Finally, for each assignment, we also had an instructor-written
oracle implementation that satisfied the requirements fully.

4.2 Test Suites

Following the procedure described in subsection 3.1, we created
a white-box and a black-box suite of tests for each program. Fig-
ure 1 describes the sizes of these suites.

subsection 3.1) also described each buggy version of the program
having a training suite. For our dataset, we created the training suite
before we identified the buggy program; in fact, we used the train-
ing suite to identify the buggy programs. We selected the training
suites by choosing randomly, with replacement, suites of size 25%,
50%, and 75% of the entire white-box test suite. For each size, we
created at least ten subsamples. These subsamples, together with
the white-box suites themselves, formed the set of training suites.

The reason for picking ten subsamples is to average out random
variations. Since there are many ways of chose four test cases out of
eight, we ensured that we used a representative set of such subsets
by making ten subsamples.

4.3 Buggy Versions

Because the homework submission process is handled via a git
repository, this process creates a careful history of multiple ver-
sions of the code each student wrote as they were developing it.
Inevitably, some versions are buggy, and many, though not all, of
the final versions are correct.

We used the training suites (subsamples of the white-box suite
described in subsection 4.2) to find the buggy versions. For each
student submission repository, we selected randomly a single 25%
training suite, a single 50% training suite, a single 75% training
suite, and the full (100%) white-box suite. For each of these four
suites, we searched the repository for the latest version of the pro-
gram that passed at least half of the suite, but did not pass all of
them. Each such version we found represented a buggy program
that we use in our experiments.

Not every repository contained such a buggy program. For ex-
ample, a student could submit a correct version without ever sub-
mitting a buggy one, or could first submit a completely wrong pro-
gram that failed all the tests but then write the correct solution with-
out intermediate submissions. The count column in Figure 2 shows
the number of buggy programs we found at each subsampling level.

This procedure allowed us to find buggy programs of different
levels of bugginess. Our goals were to get a diversity of bugginess,
and also not to enforce a strict number of failing tests per version.
Instead, we wanted a more naturally occurring sample. Thus, in
our search, we imposed only a lower-bound threshold on the num-
ber of tests that had to pass. For example, the versions we found
with the training suite equal to 25% of the white-box suite were
required to only pass half of that suite, or 12.5% of the white-box
suite. Some of these passed more, although every one was required
to fail at least one test. Meanwhile, the versions we found with the
training suite that equaled the white-box suite had a higher lower-
bound threshold: They were required to pass at least half of all the
white-box tests. We feel that this procedure gave us a representa-
tive sample of the buggy versions present in the student submission
repositories.

We will make the programs, version histories, and test cases pub-
licly available, after salting and MD5-hashing student names for
privacy.

S. EXPERIMENTAL RESULTS

In this section, we present the results of our experiments, and
answer the research questions from Section 3.

5.1 GenProg Effectiveness

We tested GenProg’s effectiveness by fixing the buggy versions
of six programs, as described in Section 4. Figure 2 summarizes
how many buggy program versions of each program we found at
every size of the training suite (25%, 50%, 75%, and 100%), and

checksum digits grade median smallest syllables
1.00 = a Jasgn's | B 'y ¥ ARGEB A Bu Training Suite Size
U, u hsng ;-8 sA= 4 A .
] .o AQ AN A8 t
O] .2
g 075 = =§ A mA i Am 0.25
> |
) ‘] A P
< .5
S 050 = ! - 2 A
a : A : in 2
— 7'\ | 0.75
o) |
L 025 — l. » i ' !
< | |
|
4 F- | H ! i i q | A o 1
000 —h B @B cAMMNES ABMNES AARBS £ e

rtr1rr+rrrrrrrrrrrrrrrrrrrrrrrnrnrini

o n O N OO0 N O .M OO . O LW oo WmW O W oo wmW o uwOoOOoO uwmwo wuw o

O N IO M OO N IODM OO N L M~MOO AN IOLU M~MOO NI M~MOOWNMT”MNSDO

O 00O 40 000 10600 00 <100 0 0 400 0 O -0 o S o

Starting Whitebox Passing rate

Figure 3: GenProg’s success rate of patching a buggy program varies with the training suite.

the number of attempts we made at patching these program ver-
sions, with the different training suites, following the procedure
described in Section 3.2. Overall, we attempted patching 1,212
versions, in 43,579 GenProg runs. At least one run produced a
patch that passed all of the training suite for 1,044 of the buggy
versions, yielding a GenProg success rate of generating a training-
suite-passing patch of 86.1%.

Not every GenProg run produced a patch. Particularly, since
GenProg uses code elsewhere in the program to generate the patches,
some versions simply didn’t have enough material to work with. In
these cases, GenProg timed out. In other cases, (due to an internal
GenProg bug), GenProg claimed to have produced a patch that did
actually pass all of the training suite. Overall, 50.0% (21,779 of the
43,579) of GenProg runs produced a patch.

By testing GenProg’s effectiveness on six different programs,
our experiments achieved a certain level of diversity in the types
of programs GenProg attempted to fix. The programs include a
variety of different program constructs, such as loops, conditions,
character and numerical calculations. We also wanted to achieve
a variety of levels of severity of the bugs. As described in Sec-
tion 4.3, the buggy versions’ training suites had varying numbers
of failing tests, from just one to half of all the tests in the suite.

To understand what factors about the buggy version make it eas-
ier for GenProg to generate patches, we conducted a careful regres-
sion modeling of the bugginess and the complexity of the buggy
version with GenProg’s success rate of generating a patch. We tried
several covariates: the size of the buggy version; the McCabe com-
plexity of the buggy version; the training suite size; and the initial
white-box passing rate of the buggy version. We built linear regres-
sion models allowing for each program to have a fixed effect (fixed
effect modeling). While there were significant differences between
the programs, none of the covariates had any significant effects on
the GenProg’s ability to patch the buggy programs.

As an example illustration of the lack of any systematic depen-
dency, Figure 3 relates GenProg’s success rate (y-axis) to the frac-
tion of the white-box tests the buggy version passes (x-axis). Each
data point represents all the GenProg runs on a single buggy ver-
sion and its training suite. The shape of the data points represents
the size of the training set (see legend). The data confirms visually
that there is no clear relationship between the two plotted variables.

The success rate of GenProg varies quite widely. The greater ap-
parent spread in the y-axis values for some x-axis values is largely
due to a larger number of samples in that region.

To answer Research Question 1, we conclude that GenProg is
able to patch most (86%) of the buggy versions, but the bugginess
(or indeed, the size, or McCabe complexity) of the program does
not correlate with GenProg’s success.

GenProg’s general success in these experiments did produce ad-
equate data to evaluate the next two research questions.

5.2 GenProg Solution Specificity

Using the large sample of successfully patched programs from
Section 5.1, we next study the specificity, or overfitting of GenProg-
generated patches. Specifically, we use the 21,779 patches pro-
duced by GenProg, for six different programs, under various choices
of training suites, and evaluate their ability to generalize to the
black-box suites designed to encode the program requirements.

Each of the 21,779 patched programs passes its own training
suite. For each program, Figure 4 relates the size of the training
suite to the fraction of black-box tests the patched version passes.
The range of values shown within, e.g., the 0.25 box plot for me-
dian indicates distribution of rates at which the versions with 25%-
sized training suites pass the black-box suites. Thus, at the 25%
level, for median, the median is at about 0.74, indicating that half
the programs trained on 25%-sized training suites pass 74% of the
black-box tests.

For three programs, syllables, grade, and checksum, the larger
training suites lead to patched programs that pass virtually all of the
black-box tests, and thus do not overfit. For smaller training suite
sizes, as expected, the patches fail more black-box tests because the
training suite encodes less of the desired behavior. In regression
modeling, for syllables and grade, the size of the training suite has
a strong positive effect on the black-box pass rate. For the other
four programs, the model’s explanatory power was low; median
and digits exhibited a positive effect, and smallest a negative one.
Meanwhile checksum had no variance in the black-box pass rate.

4(b) compares the black-box passing rate of the human-written
and GenProg-generated patches. The human-written patches are
never worse, and for five of the six programs, dominate the GenProg-
generated patches (statistically significant, corrected p< 0.01)

median

smallest

digits syllables grade checksum
5 1.00 = o o — — N S S S S—
IS,
a
“ e o 1 .
P 0.75 ==
T] °
o
£ 050 = ()
[)]
%]
<
a . — .
é 0.25 =
~ [
(&)
<
m 0.00 == [o [} _—
| |
[Te) 7o) n [Te) ITe) n Te} ITe) n Te} 7o) wn n o) [Te) [Te) 7o) [Te)
s °© o s © o5 ° s © o5 ° s © o ~ s © o ~ s © o °
Training Suite Size
(a) GenProg-generated patches
checksum digits grade median smallest syllables
1.00 = ——— — — — — °
* I A
. . .
0.75 = . —— — .
(] P—
Q [
]
5 050 = . —
> .
. .
. .
0.00 = [] []
| | | | | | | | | | | |
5 g g g 5 g 5 g s g S g
5 T 5 £ 5 t 5 t 5 t 5 T
T o T o T o T o T o T o

(b) Human-written vs. GenProg-generated patches

Figure 4: (a) Black-box passing rate of GenProg-patched programs with a given training suite size. For checksum, grade, and syllables,
patched programs starting at higher levels pass virtually all black-box tests; for the rest, GenProg-generated patches based on subsets
of the white-box suites are not as successful with black-box suites. (b) Human-written patches for the same buggy versions dominate
the GenProg-generated counterparts, never overfitting more, and for five of the six programs, overfitting significantly less.

To answer Research Question 2, we conclude that human-written
patches overfit significantly less and dominate the GenProg-gen-
erated patches. GenProg quite often overfits to the training suite of
tests: While for half the programs, GenProg patches that pass all
of the white-box suite tests also pass all the black-box suite tests,
for the other half, the solutions overfit to the white-box suites and
fail many, sometimes most of the black-box suites.

To answer Research Question 3, we conclude that there is some
positive effect of larger training suites on reducing overfitting: For
two of the six programs, the effect is strong, whereas for the others,
the effect is mixed and weak.

5.3 GenProg Solution Diversity

Many of the buggy versions gave rise to multiple GenProg patches.

While individual patches tended to overfit to the training suites (re-

call Section 5.2), we wish to explore whether the diversity within
these patches is sufficient to employ an n-version technique (recall
Section 3.4) to produce solutions that do not overfit.

The n-version programs are plurality votes of more than three
generated patches for each buggy version (again, recall Section 3.4).

Figure 5 compares the black-box passing rates of the buggy ver-
sions (in red), n-versions (in), and human-written patches
(in blue). As before, the results are split by program, and the x-axis
indicates proportion of the white-box tests passed by the starting
buggy student program, from which the n-patched versions arose.

The red data points represent the fitness of GenProg’s starting
points from which it attempts to generate a patch. Remarkably, in
our experiments, the n-version solutions are never better than this
starting point in a statistically significant way (p < 0.01). Further,
the human-written patches outperform the n-version solution for

checksum digits grade

1.00 = - I8E . 2358 . R

m .

© {3 K A

° A

o 0.75 = .

£ . & -

[}

4)

o 050 = .

< .

o

<2 »

S 025 =

e} . :

om

0.00 ==, -

| | | | | | | |
n o n 1o o n Yo} o
N Te} ~ N [T?) N~ N T?)
o o o o o o o o

median smallest syllables
R 51 [4 Y R 2
8 e 8 :
. .
- ¢ 2.
CE I N 5
l (X
PN 5
a
< s :
s P
&
| | | | | | | | |
Yo} o n Lo o n n o n
3V o N~ 3V n ~ 3] n ~
o o o o o o o o o

Training Suite Size

Figure 5: Comparison of the black-box suite passing rates of the buggy versions (red), the human-patched versions (blue), and the n-
version programs made up of n GenProg-patched solutions (yellow). The data is jittered randomly to ameliorate overlaps. Statistical
testing indicate that human-patched versions are generally the best and overfit the least. The n-version programs are never better

than even the buggy versions.

five of the six programs (p < 0.01). The only exception is check-
sum, for which both humans and n-versions do very well. When
we compared the n-version output to the GenProg patches, how-
ever, they generally performed better (p < 0.01)

To answer Research Question 4, we conclude that there is very
little diversity from which n-version solutions benefit. In most cases,

n-version solutions still overfit significantly more than human-written

patches; however, they do, overall, improve even on the original
buggy versions.

5.4 GenProg Patch Minimization Effectiveness

While GenProg solutions tended to overfit to the training suites,
patch minimization may reduce overfitting, as discussed in Sec-
tion 3.5. GenProg does not minimize its patches by default, but it
does offer such an option. We reran GenProg on our set of buggy
versions and training suites, just as in Section 5.1, but minimizing
the patches. Figure 6 shows the black-box passing rates of the mini-
mized GenProg-generated patches. These rates are nearly identical
to the ones for unminimized patches (4(a)), so minimization has no
significant effect on the rate.

To answer Research Question 5, we conclude that minimization
has no significant effect on the quality of the patches, and thus does
not reduce overfitting.

6. EXAMPLE: THE MEDIAN PROGRAM

This section describes one instance of a buggy student program
and two patches that GenProg produced for it. We use these exam-
ples to highlight the ways that overfitting to a set of white-box test
cases can lead the patch search process astray.

The median homework assignment asks students to produce a
C function that takes as input three integers and outputs their me-
dian. Figure 7 shows the test suites used to evaluate the student
submissions. The black-box tests were written by a human to en-
code the input space and holistic requirements of the assignment.
The white-box tests were created using KLEE and a reference ora-
cle implementation, as described in Section 4.2. The students had

access to neither suite while completing the assignment; GenProg
had access to only the white-box suite. We use the black-box suite
to evaluate the adequacy of the final patches.

One of the student’s (non-final) submissions to the homework
system was:

1 int med(int nl, int n2, int n3) {

2 if ((nl==n2) || (nl==n3) ||

3 (n2<nl && nl<n3) || (n3<nl && nl<n2))
4 return nl;

o) if ((n2==n3) || (nl<n2 && n2<n3) ||

(n3<n2 && n2<nl))
return n2;

8 if (nl<n3 && n3<n2)

return n3;

10 1y

This submission is close to a correct solution, but it is convoluted
and contains incorrect logic (e.g., the equality checks on lines 2 and
5). Despite this, it passes five of the six white-box and six of the
seven the black-box tests. It fails on inputs with n3 as the median,
if the n1 is greater than n2 (such as the fifth black-box test, and the
second white-box test in Figure 7). In these cases, the program fails
to return an answer.

GenProg was able to generate several patches to this program,
using the white-box suite for fitness evaluation. However, these
patches vary considerably in quality. For example, consider the
following low-quality, GenProg-generated patched program:

int med(int nl, int n2, int n3) {

2 if ((nl==n2) || (nl==n3) || ((n3<nl) && (nl<n2)))
3 return nl;

A if (n2<nl)

o] return n3;

6 if ((n2==n3) || ((nl<n2) && (n2<n3)) ||

((n3<n2) && (n2<nl)))
return n2;
if ((nl < n3) && (n3 < n2))
return n3;

median smallest digits

ii 1.00 = -—

I

o °

G

P 0.75 == [

Q

o °

o

£ 0.50 = [

a .

a °

o L) []

§O.25— e o

[] []

% [] []

8

m000— e e o o e o o
| | | | | | | | | | |
n 7o) n n ITe) wn wn ITe) n
N . N~ N N~ N d
s ¢ 7 o5 ° s 7 o5 o°

checksum

N

syllables grade

L.

.
s | o o o .
.
.
| .

e o o . e o o o
P r °r °r °r 1P 0 0 1 1°P 11
n n n n n n
o IS S R St S TN SRS S
o © o c © o c © o

Training Suite Size

Figure 6: (a) Black-box passing rate of minimized GenProg-patched programs with a given training suite size. Comparing to 4(a),

minimization does not have a significant effect on the passing rates.

One of the several conditions in the check on line 2 have been
removed. As a result, this version of he program returns nl as the
median only if it is coincidentally equal to either of the other two
inputs, or if it is actually the median and n3 is less than n2. If nl
is not the median, but n2 is less than n1 (the check that has been
moved to line 5), this code will (possibly incorrectly, possibly not,
depending on the value of nl) return n3 as the median.The patch
does not affect the rest of the logic.

This patch addresses the original problem in the student’s code,
at least with respect to the white-box suite. This code returns the
correct answer when: nl is the median and n3 less than n2, n2 is the
median while being greater than n1, or n3 is the median and n2 is
less than or equal to n1. Although this code passes all of the white
box tests (improving on the original student submission), it actually
passes fewer black-box tests, failing tests 3 and 6 in Figure 7.

This patch serves as an excellent example of overfitting to the fit-
ness function. It highlights weaknesses in the white-box test suite:
Many of the tests have repeated elements in the input, such as hav-
ing multiple inputs be 0. As a result, the student’s otherwise logi-
cally incorrect equality checks on lines 2 and 5 of the original sub-
mission mask the larger problems in the low-quality patch.

Running GenProg with different random seeds can lead to dif-
ferent patches for the same bug. Consider the following patched
program, also a result of running GenProg on the original student
program with the white-box test suite.

int med(int nl, int n2, int n3) {
if ((nl==n2) || (nl==n3) || ((n2<nl) && (nl<n3)) ||
((n3<nl) && (nl<n2)))
return nl;
if ((n2==n3) || ((nl<n2) && (n2<n3)) ||
((n3<n2) && (n2<nl)))
return n2;
if ((nl < n3) && (n3 < n2))
8 return n3;
9 else

N

Oy UTd W

10 return n3;
11)
The incorrect equality checks on lines 2 and 4 remain. Neither

test suite adequately rooted out this particular logic bug. However,
this patch has inserted a copy of the return n3 into the else block

of the last set of conditions, which seek to determine whether n3 is
the median. Ignoring the equality checks, this is actually a reason-
able solution to the problem, because by that point in the program
logic, the only remaining option (captured by the else) should be
that n3 is a median.

Before submitting the final version, the student rewrote the logic
of the code considerably, eliminating the equality checks on lines 2
and 4 and properly handling the last set of conditionals:

int med(int nl, int n2, int n3)

{

N

3 if ((n2<=nl && nl<=n3) || (n3<=nl && nl<=n2))
4 return nl;

) if ((nl<n2 && n2<=n3) || (n3<=n2 && n2<nl))

6 return n2;

] if ((nl<n3 && n3<n2) || (n2<n3 && n3<nl))

return n3;
9 1

In this example, GenProg solutions overfit to the test suite, while
the human-written patch did not. The fault lies in a large part with
the test suite: The white-box test suite made available to GenProg
did not encode some of the key behavior. However, partial test
suites that underspecify the requirements are common in in the real
world, so this situation is a quite realistic use of GenProg.

black-box tests | white-box tests

med(2, 6, 8) =6 med (0, 0, 0) =0
med(2, 8, 6) =6 med(2, 0, 1) =1
med (6, 2, 8) =6 med(0, 0, 1) =0
med (6, 8, 2) = 6 med (0, 1, 0) =0
med(8, 2, 6) =6 med(0, 2, 1) =1
med (8, 6, 2) = 6 med (0, 2, 3) =2
med(9, 9, 9) =9

Figure 7: White- and black-box suites for the median subject
program.

7. THREATS TO VALIDITY

Our experiments may not generalize. We only experiment with
GenProg, one specific automatic program patcher. The results may
not extend to other automatic program repair mechanisms. Sec-
ond, all our subject programs were small student programs, with
fairly small test suits. While these are experimentally interesting, in
that they provide a very large set for conducting trials at scale, and
for example, engaging in a large-scale test of the possibility of n-
version programming, they are in fact a fairly small set. This small
size may restrict the ability of GenProg to patch the programs; like-
wise the small test suite sizes may only explore the notion of fitness
and training at a fairly small-scale and coarse levels. Finally, for
programs that GenProg could not patch on five tries, we stopped
after only those tries. (If GenProg showed promise by working at
least once, we allowed it more tries.) Five is a small number by the
standards of standard metahueristic search algorithms. It is possible
that more attempts would have revealed more GenProg-generated
solutions. Our results may over-approximate GenProg’s success on
some bugs, while under-approximating it across a selection of bugs.
Further, we used the default GenProg settings for consistency with
the related work; a full parameter sweep is outside the scope of this
investigation.

Our experimental design may not be readily repeatable. For ex-
ample, our intention was that the black-box white-box suites repre-
sented different perspectives on the fitness of the program. While
the white-box suites were generated automatically to the extent
possible, and black-box suites were generated by a rigorous manual
analysis of the requirements, at least the latter is subject to human
interpretation. Thus, a replication of our experiments on different
programs or with different test suites on our programs may be af-
fected by human subjectivity and may produce different results.

8. RELATED WORK

Automatically fixing bugs is a promising area of research be-
cause of both the high cost associated with bugs [10] and the high
cost of fixing the bugs manually [3, 10,37]. More than a dozen
automated bug-fixing techniques have emerged. ClearView [33]
detects invariants of normal operating behavior (e.g., readIndex
< bufferSize), and creates repairs that force data to conform to
those invariants. PAR [24] improves search-based patching tech-
niques with manually mined pattens of human repairs to find suit-
able patches. SemFix [31] constructs patches from symbolic-exec-
ution constraints. AutoFix-E [41] uses human-written code con-
tracts to construct patches, which has the benefit of providing proofs
of correctness, with the downside of additional burden on the hu-
man developer (to provide the contracts). Meanwhile even just
mutating code fault-localization techniques deem faulty can repair
bugs [39]. It is possible to evolve tests and repairs together [5],
which could address some of the issues we have outlined with
test suites used for repair. Focusing on a particular kind of bug
can allow specialized fixes. For example, unsafe integer use in
C programs can be fixed by applying template of faulty uses and
code transformations [15]. For atomicity violations, AFix [23] uses
static analysis to try to fix multiple bugs with a single fix. The AR-
MOR [12] replaces buggy library calls with a different library calls
that achieve the same behavior; the same can be done for web appli-
cations [13]. GenProg, discussed and evaluated extensively in this
paper, is a more general approach that uses GP techniques to evolve
C programs toward ones that pass a set of supplied tests [44]. Our

work does not create a new bug-fixing technique, but rather eval-
uates an existing technique, GenProg, attempting to compare the

patches it produces to human-written patches, and to identify areas
that need improvement.

We have already discussed previous evaluations of GenProg in
Section 2.

GP algorithms tend to generate code bloat, extraneous code that
does not contribute to the fitness of the solution [20]. This increases
solution size and, in the case of GenProg, potentially effects the
untested program behavior. Bloat in GP is well understood [36],
and GenProg’s use of minimization attempts to mitigate it.

Overfitting is a well-studied problem in machine learning [30].
In asking if patch minimization reduces overfitting (Sections 3.5
and 5.4), we were hopeful that code bloat and overfitting were re-
lated, since they both affect the behavior not covered by the training
suite. Our results suggest that if there is no such relationship. To
the best of our knowledge, there has been no significant prior con-
sideration of the relationship of bloat and overfitting in the domain
of patch generation.

Search-based software engineering [22] uses search-based meth-
ods, such as evolution for software engineering tasks, such as de-
veloping test suites [29,40], finding safety violations [2], refactor-
ing [35], and project management and effort estimation [6]. Good
fitness functions are critical to search-based software engineering,
as is also the case with GenProg. Our findings indicate that using
test cases as the fitness function leads to patches that overfit to that
function, and do not generalize well to satisfy the requirements.

In our evaluation, we used an n-version approach [14] of com-
bining multiple programs trying to solve the same problem. This
approach has been shown to work poorly with human-written sys-
tems because the errors humans make when writing programs do
not appear to be independent [4]. With automated bug fixing, this
approach did improve slightly over using the individual patches,
but still failed to produce desired behavior.

9. CONTRIBUTIONS

Automated bug-fixing techniques have the potential to signifi-
cantly reduce costs and improve software quality and recent re-
search has shown great promise. In this paper, we have evaluated
GenProg, a well-known automated bug-fixing technique on a large
set of student-written programs with naturally occurring bugs, and
human-written patches. Our dataset consists of 1,212 bugs that oc-
curred naturally during development of six programs, and our ex-
periments generated 21,779 automated patches (using different test
suites to drive the patching process). Our experiments conclude
that GenProg was able to produce a patch for most (86%) of the
bugs, but that these patches overfit to the test suite used in patch-
ing, and often failed to pass other tests that encode program re-
quirements. Meanwhile, human-written patches significantly out-
performed GenProg-generated patches on these other tests. Fur-
ther, we found that providing GenProg with larger test suites some-
times decreased overfitting, but that the GenProg-generated patches
lacked sufficient diversity to use a kind of n-version bagging, in

which a plurality vote over a population of GenProg-generated patches

outperforms a randomly chosen individual patch. Finally, we found
that patch minimization did not affect overfitting. In the end, while
automated bug-fixing is promising, much work remains in improv-
ing the quality of the generated patches before they equal that of
human developers.

10.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

REFERENCES
M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API patterns as
partial orders from source code: From usage scenarios to
specifications. In ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2007.
E. Alba and F. Chicano. Finding safety errors with ACO. In
Proceedings of the 9th Annual Conference on Genetic and
Evolutionary Computation, pages 1066—1073, London,
England, UK, 2007.
J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this
bug? In Proceedings of the 28th International Conference on
Software Engineering, pages 361-370, Shanghai, China,
2006.
A. Arcuri and L. Briand. A practical guide for using
statistical tests to assess randomized algorithms in software
engineering. In Proceedings of the 33rd International
Conference on Software Engineering, pages 1-10, Honolulu,
HI, USA, 2011.
A. Arcuri and X. Yao. A novel co-evolutionary approach to
automatic software bug fixing. In Congress on Evolutionary
Computation, pages 162—168, 2008.
A. Barreto, M. Barros, and C. Werner. Staffing a software
project: a constraint satisfaction approach. Computers and
Operations Research, 35(10):3073-3089, 2008.
I. Beschastnikh, Y. Brun, J. Abrahamson, M. D. Ernst, and
A. Krishnamurthy. Unifying FSM-inference algorithms
through declarative specification. In International
Conference on Software Engineering, 2013.
I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D.
Ernst. Leveraging Existing Instrumentation to Automatically
Infer Invariant-Constrained Models. In Proceedings of the
European Software Engineering Conference held jointly with
the ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2011.
A. W. Biermann and J. A. Feldman. On the synthesis of
finite-state machines from samples of their behavior. IEEE
Transactions on Computers, 21(6):592-597, June 1972.
T. Britton, L. Jeng, G. Carver, P. Cheak, and
T. Katzenellenbogen. Reversible debugging software.
Technical report, University of Cambridge, Judge Business
School, 2013.
C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and
automatic generation of high-coverage tests for complex
systems programs. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and
Implementation (OSDI), pages 209-224, San Diego, CA,
USA, 2008.
A. Carzaniga, A. Gorla, A. Mattavelli, N. Perino, and
M. Pezze. Automatic recovery from runtime failures. In
Proceedings of the 2013 International Conference on
Software Engineering, pages 782—791, San Francisco, CA,
USA, 2013.
A. Carzaniga, A. Gorla, N. Perino, and M. Pezze. Automatic
workarounds for web applications. In Proceedings of the
18th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSEI0), pages
237-246, Santa Fe, New Mexico, USA, 2010.
L. Chen and A. Avizienis. N-version programming: A
fault-tolerance approach to reliability of software operation.
In Proc. 8th IEEE Int. Symp. on Fault-Tolerant Computing
(FTCS-8), pages 3-9, 1978.
Z. Coker and M. Hafiz. Program transformations to fix C

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

integers. In Proceedings of the 2013 International
Conference on Software Engineering, pages 792-801, San
Francisco, CA, USA, 2013.

J. E. Cook and A. L. Wolf. Discovering models of software
processes from event-based data. ACM Transactions on
Software Engineering and Methodology, 7(3):215-249,
1998.

M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou.
Identification and application of Extract Class refactorings in
object-oriented systems. Journal of Systems and Software,
85(10):2241-2260, 2012.

S. Forrest, T. Nguyen, W. Weimer, and C. Le Goues. A
genetic programming approach to automated software repair.
In Proceedings of the 11th Conference on Genetic and
Evolutionary Computation, pages 947-954, Montreal,
Québec, Canada, 2009.

Z.P. Fry, B. Landau, and W. Weimer. A human study of
patch maintainability. In International Symposium on
Software Testing and Analysis, pages 177-187. ACM, 2012.
S. Gustafson, A. Ekart, E. Burke, and G. Kendall. Problem
difficulty and code growth in genetic programming. Genetic
Programming and Evolvable Machines, pages 271-290,
September 2004.

A.-R. Han and D.-H. Bae. Dynamic profiling-based approach
to identifying cost-effective refactorings. Information and
Software Technology, 55(6):966 — 985, 2013.

M. Harman. The current state and future of search based
software engineering. In International Conference on
Software Engineering, pages 342-357, 2007.

G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit. Automated
atomicity-violation fixing. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design
and Implementation, pages 389—400, San Jose, CA, USA,
2011.

D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch
generation learned from human-written patches. In
Proceedings of the 35th International Conference on
Software Engineering, pages 802—811, San Francisco, CA,
USA, 2013.

J. C. Knight and N. G. Leveson. An experimental evaluation
of the assumption of independence in multiversion
programming. /[EEE Transactions on Software Engineering,
12(1):96-109, 1986.

C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A
systematic study of automated program repair: Fixing 55 out
of 105 bugs for $8 each. In Proceedings of the 34th
International Conference on Software Engineering, pages
3-13, Zurich, Switzerland, 2012.

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer.
GenProg: A generic method for automatic software repair.
IEEE Transactions on Software Engineering, 38:54-72,
2012.

D. Lorenzoli, L. Mariani, and M. Pezz¢. Automatic
generation of software behavioral models. In International
Conference on Software Engineering, 2008.

C. C. Michael, G. McGraw, and M. A. Schatz. Generating
software test data by evolution. /EEE Transactions on
Software Engineering, 27(12):1085-1110, December 2001.
T. Mitchell. Machine Learning. McGraw-Hill, New York,
1997.

H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra.
SemFix: program repair via semantic analysis. In

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Proceedings of the 2013 International Conference on
Software Engineering, pages 772-781, San Francisco, CA,
USA, 2013.

G. Paris, D. Robilliard, and C. Fonlupt. Exploring overfitting
in genetic programming. In Artificial Evolution, volume
2936 of Lecture Notes in Computer Science, pages 267-277.
Springer, 2004.

J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe,

J. Bachrach, M. Carbin, C. Pacheco, F. Sherwood,

S. Sidiroglou, G. Sullivan, W.-E. Wong, Y. Zibin, M. D.
Ernst, and M. Rinard. Automatically patching errors in
deployed software. In Proceedings of the 22nd ACM
Symposium on Operating Systems Principles, pages 87-102,
Big Sky, MT, USA, October 12-14, 2009.

S. P. Reiss and M. Renieris. Encoding program executions.
In International Conference on Software Engineering, 2001.
0. Seng, J. Stammel, and D. Burkhart. Search-based
determination of refactorings for improving the class
structure of object-oriented systems. In Proceedings of the
8th Annual Conference on Genetic and Evolutionary
Computation, pages 1909-1916, Seattle, WA, USA, 2006.
S. Silva and E. Costa. Dynamic limits for bloat control in
genetic programming and a review of past and current bloat
theories. Genetic Programming and Evolvable Machines,
10(2):141-179, June 2009.

Symantec. Symantec Internet security threat report. Trends
for january 06—june 06.
http://eval.symantec.com/mktginfo/enterprise/
white_papers/ent-whitepaper_symantec_internet_
security_threat_report_x_09_2006.en-us.pdf,
September 2006.

N. Tsantalis and A. Chatzigeorgiou. Identification of move

12

[39]

[40]

[41]

[42]

[43]

[44]

[45]

method refactoring opportunities. I[EEE Transactions on
Software Engineering, 35(3):347-367, 2009.

V. D. W. Eric and Wong. Using mutation to automatically
suggest fixes for faulty programs. In Proceedings of the 2010
Third International Conference on Software Testing,
Verification, and Validation, pages 65—74, Paris, France,
2010.

K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S.
Roos. Time-aware test suite prioritization. In Proceedings of
the International Symposium on Software Testing and
Analysis, pages 1-12, Portland, ME, USA, 2006.

Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz,

B. Meyer, and A. Zeller. Automated fixing of programs with
contracts. In Proceedings of the 19th International
Symposium on Software Testing and Analysis, pages 61-72,
Trento, Italy, 2010.

W. Weimer. Patches as better bug reports. In Generative
Programming and Component Engineering, pages 181-190,
2006.

W. Weimer, Z. P. Fry, and S. Forrest. Leveraging program
equivalence for adaptive program repair: Models and first
results. In Proceedings of the 28th International Conference
on Automated Software Engineering, Palo Alto, CA, USA,
2013.

W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest.
Automatically finding patches using genetic programming.
In Proceedings of the ACM/IEEE 31st International
Conference on Software Engineering (ICSE09), pages
364-374, Vancouver, BC, Canada, 2009.

A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input. I[EEE Transactions on Software
Engineering, 28(2):183-200, February 2002.

http://eval.symantec.com/mktginfo/enterprise/white_papers/ent-whitepaper_symantec_internet_security_threat_report_x_09_2006.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/ent-whitepaper_symantec_internet_security_threat_report_x_09_2006.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/ent-whitepaper_symantec_internet_security_threat_report_x_09_2006.en-us.pdf

	1 Introduction
	2 Background
	3 Research Questions andExperimental Design
	3.1 Developing Test Suites
	3.2 GenProg Effectiveness
	3.3 GenProg Solution Specificity
	3.4 GenProg Solution Diversity
	3.5 GenProg Patch Minimization Effectiveness

	4 The Dataset: Programs and Tests
	4.1 The Programs
	4.2 Test Suites
	4.3 Buggy Versions

	5 Experimental Results
	5.1 GenProg Effectiveness
	5.2 GenProg Solution Specificity
	5.3 GenProg Solution Diversity
	5.4 GenProg Patch Minimization Effectiveness

	6 Example: the Median program
	7 Threats to Validity
	8 Related Work
	9 Contributions
	10 References

