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ABSTRACT
The choice of a proper learning rate is paramount for good Arti-
ficial Neural Network training and performance. In the past, one
had to rely on experience and trial-and-error to find an adequate
learning rate. Presently, a plethora of state of the art automatic
methods exist that make the search for a good learning rate easier.
While these techniques are effective and have yielded good results
over the years, they are general solutions. This means the opti-
mization of learning rate for specific network topologies remains
largely unexplored. This work presents AutoLR, a framework that
evolves Learning Rate Schedulers for a specific Neural Network
Architecture using Structured Grammatical Evolution. The system
was used to evolve learning rate policies that were compared with a
commonly used baseline value for learning rate. Results show that
training performed using certain evolved policies is more efficient
than the established baseline and suggest that this approach is a
viable means of improving a neural network’s performance.

CCS CONCEPTS
•Computingmethodologies→Genetic programming; Super-
vised learning; Neural networks;

KEYWORDS
Learning Rate Schedulers, Structured Grammatical Evolution
ACM Reference Format:
Pedro Carvalho, Nuno Lourenço, Filipe Assunção, and Penousal Machado.
2020. AutoLR: An Evolutionary Approach to Learning Rate Policies. In
Genetic and Evolutionary Computation Conference (GECCO ’20), July 8–12,
2020, Cancún, Mexico. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3377930.3390158

1 INTRODUCTION
The study of Artificial Neural Networks (ANNs) is a field in modern
Artificial Intelligence (AI). These networks’ defining characteristic
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is that they are able to learn how to perform a certain task when
provided with an appropriate architecture, data and resources. The
networks have a set of internal parameters known as weights
and training is the process through which they are modified so
that the network is able to solve a given problem. Fine-tuning the
weights of ANNs is crucial in order to obtain a consistently useful
system. There are several parameters that regulate training, one
the most important parameters is the learning rate. In fact, and
according to [11, p. 424], if we only have the chance to modify one
hyperparameter, the focus should be on the learning rate.

The learning rate determines the magnitude of the changes that
are made to the weights. Consequently, the choice of an adequate
learning rate is paramount for effective training. When the value
of the learning rate is too small the network will be unable to make
impactful changes to its weights, making the training slow. On
the other hand, if the learning rate is too high the system will
make radical changes even in response to small mistakes, causing
inconsistent and unpredictable behaviour. On top of this, research
suggests that the best training results are achieved by adjusting
the learning rate over the course of the training process [22]. One
way to make these adjustments during training is by updating the
learning rate as training progresses. The functions responsible for
these adjustments are known as learning rate policies. There is
subset of these functions known as learning rate schedulers, i.e.,
functions that are periodically called during training and return a
new learning rate based on multiple training characteristics, such
as the current learning rate or the number of performed iterations.

The main objective of this work is to devise an approach that
is able to evolve learning rate policies for specific neural network
architectures, in order to improve its performance. In concrete, we
developed AutoLR, a system that allows us to study the viability
of this approach and how it may contribute to the field of learning
rate optimization as a whole. Learning rate policies can take many
different shapes [23], and therefore it will be notable if our system
is capable of automatically discovering functions that are variations
of the ones found in the literature. Such a result is interesting
because if this approach is able to evolve solutions that are widely
accepted it is possible that these same ideas can be used to find still
undiscovered, better methods. We are also interested in inspecting
the evolved schedulers, and comparing them with human-designed
schedulers to obtain meaningful insights. The contributions of this
paper are:
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Figure 1: Example of an Artificial Neural Network.

• The proposal of AutoLR, a framework based on SGE that per-
forms automatic optimisation for learning rate schedulers.
• The design, test and analysis of experiments that validate
the use evolutionary algorithms to optimise learning rate
schedulers.
• We show that the evolved policies are competitive and have
characteristics that allow then to thrive in the problems at
hand.

The remainder of the paper is organised as follows. Section 2
introduces the background concepts and surveys the key-works
related to the optimisation of learning rate schedulers. Section 3
describes AutoLR, the methodology proposed for the evolution
of learning rate schedulers. Section 4 details the experimental
setup and discusses the experimental results. Finally, Section 5
summarises the main conclusions of the paper and addresses future
work.

2 RELATEDWORK
This section provides the necessary context for the reader to under-
stand the rest of the paper. Section 2.1 introduces Artificial Neural
Networks; Section 2.2 details Structured Grammatical Evolution;
and Section 2.3 surveys works related to learning rate optimization
and learning rate schedulers.

2.1 Artificial Neural Networks
Artificial Neural Networks (ANNs) are a machine learning approach
that draws inspiration in the biological neural networks seen in
nature in order to create a computing system that is able to learn.
These systems are comprised by a set of nodes (known as neurons)
and edges (known as synaptic weights). An example of the general
structure of an ANN is depicted in Figure 1.

Although these networks can have different architectures (e.g.,
LSTM [13], ResNet [12]) we will, without loss of generality, focus
on feed-forward ANNs. In these models the nodes are grouped into
separate layers connected sequentially. These layers are flanked
by an input and output layer which are responsible for receiving
the data that the network will process, and yield the result of the
network’s calculations, respectively. Edges are directional connec-
tions between two nodes from different layers and are the means

Figure 2: Example of the architecture of a Convolutional
Neural Network.

through which information travels through the network. Each node
performs an operation (i.e., a mathematical function) on the values
it receives from the previous layer and sends the new value to all
nodes it is connected to in the next layer. Every edge has a weight
that scales the value it carries, i.e., the value that a node outputs is
always adjusted before it is provided to the nodes in the next layer.

These networks can be used to solve tasks of many different
types. The ideas that will be presented in this work can be widely
applied to different types of ANNs. Without loss of generality we
will focus in the optimisation of a learning rate scheduler for a
supervised learning classification problem. In supervised learning
the system is tasked with learning a function that can separate data
instances into their respective classes. To achieve this the network
is provided with a set of labeled instances.

The training of ANNs is an iterative process where the network
compares its attempted classifications of a subset of examples with
the expected ones and adjusts its weights to get closer to the correct
results. There is a function – known as loss function – that compares
the classification and measures how incorrect the network’s output
was. The size of the changes made to the weights is partially given
by the error returned by the loss function (a larger error leads to
larger changes). Another parameter, the Learning Rate (learning
rate), determines the magnitude of the adjustments that are made
to the weights. The learning rate is the main subject of this paper.
For more details on ANNs refer to [9].

Deep Neural Networks (DNNs) are a subset of ANNs notable for
being able to perform representation learning, and consequently
the networks are able to automatically extract the features required
to solve the problem. This is often associated to the need for deeper
architectures, i.e., a greater number of hidden-layers. This allows
the networks to possibly solve solve harder problems. In the current
work we focus on Convolutional Neural Networks (CNNs) [10], a
DNN topology that is known to work well on spatially-related data
(e.g., image). An example of the architecture of CNNs is shown in
Figure 2. Two layer types are commonly used in CNNs: convolu-
tional and pooling layers. More details can be found in [17]

2.2 Structured Grammatical Evolution
In the current work we will perform the optimisation of learning
rate schedulers using SGE. SGE is a variant of GE [19] that uses
an altered genotype representation to address the main limitations
of GE: low locality and high redundancy. In GE the genotype is
encoded as a single list of integers, where each integer encodes
a grammatical expansion possibility. Contrary, in SGE there is a
separate list for each non-terminal symbol; this avoids the need for
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the modulo operation when performing the genotype to phenotype
mapping.

These approaches add another layer of decision making however,
namely in the form of the grammar design [15]. The grammar used
for any GE experiment will define what kind of programs the engine
is able to create and this has many implicit consequences. The
most obvious one is that the provided grammar must encompass
solutions that can solve the problem at hand. While this seems
trivial it must be understood that not knowing the composition
of the desired program is one of the main motivations to use this
type of system in the first place. This also means, however, that
the grammar specificity can be increased as more knowledge of the
problem is available, aiding the search process.

This specific type of EA is suited for this work because the
functions we are looking to evolve are very specific. This means that
our domain knowledge is high, and there is a strong understanding
of what our desired program is like. As previously mentioned we
can use this knowledge to create a grammar that enhances results
by narrowing the search space. An in-depth explanation of these
algorithms can be found in [9, 21].

2.3 Learning Rate Optimization
In the context of this work, hyper-parameters are the set of pa-
rameters that configure an ANN and its training strategy. The
learning rate is one of such parameters and its role is to scale the
changes made to the network weights during training. Research
suggests that hyper-parameter optimization is effective in improv-
ing the system’s performance without adding complexity [5].

2.3.1 Static Learning Rate. The traditional approach is to use a
single learning rate for the entire training process [20]. Under these
circumstances all optimization must be done before training starts.
Oftentimes the programmer must rely on expertise and intuition
in order to guess adequate learning rate values. While automatic
solutions to this problem exist they are, to the best of our knowledge,
either comparable to manual optimization [5] or non-trivial in
implementation [6]. Much of the difficulty of finding a convenient
solution to this issue stems from the fact that hyper-parameters are
inter-dependent [7]. This means that even when an ideal learning
rate is found there is no guarantee that this value remains optimal
(or even usable) as the other parameters are tweaked.

2.3.2 Dynamic Learning Rate. The reasons stated in the previous
section make the use of a static learning rate a possible drawback. It
is desirable that the method we are using to determine our learning
rate is robust enough that performance does not dip with every
change to the system. In order to increase flexibility we would
ideally have a method to change the learning rate as training pro-
gresses, i.e., even if the initial value is not adequate the system
has a chance to correct its course. This strategy will be referred to
as a dynamic learning rate. The most uncomplicated policy for
varying the learning rate can be inferred intuitively. It is expected
that as training progresses the ANN’s performance gradually im-
proves as it gets better at solving the task at hand. If the system is
potentially closer to its objective it seems desirable that it does not
stray from its course. This is to say that, in order to improve, the
network requires progressively finer tuning; this can be achieved
with a decaying learning rate (meaning that the learning rate
decreases as learning progresses). There are some issues that are

frequently encountered during training that make this approach
not ideal however. Better performance is rarely an indicator that the
network is closer to a perfect solution. Using a decaying learning
rate leaves the system susceptible to early stagnation in a local
optimum. This is not ideal despite the fact that a local optimum
is sufficient for most situations as this approach can lead to early
stagnation if applied incorrectly. Despite these limiting factors de-
caying learning rates can lead to improvement over static ones as
seen in [22].

In order to expand on these ideas we need to apply the concepts
of exploration and exploitation. These refer to the two com-
plementary strategies that can be used in heuristic optimization.
Exploration is the idea of using a mechanism that helps the algo-
rithm explore solutions that do not seem as promising in an attempt
to avoid falling into a local optimum. The contrasting technique
is exploitation, in this strategy we adjust our approach to make
sure the algorithm is able to find the local optimum (once it reaches
a promising region). Finding a proper balance between these two
strategies is crucial for further improvement of the dynamic learn-
ing rate. Smith et. al. propose the use of a cyclic learning rate in [23].
Their approach fluctuates the learning rate between a maximum
and a minimum bound.While the system uses no information about
whether or not it is stuck by periodically increasing the learning
rate it is able to explore the search space more effectively. This
technique is consequently less vulnerable to early stagnation than
decaying learning rate policies. This method is, to the best of our
knowledge, the most efficient use of dynamic learning rates.

2.3.3 Adaptive Learning Rate. Further improvements in this
area can still be achieved if the system responsible for assigning the
learning rate has access to information throughout training. This
means that we will now study algorithms that can acknowledge
when training is stagnating as it is happening. From this point
onward we refer to these methods as adaptive learning rates.

These techniques unlock one more option of optimization. So
far we have been working with a single value learning rate but
with this extra information it is desirable to use a vector of values
instead. Consider the following scenario, an ANN is being trained
for 100 generations with a single value adaptive learning rate. One
specific weight of the network reaches a near optimal value within
the first 5 generations, but all of the others are still off the mark.
An adaptive learning rate recognizes this and has to decide what is
the ideal learning rate value for the next generation. On the one
hand, using a small learning rate will benefit the fine tuning of the
node that is already performing well. A larger learning rate, on the
contrary, will allow the sub optimal weights to find better values.
Using vectors of learning rates allows the system to have a learning
rate value for each weight, making the most out of these nuanced
situations [14]. Several algorithms [8, 16, 24] have been built on
this theoretical foundation and these systems are the best learning
rate policies we know of.

3 AUTOLR: EVOLUTION OF LEARNING RATE
SCHEDULERS

AutoLR is a framework created to apply evolutionary algorithms to
learning rate policy optimization. While SGE is used to handle the
evolutionary processes, the system’s novelty comes from using the
algorithm to explore new possibilities in the learning rate policy
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Figure 3: Example of a learning rate scheduler.

search space. This is achieved through the design of a grammar
that is able to effectively navigate part of this space and a fitness
function that can accurately measure each policy’s quality.

3.1 Evolved Policies
The scope of this work is limited to evolving learning rate sched-
ulers. We define learning rate schedulers as it is done in the Keras[1]
library. Learning rate schedulers are functions that are called peri-
odically during training (each epoch, in this case) and update the
learning rate value. In other words, we are evolving the initial learn-
ing rate and the ensuing variation function. These functions’ inputs
are comprised of the learning rate of the previous epoch and the
number of performed epochs. This function returns a single learn-
ing rate for all dimensions. Using the terminology established so
far, this means the evolved policies can be either a static or dy-
namic learning rate solution. It is important to define the range
of our solutions as this establishes what conventional techniques
we should be kept in mind during analysis.

Figure 3 depicts an example of a learning rate scheduler. In this
case the ANN will train using a learning rate of 0.1 for the first
10 epochs as this is when the condition epoch < 10 is met. This
learning rate will be used until the 10th epoch is reached, at which
point the learning rate scheduler will automatically decrease the
learning rate to 0.05. Following the same rationale, after the 50th
epoch the learning rate to use is 0.01. The search space that we
consider is detail on the next sub-section.

3.2 Grammar
The grammar (Figure 4) defines the search space of the learning rate
schedulers. The individuals created by this grammar will typically
resolve into a sequence of chained if-else conditions (created by
the logic_expr production) that once evaluated yield a learning
rate (provided by the terminals in lr_const). This means that the
system is creating dynamic learning rate policies most of the time.
A notable exception to this is that the system can resolve the initial
expr production into a lr_const, creating a static learning rate policy.

An if_func is a simple function that does the same as a regular
if-then-else construct. Since the code for this system was written
in Python this function was created so all individuals could be
described in a single line that can be read easily by the user. The
code for this function is shown in Algorithm 1.

<expr> ::= if_func(<logic_expr>, <expr>, <expr>)
| <lr_const>

<logic_expr> ::= learning_rate<logic_op> <lr_const>
| epoch<logic_op> <ep_const>

<logic_op> ::= < | ≤ | > | ≥
<lr_const> ::= 0.0001 | 0.00110909 | 0.00211818 | 0.00312727 |

. . .

0.09596364 | 0.09697273 | 0.09798182 |
0.09899091 | 0.1

<ep_const> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
. . .

91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99| 100

Figure 4: Grammar used for the optimisation of learning
rate schedulers.

The conditions used by if_func are generated by logic_expr. This
production will compare one of the input variables (learning_rate,
epoch) with the corresponding constants (lr_const and ep_const,
respectively) using one of several logical operators from logic_op.
logic_op includes all logical operators with the exception of equality
(==) and inequality (!=). Conditions using these operators are too
specific since they only return a different value for a single constant.
This means that, in the vast majority of situations, conditions using
these operators do not change the policy’s behaviour. This makes
them unable to contribute meaningfully to the evolutionary process.

The constants chosen for lr_const and ep_const are 100 evenly
spaced values between the minimum and maximum value for each
of the variables. It should be noted that these production rules have
been abridged in the figure. Only a few of the lowest and highest
possible values are shown so that the range is accurately portrayed
whilst keeping the figure brief. Our training starts in epoch 1 and
ends in epoch 100, since we are also using 100 values for our con-
stant we used every possible epoch value (every natural number
from 1 to 100) for ep_const. lr_const values are more complicated
as there is an infinite number of valid learning rates. We keep the
values of the learning rate bounded between 0.001 and the 0.1 as
all values in this range are suitable for training.

This grammar is capable of creating a large variety of individ-
uals despite its simplicity. While it is not possible for our trees
to exactly recreate the dynamic solution functions mentioned in
Section 2.3 they can reproduce approximated versions that exhibit
similar behaviour.

3.3 Fitness Function
As the main hypothesis implies we are looking to evolve learning
rate policies. This means that we will be using an EA on a popula-
tion of learning rate policies. Additionally, our hypothesis demands
that an individual’s fitness must be some measure of the network’s
performance when trained using that specific solution. This is nec-
essary since if the evolutionary process is not successful, its results
will not address the question we posed.
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Algorithm 1: Template of the code used to implement the
if_func routine.
params :condition, state1, state2

1 if condition then
2 return state1;
3 else
4 return state2;

We decided that the best way to assess a policy’s performance
was through the function seen in Algorithm 2. That is, we train the
network and assess its performance using the accuracy metric.

Algorithm 2: Simplified version of the fitness function used
to evaluate a learning rate policy
params :network, learning_rate_policy, training_data,

test_data
1 trained_network← train(network, learning_rate_policy,

training_data);
2 fitness_score← get_test _accuracy(trained_network,

test_data);
3 return fitness_score;

To elaborate on the algorithm above, our fitness function will
use 4 components
• network - The ANN we are optimizing the learning rate
scheduler for. This network is the same throughout the entire
evolutionary run.
• learning_rate_policy - An evolved learning rate scheduler
that we want to evaluate.
• training/test_data - This is the data of the problem the
ANN will be attempting to solve. As the name implies, train-
ing data is used for training. Test data is a separate set of ex-
amples that are used to evaluate the network’s performance
once training is complete. In the actual fitness function the
training data is further split into training and validation
(see 4.3) but this distinction will temporarily be omitted for
explanation’s sake.

The evaluation function has two phases. First, the network must
be trained, this is where the policy we are evaluating will affect
the process. The train function returns the network provided with
its weights changed through the training process. We could at
this point also retrieve the best performance the network achieved
during training. We do not take this approach as it is not the most
accurate measure of an ANN’s real effectiveness. The objective of
the training is that the network learns a set of weights that solve the
proposed problem. The data used for training is only a sample of all
possible inputs. As training progresses a network becomes gradually
too attached to the training data, this is known as overfitting.
Overfitting means that the network is to constraint to the training
data, and does not represent the general learning problem. This
happens since data will often have some noise (i.e. information
that is not important to solve the task). It is not desirable for the
network to learn to produce solutions based on this noise as that
will hurt its performance when dealing with inputs not included in

training. Consequently, we measure the effectiveness of training by
how well the network performs on a second set of data that it has
not come into contact with. We call this second set the test data.

Every policy will be evaluated using the same network and train-
ing datameaning that the learning rate scheduler is the only varying
component between individuals. Since all other hyper-parameters
are fixed, and the used datasets are balanced, we consider the result
of evaluating the trained network’s accuracy on the test data to
be an adequate measure of the policy’s fitness.

In the context of our work, learning rate policies are executable
computer code. We will be using the Python language specifically
as it has vast support for ANN handling through the Tensorflow
[3] library. An EA is also needed for our system, we chose to use
GE-based evolutionary engine as it gives us a flexible and readable
means of defining the problem space in the form of grammars. In
particular, we chose SGE [18] for its Python implementation and
superior results over regular GE. Our hypothesis also demands
a mindful choice of network architecture. Since we are looking
for optimization in specific scenarios, we want to avoid generic
architectures. We therefore decided to use a CNN model evolved
specifically for image classification obtained from Deep Evolution-
ary Network Structured Representation (DENSER) [4].

4 EXPERIMENTATION
The objective of this work is to promote the automatic optimisation
of learning rate schedulers for a fixed-topology network. Section 4.1
introduces the topology of the used network; Section 4.2 details the
dataset; Section 4.3 describes the experimental setup; and Section 4.4
analyses and discusses the experimental results.

4.1 Network Architecture
The network architecture we used was automatically generated us-
ing DENSER [4] – a grammar-based NeuroEvolution approach. The
CNN optimised by DENSER was evaluated using a fixed learning
rate strategy, and thus it is likely that better learning policies exist.
The architecture was generated for the CIFAR-10 dataset using a
fixed learning rate of 0.01, where the individuals were trained for
10 epochs. The details of how the network was created are impor-
tant as they might inform our conclusions later on. The specific
topology of the network is described in Figure 5.

4.2 Dataset
We opted to use the Fashion-MNIST instead of the network’s native
CIFAR-10 as it is a dataset where the training is faster. This dataset
is composed by 70000 instances: 60000 for training and 10000 for
testing. Each instance is 28×28 grayscale image, which contrasts
with CIFAR-10’s 32×32 RGB images. We will be scaling our images
into 32×32 RGB as they would not fit the network’s input layer
otherwise. This scaling was performed using the nearest neighbour
method, and to pass from one to three channels we replicate the
single channel three times.

4.3 Experimental Setup
We divide the experimental setup into two parts: the parameters
used for the evolutionary search (Section 4.3.1); and for a longer
training after the end of evolution (Section 4.3.2).
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Figure 5: Topology of the used CNN.

Figure 6: Example images from the Fashion-MNIST dataset.

4.3.1 Evolution. The experimental parameters are summarised
in Table 1. They are organized into five sections:
• SGE Parameters – parameters of the evolutionary engine.
• Dataset Parameters – number of instances of each of the
data partitions.
• Early Stop – the stop condition used to halt the training of
the ANN.
• Training Data Augmentation – real time data augmentation
parameters.
• Network Training Parameters – parameters used when train-
ing the ANN.

Our experimental parameters were picked with some considera-
tions. Since evolutionary algorithms are very demanding in terms of
computation resources it was paramount that the parameters used
allowed us to perform meaningful evolutionary runs that could
be completed in an acceptable time-frame. This motivated the se-
lection of parameters that effectively reproduce an evolutionary

SGE Parameter Value
Number of runs 10

Number of generations 50
Number of individuals 5

Mutation rate 0.15
Dataset Parameter Value

Training set 7000 instances from the training
Validation set 1500 instances from the training

Test set 1500 instances from the training
Training Data Augmentation Value

Feature-wise Center True
Feature-wise Std. Deviation True

Rotation Range 20
Width Shift Range 0.2
Height Shift Range 0.2
Horizontal Flip True
Early Stop Value
Patience 3
Metric Validation Loss

Condition Stop if Validation Loss does not
improve in 3 consecutive epochs

Network Training Parameter Value
Batch Size 1000
Epochs 100 / 20
Metrics Accuracy

Table 1: Experimental parameters.

Dataset Parameter Value
Train set 52500 instances from training data

Validation set 7500 instances from training data
Test set 10000 instances from test data

Table 2: Dataset information for parameters.

strategy. Additionally, the fitness function operates on a fraction of
the dataset as training utilizing all 60000 training examples was too
time consuming. We also picked the training parameters accord-
ingly. Ideally, we would perform evolution on 100 training epochs
with no early stop as we are trying to optimize the network’s per-
formance as much as possible. Instead, we performed two sets of
experiments: (i) using 100 epochs and an early stop mechanism;
(ii) using 20 epochs with no early stop. We started by reducing the
computational cost through the implementation of an early stop
mechanism. Notwithstanding, we were concerned that the evolu-
tionary process would exploit this mechanism, which motivated
the 20 epochs experience, where no early stop is used and the cost
is instead reduced by reducing the training epochs.

4.3.2 Testing. After the evolutionary process is complete we
need to properly assess the quality of the generated policies. The
testing routine is the same as our fitness function, differing only in
the data used (seen in Table 2).

In our testing routine we use all training instances (splitting them
into training and validation) to train the network using the policy
we want to evaluate. This network is subsequently tested using all
test data (that was not used previously) to obtain an unbiased test
accuracy. We will also be tracking each policy’s best validation
accuracy to have additional insight into how well the learned
weights are able to generalize. Finally, we need to decide on a policy
to serve as a baseline. We chose to use a static learning rate policy of
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PolicyScenario A B Baseline
Validation 0.751 ± 0.167 n/a 0.859 ± 0.0031 Test 0.692 ± 0.241 n/a 0.850 ± 0.004
Validation n/a 0.854 ± 0.009 0.856 ± 0.0042 Test n/a 0.848 ± 0.007 0.844 ± 0.002
Validation 0.894 ± 0.004 0.891 ± 0.003 0.888 ± 0.0023 Test 0.887 ± 0.002 0.854 ± 0.009 0.875 ± 0.004

Table 3: Accuracy of the evolved policies (A & B) on their
evolutionary environment (1 & 2 respectively) and scenario
3 (representative of an actual use case), compared with the
baseline policy.

0.01 for three reasons. The fact that the network was evolved using
this learning rate (as was explained in Section 4.1). This assures
us that this is an adequate learning rate for this network making
it a good benchmark for our evolved policies. Additionally, this
particular constant is the most common policy in often used Deep
Learning frameworks [1, 2]. We believe that benchmarking against
such a widely used policy is a proper way to test our hypothesis.
Finally, we had to use a baseline that had similar information to our
evolved methods. The adaptive techniques referred to in Section 2.3,
for example, use the gradient of the loss function to make more
precise adjustments to a per-dimension learning rate. The fact that
these methods have access to additional information means they
are not suitable as benchmarks.

We have three testing scenarios:
• The first scenario (1) is the same as the first evolutionary
scenario, i.e., training is done for 100 epochswith the early
stop mechanism.
• The second scenario (2) trains for only 20 epochs, with
no early stop.
• The third scenario (3) trains for 100 epochs, but the early
stop mechanism is disabled.

The first and second scenarios exist primarily so we can see how
the evolved policies compare with the baseline in the conditions
they were evolved in. Scenario 3 yields the most important results
as its conditions represent the typical use case of a neural network.

In order to make discussion clearer the evolved polices will be
referred to as policy A (for the best policy evolved with the early
stop mechanism) and policy B (for the best policy evolved with no
early stop). These evolved polices were tested in their evolutionary
environments (scenario 1 and 2 for policies A and B respectively)
and in scenario 3. The baseline policy was tested in all 3 scenarios.

4.4 Experimental Results
The table presented in 3 summarizes the results of our experimen-
tation, showing the average and standard deviation of the accuracy
of a given policy in a specific scenario over five runs. As detailed in
Section 4.3.2, each run trains the network using the chosen policy
and subsequently tests its accuracy on the 10000 test instances.

4.4.1 Scenario 1. yields results that are not intuitive given the
circumstances. Training in this scenario can be halted by an early
stop mechanism. Since policy A was evolved using this same kind
of training it is to be expected that it would perform well in these
conditions. However, the results show the opposite. Policy A, in

fact, performs far worse then the baseline when early stop is in
use. Analysing individual results showed that this policy will occa-
sionally trigger the early stop in the first few epochs (this can be
observed in the large standard deviation associate with these trials).
There are several interpretations for the implications this has on
the validity of the evolutionary process. On the one hand it can
be argued that this demonstrates an issue with the evolutionary
process since the policy is not a consistent solution to the problem
it is supposed to solve. While it is a fact that the policy is an incon-
sistent solution we do not believe this implies any problems with
the evolution. The fact that this policy can, on occasion, yield the
best performance implies the genetic information of this individual
is useful for the evolutionary process.

4.4.2 Scenario 2. results are more in line with our expectations.
We can observe that, albeit only marginally, policy B shows better
test accuracy than the baseline when trained under the parameters
it was evolved for. It is noteworthy that policy B does not have
superior accuracy in validation. This suggests that the evolved pol-
icy is outperforming the baseline in its ability to generalize
when moved to a different set of data.

4.4.3 Scenario 3. was designed to test which policy is able to get
the most out of this network’s architecture and it gave the most im-
portant set of results. The results show that, under these conditions,
the best accuracy this network achieved was obtained using
an evolved policy for training. On average, policy A performs
better than the baseline in the test set by 1.2% and it obtains these
good results more consistently. Another interesting result is that
policy B (that was previously outstanding because of its ability to
generalize) suffers the biggest dip in performance from validation
to test in this scenario. Ideally, both evolved policies would out-
perform the baseline. There are, however, some possibly limiting
factors. Namely, it is possible that the shorter training duration used
in scenario 2 discourages the evolution of policies that translate
well into scenario 3. This topic is discussed further in 4.4.4 as we
analyse policy B’s shape.

4.4.4 Shape. As discussed in 1, we are interested in analysing
the shapes that our evolved policies take. Namely, in this section
we will be analysing the shape of the previously discussed Policies
A and B. These policies can be observed in Figures 7 and 8. These
figures show how the learning rate evolved over time as well as a
vertical line that signals the epoch where the training using this
policy stopped.

Observing the shape of policy A (seen in Figure 7) led to some
interesting insights. Initially, it seemed that this policy only had
the best performance during evolution because its shape cheat the
early stop mechanism.We suspected that by frequently using a high
learning rate it might be possible to create false improvements that
trick the system. To elaborate, it is feasible for a policy to routinely
worsen and subsequently improve its performance on purpose in
order to pass the early stop check. We can, in fact, observe that this
policy is able to train for a long time despite the early stop as the
vertical line shows. As a comparison, the baseline policy typically
triggers the early stop between epochs 20-30, which means that
policy A is able to train for twice as long.
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Figure 7: Policy A

Figure 8: Policy B

Policy B took on a very different shape. Despite the erratic be-
haviour shown past epoch 60, this policy is effectively a static learn-
ing rate as its training always ended in epoch 20 (as a reminder,
no early stop was used in the evolution of the policy). While this
initially seems disappointing (finding an adequate constant is not
something that requires such a complex system), it is important to
understand that, due to the reduced training duration, there is a
possibility that the benefits of using a dynamic policy in this context
are negligible, stifling probability that they show up in evolution.
The idea that the evolution of dynamic methods is suppressed under
these circumstances is further supported by the fact that all twelve
of the best policies during the evolution of policy B were constants.
In this context the twelve best policies we are referring to is the
set of policies that were, at some point during evolution, the best
policy in all runs.

We have, up until this point, observed two types of evolved
functions shapes (within the individuals that perform well). The
first type is constants, these comprise the majority of the search
space so their presence is expected. The second type can be observed
in policy A, we refer to these as oscillator policies. We believe that

these policies are approximations of the policies used in [23]. While
it would be disingenuous to claim that we are evolving cyclical
policies, it seems feasible that the evolved oscillator policies are
effective for the same reasons as the cyclical ones. It is notable that
while many known dynamic policies are decaying policies we have
not observed any well performing evolved policies with a similar
shape.

5 CONCLUSIONS AND FUTUREWORK
In this work we posed the question of whether or not evolving
learning rate policies was a viable way of improving a network
architecture’s performance. To test this, we designed and developed
AutoLR. a framework that optimizes learning rate policies using
SGE. Furthermore, this framework was then utilized to create two
evolved policies. These evolved policies were tested and compared
with a widely used baseline policy. Both of the policies evolved were
able to improve on the established baseline in some capacity. Not
only that, the network’s best recorded performance was achieved
with an evolved policy, suggesting that evolving learning rate
policies for a specific architecture did in fact improve the
network performance. Additionally, some of the evolved policies
resembleman-made policies seen in [23], suggesting that the system
might have implicitly discovered the ideas that make such policies
effective. In the future we would like to expand the range of policies
that can be evolved to enable meaningful comparisons with a wider
array of state of the art methods.
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