
Geometric Optimisation using Karva for Graphical Processing
Units

A.V. Husselmann and K.A. Hawick
Computer Science, Massey University, North Shore 102-904, Auckland, New Zealand

email: k.a.hawick@massey.ac.nz
Tel: +64 9 414 0800 Fax: +64 9 441 8181

Abstract— Population-based evolutionary algorithms con-
tinue to play an important role in artifically intelligent
systems, but can not always easily use parallel computation.
We have combined a geometric (any-space) particle swarm
optimisation algorithm with use of Ferreira’s Karva lan-
guage of gene expression programming to produce a hybrid
that can accelerate the genetic operators and which can
rapidly attain a good solution. We show how Graphical
Processing Units (GPUs) can be exploited for this. While
the geometric particle swarm optimiser is not markedly
faster that genetic programming, we show it does attain
good solutions faster, which is important for the problems
discussed when the fitness function is inordinately expensive
to compute.

Keywords: CUDA; geometric; genetic programming; gpu; paral-
lel; particle swarm

1. Introduction
The advent of combinatorial optimisers saw the birth of

genetic programming (GP) [17], [30], which is the term now
widely representative of all algorithms intended to optimise
in the search space of programs. John Koza first invented
GP in 1995 alongside the pioneering work of Kennedy
and Eberhart towards the Particle Swarm Optimiser (PSO)
[15], [3], [16]. Combinatorial and parametric optimisers
have largely evolved in tandem over time, and a great deal
of research effort has been expended in improving them.
These have resulted in a great many varieties of parametric
optimisers, including the Cooperative PSO of van den Bergh
[38], space exploration advancements [13] and notably, data-
parallel optimisers [9]. Combinatorial optimisation in the
space of programs have also gained Cartesian GP [23],
Gene Expression Programming (GEP) [4] and a handful of
others. The intentions behind these algorithms are usually to
improve upon one or more aspects of the class of optimiser
in question. GP has been applied to a variety of problem
domains including intrusion detection [2], robotics [21],
[20], geography [22], algorithm discovery [37], image en-
hancement [31], as well as data mining [40] and cooperative
mult-agent systems [29].

Genetic Programming (GP) is an optimiser intended to
successively evolve a generation of candidate solution pro-

Fig. 1: A 3D version of the classic Genetic Programming
test environment named the Santa Fe Ant Trail. This is a
visualisation of 2048 “ants” in their competitive coevolution
in gathering the red food items.

grams to solve a particular problem. John Koza’s work
toward GP [17] was arguably inspired by the pioneering
work of John Holland [6] earlier in the 20th centuary
on the canonical genetic algorithm. Most variants of the
original algorithm today make use of various representa-
tions, operators and other techniques such as elitism and
alternative selection mechanisms. GP maintains a population
of candidate solutions and computes a new population of
individuals after some genetic operators have been executed
based on relative fitness evaluations of these individuals.
These operators are most commonly crossover, mutation and
selection. These are analogous to biological processes, which
was the primary source of inspiration behind them.

One modification worthy of note is Ferreira’s Gene Ex-
pression Programming (GEP) [4] algorithm. A common
problem with GP-based algorithms is in choosing a suitable
representation for candidate solutions. The original made
use primarily of abstract syntax trees (ASTs) in pointer-
tree storage and directly for evolution. Linear GP algorithms
[1] store their programs as linear strings of instructions,
executed one after the other. This unfortunately suffers from

the Halting Problem [28]. GEP represents individuals as
a string of symbols (codons) but this string is known as
a genotype, since it must be interpreted to obtain a tree-
based phenotype. This has a number of advantages, which
are discussed in more detail in Section 2.

Data-parallelism on commodity-priced hardware such as
Graphical Processing Units (GPUs) have gained much in-
terest in the past few years for their relatively inexpensive
and formidable processing power [19]. The concept of
executing Evolutionary Algorithms (EAs) on GPUs is not
new however; many modified algorithms (particularly EAs)
have been proposed for a great variety of problems, but most
of these focus on parallelising the fitness evaluation process
[18]. This is commonly the most computationally expensive
and time consuming aspect of EAs.

Geometrically unified EAs have recently become a field
of interest due to Moraglio and colleagues [24], [27]. It has
resulted in the generalisation of a handful of EAs to arbitrary
search spaces. The only caveat of these geometric algorithms
is that the user must be able to provide geometric operators
suitable for the search space under consideration. Geometric
Differential Evolution [26], [27] and Geometric Particle
Swarm Optimisation [25] have already been proposed with
varying success. While generalisation of these excellent
parametric optimisers incite keen interest, their efficacy in
comparison to Genetic Programming and other combinato-
rial optimisers have not been accurately determined yet [33].

In this article we seek to explore the dynamics of the
Geometric Particle Swarm Optimiser (GPSO) using a mod-
ified representation named k-expressions (short for karva-
expressions) from Ferreira’s Gene Expression Programming
(GEP) algorithm with modified genetic operators to suit
this representation. We then accelerate this algorithm using
NVidia CUDA-enabled GPUs. NVidia’s Compute Unified
Device Architecture (CUDA) allows access to an effective
and highly efficient means of utilising data-parallelism to
many algorithms including agent-based modelling [8], [14]
and other situated agent parallelism [11] problems as well
as optimisation [13].

Section 2 contains more details on the GEP k-
expression representation, including the relevant genetic
operators introduced by Ferreira, as well as a brief intro-
duction on CUDA and GPU-based EAs. We also present a
brief summary of the GPSO. Following this, in Section 3
we describe our algorithm and the combination of GEP
and GPSO as well as the modified genetic operators we
use. We then present some performance and convergence
results in Section 5 and compare our results with a Genetic
Programming algorithm. Finally, we discuss our results and
conclude in Sections 5 and 6 respectively.

2. Background
As mentioned before, the canonical GP maintains a popu-

lation of candidate solutions. In this work, we have elected to

Q

-

+ /

- a b a

a +

a -

b b

Fig. 2: The phenotypic AST built from the genotype repre-
sented by the karva-expression Q-+/-abaa+a-bbacda.

use the k-expression representation for the elegant simplicity
it affords to genetic operators, and its inherent support
for introns, or non-coding sections. The linear nature of
this representation is also very desirable for parallelisation,
even taking into account that an interpreter would still be
necessary.
K-expressions are arranged in a string of fixed length,

divided into a head section and a tail section. Function
symbols can be of any arity, but can only appear in the head
section of the expression. This serves the purpose of ensuring
that the genotype is always interpreted into a syntactically
correct phenotype tree. Terminal symbols may appear in both
the head or tail sections. An example k-expression is shown
below. When interpreted, this expression results in the tree
shown in Fig. 2. The tree is built by reading the expression
from left-to-right and filling in the arguments of each codon,
level by level.

012345678901234567
Q-+/-abaa+a-bbacda

It is noteworthy that the terminal symbol d does not
appear in the phenotype. This is the mechanism by which
introns are supported. Once all arguments have been supplied
in the tree, the rest of the expression is simply ignored, but
not discarded [4]. A mutation in the tail section which swaps
a terminal for a non-terminal could easily reactivate these
ignored codons.

We now provide a brief overview of the original PSO
by Kennedy and Eberhart. The PSO is characteristically
known for maintaining a constantly updated global best
solution, as well as a constantly updated personal best

solution for each candidate. The behaviour of the algorithm
in geometrically moving a candidate through space, biased
toward the personal best or global best is reminiscent of
crossover and mutation behaviour, as it also contains a
stochastic component. This random aspect of the algorithm
has also been subject to improvements, as it is the main
space exploration mechanism; without which, there could
only be genetic drift [12]. Eqns. 1 and 2 show the recurrence
relations which underlie the inertial PSO [35].

The stochastic component is introduced by the ephemeral
random constants rp and rg (typically uniform random
deviates in (0,1)), and user-defined constants ω, φp and
φg . ω is known as the inertial constant, whereas the latter
two constants determine a constructive bias towards either
the personal best pi or global best g. Together, these
equations attempt to create convergence, and diffusive space
exploration similar to that of Brownian motion [5]. Recent
work has led this toward more computationally expensive
Lévy flights [34], [12], [7] for their improved convergence
qualities.

vi+1 = ωvi + φprp(pi − xi) + φgrg(g − xi) (1)

xi+1 = xi + vi (2)

It is prudent to also discuss the Geometric PSO (GPSO)
and the implications that it puts forward. In the simplest
implementation, this algorithm requires that a new mutation
operator be defined, and a new crossover operator be defined
for multiple parents; so as to mimic geometric movement to-
ward a personal best solution and/or the global best solution.
Considering that the original algorithm shown in Eqns. 1 and
2 requires geometric movement and specifically bias, toward
either the global or personal best, it becomes clear that this
new crossover operator must be able to bias towards one
parent or the other, hence being weighted in some fashion.

Crossover and mutation in the context of linear genetic
programs was investigated by Togelius and others [36]
and several possible operators were proposed. The authors
concede that significant research still remains in finding the
most appropriate operators, but some effective ones pre-
sented include weighted subtree swap, weighted homologous
crossover and weighted one-point crossover. Homologous
crossover ensures that the common region between two
candidates are kept intact [32]. Togelius and colleagues
reports that common regions can sometimes be too small for
this operator to be constructive [36]. The other two operators
are more self-explanatory.

Finally, we now provide a brief summary of GPU-based
simulation, especially using NVidia’s (Compute Unified De-
vice Architecture) CUDA platform [19]. The CUDA archi-
tecture arose from a potent arrangement of MIMD and SIMD
computing, initially intended for processing large quantities
of pixel data in parallel. Many researchers have spent years

using “ping-pong” buffering with pixel and fragment shaders
to modify textures in order to accomplish General-purpose
GPU simulation (GPGPU). CUDA makes this process far
more accessible.

Essentially, the GPU is divided into several Streaming
Multi-processors (SMs) with a certain number of “CUDA
cores” which process work units known as “blocks”. Each of
these blocks would be sized by the user, up to a maximum (at
the time of writing) of 1024 threads. When an SM executes
a block, the threads are divided into groups of 16, which are
named “warps”. These warps are the smallest unit of execu-
tion in CUDA. They are subsequently executed in a SIMD
fashion on the CUDA cores in each SM. This arrangement
is sometimes known as Single-instruction Multiple-thread
(SIMT).

GPUs generally have some idiosyncratic behaviour re-
garding memory access coalescence, scoping and penal-
ties, among other aspects which usually require special
consideration. The CUDA memory hierarchy provides a
range of memories with varying access times and scope
restrictions, but we omit an extensive discussion on this for
brevity. The process of executing simulations while taking
advantage of the vast computing power of CUDA usually
involves copying data to the GPU global memory from
the host, then performing the GPU-specific code (“CUDA
kernel”), and finally copying the modified data back. There
are more efficient ways of utilising CUDA-enabled GPUs,
such as host page-locked memory, which remove the need
for expensive memory copies between host and device.

GPU-specific code is written by using special syntax
which NVidia released as an addition to the C language.
This syntax is parsed and compiled by the NVidia compiler,
and then the rest of the code is passed to the system C/C++
compiler for normal processing. The result is a C or C++
program with additional non-C syntax which is effectively
removed by the nvcc compiler, and the rest is compiled as
a regular program.

3. Method
Our method for combining CUDA, GEP and GPSO is

summarised in Alg. 1. We modify the weighted crossover of
The Particle Swarm Programming algorithm of Togelius and
colleagues [36] to operate on k-expressions by following the
multi-parent crossover scheme the authors proposed. This is
taken from [36] and shown in Eq. 3.

∆GX((a,wa), (b, wb), (c, wc)) =

GX((GX((a,
wa

wa + wb
), (b,

wb

wa + wb
)), wa + wb), (c, wc))

(3)

GX is the crossover operator, and ∆GX is the multi-
parent crossover operator. It is assumed that wa, wb and wc

are all positive and sum to 1. Essentially this equation defines
the weighted, multi-parent crossover as two crossovers, the

Algorithm 1 The parallel implementation of the GPSO on
GEP k-expressions .

allocate and initialise enough space for n candidate pro-
grams

allocate space for random deviates
while termination criteria not met do

call CURAND to fill the random number array with
uniform deviates in the range [0,1)

copy candidates and candidate bests to device
CUDA: compute_argument_maps()
CUDA: interpret/execute programs
CUDA: update food locations/fitness
copy back to host

if end-of-generation then then
CUDA: update candidate bests
CUDA: recombine and mutate programs
replace old programs with new ones

end if
visualise the result

end while

first being between a and b, where weights are re-normalised
to sum to 1, and the second is a crossover with c. Togelius,
De Nardi and Moraglio provide more details on this using
convex set theory [36]. See also [27], [24], [25], [36] for
more details on the rationale and mathematical aspect of
this procedure.

As can be seen in Alg. 1 we parallelise the majority of
computations. In order to interpret the programs, we also
need to compute an “argument map” so as to allow the
interpreter to determine which arguments belong to which
functions in program strings.

Now we have determined the mechanism by which we
will ensure that crossover still maintains its geometric
properties as much as possible. What remains to be de-
termined is precisely how this will be done on the linear
k-expressions . Ferreira [4] defines one-point crossover as
choosing a crossover site or “pivot”, and then exchanging
symbols about this point to obtain two new candidates. In
order to ensure that this crossover is geometric in the sense
that we can compute a multi-parent one-point crossover and
still be able to bias the result towards one parent candidate
or the other, we must ensure that it is weighted.

Our method for accomplishing this recombination is by
using the ω, φg and φp parameters as the weights (wa, wb

and wc) in Eq. 3. We further define the candidate a as the
current candidate under consideration, b as the corresponding
personal best of a, and c as the global best candidate
discovered so far. The fitness values of these are not used
in the crossover process. Notice also that unlike GP, we do

not require selection, other than simply P (crossover), a
probability defined by the user, as in GP. GEP crossover
defines a “donor” and a “recipient” tree, which are chosen
randomly also.

Mutation is simple in comparison. Traditionally, mutation
is derived from initialisation methods such as [39]:

1) Grow method
2) Full method
3) Ramped half-and-half
Typically, mutation is simply a replacement of a subtree

by regrowing it using one of these methods. Point mutation
is not the only space exploration operator, but it is the one
given the most consideration [39] since the work of Koza
[17].

Point mutation is simple for k-expressions , apart from
the only restriction being that a tail-section symbol may not
be swapped for a function symbol. This ensures that the
result of the mutation operator is always a valid candidate.
It is worth noting that a symbol in the head section may
be changed into any other function symbol, regardless of
arity [4]. The size of the head and tail are left as a
configuration parameter, but can be computed to ensure the
head is maximised. From Ferreira’s work [4] the head and
tail section sizes must satisfy the equation shown in Eq. 4:

t = h(n− 1) + 1 (4)

The symbols in the equation represent the tail length t,
head length h and the maximum arity possible in the function
set n.

Having described our algorithm we now turn our at-
tention towards a suitable test platform. The Santa Fe
Ant Trail is a classic problem used for evaluating genetic
programming-based algorithms. Essentially the problem de-
mands an appropriate combination of two function symbols
(IfFoodAhead arity 2, ProgN2 arity 2) and three terminal
symbols (Move, Right and Left) for pursuing food
particles in a spatial 2D environment. The IfFoodAhead
function executes its first argument if there is food straight
ahead of the particle, and the second argument if not. The
ProgN2 function simply executes both of its arguments in
order. In our case, we have elected to use a 3D version of
the problem. Apart from having Left and Right terminals,
we introduce Up and Down terminals.

To the best of our knowledge, there has been no previous
effort to parallelise the GEP (or indeed a variant of this)
algorithm on GPUs. However, to assist in comparison, we
have compared results from this algorithm against an imple-
mentation of Genetic Programming (GP) with tournament
selection and karva-expressions as program representation.

Our analysis of this algorithm involves two aspects.
Firstly, its ability to converge upon a good solution (prefer-
ably the global optimum), and secondly its ability to utilise
the parallel architecture of a GPU; hence its wall-clock
efficiency.

Fig. 3: Convergence results for the GP, with elitism. The
graph shows the average mean value of each generation,
from 100 independent runs. The error bars represent the av-
erage standard deviation of the 100 runs in each generation.

In our experiments we compare against the aforemen-
tioned GP implementation with k-expressions in terms of
convergence and speed. The parameters we used for the GP
were: P(Crossover) = 0.8, P(Mutate) = 0.1. We use the
same crossover and mutation rates for the modified GPSO,
and for the PSO-specific settings, we used: ω = 0.1, φp =
0.6, φg = 0.3. As for the simulation itself, we restrict angular
velocities to 0.1 units, and initial velocities are initialised to
between −0.16 and 0.16. In order to use a higher mutation
rate, Togelius et al recommend using Elitism, whereby the
best candidate is replicated verbatim into the new population
following the genetic operators. This is a common technique
used in EAs to bias the population in a particular direction.
We make use of elitism in both the GP and the GPSO.

4. Algorithm Convergence Results
Fig. 5 shows the convergence results for the modified

GPSO and the GP. Each data point in all the plots shown
have been averaged 100 times in independent runs. It is
therefore conclusive that the PSO is indeed more able to find
a good solution faster, but if computing fitness for more than
about 23 frames is viable, then the GP is more appropriate.

Figs. 3 and 4 show the convergence results for the GP and
GPSO respectively. We experimented with elitism, where the
best individual is copied verbatim into the next generation,
Fig. 5 shows conclusively that elitism allows the algorithms
to perform better, albeit marginally.

Each data point of the Average Mean has been represents
an average of 100 means from the same generation number.
From these plots, it is clear that the GPSO has more spread
per generation than the GP, which is not very desirable. The
minimum and maximum values are also shown.

Finally, Fig. 6 shows the average compute time, by
generation, for both the GP and the GPSO. The fitness eval-
uation consisted of computing 300 frames of the candidate

Fig. 4: Convergence results for the GPSO with elitism. Each
data point has been averaged 100 times in independent runs,
and the error bars represent the average standard deviation
of each generation.

programs and gathering fitness results from this. Therefore,
each data point represents the average frame compute time
across each of the 300 frames, and then averaged 100 times
by independent runs. The generation compute times are also
shown, although they are somewhat hidden. While the first
observation seems that the GPSO is faster than the GP, this is
somewhat misleading. Essentially, the plots in Fig. 6 would
be completely linear, if all the terminal and function symbols
were of the same complexity.

The average new-generation population compute time for
the GP was 420µsec, and for the GPSO it was 440µsec.
Even though this is not comparable to the fitness evaluation
(340, 000µsec), it was still worth the effort, as this must
happen in serial following the fitness evaluation phase. The
function IfFoodAhead has a rough complexity of O(f),
where f is the number of food particles, which would
approach O(fN), should all candidates have one of these
symbols in its program. Of course, the worst case here is that
every candidate consists only of these functions and enough
terminals to satisfy the k-expression’s head and tail sections.
Hypothetically, given a maximum expression length l = 8,
and a head length h = 3 (hence a tail length of 5), then the
maximum number of IfFoodAhead functions would be 3.
Extrapolating from this, assume all N particles were formed
like this, then evaluation would be of complexity O(3fN),
which could very well exceed O(N2).

Therefore, following from this argument, we could per-
haps conjecture that at generation 20, the GP increased its
use of the IfFoodAhead function, while the PSO had
reached a steady equilibrium of a certain number of these
functions. This would seem to agree with our suspicion that
the GP is in fact better in preserving population diversity. In
Section 5 we explore this in more depth.

Our attempts to improve the GPSO beyond the results we
see here was met with disappointment. Our parameter tuning

Fig. 5: Convergence results for the GP and GPSO, as well
as the use of elitism for both. Each data point has been
averaged across 100 independent runs to obtain meaningful
statistical data.

effort for phig , phip and ω included normalised combina-
tion of respective scores of particles and also normalised
weighted scores, but the best parameters were simply phig =
0.3, phip = 0.6, ω = 0.1.

Fine-tuning crossover and mutation probabilities had
varying effects on convergence. Removing the crossover
phase with the global best solution reduced mean scores
to 0.2, and similar results were obtained from removing
the crossover with the personal best. Randomising slightly
the crossover point with hand-tuned parameters to aid in
diversity did not improve scores at all.

Our results indicate that, at the very least, that the GPSO
operating over k-expressions is appropriate for when the
fitness evaluation is extremely computationally expensive.
Given enough time and compute power, however, the GP
operating on k-expressions is more suited to the problem.

5. Discussion
Evolutionary Algorithms such as the GPSO and the GP

we have compared above frequently involve a very man-
ual parameter-tuning effort in order to ensure an unbiased
comparison. We describe a meta-optimiser (also based on
the PSO) in [10]. We found that the PSO was suitable as a
“super-optimiser” or “meta-optimiser” for fitness evaluations
which are of relatively low compute expense. In this case,
fitness evaluation was clearly far more expensive, and for a
“meta-optimiser” to be successful in obtaining good param-
eters, it would need to be an optimiser which requires very
few frames for a good solution. In this case, we believe
that our meta-optimiser could potentially take months to
obtain a result comparable to hand-tuning. Meta-optimisers,
in general, are notoriously expensive to run.

From our experiments it is not immediately clear why
the GPSO is not as effective as the GP over more than
approximately 23 generations. We believe that this may be

Fig. 6: Compute times for fitness evaluation, and generation
compute time for GPSO and GP.

due to how diversity in population is managed between the
GPSO and GP. Consider the following as the rationale for
this: Fig. 5 shows a clear change in average mean fitness
from approximately generation 10 for the GPSO. Whereas,
for the GP, a very slight decrease in average mean fitness
is shown. This is reminiscent of local minima in parametric
optimisers. This may also be indicative of the inability of
the GPSO to use extensive diversity to its advantage in
escaping and reaching the global optimum. Consider also
the artifact shown in Fig. 3 in the standard deviation at
generation number 20. The same position in Fig. 4 is fully
linear.

As for the performance data we present, it would be
unwise to favour the GPSO from the observation in Fig.
6 that the frame compute time is lower. The slightly higher
compute time does, after all, translate into a higher success
rate as shown in Figs. 3 and 5.

6. Conclusions
We have presented a modified Geometric Particle Swarm

Optimiser (GPSO) searching through the space of Fer-
reira’s k-expressions. We have also compared this against
a Geometric version of the canonical Genetic Programming
method for evolutionary optimisation in the space of k-
expressions. Our results show that the GPSO is not clearly
superior over the GP, however, it is able to attain an
acceptable solution faster, more consistently. This could be
a desirable attribute, especially when the fitness function is
inordinately expensive to compute.

We have also shown that Geometric algorithms such as
the GPSO can be parallelised effectively in both the fitness
evaluation phase, and the genetic operator phase (mutation,
recombination). CUDA is particularly effective in this case,
as evolutionary algorithms lend themselves well to data-
parallelism.

There is scope for other Evolutionary Algorithms with
geometric modification and parallelisation to be investigated
using similar GPU/Hybrid techniques to those we have
presented.

References
[1] Markus Brameier. On Linear Genetic Programming. PhD thesis,

University of Dortmund, 2004.
[2] Mark Crosbie and Eugene H. Spafford. Applying genetic program-

ming to intrusion detection. Technical report, Department of Computer
Sciences, Purdue University, West Lafayette, 1995. AAAI Technical
Report FS-95-01.

[3] R. C. Eberhart and J. Kennedy. A new optimizer using particle
swarm theory. In Proc. Sixth Int. Symp. on Micromachine and Human
Science, pages 39–43, Nagoya, Japan, 1995.

[4] Cândida Ferreira. Gene expression programming: A new adaptive
algorithm for solving problems. Complex Systems, 13(2):87–129,
2001.

[5] G.E.Uhlenbeck and L.S.Ornstein. On the theory of the Brownian
motion. Phys.Rev., 36:823–841, Sep 1930.

[6] J. H. Holland. Adaptation in natural and artificial systems. Ann
Arbor: University of Michigan Press, 1975.

[7] Gang Huang, Yuanming Long, and Jinhang Li. Levy flight search
patterns in particle swarm optimization. In Seventh International
Conference on Natural Computation, 2011.

[8] A. V. Husselmann and K. A. Hawick. Spatial agent-based modelling
and simulations - a review. Technical Report CSTN-153, Computer
Science, Massey University, Albany, North Shore,102-904, Auckland,
New Zealand, October 2011. In Proc. IIMS Postgraduate Student
Conference, October 2011.

[9] A. V. Husselmann and K. A. Hawick. Levy flights for particle swarm
optimisation algorithms on graphical processing units. Technical
report, Computer Science, Massey University, 2012. Submitted to
J. Parallel and Cloud Computing.

[10] A. V. Husselmann and K. A. Hawick. Particle swarm-based meta-
optimising on graphical processing units. Technical report, Computer
Science, Massey University, 2012. Submitted to AsiaMIC, Phuket,
Thailand 2013.

[11] A. V. Husselmann and K. A. Hawick. Spatial data structures, sorting
and gpu parallelism for situated-agent simulation and visualisation. In
Proc. Int. Conf. on Modelling, Simulation and Visualization Methods
(MSV’12), pages 14–20, Las Vegas, USA, 16-19 July 2012. CSREA.

[12] A. V. Husselmann and K. A. Hawick. Random flights for particle
swarm optimisers. In Proc. 12th IASTED Int. Conf. on Artificial
Intelligence and Applications, Innsbruck, Austria, 11-13 February
2013. IASTED.

[13] Alwyn V. Husselmann and K. A. Hawick. Parallel parametric
optimisation with firefly algorithms on graphical processing units. In
Proc. Int. Conf. on Genetic and Evolutionary Methods (GEM’12),
number CSTN-141, pages 77–83, Las Vegas, USA, 16-19 July 2012.
CSREA.

[14] A.V. Husselmann and K.A. Hawick. Simulating species interactions
and complex emergence in multiple flocks of boids with gpus. In T.
Gonzalez, editor, Proc. IASTED International Conference on Parallel
and Distributed Computing and Systems (PDCS 2011), pages 100–
107, Dallas, USA, 14-16 Dec 2011. IASTED.

[15] Kennedy and Eberhart. Particle swarm optimization. Proc. IEEE Int.
Conf. on Neural Networks, 4:1942–1948, 1995.

[16] J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Proc.
IEEE Int. Conf. on Neural Networks, pages 1942–1948, Piscataway,
NJ. USA, 1995.

[17] John R. Koza. Genetic programming as a means for programming
computers by natural selection. Statistics and Computing, 4(2):87–
112, June 1994.

[18] W. B. Langdon. A many-threaded cuda interpreter for genetic
programming. In Ana Isabel Esparcia-Alcazar, Aniko Ekart, Sara
Silva, Stephen Dignum, and A. Sima Uyar, editors, Proceedings of
the 13th European Conference on Genetic Programming, EuroGP,
pages 146–158. Springer, April 2010.

[19] Arno Leist, Daniel P. Playne, and K. A. Hawick. Exploiting Graphical
Processing Units for Data-Parallel Scientific Applications. Concur-
rency and Computation: Practice and Experience, 21(18):2400–2437,
25 December 2009. CSTN-065.

[20] Sean Luke. Genetic programming produced competitive soccer softbot
teams for robocup97. In J. R. Koza, W. Banzhaf, K. Chellapilla,
D. Kumar, K. Deb, M. Dorigo, D.B. Fogel, M.H. Garzon, D.E.
Goldberg, H. Iba, and R. Riolo, editors, Genetic Programming 1998:
Proceedings of the 3rd annual conference, pages 214–222. Morgan
Kaufmann, San Mateo, California, 1998.

[21] Sean Luke, Charles Hohn, Jonathan Farris, Gary Jackson, and James
Hendler. Co-evolving soccer softbot team coordination with genetic
programming. Robocup-97: Robot soccer world cup I, 1:398–411,
1998.

[22] Steven M. Manson. Agent-based modeling and genetic programming
for modeling land change in the southern yucatán peninsular region
of mexico. Agriculture Ecosystems & Environment, 111:47–62, 2005.

[23] Julian F. Miller and Stephen L. Smith. Redundancy and computational
efficiency in cartesian genetic programming. IEEE Transactions on
Evolutionary Computation, 10(2):167–174, 2006.

[24] A. Moraglio. Towards a Geometric Unification of Evolutionary Al-
gorithms. PhD thesis, Computer Science and Electronic Engineering,
University of Essex, 2007.

[25] A. Moraglio, C. Di Chio, and R. Poli. Geometric particle swarm
optimization. In M. Eber et al, editor, Proceedings of the European
conference on genetic programming (EuroGP), volume 4445 of Lec-
ture notes in computer science, pages 125–136, Berlin, 2007. Springer.

[26] A. Moraglio and S. Silva. Geometric differential evolution on the
space of genetic programs. Genetic Programming, 6021:171–183,
2010.

[27] A. Moraglio and J. Togelius. Geometric differential evolution. In
Proceedings of GECCO-2009, pages 1705–1712. ACM Press, 2009.

[28] Michael O’Neill, Leonardo Vanneschi, Steven Gustafson, and Wolf-
gang Banzhaf. Open issues in genetic programming. Genetic
Programming and Evolvable Machines, 11:339–363, 2010.

[29] Panait and Luke. Cooperative multi-agent learning: The state of the
art. Autonomous Agents and Multi-Agent Systems, 11:387–434, 2005.

[30] R. Poli, W.B. Langdon, and N.F. McPhee. A field guide to genetic
programming. lulu.com, 2008.

[31] Riccardo Poli and Stefano Cagnoni. Genetic programming with user-
driven selection: Experiments on the evolution of algorithms for image
enhancement. In Genetic Programming 1997: Proceedings of the 2nd
Annual Conference, pages 269–277. Morgan Kaufmann, 1997.

[32] Riccardo Poli and Nicholas F. McPhee. Exact schema theory for gp
and variable-length gas with homologous crossover. In Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO-
2001), 2001.

[33] Riccardo Poli, Leonardo Vanneschi, William B. Langdon, and
Nicholas Freitag McPhee. Theoretical results in genetic programming:
the next ten years? Genetic Programming and Evolvable Machines,
11:285–320, 2010.

[34] Toby J. Richer. The levy particle swarm. In IEEE Congress on
Evolutionary Computation, 2006.

[35] Yuhui Shi and Russel Eberhart. A modified particle swarm optimizer.
In Evolutionary Computation Proceedings, 1998.

[36] Julian Togelius, Renzo De Nardi, and Alberto Moraglio. Geometric
pso + gp = particle swarm programming. In 2008 IEEE Congress on
Evolutionary computation (CEC 2008), 2008.

[37] Sjors van Berkel. Automatic discovery of distributed algorithms for
large-scale systems. Master’s thesis, Delft University of Technology,
2012.

[38] Frans van den Bergh. An Analysis of Particle Swarm Optimizers. PhD
thesis, University of Pretoria, 2001.

[39] Matthew Walker. Introduction to genetic programming. Downloaded
from http://www.cs.montana.edu/ bwall/cs580/introduction_to_gp.pdf
February 5, 2013.

[40] Chi Zhou, Weimin Xiao, Thomas M. Tirpak, and Peter C. Nelson.
Evolving accurate and compact classification rules with gene expres-
sion programming. IEEE Transactions on Evolutionary Computation,
7:519–531, December 2003.

