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Abstract— Searching a large knowledge or information
space for optimal regions demands sophisticated algorithms,
and sometimes unusual hybrids or combined algorithms.
Choosing the best algorithm often requires obtaining a
good intuitive or visual understanding of its properties and
progress through a space. Visualisation in combinatorial
optimizers is more challenging than visualising paramet-
ric optimizers. Each problem in combinatorial optimisation
is qualitative and has a very different objective, whereas
parametric optimizers are quantitative and can be visualised
almost trivially. We present a method for visualising abstract
syntax trees in an interactive manner, as well as some certain
enhancements for evolutionary algorithms. We also discuss
the use of this in improving the convergence performance of
a Geometric Particle Swarm Optimiser.
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1. Introduction
Combinatorial optimization[1] and the search methods as-

sociated with it remain important aspects of information and
knowledge engineering. Obtaining a visual representation
and hence an understanding of algorithms in combinatorial
optimization remains a difficult challenge as the scale and
complexity of the problems one wishes to tackle increases.
A visual rendering of an algorithm can be an important
means of assessing its suitability for a particular problem,
particularly if the rendering can be formed in near interactive
time and the human user is able to form an impression of
an algorithm’s progress – or lack of it from a recognizable
visual pattern.

Much research has been dedicated towards furthering
combinatorial optimizers, with classical problems such as the
Traveling Salesman Problem (TSP) [2], [3], the Knapsack
problem [4] and the Prisoner’s Dilemma [5]. The primary
focus of these problems is the search for a global optimum,
analogous to that of parametric optimizers such as Kennedy
and Eberhart’s Particle Swarm Optimiser [6].

John Koza’s pioneering work of 1994 [7], perhaps greatly
inspired by earlier work of John Holland on the Genetic
Algorithm [8] has seen the advent and widespread uptake
and use of of Genetic Programming (GP) [9]. GP is a tech-
nique used to evolve programs to solve particular problems.
Since the introduction of this algorithm, it has been used for

Fig. 1
VISUAL REPRESENTATION OF A GENERATION OF AGENTS USING A TREE

STRUCTURE.

solving many problems, such as evolving soccer Soft Bots
[10], [11] for competitions, model induction [12], intrusion
detection [13], modeling land change in Mexico [14], image
enhancement [15] and many more.

Many variations and improvements of the GP algorithm
have been proposed in the past including Cartesian GP [16],
distributed CUDA-based GP [17], a quantum-inspired linear
GP [18], Strong GP [19] (a restrictive version of GP), as
well as other GPU-based implementations [20], [21].

Visualisation of GP has typically been restricted to visu-
alisation of the fitness function itself. In simulations such
as soccer Softbots [10], [11], it is attractive to view the
behaviour of the robots themselves, as it gives a good indica-
tion of the running efficacy of GP. Based on this information,
one can sometimes infer modifications to parameters such as
mutation and crossover rates.

In analysis of GP and its related variations, quantitative
metrics typically take the place of visualisation. These also
give valuable insights into the behaviour of the algorithm.



Techniques such as Landscape Analysis have long been an
area of research, and was applied to GP in 1994 by Kinnear
[22], the same year that GP was introduced by Koza [7]. In
the article by Kinnear, the author also discussed comparing
the difficulty of various fitness landscapes by plotting the
cumulative probability of success (CPS) for each. Gustafson
[23] presented a thorough analysis of diversity metrics
in Genetic Programming which include unique programs,
ancestral analysis, edit distances, and others.

Our efforts are focused on visualisation of the candidate
programs as they are modified by genetic operators. We
anticipated that this would assist in verifying the behaviour
of each operator, as well as tuning it so as to maximise
constructive recombination between candidates.

In Section 2, we describe the algorithms that we apply
our visualisation and metrics to. This includes the Geometric
Particle Swarm Optimiser using Karva for representation, as
well as a Genetic Programming implementation also using
Karva. In Section 3 we proceed to discuss our visualisation
method, and related metrics, and following this we present
and discuss some screen dumps of the visualisation. Finally,
in Sections 5 and 6, we discuss our methods, and conclude
with some possible future work.

2. Genetic Programming Background
We summarise the genetic programming algorithms of

interest to us in this work and give some background and
references on their main properties relevant to our test-bed
system and visual rendering implementation.

Our test-bed algorithms include a data-parallel imple-
mentation of Genetic Programming using Karva[24] for
representation of programs (which we shall denote K-GP)
[25], as well as a data-parallel Geometric Particle Swarm
Optimiser also using Karva (which we shall denote using
K-GPSO) [26]. We present here a brief overview of these
algorithms.

Karva is a program representation language developed by
Ferreira in her Gene Expression Programming (GEP) algo-
rithm [24]. GEP is attractive mainly for its representation,
which has inherent support for introns in its representation;
which brings it closer to the biological analogy of evolution.
It is also attractive for its extremely simple and elegant
crossover and mutation operators.

Since both K-GP and K-GPSO operate on the space
of Karva programs (otherwise known as K-expressions),
the main difference between these algorithms is in its
recombination phase. K-GP relies on a tournament selec-
tion operator, followed by simple one-point crossover and
point mutation. The K-GPSO operates using a multi-parent
crossover with the global optimum (gBest) and a personal
optimum (lBest), and a current position, analogous to the
original PSO. A perturbation in solution space is accom-
plished using point mutation. The weighted multi-parent
crossover operator we use is the one presented by Togelius

in his paper introducing Particle Swarm Programming [27]
from the concept of a Geometric Evolutionary Algorithm
first presented by Moraglio in his thesis of 2007 [28]. The
concept of a Geometric optimiser is essentially a method by
which a parametric optimiser such as the PSO by Kennedy
and Eberhart [6], [29] can be adapted for searching in an
arbitrary space.

Part of our interest in developing visualisations and met-
rics for Evolutionary Algorithms (EAs) is the advent of the
very recent concept of Geometric EAs. Poli and colleagues
[30] have conceded that it is too early to assert the efficacy
of Geometric EAs over traditional related algorithms; which
has inspired interest in more metrics and visualisations, as
well as new algorithms such as the K-GP and K-GPSO.

Both the K-GP and K-GPSO are implemented on Graph-
ical Processing Units (GPUs) to improve wall-clock per-
formance, but as we are only concerned with convergence
performance, we omit a detailed discussion on this, and
instead refer the reader to [25], [26], [31] for more detail.

The fitness function we use is a modified Santa Fe
Ant Trail in 3D, where terminal symbols are: Move,
Right, Left, Up, Down, and non-terminal symbols (func-
tions) are: IfFoodAhead and ProgN2. The function
IfFoodAhead executes its first argument if there is food
directly ahead of the agent, and the second argument other-
wise. ProgN2 simply executes its arguments in order. The
object of this simulation is to obtain an agent which is as
effective as possible for picking up so-called “food” items
scattered throughout the space. We omit a more thorough
discussion of how this fitness function is implemented.

An example of a Karva-expression or k-expression which
encodes a certain candidate program is as follows:

0123456789
PPIPMMRMML

This program is shown as a visual interpretation in
Figure 2. It is a highly efficient program for solving this
particular problem. The first line of the code above is simply
an indexing convenience, whereas the second line is the
program itself. The string of symbols is interpreted into a
tree (as shown in Figure 2), and then executed in the normal
fashion. The tree is constructed level by level, and filling
arguments from the k-expression from left to right. This tree
is often known as the phenotype for a particular candidate,
whereas the string of symbols shown above is the genotype.
It is important to note that the symbol at index 9 is not
expressed in the phenotype, however, with an appropriate
mutation, this symbol can easily be re-introduced into the
phenotype.

Point mutation and one-point crossover is almost trivially
easy on a representation like this. Point mutation is simply
an exchange of one symbol with another uniform-randomly
chosen symbol. One-point crossover involves choosing a
random crossover site, and exchanging information between



Fig. 2
A HIGHLY EFFECTIVE GENERATED AGENT. THE k-EXPRESSION FOR

THIS IS PPIPMMRMM.

two candidates about this point.
It is important, however, to maintain a head and tail

section in this expression, so that it is guaranteed that all
functions in phenotype will have enough arguments supplied
to them. Details of this is out of scope here, but it is
important to note that, like other Genetic Programming
approaches, Karva also has some idiosyncrasies.

3. Visualisation Method
Our method for visualising program space involves a

successive subdivision of a 2D grid, where each subdivision
represents the selection of a different codon or symbol.
We have specifically engineered this method for karva-
expressions, but it can easily extend to any other abstract
syntax tree representation including pointer trees.

Figure 1 shows an example of what a randomly initialised
population of candidate programs could look like. In this
example, a dot represents a single program. The space is
divided in a horizontal fashion, for selecting the first codon,
then vertical for the second codon, and so forth, until all
codons have been selected, at which point a dot is placed. It
is worthwhile to note that in doing this, we are effectively
viewing a combinatorial problem as a parametric one, where
differences in programs are represented as spatial differences
instead.

To further illustrate our method, we present Algorithms 1
and 2. Algorithm 1 shows the process by which we add an
expression to the tree-based data-structure of the visualiser.
Algorithm 2 is the method by which we actually draw the
data-structure to the screen. We keeps Algorithms 1 and 2

separate in the implementation, so that interactive use of the
program is more streamlined. The data-structure we use is
similar in concept to k-D trees, where space is successively
divided along each of the principal axes.

Also, to indicate candidate movement through this pseudo-
space in successive generations, we draw a line from the
previous candidate to the new candidate in each generation.
This makes certain dynamics of EAs more clear, particularly
the K-GPSO, which we discuss later.

In summary, for a new expression to be added to the
program space visualisation, the space is first divided into n
sections vertically, where n is the number of terminal and
non-terminal symbols. Each section represents a symbol. The
first symbol in the expression determines the section next
divided. Suppose this is the third section from the top. This
section is then divided into n sections in a horizontal fashion.
The next symbol in the expression determines which section
will then be divided further, and so forth. Finally, when no
symbols remain in the expression, a dot is drawn to indicate
the location of the expression.

Algorithm 1 Adding an expression to the data-structure.
with n candidate programs
with p as the top-level symbol drawable
set c = p
for i = 0 to n do

with m symbols per program
exp = programs[i]
for j = 0 to m do

nextindex = getCodonIndex(exp[i])
if p.children.get(nextindex) is null then
c = c.addChild(nextindex)
c.setLabel(exp[i])

else
c = c.children.get(nextindex)

end if
end for

end for

The visualiser is perhaps best used interactively. Keystroke
combinations allow the user to zoom in on specific locations
within the program space, and move around to better under-
stand how the algorithm under scrutiny works.

We have implemented our system using Java[32] and
the Java Swing [33] two-dimensional graphical library. The
operations we use to construct the tree visualisers could
however be implemented with any modern graphical system.
Java and Swing are convenient portable systems that can be
easily attached to our framework and set up with simple
graphical programmatic utilities.

4. Visualisation Results
We present a number of visual frames of various al-

gorithms along with a commentary on what convergence



Algorithm 2 Drawing the tree-based data-structure to the
screen recursively.

with m symbols per program

render(top-level)

FUNCTION render(c)
for i = 0 to linecount do

lines[i].paint()
end for
if children is not null then

vector2d mystart = getMyStart();
vector2d myend = getMyEnd();
if orientation == Horizontal then

drawDivisionsHorizontal(mystart,myend)
else

drawDivisionsVertical(mystart,myend)
end if
for j = 0 to childrencount do

render(children[j])
end for

else
drawPoint(mycentre)

end if
END

actions that are visible. In particular, we now compare
the characteristics of the K-GP and K-GPSO in terms of
convergence. Figure 3 show successive generations of the
K-GP. These figures show that the K-GP is very effective
at maintaining diversity. This will become more clear when
we discuss the K-GPSO.

Figure 4 shows the second frame of a sample generation
in the K-GPSO optimiser. Immediate impressions that this
image conveys is the clear use of a global optimum which is
used in crossover. It also indicates that there may be an issue
in population diversity. In [26], we discussed the parameters
φp, φg and ω, and mentioned that they are best set to static
empirically obtained values. This is as opposed to weighted
values depending on the fitness values associated with the
gBest, lBest, and current candidates. The problem with the
latter is it is very common for the fitness distance between
any candidate and the global best to be disproportionately
high. This would cause the crossover point to be chosen so
that it is simply the entire gBest candidate being replicated.

To make this more clear, we show a plot of the unique
candidates by generation for the sample run in Figure 5.
Having a good number of unique programs is important to
ensure adequate diversity for future crossover operations.
The difference in diversity by generation for the K-GP
and K-GPSO algorithms is conclusive. We believe that an
improvement upon diversity statistics in the K-GPSO would
bring about a better convergence rate.

After observing the scores from the sample generation of
the K-GPSO, a large number of the programs obtained a
score of zero. Essentially, in the flow of the algorithm with
score-weighted crossover, this would result in a replication
of the global best. Ideally what is necessary, is a higher
mutation rate.

Firstly, we adopted a much higher mutation rate of 0.3, (as
opposed to 0.1), which did not improve the convergence of
the algorithm. The standard deviation of the results was too
high to be considered a reliable optimiser. Unique diversity
in the population was not maintained, since 0.3 was still
too low. The problem with increasing mutation probability
further, is that the algorithm would fail to converge at all,
as the better solutions would almost certainly be mutated to
lower fitness values.

We then experimented with lowering the crossover rate.
This was more fruitful, and resulted in a much lower
standard deviation among average mean fitness values. A
crossover probability of 0.1 seemed to improve the conver-
gence rate. A crossover rate this low does not perform well
for genetic algorithms, however. Figure 6 shows frame 2 of
a sample generation with this modification. In comparison
to Figure 4, what is clear is that most of the population
remains stationary. The reason why this performs better, we
believe, is due to the more paced movement of particles
towards the global best. It is also possible that this K-GPSO
algorithm is simply not well suited to this objective function,
especially considering that there is some error associated
with the function itself.

Figure 7 conveys a sense of how the visualiser might
respond to interaction. The top-level program space is shown
on the left (generation 100 of a sample run of K-GPSO), and
successive zooming in on the area where the most candidate
programs are quickly indicates the global best without a
doubt. A subtle feature of this is that the lines indicate
both a previous program, and a succeeding program. The
previous program is represented by a grey dot, whereas the
new program is a blue dot. This does add an indication of
movement about the global optimum.

5. Discussion
A number of observations on algorithmic behaviours can

be made from the visual renderings we obtained.
Most of the insights we obtained from the visualiser seems

to give more and more credit to Poli and McPhee’s concept
of Homologous Crossover [34], where crossover preserves
information already shared between candidates. The problem
we observe with the K-GPSO is that the global best weighted
score is often so great in comparison, that it is simply
duplicated.

While the visualisation itself does assist in a qualitative
manner, it is far more useful when used interactively. Zoom-
ing and movement across the program space is very useful,



Fig. 3
GENERATIONS 1-4 (TOP), 5, 10, AND 100 (BOTTOM) OF A SAMPLE RUN OF THE K-GP.

Fig. 4
A VISUALISATION OF AN EARLY FRAME OF A GENERATION IN THE

K-GPSO OPTIMISER.

especially for gaining insight into how the algorithm behaves
on a microscopic level.

Representing programs in this fashion has some draw-
backs however. Spatial distance in the visualisation has no
bearing over crossover and mutation operators in their ability
to move candidate programs through space. These concepts
do not share a similar concept of spatial distance to that

Fig. 5
DIVERSITY PLOT OF THE CUDA GP AND GPSO ALGORITHMS BOTH

USING K-EXPRESSIONS.

of the visualiser. This can result in a more difficult to
interpret visualisation at times, as crossover and mutation
may translate a certain candidate very far away from the
original, while the program may only differ in one symbol.

Indicating movement through this program space for
the K-GP (Karva Genetic Programming) algorithm is less
meaningful than for the K-GPSO (Karva Geometric Particle
Swarm Optimiser) . The reason for this is in the imple-
mentation of tournament selection, where, depending on the
outcome of the two tournaments, the candidates used in the
end may be unrelated to the originals chosen.

Nevertheless, the use of this visualisation has led us to



Fig. 6
VISUALISATION OF FRAME 2 OF THE K-GPSO WITH MODIFIED

PARAMETERS, AT THIS FRAME, 907 UNIQUE PROGRAMS ARE PRESENT.

identify what we believe to be the main problem underlying
the K-GPSO. The lack of program diversity in this algorithm,
especially using weighted scores for multi-parent crossover,
results in a great diversity deficiency. Our efforts to correct
the K-GPSO saw limited success. From these observations,
it seemed that using static values for the parameters in the
K-GPSO is not conducive to avoiding local minima issues.
Using weighted values according to scores does bring a
limited improvement.

6. Conclusions and Future Work
In summary, we have presented an effective visualisation

technique for Genetic Programming and its variants. We
applied this to our K-GP (Karva Genetic Programming)
and K-GPSO (Karva Geometric Particle Swarm Optimiser)
algorithms and discussed the merits of this visualisation, and
we also presented various modifications to these algorithms
inspired from visual cues.

In the past, abstract syntax trees have mainly been anal-
ysed using quantitative methods. Visualisations were mostly
restricted to the objective function itself, which does give
limited information regarding the relative efficacy of candi-
date programs. We believe that a visualisation such as this
gives effective visual cues that inspire improvements.

We have been able to make a number of qualitative obser-
vations concerning the algorithms under study by spotting
emergent patterns and following visual cues that a interactive
human user can readily make, but which would be hard to
easily encode a supervisory pattern recognition program to

identify. This emphasises the importance of a human-guided
optimizer, implemented to work in near real-time.

We anticipate that future work could involve using Graphi-
cal Processing Units to further speed the process of rendering
images, so that it can be used in real time. It could also
be very beneficial to build in landscape analysis to this
visualiser to perhaps produce a colour-coded image indi-
cating higher fitness values, or even emit a 3D plot of the
landscape itself. There is also scope for rendering trees in
three dimensions. Generally 3D rendering is more expensive
in terms of computational cost but potentially can pack more
and more complex information onto a rendering for a human
to spot patterns and changes.
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