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CHAPTER 1

Introduction

The aim is...to get machines to exhibit

behaviour, which if done by humans, would be

assumed to involve the use of intelligence.

Arthur Samuel
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1.1 Introduction

This thesis focuses on genetic programming (GP), a machine learning technique in-

spired by Darwin’s theory of evolution.

According to [83] GP is a systematic method for getting computers to automati-

cally solve a problem starting from a high-level statement of what needs to be done.

GP is a domain-independent method that genetically breeds a population of computer

programs to solve a problem. Specifically, GP iteratively transforms a population of

computer programs into a new generation of programs by applying analogs of naturally

occurring genetic operations. A flow chart of the standard GP algorithm is reported in

figure 1.1. A detailed description of the GP algorithm is presented in chapter 2.

GP is considered a bio-inspired method and, like all the evolutionary computation

methods, it is inspired by Darwin’s theory of evolution. According to this theory the

vast majority of the history of life can be fully accounted for by physical processes op-

erating on and within populations and species. These processes are reproduction, mu-

tation, competition, and selection. Over many generations, these processes shape the

behaviours of individuals and species to fit the demands of their surroundings. While

evolution has no intrinsic purpose, it is capable of engineering solutions to the prob-

lems of survival that are unique to each individual’s circumstance and, by any mea-

sure, quite ingenious. According to [36], combining the evolutionary process within

a computer could provide a means for addressing complex engineering problems that

traditional algorithms have been unable to conquer. Indeed, the field of evolutionary

computation is one of the fastest growing areas of computer science and engineering

for just this reason; it is addressing many problems that were previously beyond reach,
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Figure 1.1: Genetic Programming flowchart. M is the size of the population.

such as rapid design of medicines. Potentially, the field may fulfill the dream of arti-

ficial intelligence: a computer that can learn on its own and become an expert in any
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chosen area.

1.2 Contributions

This thesis presents contributions in different areas of the field of GP. These contribu-

tions are reported in the following sections.

1.2.1 Measures for Genetic Programming

While GP has been successfully used in different domains, there a still a lot of open

problems. In particular, the study of different (and maybe related) phenomena that

characterize GP deserves an accurate analysis. These phenomena, that are discussed

below, are bloat, overfitting and the functional complexity of the solutions.

The most accepted definition of bloat is “program growth without (significant) re-

turn in terms of fitness” (definition taken from [82], page 101). This definition is

clearly a very fuzzy one and in many bibliographic references GP problems are ana-

lyzed in terms of “presence” or “absence” of bloat, without any numerical quantifica-

tion. This is the case, among many other references, of [95] where the authors state

“Standard GP bloats” and “Dynamic Operator does not bloat”, or of [82] where the

authors use informal expressions like “bloat is more marked” (page 41), “reduce bloat”

(page 78) or “bloat can ... happen” (page 106). These expressions are really too in-

formal to permit a deep study of bloat. Hence, the first contribution of this thesis is a

simple measure to quantify the “amount of bloat of a GP run” with a single number.

Following [74] (page 67), overfitting can be defined as follows: “Given a hypothe-

sis space H, a hypothesis h ∈ H is said to overfit the training data if there exists some



1.2. Contributions 5

alternative hypothesis h′ ∈ H, such that h has smaller error than h′ over the training

samples, but h′ has smaller error than h over the entire distribution of instances”.

According to [13], there are basically three approaches to avoid overfitting: (1)

penalizing complexity or biasing toward simplicity, (2) limiting the number of models

considered, (3) using a validation data set. Penalizing complexity or biasing toward

simplicity may involve post-pruning of models or generating and hypothesizing mod-

els in the order from simple to complex or searching in the space of solutions from

general to specific and using some stopping criterion. There have been a number of

studies ( [17], [23], [73]) where accuracy has not been reduced or has even been im-

proved as a result of simplifying trees by pruning. There have also been theoretical

arguments in favor of what has sometimes been referred to as Occam’s Razor, namely

that simpler models have greater predictive power and lead to less generalization error

( [15], [48]). Following Jensen and Cohen [53], Domingos in [34] regards the number

of models considered rather than the complexity of the models as leading to overfit-

ting. For GP, overfitting is often avoided by limiting the number of generations, and

limiting the size of the population would also result in reducing the number of models

considered. A validation data set can be used to directly test generalization errors and

thus directly decide between different models. It can be used to cutoff search, thus

limiting the number of models considered. Such a cutoff can also prevent complexity

when the search is biased from simple to complex.

All these approach only use qualitative information because there is no measure

that can quantify the amount of overfitting with a single number. Defining a measure

for overfitting is clearly a hard task, given that, according to the definition of [74], it

requires the exploration of all the hypothesis space H, looking for such a hypothesis h′.
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Another contribution of this thesis is the definition of an overfitting measure that can

quantify the amount of overfitting that affect a GP run. Having a quantitative measure

can result in more sophisticated and effective methods to counteract overfitting.

The issue of generalization in GP has received a growing attention in the last few

years (see [61] for a survey). In 1995 Zhang and Mühlenbein investigated the relation-

ship between generalization and parsimony and proposed an adaptive learning method

that automatically balances these two factors. One year later, in [37], a new GP sys-

tem called Compiling GP System was introduced and in [7], Banzhaf and coworkers

showed the positive effect of an extensive use of the mutation operator on generaliza-

tion in GP using sparse data sets. More recently, in [39], Gagné and coworkers have

investigated two methods to improve generalization in GP: the selection of individuals

using a three data sets methodology, and the application of parsimony pressure to re-

duce the size of the solutions. In the last few years the idea of quantitatively studying

the relationship between generalization and solution complexity was tackled in several

contributions. For instance, in [2] authors propose a theoretical analysis of GP from the

perspective of statistical learning theory and prove the advantage of a parsimonious fit-

ness using Vapnik-Chervonenkis theory. Another important contribution, even though

not explicitly focused on GP, but on evolutionary algorithms in general, is presented

in [42], where authors measure behavioral complexity explicitly using compression,

and use it as a separate objective to be optimized. In [111], the authors define two

measures of complexity for GP individuals: a genotypic measure and a phenotypic

one. While the genotypic measure is related to counting the number of nodes of a tree

and its subtrees, the phenotypic one, called order of nonlinearity, is related to func-

tional complexity and consists in calculating the degree of the Chebyshev polynomial
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approximation of the function. The authors then use these two measures as criteria in a

multi-objective system and they show that this system is able to counteract both bloat

and overfitting.

In this thesis different complexity measures have been proposed. The first measure

is inspired by the concept of curvature [20] but, differently from curvature it is always

computable. A second measure, called graph based complexity (GBC), to quantify

the functional complexity of GP individuals has also been proposed. Compared to the

firstly defined measure, GBC is rotationally invariant and it has a higher correlation

with the quality of GP solutions on out-of-sample data. A third measure to quantify

the ability of GP to learn “difficult” points has also been proposed and discussed.

1.2.2 Generalization Ability of Genetic Programming

As stated in section 1.2.1 the issue of generalization has received a growing attention

in the last few years. While one contribution of this thesis focuses on the definition of

measures to quantify overfitting and related phenomena, an other important contribu-

tion is the definition of methods to reduce overfitting.

The first contribution is based on a simple idea. The idea is to re-use genetic

material from older generations. Even though similar to the concept of “short-term”

memory, which is typical of Tabu Search [41], the proposed method is new. Individ-

uals belonging to “old” generations are allowed to participate again to the selection

process at given time intervals, thus giving them a second chance to take part in mat-

ing. Motivations for introducing this method are the following. First of all it is possible

hypothesize that, generation by generation, the GP individuals become more and more

specialized. Even if this behavior can be a good one, the GP individuals could also
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overfit training data. The insertion of earlier (and probably less specialized) individ-

uals with a good fitness can allow the population diversity to increase, reducing at

the same time the risk of overfitting training data. The second motivation is that the

processes of selection, crossover and mutation of GP can discard (the former one) or

disrupt (the latter ones) good genetic material. Allowing a reinsertion, the probabil-

ity of good genetic material to be propagated increases. The third motivation is that,

also on training data themselves, the evolutionary process may lead the population to

convergence towards local optima. The insertion of earlier individuals with a good

fitness, while allowing the population diversity to increase, should also reduce the risk

of premature convergence and stagnation in local optima.

The second important contribution is a study on the generalization ability of a multi

objective GP framework (MOGP). In optimization problems the search bias usually in-

volves only one fitness function. This is equivalent to the use of only one criterion

to estimate the quality of a solution. On the other hand, in many situations a good

solution is achieved by a compromise between multiple criteria [27]. The usage of

only one criterium to guide the evolutionary process results, in several applications, in

solutions affected by overfitting. Hence, the performances achieved on the training in-

stances could not be replicated on unseen data. It has also been shown in [95,110] that

considering a completely bloat free GP framework does not improve the generaliza-

tion ability of the solutions. In particular the GP framework used in [95,110] produces

solutions that, even though rather smaller than the ones produced by standard GP, are

not able to generalize better than them. The aim of the study presented in this thesis

is to understand whether or not the use of a second criterium, combined with the cri-

terium used as a typical fitness function, could enhance the generalization ability of
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the solutions. In this light, several auxiliary criteria that are thought to have an effect

on the generalization ability have been chosen.

1.2.3 The Role of Semantic in Genetic Programming

GP has been widely investigated in the last decades. The analysis of a GP system is

mainly based on the study of genotypic properties. While the study of genotype can

be useful to capture particular phenomena related to the evolutionary process, it is not

able to describe the entire dynamic of the process.

Thus incorporating semantic awareness in the GP process could improve perfor-

mances, extending the applicability of GP to problems that are difficult with purely

syntactic approaches. For this reason the study of GP systems has been extended to

phenotypic aspects. This type of analysis does not consider the structural character-

istics of a tree, but other properties related to the fitness. So a phenotypic study is

strongly based on the fitness of the individuals involved in the evolutionary process.

A key factor in the success or otherwise of a GP population in evolving towards a

solution is the extent of diversity amongst its members. Diversity may be viewed in

genotypic (structural) or in phenotypic (behavioural) terms, but the latter has received

less attention. Overviews of diversity measures can be found in [78] and [18], while

Burke et al. in [19] give a more extensive analysis of these measures and of how they

relate to fitness.

Behavioural or phenotypic diversity metrics are based on the functionality of in-

dividuals, i.e. the execution of program trees rather than their appearance. Usually,

behavioural diversity is viewed in terms of the spread of fitness values obtained on

evaluating each member of the population [88]. One way of measuring such a diver-
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sity is by considering the fitness distribution as an indicator of entropy, or disorder, in

the population [116] [87].

Other approaches consider sets or lists of fitness values and use them in combina-

tion with genotypic measures [29]. For certain types of problems it may be possible to

achieve the effect of behavioural diversity without invoking the fitness function, via the

use of semantic sampling schemes [65]. Semantic analysis of programs is also used in

the diversity enhancing technique described by Beadle and Johnson [11].

Gustafson in [45] developed two edit distances to sample semantic diversity in GP

and conducted an analysis comparing behavioural diversity measures with changes

in fitness. One of the limitations of the edit distance method is that it is defined on

representations that differ substantially from the standard one.

Semantic analysis methods are starting to appear in combination with crossover.

McPhee et al. [71] used truth tables to analyze behavioural changes in crossover for

boolean problems. They consider the semantics of two components in each tree: se-

mantic of subtrees and semantic of context (the remainder of an individual after re-

moving a subtree). They experimentally measured the variation of these semantic

components throughout the GP evolutionary process. They paid special attention to

fixed-semantic subtrees: subtrees where the semantic of the tree does not change when

this subtree is replaced by another subtree. They showed that there may be many such

fixed semantic subtrees when the tree size increases during evolution; thus it becomes

very difficult to change the semantic of trees with crossover and mutation once the

trees have become large.

While it is possible to represent behaviours using truth tables, a more efficient

technique is that of using reduced ordered binary decision diagrams (ROBDDs) [16]
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to create reduced canonical representations to measure behavioural differences.

In [10] semantic is used to define an algorithm called Semantically Driven

Crossover (SDC). The SDC algorithm has been developed based on the analysis of

the behavioural changes caused by crossover. The key feature of this method is the use

of a canonical representation of members of the population (reduced ordered binary de-

cision diagrams-ROBDDs) to check for semantic equivalence without having to access

the fitness function. Two trees are semantically equivalent if and only if they reduce to

the same ROBDD. This is used to determine which participating individuals are copied

to the next generation. If the offsprings are semantically equivalent to their parents, the

children are discarded and the crossover is restarted. This process is repeated until se-

mantically new children are found. The authors argue that this results in increased

semantic diversity in the evolving population, and a consequent improvement in the

GP performances.

Other works involving semantic are reported in section 7.2.

In this thesis a semantic niching method is proposed. The idea consists in building,

maintaining and updating generation by generation a semantic distribution. Although

original, the idea is inspired by the well-known control bloat method proposed in [92].

The similarities between the two methods are limited to the acceptance criteria of new

individuals produced by the genetic operators. Beyond this, the basic idea that char-

acterizes the two methods is different: while the work in [92] builds and uses a distri-

bution based on the syntax of the individuals, the work proposed in this thesis focuses

on semantics. The main aim is to increase the performances of GP by maintaining

population diversity.
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1.3 Thesis Overview

Chapter 2 introduces basic concepts about the field of GP. In the first part of the chapter

the field of Evolutionary Computation is presented and a discussion regarding advan-

tages (and drawbacks) of Evolutionary Algorithms over other approaches is proposed.

The main concepts about GP are covered in section 2.3, where all the components of a

standard GP algorithms are described.

In Chapter 3 current issues in GP are discussed and a literature review is proposed.

The literature review focuses on three relevant phenomena that affects GP. Programs

bloat, overfitting and programs complexity are discussed in detail with references to

recent literature.

Chapter 4 presents different measures to quantify bloat, overfitting and complexity

of candidate solutions. Strengths and weakness of the proposed measures are discussed

and the relations between these phenomena are investigated. In section 4.4 a new

measure of functional complexity for GP solutions is proposed. The measure is called

Graph Based Complexity (GBC) and it overcomes some of the problems that affect the

complexity measure propose in section 4.3. A natural extension of GBC was Graph

Based Learning Ability (GBLA) defined in section 4.4. Its goal is to quantify the

ability of GP to learn “difficult” training points.

Chapter 5 presents an experimental study of the generalization ability of a set of

multi-optimization GP frameworks comparing them with standard GP and Dynamic

Operator Equalization [93], a bloat control technique. Section 5.2 introduces Opera-

tor Equalization and gives some details regarding how it works; section 5.3 presents

basic concepts about multi objective optimization, while in section 5.4 the multi-
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optimization framework used is presented. Section 5.5 presents the experimental set-

ting, including a description of the datasets and of the parameters used; section 5.6

presents the obtained experimental results. Finally Section 5.7 concludes the chapter

and discusses ideas for future research.

Chapter 6 presents a method to increase the generalization ability of GP. The idea,

that consists in giving a second chance of mating to individuals belonging to “old”

generations, is presented in section 6.2. In section 6.3 experimental settings and results

are presented and discussed. Section 6.4 concludes the chapter and suggests some

ideas for future works

Chapter 7 presents a semantic niching method to increase the performance of GP.

The idea consists in building, maintaining and updating generation by generation a se-

mantic distribution. Section 7.2 presents the state of the art method regarding the study

of semantic in GP. The section focuses on the different approaches used to study the

dynamic of the evolutionary process, presenting strengths and weaknesses of seman-

tic and syntactical methods. Section 7.3 outlines the details of the proposed method,

while section 7.4 and section 7.5 present the test functions and the experimental set-

tings respectively. Results are discussed in section 7.6 and in section 7.7. Section 7.8

discusses some problems that affect the proposed semantic method while section 7.9

concludes the chapter and gives some possible directions for future research.

Chapter 8 summarizes the main contributions of this work.

Chapter 9 concludes this thesis presenting some hints for future research.
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The aim of this chapter is to introduce the basic concepts about the field of Ge-

netic Programming. Section 2.1 introduces Evolutionary Computation (EC) while sec-

tion 2.2 outlines the possible advantages (and disadvantages) in using such family of
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bio-inspired techniques. The main concepts about GP are covered in section 2.3, where

all the components of a standard GP algorithm are described. Most of this chapter is

taken from [82] [9] [5].

2.1 Evolutionary Algorithms

Evolutionary algorithms (EAs) are stochastic optimization techniques based on the

principles of natural evolution. An EA is a stochastic iterative procedure for generat-

ing tentative solutions for a certain problem Π. There are different EA models: Evo-

lutionary Programming, Evolutionary Strategies and Genetic Algorithms. A complete

description of EA families can be found in [6]. These families have not grown in com-

plete isolation from each other and new variants have emerged. One of this variant is

GP and it is described in section 2.3.

2.2 Advantages (and drawbacks) of evolutionary algo-

rithms over other approaches

Since according to the no-free-lunch (NFL) theorem [115], there cannot exist any al-

gorithm for solving all (e.g. optimization) problems that is generally (on average)

superior to any competitor, the question of whether evolutionary algorithms (EAs) are

inferior/superior to any alternative approach is senseless. What could be claimed solely

is that EAs behave better than other methods with respect to solving a specific class of

problems (with the consequence that they behave worse for other problem classes).

The NFL theorem can be corroborated in the case of EAs versus many classical op-
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timization methods insofar as the latter are more efficient in solving linear, quadratic,

strongly convex, unimodal, separable, and many other special problems. On the other

hand, EAs do not give up so early when discontinuous, nondifferentiable, multimodal,

noisy, and otherwise unconventional response surfaces are involved. Their effective-

ness (or robustness) thus extends to a broader field of applications, of course with a

corresponding loss in efficiency when applied to the classes of simple problems classi-

cal procedures have been specifically devised for.

Looking into the historical record of procedures devised to solve optimization prob-

lems, especially around the 1960s (see [90]), when a couple of direct optimum-seeking

algorithms were published, for example, in the Computer Journal, a certain pattern of

development emerges. Author A publishes a procedure and demonstrates its suitability

by means of tests using some test functions. Next, author B comes along with a coun-

terexample showing weak performance of A’s algorithm in the case of a certain test

problem. Of course, he also presents a new or modified technique that outperforms the

older one(s) with respect to the additional test problem. This game could in principle

be played adin f initum.

A better means of clarifying the scene ought to result from theory. This should

clearly define the domain of applicability of each algorithm by presenting convergence

proofs and efficiency results. Unfortunately. however, it is possible to prove abilities

of algorithms only by simplifying them as well as the situations to which they are

confronted. The huge remainder of questions must be answered by means of (always

limited) test series, and even that cannot tell much about an actual real-world problem-

solving situation with yet unanalyzed features, that is, the normal case in applications.

Again unfortunately, there does not exist an agreed-upon test problem catalogue to
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evaluate old as well as new algorithms in a concise way. It is doubtful whether such a

test bed will ever be agreed upon, but efforts in that direction would be worthwhile.

Finally, what are the truths and consequences? First, there will always remain a

dichotomy between efficiency and general applicability, between reliability and effort

of problem-solving, especially optimum-seeking, algorithms. Any specific knowledge

about the situation at hand may be used to specify an adequate specific solution al-

gorithm, the optimal situation being that one knows the solution in advance. On the

other hand, there cannot exist one method that solves all problems effectively as well

as efficiently. These goals are contradictory. If there is already a traditional method

that solves a given problem, EAs should not be used. They cannot do it better or with

less computational effort.

To develop a new solution method suitable for a problem at hand may be a nice

challenge to a theoretician, who will afterwards get some merit for his effort, but from

the application point of view the time for developing the new technique has to be added

to the computer time invested. In that respect, a non specialized, robust procedure (and

EAs belong to this class) may be, and often proves to be, worthwhile.

A warning should be given about a common practice: the linearization or other

decomplexification of the situation in order to make a traditional method applicable.

Even a guaranteed globally optimal solution for the simplified task may be a long way

off and thus greatly inferior to an approximate solution to the real problem.

The best one can say about EAs, therefore, is that they present a methodological

framework that is easy to understand and handle, and is either usable as a black-box

method or open to the incorporation of new or old recipes for further sophistication,

specialization or hybridization. They are applicable even in dynamic situations where
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the goal or constraints are moving over time or changing, either exogenously or self-

induced, where parameter adjustments and fitness measurements are disturbed, and

where the landscape is rough, discontinuous, multimodal, even fractal or cannot oth-

erwise be handled by traditional methods, especially those that need global prediction

from local surface analysis.

There exist EA versions for multiple criterion decision making (MCDM) and many

different parallel computing architectures. Almost forgotten today is their applicability

in experimental (non-computing) situations.

Sometimes striking is the fact that even obviously wrong parameter settings do not

prevent fairly good results: this certainly can be described as robustness. Not yet well

understood, but nevertheless very successful are those EAs which self-adapt some of

their internal parameters, a feature that can be described as collective learning of the

environmental conditions. Nevertheless, even selfadaptation does not circumvent the

NFL theorem.

2.3 Genetic Programming

GP is an evolutionary computation technique that automatically solves problems with-

out requiring the user to know or specify the form or structure of the solution in ad-

vance. At the most abstract level GP is a systematic, domain-independent method for

getting computers to solve problems automatically starting from a high-level statement

of what needs to be done. In GP a population of computer programs is evolved. That is,

generation by generation, GP stochastically transforms populations of programs into

new, hopefully better, populations of programs. The important features shared by most
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GP systems are

• Stochastic decision making. GP uses pseudo-random numbers to mimic the ran-

domness of natural evolution. As a result, GP uses stochastic processes and

probabilistic decision making at several stages of program development.

• Program structures. GP assembles variable length program structures from ba-

sic units called functions and terminals. Functions perform operations on their

inputs, which are either terminals or output from other functions. The actual

assembly of the programs from functions and terminals occurs at the beginning

of a run, when the population is initialized

• Genetic operators. GP transforms the initial programs in the population using

genetic operators. Crossover between two individual programs is one principal

genetic operator in GP. Other important operators are mutation and reproduction.

• Simulated evolution of a population by means of fitness based selection. GP

evolves a population of programs in parallel. The driving force of this simu-

lated evolution is some form of fitness-based selection. Fitness-based selection

determines which programs are selected for further improvements.

2.3.1 Terminals and Functions: the Primitives of Genetic Pro-

grams

The functions and terminals are the primitives with which a program in GP is built.

Functions and terminals play different roles. The terminal set is comprised of the
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inputs to the GP program, the constants supplied to the GP program, and the zero-

argument functions with side-effects executed by the GP program. The function set

is composed of the statements, operators, and functions available to the GP system.

Loosely speaking, terminals provide a value to the system while functions process a

value already in the system. Together, functions and terminals are referred to as nodes.

Choosing the Function and Terminal Set

The functions and terminals used for a GP run should be powerful enough to be able to

represent a solution to the problem. For example, a function set consisting only of the

addition operator will probably not solve many very interesting problems. On the other

hand, it is better not to use too large a function set. This enlarges the search space and

can sometimes make the search for a solution harder. An approximate starting point

for a function set might be the arithmetic and logic operations.

Another important property of the function set is that each function should be able

to handle gracefully all values it might receive as input. This is called the closure

property. The most common example of a function that does not fulfill the closure

property is the division operator. The division operator cannot accept zero as an input.

Division by zero will normally crash the system, thereby terminating a GP run. This

is of course unacceptable. Instead of a standard division operator one may define a

new function called protected division. Protected division is just like normal division

except for zero denominator inputs. In that case, the function returns something else,

i.e., a very big number or zero. All functions (square root and logarithms are other

examples) must be able to accept all possible inputs because if there is any way to

crash the system, the boiling genetic soup will certainly hit upon it.



2.3. Genetic Programming 21

2.3.2 Executable Program Structures

The primitives of GP (the functions and terminals) are not programs. Functions and

terminals must be assembled into a structure before they may execute as programs. The

evolution of programs is, of course, common to all genetic programming. Programs

are structures of functions and terminals together with rules or conventions for when

and how each function or terminal is to be executed.

The choice of a program structure in GP affects execution order, use and locality of

memory, and the application of genetic operators to the program. There are really two

very separate sets of issues here. Execution and memory locality are phenomic issues

(that is, issues regarding the behavior of the program). On the other hand, mutation

and crossover are genomic issues (that is, how the “DNA“ of the program is altered. In

most tree-based GP systems, there is no separate phenotype. Therefore, it appears that

structural issues of execution, memory, and variation are the same. But that similarity

exists only because of an implicit choice to blend the genome and the phenome.

The three principal program structures used in GP are tree, linear, and graph struc-

tures. However, GP program structures are often virtual structures. For example, tree

and graph structures are executed and altered as i/they were trees or graphs. But how a

program executes or is varied is a completely different question from how it is actually

held in computer memory. Many tree-based systems do not actually hold anything that

looks like a tree in the computer. Of the three fundamental structures, tree structures

are the commonest in GP. In section 2.3.2, trees structure will be described.
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Tree Structure Execution and Memory

Figure 2.1 is a diagram of a tree-based phenome. It has many different symbols that

could be executed in any order. But there is a convention for executing tree structures.

The standard convention for tree execution is that it proceeds by repeatedly evalu-

ating the leftmost node for which all inputs are available. This order of execution is

referred to as postfix order because the operators appear after the operands. Another

convention for execution is called prefix order. It is the precise opposite of postfix or-

der and executes the nodes close to the root of the tree before it executes the terminal

nodes. The advantage of prefix ordering is that a tree containing nodes like IF/THEN

branches can often save execution time by evaluating first whether the THEN tree must

be evaluated. Applying postfix order to Figure 2.1, the execution order of the nodes is:

d -> e -> OR -> a-> b-> c -> + -> MUL -> -.

This same tree structure also constrains the usage of memory on execution. Fig-

ure 2.1 uses only local memory during execution. Why? Local memory is built into

the tree structure itself. For example, the values of b and c are local to the + node. The

values of b and c are not available to any other part of the tree during execution. The

same is true for every value in the tree.

2.3.3 Initialization Methods

The first step in actually performing a GP run is to initialize the population. That

means creating a variety of program structures for later evolution.

One of the principal parameters of a GP run is the maximum size permitted for a

program. For trees in GP, that parameter is expressed as the maximum depth of a tree
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Figure 2.1: A tree structure phenome

or the maximum total number of nodes in the tree. The depth of a node is defined as the

minimal number of nodes that must be traversed to get from the root node of the tree

to the selected node. The maximum depth parameter (MDP) is the largest depth that

will be permitted between the root node and the outermost terminals in an individual.

Grow and full method

There are two different methods for initializing tree structures in common use. They

are called full and grow [57].

Grow produces trees of irregular shape because nodes are selected randomly from

the function and the terminal set throughout the entire tree (except the root node, which

uses only the function set). Once a branch contains a terminal node, that branch has

ended, even if the maximum depth has not been reached.Because the incidence of

choosing terminals is random throughout initialization, trees initialized using grow are
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likely to be irregular in shape.

Instead of selecting nodes randomly from the function and the terminal set, the full

method chooses only functions until a node is at the maximum depth. Then it chooses

only terminals. The result is that every branch of the tree goes to the full maximum

depth.

The Ramped Half-and-Half Method

Diversity is valuable in GP populations. By itself, the above method could result in a

uniform set of structures in the initial population because the routine is the same for all

individuals. To prevent this, the “ramped-half-and-half” technique has been devised.

It is intended to enhance population diversity of structure from the outset [58]. In trees

the technique is like this. Suppose the maximum depth parameter is 6. The population

is divided equally among individuals to be initialized with trees having depths 2, 3, 4,

5, and 6. For each depth group, half of the trees are initialized with the full technique

and half with the grow technique.

2.3.4 Genetic Operators

An initialized population usually has very low fitness. Evolution proceeds by trans-

forming the initial population by the use of genetic operators. In machine learning

terms, these are the search operators. While there are many genetic operators, the

three principal GP genetic operators are:

• Crossover

• Mutation
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• Reproduction

Crossover Operator

The crossover operator combines the genetic material of two parents by swapping a

part of one parent with a part of the other. Tree-based crossover is described graph-

ically in Figure 2.2. The parents are shown in the left half of the figure while the

children are shown in the right half. More specifically, tree-based crossover proceeds

by the following steps:

• Choose two individuals as parents, based on mating selection policy. The two

parents are shown on the left of Figure 2.2.

• Select a random subtree in each parent. The selection of subtrees can be biased

so that subtrees constituting terminals are selected with lower probability than

other subtrees.

• Swap the selected subtrees between the two parents. The resulting individuals

are the children. They are shown on the right in Figure 2.2.

Figure 2.2: Crossover Operator
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Mutation Operator

The mutation operation introduces random changes in structures in the population.

While there are many different mutation operators, the three principal GP mutation

operators are:

• Subtree mutation.

• Swap mutation.

• Point mutation.

The subtree mutation operator works as follows: the mutation operation begins by

selecting a point at random within the tree. This mutation point can be an internal (i.e.,

function) point or an external (i.e., terminal) point of the tree. The mutation operation

then removes whatever is currently at the selected point and whatever is below the

selected point and inserts a randomly generated subtree at that point. This operation is

controlled by a parameter that specifies the maximum size (measured by depth) for the

newly created subtree that is to be inserted. This parameter typically has the same value

as the parameter for the maximum initial size of trees in the initial random population.

Swap Mutation operates by randomly selecting two subtrees which are then

swapped.

Finally, point mutation operates by replacing a randomly selected node with a node

of the same arity.
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Reproduction

The reproduction operator is straightforward. An individual is selected. It is copied,

and the copy is placed into the new population.

2.3.5 Fitness and Selection

GP neither is a hill climbing system (which searches only one path through the search

space) nor does it conduct an exhaustive search of the space of all possible computer

programs. Rather, GP is a type of beam search. The GP population is the beam - the

collection of points in the search space from which further search may be conducted.

Of course, GP must choose which members of the population will be subject to

genetic operators such as crossover, reproduction, and mutation. In making that choice,

GP implements one of the most important parts of its model of organic evolutionary

learning, fitness-based selection. Fitness-based selection affects both the ordering of

the individuals in the beam and the contents of the beam.

GP’s evaluation metric is called a fitness function and the manner in which the fit-

ness function affects the selection of individuals for genetic operators may be referred

to as the GP selection algorithm. Fitness functions are very problem specific. There

are a number of different selection algorithms used in GP.

2.3.5.1 The Fitness Function

Fitness is the measure used by GP during simulated evolution of how well a program

has learned to predict the output(s) from the input(s) (that is, the features of the learning

domain).
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The goal of having a fitness evaluation is to give feedback to the learning algorithm

regarding which individuals should have a higher probability of being allowed to mul-

tiply and reproduce and which individuals should have a higher probability of being

removed from the population.

The fitness function should be designed to give graded and continuous feedback

about how well a program performs on the training set.

A continuous fitness function is any manner of calculating fitness in which smaller

improvements in how well a program has learned the learning domain are related to

smaller improvements in the measured fitness of the program, and larger improvements

in how well a program has learned the learning domain are related to larger improve-

ments in its measured fitness.

Such continuity is an important property of a fitness function because it allows GP

to improve programs iteratively. Two more definitions about fitness function will be

useful.

Standardized fitness is a fitness function or a transformed fitness function in which

zero is the value assigned to the fittest individual. Standardized fitness has the admin-

istrative feature that the best fitness is always the same value (zero), regardless of what

problem one is working on.

Normalized fitness is a fitness function or a transformed fitness function where

fitness is always between zero and one.

2.3.5.2 The Selection Algorithm

After the quality of an individual has been determined by applying a fitness function,

we have to decide whether to apply genetic operators to that individual and whether to
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keep it in the population or allow it to be replaced. This task is called selection and

assigned to a special operator, the selection operator.

There are various different selection operators, and a decision about the method

of selection to be applied under particular circumstances is one of the most important

decisions to be made in a GP run. Selection is responsible for the speed of evolution

and is often cited as the culprit in cases where premature convergence stalls the success

of an evolutionary algorithm.

Selection in general is a consequence of competition between individuals in a pop-

ulation. This competition results from an overproduction of individuals which can

withstand the competition to varying degrees. The degree to which they can withstand

the competition is regulated by the selection pressure, which depends on the ratio of

offspring to individuals in the population.

The three principal selection operators are:

• Fitness-Proportional Selection.

• Ranking Selection.

• Tournament Selection.

Fitness-Proportional Selection.

Fitness-proportional selection is employed in a GA scenario for generational selection

and specifies probabilities for individuals to be given a chance to pass offspring into
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the next generation. An individual i is given a probability of

pi = fi ∑
j

f j

for being able to pass on traits. Depending on the variation operator used, this might

result (i) in a copy of that individual, or (ii) in a mutated copy, or (iii) in case two

individuals have been selected in the way mentioned, two offspring with mixed traits

being passed into the next generation.

Ranking Selection.

Ranking selection [43] [112] is based on the fitness order, into which the individuals

can be sorted. The selection probability is assigned to individuals as a function of their

rank in the population. Mainly, linear and exponential ranking are used. For linear

ranking, the probability is a linear function of the rank:

1
N

[
p−+(p+− p−)

i−1
N −1

]

where p−/N is the probability of the worst individual being selected, and p+/N the

probability of the best individual being selected, and

p−+ p+ = 2

should hold in order for the population size to stay constant.

For exponential ranking, the probability can be computed using a selection bias
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constant c,

pi =
c−1
cN−1 cN − i

with 0 < c < l.

Tournament Selection.

Tournament selection is not based on competition within the full generation but in

a subset of the population. A number of individuals, called the tournament size, is

selected randomly, and a selective competition takes place. The traits of the better

individuals in the tournament are then allowed to replace those of the worse individuals.

In the smallest possible tournament, two individuals compete. The better of the two is

allowed to reproduce with mutation. The result of that reproduction is returned to the

population, replacing the loser of the tournament.

The tournament size allows researchers to adjust selection pressure. A small tour-

nament size causes a low selection pressure, and a large tournament size causes high

pressure.

Tournament selection has recently become a mainstream method for selection,

mainly because it does not require a centralized fitness comparison between all in-

dividuals. This not only accelerates evolution considerably, but also provides an easy

way to parallelize the algorithm.

2.3.6 The Basic GP Algorithm

It is now possible to assemble all of the individual elements (functions, terminals,

fitness-based selection, genetic operators, variable length programs, and population
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initialization) into an overall algorithm for a basic GP run. There are two ways to

conduct a GP run, a generational approach and a steady-state approach. In generational

GP, an entire new generation is created from the old generation in one cycle. The new

generation replaces the old generation and the cycle continues. In steady-state GP,

there are no generations. We will present an algorithm for each approach.

First, however, we will review the preparatory steps for making a GP run. Then we

will discuss the two basic ways to approach the GP run algorithm itself.

2.3.6.1 Summary of Preparatory Steps.

Here are the preliminary steps in a GP run, which has been described in detail in this

chapter.

1. Define the terminal set.

2. Define the function set.

3. Define the fitness function.

4. Define parameters such as population size, maximum individual size, crossover

probability, selection method, and termination criterion (e.g., maximum number

of generations).

Once these steps are completed, the GP run can commence. How it proceeds de-

pends on whether it is generational or steady state.
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2.3.6.2 Generational GP Algorithm.

Traditionally, GP uses a generational evolutionary algorithm. In generational GP, there

exist well-defined and distinct generations. Each generation is represented by a com-

plete population of individuals. The newer population is created from and then replaces

the older population. The execution cycle of the generational GP algorithm includes

the following steps:

1. Initialize the population.

2. Evaluate the individual programs in the existing population. Assign a numerical

rating or fitness to each individual.

3. Until the new population is fully populated, repeat the following steps:

• Select an individual or individuals in the population using the selection

algorithm.

• Perform genetic operations on the selected individual or individuals.

• Insert the result of the genetic operations into the new population.

4. If the termination criterion is fulfilled, then continue. Otherwise, replace the

existing population with the new population and repeat steps 2-4. 5. Present the

best individual in the population as the output from the algorithm.

2.3.6.3 Steady-State GP Algorithm.

The steady-state or tournament selection model is the principal alternative to genera-

tional GP. In this approach there are no fixed generation intervals. Instead, there is
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a continuous flow of individuals meeting, mating, and producing offspring. The off-

spring replace existing individuals in the same population.

Here is an example of a basic GP algorithm using the steady-state method.

1. Initialize the population.

2. Randomly choose a subset of the population to take part in the tournament (the

competitors).

3. Evaluate the fitness value of each competitor in the tournament.

4. Select the winner or winners from the competitors in the tournament using the

selection algorithm.

5. Apply genetic operators to the winner or winners of the tournament.

6. Replace the losers in the tournament with the results of the application of the

genetic operators to the winners of the tournament.

7. Repeat steps 2-7 until the termination criterion is met.

8. Choose the best individual in the population as the output from the algorithm.
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3.1 Bloat

Bloat is one of the most important problem that affects GP. According to [9] bloat (or

code bloat) is defined as code growth without a significant improvement in terms of

fitness. In recent years several theories have been developed to trying to explain the

origin of this phenomenon. Methods to limit or prevent the bloat have also been pro-

posed. In this section a review of the state of the art methods and theories concerning

is proposed.
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3.1.1 Bloat Theories

As stated before, several theories have been developed to explain the occurrence of

bloat. In 1994 in [3] author noted the appearance of redundancy in evolved genetic

programs. Several solutions evolved by Koza [57] contain semantically extraneous

components. By extraneous, he meant that if those code segments were removed from

the solution, this would not alter the result produced by the solution. According to [3]

the ubiquity of redundant constructs suggests a more basic truth about their nature.

There is an advantage from the viewpoint of the evolving genetic program for syntacti-

cally redundant constructions that are semantically transparent. Because the redundant

functions do not effect the semantics of the sub-expression, if a crossover operation is

performed such that it splits the redundant components, the semantics of the removed

subtree are still preserved. These redundant functions serve as introns for the evolving

subexpression giving the blind crossover operator a higher probability of capturing the

complete subexpression intact. An intron is a portion of a chromosome that is never

expressed and provides spacing between the genes.

Hitchhiking defined by Tackett in [98] is a second theory that focuses on the pres-

ence of introns. Tackett hypothesized that GP bloat was caused by blocks of code

in GP individuals that, while they had little merit on their own, happened to be in

close proximity to high fitness blocks of code. Tackett referred to this phenomenon as

hitchhiking.

Protection from deletion [1] [14], [9], states that introns are required to protect fit

programs from the mostly destructive crossover operation. In [9] authors pointed out

that while introns do not affect the fitness of the individual, they do affect the likeli-

hood that the individual’s descendants will survive. They referred to this new concept
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of fitness, which includes the survivability of an individual’s offspring, as effective fit-

ness. The better the parent can protect its children from being the results of destructive

genetic operators, the better the effective fitness of the parent. Introns help parents do

that. The concept of effective fitness will is clearly a function of at least two factors:

• The fitness of the parent. The fitter the parent, the more likely it is to be chosen

for reproduction.

• The likelihood that genetic operators will affect the fitness of the parent’s chil-

dren.

Introns emerge as a result of competition among parents with respect to the second

item. Hence successful individuals are able to survive generation to generation due to

the fact that potentially destructive crossovers take place in intron areas of the program,

and as such does not degrade their fitness for selection.

Removal bias [97] occurs when inviable subtrees near the leaves of programs more

frequently are replaced by larger subtrees with no effect on fitness. As most crossover

is destructive, these programs survive due to their fitness being unchanged, whereas,

more programs that had crossovers in areas of active code are culled at selection.

In [97] authors also pointed out that at least two factors contribute to code growth

in GP: the evolutionary advantage of having protective, inviable code and a bias in

favor of the removal of small subtrees. Of these two causes removal bias contributes

somewhat less to the overall growth, although the amount of growth it produces is still

significant. They presented these two forms of growth as being independent and they

showed that each can act in the absence of the other. However, it also seems likely that

in a normal GP they act in concert. For example, removal bias creates inviable code
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which is preserved because of its protective value.

While hitchhiking, protection from deletion and removal bias require the presence

of introns, in [63] authors concentrate their attention on the fitness function. The fitness

causes bloat theory basically states that with a variable-length representation there

are many different ways to represent the same program, long and short, and a static

evaluation function will attribute the same fitness to all, as long as their behavior is the

same. Given that crossover is a destructive process, when more fit programs become

hard to find, then programs of equal fitness are favored. Because there are many more

longer ways to represent a program than shorter ways, a natural drift towards longer

solutions occurs, causing bloat.

Another explanation for bloat in tree-based GP was advanced by Luke in [66].

Luke has observed that when a genetic operator modifies a parent to create an offspring,

there is a link between the depth of the modified node and its effect on the fitness of

the offspring when compared to the parent. Given that most crossover is destructive,

programs that experience swaps near the leaves of the trees suffer less decrease in their

fitness compared to trees that include a crossover near the root. As a result, more

code gets added near the leaves of the tree and longer trees are favoured in terms of

survival when the fitness function and selection are applied. Moreover, the deeper the

modification point, the smaller the branch that is removed, thus creating a removal bias.

This may be regarded as a generalization of the original removal bias theory [97].

The crossover bias theory [31] is the most recent theory concerning bloat. It ex-

plains code growth in tree-based GP by the effect that standard subtree crossover has

on the distribution of tree sizes in the population. In particular it states that shorter

programs will be more frequently sampled as a result of crossover. Because very small
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individuals are generally unfit, selection tends to reject them in favor of the larger in-

dividuals, causing an increase in mean tree size. It is the proliferation of these small

unfit individuals, perpetuated by crossover, that ultimately causes bloat. Dignum and

Poli [31]support the crossover bias theory providing strong theoretical evidence show-

ing how the distribution of program sizes follows a Lagrange distribution of the second

kind [51] [52] [79].

One of the key issues behind bloat appears to be the selection mechanism. As

shown by Tackett [98] random selection results in no bloat. The moment the fitness

function is applied, underlying bias becomes present and have numerous effects on GP

performance and program size.

3.1.2 Method to control bloat

Although several theories have been defined to explain the causes of the appearance of

bloat in GP there is not a widely accepted theory. Because of this fact GP practitioners

have developed several techniques to reduce and control bloat. In [68] several bloat

control methods are discussed.

The first method to control bloat has been proposed by Koza in [57] and the idea is

very simple. A depth limit of 17 is fixed, and if the depth of a program is greater than

17 after a crossover, the parent program was used instead of the child program.

The Tarpeian method [81] introduces a parameter which represents a probability

of assigning a very poor fitness value to a large program without assessing the fitness

of the program. Such individuals are not evaluated further, and such a low fitness

dramatically reduced any chance of an individual being selected for breeding (it was

still possible to be selected if the tournament selection procedure happened to select
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only individuals of this type, but the chances of this happening were slim). The crucial

feature of the Tarpeian method is that it reduces the number of evaluations necessary.

This feature makes Tarpeian different from the other bloat control methods, which all

evaluate every individual generated.

Parsimony pressure is a general family of methods which consider size as part of

the selection process. Historically such methods work by computing the fitness g of an

individual as a function of the individual’s raw fitness f and its size s. We refer to such

methods as parametric parsimony pressure, as they result in a fitness model which uses

the exact values of f and s as parameters in a statistical model of selection.

The most widely-used approach to parametric parsimony pressure is to treat the

individual’s size as a linear factor in fitness, that is, g = xf + ys, where x and y are

parameter settings.

The main difficulty with this method is that without scaling, one element of the

equation g = xf + ys will overwhelm the other element creating bias in the fitness

function. Consequently, the fitness and size components are scaled in an effort to

prevent this bias to occur. The choice of coefficients in order to balance fitness and

program size is difficult, however, in [85] authors show how to apply Price’s covariance

theorem to dynamically set and optimize the parsimony coefficients.

Variants of the canonical linear parametric parsimony pressure method are pro-

posed in [22], [99], [118] and [55]. In [76] authors use a non-linear parametric parsi-

mony pressure that increases the penalty proportionally to the fitness.

Research has shown that beyond a certain minimum program length the distribu-

tions of program functionality and fitness converge to a limit [64]. Before that limit,

however, there may be program-length classes with a higher or lower average fitness
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than that achieved beyond the limit. Ideally, therefore, GP search should be limited to

program lengths that are within the limit and that can achieve optimum fitness. This

has the dual benefits of providing the simplest/smallest solutions and preventing GP

bloat thus shortening run times.

Operator equalisation is a bloat control technique proposed in [33] that allows ac-

curate control of the program length distribution during a GP run. By filtering which

individuals are allowed in the population, it can easily bias the search towards smaller

or larger programs. The technique controls the distribution of sizes inside the popula-

tion by probabilistically accepting each newly created individual based on its size. The

probabilities of acceptance are calculated considering a predetermined target distribu-

tion. A maximum allowed program length, and the desired number of length classes,

or bins, are used to calculate the width of the bins. This technique achieved promising

results with different predetermined target length distributions, using a conservative

program length limit.

In [93] authors improve operator equalisation by giving it the ability to automat-

ically determine and follow the ideal length distribution for each stage of the run,

unconstrained by a fixed maximum limit. Results show that in most cases the new

technique performs a more efficient search and effectively reduces bloat, by achieving

better fitness and/or using smaller programs.

3.2 Overfitting and Complexity

The main goal of a GP system is to find a generally valid set of rules or patterns from

a set of observations (training set). Two different concept may occur when the set of
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observation is used for the learning process: generalization and overfitting.

According to [9] generalization occurs when learning that occurs on the training

data remains, to some extent, valid on test data. In other words, generalization is a

problem of drawing a sample from a population and making predictions about other

samples from the same population. The noise from one sample to the next is probably

different, perhaps a lot different. In other words, sampling error can be a big problem.

Another equally difficult problem is overfitting. Overfitting affects several machine

learning techniques and occurs when a model begins to memorize the training data

rather than learning to generalize from the model. According to [74] given a hypothesis

space H, a hypothesis h ∈ H is said to overfit the training data if there exists some

alternative hypothesis h′ ∈ H such that h has smaller error than h′ over the training

examples, but h′ has a smaller error than h over the entire distribution of instances.

Considering GP, the ideal learning process would learn the true relationship be-

tween the inputs and the outputs and would ignore the noise. But GP is guided by its

fitness function to lower the error on the training data. After GP has modeled the true

relationship, GP individuals can and do continue to improve their fitness by learning

the noise unique to the sample that comprises the training data (that is, by overfitting

the training data) [9].

One of the approaches used to detect if overfitting occurs is to use a validation set.

In particular all the solutions in the population are evaluated on the validation set addi-

tionally to the training set. Instead of returning the best solution on the training set, the

best k solutions on the training set are selected and, among these solutions, the solu-

tion with the best fitness on the validation set is returned as the final result [40], [113].

This approach can also be extended to store a set of Pareto optimal solutions regarding
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validation fitness and model size in an archive [96], [89].

The effectiveness of a validation method strongly depends on the observations con-

tained in the validation partition. Both the training and validation partition should

contain a representative sample of all possible observations to make it possible to cre-

ate a model that is also applicable to new observations. Thus the choice of training and

validation partitions is crucial for any data-based modeling approach.

Other statistical learning approaches to counteract overfitting tune the algorithm

parameters in iterative steps [46]. The objective is to find a parameter settings which

result in a model that generalizes well using an estimator for the expected generaliza-

tion error of the model. The expected generalization error can be estimated through a

cross-validation.

An important topic that has been discussed is the relation between bloat and over-

fitting. It has been recently observed that overfitting can occur in absence of bloat, and

vice versa. Thus, it has been suggested that overfitting and bloat are two separate phe-

nomena in GP [107], [95]. This suggests that overfitting and bloat should be controlled

also by separate mechanisms.

Nevertheless, some technique to counteract overfitting are based on the assumption

that bloat and overfitting are related phenomena. For example in [60] authors use the

covariant parsimony pressure method [80], which was initially proposed for bloat con-

trol, to reduce overfitting. In their contribution authors propose an overfitting detection

criterion for symbolic regression. This criterion is used in combination with covariant

parsimony pressure to control the average program length. Parsimony pressure is ap-

plied in the overfitting state to gradually reduce model length. As long as no overfitting

is detected the program length is allowed to grow.
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In section 4.2 a measure to quantify overfitting during a GP run is proposed.

It is often stated that simpler solutions will be more robust and will generalize

better than complex ones, with the latter being more likely to overfit the training

data [74], [107].

An immediate question concerns how to measure program complexity. In section

4.3 a measure of functional complexity has been proposed. The measure is called

Slope-based Functional Complexity (SFC). SFC in inspired by the concept of curva-

ture, and represents the first measure of complexity that is explicitly intended to be

an indicator of program overfitting. While SFC is based on a reasonable intuition, the

methodological approach it requires can become complicated for multidimensional

problems.

In [101] authors proposed a measure of complexity based on the concept of Hölde-

rian regularity [100], and they call it Regularity-based Functional Complexity (RFC).

This measure captures the underlying justification of SFC overcoming some of its prac-

tical difficulties.

Both the cited complexity measures show almost no correlation with program over-

fitting (at least for the considered test problems).

The study of the relation between program complexity and overfitting deserves

further analysis. In fact, the measures cited in this section only represent a first attempt

to measure complexity and to use this value as an indicator of GP overfitting. Hence a

more comprehensive evaluation of these, and possibly other, measures of complexity

is fundamental.
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The goal of this chapter is to define measures to quantify the amount of bloat, the

amount of overfitting and the functional complexity of the solutions in a GP system.

We introduce these measures pointing out their main advantages and drawbacks and

trying to propose ways to improve them. These measures, or their improved versions,

should be used to study and better understand the relationship between bloat, overfit-

ting and functional complexity of solutions in the future.
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4.1 Bloat Measure

The most accepted definition of bloat is “program growth without (significant) return

in terms of fitness” (definition taken from [82], page 101). This definition is clearly

a very fuzzy one and in many bibliographic references GP problems are analyzed in

terms of “presence” or “absence” of bloat, without any numerical quantification. This

is the case, among many other references, of [95] where the authors state “Standard

GP bloats” and “Dynamic Operator does not bloat”, or of [82] where the authors use

informal expressions like “bloat is more marked” (page 41), “reduce bloat” (page 78)

or “bloat can ... happen” (page 106). We believe that these expressions are really too

informal to permit a deep study of bloat and we introduce a simple measure to quantify

the “amount of bloat of a GP run” with a single number. To the best of our knowledge,

such a measure has never been defined so far.

According to the proposed measure, in case of minimization problems (i.e. prob-

lems were a small fitness value is better than a large one) the “amount of bloat” at

generation g is defined as:

bloat(g) =
(δ(g)−δ(0))/δ(0)
( f (0)− f (g))/ f (0)

(4.1)

where δ(g) is the average program length1 in the population at generation g and f (g)

is the average fitness (calculated using training data) in the population at generation g.

We can informally say that bloat(g) is an expression of the relationship between

the average length growth and the average fitness improvement up to generation g com-

pared to the respective values at generation zero. If we assume that at generation zero
1Following [57], with the expression length of a program we mean the total number of nodes in its

tree-like representation.
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we have no bloat2, then this is a very intuitive formalization of the definition of bloat.

Furthermore, if we assume that, for a given g > 0, δ(g) is larger than δ(0) and (for

minimization problems) f (g) is smaller than f (0), which is what normally happens in

an usual GP run, then we have that bloat(g) often assumes positive values3. Finally,

if g is large, then we usually have that small improvements in fitness correspond to

large improvements in length. For this reason, we have normalized the numerator and

denominator of bloat(g) by δ(0) and f (0). This normalization mitigates the effect of

the two different orders of magnitude of these improvements.

4.2 Overfitting Measure

Following [74] (page 67), overfitting can be defined as follows: “Given a hypothesis

space H, a hypothesis h ∈ H is said to overfit the training data if there exists some

alternative hypothesis h′ ∈ H, such that h has smaller error than h′ over the training

samples, but h′ has smaller error than h over the entire distribution of instances”. Under

this perspective, defining a measure for overfitting is clearly a hard task, given that it

requires the exploration of all the hypothesis space H, looking for such a hypothesis

h′. Nevertheless, we believe that a good indication of the “amount of overfitting” of a

GP system can be given by the relationship between fitness on the training set (training

2If we assume that the definition of bloat is “program growth without (significant) return in terms of
fitness”, then it comes natural to assert that at generation zero programs did not grow yet, and thus there
can be no bloat. Furthermore, it is worth pointing out that at generation zero, i.e. after the initialization
phase, usually programs have a strong size limitation given by the initialization method used. In this
work we use Ramped Half and Half initialization [57] with a depth limit equal to 6.

3This has a known exception for symbolic regression problems, where the average population size
usually shrinks in the very first generations, before increasing progressively in the rest of the run. For
this reason, we did not force this constraint to necessarily hold, thus assuming that bloat(g) can also
have negative values.
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fitness from now on) and the fitness on the test set (test fitness from now on). Thus, at a

given generation g , we quantify overfitting by the overfit(g) value calculated by the

pseudocode in Figure 4.1, where: btp stands for “best test point” and it represents the

best test fitness reached until the current generation, excluding the generations (usually

at the beginning of the run) where the best individual on the training set has a better test

than training fitness; tbtp stands for “training at best test point”, i.e. the training fitness

of the individual that has test fitness equal to btp ; training_fit(g) is a function that

returns the best training fitness in the population at generation g; test_fit(g) returns

the test fitness of the best individual on the training set at generation g .

overfit(0) = 0
btp = test_fit(0)
tbtp = training_fit(0)

for each generation g>0
if (training_fit(g) > test_fit(g))

overfit(g) = 0
else

if (test_fit(g) < btp)
overfit(g) = 0
btp = test_fit(g)
tbtp = training_fit(g)

else
overfit(g) =
|training_fit(g)-test_fit(g)| - |tbtp-btp|

endif
endif

endfor

Figure 4.1: Pseudocode for calculating the overfitting measure in case of minimization
problems.

In synthesis, the ideas that inspire this algorithm are: if, at a given generation g , test
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fitness is better than training fitness, then there is no overfitting (overfit(g)=0 ); if test

fitness is better than the best test point, then there is no overfitting (overfit(g)=0 );

otherwise overfitting is quantified by the difference of the distance between training

and test fitness at generation g and the distance between training and test fitness at

the generation where the best test point has been found. Given that we use elitism

in our GP runs, training fitness is constantly improving, or in the worst case it stays

constant. For this reason: training_fit(g)-test_fit(g) ≥ tbtp-btp. Thus we have that, for all

generations g , overfit(g) ≥ 0, but this may not be the case in the absence of elitism.

We are aware that this definition has the clear and strong limitation that it dra-

matically depends on how training and test data are chosen and we believe that a more

sophisticated definition, where training and test data are alternated in a crossvalidation-

like way is suitable. Nevertheless, this work represents a first and preliminary study of

this measure and thus we prefer to keep things simple and we adopt the algorithm in

Figure 4.1.

We also point out that using the same idea as in equation (4.1) for measuring the

relationship between training and test fitness (i.e. comparing the values at the current

generation with the corresponding ones at generation zero) is definitely unsuitable.

In fact, at generation zero the population has been created by the (typically random)

initialization algorithm and the solutions in the population have not undergone any

evolution yet. For this reason, there is typically no reason why training fitness should

be better than test fitness at generation zero. On the other hand, these two values are

typically quite similar and being the test set often smaller than the training set, it is

even more likely that the average training fitness is worse than the average test fitness

at generation zero. For this reason, using a formula like equation (4.1) to quantify



4.3. Multi-Slope Complexity Measure 50

overfitting would produce a measure that is more affected by the values of training

and test fitness at generation zero than by the course of the learning process. As a

consequence of the fact that training and test fitness values are very similar to each

other at generation zero (or test fitness is even better than training fitness), a measure

like equation (4.1) would very often produce very high overfitting values, even when

it is clearly not the case.

4.3 Multi-Slope Complexity Measure

Previous and Related Work

The relationship between code growth and functional complexity in GP has been only

lightly investigated so far. In [111], the authors define two measures of complexity for

the GP individuals: a genotypic measure and a phenotypic one. While the genotypic

measure is related to counting the number of nodes of a tree and its subtrees, the

phenotypic one, called order of nonlinearity, is related to functional complexity and

consists in calculating the degree of the Chebyshev polynomial approximation of the

function. The authors then use these two measures as further criteria (besides fitness) in

a multi-objective system based on Pareto optimization, and they show that this system

is able to counteract bloat and overfitting.

In this work, complexity is used differently: the proposed measure will not be used

as an optimization criterium, but just reported for the current best individual (in the

training set) along the evolution, in order to discover its relationship with bloat and/or

overfitting. Furthermore, the goal is not to find the approximating polynomial of the

function, but rather to work directly on the function itself. For this reason, a measure
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inspired by the concept of curvature as an indicator of the functional complexity is

proposed.

Curvature

Informally, the curvature [20] of a function is the amount by which its geometric repre-

sentation deviates from being flat, or straight. For a plain curve in 3 dimensions, given

parametrically as c(t) = (x(t),y(t)), the curvature is defined as [20]:

k =
x′y′′− y′x′′

(x′2 + y′2)3/2

Suppose to solve a tridimensional symbolic regression problem using GP, and suppose

to report the average curvature of the individuals in the population at each generation.

This task is computationally very hard. In fact it implies the calculation of simple and

second derivatives of the function along two dimensions. In case the coding function

of a GP individual is not derivable, the exact calculus may even be impossible, and

an approximation would require the previously mentioned [111] calculation of the

approximating polynomial of that function. Furthermore, the dimension of the feature

space of usual symbolic regression problems is by far larger than three. The theory of

generalized curvature measures to multidimensional spaces has a long history, that has

recently been gathered in [75].

On the other hand, in this work an indicator of functional complexity that is in-

spired by the intuition of the concept of curvature is defined. This indicator has the

advantage of being calculable in polynomial time with the number of fitness cases.

The intuition of this indicator is very simple, even though its formal definition may
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seem a bit complicated. For this reason, this measure is firstly presented from an in-

tuitive viewpoint, then a simple example of its calculation is proposed and finally its

formal definition is given.

Intuition

Consider the three simple bidimensional functions in Figure 4.2.

(a) (b) (c)

Figure 4.2: The graphical representation of three simple functions used to explain the
proposed complexity measure from an intuitive viewpoint. According to the proposed
measure, the function represented in plot (a) must be less complex than the function
represented in plot (b) and the function represented in plot (b) must be less complex
than the function represented in plot (c) (see the text for further explanation).

The objective is to define a measure to quantify the fact that the function repre-

sented in Figure 4.2(c) is more complex than the one represented in Figure 4.2(b),

which is more complex than the one represented in Figure 4.2(a). In fact, all the three

functions are polylines, but in Figure 4.2(a) all the segments forming the polyline have

the same slope, while in Figure 4.2(b) the segments have different slopes, even though

all the slopes have the same sign; finally, segments in Figure 4.2(c) have different

slopes of different signs. In other words, what is wanted is to express the complexity

of a function by counting the number of different slopes and by assigning a higher

weight to inversions in the slope sign. It is worth pointing out that such a measure has
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formally absolutely no relationship with the curvature measure. It is only inspired by

an informal intuition of the concept of curvature.

Considering bidimensional regression problems, one can imagine the graphical rep-

resentation of a GP individual as a polyline, by plotting the points that have fitness

cases on the abscissas and the corresponding values of the function coding the GP

individual as ordinates and joining those points by segments. Thus, in case of bidi-

mensional problems, all that must be done to calculate the measure is to sort all fitness

cases (from the smaller value to the larger one) and to consider the values assumed by

the GP individual on those fitness cases. Then the slope of each segment joining these

points is calculated. Let (s1,s2,s3,s4,s5, ...) be those slopes. The measure is simply

calculated as: s_1 - s_2+ s_2 - s_3+ s_3 - s_4+ s_4 - s_5+ ... In this way, if the

slopes are all identical, the value of the measure is zero (minimal possible complexity)

and if the signs of the slopes of all the consecutive segments change, the contribution

of each segment is maximal (because all slopes’ absolute values are summed). On the

other hand, if two consecutive segments have different slopes with the same sign, their

contribution is the subtraction of their respective absolute values (i.e. a contribution

larger than zero, but smaller than in the case where the slope sign changes).

In case of multidimensional spaces of features, the projection of the function cod-

ing the GP individual on each single dimension is considered. The same calculus as

above is executed for each dimension separately and then the average is calculated.

Example

Let the fitness cases of a bidimensional regression problem be (0,π/2,3/2π,2π)

and let g(x) = sin(x) be a GP individual. Then the points of the polyline are:
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{(0,0),(π/2,1),(3/2π,−1),(2π,0)}. In this case, the slope of the segment that joins

the points (0,0) and (π/2,1), the one of the segment that joins the points (π/2,1) and

(3/2π,−1) and the one of the segment that joins the points (3/2π,−1) and (2π,0)

must be calculated. Let s1, s2 and s3 be these three slopes respectively. Hence:

s1 = 1/(π/2) = 2/π, s2 =−2/(3/2π−π/2) =−2/π and s3 = 1/(2π−3/2π) = 2/π.

The value of the proposed measure is: s_1 - s_2+ s_2 - s_3 = 8/π.

Formal Definition

Let X = (x1,x2, ...,xn) be the vector of fitness cases of a regression problem, where for

each i = 1,2, ...,n: xi = (xi1,xi2, ...,xim) is an m-dimensional vector of floating point

numbers (i.e. the feature space is m-dimensional). Let g : IRm → IR be the function

coding a GP individual and let gi = g(xi) be the value assumed by g on the ith fitness

case. Given a j = 1,2, ...,m, let p j = (x1 j,x2 j, ...,xn j) be the vector containing all the

values of feature j in X. Now let q j = (y1 j,y2 j, ...,yn j) be a vector that contains the

same values as p j, except that they are sorted (i.e. q j is a permutation of p j, such

that the values in q j are sorted). Let ϕ : {1,2, ...,n} → {1,2, ...,n} be a function that,

applied to an index in q j returns the position of the corresponding element in p j. In

other words, for all k,h= 1,2, ...,n: yk j = xh j if and only if ϕ(k) = h. Then it is possible

to define:

pc j =


n−2

∑
i=1

abs
gϕ(i+1)−gϕ(i)

y(i+1) j − yi j
−

gϕ(i+2)−gϕ(i+1)

y(i+2) j − y(i+1) j
, if n ≥ 3

0, otherwise

where pc j stands for partial complexity on the jth dimension. Finally, the complexity
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measure is defined as the average of all the partial complexities on all the dimensions

of the feature space, i.e.:

complexity =
( m

∑
j=1

pc j

)
/m

Experimental Setting

A total of 30 runs were performed both with Standard GP (StdGP) and Dynamic Op-

erator Equalization (DynOpEq) [93]. A brief description of DynOpEq is proposed

in chapter 5. All the runs used populations of 500 individuals allowed to evolve for

100 generations. Tree initialization was performed with the Ramped Half-and-Half

method [57] with a maximum initial depth of 6. The function set contained the four

binary operators +, −, ×, and /, protected as in [57]. The terminal set contained one

floating point variable for the F7 test function, 241 floating point variables for the %F

dataset and 626 floating point variables for the LD50 dataset. In all these test problems

no random constants were added to the terminal set. Because the cardinalities of the

function and terminal sets were so different, a balanced choice between functions and

terminals has been imposed when selecting a random node. Fitness was calculated as

the root mean squared error between outputs and targets. Selection for reproduction

used Lexicographic Parsimony Pressure [67] tournaments of size 10. Very similar to

a regular tournament, the lexicographic tournament chooses smaller individuals when

their fitness is the same. The reproduction (replication) rate was 0.1, meaning that each

selected parent has a 10% chance of being copied to the next generation instead of be-

ing engaged in breeding. Standard tree mutation and standard crossover (with uniform

selection of crossover and mutation points) were used with probabilities of 0.1 and 0.9,
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respectively. The new random branch created for mutation has maximum depth equal

to 6. Selection for survival used elitism (i.e. unchanged copy of the best individual in

the next population). Regarding the parameters specific to each technique, StdGP used

a fixed maximum depth of 17, and DynOpEq used a bin width of 1.

Experimental Results

Experimental results are shown in Figures 4.3, 4.4 and 4.5 for the F7 test function, and

the %F and LD50 test problems, respectively.
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Figure 4.3: Test Function: F7(x) = log(x). Plot (a): best training and test fitness
vs. generations. Plot (b): best training fitness vs. average program length. Plot (c):
bloat measure described in Section 4.1 vs. generations. Plot (d): overfitting measure
described in Section 4.2 vs. generations. Plot (e): complexity measure described in
Section 4.3 vs. generations. In all cases, median values over 30 independent runs are
reported. Legend: grey thick lines = StdGP; black thin lines = DynOpEq. (In Plot (a):
solid lines = test fitness; dashed lines = training fitness).

In all these figures plots (a) report the best training fitness and the test fitness of
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Figure 4.3: Test Function: F7(x) = log(x). Plot (a): best training and test fitness
vs. generations. Plot (b): best training fitness vs. average program length. Plot (c):
bloat measure described in Section 4.1 vs. generations. Plot (d): overfitting measure
described in Section 4.2 vs. generations. Plot (e): complexity measure described in
Section 4.3 vs. generations. In all cases, median values over 30 independent runs are
reported. Legend: grey thick lines = StdGP; black thin lines = DynOpEq. (In Plot (a):
solid lines = test fitness; dashed lines = training fitness).

the best individual on the training set vs. generations. These plots should give an in-

tuition of the generalization ability of the solutions found by the different GP models

and their amount of overfitting. In plots (b) some unconventional curves are reported:

best training fitness vs. average program length. Depending on how fast the fitness

improves with the increase of program length, the lines in the plot may point down-

ward (south), or they may point to the right (east). Lines pointing south represent a

rapidly improving fitness with little or no code growth. Lines pointing east represent a

slowly improving fitness with strong code growth. These plots should help us to make

inferences about bloat: for a method that does not bloat, but at the same time is able
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Figure 4.3: Test Function: F7(x) = log(x). Plot (a): best training and test fitness
vs. generations. Plot (b): best training fitness vs. average program length. Plot (c):
bloat measure described in Section 4.1 vs. generations. Plot (d): overfitting measure
described in Section 4.2 vs. generations. Plot (e): complexity measure described in
Section 4.3 vs. generations. In all cases, median values over 30 independent runs are
reported. Legend: grey thick lines = StdGP; black thin lines = DynOpEq. (In Plot (a):
solid lines = test fitness; dashed lines = training fitness).

to improve fitness, these lines should point as south as possible. Plots (c) report the

bloat measure described in Section 4.1 vs. generations. Plots (d) report the overfitting

measure described in Section 4.2 vs. generations4. Finally plots (e) report the com-

plexity measure described in Section 4.3 vs. generations. In all cases, median values

over the 30 runs are reported. When comparing curves, the term “correlation” is used

only from a visual, not statistical, point of view.

Let begin by analyzing the results of the F7 test function (Figure 4.3). Plot 4.3(a)

shows that DynOpEq does not overfit in the first part of the run, because test fitness

4For an easier comparison of overfitting between the three problems, each y axis was drawn so that
its maximum value is roughly one fifth of the maximum y axis value of the respective plot (a).
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Figure 4.4: Test Function: bioavailability (%F) regression. All the rest as in Fig-
ure 4.3.
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Figure 4.4: Test Function: bioavailability (%F) regression. All the rest as in Fig-
ure 4.3.
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Figure 4.4: Test Function: bioavailability (%F) regression. All the rest as in Figure 4.3.

0 50 100

1600

1800

2000

2200

2400

(a)

Generations

F
itn

es
s

0 100 200 300

1600

1700

1800

1900

2000

2100

2200

(b)

Average Length

T
ra

in
in

g 
F

itn
es

s

Figure 4.5: Test Function: toxicity (LD50) regression. All the rest as in Figure 4.3.
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Figure 4.5: Test Function: toxicity (LD50) regression. All the rest as in Figure 4.3.
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Figure 4.5: Test Function: toxicity (LD50) regression. All the rest as in Figure 4.3.

is better than training fitness, while it slightly overfits in the second part, where train-

ing fitness improves and test fitness remains approximately constant. StdGP shows a
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similar behavior, with a slightly more marked overfitting in the first part of the run. It

is interesting to point out that the overfitting measure (plot 4.3(d)) captures this fact,

given that for both methods it stays constantly equal to zero, except for some small

oscillations in the second part of the run and for some larger oscillations for StdGP in

the first part. By observing plot 4.3(e), it is possible see that the functional complexity

of the individuals found by StdGP and DynOpEq is more or less the same at the end

of the run, but StdGP increases its values sooner and faster than DynOpEQ. There is

also a clear correlation between complexity and the best training fitness (plot 4.3(a)).

Plot 4.3(b) clearly shows that StdGP bloats, while DynOpEq does not bloat. In fact, as

training fitness keeps improving, the average length in the StdGP population increases,

while it remains approximately constant in the DynOpEq population. Consistently,

after a small variation in the first five generations, the bloat measure (plot 4.3(c)) is

constantly equal to zero for DynOpEq, while it steadily grows for StdGP.

Now let us focus on the results obtained on the %F dataset (Figure 4.4). Plot 4.4(a)

shows that DynOpEq starts overfitting earlier than StdGP. Now observe the behavior

of the overfitting measure (plot 4.4(d)). The measure has larger values for DynOpEq

from the beginning of the run, but they are met by the StdGP values towards the end

of the run. This is partially captured by the complexity measure (plot 4.4(e)), where

the values for DynOpEq increase sooner than the values for StdGP. Despite the over-

fitting, the complexity values soon decline and remain surprisingly low for DynOpEq.

Plot 4.4(b) clearly shows that StdGP bloats while DynOpEq does not bloat. Consis-

tently, the bloat measure remains constantly equal to zero (except for a small oscillation

in the first three generations) for DynOpEq, while it steadily keeps growing during the

whole evolution for StdGP.
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Finally, let us focus on the results obtained on the LD50 dataset (Figure 4.5).

Plot 4.5(a) shows that both methods overfit, but StdGP overfits more than DynOpEq,

in particular in the second part of the run. In fact, while training fitness keeps improv-

ing for both methods during the whole evolution, test fitness has a minimum and then,

for both methods, it keeps deteriorating. This minimum is around generation 10 for

both methods, but this deterioration is clearly stronger for StdGP. In fact the fitness

on the test set keeps deteriorating until the end of the evolution for StdGP, while it

remains approximately constant after generation 60 for DynOpEq. The behavior of

the overfitting measure (plot 4.5(d)) is consistent with this. It keeps growing during

the whole evolution for StdGP, while for DynOpEq it grows in the first phase of the

evolution and then stabilizes on a more or less constant value, lower than the values of

StdGP. Also the complexity measure behaves consistently (plot 4.5(e)). In fact, at the

end of the evolution DynOpEq starts producing less complex individuals than StdGP.

Plot 4.5(b) clearly shows that also for this test problem StdGP bloats while DynOpEq

does not bloat. Consistently, the bloat measure (plot 4.5(c)) is always equal to zero for

DynOpEq, while it steadily keeps growing during the whole evolution for StdGP.

Conclusions

Even though promising, the results that have been obtained do not have to be empha-

sized. In fact, to use each proposed measures to make strong inferences about bloat,

overfitting, functional complexity and their mutual relationship, it is necessary to over-

come some of their drawbacks For instance:

(1) The bloat measure compares the fitness and the length of programs at a given

generation with the fitness and the length of programs at generation zero. This is a good
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starting point, given that it is possible to assume that there is no bloat at generation

zero (as described above). Nevertheless, the initialization algorithm (that defines the

population at generation zero) has biases both on program length and on fitness. These

biases clearly affect the measure and should be taken into account. Or otherwise, a

measure that does not take generation zero as a reference deserves to be defined and

investigated.

(2) As already discussed above, the overfitting measure clearly depends on how

training and test sets have been chosen. Given that at each GP run a different (random)

partitioning of the dataset into training and test sets has been used, it may happen that

exactly the same population has two different values of the overfitting measure in two

different runs. As a good starting point, 30 independent runs of each experiment have

been performed, and median values have been reported, hoping that this mitigates the

bias of the measure given by its dependence on the training/test partitioning. Further-

more, it must be pointed out that having exactly the same population in two different

runs is a very unlikely event. Nevertheless the problem exists and it is important. New

versions of this measure deserve to be defined, for instance alternating training and test

data in a crossvalidation-like way.

Last but not least (3), the functional complexity measure has formally no relation-

ship with curvature. It is an empirical indicator, that captures the idea of curvature

only from an intuitive viewpoint. It is a good staring point, because compared to

other (more formal) measures it has the advantage of being simple and computation-

ally cheap. Furthermore, the number of slope changes and (even more) the number

of slope sign changes are clearly related to the empirical intuition of the concept of

functional complexity. Nevertheless, the suspect is that the lack of formality of this
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measure may cause problems in the future and more formal measures, although hope-

fully still computationally cheap, deserve investigation.

4.4 Graph Based Complexity and Graph Based Learn-

ing Ability

The measure proposed in this section has three different, but related, goals:

• defining a new measure of functional complexity, that is rotationally invariant

and that overcomes the limitations of the measure proposed in [107];

• defining a new measure to quantify the ability of GP to learn “difficult” points

(my intuition of what a “difficult” point is will be explained in Section 4.4 where

the measure will be defined) and studying its correlation with generalization;

• defining a new fitness function (inspired by the two previously defined measures)

to improve GP generalization ability in those cases where standard GP (i.e. GP

that calculates fitness using the root mean squared error between outputs and

targets) has poor generalization ability.

Proposed Measures

The complexity measure proposed in this section and presented in [21], as the one

introduced in [107] and described in section 4.3, is inspired by the idea that complex

functions should have a larger curvature than simple ones. But, contrarily to [107],

in this work the idea of curvature is quantified using the following intuition: let
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g be a GP individual; the curvature of g can be expressed by counting the num-

ber of pairs of “close” training points x and y for which the corresponding values

g(x) and g(y) are “far”. In more formal terms, given a GP individual g, let S =

{(x1,g(x1)),(x2,g(x2)), . . . ,(xm,g(xm))} be the set of training points x1,x2, . . . ,xm as-

sociated with the corresponding values assumed by g on them. Let x1,x2, . . . ,xm ∈ X

and g(x1),g(x2), . . . ,g(xm)∈ Y, with both X and Y being metric spaces equipped with

metrics dX and dY respectively. For any i = 1,2, ...,m, and for any prefixed constant

value δ, let Bδ(xi) be the open ball of radius δ centered on xi in metric space X, i.e.

Bδ(xi) = {xj∥ dX(xi,xj)< δ}. Analogously, for any i = 1,2, ...,m, and for any prefixed

constant value ε, let Bε(g(xi)) be the open ball of radius ε centered on g(xi) in metric

space Y. For every training point xi, it is possible to define the set

V (xi) = {xj ∈ Bδ(xi) ∥ g(xj) /∈ Bε(g(xi)) and xj ̸= xi}. (4.2)

The set V (xi) contains all the points of the sample set that are close (i.e. nearer than

a given δ) to xi in the X metric space, but whose values under g are not close (i.e.

farther than a given ε) to the value of g(xi) in the Y metric space. Consider now the

set V = ∪m
i=1V (xi). V can be addressed as the set of points in X in which the function

represented by the GP individual g is rugged, thus the fraction of training points that

belong to set V can be used as an intuitive measure of curvature: V
m . Clearly, values

near 1 denote a very rugged function, while values near 0 indicate flat (or straight) and

thus less complex functions. Now, it is interesting to consider not only the set V (xi)

containing the points of ruggedness since, in the union ∪m
i=1V (xi) the information on

what are the pairs of points that are close, and the corresponding function values far,
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is lost. So, the set E = ∪m
i=1 ({xi}×V (xi)) is introduced. Now, if defining the set

Etot = {(xi,xj) ∥ xj ∈ Bδ(xi)\{xi}}, it is possible to define the complexity measure as:

GBC = E/E_{tot}

It is important to remark that, in case of symbolic regression problems, what usually

happened is that X⊆ IRn and Y⊆ IR. Thus, it is possible to calculate GBC, for instance,

using the Euclidean distance as the dX and dY metrics. Thus GBC is rotationally

invariant, contrarily to what happens for the complexity measure defined in [107]. The

acronym chosen as the name of this measure (GBC, which stands for Graph Based

Complexity) depends on the fact that it is possible to represent it in terms of counting

operations on a graph. Let G = ({x1, . . . ,xm},Etot) be a graph defined on the training

points, where two vertices are connected if their distance on the metric space X is less

than δ. Now consider the subgraph Gε = ({x1, . . . ,xm},E) which only contains the

edges (xi,xj) of G such that the distance between g(xi) and g(xj) in the Y metric space

is greater or equal than ε. The GBC measure is clearly equal to the ratio between the

number of connections in Gε and the number of connections in G.

The GBC function can be used to quantify the complexity of GP individuals. How-

ever, it is also clear that the same calculation can be performed using the known target

values (instead of using the values assumed by the learned function) on the different

training points. In particular, indicating by f (xi) the target value on a training point xi,

it is possible to define a set V ′ (analogous to the set V previously defined) as follows:

V ′(xi) = {xj ∈ Bδ(xi) ∥ f (xj) /∈ Bε( f (xi)) and xj ̸= xi}. And thus, it is also possible

to define a set E ′ as follows: E ′ = ∪m
i=1 ({xi}×V ′(xi)). Following the same idea that
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used to define the GBC measure, it is possible to state that GBCtarget = E’/E_{tot} is a

measure that can be used to quantify the ruggedness of the target function.

Furthermore, both information coming from sets E and E ′ can also be used to

quantify the ability of a GP individual to learn “difficult” points. For this aim the

following measure, called GBLA (Graph Based Learning Ability), is defined:

GBLA = (∥E △ E ′∥)/∥Etot∥

where △ represents the operator of symmetrical difference between sets. GBLA quan-

tifies the number of training points where the target function is rugged and the learned

function is flat, plus the number of training points where the learned function is rugged

and the target function is flat. For simplicity, these points are called “difficult” points.

Both the definitions of GBC and GBLA are based on the definition of the V (xi)

set (equation (4.2)). The elements of V (xi) depend on the choice of the two parame-

ters δ and ε. Consequently, also the values of GBC and GBLA depend on these two

parameters. Nevertheless, a set of preliminary experiments have indicated an interest-

ing fact concerning these two parameters: considering many series composed by the

values of the GBC of the best individual in the population for each iteration for several

pairs of values of δ and ε, all these series have a positive value of their mutual cross

correlation coefficient, with a magnitude of this coefficient approximately equal to 1.

The same fact has also been observed for GBLA. Given that in the experimental study

presented in Section 4.4 the main objective is to understand the correlation of GBC

and GBLA with other quantities during the GP runs (rather than the particular values

of GBC and GBLA), it is possible to assert that parameters δ and ε do not qualitatively
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affect the results of Section 4.4, neither the conclusions that can be draw from them.

All the experiments reported in Section 4.4 are also repeated for several other pairs

of values of δ and ε and all the experimental results have confirmed that the values

of δ and ε do not affect the qualitative interpretation of the results.

Experimental setting

A total of 120 runs where performed to obtain the results reported in this section. All

the runs used a population of 200 individuals. The number of generations performed

was equal to 100 for the LD50 and %F datasets and to 500 for %PPB (the reason why

a larger number of generations for %PPB has been executed will be clear next in the

current section). Tree initialization was performed with the Ramped Half-and-Half

method [57] with a maximum initial depth of 6. The function set contained the four

binary operators +, −, ×, and /, protected as in [57]. No random constants were added

to the terminal set. Because the cardinalities of the function and terminal sets were so

different, a balanced choice between functions and terminals when selecting a random

node has been imposed . Unless where explicitly pointed out, fitness was calculated

as the root mean squared error (RMSE) between outputs and targets. Tournament

selection was used with size 10. The reproduction (replication) rate was 0.1, meaning

that each selected parent has a 10% chance of being copied to the next generation

instead of being engaged in breeding. Standard tree mutation and standard crossover

(with uniform selection of crossover and mutation points) were used with probabilities

of 0.1 and 0.9, respectively. Selection for survival used elitism (i.e. unchanged copy

of the best individual in the next population). A fixed maximum depth equal to 17

was used for the trees in the population. These parameters are absolutely identical to
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the ones used in [107]. Given that, as pointed out previously, the δ and ε parameters

do not affect the qualitative interpretation of the results contained in this section, the

results obtained for two arbitrary values, i.e.: δ = 0.06 and ε = 0.05 are reported. All

distance values have been normalized into the range [0,1] before comparing them with

the values of δ and ε.

Experimental results: GBC and GBLA

In Figure 4.6 the median over 120 independent runs of the RMSE on the training set,

the RMSE on the test set, the value of GBC, the value of 1-GBLA and finally the com-

plexity and overfitting measures introduced in [107] for all the performed generations

(first column: LD50; second column: %F; third column: %PPB) are reported. From

now on the terms “complexity” and “overfitting” are used to indicate the complexity

and overfitting measures introduced in [107] while the terminology “RMSE on the test

set” indicates the RMSE on the test set of the individual with the best RMSE on the

training set.

The relationship between RMSE on the training and test set for the studied prob-

lems is firstly considered. For LD50 the RMSE on the training set steadily decreases

during the whole evolution, while the RMSE on the test set keeps increasing after

generation 30, also showing an irregular and oscillating behaviour. For %F both the

RMSE on training and test set are steadily decreasing during the studied 100 genera-

tions. For %PPB the RMSE on the training set steadily decreases during the whole

evolution, while the RMSE on the test set is decreasing until generation 50, and then

increasing until generation 500, also showing some oscillations. It is possible to con-

clude that GP has a worse generalization ability for LD50 and %PPB than for %F.
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Now the curves representing GBC and 1-GBLA are considered. Both GBC and 1-

GBLA are increasing after generation 30 for LD50, steadily decreasing (except for

the initial part of the run) for %F and increasing (except for the first 50 generations)

for %PPB. These results hint a relationship between the trend of the RMSE on the test

set and the GBC and GBLA measures for all the studied problems. In particular, GBC

seems to have a positive correlation with the RMSE on the test set and GBLA seems to

have a negative correlation with the RMSE on the test set. Before studying in details

these correlations, the trend of the complexity and overfitting measures is considered.

The complexity measure seems to have a less clear relationship with the RMSE on

the test than GBC and GBLA for LD50 and %F. On the other hand, for %PPB the

complexity measure seems to be growing with a higher speed than GBC and 1-GBLA,

and thus it seems to have a stronger correlation with the RMSE on the test set. Finally,

it is possible to note that the overfitting measure has a more oscillating and less reg-

ular behavior than the other measures. Nevertheless, its general trend seems related

to GBC and to the complexity measure for LD50 and to GBC, GBLA and complexity

for %PPB. On the other hand, no clear relationship appears between the overfitting

measure and any of the other measures for %F.

In order to better understand the mutual relationships between the quantities plotted

in Figure 4.6, in Figure 4.7 the median values of the cross correlation at delay zero

between them are reported. Cross correlation is a standard method of estimating the

degree to which two series S1 = {x1,x2, ...,xn} and S2 = {y1,y2, ...,yn} are correlated.

It is defined by r = (∑n
i=d+1 ∥(xi − S1)(yi−d − S2)∥)/(σS1σS2), where S1 and S2 are

the averages of the elements in the series S1 and S2 respectively, σS1 and σS2 are their

respective standard deviations, and d is the delay (in this work d = 0). An introduction
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to cross correlation can be found, for instance, in [35]. Assume the objective is to

calculate the correlation between GBC and RMSE on the test set, as it is the case,

for instance, in the left-top plot of Figure 4.7. This can be done by considering as S1

the series composed by the GBC values of the best individuals in the population at

each generation and as S2 the series of the respective RMSE values on the test set of

the same individuals. Applying the same method, it is possible to calculate the cross

correlation of any pair of measures reported in Figure 4.6. In Figure 4.7, two horizontal

lines at the values −0.15 and 0.15 are also drawn, empirically identified as thresholds

between the presence of a correlation (either positive or negative) and the absence of

correlation in [54]. Even though these thresholds are quite arbitrary, they are used in

the interpretation of the presented results.

For LD50: during the whole run, GBC has a positive cross correlation with the

RMSE on the test set and overfitting and a negative cross correlation with the RMSE

on the training set. GBLA has a negative cross correlation with the RMSE on the test

set, a positive cross correlation with the RMSE on the training set and cross correlation

approximately equal to zero with overfitting. Complexity has a positive cross correla-

tion with overfitting and a negative cross correlation with the RMSE on the training set.

The cross correlation between complexity and RMSE on the test set is approximately

equal to zero, except for some small oscillations at the end of the run.

For %F: GBC has a positive cross correlation with RMSE both on the training and

test set (and this value is steadily increasing during the run) and a cross correlation

approximately equal to zero with overfitting. GBLA has a negative (and steadily de-

creasing) cross correlation both with the RMSE on the training and on the test set and

a cross correlation approximately equal to zero with overfitting. Finally, complexity
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has a cross correlation approximately equal to zero with overfitting and a positive cross

corrlation with both RMSE on the training and test set (even though in both cases the

cross correlation becomes larger than 0.15 only in the final part of the run).

For %PPB: the value of the cross correlation between GBC and the RMSE on the

training and test set is negative, but steadily increasing, in the first 100 generations.

For this reason, simulations until generation 500 have been executed, to see if some

of these correlations became positive later in the evolution. It is possible to see that

the correlation between GBC and the RMSE on the test set becomes positive more

or less at generation 350, and it keeps on growing, although without becoming larger

than 0.15. Because of the steadily growing trend of the curve of the cross correlation

between GBC and RMSE on the test set, it is possible to hypothesize that this cross

correlation would become positive later in the run (this hypothesis will be verified in

the future by performing runs for a larger number of generations than 500). On the

other hand, the cross correlation between GBC and RMSE on the training set is clearly

negative during the whole run. Finally, the cross correlation between GBC and over-

fitting is positive (it becomes larger than 0.15 around generation 280, and it remains

larger than 0.15 until the end of the run). GBLA has a negative cross correlation with

both overfitting and RMSE on the test set and a positive cross correlation with RMSE

on the training set. Finally, complexity has a positive cross correlation with both over-

fitting and RMSE on the test set and a negative cross correlation with RMSE on the

training set.

Summarizing: GBC is positively correlated with the RMSE on the test set

and GBLA is negatively correlated with the RMSE on the test set. These facts seem

independent on the generalization ability of GP (i.e. they hold for all the studied prob-
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lems). Furthermore, the magnitude of the correlation with the RMSE on the test set is

larger for GBC and GBLA than for the complexity measure for all studied problems

except %PPB.

The negative values of the correlation between GBLA and RMSE on the test set

can be interpreted as follows: GBLA quantifies the ability of GP to learn the “difficult”

training points. It is intuitive that a good learning of those points leads GP to a poor

generalization ability, because the solutions are too specialized on training data and

thus overfit them. This can be caused, for instance, by the fact that those “difficult”

points correspond to “noise”, or even errors in the training data, or they are generally

not useful to reliably reconstruct the target function.

The existing relationship between GBC and GBLA with the RMSE on the test set

seems to hint that the ideas used to define GBC and GBLA could be useful to build a

new fitness function able to reduce the error on the test set. This is the goal of the next

paragraph.

Experimental results: New Fitness Function

Using either GBC or GBLA as new fitness functions does not allow to obtain inter-

esting results. Consider, for instance, the case of GBLA: each function able to learn

some particular points (the ones that are not considered as difficult) would have a good

fitness, and thus it would receive a high probability of surviving and mating in the GP

population, independently of the distance of that function from the target one. Be-

sides the intuition, also a set of preliminary experimental results confirm that using

either GBC or GBLA as fitness functions does not allow to obtain better results than

standard GP (i.e. GP that uses the RMSE as fitness) on the test set.
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Nevertheless, the ideas used to define GBC and GBLA can be used to define a

new fitness function, assuming to integrate them with the error between learned values

and target ones. A possibility could be to use them together with RMSE in a multi-

objective method. Even though the idea is interesting, and it definitely deserves to be

investigated in the future, in this work the aim is to define one new fitness function

able to incorporate both the information derived from the RMSE and from the new

measures. The idea is to give a weight to the error in each training point. For this rea-

son, the new fitness function is called "weighted_fitness". The weight should depend

on how rugged the learned function is in that point, reducing the weight of the rugged

points. The new fitness measure is:

weighted_fitness(g) =
m

∑
i=0

( f (xi)−g(xi))
2

1+∥V (xi)∥
(4.3)

where x1, x2, . . ., xm are the training points, g is a GP individual, the values f (x1),

f (x2), . . ., f (xm) represent the targets on those points and V (xi) is the set defined in

equation (4.2). The fact that the denominator in equation (4.3) is 1+∥V (xi)∥ instead

of ∥V (xi)∥ is due to the fact that the value of ∥V (xi)∥ could be equal to zero, and thus

adding 1 prevents from the eventuality of an error.

In Figure 4.8 an experimental comparison between standard GP and GP that uses

the new fitness function defined in equation (4.3) is reported. The median of the RMSE

on test data for each performed generation for both these models is reported. For

LD50, GP that uses the new fitness function is able to obtain better results. For both %F

and %PPB, GP using the new fitness function seems to return very similar results than

standard GP.
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It is possible to conclude that GP using the proposed fitness function is able to bet-

ter generalize (compared to standard GP) for some problems where standard GP has

a poor generalization ability (as it is the case of the LD50), while it behaves compa-

rably to standard GP when standard GP itself has a good generalization ability (like

for %F). Nevertheless, problems where standard GP has a poor generalization ability

and the new fitness function is not able to improve it exist (it is the case of %PPB).

But at least, it has been shown that in this last case, the new fitness function does not

worsen the results. These results indicate that the proposed fitness function could be

always used, given that in some cases it gives an advantage when standard GP has poor

generalization, and when it doesn’t, at least, it does not give any disadvantage.

Conclusions

A study of GP learning ability has been presented in section 4.4, offering the three

following contributions: first, a new measure (GBC) to quantify the functional com-

plexity of GP individuals has been defined . Compared to another complexity measure

defined in [107], GBC is rotationally invariant and it has a higher correlation with the

quality of GP solutions on out-of-sample data. Secondly, we have presented a new

measure (GBLA) aimed at quantifying the ability of GP to learn “difficult” points and

we have shown that this measure is negatively correlated with the quality of GP solu-

tions on out-of-sample data. Based on these ideas, the third contribution consisted in

defining a new fitness function for GP. Experimental results have shown that this new

fitness function allows GP to better generalize for some problems where standard GP

has a poor generalization, without worsening the results in all other cases. This seems

to indicate the suitability of this fitness function in any possible case. The new fitness
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function has to be further studied in the future. In particular, we will test GP with the

new fitness function on several other datasets of different complexities and also on a

set of hand-tailored symbolic regression problems of various different difficulties. Fur-

thermore, we will consider several possible extensions and improvements of the new

fitness function.
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Figure 4.6: The first (respectively second and third) column reports the results for
LD50 (respectively %F and %PPB). For each column, from top to bottom, the RMSE
on the training set, the RMSE on the test set, the GBC, 1-GBLA and the values of
the complexity and the overfitting measures introduced in sections 4.2 and 4.3 are
reported. All these results are reported against generations and they are medians of the
value assumed by the best individual over 120 independent runs.
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Figure 4.7: The first (respectively second and third) column reports the results for
LD50 (respectively %F and %PPB). For each column, from top to bottom, the cross
correlation of GBC, GBLA and complexity with the RMSE on the training set (dashed
dark grey line), the RMSE on the test set (black line) and the overfitting measure (solid
light grey line) are reported. All these results are reported against generations and they
are medians over 120 independent runs.
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5.1 Introduction

In this chapter an experimental study of the generalization ability of a set of multi-

optimization GP frameworks is presented, comparing them with standard GP and Dy-

namic Operator Equalization [93]. The idea of optimizing more than one criterion on

training data to produce more general solutions is not new: a related idea has been used

in [39] in the domain of binary classification (where a two-objective sort is performed

in order to extract a set of non-dominated individuals) and in [105] for regression on

simple benchmark problems characterized by a small dimensionality of the feature

space. Furthermore, in [111], the authors define two measures of complexity for the

GP individuals, they use them as further criteria (besides fitness) in a multi-objective

system based on Pareto optimization, and they show that this system is able to counter-

act bloat and overfitting.

Compared to those contributions, in this work different objectives are used, we

test our methods on a real-life problem and we make use of the NSGA-II [28] multi-

objective evolutionary method.

The functions we use in the multi-optimization algorithm are the fitness of the

problem and one or more other functions that can intuitively be related to overfit-

ting,described later.

The test problem we use consists in predicting the value of an important pharma-

cokinetic parameter (Median Lethal Dose or LD50 from now on) of a set of candidate

drug compounds on the basis of their molecular structure. This application is an exam-

ple of regression problem characterized by a large space of features, and it has already

been introduced in [106].
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This chapter is structured as follows: in Section 5.2 operator equalization is intro-

duced;

in Section 5.3 basic concepts about multi objective optimization are introduced; in

Section 5.4 the multi-optimization framework used is presented; Section 5.5 presents

the experimental setting, including a description of the dataset and of the parameters

used; in Section 5.6 we present and discuss the obtained experimental results; finally

Section 5.7 concludes the chapter and discusses ideas for future research.

5.2 Operator Equalization

Developed alongside the crossover bias theory [30, 32, 79, 84], Operator Equalisation

(Op.Eq.) is a recent technique to control bloat that allows an accurate control of the

program length distribution inside a population during a GP run. To better explain how

it works, we use the concept of a histogram. Each bar of the histogram can be imagined

as a bin containing those programs whose length is within a certain interval. The width

of the bar determines the range of lengths that fall into this bin, and the height specifies

the number of programs allowed within. We call the former bin width and the latter bin

capacity. All bins are the same width, placed adjacently with no overlapping. Each

length value, l, belongs to one and only one bin b, identified as follows:

b =

⌊
l −1

bin_width

⌋
+1 (5.1)

For instance, if bin_width = 5, bin 1 will hold programs of lengths 1,..,5, bin 2 will

hold programs of lengths 6,..,10, etc. The set of bins represents the distribution of pro-
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gram lengths in the population. Op.Eq. biases the population towards a desired target

distribution by accepting or rejecting each newly created individual into the population

(and into its corresponding bin). The original implementation of Op.Eq. [33], where

the user was required to specify the target distribution and maximum program length,

rapidly evolved to a self adapting implementation called DynOpEq [93,95,110], where

both these elements are automatically set and dynamically updated to provide the best

setting for each stage of the evolutionary process. There are two tasks involved in

DynOpEq: calculating the target (in practical terms, defining the capacity of each bin)

and making the population follow it (making sure the individuals in the population fit

the set of bins).

5.2.1 Calculating the Target Distribution

In DynOpEq the dynamic target length distribution simply follows fitness. For each

bin, the average fitness of the individuals within is calculated, and the target is directly

proportional to these values. Bins with higher average fitness will have higher capac-

ity, because that is where search is proving to be more successful. Formalizing, the

capacity, or target number of individuals, for each bin b, is calculated as:

bin_capacityb = round
(

n× ( f̄b/∑
i

f̄i)
)

where f̄i is the average fitness in the bin with index i, f̄b is the average fitness of the

individuals in b, and n is the number of individuals in the population.

Initially based on the first randomly created population, the target is updated at

each generation, always based on the fitness measurements of the current population.
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This creates a fast moving bias towards the areas of the search space where the fittest

programs are, avoiding the small unfit individuals resulting from the crossover bias,

as well as the excessively large individuals that do not provide better fitness than the

smaller ones already found.

5.2.2 Following the Target Distribution

In DynOpEq every newly created individual must be validated before eventually en-

tering the population. In particular, DynOpEq rejects the individuals that do not fit

the target: individuals from the population are selected for mating and the application

of genetic operators allow us to create new individuals, as in standard GP. After that,

the length of each new individual is measured, and its corresponding bin is identified

using Equation (5.1). If this bin already exists and is not full (meaning that its capacity

is higher than the number of individuals already there), the new individual is immedi-

ately accepted. If the bin still does not exist (meaning it lies outside the current target

boundaries) the fitness of the individual is measured and, in case we are in the presence

of the new best-of-run (the individual with best training fitness found so far), the bin

is created to accept the new individual, becoming immediately full. Any other non ex-

isting bins between the new bin and the target boundaries also become available with

capacity for only one individual each. The criterion of creating new bins whenever

needed to accommodate the new best-of-run individual is inspired by the successful

Dynamic Limits [91] bloat control technique.

When the intended bin exists but is already at its full capacity, or when the intended

bin does not exist and the new individual is not the best-of-run, DynOpEq evaluates the

individual and, if we are in the presence of the new best-of-bin (meaning the individual
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has better fitness than any other already in that bin), the bin is forced to increase its

capacity and accept the individual. Otherwise, the individual is rejected. Permitting

the addition of individuals beyond the bin capacity allows a clever overriding of the

target distribution, by further biasing the population towards the lengths where the

search is having a higher degree of success. In the second case, when the bin does not

exist and the individual is not the best-of-run, rejection always occurs1.

5.3 Multi Objective Optimization

The main concepts of the majority of multi-optimization algorithms are dominance

and Pareto optimality. Consider a set S called solution space. The fitness is a function

f : S 7→ R. Let f1, f2, . . . , fn be n fitness functions. It is possible to build the function

F : S 7→ Rn where F(s) = ( f1(s), f2(s), . . . , fn(s)). This function combines n fitness

functions to remap a solution into a vector inside a n-dimensional space. For the sake

of simplicity suppose, without loss of generality, that the image space of all the n

fitness functions is R+ and the optimal fitness is 0 for all the functions.

A solution s1 is said to be dominated by a solution s2 if ∀i ∈ {1, . . . ,n} F(s1)i =

fi(s1)> fi(s2) = F(s2)i. In other words, a solution s1 is dominated by s2 if s2 is better

than s1 in respect to all the selected criteria. The set of solutions that are not dominated

by any other solution is called Pareto set. A solution from this set is said to be Pareto

optimal.

1We point out that there is an obvious computational overhead in evaluating so many individuals
that end up being rejected. This subject has been extensively addressed in previous work [93] where
the main conclusion was that most rejections happen in the beginning of the run and refer to very small
individuals.
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5.3.1 NSGA II

The main problem in using multi-optimization techniques is to find a way to com-

bine the fitness values given by all the chosen criteria. The majority of the multi-

optimization algorithms use in some way the concept of Pareto set.

The NSGA and NSGA-II [28] algorithms share the same basic idea. The NSGA-II

is an improvement of NSGA that addresses some of the NSGA main criticisms. In

particular it reduces the computational complexity, it introduces elitism and removes

the need to specify an additional parameter to ensure diversity in population.

The main idea of the algorithm is to create a total order between a particular family

of disjoint subsets of the population. A naive iterative algorithm to create this family

of subsets is the following: (1) given a set P of individuals, find the Pareto set A of P ;

(2) remove A from P . For every set B removed before A we will have that B ≻ A; (3)

iterate the previous steps until P = /0.

The previous ordering is consistent in respect to the notion of dominance: if B ≻ A

then B dominates A. The NSGA-II algorithm then adds an intra-set fitness in such a

way that if B ≻ A then the elements of B will have a better fitness than the elements of

A. In this way a total order between individuals is defined inside the population. Let A

and B be two subsets of P from the previously defined family. Then for all a ∈ A and

b ∈ B we have that:

a ≻ b ⇔ A ≻ B or A = B∧a ≻A b

where ≻A is the intra-set ordering function. The fitness is then defined using the rank-

ing given by this total order.

For further details about the intra-set ordering function and the accurate definition
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of the NSGA and NSGA-II algorithm the reader is referred to [28].

5.4 Multi-optimization and Genetic Programming

In optimization problems the search bias usually involves only one fitness function.

This is equivalent to the use of only one criterion to estimate the quality of a solution.

On the other hand, in many situations a good solution is achieved by a compromise be-

tween multiple criteria [27]. The multi-optimization technique is applied to a problem

that usually has only one optimization criterium by adding new GP-specific criteria. In

this way the hope is that it is possible to counteract typical negative aspects of the GP

evolution such as premature convergence, bloat and overfitting.

The choice of the fitness functions for multi-optimization is motivated by two ob-

jectives: (1)to find the optimal solution for the considered (single fitness) problem.

This condition dictates the use of the original fitness function as one of the functions

employed in the multi-optimization; (2) the necessity to enhance the generalization

ability of the individuals in the population (that is their ability to perform well over

data that have not been used during the training phase).

The choice for the first point is fixed: the original fitness function that, in the con-

sidered test case, is the root mean square error between target and obtained values,

must be choosen. The choice for the second point is more problematic and it must be

guided by previous empirical observations of possible relationships between observ-

able properties of the evolution process (i.e. properties regarding the tree representing

individuals or some kind of measure that encompasses the entire population) and the

generalization ability of solutions.
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In this work two different functions have been chosen. The first fitness function

is the number of the nodes of the tree. Obviously this function should be minimized

in order to counteract bloat and to reward small-sized trees. The choice of this func-

tion is interesting because it immediately demands for a comparison with DynOpEq.

Both techniques, in fact, counteract bloat but the way they do it is different. While

in DynOpEq code size reduction is achieved implicitly (following the target length

distribution), in multi-optimization this is done explicitly.

The second function used is the variance of the error between the target and the ob-

tained value. Intuitively the minimization of this value reduces the difference between

the shape of the expected (unknown) function and the function described by the given

individual. This kind of optimization is supposed to be related to overfitting as already

discussed for instance in [72].

Because multi-optimization can be defined with an arbitrarily large number of func-

tions, a natural extension of the two-function optimization is the use of three functions:

the original fitness function and the other two auxiliary functions previously discussed.

In this work, the goal is also to test if the use of more than one auxiliary function can

result in a better generalization ability.

5.5 Experimental Setting

Here we describe how the data for the test problem was collected and prepared, and

what parameters and tools were used in our experiments. The techniques tested were

the standard GP algorithm, DynOpEq, and multi-objective optimization (NSGA-II)

with different optimization criteria. It is important to underline that the considered
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multi-objective optimization technique differs from the standard NSGA II algorithm.

In particular standard tournament selection has been used, considering only the error

between targets and outputs as a criterion for tournament selection. Hence crowding

distance has not been considered during the selection process. This means that other

criteria are only used to select the best individuals at the end of the generation.

We have obtained a set of molecular structures and the corresponding LD50 values

using the same data as in [117] and a public database of food and drug Administration

(FDA) approved drugs and drug-like compounds [114]. Data have been gathered in

a matrix composed by 234 rows (instances) and 627 columns (features). Each row is

a vector of molecular descriptors values identifying a drug; each column represents

a molecular descriptor, except the last one, that contains the known values of LD50.

Training and test sets have been obtained by randomly splitting the dataset: at each

GP run, 70% of the molecules have been randomly selected with uniform probability

and inserted into the training set, while the remaining 30% form the test set (that is not

used during the evolutionary phase).

A total of 30 runs were performed with each technique. All the runs used popula-

tions of 100 individuals allowed to evolve for 100 generations. Tree initialization was

performed with the Ramped Half-and-Half method [82] with a maximum initial depth

of 6. The function set contained the four binary operators +, −, ∗, and / protected as

in [82]. The terminal set contained all 234 variables and no random constants. Because

the cardinalities of the function and terminal sets were so different, we have explicitly

imposed functions and terminals to have the same probability of being chosen when

a random node is needed. Fitness was calculated as follows: (1) for standard GP and

DynOpEq fitness is the root mean squared error between outputs and targets. (2) For
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the first version of the multi optimization algorithm (from now on called MOnodes) the

two fitness functions are the standard GP fitness and the number of nodes. (3) For the

second version of the multi optimization algorithm (from now on called MOvar) the

two fitness functions are the standard GP fitness and variance of the errors between

targets and outputs. (4) For the third version of the multi optimization algorithm (from

now on called MOvar+nodes) the fitness functions used are the standard GP fitness and

both the number of nodes and the variance of the errors between targets and outputs.

The reproduction (replication) rate was 0.1, meaning that each selected parent has

a 10% chance of being copied to the next generation instead of being engaged in

breeding. Standard tree mutation and standard crossover (with uniform selection of

crossover and mutation points) were used with probabilities of 0.1 and 0.9, respec-

tively. The new random branch created for mutation has maximum depth 6. Selection

for survival was elitist. Regarding the parameters specific to each technique, standard

GP used a fixed maximum depth of 17, DynOpEq used a bin width equal to 1.

The median was preferred over the mean in all the evolution plots shown in the

next section because median is more robust to outliers.

5.6 Experimental results

In this section experimental results are presented, with a particular emphasis on the

comparison between standard GP and the other presented techniques. Results obtained

over the training data are firstly presented, and then the results obtained over test data

are outlined.
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Results on training data

The expectation is that, on the training data, standard GP achieves better results than

the other studied methods, in particular the multi-optimization systems. Even though

this expectation seems contradictory in respect to the scope of this work, it is not. In

fact, all the presented techniques (except for standard GP) are guided by an auxiliary

objective (implicit or explicit) that can sometimes act against the reduction of the error

over the training data. In fact, the interest on the performance over the training data

is quite limited while the main goal is in achieving good performances over test data.

In Figure 5.1 each technique is represented by a box and pair of whiskers. Each box

has lines at the lower quartile, median, and upper quartile values, and the whiskers

mark the furthest value within 1.5 of the quartile ranges. Outliers are represented by +

symbols. The plot refers to the best fitness achieved on the final generation, measured

on the training set. Results seem to confirm what is expected: standard GP is the

best technique over the training data. DynOpEQ provides similar results, while multi-

optimization algorithm’s performances are poorer on training data regardless of the

fitness function that guides the evolution. Fitness differences between standard GP

and DynOpEQ (regarded as one group) and the three multi-optimization methods (as

another group) are statistically significant. All the details of the analysis of statistical

significance that have been performed on the experimental results are described in

Section 5.6. Figures 5.2 to 5.6 report the best training fitness per generations. Reported

data are the medians over 30 runs of every studied method. Standard GP and DynOpEq

reach a better fitness values over training data, compared to the multi-optimization

algorithms that have a worse fitness over those data.
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Results on test data

In the test data, the expectation is to find differences in the fitness values between

the multi-optimization systems and Standard GP and DynOpEQ Because the multi-

optimization learning is guided by other goals other than the minimization of the train-

ing error, it is expected to be less greedy and allow a better exploration (as opposed to

exploitation) of the search space.

Predicted results are confirmed by the plot in Figure 5.7, where MOsize reaches

the best fitness value. Performances of MOVar and MOsize+var are also good and quite

similar to the MOsize technique. Standard GP and DynOpEq perform worse than the

multi-objective models on the test data, as expected, and, especially for standard GP,

the presence of several outliers has been obeserved (not shown in Figure 5.7 because

their fitness values are much larger than 3000, the upper limit of the used scale).

A further evidence of the generalisation ability provided by multi-optimization, is

the fitness difference between training and test data (observable comparing Figure 5.1

and Figure 5.7). While this difference is notable for standard GP and DynOpEq, in

the case of multi-optimization techniques training and test fitness are quite similar.

In Figures 5.8 to 5.12 test fitness per generations is reported. In these plots the dif-

ference between standard GP and the other techniques has been shown and the three

variants of multi-optimization GP have been compared. It is possible to see that multi-

optimization that uses both individual size and error variance as auxiliary function

does not perform better than multi-optimization with a single auxiliary function. This

fact may seem counterintuitive. But in order to justify it, it is necessary to consider

the effect of the simultaneous presence of two auxiliary functions: the NSGA-II algo-

rithm could have some problems in finding optimal solutions in only 100 generations
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when the number of criteria increases. A hypothesis is that the increase of auxiliary

functions can slow down the convergence of the algorithm towards better solutions.

Experimental results confirmed the expectation about the generalization ability of the

studied models: in particular it is possible to argue that the evolution process guided by

only the error minimization leads to a solution that, at least in the considered problem,

overfits training data. On the other hand, multi-optimization guided the evolution pro-

cess towards the generation of individuals that perform less well over training data but

do not overfit them (or at least overfit less than standard GP and DynOpEq). Finally it

can be pointed out that DynOpEq is the technique that produces smallest individuals in

terms of number of nodes (not shown) but this fact does not guarantee the absence of

overfitting. This is a further confirmation of the fact that bloat and overfitting are two

separate phenomena and that their mutual relationship is hard to understand [95, 110].
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Figure 5.1: Boxplot of best training fitness.
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Figure 5.2: Comparison of the performances of Operator Equalisation and standard
GP over the training data.
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Figure 5.3: Comparison of the performances of MOSize and standard GP over the train-
ing data.
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Figure 5.4: Comparison of the performances of MOVar and standard GP over the train-
ing data.
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Figure 5.5: Comparison of the performances of MOSize+Var and standard GP over the
training data.



5.6. Experimental results 97

0 20 40 60 80 100
1950

2000

2050

2100

2150

2200

2250

2300

2350

2400

Generations

F
itn

es
s 

T
ra

in
in

g

 

 
MO

Var

MO
Size

MO
Size+Var

Figure 5.6: Comparison of the performances of all the multi-optimization technques
over the training data.
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Figure 5.7: Boxplot of best test fitness.

Statistical validation

To confirm the qualitative considerations reported in the previous sections, a Kruskal-

Wallis test of statistical significance has been performed . The aim of the test is to verify
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Figure 5.8: Comparison of the performances of Operator Equalisation and standard
GP over the test data.
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Figure 5.9: Comparison of the performances of MOSize and standard GP over the test
data.
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Figure 5.10: Comparison of the performances of MOVar and standard GP over the test
data.
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Figure 5.11: Comparison of the performances of MOSize+Var and standard GP over the
test data.
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Figure 5.12: Comparison of the performances of all the multi-optimization technques
over the test data.

whether the results obtained by the considered techniques (after 100 generations) are

statistically different or not.

The results of the Kruskal-Wallis test performed over the training data are the

following:

• The median of the fitness of standard GP after 100 generations compared to

DynOpEq is statistically different with a confidence of 95%.

• The median of the fitness of standard GP after 100 generations compared to

MOSize is statistically different with a confidence of 95%.

• The median of the fitness of standard GP after 100 generations compared to

MOVar is statistically different with a confidence of 95%.

• The median of the fitness of standard GP after 100 generations compared to
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MOSize+Var is statistically different with a confidence of 95%.

The results of the Kruskal-Wallis test performed over the test data are the follow-

ing:

• When the median of the fitness of standard GP after 100 generations is compared

to DynOpEq, the null hypothesis cannot be refuted with a significance level of

0.05.

• The median of the fitness of standard GP after 100 generations compared to

MOSize is statistically different with a confidence of 95%.

• The median of the fitness of standard GP after 100 generations compared to

MOVar is statistically different with a confidence of 95%.

• The median of the fitness of standard GP after 100 generations compared to

MOSize+Var is statistically different with a confidence of 95%.

These results confirm the previous intuition: multi-optimization improves the abil-

ity of GP to generalize over unseen data.

5.7 Conclusions

Previous work has clearly shown that GP systems that produce smaller individuals do

not necessarily produce solutions that generalize better. In particular in [95,110] it has

been shown that Dynamic Operator Equalisation (DynOpEq) is completely bloat free,

but it produces solutions that, even though rather smaller than the ones produced by

standard GP, are not able to generalize better than them.
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In this chapter we have investigated a multi-objective GP system in which size

minimization is used as an auxiliary optimization criterion (further than the usual root

mean squared error). Rather surprisingly, results clearly show that that this system

produces solutions with better generalization ability than standard GP and DynOpEq.

Even though this is in agreement with several previously published results (see for

instance [39, 105, 111]), it seems to contradict the fact that small size does not imply

better generalization.

We hypothesize that the reason why multi-objective GP generalizes better then

standard GP and DynOpEq does not reside in the fact that size minimization has been

used as an objective. As a confirmation, we have also used a multi-objective GP system

with a different auxiliary objective (variance of the errors) and we have found that its

results on test data are comparable with the ones of multi-objective GP using size (the

differences between these two systems are not statistically significant).

Thus, we hypothesize that better generalization ability is, so to say, an intrinsic

characteristic of multi-optimization systems, which do not depend on the fact that size

of solutions is explicitly minimized. But why does this happen? This is a question that

definitely deserves further investigation.
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6.1 Second chance GP

A method to increase the generalization ability of GP is proposed in this chapter. The

idea consists in giving a second chance of mating to individuals belonging to “old”

generations (hence the name of the method: “second chance GP”). Although original,

the idea is inspired by well-known concepts such as short-term memory schemes, that

have already been used in evolutionary computation so far. The issue of generalization

has received a growing attention in the last few years (see [61] for a survey). For in-

stance, in [37], a new GP system called Compiling GP System was introduced and its
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generalization ability was compared with that of other Machine Learning paradigms.

In the same year, in [7], Banzhaf and coworkers showed the positive effect of an ex-

tensive use of the mutation operator on generalization in GP using sparse data sets.

In [26] Da Costa and Landry have proposed a new GP model called Relaxed GP, show-

ing its generalization ability and in [39] Gagné and coworkers have investigated two

methods to improve generalization in GP: the selection of individuals using a three

data sets methodology, and the application of parsimony pressure to reduce the size

of the solutions. In [2] a theoretical analysis of GP from the perspective of statis-

tical learning theory was proposed and the advantage of a parsimonious fitness us-

ing Vapnik-Chervonenkis theory was demonstrated. In [111], the authors proposed a

multi-objective system where a measure called order of nonlinearity (that calculates

the degree of the Chebyshev polynomial approximation of a function) is used together

with other criteria and they demonstrated that this system is able to counteract overfit-

ting. In [107] indicators of overfitting and complexity have been introduced and their

mutual relationships have been investigated. There are many example of overfitting

on real-life data (see, for example [4, 102, 107]).// The goal of this work is to define

a simple-to-implement method to reduce overfitting. The idea is to re-use genetic

material from older generations. Even though similar to the concept of “short-term”

memory, which is typical of Tabu Search [41], the proposed method is new. Individuals

belonging to “old” generations are allowed to participate again to the selection process

at given time intervals, thus giving them a second chance to take part in mating. For

this reason, the proposed method is called “second chance GP”. In some senses, the

method simulates the idea that partners do not have to have all the same age, but part-

ners of different ages can mate and produce offspring. Furthermore, differently from
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the majority of the previously published related contributions, the proposed approach

is focused specifically on generalization, with the idea that “old” individuals may be

less specialized than “young” ones on training data, and thus potentially more general.

6.2 Method

The main idea of the proposed “second chance GP” method is to insert genetic mate-

rial from older populations into the current population, replacing the worst individuals

in the current population. To accomplish this goal, every k generations (where k ∈ N

and k > 1), the worst pr% individuals in the population (where pr is the replacement

pressure) are replaced. The individuals that replace them are extracted from the popu-

lation of k generations before the current one (for this reason, k is called refresh rate),

and they are chosen from that population using exactly the same selection method used

by the standard algorithm. The name “second chance” is inspired by the fact that, in

this way, an individual can participate in at least two selection phases, increasing its

probability of being selected. The pseudo code of the “second chance GP” method is

given in Algorithm 1.

Motivations for introducing this method are the following. First of all it is possi-

ble hypothesize that, generation by generation, the GP individuals become more and

more specialized. Even if this behavior can be a good one, the GP individuals could

also overfit training data. The insertion of earlier - and probably less specialized - in-

dividuals with a good fitness can allow the population diversity to increase, reducing

at the same time the risk of overfitting training data. The second motivation is that the

processes of selection, crossover and mutation of GP can discard (the former one) or
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Algorithm 1 The second chance GP algorithm.

begin
initialize_GP();
number_of_generations := 0;
saved_population := /0;
while ¬termination_criteria() do

execute_gp_population();
number_of_generations := number_of_generations+1;
if mod(number_of_generations,k) = 0

then
tmp_population := current_population;
merge(current_population,saved_population);
saved_population := tmp_population;

fi
od

where

proc merge(P1,P2) ≡
for i := 0 to Population_Size∗ (pr/100) do

remove_worst(P1);
od
for i := 0 to Population_Size∗ (pr/100) do

x = selection(P2);
add_individual(P1,x);

od
end

disrupt (the latter ones) good genetic material. Allowing a reinsertion, the probabil-

ity of good genetic material to be propagated increases. The third motivation is that,

also on training data themselves, the evolutionary process may lead the population to

convergence towards local optima. The insertion of earlier individuals with a good

fitness, while allowing the population diversity to increase, should also reduce the risk
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of premature convergence and stagnation in local optima.

The “second chance GP” method is characterized by the presence of two parame-

ters: the refresh rate k and the replacement pressure pr. Thus, their effect has to be

investigated. An hypothesis may be that when the parameter k is low, the effect is to

increase the probability to insert into the current population individuals with a good

fitness that can positively affect the evolution process. On the other hand, a low k

value may result in inserting genetic material that does not help in better exploring the

search space, since it may be not significantly different with respect to the existing one.

An high k value can help in solving the latter issue, but can generate a new problem:

the individuals of old populations can have a much worse fitness than the current ones

and their reinsertion may produce no effects on the search process. The second param-

eter pr can also influence the behavior of the search process. In particular, a low pr

value may result in inserting not enough individuals, with a negligible effect on the

evolutionary process. A high pr value can solve the latter problem but, if too high, can

disrupt what has been learned so far.

6.3 Experiments

Experimental setting. A total of 30 runs were performed both with standard GP and

second chance GP (in the latter case, 30 independent runs have been executed for each

considered combination of the refresh rate and replacement pressure parameters). All

the runs used populations of 200 individuals allowed to evolve for 100 generations.

Tree initialization was performed with the Ramped Half-and-Half method [57] with a

maximum initial depth of 6 and a maximum depth of 17. The function set contained



6.3. Experiments 108

the four binary operators +, −, ∗, and /, protected as in [57]. The terminal set con-

tained 241 floating point variables for the %F dataset, 626 floating point variables for

the LD50 dataset and 626 floating point variables for the %PPB dataset. In all these

test problems no random constants were added to the terminal set. Because the cardi-

nalities of the function and terminal sets were so different, a balanced choice between

functions and terminals has been imposed when selecting a random node. Fitness

was calculated as the root mean squared error between outputs and targets. Selection

for reproduction used tournaments of size 4. The reproduction (replication) rate was

0.95, meaning that each selected parent has a 5% chance of being copied to the next

generation instead of being engaged in breeding. Standard tree mutation and stan-

dard crossover (with uniform selection of crossover and mutation points) were used

with probabilities of 0.05 and 0.95, respectively. The new random branch created for

mutation has maximum depth equal to 6. Selection for survival used elitism (i.e. un-

changed copy of the best individual in the next population). Regarding the parameters

introduced by the proposed method, refresh rates with values equal to 5, 10, 20 and

selection pressures with values equal to 25, 50, 75 have been considered. All the

combinations of these values have been used in the experimental phase.

Additional experiments were performed with more “aggressive” parameters. In

particular with tournament size 10, crossover rate 0.9 and mutation rate 0.1. The results

are not reported but the behaviour of the second chance method was not different from

the one presented here.

Experimental results. For all the considered test problems, performances ob-

tained over the training and the test sets by standard GP and second chance GP for

every combination of the considered values for the refresh rate and the replacement
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pressure parameters have been analyzed. In the first part of the experimental phase a

replacement pressure equal to 50% (hence the half of the population that includes the

worst individuals is involved in the replacement process) has been considered and the

role of the refresh rate parameter has been analyzed. The results of this experimental

phase are reported in Figures 6.1, 6.2 and 6.3.

From now on, the term “fitness on the training set” (or more simply “training fit-

ness” or “fitness training”) refers to the root mean squared error between targets and

outputs on training data and used by the selection algorithm. On the other hand, the

term “fitness on the test set” (or more simply “test fitness” or “fitness test”) indicates

the root mean squared error of the individual with the best training fitness in the popu-

lation, calculated between targets and outputs on the test data.

Figure 6.1 reports the median of the best training fitness and the median of the test

fitness for standard GP and second chance GP for the %F dataset for different values

of the refresh rate.
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(a)

(b)

Figure 6.1: Test Function: bioavailability (%F). Plots (a) and (d): Refresh rate = 5.
Plots (b) and (e): Refresh rate = 10. Plots (c) and (f): Refresh rate = 20. Plots (a), (b)
and (c): median of the best training fitness over the performed 30 runs against gen-
erations. Plots (d), (e) and (f): median of the test fitness over the performed 30 runs
against generations.
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(c)

(d)

Figure 6.1: Test Function: bioavailability (%F). Plots (a) and (d): Refresh rate = 5.
Plots (b) and (e): Refresh rate = 10. Plots (c) and (f): Refresh rate = 20. Plots (a), (b)
and (c): median of the best training fitness over the performed 30 runs against gen-
erations. Plots (d), (e) and (f): median of the test fitness over the performed 30 runs
against generations.
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(e)

(f)

Figure 6.1: Test Function: bioavailability (%F). Plots (a) and (d): Refresh rate = 5.
Plots (b) and (e): Refresh rate = 10. Plots (c) and (f): Refresh rate = 20. Plots (a), (b)
and (c): median of the best training fitness over the performed 30 runs against gen-
erations. Plots (d), (e) and (f): median of the test fitness over the performed 30 runs
against generations.
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In Figure 6.1, as in the subsequent ones, plots (a), (b) and (c) report the results on

the training set, while plots (d), (e) and (f) report the results on the test set. Plots (a)

and (d) (respectively (b) and (e) and (c) and (f)) report the results for the refresh rate

equal to 5 (respectively 10 and 20). Standard GP performs better than second chance

GP over training instances for all the considered refresh rates. Regarding the fitness

on the test set and considering refresh rates equal to 5 and 10, second chance GP

produces better performances than standard GP. Furthermore, considering test fitness

from generation 60 to 100, the two techniques produce statistically different fitness val-

ues. In these experiments, as in all the ones presented later, the statistical significance

of the results has been evaluated with the Kruskal-Wallis method [24], considering a

confidence of 99%. Regarding the refresh rate equal to 20, there is not a significant

difference in terms of test fitness between standard GP and second chance GP. These

results confirm the initial expectation: a low refresh rate can help in maintaining a high

diversity inside the population and reducing the risk of overfitting. Replacing bad in-

dividuals with individuals that are selected from too old generations does not produce

the same effect because the evolution has already reached a more advanced stage. In

such a situation, older individuals, that probably have a much worse fitness than the

current best individuals, are penalized by tournament selection. In this situation, old

individuals weakly participate in the mating process.

The second test problem that has been considered is %PPB. As already pointed out,

for instance, in [107], in this problem standard GP has no overfitting, so it is possible

to expect that the performances of standard GP and second chance GP to be similar.

This fact is confirmed by Figure 6.2, where median values of the best training fitness

and of the test fitness are reported.
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(a)

(b)

Figure 6.2: Test Function: %PPB. Plots (a) and (d): Refresh rate = 5. Plots (b) and (e):
Refresh rate = 10. Plots (c) and (f): Refresh rate = 20. Plots (a), (b) and (c): median of
the best training fitness over the performed 30 runs against generations. Plots (d), (e)
and (f): median of the test fitness over the performed 30 runs against generations.
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(c)

(d)

Figure 6.2: Test Function: %PPB. Plots (a) and (d): Refresh rate = 5. Plots (b) and (e):
Refresh rate = 10. Plots (c) and (f): Refresh rate = 20. Plots (a), (b) and (c): median of
the best training fitness over the performed 30 runs against generations. Plots (d), (e)
and (f): median of the test fitness over the performed 30 runs against generations.
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(e)

(f)

Figure 6.2: Test Function: %PPB. Plots (a) and (d): Refresh rate = 5. Plots (b) and (e):
Refresh rate = 10. Plots (c) and (f): Refresh rate = 20. Plots (a), (b) and (c): median of
the best training fitness over the performed 30 runs against generations. Plots (d), (e)
and (f): median of the test fitness over the performed 30 runs against generations.
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Indeed, for both training and test sets, the considered techniques produce similar

results. In particular, it is possible to informally observe that the curves representing

test fitness almost completely "overlap" during all the studied generations.

The last considered test problem, LD50, is very challenging for the proposed

method. In fact, as already pointed out in [107], standard GP overfits training data

since the earliest generations. Figure 6.3 reports the median values of the best train-

ing fitness and of the test fitness for standard GP and second chance GP for the LD50

dataset for different values of the refresh rate.
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(a)

(b)

Figure 6.3: Test Function: LD50. Plots (a) and (d): Refresh rate = 5. Plots (b) and (e):
Refresh rate = 10. Plots (c) and (f): Refresh rate = 20. Plots (a), (b) and (c): median of
the best training fitness over the performed 30 runs against generations. Plots (d), (e)
and (f): median of the test fitness over the performed 30 runs against generations.
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(c)

(d)

Figure 6.3: Test Function: LD50. Plots (a) and (d): Refresh rate = 5. Plots (b) and (e):
Refresh rate = 10. Plots (c) and (f): Refresh rate = 20. Plots (a), (b) and (c): median of
the best training fitness over the performed 30 runs against generations. Plots (d), (e)
and (f): median of the test fitness over the performed 30 runs against generations.
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(e)

(f)

Figure 6.3: Test Function: LD50. Plots (a) and (d): Refresh rate = 5. Plots (b) and (e):
Refresh rate = 10. Plots (c) and (f): Refresh rate = 20. Plots (a), (b) and (c): median of
the best training fitness over the performed 30 runs against generations. Plots (d), (e)
and (f): median of the test fitness over the performed 30 runs against generations.
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The focus is first on training fitness. The performances of second chance GP on

the training set are poor compared to standard GP. Considering that the interest is in

achieving better results over test instances, and keeping in mind that overfitting is a

serious issue on this problem for standard GP [107], the results obtained on the train-

ing set could even be positively interpreted: having a worse fitness with the proposed

method may indicate that the learning process did not specialize too much on the train-

ing data. This hypothesis is confirmed by the results obtained on the test set: even

more markedly than for the %F problem, second chance GP outperforms standard GP

on the test set. Furthermore, once again the best results have been obtained with the

smallest refresh rate values. For the refresh rate equal to 5, 10 and 20, the Kruskal-

Wallis method indicates that the results of second chance GP are statistically different

from the ones obtained by standard GP (see Table 6.1). By observing the curves of the

test fitness, it is possible to see that for standard GP the test fitness tends to deteriorate

since the very beginning of the run (the trend of the curves of the error of standard GP

on the test set is prevalently increasing), while it is not the case for second chance GP,

where the increasing of error on the test data is much slower. Thus, the results obtained

with the LD50 problem confirm and strengthen the ones obtained with %F: a low re-

fresh rate can help in maintaining diversity inside the population and reducing the risk

of overfitting. Replacing individuals after too many generations does not produce the

same effect because evolution has already reached an advanced stage, so individuals

coming from older generations are weakly involved in the evolutionary process.

In the second part of the experimental phase the refresh rate has been set to 5

and three different replacement pressure values have been considered: 25%, 50% and

75%. The results of this experimental phase are reported in Figures 6.4, 6.5 and 6.6.
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Refresh rate 5 10 20
%F 4.986 ·10−6 3.788 ·10−5 0.0005

%PPB 0.5947 < 10−9 < 10−9

LD50 3.608 ·10−8 < 10−9 3.149 ·10−7

Table 6.1: The p-values for the Kruskal-Wallis test for the different problems when the
replacement pressure is fixed to 50%.

Figure 6.4 reports the median values of the best training fitness and of the test fitness

for standard GP and second chance GP for the %F dataset for different values of the

replacement pressure.
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(a)

(b)

Figure 6.4: Test Function: bioavailability (%F). Plots (a) and (d): Replacement pres-
sure = 25%. Plots (b) and (e): Replacement pressure = 50%. Plots (c) and (f): Re-
placement pressure = 75%. Plots (a), (b) and (c): median of the best training fitness
over the performed 30 runs against generations. Plots (d), (e) and (f): median of the
test fitness over the performed 30 runs against generations.
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(c)

(d)

Figure 6.4: Test Function: bioavailability (%F). Plots (a) and (d): Replacement pres-
sure = 25%. Plots (b) and (e): Replacement pressure = 50%. Plots (c) and (f): Re-
placement pressure = 75%. Plots (a), (b) and (c): median of the best training fitness
over the performed 30 runs against generations. Plots (d), (e) and (f): median of the
test fitness over the performed 30 runs against generations.
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(e)

(f)

Figure 6.4: Test Function: bioavailability (%F). Plots (a) and (d): Replacement pres-
sure = 25%. Plots (b) and (e): Replacement pressure = 50%. Plots (c) and (f): Re-
placement pressure = 75%. Plots (a), (b) and (c): median of the best training fitness
over the performed 30 runs against generations. Plots (d), (e) and (f): median of the
test fitness over the performed 30 runs against generations.
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Standard GP performs better than second chance GP over training instances for

all the considered replacement pressures. Regarding the test fitness, second chance

GP produces better results. In particular the best results are obtained with high values

of the replacement pressure parameter. The Kruskal-Wallis method indicates that the

differences between the results on the test set returned by standard GP and second

chance GP are statistically significant for replacement pressures of 50% and 75% (see

Table 6.2). These results were expected: a high replacement pressure means that a

large number of individuals in the current population is replaced by older and less

specialized individuals.

Figure 6.5 reports the median values of the best training fitness and of the test

fitness for the %PPB dataset.

In this case, as expected, there is not a significant difference between the results

obtained by standard GP and the ones of second chance GP except for replacement

pressure 75% (see Table 6.2).

Figure 6.6 reports the results for the LD50 dataset.

These results confirm, in an even more visible way, those previously obtained with

the %F dataset: while standard GP performs better over training instances, second

chance GP outperforms standard GP on the test set. This is particularly true for high

values of the replacement pressure parameter. The Kruskal-Wallis test indicates that

the differences between the results returned by standard GP and the ones returned by

second chance GP on the test set are all statistically significant for the LD50 dataset

and for replacement pressures of 25%, 50% and 75% (see Table 6.2).

To summarize, presented experimental results show that small refresh rates and

large replacement pressures allow to reduce the risk of overfitting in those studied
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Replacement pressure 25% 50% 75%
%F 0.5274 4.986 ·10−6 7.493 ·10−7

%PPB 0.0125 0.5947 0.0006
LD50 0.0004 3.608 ·10−8 < 10−9

Table 6.2: The p-values for the Kruskal-Wallis test for the different problems when the
refresh rate is fixed to 5.

problems where overfitting is an issue for standard GP. In the considered problem

where standard GP has no overfitting, the proposed method produces results that are

comparable to the ones returned by standard GP.

6.4 Conclusions and Future Works

A new GP method has been presented in this chapter. It is based on the idea of re-

using “good” but “old” genetic material in the current population, giving them a sec-

ond chance to survive an mate (hence the name of the proposed method: second chance

GP). It is inspired by well-known concepts such as various forms of short-term mem-

ory scheme. The main motivation for introducing this method has been that we expect

old individuals to be less specialized on training data than new ones, and thus we ex-

pect that re-using them can help reducing the risk of overfitting. This expectation has

been confirmed by the results of a set of experiments that have been performed on

three complex real-life regression problems from the field of drug discovery. In one

of these three problems standard GP is seriously affected by overfitting, in the second

one standard GP slightly overfits training data, while in the third one it does not have

overfitting. Interestingly, second chance GP outperforms standard GP on test data for

the first two problems, while its results are comparable with the ones of standard GP
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for the third one. These results seem to suggest the suitability of second chance GP.

Furthermore, experiments have allowed us to investigate how two important parame-

ters (refresh rate and replacement pressure) affect the performance of second chance

GP. Experiments have clearly indicated that small refresh rates and large replacement

pressures have allowed us to obtain the best results on test data for all the studied

problems.

Future work includes the experimental validation of second chance GP on a wider

set of test problems of different nature (for instance, could investigate the effectiveness

of the method on problems that are not regressions). Furthermore, we plan to integrate

the second chance GP algorithm with other methods that have been proposed so far

to reduce the risk of overfitting in GP, like for instance the methods proposed in [86],

in [111] or in [107].



6.4. Conclusions and Future Works 129

(a)

(b)

Figure 6.5: Test Function: %PPB. Plots (a) and (d): Replacement pressure = 25%.
Plots (b) and (e): Replacement pressure = 50%. Plots (c) and (f): Replacement pres-
sure = 75%. Plots (a), (b) and (c): median of the best training fitness over the per-
formed 30 runs against generations. Plots (d), (e) and (f): median of the test fitness
over the performed 30 runs against generations.
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(c)

(d)

Figure 6.5: Test Function: %PPB. Plots (a) and (d): Replacement pressure = 25%.
Plots (b) and (e): Replacement pressure = 50%. Plots (c) and (f): Replacement pres-
sure = 75%. Plots (a), (b) and (c): median of the best training fitness over the per-
formed 30 runs against generations. Plots (d), (e) and (f): median of the test fitness
over the performed 30 runs against generations.
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(e)

(f)

Figure 6.5: Test Function: %PPB. Plots (a) and (d): Replacement pressure = 25%.
Plots (b) and (e): Replacement pressure = 50%. Plots (c) and (f): Replacement pres-
sure = 75%. Plots (a), (b) and (c): median of the best training fitness over the per-
formed 30 runs against generations. Plots (d), (e) and (f): median of the test fitness
over the performed 30 runs against generations.
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(a)

(b)

Figure 6.6: Test Function: LD50. Plots (a) and (d): Replacement pressure = 25%.
Plots (b) and (e): Replacement pressure = 50%. Plots (c) and (f): Replacement pres-
sure = 75%. Plots (a), (b) and (c): median of the best training fitness over the per-
formed 30 runs against generations. Plots (d), (e) and (f): median of the test fitness
over the performed 30 runs against generations.
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(c)

(d)

Figure 6.6: Test Function: LD50. Plots (a) and (d): Replacement pressure = 25%.
Plots (b) and (e): Replacement pressure = 50%. Plots (c) and (f): Replacement pres-
sure = 75%. Plots (a), (b) and (c): median of the best training fitness over the per-
formed 30 runs against generations. Plots (d), (e) and (f): median of the test fitness
over the performed 30 runs against generations.
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(e)

(f)

Figure 6.6: Test Function: LD50. Plots (a) and (d): Replacement pressure = 25%.
Plots (b) and (e): Replacement pressure = 50%. Plots (c) and (f): Replacement pres-
sure = 75%. Plots (a), (b) and (c): median of the best training fitness over the per-
formed 30 runs against generations. Plots (d), (e) and (f): median of the test fitness
over the performed 30 runs against generations.
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7.1 Introduction

GP has been widely investigated in the last decade. The analysis of a GP system is

mainly based on the study of genotypic properties. While the study of genotype can

be useful to capture particular phenomena related to the evolutionary process, it is not

able to describe the entire dynamic of th process.

Thus incorporating semantic awareness in the GP process could improve perfor-

mance, extending the applicability of GP to problems that are difficult with purely

syntactic approaches. For this reason the study of a GP system has been extended to

phenotypic aspects. This type of analysis does not consider the structural character-

istics of a tree, but other properties related to the fitness. So a phenotypic study is

strongly based on the fitness of the individuals involved in the evolutionary process.

In this chapter a semantic niching method to increase the performance of GP is

proposed. The idea consists in building, maintaining and updating generation by

generation a semantical distribution. Although original, the idea is inspired by the

well-known control bloat method proposed in [92]. The similarities between the two

methods are limited to acceptance criteria of new individuals produced by the genetic

operators. Beyond this, the basic idea that characterizes the two methods is differ-

ent: while the work in [92] builds and uses a distribution based on the syntax of the

individuals, the work proposed here focuses on semantics. Five continuous and five

non-continuous functions have been used to experimentally validate the approach.
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7.2 State of the art

A key factor in the success or otherwise of a GP population in evolving towards a

solution is the extent of diversity amongst its members. Diversity may be viewed in

genotypic (structural) or in phenotypic (behavioural) terms, but the latter has received

less attention. Overviews of diversity measures can be found in [78] and [18], while

Burke et al. in [19] give a more extensive analysis of these measures and of how they

relate to fitness.

Behavioural or phenotypic diversity metrics are based on the functionality of in-

dividuals, i.e. the execution of program trees rather than their appearance. Usually,

behavioural diversity is viewed in terms of the spread of fitness values obtained on

evaluating each member of the population [88]. One way of measuring such a diver-

sity is by considering the fitness distribution as an indicator of entropy, or disorder, in

the population [116] [87].

Other approaches consider sets or lists of fitness values and use them in combina-

tion with genotypic measures [29]. For certain types of problem it may be possible to

achieve the effect of behavioural diversity without invoking the fitness function, via the

use of semantic sampling schemes [65]. Semantic analysis of programs is also used in

the diversity enhancing techniques described by Beadle and Johnson [11].

Gustafson in [45] developed two edit distances to sample semantic diversity in GP

and conducted an analysis comparing behavioural diversity measures with changes

in fitness. One of the limitations of the edit distance method is that it is defined on

representations that differ substantially from the standard one.

Semantic analysis methods are starting to appear in combination with crossover.
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McPhee et al. [71] used truth tables to analyze behavioural changes in crossover for

boolean problems. They consider the semantics of two components in each tree: se-

mantics of subtrees and semantics of context (the remainder of an individual after

removing a subtree). They experimentally measured the variation of these semantic

components throughout the GP evolutionary process. They paid special attention to

fixed-semantic subtrees: subtrees where the semantics of the tree does not change

when this subtree is replaced by another subtree. They showed that there may be many

such fixed semantic subtrees when the tree size increases during evolution; thus it be-

comes very difficult to change the semantics of trees with crossover and mutation once

the trees have become large.

While it is possible to represent behaviour using truth tables, a more efficient tech-

nique is that of using reduced ordered binary decision diagrams (ROBDDs) [16] to

create reduced canonical representations to measure behavioural difference.

In [10] semantic is used to define an algorithm called Semantically Driven

Crossover (SDC). The SDC algorithm has been developed based on analysis of the

behavioural changes caused by crossover. The key feature of this method is the use of

a canonical representation of members of the population (reduced ordered binary deci-

sion diagrams-ROBDDs) to check for semantic equivalence without having to access

the fitness function. Two trees are semantically equivalent if and only if they reduce to

the same ROBDD. This is used to determine which participating individuals are copied

to the next generation. If the offspring are semantically equivalent to their parents, the

children are discarded and the crossover is restarted. This process is repeated until

semantically new children are found. The authors argue that this results in increased

semantic diversity in the evolving population, and a consequent improvement in the
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GP performance.

In [104] one method to incorporate semantic information into GP crossover oper-

ators for real-valued symbolic regression problems is proposed. In particular, authors

aim to incorporate semantics into the design of new crossover operators so as to main-

tain greater semantic diversity, and provide higher locality (continuity - small changes

in genotype corresponding to small changes in phenotype) than standard crossover.

Recently, Krawiec and Lichocki proposed a way to measure the semantics of an

individual based on fitness cases [59]. In this work, the semantics of an individual

is defined as a vector in which each element is the output of the individual at the

corresponding input fitness case. This semantics is used to guide crossover in a method

known as Approximating Geometric Crossover (AGC). In AGC, a number of children

is generated at each crossover, the children most similar to their parents (in terms of

semantics) being added to the next generation.

In [70] a new mechanism for studying the impact of subtree crossover in terms

of semantic building blocks is proposed. This approach allows to completely and

compactly describe the semantic action of crossover, and provide insight into what

does (or does not) make crossover effective. Results make it clear that a very high

proportion of crossover events (typically over 75% in the presented experiments) are

guaranteed to perform no immediately useful search in the semantic space.

In [103] authors investigate the role of syntactic locality and semantic locality of

crossover in GP. The results show that improving syntactic locality reduces code bloat,

and that leads to a slight improvement of the ability to generalise. By comparison, im-

proving semantic locality significantly enhances GP performance, reduces code bloat

and substantially improves the ability of GP to generalise. Results confirm the more
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important role of semantic locality for crossover in GP.

In [12] semantic is used to test the effects of behavioural control at the point of the

mutation operator. Using semantic analysis, authors present a technique known as se-

mantically driven mutation (SDM) which can explicitly detect and apply behavioural

changes caused by the syntactic changes in programs that result from the mutation

operation. The SDM algorithm works to improve performance by not allowing mu-

tated programs to be produced when they are behaviourally equivalent to the original

program. The aim of this is to avoid returning to sections of the search space that

have effectively already been traversed. As in [10] the key feature of the semantically

driven operator is the ability to canonically represent candidate programs such that it

is possible to compare for the equivalence of behaviours.

In [11] authors presented a semantic analysis of programs initialisation in GP. In

particular authors defined different initialization methods that combine both semantic

and syntactic. The analysis of program initialisation in GP has shown that the initial-

isation method chosen can have a dramatic impact on the performance of GP runs.

However, it appears that this impact is problem specific, and it is not possible to con-

clude that one of the algorithms proposed is best for every problem. In the work there

is a clear evidence that both the distribution of programs in the search space and the

shape of the tree can have dramatic effects on the performance of GP. Both of these

variables are strongly dependent on the problem being tackled, which therefore makes

the challenge of constructing an initialisation algorithm a highly complex one.

In [49] a method to improve Phenotypic Diversity in initial GP populations is pro-

posed. This approach to semantic diversity differs from others in that it does not in-

volve structural considerations, fitness values or semantic analysis of programs. In-
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stead, it focuses on the observed behaviour of individuals when they are executed.

Hence phenotypic diversity is measured in terms of the run-time behaviour of pro-

grams. Author describes how this is applicable to a range of problem domains and

shows how the promotion of such diversity in initial GP populations can have a sub-

stantial impact on solution-finding performance.

In [50] author extends the work proposed in [49]. In fact, although work in [49]

has shown that improving behavioural diversity in initial GP populations can have

a marked beneficial effect on performance, further analysis reveals that lack of be-

havioural diversity is a problem throughout whole runs. To address this, author pro-

posed a method to enhance phenotypic diversity via modifications to the crossover

operator, and showed that this can lead to additional performance improvements.

In [47] authors adopt statistical measurements from RNA systems to quantify ro-

bustness and evolvability at both genotypic and phenotypic levels. Using an ensemble

of random walks, they demonstrate that the benefit of neutrality crucially depends upon

its phenotypic distribution.

7.3 The Semantic Niching Method

The main idea of the proposed “Semantic niching” method is to use a semantic distribu-

tion to guide the evolutionary process. This distribution is used to direct the algorithm

toward solutions that are semantically close to the best solution found so far by GP.

Before explaining how the method works it is necessary to introduce some preliminary

concepts.

The method is based on the concept of prototype. A prototype is defined as a vector
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of length equal to the number of fitness cases. Fixed an individual i, the vector con-

tains the output of i calculated on every fitness case. So a specific prototype contains

the outputs related to a single individual. This individual is the representative of the

prototype.

As explained below, individuals with different fitness could belong to the same

prototype.

The prototype is also associated with a value that represents the average training

fitness of the elements belonging to that prototype. A prototype is then characterized

by a second value that represents its capacity, that is the number of individuals that can

be stored in that prototype.

When the evolutionary process starts, a new prototype for every individual in the

initial population is created. Because a prototype is created for every individual, it is

required that no identical individuals can be generated during the initialization process.

If an individual b is equal to a previously generated individual a then b is discarded.

At the end of the initialization process every prototype has a capacity equal to 1 and

contains one element. Before starting a new generation the capacity of each proto-

type is updated. The capacity of a prototype is proportional to the average training

fitness of its individuals. Hence, considering a maximization problem, the higher the

average training fitness of a prototype, the higher is its capacity. The idea is to give

“good” prototypes the opportunity to attract more individuals than “bad” prototypes.

The objective is to force the search process to move towards area of the search space

where good individuals lie. Once the capacities are updated, a new generation starts.

Start a new generation means to apply genetic operators to the selected individuals to

create new individuals. An acceptance criterion controls every newly created individ-
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ual according to the algorithm 2. Before checking whether or not to accept the new

individual it is necessary to determine which is the prototype to which the individual

belongs. To do that it is necessary to perform the following operations:

• build the prototype pnew of the newly created individual;

• given the set P = {p1, p2, . . . , pk} of already defined prototypes, ∀pi ∈ P calcu-

late the average Manhattan distance d(pnew, pi);

• considering the set of distances D = {d(pnew, p1),d(pnew, p2), . . . ,d(pnew, pk)}

let d̂ the minimal distance in D and p̂ the prototype for which d(pnew, p̂) = d̂;

Considering the prototypes pnew and pi the average distance d(pnew, pi) is calcu-

lated as follows:

d(pnew, pi) =
1

TC

TC

∑
j=1

∥pnew[ j]− pi[ j]∥
∥pnew[ j]+ pi[ j]∥

where TC is the number of fitness cases.

The process of determining which is the prototype to which the new individual

belongs can produce two different outcomes:

1. the new individual belongs to prototype p̂ if d̂ is within an acceptance threshold

set a priori.

2. if d̂ is greater than the acceptance threshold the new individual does not belong

to any of the existing prototypes.

These different possibilities are handled by the acceptance criterion procedure. The

pseudo-code of the acceptance procedure and the pseudo-code of the generation of a

new population is given in Algorithm 2.
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The acceptance criterion decides whether or not to accept a newly created individ-

ual. The procedure includes several cases; first of all the procedure controls whether

or not the new individual belongs to an existing prototype. If the individual does not

belong to an existing prototype, a new prototype that stores only the new individual is

created if and only if the new individual is the best individual in the population. This

idea is inspired by Operator Equalization, a bloat control method proposed in [92].

This is the only case for which it is needed to create a new prototype. If the newly cre-

ated individual belongs to an already defined prototype there are three different cases

handled by the acceptance procedure:

• if the new individual belongs to an existing prototype that is not full, the new

individual is accepted and stored in the prototype;

• if the new individual belongs to an existing prototype that is full, the new indi-

vidual is accepted and stored in the prototype if and only if its fitness is the best

with respect to the other individuals belonging to the prototype;

• in all the other cases the new individual is rejected.

It is important to point out that at the end of a generation, before updating the proto-

types’ capacities, it is necessary to reallocate the individual inside the prototypes if

a new prototype has been created. In fact, an individual i belonging to the prototype

pa before the creation of the prototype pnew, may change its prototype if the proto-

type built considering the outputs of i is much closer to pnew than pa. This procedure

is not required by Operator equalization, but the computational time required by this

procedure is negligible.
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The semantic method is characterized by the presence of an acceptance threshold

AT : this threshold influences the number of prototypes created during the evolution

and also the distribution of the individuals inside the prototypes. A high value of AT

permits to concentrate in a small number of prototypes a large number of individuals.

On the other hand a small AT value permits a more fine grained distribution of the

individuals in a large number of prototypes.

7.4 Test Problems

In this section we report the problems used in the experimental phase. 10 regression

problems have been chosen, 5 are continuous functions while the other 5 are non-

continuous functions. The non-continuous functions used are reported in figure 7.1

while figure 7.2 reports the continuous test functions. Ranges are denoted using (start :

step : stop). Random ranges are denoted using rand(min, max), which defines uniform

random sampling in the range. We point out that the considered test functions consists

of one, two or three variables. In the second phase of the experimental phase, we also

considered real life problems characterized by a high number (greater than 100) of

features. Results obtained with these functions are similar to the ones obtained by the

test functions showed in figure 7.1 and figure 7.2, hence we do not report them in the

following sections. Differently from the previous chapters, we do not consider real

life problems during the experimental phase. The main motivation relies in the char-

acteristics of the considered test problems: we needed continuous and non-continuous

functions where the target function is known. In fact, in a preliminary analysis, we

were interested not only in the fitness of the individuals, but also in the shape of the
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best individuals with respect to the target function.

7.5 Experimental Settings

In this section experimental settings are reported. The proposed method is compared

with standard GP and with the method proposed in [40]. The method in [40] works by

separating the training set into two sets, the fitness evaluation set (67% of the training

data) and the validation set (33% of the training data), and making use of the lexico-

graphic parsimony pressure [67]. The fitness evaluation set is used to compute the

error rate that guides the evolution while the validation set is used only to select the

best-of-run individual. The fitness measure consists in minimizing the error rate on the

fitness evaluation set. At each generation, a two-objective sort is conducted in order to

extract a set of non-dominated individuals (the Pareto front), with regards to the low-

est fitness evaluation set error rate and the smallest individuals. These non-dominated

individuals are then evaluated on the validation set, with the best-of-run individual se-

lected as the one of these with the smallest error rate on the validation set, ties being

solved by choosing the smallest individual. From now on we refer to this method with

parsimony pressure.

For every test problem, 30 runs of the considered techniques have been performed.

All the runs used populations of 100 individuals and the evolution stopped after 40000

fitness evaluations. Tree initialization was performed with the Ramped Half-and-Half

method [82] with a maximum initial depth of 6. The function set contained the four

binary operators +, −, ∗, and / protected as in [82]. The terminal set contained all 1,

2 or 3 variables depending on the test functions and no random constants. Tournament
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selection has been used with tournament size equal to 4. The reproduction (replication)

rate was 0.1, meaning that each selected parent has a 10% chance of being copied to

the next generation instead of being engaged in breeding. Standard tree mutation and

standard crossover (with uniform selection of crossover and mutation points) were

used with probabilities of 0.1 and 0.9, respectively. The new random branch created

for mutation has maximum depth 6. Selection for survival was elitist and only the best

individual is inserted in the new population. No maximum tree depth was imposed.

The fitness of the individuals is the Canberra distance [62] normalized between 0

and 1, where 0 is the optimal fitness.

The median was preferred over the mean in all the evolution plots shown in the

next section because median is more robust to outliers.

7.6 Experimental Results

In this section the obtained experimental results are reported. In particular section 7.6.1

outlines results obtained with the continuous test functions while section 7.6.2 presents

results obtained with the non-continuous test problems. The experimental phase has

been performed to check whether or not the proposed semantic niching method is able

to produce better results with respect to the other considered techniques. In particular

we are interested in checking the generalization ability of the proposed techniques and

its ability to increase population diversity. Another aspect we are interested in is the

size of the individuals produced by our method.

To check the generalization ability, the fitness on unseen data reported in the col-

umn labelled by “Test Data” in Figures 7.1 and 7.2 is considered; to measure the degree
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of diversity of the individuals in the population we use entropy, according to [19]. The

size of a specific individual is defined as the number of its nodes.

7.6.1 Continuous Functions

In this section, results related to the continuous test functions are presented. The en-

tropy of the population and the test fitness of the best element are reported, for all

the considered test functions, from Figure 7.3 to Figure 7.7. We start to analyze the

entropy of the populations. The behaviour of the entropy of the population is similar

for all the continuous test functions. Standard GP produces the lowest entropy value,

that means that it has a low degree of population diversity. On the other hand the parsi-

mony pressure technique shows the highest entropy value meaning that the population

maintain a high degree of diversity. The interesting point is that the entropy values for

standard GP and parsimony pressure are quite stable during the evolutionary process.

The behaviour showed by our method is different. In the first evaluations we have

a high entropy value, so a high degree of population diversity. During the evolution-

ary process the entropy value decreases and reaches the minimum value in the last

evaluations. This behaviour is desirable and expected if we consider the role of the

semantic bins. In fact, in the first evaluations, all the prototypes contain more or less

the same number of individuals. Hence, in the earliest evaluations, a large number of

different semantics are taken in account. Evaluation by evaluation, individuals tend to

concentrate in a few prototypes that represent the semantics of individuals with good

fitness.

So entropy seems to confirm the capability of our method to converge towards good

individuals.
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Now we analyze the behaviour of test fitness. In function C1 standard GP is the best

performer but the behaviour of all the considered techniques is quite similar. In func-

tion C2 parsimony pressure and Prototype GP are the best techniques, while standard

GP performs poorly. In functions C3 and C5 our method produces the best results while

standard GP produces the worst results. In function C4 our method and the parsimony

pressure technique produce similar results, while standard GP is the worst technique.

A statistical validation of the results has been performed. In particular, the statis-

tical significance of the results has been evaluated with the Mann-Whitney test [24],

considering a confidence of 95% and a pairwise Bonferroni correction for the value

of α. According to the Mann-Whitney test the Prototype GP method produces fitness

values that are statistically different from the other considered techniques, except for

the test function C1 and for the test function C2. In particular for C1 standard GP and

our method are not statistically different, while the parsimony pressure and our method

are not statistically different when C2 is considered.

Regarding the entropy, according to the Mann-Whitney test the Prototype GP

method produce values that are statistically different from the other considered tech-

niques for all the considered continuous test functions.

7.6.2 Non-Continuous Functions

In this section results related to the non-continuous test functions are discussed. The

entropy of the population and the test fitness of the best element are reported, for all

the considered test functions, from Figure 7.8 to Figure 7.12. Regarding the entropy

values, the same considerations made for the continuous functions remain valid. In

particular the entropy values produced by standard GP and parsimony pressure are
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(a)

(b)

Figure 7.3: Figure (a) reports entropy of the populations with respect to the number of
evaluations for test function C1. The median over 30 runs has been reported. Figure
(b) reports test fitness of the best individuals with respect to the number of evaluations
for test function C1. The median over 30 runs has been reported.
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(a)

(b)

Figure 7.4: Figure (a) reports entropy of the populations with respect to the number of
evaluations for test function C2. The median over 30 runs has been reported. Figure
(b) reports test fitness of the best individuals with respect to the number of evaluations
for test function C2. The median over 30 runs has been reported.
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(a)

(b)

Figure 7.5: Figure (a) reports entropy of the populations with respect to the number of
evaluations for test function C3. The median over 30 runs has been reported. Figure
(b) reports test fitness of the best individuals with respect to the number of evaluations
for test function C3. The median over 30 runs has been reported.
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(a)

(b)

Figure 7.6: Figure (a) reports entropy of the populations with respect to the number of
evaluations for test function C4. The median over 30 runs has been reported. Figure
(b) reports test fitness of the best individuals with respect to the number of evaluations
for test function C4. The median over 30 runs has been reported.
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(a)

(b)

Figure 7.7: Figure (a) reports entropy of the populations with respect to the number of
evaluations for test function C5. The median over 30 runs has been reported. Figure
(b) reports test fitness of the best individuals with respect to the number of evaluations
for test function C5. The median over 30 runs has been reported.
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quite stable, regardless the state of the evolutionary process. Considering the Prototype

GP method, it is possible to see that the entropy values decrease while the number of

evaluations increases.

Regarding the test fitness, the best performances are obtained by the Prototype GP

method on all the considered test functions.

As well as for continuous functions, a statistical validation of the results has been

performed. According to the Mann-Whitney test, the results produced by the Prototype

GP method are statistically different from the ones produced by the other considered

techniques for all the considered non-continuous test functions.

7.7 Distribution of the fitness values

The objective of this section is to analyze how individuals that take part in the evolu-

tionary process are distributed within the search space for the different studied tech-

niques. In particular, the main aim is to determine whether or not there are significant

differences, between the considered techniques, regarding the exploration of the search

space.

To do that, all the 30 runs have been considered and the training fitness of all the

individuals produced by the evolutionary process has been analyzed. This analysis

involved all the test functions, but we reported only the results for one continuous

function and for one non-continuous function. For the other considered test functions

results are similar.

Results are presented in Figure 7.13 and in Figure 7.14.

On the horizontal axis, numbers denote fitness intervals. Hence 1 covers individ-



7.7. Distribution of the fitness values 158

(a)

(b)

Figure 7.8: Figure (a) reports entropy of the populations with respect to the number of
evaluations for test function NC1. The median over 30 runs has been reported. Figure
(b) reports test fitness of the best individuals with respect to the number of evaluations
for test function NC1. The median over 30 runs has been reported.
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(a)

(b)

Figure 7.9: Figure (a) reports entropy of the populations with respect to the number of
evaluations for test function NC2. The median over 30 runs has been reported. Figure
(b) reports test fitness of the best individuals with respect to the number of evaluations
for test function NC2. The median over 30 runs has been reported.
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(a)

(b)

Figure 7.10: Figure (a) reports entropy of the populations with respect to the number of
evaluations for test function NC3. The median over 30 runs has been reported. Figure
(b) reports test fitness of the best individuals with respect to the number of evaluations
for test function NC3. The median over 30 runs has been reported.
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(a)

(b)

Figure 7.11: Figure (a) reports entropy of the populations with respect to the number of
evaluations for test function NC4. The median over 30 runs has been reported. Figure
(b) reports test fitness of the best individuals with respect to the number of evaluations
for test function NC4. The median over 30 runs has been reported.
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(a)

(b)

Figure 7.12: Figure (a) reports entropy of the populations with respect to the number of
evaluations for test function NC5. The median over 30 runs has been reported. Figure
(b) reports test fitness of the best individuals with respect to the number of evaluations
for test function NC5. The median over 30 runs has been reported.
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(a)

(b)

Figure 7.13: Figures (a),(b) report respectively the probability distribution for Stan-
dard GP and Parsimony Pressure. Test problem: C1 function.
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(c)

Figure 7.13: Figure (c) reports the probability distribution for Prototype GP. Test prob-
lem: C1 function.
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(a)

(b)

Figure 7.14: Figures (a),(b) report respectively the probability distribution for Stan-
dard GP and Parsimony Pressure. Test problem: NC1 function.
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(c)

Figure 7.14: Figure (c) reports the probability distribution for Prototype GP. Test prob-
lem: NC1 function.
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(a)

(b)

Figure 7.15: Figure (a) and (b) report size of best individuals over 30 runs for C1 and
NC1 respectively.
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uals with fitness in the range [0;0.1], 2 covers individuals with fitness in the range

[0.1;0.2] and so on.

As it is possible to see, in both the considered problems the Prototype GP method

shows a larger number of good individuals compared to the other studied techniques.

In particular, for the C1 function, while standard GP and parsimony pressure do not

have any individual with training fitness in the range [0:0.1], the Prototype GP method

produces a 15% of individuals in this range. Considering also the range [0.1;0.2] it is

possible to note that our method produces a percentage of individuals in this range that

is remarkably greater than the one produced by the other considered techniques.

Considering Figure 7.14, with the NC1 function we have the same behaviour. In

particular the Prototype GP method produces a 40% of individuals with fitness in

the range [0.1;0.2] while the other considered techniques produce no individuals with

fitness in this range.

This analysis seems to confirm the ability of our method to explore areas of the

search space where good individuals lie.

7.8 Problems

In this section we outline two drawbacks of our method. The first one is related to the

number of individuals that are rejected after the evaluation. Obviously this fact leads

to an increase of the computational effort required to run the evolutionary process. In

order to take account of this problem and perform a fair comparison with the other

considered techniques, in the experimental phase presented in the previous sections,

the results are reported against the total number of evaluated individuals, instead of
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the number of generations, thus taking into account also the individuals that have been

evaluated and then rejected by Prototype GP.

The second aspect that we want to discuss is related to the size of the individuals

produced by our method. Figure 7.15(a) and Figure 7.15(b) report the size of the best

individuals produced by the considered techniques for two test functions. For the other

considered test functions results are similar.

Results show that our technique produces very large trees in respect to the ones

produced by the other considered ones. While this fact does not generate bloat because

the growth in size of the individuals is also accompanied by a fitness improvement [92]

it would be preferable to have small size trees. One method to reduce this problem

could be the simplification of the expressions represented by the individuals.

We think that possible explanations of this phenomenon lie in the way in which

the proposed method works. In particular having a prototype P with capacity n, the

algorithm will look for n individuals with the semantic described by the prototype P.

The problem is that a particular semantic could be represented only by few trees of a

certain depth. Hence the algorithm must look for big trees in order to fill the prototype

P.

7.9 Conclusions and Future Works

A semantic niching method to increase the performance of GP has been proposed. The

idea consists in building, maintaining and updating generation by generation a seman-

tical distribution. Experimental results show that the proposed method performs better

or in a comparable way to standard GP and to the Parsimony Pressure method. In par-



7.9. Conclusions and Future Works 170

ticular, the proposed method outperforms the other studied ones on all the considered

non-continuous test functions. More than the absolute performance, it is of interest the

effect of the proposed method on population’s semantic diversity. In fact, the Proto-

type GP method maintains a high degree of population diversity in the first evaluations

of the learning process while it reduces the population diversity in the following evalu-

ations. This is a good indicator of the fact that the proposed method is able to converge

on solutions that are semantically better. In particular, the Prototype GP method seems

to be able to cover areas of the search space characterized by the presence of solutions

with good fitness.

Nevertheless, the proposed method has also some problems. In particular, it tends

to create large individuals. This does not correspond to the definition of bloat [92],

since individuals generated by Prototype GP have a fitness that is better than the fitness

of individuals created by standard GP or parsimony pressure. However, one of the

future works concerns the simplification of the solutions produced by the Prototype

GP method.

Another future work is the application of our method with a fitness sharing mecha-

nism. Fitness sharing modifies the search landscape by reducing the payoff in densely

populated regions. Hence, we can use fitness sharing to slow down the convergence of

the individuals towards a few prototypes. In fact, while the convergence is desirable,

the premature convergence must be avoided.
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Algorithm 2 Generation of a new population.

begin
n_accepted := 0;
while n_accepted < pop_size do

select parents from population;
apply genetic operator;
for (every child i) do

k := calculate prototype(i);
if (acceptance_criterion(i,k) == true)

then
insert i in the new population;
n_accepted = n_accepted + 1;

fi
od

od

proc acceptance_criterion(individual i, prototype k)
if (k is an existing prototype)

then
if (k is full )

then
if (i is the best of the prototype k)

then
accept := true;

else
accept := false;

fi
else

accept := true;
fi

else if (i is the best of the run)
then

create a new prototype k that contains only individual i
accept := true;

else
accept := false;

fi
fi

end
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In this chapter the main contributions of this thesis are summarized.

8.1 Contributions Overview

The main goal of this thesis was the definition of methods for a better understanding

of the dynamics of GP. While GP has been widely used in the last two decades, a lot of

open problems deserve investigation. Hence, the objective of this thesis was to to pro-

vide techniques that may help in facing these open problems. Because the techniques

that have been proposed should be used in a wide range of domains, an important part
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of this thesis has been dedicated to the experimental validation of the proposed tech-

niques. In particular, the claim is that all the proposed measures and methods could

be used not only in toy examples, but also in real life applications. In this light, the

experimental validation has been performed, when possible, by considering different

real life applications characterized by a large dimension of the space of the features.

A particular attention has been dedicated to the set up of the experiments, con-

sidering different values of the parameters and repeating the experiments many times.

Results produced in this thesis have been analyzed from different points of view, and

a statistical validation has been performed to guarantee the significance of the results.

This latter phase was necessary given the stochastic nature of the GP process.

The open problems that have been considered in this thesis are:

• The lack of measures to quantify phenomena that characterize the GP process.

• The defect of techniques that could improve the generalization ability of the

solutions produced by GP.

• The lack of a method to completely exploit the semantic of the individuals.

All these problems are particularly interesting because they limit the ability of GP

to provide optimal solutions.

The following sections summarize the solutions for these problems presented in

this thesis.
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8.2 GP measures

The analysis of the dynamics of the evolutionary process is fundamental for a better

understanding of the phenomena that influence such process. Some of these phenom-

ena are common to many machine learning techniques, while others are strictly related

to the use of GP. Three important phenomena are:

• bloat;

• overfitting;

• solutions’ complexity.

Bloat is one of the most important problem that affects GP. According to [9] bloat

(or code bloat) is defined as code growth without a significant improvement in terms of

fitness. In recent years several theories have been developed trying to explain the origin

of this phenomenon and several methods have been defined to reduce this phenomenon.

Some of these theories and methods have been discussed in chapter 3. Bloat is a

very important issue because large trees are created and the whole process of fitness

evaluation requires more time. In addition, the larger size of the trees is not followed

by an improvement in fitness. While methods to counteract bloat have been defined

(see chapter 3), there is not a measure to quantify the amount of bloat in a GP run. In

section 4.1 a measure to quantify bloat has been proposed. According to the proposed

measure, in case of minimization problems (i.e. problems were a small fitness value is

better than a large one) the “amount of bloat” at generation g is defined as:

bloat(g) =
(δ(g)−δ(0))/δ(0)
( f (0)− f (g))/ f (0)

(8.1)
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where δ(g) is the average program length in the population at generation g and f (g) is

the average fitness (calculated using training data) in the population at generation g.

Hence, bloat(g) is an expression of the relationship between the average length

growth and the average fitness improvement up to generation g compared to the re-

spective values at generation zero. Further details are reported in section 4.1.

While bloat is a problem strictly related to the use of GP, overfitting [74] affects

many machine learning techniques.

Overfitting occurs when a model begins to memorize the training data rather than

learning to generalize from the model. According to [74] given a hypothesis space H,

a hypothesis h ∈ H is said to overfit the training data if there exists some alternative

hypothesis h′ ∈ H such that h has smaller error than h′ over the training examples, but

h′ has a smaller error than h over the entire distribution of instances.

A lot of studies have been performed trying to define method to counteract overfit-

ting and to enhance the generalization ability of the solutions. Some of these methods

are reported in chapter 3. As well as for the bloat, there are not measures that can

quantify the amount of overfitting. In section 4.2 a measure to quantify overfitting has

been proposed. To summarize, the ideas that inspired the proposed measure are the

following:

• if, at a given generation g , test fitness is better than training fitness, then there is

no overfitting (overfit(g)=0 );

• if test fitness is better than the best test point, then there is no overfitting

(overfit(g)=0 );

• otherwise overfitting is quantified by the difference of the distance between train-
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ing and test fitness at generation g and the distance between training and test

fitness at the generation where the best test point has been found.

Another important study is related to the complexity of the solutions produced

by GP. In fact it is often stated that simpler solutions will be more robust and will

generalize better than complex ones, with the latter being more likely to overfit the

training data [74], [107].

An immediate question concerns how to measure program complexity. In chapter 4

different measures to quantify the complexity of solutions have been proposed. The

first measure is called Multi-Slope Complexity Measure (MSCM) and it is inspired

by the mathematical concept of curvature [20]. The formal definition of this measure

is reported in section 4.3. The intuition is the following: consider the three simple

bidimensional functions in Figure 4.2. The objective is to define a measure to quan-

tify the fact that the function represented in Figure 4.2(c) is more complex than the

one represented in Figure 4.2(b), which is more complex than the one represented in

Figure 4.2(a). In fact, all the three functions are polylines, but in Figure 4.2(a) all

the segments forming the polyline have the same slope, while in Figure 4.2(b) the

segments have different slopes, even though all the slopes have the same sign; finally,

segments in Figure 4.2(c) have different slopes of different signs. In other words, what

is wanted is to express the complexity of a function by counting the number of dif-

ferent slopes and by assigning a higher weight to inversions in the slope sign. It is

worth pointing out that such a measure has formally absolutely no relationship with

the curvature measure. It is only inspired by an informal intuition of the concept of

curvature.
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Considering bidimensional regression problems, one can imagine the graphical rep-

resentation of a GP individual as a polyline, by plotting the points that have fitness

cases on the abscissas and the corresponding values of the function coding the GP

individual as ordinates and joining those points by segments. Thus, in case of bidi-

mensional problems, all that must be done to calculate the measure is to sort all fitness

cases (from the smaller value to the larger one) and to consider the values assumed by

the GP individual on those fitness cases. Then the slope of each segment joining these

points is calculated. Let (s1,s2,s3,s4,s5, ...) be those slopes. The measure is simply

calculated as: s_1 - s_2+ s_2 - s_3+ s_3 - s_4+ s_4 - s_5+ ... In this way, if the

slopes are all identical, the value of the measure is zero (minimal possible complexity)

and if the signs of the slopes of all the consecutive segments change, the contribution

of each segment is maximal (because all slopes’ absolute values are summed). On the

other hand, if two consecutive segments have different slopes with the same sign, their

contribution is the subtraction of their respective absolute values (i.e. a contribution

larger than zero, but smaller than in the case where the slope sign changes).

In case of multidimensional spaces of features, the projection of the function cod-

ing the GP individual on each single dimension is considered. The same calculus as

above is executed for each dimension separately and then the average is calculated.

The second complexity measure has been defined in section 4.4 and it is called

Graph Based Complexity (GBC). The name of this measure depends on the fact that

it is possible to represent it in terms of counting operations on a graph as explained in

section 4.4. This complexity measure is inspired by the idea that complex functions

should have a larger curvature than simple ones. But, contrarily to the Multi-Slope

Complexity Measure, in this case the idea of curvature is quantified using the following
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intuition: let g be a GP individual; the curvature of g can be expressed by counting the

number of pairs of “close” training points x and y for which the corresponding values

g(x) and g(y) are “far”. The formal definition is reported in section 4.4. GBC has been

introduced to overcome some of the limitations of the MSCM. In particular GBC is

rotationally invariant, contrarily to what happens for the MSCM.

The definition of measures to quantify the amount of bloat, overfitting and the

complexity of the solutions could be useful to investigate the relations between these

phenomena. In this light an accurate experimental phase has been performed. In this

experimental phase three different real life applications, have been considered and, as

stated in the previous section, a particular attention has been dedicated to the analy-

sis of the results. The objective of this experimental phase was twofold: first of all

we were interested in assess the coherence of the proposed measures with respect to

the underlying phenomena. The second objective is to find relations between these

phenomena.

Experimental results show that:

• all the proposed measures seem to be able to capture the underlying phenomena;

• complexity measure (GBC) increases in case of overfitting;

• bloat and overfitting are independent phenomena: it is possible to have bloat

without overfitting and overfitting without bloat;

• overfitting seems to be related to the complexity of the solutions rather than

bloat.
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8.3 Techniques to enhance GP’s generalization ability

The study of the generalization ability of GP is an important problem. In many cases

GP is able to find solutions that produce good performances on the training instances,

but this performances are not replicated on unseen data. At the end of the learning

process, the hope is to find a solution that could achieve on unseen data the same

performances obtained on the training instances. Although generalisation of learned

solutions is the primary interest of any machine learning technique [74], it was not

seriously considered in the field of GP for a long time. Before Kushchu published his

work on the generalisation ability of GP [61], there were rather few research dealing

with the GP generalisation aspect.

In [8] authors studied the influence of using extensive mutation on the ability of

a new GP system called Compiling GP (CGP) to generalise. Authors found that in-

creasing the mutation rate can significantly improve the generalization capabilities of

GP. The mechanism by which mutation affects the generalization capability of GP is

not entirely clear. What is clear is that changing the balance between mutation and

crossover affects the course of GP training substantially.

In [38] authors compared the ability of CGP to generalize with that of other ma-

chine learning paradigms. Results show that when CGP was trained on data sets that

were not too sparse, CGP performed very well, equaling the generalization capability

of other machine learning systems quickly and consistently. Moreover, when CGP was

trained on very sparse data sets, CGP produced individuals that generalized almost as

well other machine learning systems trained on much larger data sets.

In [69] authors experimented with Tarpeian Control on some symbolic regression
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problems and tested the side effects of this method on the generalisation ability of GP.

The results are contrasted, showing that it can either increase or reduce the generaliza-

tion power of GP hypotheses, depending on the problem at hand.

In [39] authors investigated two methods to improve generalisation in GP: the se-

lection of the best of run individuals using a three datasets method (training, validation,

and test sets), and the application of parsimony pressure in order to reduce the com-

plexity of the solutions. Their experimental results indicate that using a validation set

could slightly improve the stability of the best of run solutions on the test sets.

In [108] authors improved GP generalisation using a crossover based similarity

measure. Their method is to keep a list of over-fitting individuals and to prevent any

individual entering the next generation if it is similar (based on structural distance or a

subtree crossover based similarity measure) to one individual in the list.

In [26] authors proposed a new GP system called Relaxed Genetic Programming

(RGP). They show how a small degree of relaxation improves the generalization error

of the best solutions.

In [25] authors showed the important role of generalisation on GP. They experimen-

tally showed that a technique like Linear Scaling [56] may only be significantly better

than standard GP on training data but not superior on testing data. They proposed an

approach to improve GP generalisation by combining Linear Scaling and the No Same

Mate strategy [44].

The use of semantic to improve generalization ability has recently been proposed .

A literature review about semantic methods is proposed in section 7.2.

The method presented in this thesis consists in giving a second chance of mating

to individuals belonging to “old” generations (hence the name of the method: “second
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chance GP”).

To accomplish this goal, every k generations (where k ∈ N and k > 1), the worst

pr% individuals in the population (where pr is the replacement pressure) are replaced.

The individuals that replace them are extracted from the population of k generations

before the current one (for this reason, k is called refresh rate), and they are chosen

from that population using exactly the same selection method used by the standard

algorithm.

In some senses, the method simulates the idea that partners do not have to have all

the same age, but partners of different ages can mate and produce offspring. Further-

more, differently from the majority of the previously published related contributions,

the proposed approach is focused specifically on generalization, with the idea that

“old” individuals may be less specialized than “young” ones on training data, and thus

potentially more general.

Although original, the idea is inspired by well-known concepts such as short-term

memory schemes, that have already been used in evolutionary computation so far.

Motivations for introducing this method are the following. First of all it is possi-

ble hypothesize that, generation by generation, the GP individuals become more and

more specialized. Even if this behavior can be a good one, the GP individuals could

also overfit training data. The insertion of earlier (and probably less specialized) indi-

viduals with a good fitness can allow the population diversity to increase, reducing at

the same time the risk of overfitting training data. The second motivation is that the

processes of selection, crossover and mutation of GP can discard (the former one) or

disrupt (the latter ones) good genetic material. Allowing a reinsertion, the probabil-

ity of good genetic material to be propagated increases. The third motivation is that,
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also on training data themselves, the evolutionary process may lead the population to

convergence towards local optima. The insertion of earlier individuals with a good

fitness, while allowing the population diversity to increase, should also reduce the risk

of premature convergence and stagnation in local optima.

The “second chance GP” method is characterized by the presence of two param-

eters: the refresh rate k and the replacement pressure pr. Thus, their effect has been

investigated.

Experimental results have shown that when the parameter k is low, the effect is

to increase the probability to insert into the current population individuals with a good

fitness that can positively affect the evolution process. On the other hand, a low k value

may result in inserting genetic material that does not help in better exploring the search

space, since it may be not significantly different with respect to the existing one. An

high k value can help in solving the latter issue, but can generate a new problem: the

individuals of old populations can have a much worse fitness than the current ones and

their reinsertion may produce no effects on the search process. Regarding the second

parameter pr, experimental results have shown taht it can also influence the behavior

of the search process. In particular, a low pr value may result in inserting not enough

individuals, with a negligible effect on the evolutionary process. A high pr value can

solve the latter problem but, if too high, can disrupt what has been learned so far.

Other methods to increase the generalization ability of GP involve the use of multi

objective optimization. In optimization problems the search bias usually involves only

one fitness function. This is equivalent to the use of only one criterion to estimate the

quality of a solution. On the other hand, in many situations a good solution is achieved

by a compromise between multiple criteria [27].
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In this thesis an experimental study of the generalization ability of a set of multi-

optimization GP frameworks, comparing them with standard GP and Operator Equal-

isation [93] is presented. The idea of optimizing more than one criterion on training

data to produce more general solutions is not new: a related idea has been used in [39]

in the domain of binary classification (where a two objective sort is performed in or-

der to extract a set of non-dominated individuals). In [109] authors have motivated

and empirically shown that GP using a Pareto multi-optimization on the training set

has a remarkably higher generalization ability than canonic or standard GP (besides

counteracting bloat in a more efficient way and maintaining a higher diversity inside

the population). Furthermore, in [111], authors defined two measures of complexity

for the GP individuals, they used them as further criteria (besides fitness) in a multi-

objective system based on Pareto optimization, and they showed that this system is

able to counteract bloat and overfitting. Compared to those contributions, in this thesis

different objectives have been used and the NSGA-II [28] multi-objective evolutionary

method has been used. The functions used in the multi-optimization algorithm are the

fitness of the problem and one or more other functions that can intuitively be related

to overfitting. These function are (1) the number of the nodes of the tree and (2) the

variance of the error between the target and the obtained value. Obviously the former

function should be minimized in order to counteract bloat and to reward small-sized

trees. The choice of this function is interesting because it immediately demands for a

comparison with the bloat control method proposed in [93]. Both techniques, in fact,

counteract bloat but the way they do it is different. While in [93] code size reduction

is achieved implicitly (following the target length distribution), in multi-optimization

this is done explicitly. Regarding the latter function, the minimization of the variance
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of the error between the target and the obtained value reduces the difference between

the shape of the expected (unknown) function and the function described by the given

individual. This kind of optimization is supposed to be related to overfitting as already

discussed for instance in [72].

Experimental results show that the multi objective optimization system produces

solutions with better generalization ability than standard GP and Operator Equalisation.

Even though this is in agreement with several previously published results (see for

instance [39, 105, 111]), it seems to contradict the fact that small size does not imply

better generalization.

We hypothesize that the reason why multi-objective GP generalizes better then

standard GP and Operator Equalisation does not reside in the fact that size minimiza-

tion has been used as an objective. As a confirmation, results on test data obtained

considering the variance of the error as a second objective, are comparable with the

ones of multi-objective GP using size (the differences between these two systems are

not statistically significant).

Thus, we hypothesize that better generalization ability is, so to say, an intrinsic

characteristic of multi-optimization systems, which do not depend on the fact that size

of solutions is explicitly minimized.

8.4 GP based on semantic

The analysis of GP has been mainly conducted considering syntactical properties. Indi-

viduals, or programs, are usually presented in a language of syntactic formalism such

as s-expression trees [57], grammars, or graphs [82]. The genetic operators in such GP
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systems are usually designed to ensure the syntactic closure property, i.e. to produce

syntactically valid children from any syntactically valid parent(s). As observed in [77],

using such purely syntactical genetic operators, GP evolutionary search is conducted

on the syntactical space of programs with the only semantic guidance from the fitness

of program measured by the difference of behavior of evolving programs and the target

programs (usually on a finite input-output set called fitness cases). Although GP has

been shown to be effective in evolving programs for solving different problems using

such (finite) behavior-based semantic guidance and pure syntactical genetic operator,

this practice is somewhat unusual from real programmers’perspective. Computer pro-

grams are not just constrained by syntax but also by semantics. As a normal practice,

any change to a program should pay heavy attention to the change in semantics of the

program and not just those changes that guarantee to maintain the program syntactical

validity.

To amend this deficiency in GP resulting from the lack of semantic guidance on

genetic operators, several works on semantic have been proposed in the last years.

In [104] one method to incorporate semantic information into GP crossover operators

for real-valued symbolic regression problems is proposed. In particular, authors aim

to incorporate semantic into the design of new crossover operators so as to maintain

greater semantic diversity, and provide higher locality than standard crossover.

In [10] Beadle and Johnson have proposed a semantic-based crossover operator for

GP. They showed that their semantically driven crossover operator could help GP in

achieving better results and less code bloat on some standard Boolean test problems.

In [77] authors extend the ideas from [10] to investigate the effect of some semantic

based guidance on the crossover operator in GP on a family of real-valued symbolic
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regression problems. They also propose a new form of semantic-aware crossover for

GP, which considers approximations of the semantics of the exchanged subtrees.

An extensive literature review regarding methods to include semantic information

in the GP process is presented in chapter 7.

In a large number of works, the semantic information has been included by re-

defining the genetic operators. The idea that has been presented in this thesis is differ-

ent, and does not require any modification to the standard GP operators. The method

(introduced in chapter 7) is inspired by the well-known control bloat method proposed

in [92]. The similarities between the two methods are limited to the acceptance criteria

of new individuals produced by the genetic operators. Beyond this, the basic idea that

characterizes the two methods is different: while the work in [92] builds and uses a

distribution based on the syntax of the individuals, the work proposed in this thesis fo-

cuses on semantics. Hence, the main idea of the proposed “Semantic niching” method

is to use a semantic distribution to guide the evolutionary process. This distribution

is used to direct the algorithm toward solutions that are semantically close to the best

solution found so far by GP. The main goal is to increase the generalization ability of

GP. To do that the proposed algorithm has been design to maintain a high population

diversity in the first generations while in the last generations should search the optimal

solutions in a small area of the search space.

Regarding the experimental phase 10 regression problems have been chosen, 5 are

continuous functions while the other 5 are non-continuous functions. The main objec-

tive of this experimental phase was to assess the performance of the proposed method

with respect to standard GP and the Parsimony Pressure method [40]. In particular

we want to check whether or not the proposed method could improve the generaliza-
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tion ability of GP. On the other hand, we want to control whether or not the proposed

method has a significant impact on population diversity. Experimental settings and

results have been outlined in sections 7.5 and 7.4. To summarize, experimental results

show that:

• the proposed method performs better or in a comparable way to standard GP and

to the Parsimony Pressure method on unseen data;

• the proposed method maintains a high degree of population diversity in the first

evaluations of the learning process while it reduces the population diversity in

the following evaluations. This is a good indicator of the fact that the proposed

method is able to converge on solutions that are semantically better;

• the proposed method seems to be able to cover areas of the search space charac-

terized by the presence of solutions with good fitness;

• the proposed method tends to create large individuals.
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This thesis contains some contributions to face some open problems in the field of

GP. Nevertheless, all these problems are not completely fixed. In particular, finding

a definitive solution to avoid overfitting still remains a very difficult task; in the same

way, finding the relations between phenomena that characterize the execution of a GP

process requires further studies. However, results presented in this thesis are encour-

aging: some aspects related to the behaviour of GP systems have been analyzed and

some conclusions have been drawn. This analysis opens up further research directions.

New research directions, opened by the work presented in this thesis, are discussed in

this chapter. In particular, section 9.1 describes possible future works in the field of GP

measures, while section 9.2 presents some idea to improve the generalization ability

of GP systems.
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9.1 GP Measures

Future activities regarding the definition of measures to capture phenomena that char-

acterize a GP system, could be conducted in the following directions:

• improving the efficiency of the proposed measures;

• finding relations between bloat, overfitting and complexity;

• defining a GP system that integrates the proposed measures to allow GP to find

better solutions.

Regarding the first point, it is possible to note that the definition of the measures

proposed in 4 presents some problems:

• the bloat measure compares the fitness and the length of programs at a given

generation with the fitness and the length of programs at generation zero. This

is a good starting point, given that it is possible to assume that there is no bloat

at generation zero. Nevertheless, the initialization algorithm (that defines the

population at generation zero) has biases both on program length and on fitness.

These biases clearly affect the measure and should be taken into account. Or

otherwise, a measure that does not take generation zero as a reference deserves

to be defined and investigated;

• the overfitting measure clearly depends on how training and test sets have been

chosen. Given that at each GP run a different (random) partitioning of the dataset

into training and test sets has been used, it may happen that exactly the same

population has two different values of the overfitting measure in two different
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runs. New versions of this measure deserve to be defined, for instance alternating

training and test data in a crossvalidation-like way;

• using the same idea as in equation (4.1) for measuring the relationship between

training and test fitness (i.e. comparing the values at the current generation with

the corresponding ones at generation zero) is definitely unsuitable. In fact, at

generation zero the population has been created by the (typically random) ini-

tialization algorithm and the solutions in the population have not undergone any

evolution yet. For this reason, there is typically no reason why training fitness

should be better than test fitness at generation zero. On the other hand, these

two values are typically quite similar and being the test set often smaller than

the training set, it is even more likely that the average training fitness is worse

than the average test fitness at generation zero. For this reason, using a formula

like equation (4.1) to quantify overfitting would produce a measure that is more

affected by the values of training and test fitness at generation zero than by the

course of the learning process. As a consequence of the fact that training and test

fitness values are very similar to each other at generation zero (or test fitness is

even better than training fitness), a measure like equation (4.1) would very often

produce very high overfitting values, even when it is clearly not the case;

• the different functional complexity measures are formally weakly related with

curvature. They are empirical indicator, that captures the idea of curvature only

from an intuitive viewpoint. Compared to other (more formal) measures they

have the advantage of being simple and computationally cheap, but the lack of

formality of these measures may cause problems.
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Working on these problems could lead to the definition of measures that are prob-

lem and data independent. Such measures could be used to control the phenomena that

characterize a GP run, without any bias. This results in better and reliable measures.

Starting from this point, it would be much easy to find the relations that link bloat,

overfitting and functional complexity. In the work proposed in this thesis several con-

clusions about these phenomena can be drawn, but the lack of formalisms in defining

some measures sometimes leads to contrasting results.

Defining better measures not only allows to determine more easily existing rela-

tions between the underlying phenomena, but would allow the use of these measures

within a GP system, with the aim of controlling the learning process and taking the

actions necessary to limit the effects of these phenomena.

These future research directions could have an important impact on the application

of GP. It could be possible to stop the learning process when overfitting starts to appear

or when solutions start to bloat. Hence, the possible scenarios resulting from this

research are promising.

9.2 GP Generalization Ability

In this section possible research directions on improving the generalization ability of

GP are outlined. This problem is interesting not only for GP, but also for many machine

learning techniques. Nowadays, methods to increase the generalization ability of a GP

system can be divided in two categories:

• methods that work considering structural properties;

• methods that work considering semantic properties;
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In this thesis different methods to solve this problem have been studied. One

method is based on semantic (chapter 7), one method used multi objective optimiza-

tion combining semantic and structural properties (chapter 5) while one method (chap-

ter 6) is inspired by the concept of “short-term” memory, which is typical of Tabu

Search [41]. All these methods present strengths and drawbacks. The method pro-

posed in chapter 7 has given better performances with respect to other GP systems,

but it generates large trees. Moreover, this method is characterized by the presence

of an acceptance threshold AT : this threshold influences the final performances of the

system and must be carefully chosen.

The performances of the method proposed in chapter 6 are also based on the values

of two distinct parameters that strongly influence the behaviour of the GP system.

Regarding the multi objective optimization framework proposed in chapter 5, a

further analysis is needed. In particular, it is not clear how the different objectives

interact during the evolutionary process.

While some conclusions can be drawn from the work presented in this thesis, defin-

ing a method to completely avoid overfitting is an open problem. The fact is that this

problem depends on several factors that are independent from the learning process.

For instance, it is clear that the particular training and test sets used could influence

the generalization ability of the learned solution. Hence, different GP runs with dif-

ferent training and test sets may lead to solutions that present a different amount of

overfitting.

In this light, the process that could lead to a system without overfitting should con-

sider also these “external” factors. Conversely, considering only the learning process,

it is clear that it is necessary to combine both structural and semantic information. As
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stated in chapter 7 semantic plays a central role in the evolutionary process, but seman-

tic alone is not enough to guarantee a final solution with a good generalization ability.

Thus, a learning technique should optimize more than one criterion; in this light an

accurate analysis of multi optimization algorithms could lead to interesting scenarios.
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