
Economic Models of Innovations:
Why GP Can Be a Possible Way Out?

Shu-Heng Chen
AI-ECON Research Center
Department of Economics

National Chengchi University
Taipei, Taiwan 11623
chchen@nccu.edu.tw

Bin-Tzong Chie
AI-ECON Research Center
Department of Economics

National Chengchi University
Taipei, Taiwan 11623

chie@aiecon.org

Abstract

No matter how commonly the term innovation has been
used in economics, a concrete analytical or computa-
tional model of innovation is not yet available. This pa-
per argues that a breakthrough can be made with genetic
programming, and proposes a functional-modularity
approach to an agent-based computational economic
model of innovation.

Motivation and Introduction
No matter how commonly the term “innovation” or “tech-
nological progress” has been used in economics, or more
generally, in social sciences, a concrete analytical or com-
putational model of innovation is not yet available. Stud-
ies addressing specific technology advancements in differ-
ent scientific and engineering fields are, of course, not short;
however, the general representation of technology, based on
which innovation can be defined and its evolutionary process
can be studied, does not exists.

For example, Figure 1 and 2 show the evolutionary pro-
cesses of the hammer and the weapon. The general an-
alytical or computational model which is able to demon-
strate these evolutionary processes is not available. Ker-
ber and Saam (2001) attempted to embed technology in
a finite-dimensional space, and Ma and Nakamori (2002)
used the Kauffman’s famous KM model and genetic algo-
rithms to represent technology and its evolution. We, how-
ever, argue that it is desirable to embed technology in an
infinite-dimensional space. It would be inconceivable to
think the evolution from the DOS system to the Windows
system as just the fine-tuning of some parameters in a finite-
dimensional space.

The lack of analytical or computational model of tech-
nology evolution is not surprising because thinking how we
think, to a large extent, remains to be a daunting task for
scientists. Therefore, in economics, a convenient device is
simply to treat technology as a parameter in the model. For
example, when coming to its effect on economic growth,
technology is taken as a parameter in the production func-
tion,

Y = AF (L;K); (1)

Copyright c
 2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

where L and K refer to the input labor and capital, Y de-
notes the output, and A represents the technology level. In
modern theory of growth, economists attempt to offer expla-
nations for the advancement of technology by settingA as an
output from another production function. Nevertheless, the
inner structure of A has never been addressed in economics.
If the inner structure is poorly understood, then it is hard to
give any meaningful quantification of A. Consequently, so
far, there is no direct measurement of A, and the best we
have are only indirect measurements, such as the number of
patents authorized, number of new publications,... Needless
to say, none of these numbers helps us understand the nature
and the structure of innovation processes.

While direct modeling of innovation is difficult,
economists’ dissatisfaction with neo-classical economic re-
search paradigm is increasing, partially due to its incompe-
tence to produce novelties (or the so-called emergent prop-
erty). We cannot assume in advance that we know all new
goods and new technology to be invented in the future.
Therefore, in our model, we must leave a space to antic-
ipate these unanticipated stuff. Recently, Aoki (2002a,b)
introduced Zabell’s notion of unanticipated knowledge to
economists (Zabell, 1992). The notion is motivated by popu-
lation genetics. In population genetics, unanticipated knowl-
edge can be related to the sampling of species problem.
In probability and statistics it is called the law of succes-
sion, i.e. how to specify the conditional probability that
the next sample is never seen, given available sets of ob-
servation up to now. While Aoki’s recent efforts indicate the
fact that economists have not paid much attention to models
of innovation, his proposed Ewens-Pitman-Zabell induction
method is still rather limited. Basically, the nature of diver-
sity of species and the nature of human creativity should not
be treated equally (Basalla, 1988). Discovering new species
is not a mentally creative activity: if a new species does not
exist at all, we simply have no way to discover it. Further-
more, there is no reason why species discovery shall follow
an evolutionary fashion, whereas the technological advance-
ment is believed to have such continuous nature.

This paper, as the first stage of the research project “Mod-
els of Innovation” now launched at the AI-ECON Research
Center, proposes genetic programming as a possible way
leading to building an economic model of innovation. Our
argument is based on two essential standpoints. First of all,

From: AAAI Technical Report SS-03-02. Compilation copyright © 2003, AAAI (www.aaai.org). All rights reserved.

Figure 1: The Evolutionary History of the Hammer (Source:
Basalla (1988), Figure 1.4, p.20.)

Figure 2: The Evolutionary History of the Weapon (Source:
Basalla (1988), Figure 1.3, p.19.)

regarding the innovation process, we consider it as a contin-
uous process (evolution), rather than a discontinuous process
(revolution). By the continuous viewpoint, novel artifacts
can only arise from antecedent artifacts. New kinds of made
things are never pure creations. Basalla (1988) gave a vivid
demonstration in pictures on the evolution of weapons and
hammers (Figure 1 and 2). From this standpoint, it is clear
that we are looking for an evolutionary model of innova-
tion. Second, given the continuity argument, we assume that
innovation is a growing process, i.e., combining low-level
building blocks or features to achieve a certain kind of high-
level functionality. In plain English, new ideas come from
the use (the combination) of the old ideas (building blocks).
New ideas, once invented, will become building blocks for
other more advanced new ideas. In fact, the evolutionary
process of the hammer and the weapon depicted by Basalla
(1988) may be replicated by this functional-modularity ap-
proach.1 That GP can deliver this feature has already been
well evidenced on a series of its promising applications to
the scientific, engineering, and financial domains.

1The idea of functional modularity is not new for economists.
For example, Paul Romer already mentioned “Our physical world
presents us with a relatively small number of building blocks–the
elements of the periodic table–that can be arranged in an incon-
ceivably large number of ways.” (Romer, 1998)

Functional-Modularity Approach
To see the relevance of the functional-modularity approach
to the evolutionary process of technology, it would be useful
to start with an example. Figure 3 presents an application
of the genetic algorithm to facial recognition. This appli-
cation can be considered as an alternative to the traditional
approach which relies on a witness to detail some features
of the face he saw to a drawer. A group of faces are now
automatically generated, and the witness only needs to input
a score (fitness value) to each of the face based on its close-
ness to the true one he saw. Then, the genetic algorithm is
applied to set an evolutionary process in motion to review
and revise these faces. Hopefully, one of these faces coming
out will eventually be very similar to the true one.

Figure 3: A Sample of Faces Random Initially Generated by
the GA

Figure 4: Binary Coding of a Face

Illustrations of GP in Discovering
A decade ago, financial economists already started to ap-
ply the functional-modularity approach with GP in discov-
ering new trading rules. The issue is as follows: given some
building blocks or knowledge from experts, can GP discover
some profitable trading rules which are not known to us, in-
cluding those experts? A series of experiments in the for-
eign exchange markets and the stock markets were carried
out by (Neely ,Weller, and Dittmar, 1997; Neely and Weller,
1999; Allen and Karjalainen, 1999). They took moving av-
erage rules and trading range break-out rules as the building
blocks (primitives). GP was employed to grow new trading

rules from these primitives. They then tested the profitabil-
ity of the rules discovered by GP, and examined the con-
tents of these rules: did the GP trading rules tell us anything
more than just the simple technical trading rules? In the
foreign exchange markets, the result is promising. First, GP
can discover profitable trading rules, and second, what GP
discovered is actually much richer than what simple rules
can tell us. Details of what was discovered by GP was also
discussed in their studies. Hence, GP already demonstrated
the innovation process of technical trading rules: combining
low-level building blocks (MA, filter, or break-out rules) to
achieve a certain kind of high-level functionality (profitable
performance).

John Koza’s application of GP to Kepler’s law is another
striking example. Here, not only did GP rediscover the law,
but also, as the system climbed up the fitness scale, one of
its interim solutions corresponds to an earlier conjecture by
Kepler, published ten years before the great mathematician
finally perfected the equation. (Levy, 1992; Banville, 1993)
So, what GP presents is not just the end-result, but may
replicate the whole trial-and-error process (the learning and
probing process) which human may experience on their way
to discovery. This is certainly a desirable feature to satisfy
the continuity hypothesis of technology advancement. John
Koza’s another application of GP to analog circuits shows
that GP-evolved solutions can actually compete with human
ingenuity: the results closely matched ideas convinced by
humans. Koza’s GP has produced circuit designs that in-
fringe on 21 patents in all, and duplicate the functionality of
several others in novel ways (Willihnganz (1999)).

Elements
Commodities and Production
The illustrations above evidence that GP can simulate a
functional-modularity continuous (evolutionary) innovation
process. Nevertheless, applying GP to economic models of
innovations, more precisely, an agent-based computational
economic model of innovation, one shall anticipate a series
of complications and difficulties which one does not en-
counter in just the applications to knowledge discovery and
data mining. Let us point out a few of them in parlance of
GP. First, what would be the primitives or the initial build-
ing blocks? This is a hard issue. Notice that we are only
interested in a very general or abstract description of in-
novation, rather than any specific kind of innovation. This
issue is hard because commodities in economic theory es-
sentially has empty content. Little attention has been paid to
its size, shape, topology, and inner structure. A general rep-
resentation of commodities simply does not exists in current
economic theory. As a result, the emerging process of new
commodities from existing commodities, i.e., the result of
technological innovation, has not been formally addressed in
economic theory. This weak background offers us no guide-
line as to the choice of primitives.

In this paper, a breakthrough is made by first associating
each commodity with its production process. Each produc-
tion process is described by a sequence of processors and
the materials employed. In general, each sequence may be

furthered divided into many parallel subsequences. Differ-
ent sequences (or subsequences) define different commodi-
ties. The commodity with the associated processor itself is
also a processor whose output (i.e., the commodity) can be
taken as a material used by an even higher level of produc-
tion. With this structure, the function set naturally refers to
a set of primitive processors, and the terminal set refers to
a set of raw materials. They are denoted respectively as the
following,

Terminal Set : � = fX1; X2; :::; X�g; (2)

Function Set : � = fF1; F2; :::; Fkg: (3)

Each sequence (commodity, processor) can then be repre-
sented by a LISP S-expression or, simply, a parse tree. 2 The
innovation process can then be simulated by the standard
GP. Automatic defined functions (ADFs) are used to char-
acterized some well-accepted processors developed during
evolution. The function set is then adaptive with the deletion
and addition of processors, including primitive functions and
ADFs. The knowledge of the society at a point in time can
then be measured by the complexity and the diversity of
the adaptive function set at that moment. More about this
is detailed in Chen and Chie (2003), Section “Functional-
Modularity Approach to Innovation and Knowledge”.

Preference
The second challenging issue is the choice of the fitness
function, i.e., the feedback mechanism by which the direc-
tion of technological progress is determined. All commodi-
ties associated with their production processes shall be eval-
uated by profits, which are determined in turn by the mar-
ket demand and the cost structure. The market demand is
derived from the users’ (consumers’) subjective preference
(utility function). However, current economic theory pro-
vides us no clue on how to evaluate the enjoyment of con-
suming a commodity when the consumer is presented a se-
quence of processors. In this paper, a possible solution based
on the monotonicity, synergy and consistency condition is
proposed to derived a well-behaved utility function from any
preference which is sampled from the strongly-typed Kleene
Star. More details will be given in Section “Functional-
Modularity Approach to Preferences and Utility Func-
tions”. This framework can be enriched by making con-
sumers’ preference endogenous and adaptive and by taking
the effect of fashion into account.3

Consumers’ preferences are also represented by parse
trees as shown in Figure 5, which can be interpreted as an
ideal or targeted sequence of processors. These six parse
trees are different, indicating that consumers’ preferences
are heterogeneous. Consumers may not explicitly know

2As an illustration, a parse-tree representation of the Chinese
macaroni may be helpful.

3Consumers’ preference can be functionally dependent on the
commodities they have consumed. Examples are abound. Paul
Romer once made the following story, “For instance, cheaper tran-
sistors have encouraged broadband graphics applications, which in
turn have created users impatient with the slow speed of data trans-
mission.” (Romer, 1998).

;
�

;
��

;
�

)
�

)
�

)
�

)
�

;
�

;
�

;
�

;
�

;
�

)
�

)
�

)
�

;
�

;
�

)
�

)
�

)
�

)
�

;
�

;
�

;
�

;
�

)
��

)
�

)
�

;
�

;
�

;
��

;
�

)
�

)
�

)
�

;
�

;
�

)
�

;
��

;
�

)
�

;
�

;
��

;
�

)
�

)
�

)
�

;
�

;
�

)
�

;
��

;
�

)
�

)
�

)
�

;
�

;
��

;
�

)
�

)
�

;
�

)
�

;
�

;
�

)
��

)
�

)
�

;
�

;
�

;
��

;
�

)
�

)
�

)
�

;
�

;
�

)
�

;
��

;
�

)
�

&RQVXPHU � &RQVXPHU � &RQVXPHU � &RQVXPHU � &RQVXPHU � &RQVXPHU � «

Figure 5: Consumers’ Preference: What shown here is only
part of the potentially infinite large parse tree, i.e. onlyU l of
[U l]. See more details on Section “Functional-Modularity
Approach to Preferences and Utility Functions.”

their preferences. However, if the commodity served to them
is characterized by exactly the same sequence of processors,
consumers shall be very happy about this. The most in-
triguing issue involved here is the mathematical operation
of these preferences. A full discussion of it will come later.

Cost and Capacity Constraint
A full-fledged agent-based model of innovation can be quite
complex. As an initial stage of this research, we may start
the model-building by making some simplifications. We first
assume that a fixed number of consumers (say nc) whose
preferences, represented by a parse tree, are exogenously
generated, and whose endowments (income) are also given
exogenously. On the production side, the economy is com-
posed of nf producers, each of them are initially assigned
an equally operation capital, K0.

K1;0 = K2;0 = ::: = Knf ;0 = K0: (4)

With this initial capital, the producers are able to buy ma-
terials and processors from the input markets up to their af-
fordability. There are two types of input markets at the initial
stage, namely, the raw-material market and the rudimentary
processor market. For simplicity, we assume that the supply
curve of two markets are infinite elastic with a fixed unit cost
(c) for each raw materials and for each rudimentary proces-
sors.

CX1
= CX2

= ::: = CX�
= CF1

= CF2
= ::: = CFk

= c:
(5)

With the materials and the rudimentary processors pur-
chased from the input market, the producer can produce a
variety of commodities, defined by the associated sequence
of processors. The cost of each commodity is then simply its
total number of materials and the number of processors, or,
in terms of GP, the node complexity of the parse tree. How-
ever, to allow for the scale effect, each additional unit of the
same commodity produced by the producer should be less
costly. This can be done by introducing a monotonically de-
creasing function �(q) (0 � �(q) � 1), where q is qth unit
of the same commodity produced. The cost of each addi-
tional unit produced is simply the cost of the previous unit
pre-multiplied by �(q). With this description, the capacity
constraint for a full-specialized producer i (i 2 [1; :::nf]),

i.e. the producer who supplies only one commodity, should
be

K0 �

�qX
q=1

Cq ; (6)

where Cq = �(q)C1 is the unit cost of the qth unit and
�(1)=1 . For a full-diversified producer, i.e., the producer
who produces a variety of commodities each of which with
only one unit, the capacity constraint is

K0 �
�mX

m=1

Cm;1; (7)

where Cm;1 is the the cost of the first unit of commodity m.
In general, the capacity constraint for the producer i is

K0 �

�mX
m=1

�qmX
q=1

Cm;q ; (8)

where Cm;q = �m(q)Cm;1.

Production Strategies
In Equation (8), the strategic parameters are �m, �q and Cm.
To survive well, producers have to learn how to optimize
them. �m can be be taken as a measure of a degree of diver-
sification, whereas �q can be taken as as a degree of special-
ization. Cm, i.e., the node complexity of the commodity m,
is also a behavioral variable. Given the capacity constraint,
the producer can choose to supply large amount of primi-
tive commodities (a quantity-oriented strategy), or limited
amount of highly delicate commodities (a quality-oriented
strategy). Therefore, the choice of Cm can be considered as
a choice of the level of quality.

Marketing Strategies
The marketing strategy consists of two main stays: pricing
and advertising. On the pricing part, the producer has to
decide a mark-up �, i.e., the expected profit rate of the com-
modity. Suppose that �Cm is the average cost of producing
the mth commodity.

�Cm =

P�qm
q=1 Cm;q

�qm
(9)

Then by the associated mark-up �m, the label price (the ask)
of the commodity is

askm = (1 + �m) �Cm: (10)

Advertising can be considered as cost expenditures to sub-
side consumers’ search costs (see the discussion of Equation
(16) below). It is used to enhance consumers’ knowledge of
the commodity. Without this expenditure, consumers may
not be able to reach this commodity and hence would not
buy it. Suppose that the advertising strategy is simply to de-
cide a lump-sum expenditure which is used to cover a por-
tion of consumers’ search costs. Let Am be the advertising
expenditure spent for the promotion of commodity, then the
capacity constraint for the producer i is

K0 �
�mX

m=1

Am +

�mX
m=1

�qmX
q=1

Cm;q: (11)

Market Process 1: Random Matching
For simplicity, we assume a random matching mechanism
between consumers and producers. In a trading round t,
each consumer i (i = 1; 2; :::; nc) is randomly matched to
one producer j (j = 1; 2; :::; nf) and to one of the commodi-
ties it produces, say, Yj;m. The utility from consuming that
commodity, Ui(Yj;m), defines the maximum amount (reser-
vation price), Bi(Yj;m), which the consumer would like to
bid for that commodity, i.e.,

bidi(Yj;m) = Ui(Yj;m) (12)

Let qd(Yj;m) be the aggregate demand for the commodity
Yj;m at the trading round t,

qd(Yj;m) =

ncX
i=1

Ii; (13)

where Ii is an indicator function. Ii = 1 if consumer i is
connected to the commodity Yj;m at the trading round t and
bidi(Yj;m) � ask(Yj;m); otherwise, it is zero. Also, let
qs(Yj;m) be the total number of units available at the trading
round t. The trading price of Yj;m at the trading round t will
then be determined as follows.

P (Yj;m) =

�
ask(Yj;m); if qd(Yj;m) � qs(Yj;m)

bidi�(Yj;m); if qd(Yj;m) > qs(Yj;m)
(14)

where i� satisfies the equality

Card fi j bidi(Yj;m) � bidi�(Yj;m)g = qs(Yj;m): (15)

The price determination process (14) and (15) can be
considered as a combination of take-it-or-leave and English
auction (ascending-price auction). The sellers just post the
price and would basically not change it at the same market
day. However, if at a moment the demand is too high, then
the seller will leave the consumers to determine where the
price shall go. This finishes one trading round. All com-
modities sold in the trading period t shall be removed from
the shops during the next trading period. The matching and
trading process goes on and on until either we come to the
end of trading day, i.e., at a maximum of T trading rounds
or all consumers have run out of their budgets. A flowchart
of the market process is given in Figures 6 and 7.

Market Process 2: Purposive Search
A variety of trading processes exists. For example, to de-
cide which commodities to be included into their baskets,
consumers can first experiment with different commodities.
They can do this by shopping around, and sampling some
commodities. However, there is a search cost associated
with this shopping activity. The unit search cost for exper-
imenting one commodity is a. The total resource spent in
search should not be beyond their budget constrains. The
consumers can then evaluate the satisfaction they have from
each commodity in their sample. With this evaluation, they
can determine the reservation price of each commodity. By
computing the difference between the reservation price and
the label price of the commodity, the net utility of a com-
modity (consumer surplus) can be derived, and all the com-
modities in the sample can be ranked accordingly. A ratio-
nal consumer is expected to buy the commodities starting

for i=1 to N c

ProducerID = Uniform(1, N f)
CommodityID = Uniform(1, CommodityType)

if Compare(Consumer (i).Tree ,
Productor

(ProducerID).Commodity (CommodityID).Tree)>0 then
Consumer (i).Buy(ProducerID, CommodityID) = True

Caculate Consumer (i).RedemptionValue

next i

ìø�

If Consumer(i).Budget > 0

á�

Consumer (i).Budget = Consumer (i).Budget - 1

Into Market (See Market)

End While

Do While Consumer(all).Budget > 0

If Consumer(i).BuyMore = True then
Consumer (i).D (ProducerID, CommodityID) =

Consumer (i).Sigma * Consumer (i).Budget / Plabel
Else

Consumer (i).D (ProducerID, CommodityID) = 1

Figure 6: The Flow Chart of Random Matching Mechanism

from the topmost commodity and descending down to the
commodities which spent their last penny. Hence, the con-
sumers’ budget constraint can be written as

I � a� S +
X
�

P� ; (16)

where I is the budget constraint, S is the sample size (search
intensity) of consumers, i.e., the number of commodities
consumers have some knowledge of them. P� is the price
of the commodity which is ranked lth of consumers’ experi-
enced commodities.

Functional-Modularity Approach to
Preferences

Commodity Space
Before introducing the functional-modularity approach to
preferences, let us start a brief review on the utility func-
tion used in the conventional economic theory. The utility
functionU(:) is generally a mapping from non-negative real
space to real space R.

U : Rn

+ ! R (17)

This mapping above helps us little when what to evaluate is
a sequence of processors rather than just quantity. In our
economy, what matters for consumers is not the quantity
they consumed, but the quality they consumed. Therefore,
the conventional commodity spaceRn

+ is replaced by a new

for k=1 to N c
if Consumer (k).Buy (i, j)) = True

then
D = D + Consumer (k).D (i, j)

next k

for i = 1 to N f

for j = 1 to
Producer(i).CommodityType

Next j

Next i

Note Commodity (i,j)'s Market
D = 0
S = 0

if S(i,j)>D?
P=Producer(i).

Commodity (j).PLable

Ranking Their Redemption Value
from Highest to the Lowest

P=P the redempt ion va lue o f the las t sa t is f ied consumer
D = S (i, j)

á�

ìø�

if Consumer(k).Buy (i, j)) = True and
Consumer (k).RedemptionValue - P > 0

then

Consumer (k).Utility =
Consumer (k).Utility +

Consumer (k).RedemptionValue - P

Producer(i).Profit = Producer(i).Profit +
P - Producer(i).Cost (j)

for k = 1 to N c

next k

S (i, j) = S(i, j) - D

Figure 7: The Flow Chart of the Market Process

commodity space which is a collection of sequences of pro-
cessors. We shall call the space Y . The representation of
the commodity space Y can be constructed by using theory
of formal language, for example, the Backus-Nauer form
(BNF) grammar. So, Y is to be seen simply as the set of
all expressions which can be produced from a start symbol
� under application of substitution rules (grammar) and a
finite set of primitive processors (�) and materials (�). That
is Y represents the set of all commodities which can be pro-
duced from the symbols of � and �.

Y = fY j �) Y g (18)

While, as we saw in Figure 5, each Y (Y 2 Y) can be
represented by the language of expression trees (ETs), a
more effective representation can be established by using
Gene Expression Programming (GEP), developed by Fer-
reira (2001). In GEP the individuals are encoded as linear
strings of fixed length (the genome or chromosomes) which
are afterwards expressed as nonlinear entities of different
sizes and shapes, i.e., different expression trees. As Ferreira
(2001) shown, the interplay of chromosomes and expression
trees in GEP implies an unequivocal translation system for
translating the language of chromosomes into the language
of ETs. Some advantages of GEP over genetic programming
and genetic algorithms has been well discussed in Ferreira
(2001). Using GEP, the commodity space can then be de-
fined as a subset of Kleene star, namely,

Y = fYn j Yn 2 (� [�)� \GEPg; (19)

where Y n is a string with length n,

Yn = y1y2:::yn; yi 2 (� [�);8i = 1; :::; n: (20)

We have to emphasize that, for satisfying the syntactic valid-
ity, Y is only a subset of the Kleene star (� [�)�. To make
this distinction, the Y described in (19) is referred to as the
strongly-typed Kleene star. Each Yn can then be translated
into the familiar parse tree by using GEP. This finishes our
description of the commodity space.

Preferences

Unlike commodity space, preference space cannot be a col-
lection of finite-length strings, since they are not satisfied
with the non-saturation assumption. Economic theory as-
sumes that consumer always prefer more to less, i.e., the
marginal utility can never be negative.

U 0(y) � 0;8y 2 R+ (21)

Even though we emphasize quality dimension instead of
quantity dimension, a similar vein of (21) should equally
hold: you will never do enough to satisfy any consumer.
If consumers’ preferences are represented by finite-length
strings, then at a point, they may come to a state of com-
plete happiness, known as the bliss point in economic theory.
From there no matter how hard the producers try to upgrade
their existing commodities, it is always impossible to make
consumers feel happier. This is certainly not consistent with
our observation of human behavior. As a result, the idea of
commodity space cannot be directly extended to preference
space.

To satisfy the non-saturation assumption, preference must
be a string with infinite length, something like

:::u1u2:::ul::: = :::U l::: (22)

However, by introducing the symbol 1, one can regain the
finite-length representation of the preference, i.e.,

1u1u2:::ul1 =1U l1 = [U l]: (23)

First of all, as we mentioned earlier, consumers may not nec-
essarily know what their preferences look like, and may not
even care to know it. However, from Samuelson’s revealed
preference theory, we know that consumers’ preferences im-
plicitly exist. Equation (23) is just another way to say that
consumers’ preferences are implicit. It would be pointless
to write down the consumers’ preferences of the 30 century,
while we may know that there are much richer than what
has been revealed today. To approximate the feedback re-
lation between technology advancements and preferences, it
would be good enough to work with local-in-time prefer-
ences (temporal preference).

Secondly, Equation (23) makes us be able to see the pos-
sibility that preference is adaptive, evolving and growing.
What will appear in those1 portions may crucially depends
on the commodities available today, commodities consumed
by the consumer, consumption habits of other consumers,
and other social, institutional and scientific considerations.

;
�

)
�

)
�

)
�

)
�

;
�

;
�

;
�

;
�

)
��

)
�

)
�

;
�

;
�

;
��

;
�

)
�

)
�

)
�

;
�

;
�

)
�

;
��

;
�

)
�

Figure 8: Preference: The Parse-Tree Representation

�)� ;� �)� �)� ;� ;�� �)� �)� �)� ;� ;��� �)�� ;� �)� ;� ;���� �)� ;� �)� ;� �)� ;� �)� ;� ;���������

Figure 9: Modular Preference: The LISP Representation

Utility Function
Given the preference [U l], let U j [U l] be the utility function
derived from [U l]. U j [U l] is a mapping from the strongly-
typed Kleene Star to R+.

U j [U l] : Y !R +: (24)

Hereafter, we shall simply use U instead of U j [U l] so long
as it causes no confusion.

The modular approach to preference considers each pref-
erence as a hierarchy of modular preferences. Each of these
modular preferences is characterized by a parse tree or the
so-called building block. For example, the preference shown
in Figure 8 can be decomposed into modular preferences
with different depths. They are all explicitly indicated in
Figure 9. Consider Si as the set of all modular preferences
with depth i. Then Table 1 lists all modular preferences by
these Si. From both Figure 9 and Table 1, it is clear that each
subtree at a lower level, say Sj , can always finds its parent
tree, a thee which it is a part or a branch of it, at a higher
level, say Si where i > j. This subsequence relation can be
represented as follows.

Si w Sj (25)

A commodity Yn is said to match a modular preference
Si of U l if they are exactly the same, i.e. they share the
same the LISP expression and the same tree representation.
Now, we are ready to postulate the first regularity condition
about a well-behave utility function, which is referred to as

Table 1: Modular Preferences Sorted by Depth

D Subtrees or terminals
1 X2; X3; X5; X8; X9; X11 1
2 S2;1 = (F7X2X3) 2

S2;2 = (F9X5X11)

S2;3 = (F9X3X8)

S2;4 = (F9X5X11)

3 S3;1 = (F12X3(F9X3X8)) 4
S3;2 = (F5X3(F9X5X11))

4 S4;1 = (F2(F9X5X11)(F12X3(F9X3X8))) 8
S4;2 = (F2X3(F5X3(F9X5X11)))

5 S5 = (F6X3(F2X3(F5X3(F9X5X11)))) 16
6 S6 = (F9(F2(F9X5X11)(F12X3(F9X3 32

X8)))(F6X3(F2X3(F5X3(F9X5X11)))))

7 S7 = (F2(F7X2X3)(F9(F2(F9X5X11)(F12

X3(F9X3X8)))(F6X3(F2X3(F5X3 64
(F9X5X11))))))

8 S8 = (F4X3(F2(F7X2X3)(F9F2(F9X5X11) 128
(F12X3(F9X3X8)))(F6X3(F2X3(F5X3

(F9X5X11)))))))

the monotonicity condition.

Monotonicity
Given a preference [U l], the associated utility func-
tion is said to satisfy the monotonicity condition iff

U(Yni) > U(Ynj) (26)

where Yni and Ynj are the commodity matching the
corresponding modular preferences S i and Sj of U l

and Si and Sj satisfy Equation (25).

The monotonicity condition can be restated in a more
general way.

Monotonicity
Given a preference [U l] and let fh1; h2; :::hjg be an
increasing subsequence of N+, then the associated
utility function is said to satisfy the monotonicity con-
dition iff

U(Ynj) > U(Ynj�1
) > ::: > U (Yn2

) > U(Yn1
)

(27)
where Yn1

; :::; Ynj are the commodity matching the
corresponding modular preferences Sh1

; :::; Shj of
U l, and

Shi w Shi�1
w ::: w Sh2

w Sh1
: (28)

If Sj is a subtree of Si as in Equation (25), then Sk is
called the largest subtree of Si if Sk is a branch (descen-
dant) of Si. We shall use “Si / Sk” to indicate this largest-

member relation. Depending on the grammar which we use,
the largest subtree of Si may not be unique. For example,
each modular preference in Figure 8 has two largest sub-
trees. In general, let Sh1

; Sh2
; :::Shn be all the largest sub-

trees of Yi, denoted as follows:

Si = t
hj

h1
Sk / fSh1

; Sh2
; :::Shjg; (29)

where fh1; h2; :::hjg is a non-decreasing subsequence of
N+. Notice these largest trees must not have sub-relation
(25) among each other. However, they may have different
depths, and the sequence fh1; h2; :::hjg ranks them by depth
in an ascending order so that Sh1

is the largest subtree with
the minimum depth, and Shj is the one with the maximum
depth.

The second postulate of the well-behave utility function
is the property known as synergy.

Synergy:
Given a preference [U l], the associated utility func-
tion is said to satisfy the synergy condition iff

U(Yni) �

jX
k=1

U(Ynk); (30)

where Yni and fYnk ; k = 1; :::; jg are the commodity
matching the corresponding modular preferences S i

and fShk ; k = 1; :::; jg of [U l] and Si, and fShk ; k =

1; :::; jg satisfies Equation (29).

For convenience, we shall also the notation tj

k=1Ynk as
the synergy of the set of commodities fYnk ; k = 1; :::; jg.
Based on the New Oxford Dictionary of English, synergy is
defined as “’the interaction or cooperation of two or more
organizations, substances, or other agents to produce a com-
bined effect greater than the sum of their separate effects”.
“The whole is greater than the sum of the parts” is the funda-
mental source for business value creation. Successful busi-
ness value creation depends on two things: modules and the
platform to combine these modules. Consider the consumer
characterized by Figure 8 as an example. To satisfy him,
what needed are all of the modules listed in Table 1. Even
though the technology has already advanced to the level S 7,
knowing the use of processor F4 to combine X3 and S7 can
still satisfy the consumer to a higher degree, and hence cre-
ating a greater business value. More of this will be discussed
on Chen and Chie (2003), Section “ Knowledge Market”.

A modular preference may appear many times in a pref-
erence. For example, S2;4 in Table 1 appears twice in Figure
8. In this case, it can simultaneously be the largest subtree of
more than one modular preference. For example, S 2;4 is the
largest subtree of both S3;2 and S4;1. Let Sk be the largest
subtree of Sh1

; Sh2
,..., and Shj . Denote this relation as

Sk = uj1Shi . fSh1
; Sh2

; :::Shjg: (31)

Consistency:
Given a preference [U l], the associated utility func-
tion is said to satisfy the consistent condition iff

U(Yni j Sk . Sh1
) = ::: = U(Yni j Sk . Shj); (32)

where Yni j Sk.Sh1
is the commodity which matches

the corresponding modular preference Sk in the des-
ignated position, Sk . Shi .

The consistency condition reiterates the synergy ef-
fect. No matter how intensively the commodity Yni may
contribute significantly to the value creation of a synergy
commodity, its value will remain identical and lower when
it is served alone.

Well-Behaved:
Given a preference [U l], the associated utility func-
tion U is said to be well-behaved iff it satisfy the
monotone, synergy and consistency condition. It gen-
erates a sequence of number fU(Yni)g

h

i=1 where Yni
matches the respective modular preference Sd;j . Sd;j
is the jth modular preference with depth d.

The utility assigned in Table 1 is an illustration of a well-
behaved utility function derived from the preference shown
in Figure 8. In fact, this specific utility function is generated
by the following exponential function with base 2.

U(Sd;j) = 2d�1 (33)

Utility function (33) sheds great light on the synergy ef-
fect. So, primitive materials or rudimentary commodities
may only satisfy the consumer to a rather limited extent.
However, once after suitable processing or integration, their
value can become increasingly large to the consumer. The
exponential function with base 2 simply shows how fast the
utility may be scaled up, and hence may provide a great po-
tential incentive for producers to innovate. Of course, to be
a well-behaved utility function, U can have many different
function forms. Some of them may have good economic in-
tuitions, and some may not.

Module Matching
Now, it is high time to answer the question: what would be
the enjoyment for a consumer with a preference [U l] con-
suming a commodity Yi? Let us start tackling this issue by
a commodity, called the simple commodity. Given a prefer-
ence [U l], a commodity Yi is called simple with respect to
[U l] if it matches exactly one modular preference of U l. It is
easy to evaluate the simple commodity, as discussed in the
previous section and exemplified in Table 1.

However, not all commodities are simple. Yi, as a whole,
may match none of any modular preference of [U l]. Never-
theless, it can be still enjoyable for the consumer if it is sim-
ilar or close to consumer preference [U l] in many regards.
In this section, we propose an evaluation scheme based on a

;
�

;
�

)
��

)
�

)
�

;
�

;
��

;
�

)
�

Figure 10: An Example of Commodity: The LISP Repre-
sentation

idea of “similarity” or “closeness”. The evaluation scheme
is called module matching.

The idea of modular matching is very straightforward. As
what now should becomes clear, each commodity is com-
posed of many modular commodities with different depths.
For example, the commodity represented in Figure 10 has a
list of modular commodities as shown in Table 2. Let Yd;j be
the jth modular commodity with depth d. Now let the com-
modity be presented to the consumer with a preference as
depicted in Figure 8. Clearly, Y4;1 does not match any mod-
ular preference as listed in Table 1. However, the commod-
ity is similar to consumer’s preference since it has a major
part, Y3;1, which matches consumer preference exactly by
the modular S3;1 (Table 1). Therefore, while the commodity
is not the same as consumer’s preference, it is not irrelevant
and can satisfy the consumer to some degree.

Table 2: Modular Commodities

d Subtrees or terminals
1 X3; X5; X8; X11

2 Y2;1 = (F9X5X11)

Y2;2 = (F9X3X8)

3 Y3;1 = (F12X3(F9X3X8))

4 Y4;1 = (F7(F9X5X11)(F12X3(F9X3X8)))

Next, let us take away Y3;1 from the commodity Yi, what
left is only the subtree corresponding to Y2;1 (Figure 10).
This part also matches the the consumer preference by the
modular S2;2. The value of the commodity to the consumer
would, therefore, be enhanced as opposed to the case if Y 2;1

were completely useless. We then take Y2;1 away from Yi,
and there is nothing left. So, the set of modular preference
matched by Yi is

MYi:[Ul] = fS3;1; S2;2g: (34)

Therefore, the utility of the commodity Y i with respect to
the preference [U l] can be written as

U(Yi) = U(S3;1) + U(S2;2) = 4+2 = 6 (35)

It is crucial to make some working principles underly-
ing this example explicitly. First, we do not start module-
matching from the smallest modules, such as X3; X5, X8

and X11 (Table 1). Instead, we start from the biggest one,
i.e, the one with the maximum depth. This doing is referred

as to the descending principle. Secondly, once any modular
commodity is shown to match the corresponding modular
preference, it is no longer usable for the rest of matching
exercise. This is called the non-redundancy principle. The
working of these tow principles excludes the consideration
of the modular commodity Y2;2, while it also matches the
preference by S2;3.

The main purpose of these two principles is to avoid
double-counting and simultaneously to derive the maximum
value of the respective commodity. For example, if one start
the modular-matching in an ascending order, then after the
matches of the four raw materials X3; X5, X8 and X11,
nothing left. Hence the utility of Yi would come up with
only 4, which obviously fails to take the synergy effect into
account.

The module-matching algorithm is summarized as fol-
lows.

� Step 1: List all modular commodities of Yi in a collection
CYi , and group them by depth, say from d = 1; 2; ::dmax.

� Step 2: Set d = dmax. Start the modular-matching from
Ydmax

(= Yi). If there is a match, which means Yi is a
simple commodity, then set

U(Yi) = U(Si;j); (36)

whereSi;j is the modular preference matched by Ydmax
=

Yi. Go to step 7. If there is no match, go to the next step.

� Step 3: Decrease d by 1, and do modular-matching for
Yd;j , 8j.

� Step 4: For any match, Yd;j� . Delete all its modular com-
modities from CYi .

� Step 5: Put all matches into the set MYi:[Ul].

� step 6: If d = 0, or CYi is a null set, then

U(Yi) =
X

Sd;j2MYi:[Ul]

U(Sd;j); (37)

otherwise, go back to step 3.

� step 7: Stop.

Concluding Remarks
This paper proposes a functional-modularity approach to
economic models of innovation within an agent-based com-
putational modeling context. It is motivated by a series of
former applications of genetic programming to knowledge
discovery and data mining in the area of finance, sciences
and engineering. In these applications, two crucial features
of innovation was demonstrated via genetic programming,
namely, evolving and growing. In some engineering ap-
plications, the evolving and growing process was actually
displayed via the change of the outer topology or the inner
structure of real entities. This progress makes it possible to
build a direct modeling, observation and measure of innova-
tion processes.

However, studying economic activities of innovation has
a much broader scope than just an innovation itself. It is con-
cerned with the incentive to innovate, the resources used to

support an innovation, the success, the lifespan, and the dis-
tribution of an innovation. It is also inextricably interwoven
with the evolution of human preferences and culture. The as-
sociated social impacts, such as the wealth distribution, the
growth of knowledge capital, and market structure are also
important considerations. To be able to have this broader
view, an agent-based computational economic model of in-
novation is proposed in this study.

In this agent-based model of innovation, breakthroughs
are made in several fundamental elements of economics,
which include a functional-modularity re-formulation
of commodities, production, preference and technology
(knowledge). Modular preferences, modular commodities,
and modular technologies become the main working con-
cepts of this economy. Breakthroughs are also made via
the use of Gene Expression Programming to characterize
the commodity space as a strongly-typed Kleene star. Ax-
ioms of monotonicity, synergy, and consistency are intro-
duced to define a well-behaved utility function associated
with a given preference. The distinguishing feature of a
knowledge-based economy is particularly highlighted by the
synergy axiom or the synergy effect. The utility of consum-
ing a specific commodity is solved by using an algorithm
based on module matching.

With this fundamental re-formulation, market mechanism
and producers’ adaptation are operated accordingly. Two
markets are considered in this model, namely the commod-
ity market and the knowledge market. In the commodity
market, a number of producers are competing for a number
of consumers whose preferences are randomly generated ini-
tially but may change over time. To shape their competitive-
ness, producers have to make their critical strategies ranging
from production, marketing to R&D. The last one decides
their involvement to the knowledge market where one can
open and acquire promising modular technologies.

Genetic programming is applied to simulate the evolution
of technologies within this agent-based context. In addition
to technology, producers’ competition strategies will also
evolve with time and that evolution is mainly driven by the
survival pressure.

References
Allen, F. and R. Karjalainen, (1999). “Using Genetic Algo-

rithms to Find Technical Trading Rules.” Journal of Fi-
nancial Economics, 51(2) 245–271.

Aoki, M., (2002a). “Open Models of Share Markets with
Two Dominant Types of Participants,” Journal of Eco-
nomic Behavior and Organization, 49 199–216.

Aoki, M., (2002b). “Applications of Ewens–Pitman–Zabell
Inductive Methods in New Economic Dynamics,” Pro-
ceeding of Sixth International Conference on Complex
Systems, 29–35.

Banville, J., (1993). Kelper: A Novel (Vintage Interna-
tional). Vintage Books.

Basalla, G., (1988). The Evolution of Technology. Cam-
bridge University Press.

Chen, S.-H. and C.-H. Yeh (2001). “Evolving Traders and
the Business School with Genetic Programming: A New
Architecture of the Agent-Based Artificial Stock Market,”
Journal of Economic Dynamics and Control, 25, 363–
393.

Chen, S.-H. and B.-T. Chie (2003). “Toward A Functional-
Modularity Approach to Knowledge-Based Economy,”
The 3rd European Meeting of Applied Evolutionary Eco-
nomics (EMAEE’03).

Ferreira, C., (2001). “Gene Expression Programming: A
New Adaptive Algorithm for Solving Problems,” Com-
plex Systems, 13 (2), 87-129.

Keber W. and N. J. Saam, (2001). “Competition as
a Test of Hypotheses: Simulation of Knowledge-
generating Market Processes.” Journal of Ar-
tificial Societies and Social Simulation, 4 (3),
http://www.soc.surrey.ac.uk/JASSS/4/3/2.html.

Levy, S., (1992). Artificial Life: A Report from the Frontier
Where Computers Meet Biology, Vintage, NewYork.

Ma, T. and Y. Nakamori, (2002). “An Agent-Based Sim-
ulation on Dynamics of Design Spaces,” Proceeding
of The Second International Workshop on Agent-based
Approaches in Economic and Social Complex Systems
(AESCS’02), 135–142.

Neely, C. and P. Weller, (1999). “Technical Trading Rules in
the European Monetary System.” Journal of International
Money and Finance, 18 429–458.

Neely, C., P. Weller, and R. Dittmar, (1997). “Is Technical
Analysis in the Foreign Exchange Market Profitable? a
Genetic Programming Approach.” Journal of Financial
and Quantitative Analysis, 32(4) 405–426.

Willihnganz, A., (1999). “Software that Writes Software,”
salon.com, WWW Article.

Zabell, S., (1992). “Predicting the Unpredictable,” Synthese,
90 205–232.

