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Abstract

This paper studies the behavior of price discovery within a context of an agent based stock market,
in which the twin assumptions, namely, rational expectations and the representative agents normally
made in mainstream economics, are removed. In this model, traders stochastically update their
forecasts by searching the business school whose evolution is driven by genetic programming. Via
these agent based simulations, it is found that, except for some extreme cases, the mean prices
generated from these artificial markets deviate from the homogeneous rational expectation equilibrium
(HREE) prices no more than by 20%. This figure provides us a rough idea on how different we can
possibly be when the twin assumptions are not taken. Furthermore, while the HREE price should
be a deterministic constant in all of our simulations, the artificial price series generated exhibit quite
wild fluctuation, which may be coined as the well-known excessive volatility in finance.

Keywords: Price Discovery, Homogeneous Rational Expectation Equilibrium, Genetic Pro-
gramming, Agent-Based Computational Finance, Excessive Volatility

1 Motivation and Introduction

It has been argued that standard asset pricing model based on the twin assumptions, the representative
agent and rational expectations hypothesis, can only lead to uninteresting dynamics, which can be anything
but the real world. For example, under very regular conditions, the market can end up with the well-
known zero-trade theorem (Tirole, 1982). While there are several possibilities to escape from this no-trade
conundrum, recent studies based on agent-based computational finance (ABCF) indicate that we can have
almost everything simply by giving up the twin assumptions1. Nonetheless, an important issue generally
left unexploited is: under what circumstances and on what aspects, can we still regard the standard
asset pricing model with its homogeneous rational expectation equilibrium (HREE) as a reasonable
approximation to the dynamics generated by the ABCF methodology.

In this paper, we shall start the analysis from the aspect of price discovery. We are asking how well
the HREE price can predict the movement of the price dynamics generated by an agent-based stock
market. Basically, we start from a standard asset pricing model (Grossman and Stiglitz, 1980) and use
the HREE price as the reference. We then build an agent-based computational version of the standard
asset pricing model and generate the price dynamics from there. The price series generated will further
be compared with the HREE price.

1LeBaron (2000) has a selective survey on some early papers on this growing field. There is also a website on ABCF
maintained by Prof. LeBaron:
stanley.feldberg.brandeis.edu/ blebaron/acf/
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2 Standard Asset Pricing Model

Assume that there are N traders in the stock market, and all of them share the same utility function.
More specifically, this function is assumed to be a constant absolute risk aversion (CARA) utility function,

U(Wi,t) = −exp(−λWi,t) (1)

where Wi,t is the wealth of trader i at time period t, and λ is the degree of relative risk aversion. Traders
can accumulate their wealth by making investments. There are two assets available for traders to invest.
One is the riskless interest-bearing asset called money, and the other is the risky asset known as the stock.
In other words, at each point in time, each trader has two ways to keep her wealth, i.e.,

Wi,t = Mi,t + Pthi,t (2)

where Mi,t and hi,t denotes the money and shares of the stock held by trader i at time t. Given this
portfolio (Mi,t,hi,t), a trader’s total wealth Wi,t+1 is thus

Wi,t+1 = (1 + r)Mi,t + hi,t(Pt+1 + Dt+1) (3)

where Pt is the price of the stock at time period t, Dt is per-share cash dividends paid by the companies
issuing the stocks and r is the riskless interest rate. Dt follows an exogenous stochastic process {Dt} as
follows

Dt = d̄ + ρDt−1 + ξt, (4)

where ξt ∼ N(0, σ2
ξ ). Given this wealth dynamics, the goal of each trader is to myopically maximize the

one-period expected utility function,

Ei,t(U(Wi,t+1)) = E(−exp(−λWi,t+1) | Ii,t) (5)

subject to
Wi,t+1 = (1 + r)Mi,t + hi,t(Pt+1 + Dt+1), (6)

where Ei,t(.) is trader i’s conditional expectations of Wt+1 given her information up to t (the information
set Ii,t).

It is well known that under CARA utility and Gaussian distribution for forecasts, trader i’s desire
demand for holding shares of risky asset, h∗

i,t, is linear in the expected excess return:

h∗
i,t =

Ei,t(Pt+1 + Dt+1)− (1 + r)Pt

λσ2
i,t

, (7)

where σ2
i,t is the conditional variance of (Pt+1 + Dt+1) given Ii,t. Market clearing price can be find by

setting aggregate demand to aggregate supply,

N∑

i=1

h∗
i,t(Pt) =

N∑

i=1

Ei,t(Pt+1 + Dt+1 − (1 + r)Pt)
λσ2

i,t

= H (8)

Under full information and the homogeneous expectation, it can be shown that the HREE price is

Pt = fDt + g (9)

where f = ρ
1+r−ρ and g = 1

r (1 + f)[d̄ − λ(1 + f)σ2
ξ (

H̄
N )].

3 Agent-Based Modeling of Artificial Stock Markets

All simulations to be conducted below are based on AIE-ASM, Version 2, which is a computer program
for agent-based simulation of artificial stock markets. Due to the space limit, we are not able to give the
detail of the program. The interested reader is referred to Chen and Yeh (2000).
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Table 1: HREE Price under Different Parameter Settings

CASE CODE r d̄ λ σ2 h̄ P ∗

Baseline 0.1 100 0.5 4 1 80
Dividends (d̄)

D 1001 0.1 200 0.5 4 1 180
Interest Rates (r)

R-1 0505 0.2 100 0.5 4 1 40
R-2 0504 0.075 100 0.5 4 1 106.67
R-3 0503 0.05 100 0.5 4 1 160
R-4 0502 0.025 100 0.5 4 1 320
R-5 0501 0.01 100 0.5 4 1 800

Degree of Risk Aversion (λ)
L-1 0602 0.1 100 0.75 4 1 70
L-2 0603 0.1 100 0.25 4 1 90
L-3 0601 0.1 100 0.10 4 1 96

Shares Per Capita (h)
H-1 0303 0.1 100 0.5 4 0.75 85
H-2 0302 0.1 100 0.5 4 0.5 90
H-3 0301 0.1 100 0.5 4 0.25 95

4 Experimental Designs

To examine the relation between the HREE price and the prices observed in an agent based stock market,
in particular, whether the HREE price can function as a useful reference, a sequence of experimental
designs are conducted. The scenarios considered by us cover all the parameters determining the HREE
price except ρ. Here, We assume that dividend Dt follows an iid process; therefore, ρ is taken as 0. With
this specification, the HREE price can be simplified as Equation 10.

Pt =
1
r
[d̄ − λσ2

ξ (
H

N
)] =

1
r
[d̄ − λσ2

ξh] (10)

In all the experiments to be conducted below, we take the set of parameters used by Chen and Yeh
(2000) as the baseline, namely, (d̄, r, λ, h) = (10, 0.1, 0.5, 1), and then change only one of them at a time.
Table 1 is a summary of these scenarios. By the parameters interesting us, the table is organized into four
blocks, namely, dividend (d̄), interest rate (r), degree of risk aversion (λ), and shares per capita (h(= H

N )).
For each design, the HREE price is calculated as a reference and is given in the last column, P ∗ .

5 Experiment Results

For each case indicated in Table 1, a single run with 1000 trading periods is conducted. The time series
plot of the stock price observed in these 12 experiments are given in Figures 1 and 2. From these time
series, we calculate the mean price of each series by first using the whole sample {Pt}1000

t=1 , and then the
subsample by after deleting the first 200 observations, {Pt}1000

t=201. We denote these two means by P̄1 and
P̄2. The reason to report both of these statistics is mainly due to the possible adjustment process, given
that traders have to learn everything from scratch. To make each case comparable, we also calculate the
percentage error (PE) and the absolute percentage error (APE), defined as

PEt =
Pt − P ∗

P ∗ , APEt =| PEt | . (11)
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Figure 1: Time Series Plot of Stock Price Generated from Agent Based Stock Markets: CASE D and Rs

60

70

80

90

100

200 400 600 800 1000

S0602

80

90

100

110

120

130

200 400 600 800 1000

S0603

80

85

90

95

100

105

110

115

200 400 600 800 1000

S0601

75

80

85

90

95

100

200 400 600 800 1000

S0303

90

95

100

105

110

200 400 600 800 1000

S0302

90

95

100

105

110

115

120

200 400 600 800 1000

S0301

Figure 2: Time Series Plot of Stock Price Generated from Agent Based Stock Markets: CASE Ls and Hs
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Table 2: HREE Price and ASM Prices

Code HREE P̄1 P̄2 MAPE1 MAPE2 MPE2 σ2
M

Dividends (d̄)
1001 180 167.67 171.73 7% 4% -4% 43.62

Interest Rates (r)
0505 40 45.16 43.15 270% 8% 7% 4.60
0504 106.67 109.05 109.39 4% 4% 2% 18.84
0503 160 146.39 149.94 9% 6% -6% 57.63
0502 320 221.45 235.56 30% 26% -26% 185.30
0501 800 341.82 382.73 57% 52% -52% 7308.19

Degree of Risk Aversion (λ)
0602 70 74.40 73.77 7% 7% 5% 12.97
0603 90 104.89 104.59 16% 16% 16% 14.89
0601 96 95.90 95.56 3% 3% 0% 30.04

Shares Per Capita (h)
0303 85 90.68 90.42 7% 7% 6% 9.96
0302 90 98.60 98.53 9% 9% 9% 8.39
0301 95 106.10 105.88 11% 11% 11% 8.20

The time series behaviour of the {PEt} is displayed in Figure 3, whereas the histogram of the {PEt} is
displayed in Figure 4. Table 2 summarizes the mean statistic of the series {Pt}, {APEt}, and {PEt}.
Here, we report the mean for the whole sample (P̄1, MAPE1) and the mean for the subsample by deleting
the first 200 observations (P̄2, MAPE2, MPE2). Finally, the last column gives volatility of the stock
price for each market, i.e., the sample variance of {Pt}, V ar(Pt).

6 Analysis and Discussion

What lessons do we learn from these statistics? First of all, roughly speaking, we can say that HREE
price does indicate the direction to which the price will move. This can be seen from Figure 3. All price
series moves toward a niche of the HREE price, and then jumps around there. The only difference is
how fast and how closely they move and how wide they fluctuate. The best case we ever had is the one
coded “0601” (λ = 0.1). In this case, the MPE2 (the mean percentage error in the second sample) is
almost nil. If we look at Figure 4, the distribution of errors is very close to the normal distribution (while
a Jarque-Bera test rejects the hypothesis that it is normal). In addition to “0601”, “0504” (r = 0.075)
is another textbook case. Therefore, there are chances that the distribution of the market price can be
unbiased and follows closely to a normal distribution.

Nonetheless, there are also possible to have some cases which is a little far away from the textbook
situation. “0603” (λ = 0.25) is one example, and “0301” (h = 0.25) is another one. In both cases, the
asset is overvalued persistently, and the market force does not drive the price down to P ∗ as the standard
textbook would predict. Maybe the worst cases are “0502” and “0501”. These two cases shares two
essential characteristics. First, the HREE price is set too high as opposed to the initial values of the
price, which are randomly set around 100. Second, it is so high that traders cannot afford the stock at
its intrinsic value. While in both cases we start with a rising market, the endogenous disturbance may
frustrate the market and make the price difficult and quite time-consuming to get back to its reasonable
level.2

2This open the issue on the significance of cash holding. While the HREE price is not dependent on cash holding;
however, since buying on margin (margin trading is prohibited in the current simulations, the assumption of perfect capital
market is obviously violated. We are conducting a series of examination on how this market imperfection can affect the
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Figure 3: Time Series Plot of the Absolute Percentage Error by Using P ∗ to Forecast Pt
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Figure 4: Histogram of the Percentage Error by Using P ∗ to Forecast Pt
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Maybe the more striking feature of these simulation is overwhelmingly excessive volatility. Notice
that the HREE price determined by Equation 10 is a constant and is deterministic. There are no news
exogenously injected into the market. As a result, all the fluctuation around the constant sample mean
are inconsistent with the rational expectation equilibrium and maybe regarded as excessive volatility.

7 Concluding Remarks

There is little surprise that the price dynamics can be different when the twin assumptions are discarded.
But, the question how different it can be remains unanswered. This paper use Chen and Yeh (2000) as
a starting point to tackle this issue from the aspect of price discovery. It is found that HREE can still
be useful if one is only interesting in knowing the long-term (average) price behaviour approximately, say
allowing for a percentage error up to 20%. The possibility that HREE can be useful in the long-run
analysis is also not surprising, but there is no proof for that, and our findings can be used to lend support
for that possibility.

One possible limitation of the current simulations is that the number of generation, i.e., 1000 periods,
may be too short. While, based on our experience on other studies, it is not likely that the price would
converge in the limit to anywhere, ditto the study with a longer evolution and evaluate its potential
influence on percentage error is a direction for the further study.
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