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Abstract

Genetic programming (GP) is a technique for automatically solving optimization 

problems where candidate solutions are expressible as trees with no human intervention. 

We propose an extension of GP, termed scalable genetic programming, which solves 

problems parameterized by a scalable difficulty parameter. We first define a taxonomy 

of evolutionary computation (EC) systems that identifies variability dimensions and 

levels for EC systems. We define an algorithm, the scientist algorithm, which uses 

genetic programming as a subroutine to reliably make progress on scalable problems.

The scientist algorithm uses a toolkit of provided routines to progress, by carrying out 

experiments to determine the value of different methods. We define several of the tools 

for this toolkit. We define and implement an algorithm for systematically considering all 

small trees for a problem. We then use these small trees in an iterative algorithm to 

define subroutines that improve performance on a problem under study. Using this 

algorithm, we beat the best known performance on the artificial ant on the Santa Fe trail 

problem by a factor of 7.

As science depends on accurate hypothesis testing to make progress, we perform a 

comparison and evaluation of statistical techniques used to evaluate evolutionary 

computation systems. Finding many of these wanting, with the exception of 

computational effort, we introduce two additional techniques, effective mean best fitness 

and the y-test. We also perform an extensive analysis of the computational effort, and 

identify some statistical cautions around the use of this key statistic. We provide an 

algorithm that carefully uses computational effort to determine the best values of 

population size and generation number for an EC treatment.
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Finally, we identify several components that are of use with the scientist algorithm. 

We treat the use of multiobjective algorithms in GP, principal components analysis, and 

their combination. We demonstrate this by providing and testing an algorithm that makes 

evolved trees parsimonious. We introduce the notion of incremental evolution, and use it 

to make useful subroutines automatically from successful solutions to easy problems.

We then use this to demonstrate scalable genetic programming on an integer sorting 

problem.

iv
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Chapter 1: Introduction

This dissertation consists of two major branches. The first branch consists of 

methods and statistics for evaluating and comparing stochastic search algorithms fairly, 

making up Chapters 3 and 4. The second branch introduces the idea of scalable genetic 

programming. It presents a number of computational tools which will be useful in 

achieving this purpose, and validates them through experiment. An introduction to 

scalable genetic programming is given in Chapter 2, while the major contributions are 

presented in Chapter 5, on small trees; and Chapter 6, on modelling and progressive 

algorithms. A set of tools are then presented and tested independently and together in 

Chapter 7, which also demonstrates scalable genetic programming for a simple problem. 

Finally, Chapter 8 synthesizes the results of this work.

There are 8 chapters in this document, plus one appendix. Chapter 1 offers a short 

introduction to the components of this thesis. A conventional introduction to genetic 

programming (GP), a discussion of some of the strengths of GP, and a brief summary of a 

common GP test problem round out the chapter.

Chapter 2 begins with a discussion of some of the limits on genetic programming 

performance. We then situate genetic programming in the field of evolutionary 

computation techniques, which are characterized by a few variability dimensions such as 

data representation, input complexity, outcome variables, environmental complexity and 

representation abstractness. This gives rise to a taxonomy of evolutionary computation 

problems, in which scalable genetic programming presents a new level of complexity for 

EC to solve. We note the differences between scalability in the context of EC and 

scability as used in computer science generally. We then discuss some properties that an

1
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2

effective automatic programming algorithm should have if it is to make headway without 

human intervention. This argument ties in to the remainder of the thesis, where we 

implement and test several of these elements. We introduce the scientist algorithm here, 

and contrast it with the robot scientist approach to automating science [King 2001], We 

then close the chapter with a discussion of three useful techniques for the scientist 

algorithm: using intermediate task progress, fitness records, and adaptive choice of test 

cases.

Chapter 3 is the first of the statistical chapters. In EC research, a reliable way of 

determining whether a treatment is beneficial is required. Hypothesis testing and 

statistics are the conventional tools used for this purpose in the scientific literature. A 

problem immediately presents itself: the field does not have a single uniform measure of 

determining what technique is better. Instead, a mix of five measures is in common use. 

Accordingly, we evaluate each of these statistics against one another on a common 

problem: the artificial ant on the Santa Fe trail. Chapter 3 shows that the best statistic to 

use when the problem at hand has a finite and achievable probability of success is the 

effective success probability. We also show that this is reciprocally related to the 

computational effort statistic introduced by Koza [Koza 2001]. Chapter 3 argues that for 

problems without natural success criteria, the effective mean best fitness is the best test to 

use. Some discussion is made of discriminating between these two cases and why a 

single measure for comparing EC methods won’t work. It also treats the suitability of the 

other tests that are presently used in the field, and dismisses them as lacking.

Chapter 4 continues the statistical bent of Chapter 3. It begins with a detailed 

investigation of the preferred statistic for comparisons between EC methods: the

Chapter 1: Introduction
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computational effort. This statistic, as normally defined, has a few problems associated 

with it. We fix the definition so it is more statistically relevant, and then analyze it. This 

leads to a bit of a quandary. For small run counts, computational effort is badly broken. 

We introduce another way of looking at the data, which gives rise to a novel statistical 

test: the y-test. We analyze the y-test as to its suitability for doing hypothesis testing.

Chapter 5 adapts the No Free Lunch argument, a largely theoretical attack on 

universal search algorithms, to the issues of genetic programming. We define an 

enumeration algorithm for trees, and discuss how the No Free Lunch theorem applies to 

trees. We confirm Langdon’s result that the test problem named “artificial ant on the 

Santa Fe trail” is GP-hard; that is, it is almost easier for random search to succeed on this 

problem than for genetic programming. We then use the tree enumeration algorithm 

defined here to automatically define subroutines from small trees that look promising. 

These subroutines dramatically reduce the computational effort required to solve the 

Santa Fe trail problem. For instance, we beat the best known performance on the Santa 

Fe trail problem by a factor of seven, and beat the typical performance by a factor of 20. 

This subroutine-generation algorithm can fit nicely into the scientist algorithm as a 

subroutine.

Chapter 6 introduces the idea of a model of success probability as a function of 

population size M  and generation number G. Such a model would have great utility, as 

we could use it to choose parameter optimally. We demonstrate this notion by showing 

the results of many experiments on the artificial ant on the Santa Fe trail, and prepare a 

qualitative model of success performance for it. We then present three algorithms; the 

first is intended to solve a problem of unknown difficulty when nothing is known. The
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second is an algorithm specialized to the Santa Fe trail performance model that performs 

within a factor of four of the optimal parameter settings. The third automatically finds 

optimal values of M  and G for a provided benchmark problem.

Chapter 7 presents some technologies that can be used with the scientist algorithm to 

improve genetic programming. We begin by considering the significant value of using 

multiobjective optimization in genetic programming. This leads naturally into a 

discussion of principal components analysis to mitigate the poor performance of 

multiobjective methods on problems of high dimensionality. We can also use 

multiobjective techniques to solve main and secondary tasks. We illustrate this usage by 

the algorithm E v o l v e -T i n y -T r e e s  that automatically optimizes a genetic programming 

tree for parsimony. We then discuss scalable difficulty and incremental evolution. We 

give an algorithm for making subroutines automatically from successful solutions to 

simpler problems. This algorithm, and incremental evolution specifically, are developed 

and tested for utility on a simple integer sorting problem. We conclude this chapter with 

an example of solving the title problem of this thesis: scalable genetic programming.

Chapter 8 is the conclusion of the thesis. In this chapter, we provide a synthesis of 

the ideas and theories presented herein. We outline how the advances of this dissertation 

contribute to the field. We draw together the recommendations and advice strewn 

throughout this work into one convenient location as a resource for GP practitioners. We 

conclude with a discussion of future work.

Finally, we would like to introduce the Appendix. In Appendix 1 of this thesis, we 

take the reader through an example of the sequential trial-and-error task that a genetic 

programming system encounters. This parallels Searle’s “Chinese Room” argument
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[Searle 1980, Searle 1984] on artificial intelligence. The Appendix uses an allegory to 

demonstrate how a genetic programming system would face a typical GP challenge. We 

end the Appendix with a brief discussion of the techniques used during problem-solving 

and how they might be implemented in genetic programming. While this allegory may 

seem philosophical in nature, we strongly recommend that readers not familiar with the 

workings of genetic programming read the Appendix before continuing. It is intended to 

be self-contained, and can be read out-of-order. The reader may then return to the more 

conventional description of the genetic programming algorithm of the next section.

Strengths of Genetic Programming

Genetic Programming (GP) is a subdiscipline of artificial intelligence that tackles the 

problem of program induction. It is essentially an application of Holland's genetic 

algorithm [Holland 1975] to the problem of searching for a solution in the set of all 

programs, defined by a given grammar, up to some maximum size. The variant of 

Genetic Programming in most common use in the literature remains that initially 

proposed by John Koza [Koza 1992], although there is much diversity. The GP 

algorithm, explained in detail in [Koza 1992], has been shown to be successful in 

inducing solutions to a wide variety of problems for which other program induction 

methods had held little success.

A common failing of more "classical" AI techniques of the day is that the results 

obtained were shown to be successful only on the test problems under consideration, or 

involved adding a great deal of ad-hoc "human smarts" in the programming of the AI 

system under consideration. Two classical examples are the automated chess and 

checkers programs, Deep Blue [IBM 2006] and Chinook [Schaeffer 1996], These are
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characterized by extensive off-line research on the problems in question with subsequent 

fine-tuning of minimax board evaluation parameters, vast opening books and endgame 

tables, and powerful computers doing deep searches of possible move-countermove 

chains. Very often, the systems explored were not made available for other researchers to 

test, so reproducibility was suspect. Another bugaboo of early research was that 

experiments were deemed successful or unsuccessful on the results of a single run.

In contrast, Koza introduced a new artificial intelligence technique, genetic 

programming, which differed from its classical AI counterparts in several important 

ways. Genetic programming emulates biological evolution, by beginning with very 

simple operations and a very simple algorithm, the genetic algorithm [Holland 1975].

This approach to problem-solving greatly enhanced the automatizability of results 

obtained, in that very little programming or heuristics were required to get the desired 

performance. Furthermore, Koza was one of the early adopters of open source, 

publishing his source code verbatim in [Koza 1992d] so that other researchers could 

replicate his results. He also provides full and complete information about minor 

parameters that were used in his runs, defusing a critical problem that often precluded the 

replication of "traditional" results in AI. He performed several runs of each presented 

problem, and conducted some statistics in an attempt to determine and compare the 

computational effort of solving a given problem.

Since genetic programming requires only a fitness function and some programming 

primitives to work, it has been hailed by its supporters as an automatic artificial 

intelligence system. Koza applied his genetic programming system as widely as he was
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able, describing no less than 14 different application domains in [Koza 1992], and many 

more in [Koza 1994], [Koza 1999] and [Koza 2004],

Some of the more interesting problems are summarized in [Koza 2004], where Koza 

discusses how his team currently approaches human competitive intelligence for solving 

design problems in electric engineering and antenna design. A recent list of human- 

competitive results is available at [Koza 2006]; this list, current as of this writing is 

provided in Fig. 1.
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Figure 1

#  I Claimed instance Basis for claim o f 
human-competitiveness Reference

1
Creation of a  better-than-classical quantum  algorithm 

for the D eutsch-Jozsa “early prom ise” problem
of scientific merit, beats 

achievem ent in field
Spector, Barnum, and 

Bernstein 1998

2 Creation of a  better-than-classical quantum  algorithm 
for Grover's d a tab ase  search  problem

of scientific merit, beats 
achievem ent in field

Spector, Barnum, and 
Bernstein 1999

3
Creation of a  quantum  algorithm for the depth-two 

AND/OR query problem that is better than any 
previously published result

new  scientific merit

Spector, Barnum, Bernstein, 
and Sw am y 1999; Barnum, 

Bernstein, and Spector 
2000

4
Creation of a  quantum  algorithm for the  depth-one OR 

query problem that is better than any previously 
published result

new scientific merit Barnum, Bernstein, and 
Spector 2000

5
Creation of a  protocol for communicating information 
through a  quantum  gate  that w as previously thought 

not to permit such communication
new scientific merit Spector and Bernstein 2003

6 Creation of a  novel variant of quantum  d en se  coding new scientific merit Spector and Bernstein 2003

7 Creation of a  soccer-playing program that won its first 
two gam es in the Robo Cup 1997 competition wins in competition Luke 1998

8
Creation of a  soccer-playing program that ranked in 

the middle of the field of 34 human-written program s in 
the Robo Cup 1998 competition

wins in competition Andre and Teller 1999

9
Creation of four different algorithms for the 

transm em brane segm ent identification problem for 
proteins

of scientific merit, beats 
hum an best

Sections 18.8 and 18.10 of 
G enetic Programming II and 

sections 16.5 and 17.2 of 
G enetic Programming III

10 Creation of a  sorting network for seven  items using 
only 16 step s

patentable, new scientific 
merit

Sections 21 .4 .4 ,23 .6 , and 
57.8.1 of Genetic 
Programming III

11 Rediscovery of the Campbell ladder topology for 
lowpass and highpass filters

patentable, beats 
achievem ent in field

Section 25.15.1 of G enetic 
Programming III and section 
5.2 of G enetic Programming 

IV

12 Rediscovery of the Zobel “M-derived half section” and 
“constant K” filter sections

patentable, beats 
achievem ent in field

Section 25.15.2 of Genetic 
Programming III

13 Rediscovery of the C auer (elliptic) topology for filters patentable, beats 
achievem ent in field

Section 27.3.7 of G enetic 
Programming ill

14 Automatic decomposition of the problem of 
synthesizing a  crossover filter

patentable, beats 
achievem ent in field

Section 32.3 of Genetic 
Programming III

15
Rediscovery of a  recognizable voltage gain s tage  and 

a  Darlington emitter-follower section of an  amplifier 
and other circuits

patentable, beats 
achievem ent in field

Section 42.3 of Genetic 
Programming III

16 Synthesis of 60 and 96 decibel amplifiers patentable, beats 
achievem ent in field

Section 45.3 of Genetic 
Programming III

17
Synthesis of analog computational circuits for 

squaring, cubing, square  root, cube root, logarithm, 
and G aussian functions

patentable, new scientific 
merit, solves difficult 

problem

Section 47.5.3 of Genetic 
Programming III

18 Synthesis of a  real-time analog circuit for time-optimal 
control of a  robot solves difficult problem Section 48.3 of Genetic 

Programming III

19 Synthesis of an electronic therm om eter patentable, solves difficult 
problem

Section 49.3 of G enetic 
Programming III

20 Synthesis of a  voltage reference circuit patentable, solves difficult 
problem

Section 50.3 of G enetic 
Programming III
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21

Creation of a  cellular autom ata rule for the majority 
classification problem that is better than the G acs- 

Kurdyumov-Levin (GKL) rule and all other known rules 
written by hum ans

new scientific merit, beats 
hum an best

Andre, Bennett, and Koza 
1996 and section 58.4 of 
G enetic Programming III

22
Creation of motifs that detect the  D -E -A -D  box family 
of proteins and the m anganese  superoxide d ism utase 

family
expert d a tab ase Section 59.8 of G enetic 

Programming III

23
Synthesis of topology for a  PID-D2 (proportional, 

integrative, derivative, and second derivative) 
controller

patentable, beats 
achievem ent in field

Section 3.7 of G enetic 
Programming IV

24 Synthesis of an analog circuit equivalent to Philbrick 
circuit

patentable, beats 
achievem ent in field

Section 4.3 of Genetic 
Programming IV

25 Synthesis of a  NAND circuit patentable, beats 
achievem ent in field

Section 4.4 of Genetic 
Programming IV

26 Sim ultaneous synthesis of topology, sizing, placem ent, 
and routing of analog electrical circuits

patentable, beats 
achievem ent in field, 

solves difficult problem

C hapter 5 of G enetic 
Programming IV

27 Synthesis of topology for a  PID (proportional, 
integrative, and derivative) controller

patentable, beats 
achievem ent in field

Section 9.2 of G enetic 
Programming IV

28 Rediscovery of negative feedback

patentable, beats human 
best, b eats achievem ent in 

field, solves difficult 
problem

C hapter 14 of Genetic 
Programming IV

29 Synthesis of a  low-voltage balun circuit patentable Section 15.4.1 of G enetic 
Programming IV

30 Synthesis of a  mixed analog-digital variable capacitor 
circuit patentable Section 15.4.2 of Genetic 

Programming IV

31 Synthesis of a  high-current load circuit patentable Section 15.4.3 of G enetic 
Programming IV

32 Synthesis of a  voltage-current conversion circuit patentable Section 15.4.4 of G enetic 
Programming IV

33 Synthesis of a  cubic function generator patentable Section 15.4.5 of Genetic 
Programming IV

34 Synthesis of a  tunable integrated active filter patentable Section 15.4.6 of G enetic 
Programming IV

35 Creation of PID tuning rules that outperform the 
Ziegler-Nichols and Astrom-Hagglund tuning rules

patentable, of scientific 
merit, new  scientific merit, 
b eats hum an best, beats 

achievem ent in field, 
solves difficult problem

C hapter 12 of Genetic 
Programming IV

36
Creation of three  non-PID controllers that outperform a 

PID controller using the Ziegler-Nichols or Astrom- 
j Hagglund tuning rules
j

patentable, of scientific 
merit, new scientific merit, 
b eats hum an best, beats 

achievem ent in field, 
solves difficult problem

C hapter 13 of G enetic 
Programming IV

A list of 36 human-competitive results produced by genetic programming. A detailed 
description o f each o f these results can be found in [Koza 2006], as well as a precise 
definition o f  the bases for claims o f  human-competitive performance. The naming o f  the 
concise terms in this column is our own.
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To enumerate a few examples, a circuit that computes a cubic response function has 

been found automatically that was independently patented as a new invention after 2000 

(Problem #33 in Fig. 1). At the time of the publishing of [Koza 1994], the best protein 

transmembrane domain detection algorithm was forged by genetic programming 

(Problem #9 in Fig. 1). Genetic programming has successfully induced the intermediates 

in a biochemical reaction pathway and inferred the relevant rate laws for the pathway 

[Sakamoto 2001]. GP has demonstrated success at missile avoidance strategies [Moore 

1998], quantum circuit design (Problems #1, 3, and 5 in Fig. 1) [Spector 1998, Bamum 

2000, and Spector 2003], and many other problems. In recent years, the Human- 

Competitive Performance Competition that takes place every year at the ACM’s Special 

Interest Group on Genetic and Evolutionary Computation, affectionately known as the 

Humies, has highlighted several results with genetic programming that meet or exceed 

best results, such as the work on mesoscale time dynamics of activated states in 

chemistry by Sastry et al. [Sastry 2005], which won the Silver Humie in 2006.

It should be noted that much of the progress made by genetic programming has been 

through the application of massive quantities of computing power. Genetic programming 

is what is humorously referred to as an "embarrassingly parallel" problem. The 

computation time of genetic programming for attacking serious problems is dominated by 

the length of time required to evaluate candidate solutions. The success rate of GP 

depends to a very great degree on the difficulty of the problems, and the number of 

fitness evaluations that are performed.

Koza [Koza 2004b] is fond of using the analogy of a "brain-second", which he 

approximates at 1015 basic operations. This can be computed in several ways, one of
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which is to multiply the number of connecting synapses in the brain by the rate at which 

the neurons fire. There are on the order of a trillion synapses in a typical brain, and the 

fastest neurons take on the order of a millisecond to fire. He then argues that since it 

takes humans quite a long time to perform complex design tasks -  hours to months, 

perhaps -  it would seem to be logical to only expect similar feats of design after similar 

amounts of work. Therefore, Koza argues, we might expect that it might take some 1020 

or 1021 operations before we can routinely and automatically induce solutions to hard 

problems. Koza cites such problems as Einsteinian relativity and Da Vinci's volo 

instrumental design as examples. In his most recent video, he points out that his history 

of successes over time represents in part the results of applying exponentially increasing 

computer power to new problems [Koza 2004b]. While this may indeed prove correct, it 

is entirely possible that we do not need many millions of brain-seconds of operations to 

solve hard problems. It is certainly the case that vast numbers of the mathematical 

operations that our brain naturally performs do not go towards what we think of as 

problem solving. For instance, we perform arithmetic essentially by stepping through the 

multiplication algorithm that we all learned in school by rote. It takes hundreds of brain- 

seconds of work to solve simple problems such as “what is the product of 3 542 729 and 

8 742.92 ?” By comparison, a modem microprocessor can solve this same problem in 

about two clock cycles, performing perhaps a million bit operations along the way.

While humans have long held the lead in performing problem-solving operations, we 

submit that this is largely due to the lack of effective algorithms that can automatically 

make progress on solving problems. One major step along this path would be to 

automatically infer an algorithm from a problem description. Problem descriptions and
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semantic comprehension are not artificial intelligence’s strengths as yet. We will settle 

for the more modest goal of inferring a simple algorithm from a function that measures 

progress towards a solution instead.

Summary o f the Mechanisms of Genetic Programming

In [Koza 1992], Koza proposes using parse trees as the basic data type for Genetic 

Programming, and he develops key tree-construction, tree-crossover, and tree-mutation 

operators. One common variant of the genetic programming algorithm, a pure-crossover 

tournament selection GP, is given in E v o l v e -T r e e s . Here we have presented the most 

important parameters as formal parameters to the algorithm, and we have neglected, for 

the moment, minor parameters and the tree grammar as represented by its functions and 

terminals. We will reprise the function and terminal decisions in Chapter 6.

Algorithm  1a: Ev o lv e -Trees

Input: population size M, number of generations G, tournament size T\
a fitness operator fitness : T —> R for which smaller values represent better 
solutions; an algorithm R a n d o m -T r e e  that generates a random tree; and an 
algorithm C r o s s o v e r  that makes two children using the genetic information 
of the two parent trees provided as parameters 

Output: a tree t e  T which has a small fitness

Population Initialization: generate M random trees 
for j  <— 1 toM do

treesj  < -  R a n d o m - T r e e  

end for

Evolution: generate G new generations 
for g  <— 1 to G do 

Evaluation: score members of the population 
for j  1 toM do 

f j  <— fitness(treeSj) 
end for
Crossover: generate new individuals from the best individuals in the population
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for j  <— 1 to M  by 2 do 
parent, <- treesTouRNAMENTf;r>M 

parent2 <r- treesTouRNAMEHTfTM 

children <— CROSSOVER parent,, parent2 
newtreeSj <— children, 

newtreesJ+, <— children2 
end for
Replacement: update the tree population 
trees <— newtrees

end for
best <— arg min f,

i=l..M

return treesbest

Algorithm  1b: T ournam ent

Input: vector of fitnesses / ,  population size M, tournament size T
Output: the index i that has the smallest fitness of those selected

for j  <— 1 to T do 
tj <— random integer on [l, M]

end for
i <— arg min f t

i= i ..r  1

return i
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Perhaps the most straightforward 

example of genetic programming in action is 

as applied to the problem of symbolic 

regression [Koza 1992]. For this problem, 

the goal is to search for the best equation 

that models a given data set. This differs 

from conventional linear and non-linear 

regression in that there is no predetermined 

functional form for the regressor. The 

genetic programming system instead 

recombines subexpressions to try to fit the 

relation under test. Suppose that we have

Figure 2
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A sample parse tree for the probability density
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function o f the Gaussian distribution,
A hta

observed some highly accurate data corresponding to the probability density function of 

the Gaussian curve. Our task is to reconstruct the functional form of the Gaussian from 

the sampled data using symbolic regression. This is accomplished by representing 

candidate solutions as a parse tree of operators and terms, as in Fig. 2. Here we show a

parse tree corresponding to the Gaussian probability density function,
2 a 1

yf27ti
Genetic

7Z<J

Programming (GP) manipulates such parse trees to make progress on and hopefully attain 

whatever goal is required, be it symbolic regression, shape optimization, feature 

identification, navigation, resource discovery and exploitation, and so on.
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Of course, genetic programming will not typically begin its search at such an elegant 

functional form. A more likely initial state for 

such a problem would be a random function tree 

such as that shown in Fig. 3. Sean Luke in 

[Luke 2002b] summarizes several random tree 

generation algorithms. In this thesis, we use 

either Koza’s ramped half-and-half or uniform 

tree generation. In E v o l v e -T r e e s , we use the 

external algorithm R a n d o m -T r e e  to generate 

an initial population of M random parse trees.

Each of these parse trees will be a randomly 

generated tree similar to that of Fig. 3.

A minor terminological note: in genetic 

programming (GP), we often speak of a 

collection of candidate solutions to a problem.

"Solution" is understood to be a generic term 

for "parse tree which, when appropriately 

interpreted, provides a partial or complete 

fulfillment of the desired goal". In the context of symbolic regression, this is normally a 

particular function of the free parameters of the problem, such as those shown in Figs. 1 

and 2. For symbolic regression in particular, the terms "function" and "solution" are 

often treated as if interchangeable.

Chapter 1: Introduction
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with virtually all parse trees generated by 
genetic programming, this function is 
unsimplified. We would typically report this
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function in its reduced form as 2 -
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In the typical set-up for genetic programming, we require a fitness function that 

measures progress towards the solution. In symbolic regression problems, the test cases 

are normally defined over a region of interest in the parameter space corresponding to 

"interesting" values of the ordinate. The idea is that the behaviour of the target function 

over the region of interest should be representative of the general nature of the target 

function. For example, if we wish to approximate the Gaussian function, we should 

ensure that any evolved function will have the appropriate behaviour at many values of 

fj., cr, and x . Since the standard deviation <r is positive, we might choose the domain 

[0.5,2.5] as a reasonable range of values for cr. The mean of the distribution, / / ,  can 

take on both positive and negative values, so we might choose the domain [-2,2] for it. 

Finally, we need to choose an appropriate range for x. Since we are interested in 

capturing both the high amplitude and low amplitude regions of the Gaussian density 

function, we might choose the range [-4,4] as an appropriate range for x. For a 

symbolic regression problem, we normally evaluate a candidate by evaluating the 

regression error on a finite set of data points. This is useful both for testing the 

effectiveness of genetic programming and for finding new approximations over the 

rational or transcendental functions of any data series at hand. For instance, for the 

Gaussian regression problem listed above, we might pre-compute a set of 50 random 

values of {x,//,cr} and evaluate the target function on these values. Notice that we do

not make any claims of generalizability for the entire domain of the regressor. We 

simply choose an appropriate, representative subset of possible function values and 

continue with our regression. This frees us from doing computationally expensive 

correctness testing on our candidate regressor functions. This is the main "hopeful leap"
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of reasoning that genetic programming commonly makes. Fortunately, as demonstrated 

in the successful solution of many human-competitive problems listed in Fig. 1, this is 

often an appropriate inductive bias to use.

For each test case, we want to be able to algorithmically quantify how “close” each 

solution is to the known data. For instance, we may compute the mean absolute error of 

the predicted values, relative to the given data, as given by (1).

J r \ f  (x‘ ’ & Gaussian(xi, //, ,cr.)| ^
£MAE ~ 2—i r n  ( 1 )

1=1
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Figure 4

sqrt

The fitness function fitness in 

this case would then be the mean 

absolute error of the candidate 

function and the precomputed data 

points. We also need to be able to 

generate new individuals from 

existing fit individuals. The 

standard technique for generating 

new individuals in genetic 

programming is crossover 

[Koza 1992], Crossover is 

illustrated in Fig. 4. To perform a

crossover operation, we first choose

one node at random from each ™ P le showi" g the operation of the crossover
operator o f genetic programming. In this example, the 
striped subtree o f tree A is crossed-over with the diagonally 

parental tree. We then exchange the hatched subtree o f tree B to yield the two offspring trees C
and D. Notice how this recombines some o f the “meaning”

subtrees rooted at each selected of each Parent while retaining elements o f  the primary
parents o f each tree.

node. Often only one of the two

possible children is created. The algorithm C r o s s o v e r  implements the operation of 

Fig. 4 programmatically, including the selection of nodes in the trees and the prune and 

graft operations. It is given in full in [Koza 1992].

Using crossover exclusively offers us a genealogy of successful solutions, which 

explains our adoption of the genealogical nomenclature; we say that the two chosen 

solutions are the parents of the new child or children. The children may be superior or

[sqrt
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inferior to their parents; we hope that they are better with non-vanishing probability. We 

term the set of all parents at a given generation the parental population at that time, 

which gives rise to a child population. The child population will normally replace the 

parental population in the next generation, although there are many variations on this 

theme.

This begs the question of which solutions we shall choose as parents for newly 

generated individuals. Many techniques have been proposed; Koza uses roulette-wheel 

selection in his early work [Koza 1992, Koza 199x], but an effective strategy used nearly 

universally nowadays is tournament selection. The simplest tournament selection is for a 

tournament of size two: choose two individuals at random without replacement from the 

population, and the individual with the better fitness gets to be a parent. A more 

commonly encountered tournament is one of size 7. Here, seven individuals are chosen 

at random from the parental population, and the best among them is declared the winner 

of the tournament. Normally in evolutionary computation, better values correspond to 

smaller fitness, as for the mean absolute error, (1 ) . The algorithm T o u r n a m e n t  above 

gives an implementation of tournament selection.

After all the new children are produced, we then replace the parents with the children 

and say that a generation is complete. This process is repeated several times, with a 

default of typically 50 generations being common. We will have more to say about what 

generation number to choose in our section on modelling for GP, in Chapter 6. Often, the 

GP practitioner will have the genetic programming system copy the single best individual 

from the parental generation as the first child produced, which is termed elitism. Elitism 

ensures that the best fitness as a function of generation number does not worsen, although
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it may lead to less strong performance in rare cases. This problem, called premature 

convergence, will be discussed in the section “Limits on Genetic Programming.”

The Artificial Ant on the Santa Fe Trail Problem

We now describe a common benchmark problem for genetic programming, the 

artificial ant on the Santa Fe trail [Koza 1992b]. This well-studied problem is a common 

benchmark for testing genetic programming and other automated programming systems 

against one another. While Langdon and Poli showed [Langdon 1998] that it is a difficult 

problem for genetic programming, its elegance and its difficulty for GP makes it an 

excellent benchmark for the methods of this thesis. We have used it extensively to test 

the statistical methods of Chapters 3 and 4, and it is the basis of Chapters 5 and 6. 

Therefore, we will describe the problem in detail here. We follow the description of 

[Langdon 1998].
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The problem is to automatically discover a program that can navigate an artificial ant 

along a twisting trail on a 32x32 toroidal grid. Fig. 5 shows the Santa Fe trail.

Figure 5

!#I•!#:##:! #f  ! I
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# ! # !

The Santa Fe trail. The artificial ant begins in position marked with an “S”, facing to the 
right. There are 89 food units in the 32x32 toroidal grid, denoted by the symbol. The 
middle dot represents the shortest path between successive food symbols.

The artificial ant begins facing to the right in the top-right comer of the world. The 

world is toroidal, so opposite edges communicate with each other -  the ant can go 

without penalty from bottom to top and left edge to right edge of the world. Ant 

programs use three operations to move about the world: Left, Right, and Move. Left and 

Right turn the ant in the appropriate directions, and Move moves the ant ahead 1 step and 

eats whatever food is in the cell ahead. Each of these operations takes one unit of time.

Chapter 1: Introduction
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There is a single sensing function, 

IfFoodAhead, which looks into the cell 

immediately ahead of the ant. This function 

takes two subtrees as parameters; if food is 

ahead, the first subtree is executed. If no food 

is found ahead, the second subtree is 

executed. Two other sequencing functions 

are provided, named Progn2 and Progn3.

They consist of two or three parameters, 

respectively, and simply execute their

Figure 6

Move

Right

Move

Progn3

Move

Right

LeftLeft

Progn3

If-Food-
Ahead

A program that successfully solves the 
artificial ant on the Santa Fe trail problem. This 
program is among the 12 solutions that exist o f  
length 11; there are no solutions smaller than 

parameters in order. A successful program of this one-

minimal size that solves the artificial ant on the Santa Fe trail is shown in Fig. 6 

[Langdon 1998 and this thesis].

The ant is given a time limit, normally 600 time steps, in which to eat all the food.

The ant programs are stopped after 600 time steps if they have not eaten all the food, and 

a fitness score is given based on how much food they have eaten. The fitness function for 

this problem is given by 89 - # food eaten. Since there are 89 units of food along the 

Santa Fe trail, a perfect individual gets a score of 0.

Next Steps

We continue in the next chapter by introducing and discussing the notion of 

scalable genetic programming. We will provide a bit of a taxonomy of evolutionary 

computation systems, and use this to situate scalable genetic programming tasks among 

other sorts of problems that evolutionary computation is asked to solve. We will then

Chapter 1: Introduction
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introduce some of the contributions that this thesis makes towards achieving scalable 

genetic programming, notably the scientist algorithm. In later chapters, we will introduce 

two different ways of automatically making subroutines from useful bits of programming 

code, which is central to achieving scalable genetic programming.

Chapter 1: Introduction
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Chapter 2: Limits on Genetic Programming, a Problem 
Taxonomy, and Scalable Genetic Programming

Evolutionary computation has been used to solve a diverse set of problems. In this 

chapter, we will provide a first attempt at a taxonomy of evolutionary computation 

problems. This naturally leads into a classification of problems largely in terms of the 

degree of abstraction involved. This will allow us to precisely define the term “scalable 

genetic programming” as used in the title of this thesis, as well as flesh out the nature of 

problems of interest to genetic programming (GP) researchers.

Limits on Genetic Programming

We are interested here largely in practical limitations on genetic programming's 

ability to induce solutions to posed problems. We hope to avoid being bogged down in a 

philosophical discussions about what is required for inferring a particular solution. In 

engineering, we are primarily interested in the performance envelope of a new technique, 

not so much in its theoretical limits.

However, even though the successes of the previous chapter are impressive, there 

remain theoretical tactics that we use to solve difficult problems that GP, as currently 

formulated, does not and cannot use. For instance, standard GP is generally evaluated 

using a simple one-dimensional fitness function. That is, each individual is given a scalar 

score that combines the results of many distinct fitness tests in a preset fixed formula.

This formula is often just the average or sum of the fitness tests performed. One example 

that we have already seen is for the problem of symbolic regression. Here, the fitness 

function is the mean absolute error of several fixed test cases.

25
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One might think that if the M l fitness data were made available to the selection and 

evolution process, GP might be able to make better use of the data. GP normally 

combines pairs of trees to make candidate solutions in the next generation. If the 

information were available, GP might be adapted to try breeding two parent functions 

that each locally fit half of the points of a symbolic regression function to make a new 

child. By analogy, we don’t debug programs that human programmers are writing by 

evaluating their fitness as a single scalar. The reader is encouraged to read Appendix 1, 

“The GP Room”, to get a sense of how difficult this task is. Through the use of 

interactive debuggers, we essentially enable the programmer to query every data value at 

each point throughout a computation. Even in systems where random data inspection is 

not possible, print statements or the like are used to view intermediate progress and aid in 

debugging. If we remove this ability from human programmers, we can imagine that 

their performance would dwindle greatly. If the problem-solving system can make use of 

it, additional information on intermediate outcomes is very useM  for program induction.

We can imagine a further refinement in this direction, where instead of having a pre­

selected fixed set of points to consider, the GP is allowed to choose points to evaluate. 

This more closely approximates how a person might "guess" the form of an unknown 

function -  select a few points of interest in the function's domain, and then evaluates the 

unknown function at these points to get a sense of how the values vary as a function of 

the parameters. Indeed, lacking a formal proof system which can verify a function’s 

correctness over an extended interior range of the domain, the only alternative is to have 

the regression system itself search for challenging points. It might, for instance, propose 

candidate test cases which are selected for being difficult to predict and then adapt a
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regression in progress to fit the new, difficult points. An accurate regressor has few such 

points, resulting in an accurate solution over the entire domain of interest. An analogous 

process can be readily defined for GP problems that are not symbolic regression, per se.

A second point to notice is that GP must make all its design advances anew with each 

successive run. A common trick used in the analysis of GP's proficiency at a given task 

is to perform many random restarts of the stochastic genetic programming algorithm. We 

then take the best of several runs as the best-of-set solution. However, it seems that if  we 

could somehow remember some of the design innovations from the first run during the 

second run, we might improve the overall performance of genetic programming on 

candidate problems.

A third idea is to consider the methods by which people make progress on algorithmic 

problems. It seems to us that working computer scientists tend to follow certain steps as 

they progress on a new problem. Appendix 1 identifies several tools of the trade. They 

include the careful consideration of simple cases, perhaps by enumeration; solution of 

simple cases; generalization of specific solutions to a more general case; simplification to 

previously solved programs; breaking problems into subproblems when you aren't 

making progress; searching for exceptional cases that break the general solution in 

progress; working a particular instance of a problem class while trying to develop an 

algorithm for solving a class of problems; and case-based remembering and adaptation of 

similar, past solutions. Many of these tricks may not be easily algorithmizable, either 

because of difficult problem-recognition issues or because of access to a wide literature 

that isn’t easily codified.
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A number of other tradeoffs generating current genetic programming research 

demonstrate how our scientist algorithm can be useful. GP is not immune to the problem 

of parameter settings - for instance, what population size should we use, how many 

generations should we run the GP for, what geometry should we use for the individuals 

and so on. Some researchers have taken on this problem as well [Luke 2002], but it is 

difficult to get conclusive answers because of two problems. First, while theory has been 

progressing in genetic algorithms and genetic programming, there is not yet any across- 

generations estimator of the best fitness of a population. Given that the progress of an 

evolutionary computation technique depends on the fitness landscape that it is searching, 

closed-form solutions will likely evade us on anything but toy problems.

Second, experimental approaches are challenged by a lack of good statistical tools in 

evolutionary computation. We will consider this problem again when we are 

demonstrating the utility of our statistical framework in Chapters 3 and 4.

It has been argued by Dan Dennett [Dennett 1991] that human cognition is a sort of 

"toolkit" -  that there are a number of very general rules that are pressed into service as 

needed by the problems currently under examination. It is the author's intuition that some 

of these tools might be pressed into service algorithmically, to build on the already 

general-purpose and effective problem-solving technique of genetic programming.

Finally, it is rare to find the search space for a problem in genetic programming well- 

characterized. The pioneering work in this regard was “Why Ants are Hard,” by 

Langdon and Poli [Langdon 1998], For tree size-limited GP, we can characterize the 

search "space" as the set of all trees with given node types of a certain maximum size or 

lower. For depth-limited GP, the search "space" is the set of all trees with given node
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types of a certain maximum height or lower. Building on the work of Langdon and Poli, 

we will consider, develop and discuss the search space that GP manipulates by providing 

a technique for indexing all trees in Chapter 5. We will also provide an algorithm for 

choosing a particular tree based on its lexicographical ordering. This algorithm enables a 

breadth-first search over the space of trees, which allows an exact solution of the 

Kolmogorov complexity [Li 1997] of a problem in tree space. This is in fact possible for 

some problems in GP, such as for the Artificial Ant on the Santa Fe trail [Langdon 1998].

Problem Taxonomy

Towards scalable genetic programming... an interesting title. What do we mean by 

"scalable" genetic programming, exactly? We will begin by explaining what it is not.

The word “scalable” in this context is to be discriminated from its typical use in computer 

science, where it has the meaning of “an algorithm that completes in polynomial time as a 

function of the complexity of the input.” This usual definition of “scalable” is not even 

well-defined in the context of genetic programming, as the difficulty of finding a program 

that solves a posed problem V  cannot be expressed as a scalable function of its input 

length. This difficulty becomes infinite for any problem grammar that enables the 

expression of the Turing halting problem [Turing 1936], so a general expression would 

be useless. Another difficulty is in measuring the amount of work required to find a 

program that solves a given problem; this would seem to be impossible in practice 

without access to a technique such as genetic programming that can routinely solve such 

problems.

Scalability in the context of this thesis refers instead to the idea of finding solutions to 

automatic programming problems that are scalable. This is equivalent to requiring a
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human programmer to find an algorithm that solves the posed problem for any value of 

an input complexity parameter. To shed light on this process, it will be useful to provide 

a taxonomy of problem classes for which evolutionary computing methods are 

marshalled.

There are a range of problem classes that evolutionary computation solves or attempts 

to solve. These can be roughly distinguished by three broadly independent parameters, 

which we call genetic data, environment and outcome. The genetic data can essentially 

be any type of data structure, from simple Boolean vectors through reals, real vectors, 

matrices, permutations, trees and graphs to combinations of these fundamental types. 

Perhaps it is not obvious, but the outcome can be an arbitrary data structure as well. 

Typically, we use a scalar real value as the primary feedback to evolution, often called 

the "fitness function", but there is no fundamental need for this. Multiobjective 

optimization, for instance, uses a vector as the outcome of the fitness evaluation. Often, 

the natural outcome of a fitness evaluation is a multidimensional result, which is then 

coerced into a scalar value for optimization purposes. Indeed, much of the hard work of 

using evolutionary computation (EC) successfully is in determining how to convert the 

response of evaluation into a scalar so that the adaptive landscape of the fitness function 

is smooth. This normally takes place by assigning arbitrary penalty and reward functions 

to reduce poor performance of an evolutionary computation system and to encourage 

positive performance. Typically, a period of iterative fine-tuning follows in which initial 

poor choices are edited in light of poor performance of the EC system. We can view the 

outcome of a fitness evaluation as a detailed record of fitness metrics. These fitness
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metrics can, at present, be simplified to a scalar to serve as feedback to the evolutionary 

system.

Finally, we come to "the environment". The trouble in evolutionary computation is 

that the environment is variously defined, depending on the author. In a strictly logical 

model of evolutionary computing, completely removed from biology, we can define the 

environment as that set of data, when augmented with the genetic data, causes the 

outcome to be a pure function of the environment and the genetic data. That is, the 

outcome of a fitness evaluation depends on the union of the environment and the genetic 

data of the individual. Two further complications assert themselves: stochastic EC 

systems and coevolutionary systems. Stochastic evolutionary computation systems, in 

addition, may give different results each time when run - even though the environment 

and the genetic data remain the same. Only deterministic EC systems will give 

deterministic results that depend only on the environment and the genetic information of 

the individual. Coevolutionary systems depend on more than one individual to produce a 

result. If we view the genetic information as the union of the genomes of all participating 

individuals, our simple model still holds.

When we define the environment in this way, we can classify EC systems by the 

kinds of environment which we hope to optimize. A first cut at such a list would include: 

• Simple scalar environments. Here the environment is fixed for all genetic

individuals. An example would be the Artificial Ant on the Santa Fe trail, which 

always uses the same trail, of the same size, with the same food in the same positions, 

with a fixed ant initial position and direction.
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• Simple vector environments. The environment is a given set of environments over 

which fitness evaluation is measured. An example would be symbolic regression, 

which is normally performed over 50 or 100 particular data points. The outcomes of 

the error between the evaluations and theoretical curve are typically summed either in 

quadrature or in absolute value, and thence reduced to a single fitness value.

• Generative environments. Here the environment is typically an infinite or a very 

large set of cases, often the power set of a problem instance. This is equivalent to 

requiring that an EC solution give an appropriately correct result over all legal input 

values of some input set. Simple vector environments are often used as a proxy to 

represent a generative environment, as in symbolic regression. Alternately, the entire 

power set of a problem space may be enumerated and used in extension to validate a 

candidate solution. Even-k-Parity, a benchmark problem defined in [Koza 1992] and 

detailed in Appendix 1, uses this latter approach.

We can make a sublist of the variants of generative environments:

• fixed subset approximation of a generative environment,

• co-evolved approximation of a generative environment,

• proof-based models of a generative environment, and

• enumeration of a generative environment.

Finally, additional levels of sophistication can be added to the above model. For 

example, we might have a situation in which the complexity of a problem depends on an 

input parameter. This would result in a scalable generative environment, where the 

complexity of the problem is selectable by an external process.
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• Scalable generative environments. Here the environment is scalable in an input 

parameter. One simple example would be the product set of a simple data type. For 

the sake of argument, let us call this data type D. The environment would then be 

some product set of D, Dk, which selects the "difficulty" of the problem. Success on 

problems in such environments approaches the main subject matter of computer 

science, namely algorithm design. For instance, being able to successfully write a 

computer program which can sort an arbitrary list of integers would be a problem 

with a scalable generative environment.
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Traditional problem classes

We can also identify different problem classes by the way that problems are 

traditionally approached in evolutionary computation. Here we have performed a rough 

ordering of the problem types by the level of abstraction of the task and the generality of 

the solution provided.

• Boolean hypercube domain optimization: The realm of the standard genetic 

algorithm. This is the case where the fitness function is of the form / :  1* -> R , and 

normally solved by genetic algorithms or their progeny [Holland, 1975].

• Numerical optimization: a fitness function / :  R* -» R  is presented which represents 

a function to be optimized -  either minimized or maximized. This is properly the 

domain of evolutionsstrategien [Schoneburg 1994], although genetic algorithms have 

long been adapted for this problem. In our earlier analysis, this would be a simple 

scalar environment, with genetic information being of the form R* and with the 

outcome of the form R . Of course, there are many non-evolutionary ways of 

performing numerical optimization as well, treated in depth in books such as Press et 

al. [Press 1992],

• Multiobjective real-valued optimization: / :  R* R m, and we are interested in

"good points" in R'”, ideally minimizing all dimensions of Rm at once. Normally 

there are intrinsic tradeoffs between the m different evaluation variables, so no single 

solution can optimize all functions at once. This results in the creation of a Pareto 

front [Pareto 1906], where solutions along the Pareto front beat other solutions in
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some outcome variables but not others. Multiobjective optimization algorithms such 

NSGA-2 [Deb 2001] are normally used in this case.

• Tree-based function optimization: We search for a tree t e T  that optimizes a fitness 

function / :  T  —» R . The tree is derived from some combinatorial space consisting 

of nodes chosen from a fixed node set, possibly applying rules enforcing syntactic 

validity. This is the equivalent of numeric optimization where the object to be 

optimized is most easily represented by a function tree. Genetic programming (GP) is 

often used to perform this kind of optimization.

• Symbolic regression to known values: We search for a function / : R rf- » R  such

that an auxiliary function fitness -  ̂ | | /  - / fr„e|j is minimized. The candidate

function is chosen from some combinatorial space consisting of a function tree made 

up of elements picked from some basis set. This is the traditional domain of GP.

• Symbolic regression to a known function: We search for a function / :  P ( R )  —» R

such that an auxiliary function fitness = -  f tme 1 is minimized. The candidate

function is chosen from some combinatorial space consisting of a function tree made 

up of elements picked from some basis set. Genetic programming has also been used 

for this problem, normally by sampling the codomain at a finite number of points and 

proceeding as in the previous case. This problem also occurs when generating an 

interpolating and/or extrapolating function for a given set of data points.

• Program instance induction: Search for a program p : X —>Y that takes an input 

x € X  and produces an output y  e Y minimizing a fitness function / :  Y  —» R . An 

example would be the artificial ant on the Santa Fe trail problem: for one particular
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board with 89 units of food on it, evolve an “ant” that eats all 89 units of food in 600 

time steps. This kind of problem is normally accomplished by genetic programming, 

where an abstract syntax tree (AST) is evolved that represents the program p. This 

differs from the previous cases in that the program represented by the AST is 

interpreted by an interpreter. The program thus executed manipulates the input data 

to produce the correct output.

• Program induction: Search for a program p \ X n —>Y that takes a set of n inputs 

x;. g X  and produces outputs y t e Y each of which minimizes a fitness function

/ :  {X,Y}  —» R . Often the candidate program should perform correctly on the power

set of the input space; in this more general case, we typically sample the power set to 

“reduce” the exponential input space to a countable number of test cases. An 

example would be the Even-4-Parity problem [Koza 1992]: evolve a boolean 

function that returns TRUE if an even number of the 4 provided boolean inputs are 

TRUE, FALSE otherwise. This is a more abstract version of genetic programming.

• Coevolutionary program induction: As in the program induction case, save that 

instead of a fixed set of test cases to attempt, an evolutionary system is used to evolve 

challenging problems for candidate solutions. That is, a separate evolutionary system 

of any of the types discussed so far generates the problem instances X  for the 

problem-generation code to attempt to solve. It is generally easier to evolve a 

difficult problem instance than it is to evolve a correct program that optimizes that 

instance. Therefore, the fitness function for the problem-evolving code is typically 

designed to try to choose easy tasks near the beginning of evolution, moving to more 

challenging ones as the solving programs improve.
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• Validated coevolutionary program induction: As in the coevolutionary program 

induction case, but a verifying oracle v : X  -» B is provided which authenticates the 

validity of an instance of the input setX  This restricts the evolutionary system that 

generates the challenge instances to attempt only valid problems.

• Provable program induction: As in the program induction case, save that optimal 

behaviour is required over the entire power set of the input -  that is, for all possible 

inputs, an optimal outcome should obtain. This can either be achieved by 

enumerating all feasible inputs and testing on them all, as in Even-4-Parity, or by 

some proof mechanism that can verify whether a proposed solution is correct for all 

possible input values.

• Scalable program induction: Search for a program p : X - ^ Y  that minimizes a

fitness function / :  [X,Y]  —» E  for each possible input X  of a scalable input function.

The scalability component is achieved using an oracle O : N -» X  that can generate a 

problem instance of a given challenge level n e N .  An example would be the task of 

inducing the algorithm sort-integer-array which sorts a provided vector of size n of 

32-bit integers into ascending order. Another example would be to induce an 

algorithm for computing the convex hull of a set of n points in 2 dimensions. As with 

program induction, genetic programming is typically used to represent and evolve 

abstract syntax trees, which are evaluated by interpretation.

• Scalable algorithm induction: Generalize the scalable problem induction task defined 

previously to replace the concrete data type governing the data with an abstract data 

type D. An example would be to induce a generic sorting algorithm that sorts a 

provided vector of arbitrary data types possessing a sorting predicate S : D 2 -» B into
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ascending order as defined by S. Another example would be to induce an algorithm 

for computing the convex hull in an arbitrary number of dimensions d. To our 

knowledge, this level of proficiency has not been accomplished in automatic program 

induction.

• Program definition and induction: Given a fitness description in terms of a set of 

benefit functions, induce a problem and a solution to the problem in tandem. This 

would represent the grail of automated programming, automatic progress on problem 

definition and its solution simultaneously. It remains a conjecture at present.
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Variability dimensions and some levels o f variability for 
different evolutionary computation tasks. The input 
dimension may be single-valued, or vector-valued. Higher 
levels o f input dimension include the power sets o f  a task, 
from the power set o f a concrete variable, to the power set o f  
a scalable variable, to the power set o f an abstract data type. 
Finally, we might define an autonomously determined input 
dimension as the highest level o f abstraction. Outcomes 
from a fitness evaluation may take the form o f a simple 
scalar, a vector o f  related items, or a fitness record as 
described in the main text. We term the ability to measure

These two approaches to 

categorizing can be modelled in 

terms of the variability dimensions 

of the evolutionary computation 

system. Three obvious variables 

useful in categorizing these 

systems are shown in Fig. 1: the 

input dimension, the number of 

outcomes, and the indirectness of 

the representation. Some 

variability levels are shown for 

each variable and are explained in 

the figure caption -  these are

the interim evaluation state at any point during an evaluation , , , . ,. ,. ,,. • „ . , lt r  „ meant to be indicative, rather thanas a continuous outcome. We also use autonomous as an ’
outcome level, where the EC autonomously determines what 
outcomes from a state variable are salient. The 
representation may be a literal coding o f a fitness solution; it 
may be indirectly coded, or it may arise from interpreting the 
tree as source code and evaluating it.

exhaustive, and may overlap in 

practice. We can view any 

particular EC system as setting three sliders along the variability dimensions of Fig. 1: 

for instance, the program instance induction problem such as the artificial ant on the 

Santa Fe trail would have an input dimension of 1, an outcome dimension of 1, and is an 

evaluated representation. We should probably also have a variability level related to the 

sophistication of the environment -  for example, in the artificial ant on the Santa Fe trail 

problem, the environment is more sophisticated than for symbolic regression. Another 

variability level might be the input data type. There is, however, a deeper problem for a
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rigorous categorization of EC systems along these lines. We can define embeddings for 

each of these problems into one another, subject to the No Free Lunch theorem. For 

example, take the class of single-objective function optimizations / :  R* —» R . This 

problem can be embedded into the boolean-value optimization in many ways, for 

instance by using the IEEE 80-bit double floating-point representation of each number. 

This gives the problem representation / :  B8M —» R , which is isomorphic to the boolean- 

space optimization. In practice, however, running an evolutionsstrategie (ES) on the 

real-valued representation tends to outperform running a GA directly on 80-bit float 

representations.

Em bedding and interconvertability o f representation

The implications of this embedding idea are many. Optimizing one form of a 

function is often observed to be an easier task than optimizing another form, even 

through they are nominally interchangeable. We should be satisfied with an approximate 

categorization of problem classes, rather than a rigourous mathematical one.

Suppose that we wish to perform a single objective optimization of an unknown 5- 

dimensional fitness function/ as shown in (1).

y  = f ( x l,x2,x3,x4,x5) (1)

To encode the problem in our computer, we represent each of the input variables and 

the fitness outcome as IEEE double-precision floating point variables using 80 bits. The 

codomain of the function is then 5 • 80 = 400 bits of data, with an output of 80 bits of 

data. Since the codomain of this function is closed under permutation, a version of the 

No Free Lunch theorem [Wolpert 1995] will apply over such a function set. We
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immediately know that no optimization technique can do better, on average, than 

enumeration. We can compute the size of this function set as (280) , or 1010 . Since

our feasible program space knows nothing a priori about the input being offered, all 

interpretations are equally valid. For instance, one reasonable fitness function would be 

that represented by Length-Of-Input-A s-A -String .

Algorithm  1: Len g th -O f-In pu t -As -A-String

Input: 5 80-bit IEEE floating-point numbers x,,x2,x3,x4,x5 
Output: an 80-bit IEEE fitness value / ( x 1,x2,x3,x4,x5) .

addr <- address of xt
a <r- interpret addr as the beginning of a null-terminated ASCII string 
a50 <— null
answer length(a) as an IEEE 80-bit floating-point value

While it may not seem to be a useful function, this is certainly a legitimate function in 

the setup over which the No Free Lunch theorem applies. Other possible interpretations 

of the input data include:

• A binary bit string of 400 bits

• An ASCII string of 80 characters or less

• A modest-sized GP function tree consisting o f  at most 100 nodes chosen from a set o f  

16 component nodes

• One 400-bit floating point number

• 5 or fewer 80-bit IEEE doubles

• 10 or fewer 40-bit IEEE floats

•  12 or fewer 32-bit integers
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• 25 or fewer 16-bit fixed-point reals

• a C++ record consisting of 400 bits of information, total

• a variable-size bit string of 391 bits or less

• a TSP path among 44 or fewer cities

.. .and so on. The point of this analysis is that for each of the above data types, we 

can imagine a problem class which takes the data set as input. We can make a similar 

argument for any of the variability dimensions that we described earlier -  outcome 

dimension, solution complexity, environment complexity, or representation indirectness. 

All of these variability dimensions fall prey to the No Free Lunch theorem, suitably 

expressed. Nonetheless, data types are only valuable as programming constructs 

inasmuch as problems themselves are best modelled by one of these sets of data types.

We intend the preceeding categorization of problem classes into abstraction levels in the 

restricted sense of “typically encountered computable problems”. The point of this thesis 

is to engage the “scalable genetic programming” level of problem. Before we begin, we 

will briefly mention some of the properties that an automated problem-solving system 

should have to solve problems of algorithm inference.

Properties that any Successful Automated Programming 
Algorithm should have

We will now explore some of the features mentioned in the above text. Fig. 2 gives a 

list of “useful insights” in tabular form that are either necessary or productive in the 

automated solution of scalable genetic programming problems.
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Figure 2

Insight o r Property Algorithmic Implementation Solution Chapter

Validation is e as ie r than 
solution

Define an oracle F(s) to "score" 
candidate solutions fitness function literature

Exhaustive coverage of 
problem sp ace  is hard

Define an  oracle 0 (p ) to generate  
problem instances on dem and

dynamic problem 
generation Ch. 2

...and EC is effective on 
hard problem s

U se an  EC system  to look for 
challenging c a se s  for a  candidate 

solution
co-evolution Ch. 7

Systematically working up 
from enum erable b ase  

c a se s  to a  correct general 
solution often works well

Extend the oracle 0 (p) to include a 
scalable difficulty param eter 0 (p , n)

dynamic problem 
generation Ch. 2

Enum erate all simple problem 
instances of a  given size

problem sp ace  
enum erator Ch. 5

Reducing a  problem into 
the basic variants of each 

c lass and solving each 
separately  is often effective

Clustering or o ther analysis of fitness 
values for candidate problems

evaluation and 
clustering 
algorithm

Ch. 7

Automatic generation of subroutines 
from fit individuals

subroutine-making
code

Ch. 5, 
Ch. 7

Generating all possible 
solutions and evaluating 

them can identify valuable 
building blocks

Enum erate all simple solution 
instances of a  given size

solution sp ace  
enum erator Ch. 5

Evaluate candidate solutions evaluation literature

Automatic generation of subroutines 
from fit individuals

subroutine-making
code Ch. 5

Automatic progress on 
hard problem s will require 

a  generate-and-test 
methodology

G enerate-and-test framework
scientist algorithm

Ch. 5

Promising pathways should be 
tracked and used

Ch. 2; 
Ch. 6

Useful subroutines should be 
available to new  runs

archiving and 
tracking code Ch. 7

Reliable decision-making is 
required for deciding 

betw een m ethods and 
evaluating techniques

Efficient, autom atic statistics suitable 
for EC algorithms

good statistics for 
comparing 

solutions with 
different 

computational 
1 effort

Ch. 3; 
Ch. 4; 
Ch. 6

A list o f insights which would seem to be either required or highly productive for reliable 
automatic scalable program induction. We have indicated the chapter in this thesis in which 
the issue is discussed or introduced. In some cases, relevant data are presented in several 
different locations in the text.

While implementing and characterizing progress on the all of the tricks listed in 

Fig. 2 might take a lifetime, this thesis does explore and implement some of the low- 

hanging fruit in this domain. Many theses in artificial intelligence introduce a number of 

“clever tricks”, implement them all and consider performance when using them jointly on 

a hard problem. While this is a justifiable tack for attacking a difficult engineering 

problem, it unfortunately confounds the effects of all the implemented tools, making
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generalization of the research difficult. A more scientific approach would be to define 

and characterize each innovation separately where possible, and to conjoin techniques 

only where logically necessary or useful. This thesis adopts the latter approach. We 

believe that the combination of the techniques of Fig. 2 will ultimately be particularly 

powerful, but we would prefer that they be characterized as useful individually. This has 

the perhaps unfortunate consequence that no “great synthesis” of all the techniques 

presented in this thesis is performed. We feel that the sundry contributions performed by 

this work will satisfy the title of the thesis, “Towards Scalable Genetic Programming.”
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Scalable Genetic Programming and the Scientist Algorithm

One serious criticism that might be levelled at genetic programming is that it fails to 

make effective use of subroutines in automatic programming. The ability to parameterize 

specific algorithms while retaining correctness underlies the fluency of most human- 

crafted algorithms. Being able to reliably create useful subroutines would go some way 

towards making automated problem-solving human competitive. The founder of genetic 

programming, John Koza, has accordingly made several independent attempts at 

automatically reusing code, including automatically defined functions (ADFs)

[Koza 1994], automatically defined macros (ADMs) [Koza 1999], and others. Genetic 

programming with ADFs has been contrasted explicitly against genetic programming 

without ADFs. We can use this set of data to illustrate the idea of scalable genetic 

programming. The effects of using ADFs on problem difficulty for the Even-A>Parity 

problem are shown in tabular form in Fig. 3 and are shown visually in the logarithmic 

plot of Fig. 4.
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Figure 3

Computational Effort log Comp. Eff.
k_______ GP GP+ADF GP GP+ADF
3 96 000 64 000 5.0 4.8
4 384 000 176 000 5.6 5.2
5 6 528 000 464 000 6.8 5.7
6 70 176 000 1 344 000 7.8 6.1

Approximate computational effort as 
a function o f the number of Boolean 
predicates considered, k, on the Even-k- 
Parity problem. Computational effort 
numbers are accurate to roughly a factor 
of two, given the number o f runs 
performed in these experiments. Trials 
are performed both with Automatically 
Defined Functions ( GP + A D F ) and 
without (GP). The data given for k = 6 
for the GP treatment are extrapolated from 
the prior data, and are consistent with the 
absence o f any successes in 19 trials. All 
data are taken from [Koza 1994].

The performance gains are 

impressive indeed; an estimated factor of 

50 speedup is achieved at k  = 6 using

Figure 4

Even-k-parity scaling

e  8.5
I  8.0 —
" 7 . 5 -  
I  7.0 
S 6.5 ---

R2 -  0 9836

—♦—GP 
•Hi—GP+ADF 
— Linear (GP)
— --L inear (GP+ADF^

A graph o f the logarithm o f the approximate 
computational effort required to solve various Even- 
k-parity problems with 99% confidence. 
Computational effort is determined by finding the 
generation that minimizes the computational effort, 
and then repeating the GP procedure with 
independent trials to achieve 99% odds o f  success. 
For the run counts used in these experiments, 
computational effort is roughly accurate to within a 
factor o f  2 in value, or ±0.3 in the logarithm. Trials 
are performed both with Automatically Defined 
Functions ( GP + A D F ) and without (GP), which are 
seen to reduce the slope but not change the slope or 
degree o f the curve. Linear regressors and their 
coefficients o f variability are given for each series. 
All data are taken from [Koza 1994],

ADFs. As the trend remains upwards when graphed on a log-linear scale, the 

computational effort remains exponential in k, even after using ADFs. In contrast, most 

human programmers can solve this problem for any n in constant time, by means of a 

loop and a subroutine that computes Exclusive-Or . To be fair, the genetic 

programming system for this problem does not have access to a looping primitive. If one 

is supplied, however, genetic programming does still not make much progress on the 

problem unless Exclusive-Or  is provided as well. This, then, is the central issue of 

scalable genetic programming -  to solve algorithm-coding problems as humans do, by
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performing little experiments to identify, break down, and solve hard problems. We 

might anticipate that this is a challenging task; accordingly, in this thesis we will merely 

illustrate how we might go about beginning to implement scalable genetic programming.

Scalable Problem Difficulty

Problems have a natural difficulty level associated with them. Indeed, many 

problems have a difficulty level that can be easily turned into a free parameter. For 

instance, consider the artificial ant on the Santa Fe trail problem [Koza 1992b]. This 

problem has a natural challenge level associated with it, namely the number of time steps 

required to solve the problem. The reference choice for the problem, 600 steps, 

represents an intermediate level of difficulty. To give an indication of the scalability of 

computational effort with challenge level, we can perform an analysis of exact 

computational effort for an enumerable problem, which we will expand upon in more 

detail in Chapter 5. Figs. 5 and 6 show how the computational effort changes as a 

function of problem difficulty and subroutine set used.

Figure 5

I ' ■
1 Time 
j Steps Normal + IFAM + IFAM  + 

Var. 1
+ IFAM  + 

Var. 2
+ IFAM + 

Var. 3
+ IFAM  + 

Var. 4

+ IFAM  I 
+ Var. 4 
+ IFB3

! 400 65 808 138 2 281 978 ! 513 872 457 191 2 322 110 149 632 26 652
| 600 1 450 956 227 602 18 664 60 952 81 055 54 008 20 573
| 1 000 7 1 6 1 5 8 134 744 15 0T2 1 8 1 0 0 22 526 51 400 17 804 !
i 4 000 716 158 134 744 15 0 f2 18 100 22 526 51 400 17 135

Computational effort to 99% success for the enumeration algorithm M e m o r iz in g - 
R a n d o m -T r e e -S e a r c h  o f Chapter 5 at various "challenge levels" on the Artificial Ant on 
the Santa Fe Trail problem. “IFAM”, “Var. 1”, and “IFB3” represent different additional 
functions added to the problem function set. The challenge levels are discriminated by the 
maximum number of time steps. A detailed description and a derivation o f the additional 
subroutines are presented in Chapter 5.
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Figure 6

1 Time 
1 Steps Normal | + IFAM + IFAM  + 

Var. 1
+ IFAM  + 

Var. 2
+ IFAM  + 

Var. 3
+ IFAM  + 

Var. 4

+ IFAM  
+ Var. 4  I 
+ IFB3  j

! 400 1.00 28.84 128.06 143.94 28.34 439.80 2 4 6 9 1 5
I 600 

r  1000
1.00 6.37 77.74 23 80 17.90 26 87 70.53
1.00 5 31 47.52 39 57 31.79 13 93 40.22

\ 4 000 1.00 I 5.31 47 52 39 57 31.79 13.93 41.79

Computational effort to 99% success for M e m o r iz in g -R a n d o m -T r e e -S e a r c h  on the 
Santa Fe trail problem for various subroutine sets relative to the effort o f  the standard 
subroutine set. Larger numbers represent a savings in effort. “IFAM”, “Var. 1”, and “IFB3” 
represent different additional functions added to the problem function set, and are described 
in Chapter 5. The experimental conditions are sorted by number o f time steps available to 
complete the problem, and so increase in difficulty as the number o f time steps goes down.
Notice that for the more challenging problems, the relative speedups achieved improve 
dramatically.

The performance gains indicated in Fig. 6 are impressive indeed. A factor of 70 

speedup is achieved for the three-subroutine function set versus the reference function set 

for the standard 600 time step problem. However, a factor of 2 400 is seen for the hardest 

problem considered, the 400-time step problem. Adding this dimension of problem 

difficulty thus expands our understanding of the nature of task difficulty; there clearly is 

an interaction between problem difficulty and relative improvement achievable. This 

immediately suggests ways of improving genetic programming, such as changing the 

difficulties of the tasks encountered; progressively presenting more challenging 

problems; and restarting runs with subroutines that were successful on simpler versions 

of the tasks.

We should point out that the subroutines derived by Systematic-Subroutine- 

G e n e r a liz a t io n  in Chapter 5 were discovered by analysis of the 600-time step problem. 

If we were to analyse the 1 000 or 400-time step problem, this algorithm may well arrive 

at a different set of subroutines. This is, however, a modest caveat which should not 

interfere with the impressive result. The fact that subroutines derived for a specific
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problem dramaticallly improve the performance of related problems should be all the 

more impressive when we consider that they were not derived in this context and for this 

purpose!

Scientist Algorithm

To engage these problems, we posit an adaptive algorithm that we call the 

"Scientist Algorithm". This algorithm is basically a wrapper around genetic 

programming. A conventional genetic programming algorithm is used as a subroutine to 

make sustained progress on a problem. This scientist algorithm differs somewhat from 

the adaptive algorithm used in the “Robot Scientist” by King et al. [King 2001, Bryant 

2001], but borrows from it as well. King et al. used an approximation algorithm to 

determine which experiments to perform and in which sequence to elucidate the purpose 

of several opening reading frames in the aromatic amino acid synthesis pathway in S. 

cerevisiae [King 2001]. This differs from the more general problem posed here, in that 

there reliable estimates can be made of the cost of performing an experiment. 

Additionally, the nature of the experiments to be performed therein is uniform: all 

experiments are of the same kind, namely incubation of knockout strains of the yeast to 

test metabolite utilization. The formulation of a cost metric to guide the search process in 

the present work along the lines of King’s Active Selection of Experiments (ASE) model 

would be useful in principle, but difficult to achieve in practice. The success or failure of 

different pathways in the GP scientist algorithm is completely unknown at the time of 

experimentation: total success is often but a single experiment away. This differs from 

the situation in [Bryant 2001], where filling out a network of related information in a 

nearly-optimal way is the goal.
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In an attempt to mimic human reasoning and problem-solving, we present 

Scientist-A lgorithm, an algorithm that can take different functional elements or 

"tools" as pieces. These "tools" can then be tried out as to their effectiveness at solving a 

problem at hand -  with the aim of being able to make progess in an adaptive way on a 

challenging problem. Each tool observes a rigid upper limit on the amount of work that it 

will perform; thus, we can operate in an efficient manner on the problem at hand. An 

example of such a tool would be a lightly modified version of the Systematic- 

Subroutine-Generalization algorithm of Chapter 5, which observes a hard limit in 

terms of the number of evaluations performed and which returns a set of subroutines that 

are likely to be useful. More examples are provided in Chapters 6 and 7. Scientist- 

A lgorithm can be used as a kind of programmatic scaffold on which the “good tricks” 

of Fig. 2 can be hung. Scientist-A lgorithm also uses a few external algorithms that (a) 

select which tool from the toolkit to use and (b) choose how to allocate resources to tools. 

The general parameters of an appropriate algorithm for choosing how to allocate 

resources to tools will be described briefly below, and in more detail in Chapter 6.

Ideally, some Bayesian cost-estimation algorithm would be deployed at the highest level, 

as ASE-Prolog in [Bryant 2001]; however, determining valid cost and benefit estimates 

for the various hypotheses under test in the scientist algorithm is a difficult problem 

beyond the remit of this thesis.
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Algorithm  2: Sc ientist -A lgorithm

Input: an instance-generating function /, which takes an environment structure E
representing the "environment" of a problem (precisely defined in the main text), 
and a challenge structure C describing the desired difficulty level of a candidate 
problem instance, and answers an appropriate instance I(C;E) of the target 
problem;
an oracle O, which takes one or more function trees t using zero or more 
subroutines; a subroutine set S  describing legal subroutines for t\ an environment 
structure E  representing the "environment" of a problem; and a problem 
instance I, which answers a fitness structure 0 (t,I;E ,S ) containing at least 
a simple scalar fitness, fitness has the property that 0 is optimal, and larger 
numbers are worse;
a set of modules K  (the "toolkit") where each element of K  takes a maximum 
number of fitness evaluations to perform and that answers the number of 
fitness evaluations actually performed while being able to modify, en passant, 
any of the subroutine set S, a set of valuable trees T, and/or the choice of 
challenge structures C by performing experiments using I  and O; and, 
a set of "built-in" function terminals F, which operate in the fitness space 
scored by O

Output: a valid tree t that solves the problem and a set of subroutines S  which have been 
used to improve performance

s< -{ }
evals <— 0 
do

n <— n + \
k  <- Ch o o s e -T o o l  K, F  U S, I, O 
limit <- C h o o s e -M a x -E v a l s  evals, F  [ jS ,I ,0  
evals <— evals + k(lim it,T ,F ,S ,I,0 ) 
f best < - B e s t -F it n e ss  T 
while f best > 0 

return [t, 5]
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Figure 7

Objectives

C hallenge
Structure

Problem
lnstance(s)

Q uasi­
objectives

Inputs and outputs to a fitness evaluation for the Sc ie n t is t -A l g o r it h m . Quasi-objectives 
are auxiliary objectives that, while not impacting correctness, are nonetheless desirable. The 
production o f a problem instance from a challenge structure is indicated. The box labelled 
“Objectives” takes the place o f the traditional fitness function, but in a fine-grained manner.

Intermediate Task Progress

Intermediate rewards provide a powerful mechanism for ascertaining progress on a 

task. The fitness function central to evolutionary computing and black-box optimization 

is the normal measure of progress towards a task. However, if satisfaction of a hard 

problem is the goal, then we will not know of any success until the problem is itself 

solved - too late to be of any use! We therefore propose that it will be valuable to come 

up with intermediate rewards - hints that provide an indication that the scientist algorithm 

is on a promising path. One concrete example of an automatic way to engage in this 

"hinting" is given in the Sy s t e m a t ic -S u b r o u t in e -G e n e r a l iz a t io n  algorithm of 

Chapter 5. There, we consider the relative performance with different subroutine sets on 

the complete set of small trees, until a threshold number of evaluations is reached. Better

Chapter 2: Limits on Genetic Programming, a Problem Taxonomy, 
and Scalable Genetic Programming

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



53

relative performance on these small trees was used as a proxy for ultimate probability of 

success.

It would seem that the scientist algorithm will have a better chance of success, in 

general, when tools appropriate to the task are employed. One source of information 

using intermediate rewards might be found when using scalable problems. Easy 

instances might be readily solved by several techniques, with the relative effort used by 

them serving as a measure of the value in employing tool A over tool B. This implies 

that problem instances should be controllable, in part, by the scientist algorithm. It is for 

this reason that we explicitly break out the instance-generation algorithm I  in S c ie n t ist - 

A l g o r it h m . This enables individual tools to choose how difficult the problem instances 

that they require should be.

Another important tool would be to expand the amount of information available to the 

scientist algorithm. The problem with the traditional scalar fitness function is that it loses 

a great deal of information in compiling the fitness value for a problem. The idea here is 

that more detailed "readouts" from a fitness evaluation may be useful in discriminating 

between potentially productive pathways or tool sets. This is the topic of the next 

section.

Fitness Values and Fitness Records

Fitness function selection is a bit of a "black magic" art. In some cases, such as 

symbolic regression, an obvious fitness function can be defined - namely the sum of the 

mean squared errors between the candidate function and the target function on a fixed 

random sample of points. We will return to the sample of points in the "Environment and 

the Choice of Test Cases" section below. In other cases, the choice of an effective fitness
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function is non-obvious. In practice, the fitness function itself goes through a sort of 

iterative development process. The typical stages of fitness function development are as 

follows:

• an obvious fitness function / 0 is manufactured based on problem characteristics and

some intuitive notion of what a reasonable algorithmic definition of “better” would be 

for the task;

• this fitness function is used to evolve some trees using genetic programming;

• performance is generally observed to be poor; typically, evolved genetic programs 

exhibit a kind of cleverness, but manage to optimize the fitness function without 

solving the problem as desired;

• the fitness function is modified into a new fitness function, f , to improve 

performance and/or prevent trivial solutions from dominating the population;

• .. .and the process repeats from the second step above.

Viewed from afar, this process looks suspiciously like a co-evolutionary one. A 

human programmer is incrementally adapting a fitness function as a deeper 

understanding of the problem and how EC makes progress on the problem develops. One 

approach to ameliorating this problem would be to construct an evolutionary computation 

system with the ability to identify and resolve its own issues. A second is to throw up 

one's hands and be aware that problem specification necessarily involves an incremental 

process of refinement. A successful fitness function for evolutionary computation will 

shape the fitness landscape so that easy moves in genotype space result in steady and 

incremental benefits towards problem solution [Langdon 1998]. It is this reshaping of the 

fitness landscape that we refer to when we talk about "getting the downhill direction
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right." Problem specification, on the other hand, is beyond the purview of this thesis, 

since we have defined S c ie n t ist -A l g o r it h m  to work on a fixed oracle O to divine how 

effective a particular candidate solution is. We are sensitive however, to the iterative 

approach to problem specification, and suppose that this approach will likely remain the 

standard procedure for a long time to come.

Most fitness functions throw away information. Consider a symbolic regression
n ^

problem where the fitness function is given by F ( f )  = - ] T ( / (*.) -y .'j  . The actuali=1

fitness information that is generated for this problem are the actual measured errors 

/ (xi) ~ y, > which clearly have more information content than the single scalar sum does.

Unfortunately for us, working directly on these measured errors is considerably more 

difficult than working on a simple scalar. Multi-objective problems in general are more 

difficult to optimize than singly-objective problems. The nature and potential benefits of 

multiobjectivity will be explored more in Chapter 7.

We can easily come up with additional “quasi-objectives” that might be optimized at 

the same time as the primary fitness function. For instance, in addition to problem 

correctness, we might want to prefer programs that are parsimonious; that are correct; 

that do not perform illegal operations; that do not access memory outside of a legal range; 

and that are speed-efficient. Quasi-objectives can of course be treated as independent 

objectives in a multi-objective optimization. However, this problem differs from 

traditional multi-objective optimization since many or all of the variables can be 

completely optimized at once. That is, the Pareto front among the quasi-objectives is 

partially or completely degenerate. Therefore, another productive path is to treat some 

objectives as auxiliary objectives and to use them to break ties among otherwise equal
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candidates. We will demonstrate the effectiveness of this technique in Chapter 7 when 

we look at optimizing for parsimony when solving successively more challenging 

problems.

The benefit of breaking up fitness-related observables into their component fields is 

that it becomes possible for an algorithm to make progress when stymied on a particular 

desirable direction. Consider the case of the artificial ant on the Santa Fe trail. We can 

see multiple levels of detail into which we might break down the fitness function. The 

standard Santa Fe trail problem uses the sum of all the food acquired as a fitness measure, 

with a possible integral score from 0, which states that all the food is eaten by the ant, to 

89, where none of the food is eaten. A second level of detail would be to answer a bit- 

vector which, for each piece of food, tracks whether or not it was eaten. A third level of 

detail would be to track the entire path traversed by an ant during its journey. This third 

level offers the possibility of defining some auxiliary objectives, such as:

• the number of non-food containing spots that were traversed during the walk,

• the number of movement operations performed during the walk, and,

• the proportion of the board explored during the walk.

Any of these would count as auxiliary objectives for the Santa Fe ant problem.

Would they improve performance? We cannot say -  but in some cases, partial solutions 

act as concrete progress even if not measured directly by the fitness function.
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Environment and the Choice of Test Cases

We will develop a practical technique to progress beyond the per-problem tuning of 

genetic programming to run experiments. This is motivated by our belief that GP, while 

a valuable source of innovation, lacks the ability to checkpoint good results and make 

progress in a systematic manner.

We will present a preliminary model of how genetic programming makes progress on 

a problem that emphasizes the role of selecting successful substitutions of modest 

complexity. The key ideas of this model are first, that the larger the population used in 

genetic programming, the more complex are the single substitutions that can be found in 

a single generation. Second, evolution progresses in a stepwise manner, where the best 

individuals in each generation represent potentially new high-water marks for the genetic 

programming system. This naturally limits the number of successive refinements that a 

GP system is capable of making to G, the number of generations performed. Third, 

without elitism [Koza 1992c], a GP system might lose productive solutions on successive 

generations.

In light of this model, there are certain methods of productive problem solving that 

are not followed by genetic programming. It seems to us productive to perform small 

experiments using genetic programming, while having an overarching "scientist" 

program watch the results and direct the GP system about which experiments to run next. 

In this model, the "scientist" will augment traditional GP by adding the possibility of 

seeding an initial GP population with key individuals to preferentially explore certain 

areas of the search space. Essentially, GP is used as a subroutine of the scientist
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program, whose job it is to make progress on solving a particular problem or family of 

problems.

This is to be contrasted with published meta-GP techniques that run a GA at a top 

level that tunes the parameters of a GP technique running repeatedly as a subroutine 

[Schmidhuber 2004]. The scientist program will choose the parameter settings, this much 

the two techniques have in common. However, the scientist technique will also actively 

experiment, by trying different seed populations, function sets and even problem 

dimensions. The results of these experiments will be systematically recorded and used to 

inform future experiments. This represents a considerable departure from the state of the 

art, and is the primary contribution of this thesis. A small example of this algorithm can 

be seen in the algorithm Evolve-Tiny-Trees, written up in Chapter 7.

Once we have defined the scientist program, a number of other genetic manipulations 

become feasible. For instance, it is possible to create, offer and test new subroutines or 

idioms to GP, in effect synthesizing new terminals and functions for improved 

performance from successful code. Another improvement that we can offer, beyond 

traditional GP and related systems, is that we can freeze successful individuals and try 

directed mutations upon these individuals to refine their abilities, optimize their 

performance, or create new subroutines from their genetic material to generalize their 

successes. This can be viewed as an extreme version of elitism, followed by the creation 

of a new deme with the hero immigrated in the first generation [Gilmour 1939,

Wineberg 2000]. We can do such tricks as selective breeding and direct genetic 

manipulation, to generally reproduce some of the useful tricks that people have used in 

the biological world. We will also be able to do things like dynamically adapt the
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selection function in response to a perfectly successful individual, to optimize its size, its 

generalizability, or other desired traits. We will show that some of the tactics that human 

computer scientists use to make progress on an algorithmic problem can be used 

automatically, absent human intervention. For instance, we can evolve a program that 

sorts a vector of data by first considering a base case and evolving a solution in that 

environment, inducing the solution into a novel subroutine, and then solve the general 

sorting problem by using the conditional swap subroutine in a systematic way to discover 

either insertion sort or bubble sort. Furthermore, we will be able to detect when a 

particular tactic is not beneficial and respond appropriately to continue to make progress 

on the problem by a different tactic.

Of course, the simple answer to the advantage of the scientist algorithm is that it 

enables successful solution of problems much more efficiently than traditional GP does. 

In practice, we can reasonably expect to see orders-of-magnitude speedups for some sorts 

of problems over what the best GP systems can currently do.

Before we return to the “meat” of this thesis, however, we should discuss how to 

compare incremental stochastic algorithms against one another fairly. Hypothesis testing 

is central to the scientific method, and the techniques used to evaluate evolutionary 

computation methods have some strengths and some weaknesses. In the next two 

chapters, we will discuss and evaluate the measures which are currently used to compare 

evolutionary computation systems. We will then propose a new test, the y-test, which 

will prove useful in performing such comparisons.
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Chapter 3: Which Measure to Use When Comparing 
Stochastic Algorithms

One problem in performance analysis of evolutionary computation systems is that 

there is a diversity of measures in use for determining when one evolutionary 

computation (EC) system is to be preferred over another. Methods in common use, as of 

2006, include the following five techniques: mean best fitness (MBF), success 

probability (SP), computational effort (CE), average evaluations to solution (AES), and 

mean fitness of population (MFP). We have generated a great deal of data for the 

artificial ant on the Santa Fe trail problem described in Chapter 1. We will use these data 

to illustrate the problems that can arise when making comparisons between these 

different techniques. We will also define new versions of two of the statistics which are 

better than their conventional forms. We begin by discussing the meaning of these five 

different techniques and their tradeoffs, which are shown in Fig. 1.

Figure 1

Statistic Analyzes  
only best

Efficiency
measure

Work-balanced
comparisons

Matches best 
against best

Mean b es t fitness yes no param eter
choice no

S u ccess probability yes no param eter
choice no

Computational effort yes balanced always acro ss  G
Average evaluations to 

solution yes yes param eter
choice no

Mean fitness of population no no param eter
choice no

This figure shows the most common methods o f  comparing evolutionary computation 
systems in common use. For each comparison statistic, we indicate whether it confounds the 
best-of-population performance with population performance; whether it is intended as an 
efficiency measure; whether they allow comparisons with differing numbers o f  performance 
evaluations; and whether they allow matching the best parameter setting against the best 
parameter setting across treatments.
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Computing the mean best fitness normally involves comparing the mean of several 

runs of one process with the mean of several runs of another, or of several other 

processes. As with all stochastic methods, the success rate or quality of solutions should 

improve with the amount of work performed. More work should not generally result in 

poorer performance! To make mean best fitness comparisons fair, the number of fitness 

evaluations is usually fixed across different treatments, so that the amount of work 

performed is equal across all compared treatments. For instance, in [Whitley 2006], 

Whitley et al. ran each EC system that they investigated for 100 000 fitness evaluations. 

We will demonstrate some of the biases and inaccurate assumptions that imperil the 

conclusions of those using inappropriate statistics.

Why Restarts Must Be Considered When Evaluating EC Performance

The concern with using mean best fitness while keeping the number of evaluations 

constant is that the performance of EC systems is not optimized simultaneously for the 

parameter settings chosen. For instance, we have shown in Fig. 2 the computational 

effort for three different population sizes for the Santa Fe trail problem. We can see that 

with M  = 10 000, genetic programming performs 10% worse than at M  = 1000, even 

with the best possible generation number for each setting. Furthermore, the optimal 

settings for generation number are different for each series, moving from G = 17 for the 

M=  1000 treatment to G = 15 for the M=  10 000 treatment.
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Figure 2

800 000

750 000

700 000

a
650 000

600 000

550 000

250 
□ 1000 

-*-10 000

500 000

8  450 000

400 000
10 15 20 25 30 35 4540 50

Generation Number G

Estimated computational effort to 99% success at each generation for the artificial ant on 
the Santa Fe trail problem as a function o f population size. 12 280 runs o f the M =  10 000 
series, 50 010 runs o f the M =  1000, and 430 625 runs o f the M =  250 series were performed.
95% confidence intervals are indicated on the graph; they are independent across series but 
not along each series.

We use M  = 10 000 since the confidence intervals are very narrow for this treatment. 

Since a statistical test does not know the difference between different parameter settings 

and different performance methods, we can treat these two different parameter settings as 

two different EC techniques. We can then ask how a work-balanced comparison of mean 

best fitness between these two techniques behaves. We could conduct the comparison in 

one of three ways: run the M  -1000 treatment at its optimal generation number, run the 

M  -1 0  000 treatment at its optimal generation number, or pick an intermediate 

generation number not optimized for either. One complication presents itself 

immediately: the performance of the M  = 1000 treatment is optimized atG = 15, which
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would give G = 1.5 for the M  = 10 000 treatment. To avoid having to cope with 

fractional generations, we will compare the two data sets in this case at G = 20 for the 

run with fewer individuals. Thus adapted, the three possibilities are listed in Fig. 3.

Figure 3
Mi e , M2 Gi Evaluations

1 000 20 10 000 2 20 000
1 000 150 10 000 15 150 000
1 000 50 10 000 5 50 000

Three different synthetic treatments illustrate the importance o f using restarts when 
comparing two different EC techniques. The first comparison is nearly optimal for the 
smaller population size; the second is optimal for the larger population size; and the third is 
intermediate for both. In reality, M =  1000 is the superior choice o f population size for this 
problem.

We can now show what happes when we compare both success probability and mean 

best fitness on the same runs. Using mean best fitness as our figure of merit, the fitness 

scores and 95% confidence intervals are indicated in Fig. 4. In each case, we test the data 

against one another at the listed number of fitness evaluations, and are comparing single 

runs against one another in pairs.

Figure 4
M =  1000 M  = 10 000

Mi Gi M i Gi Evals. MBF 95%
Cl MBF 95%

Cl Best Significance d ’

1 000 20 10 000 2 20 000 17.16 0.23 21.82 0.22 M  = 1000 p  <  10 0.28

1 000 150 10 000 15 150 000 12.94 0.21 2.24 0.09 M  = 10000 l n -1512  
p  <  10 0.88

1 000 50 10 000 5 50 000 14.71 0.22 11.61 0.19 M  = 10000 p  <  10 0.20

The three treatments listed in Fig. 3, compared on mean best fitness after performing the 
listed number o f evaluations. The column labelled “MBF” is the mean best fitness o f the run, 
and the column labelled “95% Cl” is the width o f  95% confidence intervals around each 
mean. The column labelled “Best” gives the decision o f which treatment performed better, 
and the column labelled “Significance” gives the p-value corresponding to a t-test between 
each set o f data. The column labelled d' as Cohen’s d', which gives an indication of the size 
o f a significant difference. A d' value o f 0.25 is considered a small difference; 0.75 is a large 
difference. In reality, M =  1000 is the best choice o f population size for this problem.
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Considering Fig. 4, we can see that the mean best fitness statistic gives inconsistent 

results, even after correcting for number of evaluations. In Fig. 4, we have performed 

many runs to get highly significant results -  therefore none of these data are spurious. 

Cohen’s d' statistic [Cohen 1988] gives some indication of the difference between the two 

population means, independent of the number of runs performed. As we can see, while 

the differences between the groups are small, they are not tiny, which indicates that 

important differences exist. This is a very disconcerting finding for those using mean 

best fitness to compare treatments!

We can see an explanation for these data by considering Figs. 5, in which we show 

both the mean best fitness and probability of success as a function of generation number 

for each data set.

Figure 5

a) b)

I

\
\

...[ ..S iL ,

-M  = 1000 
10000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

Thousand evaluations

80%

70%

60%
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1
0. 40%

%
§  30% co
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/

/ /

/

/■ ) <

y

*-M *1000 
M »10000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Thousand evaluations

Mean best fitness and success probability as a function o f the number o f evaluations 
performed for M =  1000 and M -  10 000. To facilitate fair comparisons, the data from the 
larger population is plotted every 10th generation. Each point has 95% confidence intervals 
indicated through error bars; these error bars are on the order of the size o f markers and so 
are hard to see. We can see the very slow progress on the M =  1000 runs after about 40 
generations on both panes. The M =  10 000 runs do not saturate in this way over the 15 
generations shown here.

From an inspection of Fig. 5, we can see that both the mean best fitness and the 

success probability for M  = 1000 saturate, as many runs do not make much progress after
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about 40 runs. This explains the central importance of restarts to evolutionary 

computation: restarts allow poor runs to be truncated early. This allows work to be 

allocated where it will have the most effect. We have shown that mean best fitness gives 

inconsistent results in this case. Success probability does not do much better, as 

inspection of Fig. 5b shows. We can see that M  = 1000 dominates using the constant 

work paradigm if less than 70 000 evaluations are performed; M  = 10 000 dominates 

thereafter. Of course, this is an unfair comparison: a fair comparison would involve 

comparing the best parameter settings -  in this case, generation number -  for M  = 1000 

against the best parameter settings for M  = 10 000. Suppose that we know that the best 

performance of M  - 1000 happens at generation G - 17, and that we always want to 

compare against M  = 10 000. One way of performing an honestly fair comparison would 

be to compute the results of mean best fitness and success probability of 10 runs of 

M  = 1000 against 1 run of M  = 10 000. This differs in what we tried above, in that we 

compared a single run of 150 generations of M = 1000 against a single run of 15 

generations of M  = 10 000. To do this, we will need an expression for the mean best 

fitness of k  runs of a process.

Computing Mean Best Fitness with Restarts

To perform a fair comparison between groups with different efficiencies, we will 

need to adapt mean best fitness to account for multiple runs, as we did for the median 

with the y-test. As before, we assume that we only have the observed data to go from.

To get an expression for the mean of r runs of the process, we will weight the observed
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data. One perhaps obvious way to approach this would be to use the quantile- 

equivalency equation which we will derive in Chapter 4. It is reprinted here as (1).

fc=i-a-o"‘ a)
We might try to resample the observed best fitness values dl,...,dn with quantiles

chosen from a uniform distribution that is biased using (1). While effective and generally 

reliable, resampling is a computationally expensive operation. A better approach would 

be to weight the data in a simple mean so that the weight on each datum corresponds to 

its proportion of being chosen using (1). We know that there are n independent data. If 

we take each data dt in the original data set as being representative of the quantile range

i-1  i
n n

, we can transform this range using (1) to get the equivalent range in the

transformed space, (2).

<lb = (2)

To convert this range into a weight that we can apply, we can view the simple mean 

as having equal weights of the probability of choosing data from within their respective 

ranges. This equivalency is shown in (3).

_  1=1 n f { ~ )  n J  i n

d =  \ f i .q ) d q  = Y d— —  = Y J- L = - ' E d i (3)
q:0 1=1 n i=1 n n i=1

The advantage of writing the mean in this nonstandard way is that now we can apply 

the weights from (2) to get a weighted mean for the best of a number of runs. (4) 

provides the algebra for the weighted mean.
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_ ?=1
d 'weighted =  1 L e i z k t e M  d (l

q=0

= 2 > ,
1=1

n

= E

f
1-

/
1- i N

b //a
1-

b/ l/  a

V
V n y V n J

y

(4)

;=i
1 - / - I /a , b / \

1 - 1
v «y

This can be viewed as a simple weighted mean, where the weights wt are given by

(5).

w .  =
r i - n 7a

i — 1 —
I n I  n )

(5)

We should consider carefully what the variance of this weighted data is. We can get 

an accurate approximation by using a simple argument. Suppose that bla = 2, that is, we 

are looking for the mean of pairs of runs from a given distribution. A trivial method, 

much less sophisticated than the technique expanded upon above, would be to actually 

pair the data, compute the best value of each pair, and then compute the mean and 

variance of these best values. Precisely, we form pairs of data {d2j_l,d2j}, where j  varies

Yl
over 1... —. The mean of these pairs is given by the simple mean of the minimum of each

pair, which is shown in (6). Here we have invented the subscripted notation d(2) to mean

the mean of the minimum of pairs of samples. The estimated standard error of the mean 

of the pairs is given by the sample standard deviation of the pairs, (7), divided by the 

square root of the number of samples, here n!2.

  2
d ( T )  =  —^ m m ( d 2;_i,6?2y) (6)
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Z m in (^  J 2.)

2

There is nothing magical about which pairs to take in these expressions. That is, we 

can use a pairing function to choose indices to pair together and take the minimum. If we 

represent the indexing function using the notation /(1 , j); f  (2, j ) , giving the pair

. We can then envision two different classes of pair allocation functions: 

one where we allow /(1, j )  = f  (2, j ) , and another where we disallow such duplicates. In 

the case where we allow duplicates, we can apply a geometric argument like that given in 

Chapter 4, Fig. 1 to get the probability of selecting dt. The probability of dt winning a

( n - i  + \)r - ( n - i ftournament of size r with replacement is given by P(dl selected) = ■
nr

We can use this result to give a closed-form expression, analogous to (6), but taken over 

all possible tuples of size r. We begin with (8), which is a generalization of (6) for an 

arbitrary number of runs r.

  y. n!r

d(r) = - Y min(dfd (8)n ~

We know from the above that we can replace the minimum in (8) using

P(di selected) = ——  ——— , giving (9a).
n r

A r, = L £ i (n~ M y  : (n~ iY d, (9a>
n j=i j=i n
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The inner summation is then constant, which allows immediate rewriting and 

cancellation to get (9b).

d(r) X
M

( n - i  + l)r
n

d, (9b)

We can collect and factor (9b) into the final form of (9c), which is then identical (!) to

(4), above. The technique expressed in (4) is therefore identical to taking the average of 

(8) over all possible set allocation functions f .

d,
;=i
«

- Z/=1
n=z

Y

i=1

n

n - i  + l
y n J

1-

n — i
n

d;

— 'Y _ f i_  o
n J y n )

(9c)

This identity can now be used to correctly derive the estimated standard error of the 

mean of this estimate. As before, we begin with (10), a generalization of (7) for arbitrary 

r. We then substitute our probabilistic model in place of the minimum in (10) to get 

(11a). Some simplifications give (1 lb), which we can then rewrite as (1 lc).

u(r)

n/r

n/  _ !
/ r

^ ( n - i  + iy  - ( n - i ) r ^

7=i V i=i n

I Z  b  d,
V  7=1 1=1_______________" __________________

n /  _ i
/ r

(10)

(11a)
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3dir(r)
\ i = 1 n

f  y i  ( n - i  + \)r - ( n - i ) r ^  A
, r  2-1 nr
\  »•=!_______ "__________ J

n/

n/ - 1/ r

-1r

r  0 - i  + l)r - ( a - Q rz
V »=i -2

V

M
(lib )

5̂ r) “
j=l

1- / - 1 V ' 1 -1
V n j

d f~ 1 - i - \

V 1=1 V' v

\ 2

4
y y

Using the effective sample size of nlr in (11c) gives us an expression for the 

estimated standard deviation of the mean of r runs, (12).

- (

;=l
1 - i - 1v

n )
f i - i l
V. n )

(  n

1 -

=
v ,=1 V'

'- 1 Y
V n jn

\ 2
d,

y - i/ r

(11c)

(12)

With estimates for the mean and standard deviation of the mean, we can perform a /- 

test as normal. As with any new statistic, we should validate this new technique against a 

tried and true technique. One simple technique against which to compare would be to 

randomly bin generated data together in groups of r, and to compute the minimum of 

each group. This gives nlr samples, from which we can compute the mean and standard 

error of the mean as normal. If we intend to do significance testing with a new statistic, it 

would be useful if the statistic were unbiased and appropriately controlled Type-I errors. 

We can indicate how closely an actual distribution approaches this ideal by considering a 

graph of how the /-score computed for a quantile regresses against the /-score observed 

for the quantile. Fig. 6 shows such a graph, for a small effective sample size (8 units).
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Figure 6
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Graphs o f expected versus observed /-scores for a range o f quantiles for the mean o f the 
best o f 5 runs o f  three standard distributions. A perfect estimator would follow the diagonal 
straight line. Both figures involve taking 40 individual samples from the listed distribution, 
to exaggerate the significance o f errors. Fig. 6a shows data obtained from grouping the 40 
samples in groups o f 5 at random, and taking the best; Fig. 6b uses the integral method 
described in the text. We have marked regions where each test is conservative (safe), non­
conservative (unsafe), and biased in the positive and negative directions. The three 
distributions graphed are the standard normal distribution, the uniform distribution on [0, 1), 
and the standard exponential distribution. Each line is the result o f  500 000 independent 
runs. The plotted points are not independent in the x-axis.

Since the effective sample size is so small, the graph deviates strongly from the ideal; 

however, in every case, our synthetic method is more conservative than a simple random 

sampling. Therefore, we can take some confidence in the use of our technique. Fig. 7

shows the expected o { 4 n  j convergence to the true distribution, at least in the region

where our test is non-conservative. In the region where our test is conservative, our test 

appears to converges sub-linearly. The effect of this behaviour in practice will be shown 

later on in this chapter.
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Figure 7
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Graphs of expected versus observed ^-scores for a range of quantiles for the 
mean of the best of 5 runs of the standard normal distribution. Here a series 
increasing in sample size is used to show the convergence properties of the 
technique described in the text.
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Fair Comparisons for Mean Best Fitness and Success Probability

Armed with these tools, we can perform a fair comparison between runs with 

different population sizes. We use (9c) and (12) in the usual way to compute and 

compare the mean best fitness of different runs. For success probability, we can use (13) 

to compute the probability of success for the best of r runs, since the runs are independent 

and identically distributed.

A o = 1- ( 1- JP)r (13)

Returning to our artificial ant on the Santa Fe trial problem, we can now compensate 

for varying number of evaluations to get a solution between different treatments. The 

first improvement we can make would be to compare the best of 10 runs of 

M  = 1000 against 1 run of M  = 10 000. This is shown for both measures in Fig. 8.

Figure 8
a) b)
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Generations of 10 000 evaluations Generations of 10 000 evaluations

Mean best fitness and success probability as a function o f the number o f evaluations 
performed for the best o f 10 runs at M =  1000 and 1 run o f M -  10 000. Each point has 95% 
confidence intervals indicated through error bars; these error bars are on the order o f  the size 
o f markers and so are difficult to see. These balanced data are much more closely matched, 
with none o f the distortions o f the data o f Figs. 5a and 5b. M =  1000 wins out slightly at 
large numbers o f individuals, for both mean best fitness and success probability. Notice, 
however, that the two graphs are not the same -  the series diverge at larger evaluation counts 
later in Fig. 8b than in Fig. 8a.
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We can see that M  = 10 000 does not clearly dominate anywhere, unlike in Figs. 5a 

and 5b. The comparison technique shown in Figs. 8a and 8b, while much improved, are 

not the final word. The problem is that we have no way of determining what the optimal 

generation number is for achieving success or giving the best performance. As before, 

suppose that we want to compare against strong settings for M  = 10 000. The 

appropriate way to perform this comparison is to continuously vary the number of runs to

kuse when taking the minimum. An appropriate schedule would be r = ----- , where & is a
Mg

constant that optimizes the larger population, and r has its usual meaning of the number 

of runs over which to take the best. For the moment, we ignore the fact that r is non­

integral, and can be less than one. The results of using this schedule are shown in 

Figs. 9a and 9b.

Figure 9
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Effective mean best fitness and effective success probability as a function o f the number o f  
evaluations performed, referred to a constant number o f evaluations. Each point has 95% 
confidence intervals indicated through error bars, though they are largely invisible behind the 
points. The number o f runs over which the given data are synthesized for each series varies 
in inverse proportion to the number o f evaluations performed through the equation

r = 180 000 . We can see clear optima in the success probabilities for optimizing both mean
evals

best fitness and success probability.
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We turn now to a discussion of the relative merits of our effective mean best fitness 

and effective success probability. We will show that for problems which regularly 

achieve success, effective success probability should be used.

Deciding Between Mean Best Fitness and Success Probability

Armed with these tools, we can perform a fair comparison between runs where the 

work and best generation number (equivalently, number of evaluations) is unknown. 

There are necessarily limits on this process -  for example, if we have performed only 100 

runs, we could not expect to get any information on the best-of-1000 distribution. The 

limits are different for referred mean best fitness and success probability. For mean best 

fitness, we can get a zeroth order approximation by noting that the effective sample size

is given by . Therefore, if we wish an estimate of effective mean best fitness

accurate with a relative error of s, we will need a few times k s2 samples. The 

calculation for success probability is treated carefully in the second half of Chapter 4, so 

we defer a detailed discussion until that point. We will only repeat the final result, 

namely that if we wish to compare two treatments with a relative work ratio between 

them of r at some specified quantile q, with two-sided probability of error a , we will

( \ - q f rz 2 a
require N  = - — ----- — samples, where z is the upper 1-----cutoff of the standard

l - ( l - t f )  ' 2

normal distribution.

The availability of these two tools raises an interesting question, however. Are these 

two measures equivalent? That is, are we justified in using success probability and mean 

best fitness interchangeably to decide which of two treatments is superior? If so, we 

should prefer the test with more power; if not, we should have some other way of
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choosing the test for the data in question. To shine some light on this question, we 

repeated the analysis of Figs. 9a and 9b with an additional treatment at M=  250. Figs.

10a and 10b shows the results zoomed in around the optima of each treatment.

Figure 10
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Effective mean best fitness and effective success probability as a function o f the number of 
evaluations performed, referred to a constant number o f evaluations. We have added data for 
M — 250 to the series compared. We also have rescaled the domain and range from that 
shown in Figs. 9a and 9b to easily discriminate between the series. 95% estimated 
confidence intervals are indicated, but these error bars are not independent in evaluations 
performed. In all, 12 280 runs o f the M =  10 000 treatment, 50 000 runs o f the M =  1000 
treatment and 500 000 runs of the M =  250 treatment were performed. On both charts, the 
leftmost series is the M =  250 series.

From careful inspection of Figs. 10a and 10b, we can see that the two measures are 

not measuring the same thing. The best treatment among these three for effective mean 

best fitness is M  = 1000, while M  = 250 is the best on effective success probability. 

Both of these distinctions are highly significant; in the case of success probability, 

p  < 6 -1CT12 after correcting for multiple comparisons using the Bonferroni inequality 

[Bonferroni 1935]. So which decision method should we prefer? This is a bit of a 

philosophical question, but we can make an argument based on the evidence available.
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Effective Mean Best Fitness versus Effective Success 
Probability: Which Comparison To Use?

We can discriminate between two different kinds of problem: those where “success” 

is the desired outcome and those where we are instead aiming for the best possible 

outcome. We term the former a “success-based” problem, exemplified by the familiar 

artificial ant on the Santa Fe trail. For a success-based problem, there is generally a 

“natural” definition of success. A program that eats all 89 units of food within the 

allotted time is said to succeed on the Santa Fe trail problem. We term the second type of 

problem “improvement-based”. A symbolic regression problem that lacks a closed-form 

solution would be an excellent example: a perfect success is known to be unachievable. 

An improvement-based task typically has many local optima -  which may have closely 

spaced fitness scores. For example, the aggregate fitting error for a symbolic regression 

problem might take on one of 240 possible values near the optimum if the fitness function 

is stored as 80-bit IEEE double-precision numbers. There is, of course, no distinction in 

principle between these two kinds of problem -  for an improvement-based problem, one 

of the possible fitness outcomes will be the best. Unfortunately, knowing which value is 

optimal is usually an NP-complete problem, as shown in [Polynomial 19xx] for the 

problem of finding the exact optimum of a set of polynomial equations. Since there are 

often many optima, the odds that EC can find the exact optimum are probably 

exponentially small for many hard problems. We can therefore some advice for which 

comparison to prefer. If the problem is has a natural success criterion that can readily be 

achieved in practice, success probability is the appropriate comparison technique. If the 

problem does not have a natural success criterion, then we are in a bit of a bind. When
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better solutions can in principle always be found, we should use effective mean best 

fitness as a discriminator. When it seems that the best fitness can be found reliably, there 

is a gray area introduced; have we found the truly best fitness, or are we getting caught up 

on a local optimum? We can hope that this intermediate case happens rarely in practice. 

We can demonstrate the typical difference between the two cases using a little example. 

Fig. 11a shows the distribution of best-of-run outcomes after 50 000 fitness evaluations 

for the Santa Fe ant problem with M -  1000. Fig. 1 lb shows the distribution for a 

symbolic regression problem fitting a rational function to the log density of Earth’s 

atmosphere as a function of altitude.

Figure 11

a) b)
to 24.6% 0.50%10%

0.45%9% — - G = 50

8%
0.35%

0.30%

0.25%f t  5%

0 .20%4%

0.15%3%

2% o 0.10% 
a .

0.05%

0 .00%

1%
0%

0 10 3020 40 50 60 0 200 400100 300 500
Fitness, Best of Run Fitness, Best of Run

Distribution o f best fitness for a typical success-based and an improvement-based problem 
after 50 000 fitness evaluations. Fig. 1 la  scores data from 12 288 runs o f the Santa Fe ant 
problem with M -  1000, and shows the histogram o f best outcomes after 50 generations.
Fig. 1 lb shows the best outcomes o f 10 186 runs o f a symbolic regression problem where we 
are fitting a rational polynomial to the logarithm o f the density profile o f Earth’s atmosphere.
For Fig. 1 lb, we have normalized the probability mass function to unit fitness; the bin width 
is 3 fitness units. Much fine structure is obscured by the binning; for instance, there is a local 
optimum with a probability per unit fitness o f at least 300% at a fitness o f 167.02.

The first thing to notice in Figs. 11a and 1 lb is how the distributions differ as we 

move towards smaller fitness values. Fig. 11a shows that there is a good chance of 

achieving the exact optimum, specifically a 24.6% chance. Fig. 1 lb behaves more like a
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continuum of states. In fact, among our 10 186 runs, exactly one fitness value occurred 

twice, and it was an example of convergent evolution to the same phenotype in two 

independent runs. This differs from the success probability case, where we typically 

have different phenotypes with the same fitness value. We can use these statistics to 

make an estimate of the number of fitness levels in the local optima populated by our 

different EC runs. We have seen 10 185 different fitness values in as many phenotypes, 

we can use a birthday paradox argument to estimate a lower bound for the total number 

of fitness levels available to successful solutions. Let us assume that there are n fitness 

levels available for EC to discover. Assume that all the fitness levels will be populated 

with equal probability by the EC operation; that is, the odds of observing a particular

level i of the n available is simply p ( X  = /) = — . Independent runs are identically
n

distributed, so the odds of the k-th consecutive draw being different from all previous 

fl ”  k  “I” 1
draws is given b y --------- , as there are k -  1 values which will cause a collision. The

n

probability of observing k  values without any matches among the values is then given by

_̂_ _|  j |
p(k  all different) = TT . We can then set this probability to any desired

»=i n

confidence interval, and solve for k. If we take the 10 185 unique fitness values to be 

distinct, k  > 17 300 000 with 95% confidence. Alternately, we might count the one 

duplicated phenotype as a legitimate collision between fitness values. In this case, we 

can derive a 95% confidence interval for A: of [9310 000,214 000 000]. Either way, we 

can get the sense that the number of fitness levels is many orders of magnitude higher 

than in the discrete case where there are 90 fitness levels. With many closely spaced
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fitness optima, the probability of finding the exact maximum becomes effectively zero, 

even using a powerful optimization technique like evolutionary computation and many 

independent runs. In this case, performing comparisons between techniques using 

success probability is well-nigh impossible -  all techniques will score 0%! We therefore 

suggest that the best possible technique would be to use the effective mean best fitness in 

this case.

Binning continuous-valued data to turn an improvement-based problem into a 

success-based problem is also a dubious practice. The common practice of defining a 

success as fitness better than some arbitrary cutoff value does enable the use of 

computational effort, but at a cost. For improvement-based problems in optimization, we 

are normally interested in achieving the best possible outcome. Indeed, much of the 

benefit of using evolutionary techniques comes from the improved solutions that they 

provide, even though they may be slower than more aggressive techniques like iterated 

hill-climbing. Therefore, applying an arbitrary cutoff seems to us logically ill-founded -  

better to treat the data directly using the effective mean best fitness. We will show in the 

last section of this chapter that effective mean best fitness and effective success 

probability give different results on a comparison, suggesting that we may not get the 

correct decision if we bin.

The Problems with Average Evaluations to Success

What o f  the other two measures mentioned in the introduction — average evaluations 

to success and mean population fitness? We can determine what they are measuring by 

investigating how they perform in practice. In this section, we address average 

evaluations to success; in the next, we will take up mean population fitness.
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The average evaluations to success (AES) statistic is derived by considering only 

those runs which result in a success. To avoid catastrophic use of computer resources, a 

cutoff is normally applied beyond which data are not collected. For instance, we might 

perform 100 000 fitness evaluations, of which 16% succeed. For these successful runs, 

we take the average of the number of evaluations performed and use it as a statistic. It 

turns out that average evaluations to success is fairly sensitive to the cutoff used, which 

makes it a statistic of questionable utility. In the limit, the success probability of any EC 

system that can generate new individuals will approach 100%; however it may take very 

many fitness evaluations to achieve this. There are two possibilities: if the success 

probability converges quickly enough to some limiting success probability, AES will be a 

meaningful statistic. If the success probability converges slowly, however, AES will tend 

to creep upwards as the cutoff generation, or equivalently the number of evaluations, 

goes up. We should be able to discriminate between the two cases by considering long 

runs with many fitness evaluations. To this end, we repeated our Santa Fe runs above, 

but we performed 8 000 runs with M=  250 out to G = 1000 generations. This long-range 

case is interesting. The success probability increases slowly from 9% at 100 generations 

to 10.5% at 200, 12.4% at 500 and 14.4% at 1000 generations. We can get a sense of 

how useful AES is by considering how it increases as we explore longer and longer runs. 

For instance, if AES were to increase by a factor of 50% as we go from 100 generations 

to 1000, then we might surmise that AES as an absolute statistic is only reliable to 50%. 

The results of our average evaluations to success experiments are shown in Fig. 12.
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Figure 12
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Average evaluations to success for three different series, graphed against number o f  
evaluations performed. The M =  250 series has been run for 1000 generations. We can see 
that the average evaluations to solution continues to increase without bound, albeit slowly, as 
the number o f evaluations increases. 95% confidence intervals are shown on the graph, but 
are not significant save for the M =  250 series; they range to 3500 by the last generation.

Fig. 12 shows that AES behaves a little strangely. First, AES seems to be correlated 

with population size. We will return to this observation later. Second, we can see that 

AES creeps upwards for each of our treatments. For the M=  250 case, 100 generations is 

equivalent to 25 000 evaluations. At 25 000 evaluations, Santa Fe trail has an AES of 

7 500; this increases to an AES of 44 000 after 250 000 evaluations -  a factor of ~7 

higher! We know that the success probability increases by a factor of 1.6 in this interval, 

from the data quoted earlier. It would seem that for this problem, AES is not a very 

stable statistic over the number of evaluations performed.

One other way to save AES as a useful statistic would be to hold the number of 

individuals generated constant. That is, instead of a global AES statistic, we might speak 

of the AES of a set of treatments given that 100 000 evaluations were performed. 

However, even this usage is compromised, as Fig. 12 shows. Consider the treatments

Chapter 3; Which Measure to Use When Comparing Stochastic Algorithms

-M = 1000 
-M = 10000 
- M = 250

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



84

measured at the vertical line at 100 000 evaluations in Fig. 12. At this point, the M=  250 

treatment is the clear winner -  that is, when successful, the number of evaluations is 

minimized. This is due to the fact that, of the 12.0% of the runs that succeed, most of 

them succeed early. More of the M=  1000 and M=  10 000 treatments succeed -  26.9% 

and 57.3%, respectively, which means that it would be difficult to actually make use of 

the rapid success provided by the AES statistic. Another way to consider this objection is 

that we can always shrink AES without bound by simply choosing smaller and smaller 

population sizes -  so long as we are willing to accept a very small probability of success 

in the bargain. If we wish to combine AES and success probability fairly, we must 

include restarts; leading us back to computational effort, or the effective success 

probability.

The Problems with Mean Population Fitness

Mean population fitness has one significant advantage: it converges very quickly.

Fig. 13 shows the standard error of the best-of-run fitness compared to the standard error 

of mean population fitness. At high generation number, mean population fitness is about 

three times more precise than mean best fitness; at lower generation numbers, this 

approaches 100 times more precise. Since the number of runs required to get a given 

level of precision goes as the inverse square of the standard error, many researchers have 

adopted it as a measure. A second potential “advantage”, which we feel is somewhat 

illusory, is that much of population genetics and GA theory refers to the behaviour of the 

mean fitness of the population. However, when performing optimization research to 

solve problems, we are usually interested in the finding the most successful individuals.
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The behaviour of an auxiliary set of solutions used during the searching process is not 

normally of great interest.

Figure 13
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Behaviour o f the estimated 95% standard error width for mean best fitness and mean 
population fitness on the Santa Fe ant problem, as referred to 1000 runs. Note the 
logarithmic spacing on the y-axis. The convergence o f the population bounds upwards at 
generation 5 is due to differential performance between runs, as some runs begin to perform 
well and others poorly.

It would be ideal if mean fitness were a good predictor of performance of one of the 

two key measures, mean best fitness and success probability. If this were the case, then 

we could use mean population fitness, which converges quickly, as a proxy for success 

probability or mean best fitness, which converge slowly. Lacking an obvious theoretical 

tool to use for such a test, we can at least look at how well mean population fitness 

predicts our two fundamental measures. A useful relation of this form need not be linear, 

but it should be one-to-one and onto; that is, it should be a function. Figs. 14a and 14b 

show examples of what a good predictor between a measurable variable and a target 

variable looks like. Here we have graphed success probability and mean best fitness of 

the best-of-3 distributions versus the statistics for the best-of-1 distribution.
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Figure 14
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Examples o f  well-predicted relations. Fig. 14a shows the success probability o f  the best- 
of-3 runs as a function o f the observed success probability for a single run. Fig. 14b shows 
estimated mean best fitness o f the best-of-3 runs as a function of the observed mean best 
fitness for single runs. Both curves were computed using the algorithms presented in this 
chapter. The deviation from a single curve in Fig. 14b at generation 30 for the M =  10 000 
series is due to estimation error in determining the best-of-3 fitness.

For the purposes of predicting performance, it is clear that the best-of-3 distributions 

accurately reflect the individual run distribution, provided that enough runs are 

performed. We should emphasize that these graphs do not involve plotting the fitness 

statistics and success probability of particular runs against one another, as a moment’s 

reflection will show. Since individual runs must either succeed or fail after a given 

number of generations, it follows that the success probability for individual runs must 

either be 0 or 1. Instead, in this series of graphs, we show the mean response estimated 

from a large number of runs, as we vary the generation number. With that proviso,

Figs. 15a and 15b show how well mean population fitness predicts success probability 

and mean best fitness.
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Figure 15
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Performance o f mean population fitness as a predictor o f mean best fitness and success 
probability for three treatments. Fig. 15a shows success probability as a function o f the mean 
population fitness; Fig. 15b shows estimated mean best fitness as a function o f mean 
population fitness. In the ideal case o f perfect prediction, all series fall on the same curve.
The points labelled A, B, C, and D are explained in the main text, as are the dotted lines 
radiating from A and C.

To illustrate how we can interpret Figs. 15a and 15b, we use a simple example. 

Suppose that we were to compare the point labelled A of the M -  10 000 series against 

the point labelled B in the M=  250 series. If we use mean best fitness, the decision is 

clear: A has a mean fitness of 54.2, while B has a mean fitness of 48.0, so the treatment 

labelled B is superior. However, in terms of success probability, A actually succeeds 

3.75 times more often than B -  17.5% versus 4.7%! The same sort of error will obtain 

for any two points where one point is diagonally transposed from another in a different 

series. The dotted lines radiating from A in Fig. 15a delimit the region in points in other 

series will induce this same error.

Using mean population fitness in situations where mean best fitness is appropriate 

doesn’t perform much better. Consider points C and D from Fig. 15b. Here, D appears 

to better than C on mean best fitness -  56.8 to 64.5. In reality, C is nearly twice as good 

as D in terms of mean best fitness; D averages a best fitness of only 32.6, while C 

averages a much better 14.0 on this problem. Indeed, the dotted region to the northwest
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of C, including nearly all of the M=  1000 and the entire M=  250 series will seem to be 

better than C, and will perform more poorly on mean best fitness.

We can even hazard a guess of how many fitness evaluations will be required to 

evince this kind of error, using the data of Fig. 13. We’ll use Fig. 15a and the A and B 

error to illustrate. The 95% error-bound-per-thousand-runs for mean population fitness 

of the M =  250 series is about 0.5 to 0.6 in fitness. The bound-per-thousand-runs around 

A is a little smaller, between 0.3 and 0.4, giving a joint error between both series of about 

0.65 for 1000 runs. The span between A and B is about 6 in mean fitness, which is about

9 times larger than our error bound. The error bound decreases as s  = 0 , so we
vVny

would expect to make this mistake with 95% confidence when n>  11. That is, using 

mean population fitness to predict mean best fitness or success probability will run the 

risk of making incorrect decisions in nearly all situations where we might be comparing 

two runs!

The reason that mean population fitness predicts our desired outcome variables so 

poorly is partly because its variance is very sensitive to population size, unlike best 

fitness and success probability. A large population samples the space of potential 

solutions very well, and so will have almost no relation to the best value found therein in 

the initial generation. A small population samples poorly, and is more sensitive to a 

single good value. This goes some way towards explaining why the small population 

sizes in Figs. 15a and 15b actually do better than the large populations on mean 

population fitness.

Before we go into the computational effort and the issues with that statistic in the next 

chapter, we can offer one more bit of advice. We argued above that mean best fitness
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and success probability are not interchangeable. Fig. 16 illustrates this point by showing 

mean best fitness versus success probability, as in Figs. 14a, 14b, 15a, and 15b. Any 

diagonal displacement between the two series will result in incorrect decisions when 

those runs are compared. That is, we can easily choose pairs like A and B or C and D 

above for Figs. 15a and 15b. However, the degree of bias will be smaller for Fig. 16, as 

the lines are more closely spaced.

Figure 16
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Performance o f mean best fitness o f  run as a predictor o f success probability for three 
treatments. In the ideal case o f perfect prediction, all series would fall on the same curve.
Any diagonal displacement o f the graphs allows a user to be in error when making 
conclusions about one variable when measuring the other.

Fig. 16 shows that there is still a significant risk of error if mean best fitness is used to 

compare treatments on success probability, or vice versa. We are now in a position to 

update Fig. 1 with some advice about comparing treatments by each of our commonly- 

used statistics. In Fig. 17, we add in the best-of-A-runs success probability and best-of-A- 

runs mean best fitness. For all these methods, we offer an informed estimate of the risk 

of error involved when using them inappropriately. We hope that this will serve the
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community in evaluating work that has already been done using these statistics as to the 

biases that are likely to have been introduced. A more detailed discussion of the issues 

with the computational effort statistic, not otherwise discussed here, is deferred to the 

next chapter.

Figure 17

Statistic
Suitability for problems

Problems
success-based improvement-

based

Mean b est fitness very poor poor results depend on num ber of evals 
performed

S u ccess probability poor very poor results depend on num ber of evals 
performed

Computational effort excellent fair
converges slowly; b iased for small n\ 

arbitrary su ccess  criterion for 
im provem ent-based problem s

A verage evaluations 
to solution very poor awful

m easu res population size and cutoff point; 
ignores su c c ess  probability; arbitrary 

su c c ess  criterion

Mean fitness of 
population very poor very poor poor estim ator of accurate  fitness 

m easures; converges very quickly

Effective su ccess 
probability excellent fair

arbitrary su ccess  criterion for 
im provem ent-based problems; limited 

work ratio range for small n
Effective m ean best 

fitness fair excellent best fitness values for all runs m ust be 
available; biased for extrem e work ratios

An evaluation o f common methods o f comparing evolutionary computation systems. For 
each comparison statistic, we offer an estimate o f how suitable the technique is for problems 
that are success-based or improvement-based. These problem types are defined in the main 
text. For each method, we list some significant issues and problems with the technique. 
Details are explored in the text o f  this chapter.
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Chapter 4: An Analysis of Koza’s Computational Effort 
Statistic for Genetic Programming and a Proposed 
Solution

Introduction

As early as 1990, John Koza realized the utility of having a statistic to estimate the 

computational effort to solve a given problem using genetic programming (GP). This 

statistic, denoted by I(M, i, z) in [Koza 1992], measures the effort required to solve a 

given problem with 99% probability, and has allowed a generation of GP researchers to 

compare their results. As the field of evolutionary computation progressed, many 

researchers realized the need for including statistical information, including confidence 

intervals and significance testing, along with other results. The state of the art in 

considering confidence intervals is to perform bootstrap analysis of one’s data, as was 

done in [Keijzer 2001]. There Keijzer, Babovic, Ryan et al. used the bootstrap method to 

establish confidence intervals on their data for Koza's computational effort statistic, /min. 

However, the confidence intervals provided by the bootstrap method were so wide as to 

prompt them to say, "For the Santa-Fe problem ... the width of the confidence interval is 

nearly as large as the computational effort itself. The confidence intervals clearly show 

that a straightforward comparison of computational effort, even differing in an order of 

magnitude, is not possible." This comment motivated the analysis of this chapter.

In the following sections, we will analyze the computational effort statistic. In 

particular, we provide a detailed analysis of the biases that this statistic introduces, which 

may leads to counterintuitive results. Some of the issues with the computational effort
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statistic presented here apply equally to the other statistics introduced in the previous 

chapter, namely the referred mean best fitness and referred success probability.

Definition of Koza’s Computational Effort Statistic

As a GP system progresses towards a solution of a given problem, it is hoped that 

more and more of the runs will pass a given success criterion. Following Koza, we 

define the cumulative probability of success P(M, i) as the proportion of runs which, after 

i generations, have reported true for the predetermined success predicate for any of the M  

individuals in the current population. If we are hoping to use our GP system to succeed 

with 99% probability, we should not perform a single run with a huge number of 

generations until we achieve a 99% chance of success. Indeed, because of premature 

convergence, this may never occur. Instead, what is commonly done is to use the fact 

that successive runs are independent and identically distributed to compute the number of 

independent runs R(z) that would be required to solve a given problem with 99% 

probability. Since the R runs are independent, the probability of failure in all of them 

simultaneously is given by (1).

Pallfail= { l - P ( M , i ) f  (1)

Let z be the desired probability of success. We can compute the number of 

independent runs required to achieve a solution to a confidence level of at least z by 

taking logarithms and solving for R, as in (2). 

ln (l-z )
R(z) = (2)
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Koza’s computational effort statistic I(M, i, z) is intended to measure how many 

individual fitness evaluations must be performed to solve a problem to a probability of z. 

It is derived from the cumulative probability of success P(M, i) by multiplying by the 

number of individuals processed at the end of generation number i, Mi, as shown in (3).

I(M , i, z) = Mi ln (l-z )
ln(l -  P{M, /')) ( 3 )

This statistic is defined over all generation numbers i; to find the “minimum” 

computational effort Imin(M, z) required to solve a given problem, Koza simply takes the 

minimum of all sampled I(M, i, z). This gives us Koza’s defining equation for /m , (4).

I mia(M ,z) = minMi ln (l-z )
ln(l -  P(M, /))

( 4 )

Without loss of generality, we can extend Koza’s computational framework to other 

program induction systems that are not generational in nature, or that use clone pruning 

or elitism to reduce the number of individuals evaluated, by using instead the total 

number of individuals tested, A(M, i). This gives us (5).

ln(l -  z)
In ( l-P (M ,i)) ( 5 )

Analysis of Koza’s Minimum Computational Effort as a Sampled 
Estimator

A number of statistical issues arise when we carefully consider what is happening 

when we enter our discrete observable data into (5). Importatly, we have not performed 

an infinite number of runs. Therefore, our values P(M, i) are but point estimates of the 

unknown true probabilities. GP practitioners estimate P(M, i) by dividing the number of 

successes over the number of trials; and since GP runs are computationally intensive, the
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same runs are typically used to compute the estimators at each generation. Let us denote 

the number of trials performed by n, and the cumulative number of successes achieved by 

generation i by k(M, i). What is commonly reported as z) as computed (5) is

actually (6). We will show that the discrete formula (6) has very different mathematical 

properties of interest to EC researchers.

4in (M > n, *) = min A(M, i)
ln (l-z )

K l - ® )
(6)

The Experimental Framework

In this chapter, we will illustrate the effect of various aspects of Koza’s statistic by 

performing a simple experiment. We make use of a hypothetical GP problem for which 

the true computational effort is infinite for generations 1 through 5, and is a constant / tme 

for all generations from 6 on. This is done for concreteness, to make the mathematical 

examples meaningful and intuitive for GP researchers, and because exact analysis of 

discrete order statistics is unwieldy and very mathematically intensive. Conversely, it is 

straightforward to code up a simulation and perform enough runs to establish statistical 

significance of the results. Consider the case where the exact computational effort 

7(M ,/,z) is constant across all generations. We investigate a hypothetical simple 

generational GP where the population size is fixed at M=  500. Since the specific work 

A(M, i) is fixed at 500/ and we do not vary the success probability z = 0.99, we can solve 

for the cumulative success probability schedule P(M, i). For the moment, we will rewrite

(5) to ignore the ceiling operator as (7); this caveat will be explained in the next section.
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I  true ~  M i
f  ln(l -  z) N

ln(l-F(A/,0,

Solving for P(M, i) in (7) gives (8).

1 < i < 5 

i >  5
P { M , i \ z )  =

a

o
f  M i l n ( l - z )

These equations are graphed in Fig. 1, and are explained in the next section. 

Figure 1
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Synthetic performance curves for a hypothetical GP run where the exact computational 
effort is 100 000 individuals processed. The sawtooth curve indicates the effect of the 
ceiling function on the reported computational effort.

The Potentially Harmful Effect of the Ceiling Operator

Our analysis begins with understanding the effect of the ceiling operator (["•]) in (5)

and (6). We will begin with a brief discussion of why this operator is inappropriate for 

sampled data. Note that the estimated probability P(M, i) is not equal to the exact 

probability P{M, i). The distribution of k (M ,i)  is binomial. To the degree to which the

binomial distribution can be approximated by a normal distribution, there is 

approximately a 50% chance that the true probability P(M, i) lies above the estimate 

k (M ,i) /n ;  otherwise it will lie below. It follows that we cannot correctly conclude
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there is a 99% chance of success if we rerun our process R(z) times. An example may 

make this clear. Suppose that for a particular problem, we observe 78 successes in 100 

trials. Our point estimate of the probability of success is then 0.78. We can then

In 0.01compute i?(0.99) using (2) as =  [3.0415] = 4. However, we know that our
ln(l -  0.78)

estimate has some variability associated with it; the odds of the unknown true probability 

being exactly 0.78 are vanishing. Should the true probability be as high as 0.785, i?(0.99)

In 0.01becomes =  [2.9980] = 3. If so, the estimated computational effort will be 4/3
l n ( l - 0.785)

of the true computational effort. Because 0.785 is so close to 0.78, we can expect that 

there is a nearly 50% chance that the true probability will exceed 0.785. An exact 

calculation gives 41.6%. We have now found a situation where, roughly half the time, 

our estimate will be in error by 4/3 — 1 = 33%! This calls into question the utility of the 

ceiling operator. The ceiling operator was put into place to capture the fact that we 

cannot effectively perform a non-integral number of runs. However, this ceiling operator 

is useful only when our knowledge of the probability of success is exact; when we have 

only approximate knowledge, there is a risk that our data will lie close to a jump 

discontinuity of (6). This renders the utility of the ceiling operator somewhat marginal.

In Fig. 1 we see the effect of the ceiling operator on the reported workload when the 

actual workload is constant. The net effect is to overestimate the true workload by an 

amount that is a function of the estimated probability P(M, i), and of the desired success 

probability z. The maximum error imputable from this source is a 100% overestimate, at 

P(M, i) = z. However, if the total success probability does not attain 90%, the maximum
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error would be a 50% overestimate. It is worth noting that if the success probabilities are 

everywhere small (< 25%), this effect becomes modest (< 6.3%).

For the remainder of this section, we will forgo treating the number of runs as an 

integer-valued quantity, and instead work on the continuous, infinitely differentiable 

statistic, (7).

Why Koza’s I(M, i, z) Underestimates the True Computational 
Effort

The central statistical phenomenon discussed in this section arises when we consider 

the effects of the minimum operator in (7). The minimum of J  random variables falling 

around a given average value will tend to lie below this point; and the difference will 

tend to be larger as J  increases. In the context of GP analysis, the random variables are 

the estimates of the computational effort l(M, i, z), although the results of this section will 

apply equally well to the minimum of any set of random variables. Estimating the 

effective mean best fitness and effective success probability over a series of M  and G 

values suffer from this problem as well. The exact analysis of discrete order statistics is 

challenging due to a dimensional explosion, so we resort to simulation to illustrate this 

effect and its magnitude.

Consider our example where the true computational effort is held constant over a 

span of generations. We modelled a hypothetical GP problem where the cumulative 

probability o f success is 0 for generations 1 to 5, and then climbs from 2.7% at 

generation 6  to 37.2% at generation 101. This schedule maintains a fixed true 

computational effort of 500 000 fitness evaluations from generations 6  through 101.
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For this simulation, we generated 10 000 synthetic data sets with the cumulative 

probability of success given by the schedule shown by (8 ). In order to do this, we chose 

the data so that exactly [10 0 0 0 P(M ,/)J runs succeed after generation i. For example, to 

obtain a true computational effort of 500 000 individuals at generation 10, we substitute

f 500-101n(l-0.99)t

into (8 ): P(M, i \z )  = \ - e '  500000  ̂ to get P(M, i) = 0.045007. We then choose the

data so that there are |_10 000 P(M  ,i)j  = 450 successes by generation 10. From this data

set, we then sample n independent runs with replacement, and compute / mjn using (7) 

from this sample. In Figure 2, we present the observed distribution of 7mm after 53 

simulated “generations”. This isolates the effect of taking the minimum of 5 3 -5  = 48 

random variables possessing the same I(M, i, z). The number 48 was chosen because of 

the many integral submultiples made possible by this choice.

Figure 2
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Reported means, 10th, 50th and 90th percentiles o f  computational effort / mi„ estimated for a 
problem where the true computational effort is 500 000 evaluations, graphed as a function of 
the number o f runs n performed. 95% confidence interval error bars are shown. The 95%
Cl error bars are per-experiment error bars; that is, we would expect that the true value lies 
within the given error bars 95% o f the time for each experiment. Holding the error 
probability at 95% across all 22 experiments would increase the error bar span by about 
60%.
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Fig. 2 shows that not only does /min underestimate the true computational effort, but 

that it does so with high probability -  nearly 90% of the time. The magnitude of this 

underestimate decreases as the number of runs performed n increases.

A second effect of the minimum in (7) stems from the non-decreasing nature of 

P (M ,i). We can use a Taylor series expansion to show this effect. Modeling the

sampling error in the probability estimation s(M , i) = ^  -  P(M , i) as an error term
n

in (7) gives (9).

I est= A (M ,i)\ W z f )  1 (9)
1 ln(l -  (P(M ,i) + s(M ,i))\

Expanding this expression as a Taylor series in e(M, i) to first order, and abbreviating 

P(M, i) as P  for terseness, we get (10).

Iesl =  s  + 0 ( s2) \  (10)
[ ln ( l-P )  ln(l-jP) ( P - l )  J

The error term in (10) increases dramatically as the true probability P  approaches 0, 

so the specific errors tend to be larger in regions where the true probability P(M, i) is low 

-  that is, at earlier generations. Since the minimum in (7) will be more sensitive to larger 

specific errors, the generation at which computational workload is reported to be 

“minimized” in a finite experiment will tend to underestimate the actual generation.

To quantify the magnitude of this effect, we computed the generation at which 

computational effort was reported as minimized in the simulations performed above. The 

results are presented in Fig. 3. As we can see, the median lies well below the mean, so 

this distribution is therefore markedly skewed towards larger values.
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Figure 3
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Reported means, 10th, 50th and 90th percentiles o f generation at which the computational 
effort is seen as minimized, graphed as a function o f the number o f runs n performed after 53 
generations. 95% Cl error bars are shown.

The Magnitude of the Underestimate Depends on the Number of 
Generations that are (Nearly) Identical

We will now demonstrate the effect that the number of generations has on the 

magnitude of bias. However, we should explain one mathematical effect before 

continuing. In (6 ), we see that k(M, i) and n are both integer-valued. If we are estimating 

the minimum computational effort, the achievable values of k(M, i) are constrained to be 

the non-negative integers less than the number of runs performed, n. Since the set of 

achievable values is discretized, the usual summary statistics will not report useful 

values. The mean of I(M, i, z) will be infinite, for instance, as there is a nonzero 

probability that 0  successes were obtained across all n experiments -  hence producing an 

infinite estimate for I(M, i, z). In order to alleviate this problem, we have taken a 

compromise position of reporting the 80% trimmed mean in the results that follow. The 

80% trimmed mean is computed by reporting the mean of all data between the 40th and

tTi • •the 60 percentiles. This is still suboptimal in some sense because large values of
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I(M , i, z) continue to bias the trimmed mean more than small values do. Consider the 

data for the 1-generation case shown in Fig. 4. We would expect the estimate to 

approximate the true effort and be smooth as a function of sample size, but the 

requirement that k(M, i) must take on integer values causes oscillations and causes the 

trimmed mean to lie above the theoretical mean. Both of these effects become more 

pronounced for small sample sizes as shown in Fig. 4.

Figure 4
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80% trimmed mean o f the reported computational effort 7min as estimated for a problem 
where the true computational effort is 500 000 evaluations, graphed as a function of the 
number o f runs n performed for the given number o f generations. The hypothetical 
population size is 500 individuals, and the success probability is 0 from generations 1 
through 5. It then increases from 2.7% at generation 6 to 37.2% at generation 101 according 
to the schedule o f (8).

Comparison with Real Life: Experiments with Ants on the Santa 
Fe Trail

The first question that needs to be asked, in light of these data, is how likely is it that 

real GP computational effort data is affected by the biases considered herein? After all, 

the key variable that influences the amount of negative bias is the number of generations
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for which the true I{M, i, z) is approximately constant. Perhaps this is nearly or exactly 1 

for real GP data, leading to a very small actual bias in practice. To investigate this 

question, we performed a large GP run to get a baseline, and then subsampled this data 

set to examine the distribution of reported Imin values.

We used ECJ version 7.0 to generate 27 755 runs of Koza’s Artificial Ant on the 

Santa Fe trail [Koza 1992, Luke 2001]. Space does not permit a detailed description of 

the parameter settings used; we used the defaults for Koza GP and the Santa Fe trail 

problem, with the exceptions that tournament selection of size 7 was performed, and the 

ant was allowed to run for 600 time steps [Koza 1992], From this large data set, the best 

estimate of the true computational effort was Imin = 479 345 individuals (minimum 

reported at generation 19; 2 421 successes observed in 27 755 trials; 95% confidence 

interval is 460 633 to 498 841). We then selected 10 000 random subsamples of size 50 

with replacement from this data set, and computed Imin and the generation at which 

computational effort was minimized for each. The median of the observed Imm values 

was 381 670 individuals, 25.6% below the population value (95% Cl, 372 133 to 386 

610). 69.5% of the observed Imin values were below the population value, indicating the 

presence of significant bias (95% Cl, 6 8 .6 % to 70.5%). The mean generation at which 

convergence was reported in the sample was 15.41 (95% Cl, 15.25 to 15.56). 69.8% of 

the observed reported generations were earlier than the observed minimum at generation 

19.

A replicate of these data, for the case where the ceiling operator was applied 

throughout yielded slightly higher absolute results (population Imin = 484 500 

individuals), but differed by less than 2 % in all relative ratios.
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Conclusions and Future Work

We have performed a statistical analysis of Koza’s I(M, i, z) statistic and have found 

it wanting in several important ways. Firstly, the effect of the ceiling operator introduces 

a somewhat arbitrary non-linear bias in the estimation process. This tends to ignore those 

data that fall in a regime where the fractional part of R(z) is large. Second, the effect of 

taking the minimum of a number of estimators tends to underreport the true 

computational effort. This underestimate increases with the number of estimators that 

compete for the title of best generation and decreases with increasing sample size n. That 

is, the worst behaviour is seen where many consecutive generations have similar 

computational effort, and when the cumulative probabilities of success are small. In 

addition, this process tends to report that the optimum generation is found somewhat 

earlier than its true value, although this result has considerable variance. One subtle 

caution is in order for users of GP systems with small population sizes, such as multi­

objective optimization and steady-state GPs. For such systems, the number of 

generations is effectively very large, approaching the total number of individuals 

generated in the case of steady-state schemes. Since the magnitude of the bias increases 

with the number of generations over which we minimize, the estimation error would be 

expected to be relatively large, as the minimum of essentially hundreds of thousands of 

random variables is computed!

Ideally, we would have an analytic or simulation-based model with best-fit regression 

curves to be better able to estimate the magnitude of these purely statistical effects. The 

computational effort statistic is far too important to give up on! Ideally, we would like to 

be able to give a set of k(M, i) data to a program and have it generate an unbiased
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estimator of our minimum computational effort / m jn . An interim solution, the y-test, is 

given in the second half of this chapter.

These results suggest several recommendations that would be of use in future GP 

research. The first is to always indicate the number of runs performed in one’s 

experiments, preferably directly in the legend of the performance curve figure, if one is 

given, else in a summary table. We should be careful to report the number of effective 

generations over which we take the minimum in (6 ). The GP community might be well 

served by dropping the ceiling operator from (6 ), although this may be subject to debate. 

We also would recommend that practitioners choose relatively large run counts, on the 

order of 500 runs, to produce data that minimize the systematic errors presented herein. 

Finally and most importantly, we must ensure that we make available the exact values of 

k(M ,i) that we obtain from our experiments. With such data, future researches will be 

able to provide an unbiased or less-biased estimator of computational effort for legitimate 

comparisons of data from different authors. Without such data, there can be only an 

estimated correction applied based on historical data, or an approximation derived 

through a laborious and error-prone digitization of performance curve figures.

We now continue with a modest attempt at overcoming these problems by 

introducing a new statistic test particular to evolutionary computation: the y-test.
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The Y-Test: Fairly Comparing Experimental Setups with 
Unequal Effort

Introduction

Computational effort is a point statistic, and so gives no measure of the variability 

about the mean. It is therefore unsuitable for significance testing as is. We have shown 

earlier that computational effort has some undesirable statistical properties, even as a 

point statistic. For instance, we showed that on average it underestimates the true 

computational effort, by 25% or more for commonly encountered success probabilities 

and run counts. Worse, the computational effort is underestimated more significantly 

when fewer runs are performed. This results in the unfortunate circumstance that 

already-published results may not be reproducible when more runs are performed on the 

exact same problem.

Instead of pursuing modifications of the computational effort statistic, in this setion we 

look at the problem from a different perspective. Suppose we take an established 

statistical test and modify it so that it can be used to address the sorts of questions that 

commonly occur in evolutionary computation? A common problem is that method A 

delivers better results than method B, but takes more fitness evaluations to do so. We 

will show that this issue can be directly answered by comparing the median performance 

of A to a specific cumulative proportion of B’s performance that exactly compensates for 

the difference in evaluation count.

We adapt an underused variant of the Mann-Whitney-Wilcoxon (MWW) test
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[Mann 1947, Wilcoxon 1945], a /-test on the ranks of the data. The /-test on the ranks, 

henceforth designated the /R-test, has been demonstrated to be equivalent to the familiar 

Mann-Whitney-Wilcoxon test by Zimmerman and Zumbo [Zimmerman 1989], after 

theoretical developments disclosed the equivalence between the two tests. The Mann- 

Whitney-Wilcoxon test has recently been used for evolutionary computation research, as 

it has some very nice statistical properties, such as its relative distribution-invariance 

[Zimmerman 1992] and high power [Gibbons-Jean 1991]. The

/R-test adds to this list the virtue o f  being easy to compute, hence its adoption as the base 

for the y-test. As the MWW test and the /R-test are non-parametric tests, they compare 

the medians o f  two samples rather than their means. This is generally a good idea for 

comparing fitness function-based outcomes. Fitness functions used in evolutionary 

computation are often non-linear, and sometimes have arbitrary large penalty values.

This pushes up the mean population fitness and can hurt the mean best fitness as well. It 

is not uncommon to have a distribution with an infinite mean due to a non-vanishing 

probability of encountering an infinite fitness value. Using rank-based statistics 

addresses all these concerns simultaneously, as it requires only that a total order be 

defined on the outcomes. We adopt this approach in developing the y-test.

The next section discusses the derivation of key components of they-test, in four parts:

• determining the distribution of the minimum of several samples drawn from a 

reference distribution;

• considering order statistics to derive an equivalency between one quantile of a 

distribution and an arbitrary quantile of its iterated distribution;

• computing the sampling distribution of a specific cumulative probability; and
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• computing the maximum ran count usable when comparing two quantiles.

Readers interested primarily in applying the y-test are directed to the section labelled 

“Y-Test”, where the test is derived. In the section labelled “Y-Test Discussion,” we 

discuss some statistical properties of the y-test. Practitioners interested in using the y-test 

may be interested in an Excel spreadsheet [Christensen 2006a], and C++ code 

[Christensen 2006b], developed by the author for the benefit of the community.

Order Statistics and Iterated Distributions

Distribution of the Minimum of r  Sam ples Drawn from  a Given  
Distribution

Suppose that we are interested in the distribution of the minimum of 2 independent 

runs of a particular process, given a set of observed outcomes. Let the distribution D be

the distribution of the actual scores obtained by 

running the process. For simplicity, let us assume D 

is discrete and has uniform probability at each of its 

n values. Let dt be the z-th smallest member of D.

Then P(x = dt) = — for all z = 1 ... n. In Fig. 5, we 
n

show the simultaneous distribution of 2  independent 

draws of D.

Let du be a new random variable taking on the 

value of the minimum of each ran. It can be seen 

from Fig. 5 that the number of occurrences of the z-th smallest value is given by the 

difference between two nested squares differing in side length by 1. That is,
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P(du =di)~  ——*+ ̂  —— . This relation will similarly hold for 3 or more runs,
n

where the differences are taken between two nested cubes or hypercubes instead. Let r 

be the number of runs performed. The correct probability in the general case is

P(dit =dt)= —— —̂ ——— . The probability that we will observe a value less than
nr

or equal to dt is then given by (1 1 ).

p(d l,< d ,)= " ' ~ (n ~ ,y  ( i i )
n

We can identify a particular cumulative proportion q with a discrete value from D for 

the case where qn is integral using the relation Quantile(q,D) = dqn. (12a) and (12b)

rewrite (11) to refer to the case where a cumulative proportion q of D  is desired.

P(du < Quantile(q, D)) = —— —— (12a)
n r

P(dit < Quantile(q, D)) = 1 -  (1 - q ) r ( 1 2b)

(12b) is strictly valid only when qrt<=Zn. We can extend this relation to rational

values of q by taking the limit of (12a) as n increases to infinity. This gives a relation 

with the same formula as (12b). We can then extend (12b) to an arbitrary irrational

number^ e R; 0 < ^ < 1 by writing <fi as <fi = lim ^ ^  . Taking this limit in (12b) again
6 —»oo Jy

gives the same function form, but now shown to be valid for an arbitrary positive 

cumulative proportion q. If we take q to be a real-valued cumulative proportion, (12b) 

applies equally well to continuous distributions through their probability distribution 

functions as for discrete distributions through their discrete cumulative probability
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functions.

Let Dr be the distribution of the minimum of r independent samples drawn from D. 

We term this distribution the iterated distribution of D.

Let qr be a cumulative proportion drawn from Dr .

Notice that qr = P(dit < Quantile(q,D)), as defined above. We can then manipulate 

(12b) to solve for q, giving (13).

We can use (13) to determine any desired cumulative proportion of D r in terms of an 

equivalent cumulative proportion of D  and hence the entire distribution of D r exists and 

is computable whenever D is.

Treatments with Differing Fitness Evaluation Counts

We would also like to generalize these results for non-integral values of r. In the 

following, we assume that D  is a continuous distribution. Consider two treatments with 

different integral number of runs; label the numbers of runs a and b. (14) equates an 

arbitrary cumulative proportion qa from Da with a corresponding cumulative proportion 

qb fromD*. The derivation proceeds from (13) as follows:

(14) holds when a , b e N . Comparing (14) with (13), we can see that we have 

effectively extended (13) to the case where r s Q ,r >  0. We can extend (13) to the

q = l - ( l - q ry (13)

< 7 = i - a - < 7 ar = i - ( i - < 7 * r

(l-qbf b=(l -qj la
i - g * = a - 9 . ) Wa

qb = l - ( l - q a)b/a (14)
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I rb Ipositive reals by letting r& R ;r>  0, writing r as r = l im-— and substituting into (14).
f>-» 00 Jj

This again gives an equation that is symbolically identical to (13).

A quick example of how to 

apply (13) and (14) may be 

illustrative. Suppose that we 

want to know the median of 

the minimum-of-3-runs of the 

standard normal distribution. 

Set r = 3 and q3 = 0.5 in

(13), and we find that 

g = 1 -(1 -0 .5 )1/3. 

Numerically, this is equal to 

0.2063. Therefore, the 20.63rd 

percentile of the standard

Figure 6
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PrO nin^,x2,x3) < c) . These two proportions are related by (13),

as 0.2063 = 1 - (1 -0 .5 )1/3.

normal distribution is equal to the median of the minimum of 3 independent runs of the 

standard normal. This is illustrated schematically in Fig. 6 .

Testing the medians of two processes where one uses fewer fitness evaluations than the 

other can thus be easily achieved by considering a higher cumulative proportion of the 

faster process. In practice, we normally only have access to experimental data drawn 

from a finite number of runs of the competing processes. We will therefore have a limit 

on the highest cumulative proportion that we can reliably estimate -  or, the maximum 

number of runs considered at once. We elaborate on this in the following section.
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Sampling Distribution of a Cumulative Proportion

In the following, it will be beneficial to estimate the sampling distribution of the 

median. We can view the sampling distribution of a cumulative proportion q as a 

binomially distributed random variable. Suppose we are interested in the distribution of 

cumulative proportions q from some distribution D, and we have a set of independent 

samples from D as data. We can model the distribution of the cumulative proportion q as 

that of the numerically equivalent proportion n. It is well known that the mean of the 

binomial distribution with probability of success ;ris n n - n  and that the standard 

deviation is given by (15).

We can therefore give a confidence interval for a given cumulative proportion q as 

follows. First, determine a confidence interval about the equivalent proportion and 

determine upper and lower bounds for a desired significance level a. Second, determine 

the quantiles in the sample corresponding to the upper and lower bounds of the 

proportion’s confidence interval.

Let s be the set of N  independent samples drawn from the distribution D. The 

probability that Quantile{n, D) e \Quantile{n -  za n, s), Quantile{7t + za n , 5)] is 

approximately equal to P(x < z ) , where x is a cumulative proportion drawn from the 

standard normal distribution. This is strictly correct only when there are no plateaus in 

the cumulative distribution function of D; that is, whenVx, Vr(d = x \ d  e D) = 0. This 

suggests a natural limit on the most extreme cumulative proportion we can estimate from 

a given data set; if (16a) or (16b) are satisfied then we are obviously in trouble.

(15)
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n - z c jK< 0  (16a)

7t + z a n > \  (16b)

We can use this criterion to determine the smallest and largest feasible cumulative 

proportion that we can estimate from a given sample of size N. We invert the inequalities 

in (16a) and (16b) to get criteria for reliable values for tt.

n - z ( j M> 0  (16c)

n  + za n < 1 (16d)

We combine (15) and (16c) to solve for ;rin (17a).

b r(l-K )  n - z A —    > 0
V N

_ 2  „ _ 2 zr(l -  zr) n  > z  ----------
N

N ir > z 2 -  n z2
2

n>  Z (17a)
N  + z 2 v y

Similarly, we can combine (15) and (16d) to get (17b).

- 1
l n ( l - 7 i )

1 N
1 -  n )

N
[1-- a - * ) ]

<1

< (1  - 7 t f

zA ^  " ' s < \ - n  
N

z 2 -  (1 -  n )z2 <N{ 1 -  J tf

z 2 .
< 1 - n

N  + z 2

z 2
n < \ --------- 5- (17b)

N  + z y *
rr2  rr2Z  „ Z< 2T < 1 ——----J (17c)

N  + z N  + z
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Since we use this relation extensively 

later, it is worthwhile checking the 

accuracy of this approximation. For a 

95% two-sided confidence interval, the 

critical value of z is 1.96. So if A = 50, 

we can estimate values confidently for 

cumulative proportions in the range 

0.0714 <tc < 0.9286. In Fig. 7, we 

have graphed the observed coverage of 

several cumulative proportions using 

(18) as a function of the target 

cumulative proportion q.

Quant.(D, p) e[Quant.(s, p  -  a p), Quant.(s, p  + <jp)\ (18)

Fig. 7 shows that the fit to the expected coverage is quite good.

Maximum Run Count When Comparing Medians

Another variable of interest is the largest number of runs for which we can estimate the 

median, given a particular data set. We can rewrite (13) to solve for r, based on a 

particular reference cumulative proportion, as in (19). For instance, if  we are interested 

in the median, (2 0 ) gives the number of runs as a function of the cumulative proportion q. 

r = ln(l - q r) /  ln(l -  q) (19)

r = ln(0.5) / ln(l -  q) (20)

We can then substitute our lower bound derived in (17a) for q into (19) to get the
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An example of experimentally verifying the upper 
limit o f  92.86% as the maximum upper bound for 
which we can safely determine confidence intervals. 
For each data point graphed, we generated 5 000 000 
sets o f  50 random variates on [0, 1]. We counted the 
data set as covered if  the 95% confidence interval on 
the target cumulative proportion as determined in (18) 
covered the cumulative proportion in the distribution. 
There is a 0.1% chance that any o f the data points lie 
outside the indicated confidence intervals.
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answer to an interesting question: given a set of N  samples and a target type I error a, 

what is the largest number of runs over which can we minimize at once? (2 1 ) gives the 

closed-form for r.

' = J 7 ^  W
In

For instance, with TV = 50 samples, and z = 1.96 for a  = 5%, we can estimate the 

distribution of the median of at most r = 9.36 runs reliably.

Another way to consider this result is that a valid comparison with this sample size and 

desired significance level can be performed so long as the efficiency ratio between the 

two groups is less than 9.36; that is, so long as one process does not produce results more 

than 9.36 times as quickly as the other process. For a known efficiency ratio, we can 

solve (21) for N  to get a minimum sample size to use when comparing two groups as in 

(22). Of course, we must respect the usual statistical considerations in the choice of 

sample size as well.

N  „ , 1/r
■ = d - g rfN  + z 2

\1 >r _ 2

n = -: %1/r (2 2 )

For instance, if the efficiency ratio between two processes is r = 10, using z = 1.96 for 

95% coverage, we require N  = 54 samples to compare the median of the faster process 

against the equivalent cumulative proportion of the slower process.
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Y-Test

We are now ready to introduce the y-test. Suppose that we are comparing the two 

processes A and B with different known efficiencies. Let qa be a target cumulative 

proportion among the outcomes of A. Let qb be the corresponding cumulative proportion 

in the outcomes of B, computed using (13) or (14). Assume that (17c) is satisfied for 

both qa and qt- We are then justified in using (15) to approximate the cumulative 

proportion standard deviation for qa and We denote standard deviations for the two 

cumulative proportions sa and Sb, and denote the two sample sizes Na and Nb. Without 

loss of generality, suppose that Quantile(qa,A) < Quantile(qb,B ) . There is then some 

nonnegative value y  which satisfies (23).

Quantile(qa + ysa) = Quantile(qh -  ysb) (23)

This situation is illustrated in Fig.

8 .

We can determine this value ofy 

numerically for two given data sets 

by applying a simple root-finding 

algorithm, such as in [Press 1992a], 

to a user-supplied algorithm that 

interpolates to find a given 

cumulative proportion from a finite 

data set. This is made easier by

noting that for any distribution, the area to the left of a given cumulative proportion is 

monotonic non-decreasing, y  in (23) therefore must have a unique value, or possibly a
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A diagram illustrating how the y-test is defined. 
Both curves are the probability density functions o f their 
respective distributions. N  = 25 has been chosen as the 
sample size o f each distribution, and we are comparing 
the medians o f each distribution. Here y  has been chosen 
to satisfy (23) under the assumption that a perfect sample 
o f 25 was chosen from each true distribution.
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unique interval if there are plateaus in both A and B. In the latter case, we define y  to be 

the midpoint of the range of acceptable ys.

Once we have the numerical value of y, we can compute the significance level for a 

given value of y  using an isomorphism. Consider a parallel statistical system where two 

normally-distributed data sets A’ and B’ are being compared using a standard f-test. Let 

A’ have a sample mean of 0 and a sample standard deviation of sa. Let B’ have a sample 

mean of y(sa / yJW^ + sb / -Jn ^) and a sample standard deviation of s*, where y  is a free

parameter. The upper confidence interval of A’ just touches the lower confidence 

interval of B’, exactly as in (23). A /-test between A’ and B’ would give the r-score 

given in (24).

(24)
y j s l /N ,+Sl/N „

We now have an isomorphism between a test for which we can compute /(-values, and 

a novel test. Due to the isomorphism, the /(-values of the two tests are the same. 

Therefore, we can use (24) to convert the y-score to a f-score and determine the /(-value 

for the t-score directly using N  = Na + Nb-  2 degrees of freedom. The final /(-value then

gives an approximate probability that the quantile at qa is superior to that at qb, after 

allowing for the differing computational efficiencies between A and B.

Y-Test Discussion

In introducing a new statistical test, one should test it for the probability of committing 

both Type-I and Type-II errors. The probability of committing a Type-I error, denoted 

by a, represents the probability of falsely detecting a significant difference when none
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exists. A simple test of the Type-I errors on the y-test shows that Type-I errors are 

appropriately controlled.

It is the probability that a Type-II error is committed where the y-test leaves something 

to be desired. We tested the medians of two sets of 100 exponentially-distributed random 

variates with mean 1, where one set had a constant bias of 0.2 added. In this case, the y- 

test was only able to discriminate 29.5% of 100 000 independent trials, where the fa-test 

discriminated 60.5% of them. In a separate trial on standard normally distributed 

variables with a bias of 

0.4, the,-test Fi9 Ure 9

discriminated 62.0% of 

1 0 0  0 0 0  independent 

trials, where the fa-test 

correctly detected a 

significant difference in 

78.5%. This limitation is 

fortunately in the correct

direction; that is, the y-
A diagram illustrating the number o f runs required to detect 

test is conservative. A significance with a 50% probability, as a function o f effect size.
Numbers o f runs are reported as a fraction o f the runs required for the

loss of power is however fa-test. Two distributions are considered: the normal distribution, for
which raw run counts are given in parentheses (50); and the exponential 

. . distribution, for which run counts are given in brackets [50]. Run
suboptimal for a statistical counts are spline-interpolated from power tables estimated from

100 000 trials o f  the test in question; error bars should be small, 
test -  we would like the most sensitive test available, all else being equal. A more useful

measure to the practitioner of evolutionary computation is the number of independent

runs required to achieve a certain level of sensitivity.

200% [54]

180% tR-test 
t-test/Normal 
y-tesl/Normal 

—  t-test/Exp.
» y-test/Exp.

160%, (85) (53) (34)(44) (22)
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(15)
100% (15)(85)...... -<55)..........(38)'
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Fig. 9 illustrates the number of runs required to have to a 50% chance of correctly 

reporting a real difference, for various levels of effect size. As we can see, the j-test 

requires more runs to detect an effect of a given size than the fo-test, typically 50% more 

for normally distributed variables and as much as 1 0 0 % more for exponentially 

distributed variables. However, it does perform as well as the t-test on exponentially 

distributed variables. This may not always be a problem in a computational environment 

where additional runs are of modest cost.

As a result of this loss of power, we can recommend the y-test as an interim solution to 

the problem posed at the beginning of this section. If it reports that a difference between 

setups is significant, it is correct to within a. However, if it reports “no significant 

difference”, there may be a significant difference between the two groups that lies 

beyond its ability to resolve.

A sample application of the j-test is in order. Suppose we have access to the outcomes 

of 100 runs of two evolutionary computation methods. Method A generates outcomes 

after 25 000 fitness evaluations, while B generates outcomes after only 10 000 fitness 

evaluations. We presume that this is a minimization problem, so smaller outcomes are 

better. We might decide that one run of the slower process is to be compared against 

several runs of the more efficient process. In this case, we would choose qa = 0.5 and use

(14) to compute that qb = 0.8232. Note that we have to compare a higher cumulative 

proportion for the faster process, as higher cumulative proportions are poorer performers. 

We would then use the procedure given in the section labelled “Y-Test” to solve for y, 

and then compute the p-value for the two data sets.

This last example raises an interesting point: why stop at the median of the slower
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process? After all, so long as both distributions satisfy (17c), we can go to as high a 

cumulative proportion as we like. When using evolutionary computation as an 

optimization technique, we are usually either trying to solve a very hard problem, or 

trying to solve a problem of modest difficulty very well. In the former case, we probably 

cannot do statistics properly and use many runs, since fitness evaluations are likely to be 

expensive. In the latter case, it is of great interest to us to know how the values are 

distributed. For example, an evolutionary computation (EC) technique may be 

competing against simulated annealing (S A) in a particular problem. The EC technique 

may be slower, but have higher variability in the results. The SA solution might require 

fewer fitness evaluations, but have smaller variance. In this case, EC would appear to be 

completely dominated by SA. However, if the variability is two-sided, EC may still be 

indicated as the superior algorithm. If EC produces both better and worse results than SA 

on successive runs, then we can perform several runs of the EC and take the best. In 

doing so, we are essentially probing the high-performance tail of the distribution.

It is precisely in this case where the present paper’s strengths lie. We have given a 

recipe for performing careful hypothesis testing on the high-end tails of unknown 

distributions, out to the limit given by (21). Indeed, this is the best that can be hoped for, 

without explicitly creating a model of outcome distribution as a function of input 

parameters.
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Chapter 5: No Free Lunch, Trees and Improving Genetic 
Programming

No Free Lunch and Genetic Programming

The No Free Lunch Theorem states that no single algorithm outperforms memorizing 

random search or enumeration when amortized over all possible functions 

[Wolpert 1995]. This is easy to see and, indeed, unsurprising: if nothing is known about 

the structure of a domain, then all problems in it are equally likely; and any particular 

search or learning algorithm can be expected to perform better than chance on some 

randomly selected problems and worse than chance on others. On average it can be 

expected to do no better, and no worse, than random guessing. The apparently 

disheartening conclusion of NFL depends on the assumption that nothing is known about 

the structure of a domain; by the same token, the theorem may be taken to point out the 

importance of assumptions about non-uniformities in a domain for an understanding of 

the observed successes of search and learning algorithms.

In earlier work [Christensen 2001], we showed that by making a simple tradeoff 

between functions that in which we are interested those that we aren't, we can on average 

outperform memorizing random search. We demonstrated there that the crux of the No 

Free Lunch theorem lies in the vast size of the function set considered, and as a result, the 

constraints implied by it are rather modest.

The existence and effect of the No Free Lunch theorem is not restricted to numerical 

search, of course. It applies equally well to genetic programming systems as well, and 

therefore to programming. Langdon and Poli, in [Langdon 1998], introduce the idea of 

GP-hard and GP-easy problems. We will consider this distinction in some depth later on
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in this chapter; for now, it suffices to note that problems for which random search beats 

genetic programming are called “GP-hard”. To discuss the interaction of the No Free 

Lunch theorem and genetic programming, we will require both an enumeration of 

function trees (hence, programs) and efficient equations for counting the number of trees 

of a given size.

Generation and Enumeration of Function Trees

We require an indexing function for function trees to be able to argue about NFL and

enumeration difficulty. This section follows closely the pioneering work on enumeration

of function trees for genetic programming by Langdon and Poli [Langdon 1998]. In a 

very significant way, this chapter follows on extends the work first done by these authors 

in 1998. The simplest case for tree enumeration is the case where there is exactly one 

main function tree. Let us consider a prototypical GP problem: artificial ant on the Santa 

Fe Trail [Koza 1992]. Candidate solutions in this function space are made up of nodes 

taken from the following function and terminal set:

• Nullary functions (terminals): Left, Right, Move

• Unary functions: none

• Binary functions: IfFoodAhead, Progn2

• Trinary functions: Progn3

Define the arity vector a as the vector which records the number of nodes of a given 

arity for a problem. For Santa Fe Trail, a = [3,0,2,1]. Let m be the maximum arity node 

of the problem. Without size limits, the number of trees of a given size is infinite. Of 

course, memory will limit program size for any real GP system, so we can, in practice, 

limit the size to some maximum size smax without loss of generality. We wish to
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associate with each tree an index i that provides its position in a canonical ordering of 

trees of a given problem.

We use a four-parameter technique to index trees, where the four parameters are:

• size s

• configuration vector c - that is, how many nodes exist of which arity

• geometry vector g  - that is, what is the exact shape of the tree under consideration

• labelling vector / - that is, which nodes are assigned to which arity nodes

We will show how to generate each term in turn. The configuration vector c can be 

enumerated recursively by the greedy algorithm E n u m e r a t e -C o n f i g u r a t i o n s , which 

attempts to place as many high-arity nodes as possible when filling. We take the vectors 

a, c, g, I to be zero-indexed, to simplify array accessing and labelling.

Algorithm  1a: En um erate-Config uratio ns

Input: size s, arity Vector a, and configurationStack configStack
Output: configStack, filled with all the legal configurations for the given size

c <— vector(m) 
configStack <— stack ()
E n u m e r a t e -C o n f ig u r a t i o n s -H e l p e r  s -1 , m - 1, c, a, configStack
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Algorithm  1b: En um erate-Con fig u r a tio n s -H elper

Input: nodes left n, index i, configuration c , arityVector a, and 
configurationStack configStack 

Output: none - configurations are pushed into configStack

if i > 1 then — allocate binary, trinary, etc. nodes
if a, > 0  then

n ieft < r-n -i* Ci
else

ct <— 0

n left < -  n

end if
while Ci > 0  do

En u m e r a t e -C o n f ig u r a t io n s -H e l p e r  nleft, i  - I, c, a, configStack

C i< -C i-1

if c, > 0  then nleft <- nleft + i 
end while

else — allocate unary and nullary nodes
if at > 0  or nlê  = 0  then

G "left

m

co

configStack.push(c) 
end if 

end if

To see an instance of this algorithm, suppose that we want all configurations for 

Santa Fe trail of size 12. En u m e r a t e -C o n f ig u r a t io n s  generates the three legal 

configurations, namely c e {[9,0,0,4], [8 ,0,3,2], [7,0,6 ,o]}. The configuration vector 

c = [9,0,0,4] means that there are 4 trinary nodes (of arity 3), and 9 nullary nodes (or 

terminals, of arity 0). We can then order configurations by the order in which 

En u m e r a t e -C o n f ig u r a t io n s  generates them.
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Once we have the configuration vector for a tree, we then need its geometry vector. 

For instance, suppose that we have the configuration vector c = [4,0,l,l]. There are 5 

distinct geometries available to us, as shown in Fig. 1.

Figure 1
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The five tree geometries that use the configuration vector c -  [4,0,1,1]. Dyck words, 

known here as the geometry vector g, are given above the trees in question.

As we can see in Fig. 1, the geometry vector g  is simply the vector of the arities of 

nodes encountered while performing a preorder traversal of the tree. This can be used in 

reverse to generate a tree from a given geometry vector. What we call "geometry vector" 

in this work is also known as the Dyck word for the given tree [von Dyck 1882]. There is 

an elegant and efficient algorithm for randomly generating a geometry uniformly from a 

given configuration [Alonzo 1995]. It works by randomly permuting a generic geometry 

vector until a valid tree is obtained. It is fully described in G e n e r a t e -R a n d o m - 

G e o m e t r y . A valid tree is verified by the subroutine Is -L e g a l -T r e e : it is the only 

geometry where the tree is terminated; that is, it has no dangling edges and all the nodes 

are used. Each node of arity i has one in-edge and i out-edges, so the number of dangling 

nodes after adding a new node at the end of the tree increases by i - 1. To make the
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algorithm uniform, we begin with an imaginary edge dangling down to the root node. If 

at any point we end up with no free edges before we have gone through all the nodes, the 

given geometry vector is not valid. As it happens, if we consider all cyclical rotations of 

a fixed putative geometry vector, there is always exactly one rotation that results in a 

valid tree. Suppose we randomly generate the putative geometry vector g = [0 ,0 ,0 ,2 ,3,0]. 

If we try to lay out a tree from this vector, we immediately terminate the tree after the 

first node. If we rotate all the nodes cyclically to get g = [2,3,0,0,0,0], however, then we 

will have a properly terminated tree.

Algorithm  2a: G enerate-Ra n d o m -G eo m etry

Input: configuration c 
Output: a random geometry g

g <— vectorin)
j  0

for i from 0  to m do 
for k  from 0  to ct do

j < ~ j  + 1

od
od
do

Perm ute-R andom ly g  
while not Is-L egal-T ree g
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Algorithm  2b: Is -Legal-Tree

Input: a putative geometry g
Output: true if g  represents a valid (closed) tree; false otherwise

danglingNodes <-1 
for i from 0  to n - 1  do

danglingNodes <— danglingNodes + g, -1
if danglingNodes < 0 then return false 
od
return true

It is not too difficult to show that there is exactly one rotation that gives a valid tree, 

and we will get a nice equation for the number of legal geometries for a given 

configuration out of the work. Clearly, there must be at least one such legal rotation, 

otherwise there would be a fixed set of nodes that could not be arranged to form a fully- 

terminated tree. The proof that there must be no more than one is a bit less intuitive. 

Suppose that there are two such geometries -  call them gx and g2. They must both form 

legal trees under rotation of the geometry vector. Notice that rotation of a geometry 

vector does not change the relative order of nodes in a pre-order traversal; that is, it 

preserves subtrees. Lay out the nodes as for g , , with an edge leading to the root node. 

There are then n nodes in the fully formed subtree, with n in-edges to them. Each 

rotation of the geometry vector of gj can be identified with choosing a different 

particular node to be the root of the tree. However, any node other than the actual tree 

root will result in a smaller tree than gj does, and so it will not be properly terminated. 

There is therefore exactly one valid rotation of a randomly permuted geometry vector 

which forms a closed tree using all n nodes. With this proof, we can count the number of 

trees of a given geometry using (1). This is simply the number of ways to permute of a
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random geometry vector, computed using the permutation-with-duplicates relation, 

divided by a factor of n for the single degree of freedom used in the rotation.

. . . ( n - l )  ...geometries(c) =  ----- -  (1 )

f h !
i=0

Unfortunately, there appears to be no elegant algorithm to generate all legal geometry 

vectors for a given configuration. For tree generation purposes, we will need such an 

algorithm. We present here a correct algorithm, En u m e r a t e -G e o m e t r ie s , which 

satisfies this task. It uses a local version of a configuration that we term an allocation. A 

given allocation records the number of nodes of which arity are allocated to each subtree 

of a given node. For instance, for a tree with configuration c = [l0,0,1,3], we may 

allocate the topmost node to be a node with arity 3. We are then left with nodes having 

the configuration [l 0,0,1,2] to allocate to our children. En u m e r a t e -G e o m e t r ie s  calls an 

auxiliary function, En u m e r a t e -S u b t r e e - A l l o c a t io n s , to make a list of all the legal 

ways to distribute these subtrees among the three children of the root node. En u m e r a t e - 

Su b t r e e -A l l o c a t io n s , in turn, calls G e t -S u b s e t s  to get a list of all the ways that a 

given configuration can be allocated to a single child. Nullary nodes are neglected for 

this algorithm, as they are required only to terminate the subtrees, and provide no degrees 

of freedom in tree geometry allocation. For the configuration [l 0,0,1,2], there are 6  such 

ways, namely {[x,0,l,2], [x,0,0,2], [x,0,1,1], [x,0,0,l], [x ,0,1,0], [x ,0,0,0]} . En u m e r a t e - 

Su b t r e e -A l l o c a t io n s  then iterates through each of these configurations, allocating the 

configuration to the first subtree of our root node. It then calls itself recursively to try all 

the allocations of the remaining children, if any. For instance, we might allocate
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[x,0,0,2] to the first child, leaving [x,0,l,0] for the other two children. This latter has 

only two possible ways, namely {[x,0,l,0], [x,0,0,0]}. The choice of the second child 

forces the hand of the third child, by the law of conservation of nodes. Since we have 

termed a complete allocation of nodes to a subtree an allocation, we can say that two 

allocations are thus generated from the above: [[x,0 ,0 ,2 ], [x,0 ,l,0 ], [x,0 ,0 ,0 ]] and 

[[x,0,0,2], [x,0,0,0], [x,0,0,l]]. These allocations are then used recursively to allocate trees 

all the way down to tree termination by nullary nodes. In the following algorithms, we 

use stacks for efficiency; however, lists are probably a more appropriate choice.

Algorithm  3a: En u m er a te -Geom etries

Input: configuration c, and geometry stack geomStack
Output: geomStack, filled with all legal geometries for the given configuration in a 

deterministic order

treeSoFar <— stackQ
E n u m e r a t e - G e o m e t r ie s - H e lp e r  geomStacA:, treeSoFar, c 

Algorithm  3b: Enum erate-G eo m etr ies -Helper

Input: geometry stack geomStack, tree stack treeSoFar, and configuration c 
Output: none - geometries are pushed into geomStack

addedAny <— false 
for i = m downto 1 do 

if ct > 0  then
nextTree <— stack(treeSoFar) — clone the tree so far
nextTree.push(i) — and add a high-arity node
addedAny 4— true
ct <-ct - 1 — use up one of the highest-arity nodes
allocations <- E n u m e r a t e - S u b t r e e - A l l o c a t i o n s  c , i 
for each allocation in allocations do 

geometries <— stackQ
for each childConfiguration in allocation do 

subtree <— stackQ 
subGeomStack <— stackQ
En u m e r a t e -G e o m e t r ie s-H e l p e r  subGeomStack, subtree,
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geometries.push(subGeomStack) 

end while
counts j  <— length(geometriesj) -1  V/ = 1.. .length(geometries)
subsetList <— G e t -S u b s e t s  counts 
for each subset in subsets do 

thisGeometry <— stack(thisTree) 
for j  from 1 to length(subset) do 

g  <- geometriesj subsetj

for k  from 1 to length(g) do 
thisGeometry.push( gk )

end for 
end for 

end for 
end while 

end for 
if a; > 0  then

C, <-

n left n ~ i*  Ct

else 
c, <— 0

n left < -  n

while Cj > 0  do
En u m e r a t e -C o n f ig u r a t io n s -H e l p e r  nleft, i - \ ,c ,  a, configStack
C i < r - C i -  1

if Cj — 0  then nleft ^  nleft + i 
end while

else — allocate unary and nullary nodes
if ai > 0  or nlefi = 0  then

c \ <“  n left

m

co ^ s ~ H ci
i= 1

configStack.push(c) 
end if
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Algorithm  3c: Enum erate -Sub tr ee -A llocations

Input: configuration c and slots available counter slots 
Output: a stack of legal subtree allocations allocationStack

allocationStack <— stackQ 
allocation <— stackQ
En u m e r a t e -S u b t r e e -A l l o c a t io n -H e l p e r  allocationStack, allocation, c, slots 
return allocationStack

Algorithm  3d: Enum erate -S ubtree-A llo cation -H elper

Input: allocationStack, current subtree allocation allocation, configuration c, 
and slots available counter slots 

Output: none; allocationStack is filled with legal subtree allocations

if slots > 1 then 
subsetList <- G e t - S u b s e t s  c 
for subset in subsetList do 

allocation.push(subset) 
leftover <— ci -  subset,-Vi = 0...m
En u m e r a t e -S u b t r e e -A l l o c a t io n -H e l p e r  allocationStack, allocation,

leftover, slots - 1

allocation.pop() 
end for 

else
newAllocation <— stack(allocation) 
newAllocation.push(c) 
allocationStack.\msk\{newAllocation) 

end if

Algorithm  3e: G et-Subsets

Input: a configuration c
Output: a list of all legal subsets of c

subsetList <- listQ
for all configurations t withti =D...cf/ i = \...m  do

subsetList. addEnd(t) 
end for
return subsetList

Once we have the geometry of the tree in question, the only thing remaining is to 

allocate the specific node choice themselves. Fortunately, this is the simplest of the four
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choices, as we can simply number each node in a given tree. Define the labelling vector I 

as a parallel vector to g, where each /■ identifies which of the arity- g ; nodes the tree will

use. There are ci nodes in the tree of arity i, and at nodes to choose from in the function 

set; the number of labellings in (2) follows. Interestingly, this number is independent of 

the specific geometry g  chosen.

labellings(c,a) = IK' a
i=0

We can now write down an expression for the number of trees of a given size. 

Define C(n, a) as the set of all legal configurations for a problem's arity vector a and 

number of nodes n. (3) gives the number of trees for a given number of nodes n by 

combining ( 1 ) and (2 ).

\

(” - 0trees(n, a) = ^
ceC (w , a)

m
ZULm IK

IK "°
V i=0

( 3 )

The No Free Lunch theorem for Genetic Programming

Equipped with both an enumeration over trees and a counting of the number of 

such trees, we can restate the No Free Lunch theorem for genetic programming. Let

n

T(n, a) be the set of trees of size n using arity vector a, and let r +(«,a) = ( j 7 ’(n,a) be
i=1

the set of trees of size n or smaller using a. The No Free Lunch theorem for function 

trees is given in (4), where (j) is any measure of algorithm performance (see [Wolpert 

1996] for details on such measures), A is an algorithm under test, k  is an arbitrary
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constant, and F : T+(n, a) —> SH is any function set that forms a permutation set over the 

set of trees.

(4)
feF

Bill Langdon and Riccardo Poli introduce the very productive and important idea of a 

GP-hard problem in [Langdon 1998]. A GP-hard problem is defined as a problem for 

which genetic programming performs worse than enumeration, on average. He uses the 

computational effort statistic introduced by Koza for the definition of "worse".

[Langdon 1998] notes that Artificial Ant on the Santa Fe trail with 600 time steps to solve 

the problem is GP-hard. Since k  from (4) is equal to the average performance of 

functions on enumeration, this can be viewed as a sort of specialized case of the No Free 

Lunch theorem. That is, genetic programming partitions the space of possible functions 

into two sets: GPeasy, those for which GP outperforms enumeration; and GPhard, those

for which enumeration outperforms GP. The surprising result, for many of those of us 

used to numerical optimization, is that such a simple problem as Artificial Ant on the 

Santa Fe trail is in GPhard. The results of Chaper 4 suggest that the No Free Lunch is a 

ridiculously weak constraint on optimization algorithm performance. Are we to believe 

that the types of problems that genetic programming attacks are really so much harder 

than numerical optimization tasks? This seems counterintuitive, to say the least! This 

result is all the more surprising given that Artificial Ant on the Santa Fe trail appears to 

be such an easy problem, from a human programmer's point of view. Admittedly, there 

are significant differences between the problem that humans solve when programming
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and that posed of a genetic programming system, as raised in the allegory of the GP room 

in Appendix 1. Still, given the fundamental weakness of the NFL theorem shown in 

[Christensen 2001], we might expect more of genetic programming than this. Fig. 2 

shows this space graphically, with a dotted line indicating the "frontier" between GP-easy 

and GP-hard problems. Our overriding goal in this thesis is to use some tricks derived 

from how human programmers solve problems to improve the performance of genetic 

programming. Indeed, the title of this thesis, "Towards Scalable Genetic Programming," 

indicates that we intend to move in the direction of making algorithms that work for 

arbitrary problem size, much as human programmers do, not merely on fixed-size 

problems. In approaching this task, we will require a significant infrastructure, consisting 

of both better and more accurate analysis of EC performance; and a set of utility 

algorithms which will be useful in improving GP performance. With the reader's 

indulgence, in the remainder of this chapter we will detail one method of improving 

performance. It happens that systematically considering small GP trees to automatically 

induce subroutines useful for a candidate problem can greatly improve computational 

efficiency. We will discuss more sophisticated methods of improving performance and 

generating subroutines in Chapter 7.
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Figure 2

Santa Fe 
Trail X

C
0 )

GP-hard

Evaluations 
under GP

A depiction o f the division o f  the set o f possible problems into GP-easy and GP-hard 
problems, as indexed by the number o f evaluations required on average to find a solution.
The density o f problems on the GP-easy and GP-hard sides o f  the line are not necessarily 
uniform. A cross indicates the approximate location o f the Artificial Ant on the Santa Fe trail 
problem. Justification for this position is given in the following subsections.

Analysis of Artificial Ant on the Santa Fe Trail

We can actually expand on Fig. 2. In [Christensen 2002], we performed 27 755 runs 

of artifical ant on the Santa Fe trail with standard parameters to validate the 

computational effort statistic. There, we found that for a problem difficulty of 600 steps, 

the work required to give a 99% chance of successfully solving this problem with the best 

possible choice of generation number and M =  500 individuals lies within 

[474 000,485 000], with 95% confidence. By using the enumeration algorithms above, 

we can independently confirm the results of Langdon in [Langdon 1998]. First we will 

need a way of fairly comparing enumeration-style algorithms with a stochastic algorithm 

like genetic programming. If we enumerate the outcomes for a genetic programming 

function tree, there must be a minimum size tree that solves the problem. Call this
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minimum size nmm for the problem; this is essentially the Kolmogorov complexity in the 

context of genetic programming with a given function set. There will often be more than 

one solution of the minimum size. In this case, we can imagine a memorizing random 

search algorithm which proceeds as Memorizing-Random-Tree-Search.

Algorithm  4: Mem o rizing -Ra n d o m -Tree-S earch

Input: an oracle O, which takes a function tree and answers true if the function tree is 
correct and false otherwise 

Output: a valid tree t that solves the problem

n <— 1

usedTrees <— {} 
for ever 

do
t <r- Generate-Random-Tree n, a 

while t e usedTrees 
if 0(t)  then return t
if \usedTrees\ = trees(n, a) then

«•<—« + 1 

usedTrees <— {}
end if 

end for

For this algorithm, we can compute the number of function evaluations required to 

solve a problem with a 99% probability of success. Suppose that there are exactly 

s(n) successful programs of size n. The odds of success are clearly 0 for all trees with 

sizes from 1 through nmia - 1 ; they increase to 1 after the algorithm has explored all the 

trees of size nmiu. It remains to find the odds of success at intermediate numbers of 

nodes chosen.

Suppose that there are exactly 2 solutions in 10 trees. In this case, Fig. 3 enumerates 

all possibilities for the number of trees which must be examined before a solution is 

found.
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Figure 3
First solution

1 2 3 4 5 6 7 8 9 10
1 i 1 1 1 1 1 1 1 | 1 1
2 1 2 2 2 2 2 2 I  2 2

CO 3 1 2 3 3 3 3 3 | 3 3
CD
33Q.

4
5

1
1

2
2

3
3 4

4 4
5

4
5

4 ! ±  
5 I 5

4 
...5

8 6 1 2 3 4 5 6 6 > 6 6
§ .o' 7 1 2 3 4 5 6 7 ! 7 7
3 8 1 2 3 4 5 6 7 8 8

9 1 2 3 4 5 6 7 8 9
10 1 2 3 4 5 6 7 8 9

An enumeration o f the selection at which success is first obtained in 10 trials with 2 
successes present. We have chosen two unequal positions uniformly at random for the two 
solutions.

From this table, the pattern is clear -  the odds of success in k  trials or fewer is given 

by the ratio of the area of the square excluding k  rows and columns to the area of the 

entire square excluding diagonals. Mathematically, this is described by (6 a), where 

tsuccess *s the trial at first success.

(n -  k)(n -  k  - 1) 
n(n - 1)

(6 a)

This generalizes in the case of s successes to the difference of two 5 -dimensional 

hyperboxes excluding all diagonals. (6 b) gives the relevant formula, which simplifies to 

(6 c). Unfortunately, we are looking for the trial at first success for which the probability 

P(tsuccess -  is 99%, which is a little challenging.

y — K) 1 n\!(n-s)\

Pit ^ k ) - l  (” - * ) !(” - J)!
v  success — /v/  1 . /  ,  mn\(n — k — s)\

(6 b)

(6c)
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Rather than go into an exact formula using root finding over the logarithms of 

factorials, there is a trick we can use. If s «  n , then we can neglect the diagonal terms, 

which gives us the more elegant and solvable (6 d).

\ s
(6 d)

This can be solved for k  to get (6 e), which is in closed form. 

k  =  4 1 -  (l -  P (tsuccess ^ * ) y 0  (6e)

After generating some data for the artificial ant on the Santa Fe Trail with 600 time- 

steps, we get the results shown in Fig. 4.

Figure 4

n trees{n, a) s(n)
£ 7 5 043 0
8 20 412 0
9 95 256 0
10 516 132 0
11 2 554 416 12
12 13 712 490 48
13 71 521 461 470

Number of trees trees{n, a) and successes s(n) for different tree sizes n, for the standard 
problem for artificial ant on the Santa Fe Trail with 600 time steps.

From Fig. 4, we can say that the computational effort to 99% success using 

M e m o r iz in g -R a n d o m -T r e e -S e a r c h  is the number of trees of size 10 and lower, plus 

the appropriate value of k  from (6 e) substituting 0.99 for P(tsuccess < k). The appropriate 

value of k  from (6 e) is 814112. We performed a check using this k  using the exact 

equation (6 c) to validate our approximation of neglecting the diagonal terms. The closest
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obesrved probability to 99% success rate occurs when A: = 814 111, which is off by 1 

fitness evaluation from our approximation.

Therefore, the computational effort of artificial ant on the Santa Fe trail is 

636 843 + 814111 = 1450 954. This differs from the optimal value of 460 000 given in 

[Langdon 1998], as the authors estimate the work required to solve the problem assuming 

that only solutions of the optimal size. While following the convention of genetic 

programming where preliminary work is neglected in estimating computational effort, 

this value ignores the significant work required to determine that solutions of size 18 are 

optimal, which probably should not be neglected in a fair comparison. The nice thing 

about M e m o r iz in g -R a n d o m -T r e e -S e a r c h  is that the computational effort statistic 

derived for it is insensitive to the specific ordering of configuration, geometry and 

labelling used during tree generation.

Using this value for computational effort, we can see that with the right parameter 

settings, artificial ant on the Santa Fe is not strictly GP-hard; however, it is close. Indeed, 

the traditional definition of computation effort is a little unfair as well, as we do not know 

which population size M  and number of generations G to use. Since the a priori 

probability of success at the optimal choice of parameters is 8.7%, we are unlikely to 

encounter a single success while testing these parameter settings. A fair comparison 

would involve using an algorithm such as the progressive-grid algorithm introduced in 

Chapter 6 . This will, of course, inflate the actual computational effort significantly, by a 

factor of roughly 4 or so. The fair computational effort for genetic programming would 

then be roughly 1800 0 0 0 , very close to the fair computational effort required by
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enumeration. The claim that artificial ant on the Santa Fe trail is GP-hard is therefore 

justified by our analysis.

Improving on Standard Genetic Programming

Faced with the existence of GP-hard problems, is there anything that we can do? One 

option available to us, which will explored further in Chapter 7, would be to add in some 

successful subroutines derived from the analysis of successful small trees. To give a taste 

of this procedure, suppose that we use the algorithms presented above to enumerate all 

trees of size 1, 2, 3, etc. For the artificial ant on the Santa Fe trail problem, there are no 

trees of size 2, so we can begin with trees of size 3. There are two high-performing trees 

of size 3, namely the two trees shown in Fig. 5.

Engaging in a decidedly human behaviour, 

we can look for commonalities in these two 

high-performing subtrees. Fortunately, the 

common subtree is easily identified - the two

Figure 5

c = [2, 0, 1,0]; 
g = [2 , 0 , 0 ];
I = [0 , 2 , 0 ]

c = [2, 0, 1,0]; 
g = [2, 0,0];
/ = [0 , 2 , 1]

! If-Food- I !f-Food-
Ahead Ahead

KgM subtrees differ only in a single node.

The two highest-performing trees o f size 3 
or lower on artificial ant on the Santa Fe trail. 
The three vectors c, g, and I generating each 
tree are shown for reference; they are defined 
in the main text.
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Abstracting this subtree out, we get the tree of Fig. 6 .

This abstraction is, in fact, very close to a conventional 

subroutine. Suppose that we add the tree of Fig. 6  back into the 

original problem as a new unary function node, If-Food-Ahead- 

Move(A). If we then run M e m o r iz in g -R a n d o m -T r e e -S e a r c h  

on the extended problem, we get the performance and trees 

shown in Fig. 7.

Figure 7

n trees{n, a) s(n)
S 7 15 771 0
8 74 091 0
9 432 183 12
10 2 573 859 142
11 15 538 719 1 172
12 94 936 152
13 585 952 788

Number o f trees trees{n, a) and successes s{n) for different tree sizes n, for the artificial 
ant on the Santa Fe Trail problem with 600 time steps using the additional unary function 
node If-Food-Ahead-Move(A) shown in Fig. 6.

From Fig. 7, we can say that the computational effort to 99% success using 

M e m o r iz in g -R a n d o m -T r e e -S e a r c h  on this revised problem is the number of trees of 

size 8  and lower, plus the appropriate value of k  from (6 e). Substituting into (6 e) gives 

k  = 137 740. Therefore, the computational effort of artificial ant on the Santa Fe trail for 

this restated version of the problem is 89 862 + 137 740 = 227 602. To be fair, we must 

add the number of trees of size 3 or smaller that we examined in the first place, which 

number 21. The total computational effort is then 227 623, which is a factor of 6.37 

easier than the normal computational effort. We can repeat this procedure - the relevant 

fitnesses of the smallest trees are given in Fig. 8 .
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Move

tt-Food-
Ahead

An abstraction o f the 
two highest-performing 
trees o f size 3 for the 
artificial ant on the Santa 
Fe trail problem. The "X" 
marks the node that 
becomes a free parameter 
in the new subroutine.
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Figure 8

n trees(n, a) best
fitness

trees w/ 
best fit.

2 3 78 2
3 21 78 4
4 84 78 16
5 435 65 4
6 2 343 51 1

Number o f trees trees(n, a ) , best fitnesses, and number o f trees with the best fitness value 
for different tree sizes n, for the artificial ant on the Santa Fe Trail problem with 600 time 
steps using the additional unary function node If-Food-Ahead-Move(Z) shown in Fig. 6.

Looking at the 4 trees with exceptional fitness of size 5 in this new format, shown

in Fig. 9, we quickly see that they do not share any geometry vector, much less labelling.

Figure 9

g m [  3, 0, 0 ,1 ,0 ] ;  
Z = [0, 2 ,1 ,0 ,  0]

g  = [3, 0 , 1 , 0 ,  0]; 
Z = [0, 1 ,0 ,  0 ,2]

Move
If-Food-
Ahead-
Move

It-Food-
Ahead-
Move

Left Left

Progn3

RightRight

Progn3

g = [3 , 1 , 0 ,  0, 0]; 
/ = [0 , 0 , 0 , 2 , 1]

* - [ 1, 2 , 0 , 1, 0]; 
1 =  [0 , 1, 2 , 0 , 1]

^Food-
Ahead-
Move

Right

Left

Progn2

Move

RightMove

Progn3

The four highest-performing trees o f  size 5 or lower on the Santa Fe trail problem, with the 
added function If-Food-Ahead-MovefY). The geometry vector g  and the labelling vetor / that 
generate each tree are shown for reference. The configuration vector c is omitted for space 
reasons; it can readily be recovered from the geometry vector g  by counting.
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Let us, for argument's sake, choose the first tree to generalize into a subroutine. 

Without any additional knowledge, let us take all three terminals and make them 

parameters of an additional function. Call this function If-Food-Ahead-Move-3(X, Y, Z); 

it is diagrammed in Fig. 10.

Figure 10

Progn3

If-Food-
Ahead-
Move

An abstraction o f one o f the four highest-performing trees o f size 5 for the Santa Fe trail 
problem. "X", "Y" and "Z" mark nodes that become free parameters in the subroutine, If- 
Food-Ahead-Move-3(X, Y, Z).

As before, we add the tree of Fig. 10 back into the revised problem as a new trinary 

function node. If we then run M e m o r iz in g -R a n d o m -T r e e -S e a r c h  on the extended 

problem, we get the performance and trees shown in Fig. 11.

Figure 11

n tress(n, a) s(n)
S 6 4 104 0
7 20 469 4
8 127 767 38
9 826 059 280
10 5 372 571 many

Number o f trees trees(n, a) and successes s(n) for different tree sizes n, for the artificial
ant on the Santa Fe Trail problem with 600 time steps using the additional unary function 
node If-Food-Ahead-MovefX) shown in Fig. 6 and the trinary function node If-Food-Ahead- 
Move-3(X, Y, Z) shown in Fig. 10.

From Fig. 11, the computational effort to 99% success using M e m o r iz in g - 

R a n d o m -T r e e -S e a r c h  on this revised problem is the number of trees of size 6  and
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lower, plus the appropriate value of k  from (6 e). Substituting into (6 e) gives k = 13 996. 

Therefore, the computational effort of artificial ant on the Santa Fe trail for this restated 

version of the problem is 4104 +13 996 = 18100. To be fair, we must add the number of 

trees of size 5 or smaller that we examined previously, in doing the two previous steps. 

There are 21 + 543 = 564 such, giving a total computational effort of 18 664. This value 

is a factor of 12.2 better than the previous, and an impressive 77.7 times better than the 

naive approach!

The possibility remains that this is a fluke, that we were uncharacteristically lucky 

in choosing the first of the four trees to generalize in Fig. 9. Accordingly, in Fig. 12 we 

have illustrated key statistics from performing all-terminal generalizations from each of 

these four superior trees.

Figure 12

Variant Name wmin

" m i l l " 1

ytreesjn ,a )  
n=l

trees(nm in , a ) 'S0 * m i n  ) C'C 99 ra tio

1 After 7 4 104 20 469 4 18 664 77.7
2 In 8 24 573 127 767 14 60 952 23.8
3 Before 8 24 573 127 767 8 81 055 17.9
4 Binary 8 32 286 171 615 35 54 008 26.9

Some statistics for the artificial ant on the Santa Fe Trail problem with 600 time steps using 
the additional unary function node If-Food-Ahead-Move(Z) shown in Fig. 6 and for the each 
of the four possible generalizations of the trees shown in Fig. 9. The column headings refer 
to the number o f trees trees(n, a ) , minimum tree size with perfect solutions nmia, successes 

at minimum size ,y(«mln) ,  99% computational effort CE99, and ratio o f  effort to the 

computational effort for the normal function set. The values for CE99 shown here include 
the work required to generate all preliminary trees.

As Fig. 12 illustrates, in each case the performance is better than that of the single­

subroutine variant. The question arises: how to automatically choose which tree to make 

a subroutine from? One efficient method is to consider the best performance of all trees 

of size 2, 3,4, ... until we beat all previous small-tree records, or until we are generating
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too many trees for the potential benefit that we would gain. In Fig. 13, we show the best 

fitness at a given size and number of such trees with best fitness for all trees of sizes 2  

through 5 for each of the function sets made reference to thus far. We skip trees of size 1 

since no nullary functions were considered in this series.

Figure 13

n Normal + IFAM + IFAM  
+ Var. 1

+ IFAM  
+ Var. 2

+ IFAM  
+ Var. 3

+ IFAM  
+ Var. 4

2 7 8 x 2 7 8 x 2 7 8 x 2 7 8 x 2 7 8 x 2
3 7 8 x 2 7 8 x 4 7 8 x 4 7 8 x 4 78 x 4 65x1
4 8 6 x 6 78 x16 65 x1 65x1 65x1 65 x3
5 78 x16 6 5 x 4 51 x1 5 9 x 2 51 x1 43 x1

Best fitness at a given size n, and number o f trees with this fitness, for each o f the function 
set augmentations discussed in this chapter. In the Santa Fe trail problem, smaller scores are 
better, and 0 is a perfect score. Fitnesses are shown before the 'x' character; number o f trees 
follow. IF AM refers to the function If-Food-Ahead-MovefY); the four variants labelled 
“Var. 1”, “Var. 2” and so on refer to the indexed variants shown in Fig. 12.

Fig. 13 offers the possibility of determining which trees to generalize efficiently.

When we add a new subroutine of arity a, the new subroutine has the possibility of

improving the performance of all small trees of size a + 2 and larger. Since a subroutine

made from a tree with arity a can exactly duplicate the original tree at size a  + 1 , it will

take a tree of size at least a + 2 to improve on the performance. If we compare the

performance of superlative small trees, we can decide which path to pursue using a

simple greedy algorithm, Systematic-Subroutine-Generalization.
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Algorithm  5a: Sys tem a tic -Subro utine-G eneralization

Input: an oracle O, which takes a function tree using zero or more subroutines and
answers a numerical fitness value O(t), where 0  is optimal, and larger numbers 
are worse;
a set o f  "built-in" function terminals F, which operate in the fitness space 
scored by O; and
a function Enumerate-Trees, which returns the set o f  all trees o f  size n using a 
given function set and subroutine set.

Output: a valid tree t that solves the problem, and a set of subroutines S  which have been 
shown to improve performance on small trees

£< -{} 
n <— 1 

do
n <— n + l
T <- Enumerate-Trees n, F  U S  

while |r| = 0

[Heroes, bestScore] <— B est-Trees n , F \ j S , 0  
for ever

5 < -U nify-Trees Heroes 
if s ^  nil then

Best <r- E x p er im en t-W ith -S u b ro u tin es-T o -G et-B est  
NewSubs <— {5 }

else
Best <- Experiment-W ith-Subroutines-To-Get-B est Heroes,F \ JS ,0  
NewSubs <— Best 

end if
if NewSubs = {} then 

exit for 
end if
S <— S  U NewSubs 
a <— min |{/1 labelling{s)i -  - l ) |

seNewSubs

n<—a + l 
do

n< -n  + 1

[Heroes, newBestScore\ <— B e s t -T r e e s  n , F { j S ,0  
while bestScore = newBestScore and not TOO-MUCH-WORK n , F [ j S , 0  

end for 
do

n<—n + 1

bestScore < - M em oriz in g-R an d om -T ree-S earch  n ,F { jS  
while bestScore > 0
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return [/, S]

Algorithm  5b: Best-Trees

Input: an oracle O, which takes a function tree using zero or more subroutines and
answers a numerical fitness value 0 (t) ,  where 0  is optimal, and larger numbers 
are worse;
a set of "built-in" function terminals F  and a set of added subroutines S, which 
operate in the fitness space scored by O; and
a function Enumerate-Trees, which returns the set o f  all trees o f  size n using a 
given function set and subroutine set.
Output: a set of best trees Heroes and their score bestScore

T <- Enumerate-Trees n, F  U S'
Heroes <— {} 
bestScore <— oo 
for each t e T

if O(t) < bestScore then 
Heroes <— {t} 
bestScore <— 0(t)

else
Heroes <— Heroes U {t} 

end if 
end for
return [Heroes, bestScore]

Algorithm  5c: Unify-Trees

Input: a set of trees T to unify, and a function Make-Tree g, I that makes a tree from the 
provided geometry and labelling vectors 

Output: a single tree t which generalizes all the trees in T  if possible, or nil if no such 
generalizing tree exists. We use -1 as a signalling value in the labelling array 
to mean "make this node a variable".

for each t e T  
if g  = nil then

g <— geometryit)
I <— labellingit) 

else if g *  geometryit) then 
return nil 

else
for i from 0  to n - 1 do

if lj ^  - 1  and lt * labellingit)t then 
if g- > 0  then

return nil — can't unify functions >= 1 arity at present 
else

Chapter 5: No Free Lunch, Trees and Improving Genetic Programming

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



148

/ # — 1 

end if 
end if 

end for 
end if 

end for
return M a k e -T r e e  g, I 

Algorithm  5d: Ma k e -S ubro utine -Fr o m -Tree

Input: a tree t to make into a subroutine, and a function M a k e -T r e e  g, I that makes a tree 
from the provided geometry and labelling vectors 

Output: a single tree t that generalizes all the terminal nodes in T. We use -1 as a 
signalling value in the labelling array to mean "make this node a variable".

g  <r- geometryit)
I <— labellingit') 
for i from 0  to n - 1 do 

if g; = 0  then
/,.= - l  

end if 
end for
return M a k e -T r e e  g, I

Algorithm  5e: Exp er im en t-W ith -Su b ro utines-To -G et -B est

Input: a set of trees T  to test for "subroutine fitness";
an oracle O, which takes a function tree using zero or more subroutines and 
answers a numerical fitness value 0(t) ; and
a set of "built-in" function terminals F  and a set of added subroutines S, which 
operate in the fitness space scored by O 

Output: a set of trees Candidates that identifies the most promising subroutines in T.

Candidates <— {} 
for t in T  do

I <— labellingit)
a <r- |{i | lt = —1}|
n <— a + 2  

biggestN <— n 
bestSpecialSoFar <—  oo

while not T o o - M u c h - W o r k  b ,F U ^ U { /} ,0  do 
[.Heroes,bestNormal\ <- B e s t - T r e e s  n , F \ j S , 0  
[Heroes, bestSpecial] <— B e s t - T r e e s  n, F  U S  (J {t), O 
if bestSpecial < bestNormal then
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if bestSpecialSoFar -  oo then
bestSpecialSoFar <— bestSpecial 
Candidates <— Candidates U {0 
exit while

else if bestSpecial < bestSpecialSoFar then 
Candidates <— {/} 
bestSpecialSoFar <— bestSpecial 
exit while

else if bestSpecial = bestSpecialSoFar then 
Candidates <— Candidates U (0 
exit while 

end if
while n < biggestN do

// Compare data at new size vs. existing to look for a new best 
n<—n + 1 

end while 
else if bestSpecial > bestNormal then 

exit while 
end if 
n<—n + 1 

biggestN <— n 
end while 

end for
return Candidates

This algorithm also requires a work threshold that acts as a cutoff so that the 

algorithm doesn't spend all its computational effort looking for useful subroutines. For 

instance, if we set the cutoff at 10 000 evaluations, Sy s t e m a t ic -S u b r o u t in e - 

G e n e r a l iz a t io n  will solve the Santa Fe trail in 20 573 evaluations, 70.5 times better 

than the naive approach. Of course, this subroutine-generating function will be quite 

useful as a tool for the scientist algorithm introduced in Chapter 2. Alternately, we can 

exit S y s t e m a t ic -S u b r o u t in e -G e n e r a l iz a t io n  without calling M e m o r iz in g -R a n d o m - 

T r e e -S e a r c h , and use the new subroutines to augment a conventional genetic 

programming run. An early indication of the performance advantages that can be 

achieved in this latter case is given in Fig. 14.
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Figure 14

M G
|

Normal \
i

+ IFAM ! + IFAM  
+ Var. 1

+ IFAM  
+ Var. 2

+ IFAM  
+ Var. 3

+ IFAM  
+ Var. 4

+ IFAM  
+ Var. 4  
+ IFB3

enumeration 1 450 954 i 227 623 18 664 60 952 81 055 54 008 20 573
1100
1000
250

17
14
1

440 000 i
200 000

40 000

Near-optimal computational effort to 99% success for different function sets on the Santa Fe 
trail problem. The population size M and the number o f generations G is given for each 
computational effort. Each value is based on at least 10 000 independent runs, giving 
confidence intervals o f around 5%. IF AM refers to the function If-Food-Ahead-Move(X); 
the numbered variants refer to the indexed variants shown in Fig. 12; IFB3 is the third-level 
induced subroutine derived from Variant 4. We also show the 99% computational effort for 
Memorizing-Random-Tree-Search, here indicated as "enumeration". These latter numbers 
are exact.

To bring these developments back to the question of GP-hardness, we can revise 

Fig. 2 in light of the performance advances made possible by considering small trees, as 

in Fig. 15.

Figure 15 
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Var.4 / ^ '  / \
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GP+-easy i fa m  ,

Trail
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Evaluations under GP 
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Two revised depictions o f  the division o f the set o f possible problems into GP-easy and 
GP-hard problems, under the influence o f the small-trees subroutine-generating algorithm. In 
Fig. 15a, the GP-easy and GP-hard sides o f the line do not change, but the work required 
declines significantly. In Fig 15b, we view the function set as fixed, and the subroutine 
analysis code as part o f the genetic programming innovation system.
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Chapter 6: Modelling Success Probability in 
Evolutionary Computing

Introduction

The standard technique for comparison between Genetic Programming techniques is 

to determine, as best as possible, the best-choice parameter settings for the Genetic 

Programming system. For the purposes of this section, we use the continuous version of 

computational effort given in ( 1 ), without using a ceiling operator on the number of runs 

performed.

CE1 = / min(M ,z) = m inM  h(1~ z) ( 1 )
' ln(l-P(M ,z))

After a good choice for population size and number of generations is found, the 

performance at these settings is compared to similarly strong settings for a control 

technique. This computationally costly parameter setting normally forces comparisons 

between toy problems. We will argue that this is an unrealistic process for any problem of 

actual interest to humans, as it is too lengthy. A better approach would be more 

systematic. In this chapter, we will discuss two systematic approaches, the progressive 

grid algorithm and the model-based grid algorithm. The model-based grid algorithm, 

which forms a model of success probability given the data, enables superior estimation of 

unoptimized and perfectly-optimized computational effort. However, developing the 

model is challenging and involves many runs of the entire process. We will then argue 

that for a family of GP problems with certain characteristics, a kind of algorithm called a 

progressive GP can give results within a constant factor of the performance of the 

optimized result.
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Computational Effort for Genetic Programming Problems

The computational effort statistic for a problem’s performance is used today in much 

the same way as it was in Koza’s original formulation. The derivation is given in 

Chapter 4; we repeat the equation for the continuous version of the computational effort 

here as ( 1 ), where M is the population size, i is the generation number, and z  is the 

desired probability of success, typically 99%.

In Fig. 1, we show an estimate of the I mm (M, z) curves for the artificial ant on the 

Santa Fe trail.

Figure 1

800 000

750 000

700 000

650 000

600 000

550 000

500 000
jr

450 000

400 000
10 15 20 3025 35 40 45 50

Estimated 99% computational effort at each generation for the artificial ant on the Santa Fe 
trail problem as a function o f population size. For each curve, at least 10 000 runs were 
performed, rendering these data largely immune from the generational effects described in 
Chapter 4. Error bars are not indicated on this graph, but 95% confidence intervals are at 
most on the order of 20 000 fitness evaluations around the minima o f each curve. Small- 
number-of-success effects can be seen for the M =  125, the M =  250, and the M =  25 000 
curves.
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Inspection of Fig. 1 shows that computational effort is not independent of population 

size, so we should report the best computational effort when computed over all values of 

M. (2) gives this version of computational effort.

Imm (z) = min Mi — ^  —  (2)
ln(l -  P(M , i))

This poses a problem: we cannot minimize over all values of M  without explicitly 

evaluating the computational effort with enough precision to discriminate the best value 

of M. Computing this value accurately is a little tricky, so we ask the reader to bear with 

us for a few paragraphs. The problem comes about from the fact that we need to evaluate 

data over several values of M  and final generation number G to determine the best 

parameter settings for subsequent evaluation. Since we can only estimate computational 

effort from real data, we need a criterion for success of estimation. As a point to agree 

on, suppose that that we wanted to estimate computational effort so that we know the best 

parameter settings and ultimate computational effort to within 20 000 fitness evaluations. 

How many fitness evaluations do we, in fact, require to meet this goal?

We will then need to know how densely to sample in population size M  and final 

generation number G. It is not clear, a priori, how many generations we will need to 

perform so that we can evaluate our runs to get optimal results. It is also not clear how 

far out in M we should go looking for strong candidate parameter settings. Fig. 2 shows 

the data used to generate the graphs in Fig. 1, as well as data from a few other runs. 

Fortunately, we can use the actual data of Fig. 2 to estimate how many evaluations would 

have been required if we were to be a little more systematic about the process.
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Figure 2

runs pop. size gens. evals. evals.

N M G Best CE
95% Cl @ 
Best CE

100 005 4 1 000 1 260 000 110 000
100 000 7 600 1 060 000 62 000
50 000 10 400 1 020 000 110 000
100 000 15 80 940 000 50 000
150 000 31 80 810 000 56 000
90 000 63 50 705 000 87 000
40 000 125 50 540 000 35 000
30 000 250 50 490 000 28 000
20 000 500 50 460 000 22 000
10 000 1 000 50 430 000 21 000
10 000 2 000 50 450 000 17 000
10 030 4 000 20 470 000 14 000
11 778 10 000 25 480 000 11 000
5 362 25 000 25 480 000 21 000

Number of independent runs N, population size M, number of generations evaluated G, best 
computational effort across all generations Best CE, and the width o f 95% confidence 
interval bounds at the best generation 95% C l @ Best CE for many runs o f artificial ant on 
the Santa Fe trail. Following the custom in genetic programming, runs were independent in 
population size Mbut not in generation number G.

To get the data of Fig. 2, we performed a roughly uniform sampling in log2 M , while

choosing the maximum number of generations G according to a somewhat arbitrary 

schedule that seemed to be larger than the optimal number of generations. What would a 

systematic algorithm for computing the best parameter settings look like?

As an early estimate of the magnitude of this effect, we performed 10 000 runs for 

each population size charted in Fig. 2, which determines the best fitness to around 

20 000 fitness evaluations. The number of fitness evaluations performed to generate 

each series of Fig. 2 are listed in Fig. 3, along with the standard errors at the minimum of 

each curve. We also compute the number of fitness evaluations required to get a standard 

95% confidence interval of 20 000 fitness evaluations. While the number of generations 

and ultimate confidence interval were decided somewhat arbitrarily, 3 777 000 000
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fitness evaluations would be required to get uniform confidence intervals in this case.

This large number of fitness evaluations will approximately scale as the inverse square of 

the desired confidence interval; that is, for a desired confidence interval of 40 000 fitness 

evaluations, it would be a quarter of that size. As the best observed computational effort 

has approximately 430 000 fitness evaluations, to get the optimal fitness to within 10% 

relative error, 95% of the time, we would need to perform 820 000 000 fitness 

evaluations.

Figure 3

N M G CE Cl at 
min CE N(20 000) Evals(20 000)

40 000 125 50 35 112 123 283 770 517 077
30 000 250 50 27 917 58 453 730 657 914
20 000 500 50 22 426 25 146 628 646 150
10 000 1 000 50 21 214 11 251 562 556 785
10 000 2 000 50 16 787 7 045 704 497 099
10 030 4 000 20 13 778 4 760 380 813 409

Number o f independent runs N, population size M, number o f generations evaluated G,
95% confidence interval bounds at the best generation CE C l at min CE, number o f runs 
required to get a 95% confidence interval bounds o f 20 000 evaluations N (20 000), and 
number o f fitness evaluations required to get 95% confidence interval bounds of 20 000 
evaluations Evals(20 000).

There is clearly a significant hidden cost in discovering the computational effort at 

the optimal settings. We have no way of knowing a priori how much work will be 

required in “typical” genetic programming evolutions, rather than the well-defined 

performance under “optimal” settings. Indeed, if the ratio between these two values is 

not constant, our expensive efforts to determine which technique is best for a given 

problem will be in vain. The best value of computational effort that we achieved is 

430 000 fitness evaluations, which is about 1900 times less than the amount of work to 

secure a relative error of less than 10%. When attacking difficult real-world problems,
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we may not have the luxury of being psychic and choosing optimal values for the 

parameters. How may we achieve reasonably good performance on problems that are too 

challenging for which to optimize parameter settings?

Prerequisites for Good Evolutionary Computation Performance

We can make progress on the question of optimizing parameter settings by 

considering what sort of regularities would be useful to solve this problem. First, it 

would be useful to have a well-defined algorithm for determining performance and 

parameter settings. A model of the computational effort for different problems would 

also be useful. What we would ideally like, for the purposes of evaluating performance 

using computational effort, is a model of the probability of success as a function of 

population size and generation number.

Let p(M , G) be the unknown probability of seeing at least one success in the 

population by generation G using the population size M  and the number of generations G 

as model variables. Of course, there are many other parameters of interest, such as 

tournament size, presence or absence of elitism, and so on, but we hold all these variables 

constant for now. We can then compute the continuous version of the computational 

effort for any parameter settings using the (2), which we specialize into the nearly 

identical form (3), below. We have written G so that it begins at 0, as is typical for 

genetic programming. As before, z  is the target success probability, which we normally 

take to be 99%. In some of our work, we use an easier criterion, 50% success 

probability.
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CE(M,G;z) = M (G +1)
ln(l -  z)

( 3 )

CE (4™  = min CE (M , G; z)
M  ,Cr

InO.OlFrom (3), we can derive that using the 99% criterion involves :—  = 6.64 times
In 0.5

more work than using the 50% criterion. For uniformity, if we are running a system

seen a successful individual. With this proviso, what can we say about p(M , G) ?

Since p(M , G) is a probability, we know that it remains between 0 and 1, without 

achieving either limit. We also know that the absolute probability of success should 

increase as we add generations or as we increase the population size -  that is, p(M , G) 

should be monotonic increasing in M  and G. Another property that we typically observe 

is that the computational effort statistic has but a single local minimum in the space 

defined by the parameters M  and G. We can see this in Fig. 1, where the single minimum 

is evident. We name this last property the unique computational effort minimum 

conjecture, which is shown algebraically in (4).

Whenever individuals in a population are independent, the computational effort will 

be constant across the population size M. In this case, the probability of success is 

governed by the usual formula for the success of M independent trials, given in (5).

without elitism, we employ the standard trick of counting a run as successful if it has ever

dCE{m,g\z)
dm dg

( 4 )

p(M ,g ) = l - ( l - p ( l , g ) ) M (5)
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This will usually be true for the first generation, G = 0, where individuals are 

randomly generated independently from a common distribution. This chapter considers a 

simple model of performance evaluation using (5) that can show some progress towards a 

model of genetic programming performance.

Modelling Evolutionary Computation Performance

How can we model the performance of evolutionary computation systems generally? 

Genetic programming theory has much to say about the performance of individuals as a 

function of the previous generation using schema theory [Poli 2000a, Poli 2000b, Poli 

2001a], and some work has been done on Markov-chain modelling of GP performance 

[Poli 2001b]. However, a functional form for success probability as a function of 

population size and generations performed remains elusive for non-trivial problems. Let 

us reprise (5). Define p 0 as the probability of success per randomly generated individual

in the initial generation. The relation for the probability of seeing any success in the 

initial generation is given in (6).

p(M , 0) = \ - ( l - Po)M (6)

Ultimately, we will be fitting observed data from conducted experiments to whatever 

model we develop. It would therefore be useful to have a model that has nice 

mathematical properties, and is as simple as possible. The simplest models are linear.

We know immediately that no linear model can be appropriate for success probability, 

since any linear equation would give values that exceed 1 at large enough values of M  

and G. Let us consider some success curves, taken from the same data set that generated
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Fig. 1, the artificial ant on the Santa Fe trail problem. Fig. 4 gives the success probability 

as a function of generation number, by population size.

Figure 4
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Estimated probability o f success at each generation for the artificial ant on the Santa Fe trail 
problem as a function o f population size. 95% confidence intervals across all 6 series are 
indicated; they have been corrected within each series by Monte Carlo modelling o f  the 
relevant errors, but no correction for multiple comparisons on the error has been performed.

While these curves are fairly accurate, it is difficult to perform interpolation between 

different values of M. For instance, we have no easy way of estimating from these data 

what the success probability for M =  750 at generation 20 will be, save that it should be 

between the values for M=  500 and M=  1000. An ideal model would be as accurate as 

possible when interpolating within ranges where we have observed data, and be 

reasonable when extrapolating beyond known data. There is a trick that we can do to 

make the data more uniform. Suppose that we had a relation like (6), but for an arbitrary 

generation number G -  rather than for just the initial generation. If we had such a 

relation, then the addition of more data points would have a predictable nature, and we
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might easily interpolate between different values of M. An initial attempt would be, for 

modelling purposes only, to use the inverse of (6) to determine a hypothetical p 0 for 

each generation G -  not just the initial generation. The relevant equation is given in (7), 

where p 0(M ,G) is now a quantity derived from observed data.

^ ( M , G ) = l - ( l - p ( M . G #  (7)

Of course, since we will be using an EC system to determine the probabilities of 

success, (7) should in no way be interpreted to mean that the success probabilities for 

each individual are independent of one another after the first generation -  that is normally 

only true in the initial generation. However, for modelling success probability as a 

function of population size, this trick may prove useful. We will know it is effective if  a 

graph of p 0(M ,G ) as a function of G shows that the curves for different values of M  

have some regular relationship to one another. Fig. 5 shows the same data as Fig. 4, but 

using (7) to compute p 0(M ,G ).
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Figure 5
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Estimated p 0(M ,G ) at each generation G for the artificial ant on the Santa Fe trail problem 
as a function o f population size. Error bars are not shown, as they overlap to a great degree, 
save for the curves labelled 125 and the tail o f the curve labelled 2000. The curve labelled 
4000 is difficult to see, as it largely overlaps the curve labelled 2000, and ends at generation 
20.

As a casual inspection of Fig. 5 shows, these curves are much more similar than the 

curves of Fig. 4, which will lead to more accurate interpolation within the observed 

ranges. One obvious interpolation scheme for these data would be to fit a polynomial at 

each generation number to the population size M. Given the exponential nature of (7), 

however, we might get a better fit using the logarithm of M instead. Figs. 6a and 6b 

show p 0(M, G) as a function of log M at various generation numbers.
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Figure 6
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Estimated p 0(M ,G ) at several generation numbers G  for the artificial ant on the Santa Fe 
trail problem as a function of logarithm o f population size M. Fig. 6a shows a detail view of 
generations 1 and 5; Fig. 6b shows all the generations for which data were generated. Note 
that runs are not independent in G, so the smoothness in G is to some degree forced. The 
data are not particularly well constrained; 95% confidence intervals are shown on the graph.

Fig. 6b indicates that the transform of (7) is quite productive, transforming a complex 

curvilinear trend into a nearly constant one! With respect to a simple polynomial 

regression model, the data of Figs. 6a and 6b indicate that there is no evidence for any 

trend for G = 0 and G = 4 , and an increasingly curvilinear trend for the larger generation 

numbers. Of course, G = 0 must be constant if the initial generation is independent and 

identically distributed. Equivalently, a constant (zero slope) line in Figs. 6a and 6b 

corresponds to a line of constant computational effort as well.

Since the number of evaluations performed increases linearly with the generation 

number as well, we might try compensating for that, too. We might try to perform the 

transform of (7) for the generation number G as well. Define p 00(M, G) as in (8).

Poo(M ,G) = l - ( l - p (M ,G ) ) Xm (G+1) (8)

Chapter 6; Modelling Success Probability in Evolutionary Computing

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



163

It may not be apparent at first, but (8) is another way of specifying the computational 

effort of a task -  there is a one-to-one and onto relationship between the computational

1effort and p w(M ,G ). In fact, CE(M,G;z) cc though it is not trivial to
Poo(M,G)

prove. A plot of /?00(M, G) as a function of Mand G is given in Fig. 7.

Figure 7
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Estimated p m (M , G) at each generation G for the artificial ant on the Santa Fe trail 
problem as a function o f number o f generations evaluated. The legend shows the population 
size M for each series. The series M =  4, M =  7, and M =  10 are shown with their generation 
number divided by the indicated values. Error bars are not shown for clarity. Larger values 
of p m(M ,G ) indicate smaller computational effort for a set o f parameter settings.

We will briefly comment on some trends observable in Fig. 7. These comments are 

specific to the artificial ant on the Santa Fe trail problem, but we suspect that they may 

hold true in general for any problem, as they derive from the “deep math” governing the
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performance of evolutionary systems. In Fig. 8, we have labelled portions of this curve 

for easy reference.

Figure 8

Peak

Descent

Ascent
o

Poo
asymptoteOptimal

generation
number

Generations Evaluated

A sketch o f the p m(M ,G ) curves o f  Fig. 7, labelling some salient features.

Firstly, it is clear from examining Fig. 7 that the ascent portions of the /?00(M, G)

curves appear to converge with increasing M  This is perhaps obscured in Fig. 7 due to 

the compression of the X-axis for the small-population curves. Gbest seems to approach a

limit Gmm as the population size Mgoes to infinity. For these data, a simple analytical

model of the best generation number as a function of M is given by (9). The model of (9) 

was chosen to interpolate smoothly between two trends: constant best generation number 

at large G, and a best generation number that maintains a constant number of evaluations 

at small G. Fig. 9 shows the observed estimates of Gbest, best-fit values and confidence 

intervals for the model parameters Gx and M crit.

= < ? „+ % ■  (9)M
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The best fit was obtained using Gm =15.3 and M crit =1110 by %2 minimization as 

described in Chapter 15 of [Press 1992c].

Figure 9
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A graph o f the approximate optimal value for G as a function of log M. The data are 
interpolated from fitting a quadratic to the observed minima o f the computational effort 
graphs for each value o f M. A two parameter best-fit to the optimal generation number is 
indicated, as determined by %2 minimization o f the fitting curve. The presented fitting curve 

has x 1 = 15.65 with 13 d.f., p = 0.27. 95% confidence intervals on the parameter values 
were determined by examining the appropriate quantiles o f the parameters after doing 10 000 
resamples o f the %2 minimization procedure.

While the locations of the peaks Gbest are somewhat uncertain in Fig. 7, they clearly 

become sharper as M increases. This can be seen to some degree in Fig. 9, by noting the 

relative widths of the confidence intervals of Gbest. If the reader refers to Fig. 2, this

effect is even more apparent: more runs were performed for the smaller population sizes. 

The height of the interval between the peak and the asymptote in p 00(M, G) increases as 

M  increases. This analysis has some implications for efficient evolution: when using a 

small population size, one doesn’t need to be very precise in G; this is more important 

when using a large population size.

Chapter 6: Modelling Success Probability in Evolutionary Computing

V- ► «► G „= 15.3 [1- .2,16.4]
V\V

V 'Gbat = G„ +  .
T

M ,ri, -  1 110 [830,1 430]

l " ' h
I 11Tff!

111+*1*1
.1

, — *---------

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



166

Other Possible p 00 Curves

If we look at a range of evolutionary computation problems, we can expect to 

encounter a number of differently-shaped pm(M, G) curves. We believe that the

majority will have the general character of Fig. 7, although we have no formal proof of 

this claim. The two curves shown in Fig. 10 are often encountered in practice. While at 

first, the shape of the curves in Fig. 10 seem different from that of Fig. 8, additional 

experimentation shows that there is an underlying similarity. Fig. 10a represents the 

ascent phase of Fig. 8, and occurs when we have not used a sufficiently large number of 

generations to achieve optimality. Fig. 10b is similar to the descent phase of Fig. 8, and 

occurs when a problem is best solved by performing runs at smaller generation numbers. 

The curve of Fig. 10b can begin at G = 0; in this case, random tree generation is more 

efficient than evolution for the given population size. If this shape obtains for all 

population sizes, the problem is GP-hard.

Figure 10
a) b)

s

Generation number Generation number

A sketch of some alternative p 00 (M , G) curves that may be encountered. These curves are 
based on data from a sorting problem described in Chapter 7. Fig. 10a may be viewed as a 
zoomed portion of the ascent phase of Fig. 7. Fig. 10b may be viewed as the descent phase 
of Fig. 7. In both of these cases, the overall curve does have the shape of Fig. 7 when data is 
generated to cover a larger range of generations.
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A Progressive Algorithm for Computational Evolution

Suppose that we wanted good performance from evolutionary computation in an 

environment where the optimal values of M  and G are unknown. We can use some of the 

knowledge from Fig. 7 to discuss whether an adaptive algorithm could be fashioned that 

provides good performance. First, let us see what an optimal algorithm would do. 

Computational effort is minimized in a model with repeated trials by repeatedly 

performing runs with M  = M best and G = Gbest until a solution is found; that is, the values 

of the two key parameters should not change on successive runs. This is clear from the 

independence of successive runs: if a better value of M best and Ghest could be found on

iteration t, it would be better at every iteration. We would simply use these parameters 

instead of our supposedly “optimal” parameters. For a real-world problem, however, we 

want to find a success with the smallest computational effort in a situation where we 

know virtually nothing about the optimal parameter settings. In general, we immediately 

run afoul of the No Free Lunch theorem. For problems we are likely to encounter, the 

regularities in fitness space are vastly stronger than the randomness for which the No 

Free Lunch applies. Supposing that the qualitative model of Figs. 7 and 8 is a good one 

for the problem at hand, how might we rationally allocate runs in the parameter space?

One way that is guaranteed to work would be to allocate a schedule of runs with 

exponentially increasing M. Since the probability of success must increase with 

increasing M, this algorithm will eventually find a solution for any solvable problem. 

Specifically, we can define a schedule of run counts {M1,M 2,...,M m } as in (10), 

where the series continues until success is achieved. Here fj, is a base parameter 

determining the exponential step size; we might choose // = 2 in practice.
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M, = //' (10)

The downside of this exponential schedule is that we have no rational way of 

allocating the generation number G. From Fig. 7, it is clear that an appropriate choice of

G has a significant impact on the computational efficiency of a solution. For instance, at

M=  1 000, the computational effort varies by a factor of 21 between G -  0 and G = 17. 

For other problems we might expect an even greater difference, since Santa Fe trail is 

effectively GP-hard to begin with.

One solution to the problem of allocating values for G would be to use the same kind 

of exponential scan across G in successive runs, just as we did in (10). This would make 

the schedule for G that of (11), where j  ranges from 0 to i. When j  = i , we would 

advance to the next step in i, as given by (10). The complete algorithm is given in 

Systematic-EC-Solver.

Gj =m* (11)

Algorithm  1: Sys tem a tic -EC-So lver

Input: tournament size T; a fitness operator / :  T —>• R for which smaller values
represent better solutions; min / ,  which is the best possible value of / ;  and a 
base n  that controls the schedule of values of M  and G used 

Output: a tree t e  T which is a perfect solution to/

i <— 0 
for ever 

M<r-jU‘
for j  <— 0 to i do

G ^ j u J
hero < -E volve-Trees M, T, G, f ( t )
if / (hero) -  / min then return hero

end for 
i ^— z +1 

end for
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Sy s t e m a t ic -E C -S o l v e r  will eventually return a solution to any posed problem, if a 

solution can be generated from the random initialization procedure. This is guaranteed 

since the population size M  increases without bound, and G = 0 is visited once per 

iteration of the outside loop. A boundless number of random individuals will be 

generated. The odds of any event of finite probability occurring is 1 if an unlimited 

number of independent trials is performed. S y s t e m a t ic -E C -S o l v e r  may, of course, 

perform rather poorly in practice, as it has no way of lingering on promising values of 

{M ,G }.

We view Sy s t e m a t ic -E C -S o l v e r  as one instance of a family of related algorithms 

that are defined by performing serial evolutions on a problem of unknown difficulty. We 

term the family of such algorithms progressive EC algorithms. We can imagine several 

ways in which S y s t e m a t ic -E C -S o l v e r  might be improved. One obvious step would be 

to use the fitness of the best individual created in a run to predict how well the EC system 

is performing. As explained in Figs. 15a and 15b of Chapter 3 and related discussion, we 

run the risk of incorrectly deciding that certain parameter settings are optimal by using 

mean best fitness as a proxy for success probability. However, such an approach is likely 

to be far better than doing nothing! Another possibility is to use the qualitative model of 

Fig. 7 to optimize the schedule of M  and G. We can demonstrate the benefit of having a 

model by defining a hypothetical model to see what benefit might come from it.

Suppose that we knew that M crit * y/CE(0.99)min , M optimal * M crit, and

Gx » 4 logr M crit. These relations happen to be approximately true for the artificial ant 

on the Santa Fe trail problem. The relation for M crit was chosen from happenstance, and
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the relation for Gx was chosen based on the expected takeover time for a successful 

individual as a function of population size. Under this model, using the relation of Fig. 9,

we can compute that Gont « 41ogr M  .. +1. We should do r .  « ---- yjCE(0.99)̂ ----
opt T mt opt 2 logy. C£’(0.99)min +1

independent runs to find our solution with a 99% success probability. We could then 

choose an exponential schedule for the unknown best computational effort CE, as in (12).

CE, = k1 (12)

The complete algorithm is given in Model-Based-EC-Solver.

Algorithm  2: Mo d el -Ba se d -EC-Solver

Input: tournament size T\ a fitness operator / :  T —> M for which smaller values
represent better solutions; min / ,  which is the best possible value of / ;  and a 
base k  that controls the schedule of values of M  and G used 

Output: a tree t e T which is a perfect solution to/

i 4— 0 
for ever

CE„ <- k '

G <— 41ogr M  + l
CE ,runs <-------- ——

M(G + 1)
for j  <— 1 to runs do

hero <- E vo lve -T rees  M, T, G, f  (?)
if / (hero) = f mia then return hero

end for 
i <— / +1 

end for

This schedule will perform better than Systematic-EC-Solver to the extent that the 

model given above is appropriate for the problem at hand. Suppose that this model 

happens to be correct, and 3i \ C£'(0.99)min = k 1 . In this case, we will solve our problem
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(  1 ^with 99% probability by performing at most 1+------ C E ^ .9 9 )^  fitness evaluations.
V K - \ )

The argument is as follows. At i = log^ C£’(0.99)min, we have the exact optimal 

parameters, and we will perform C£'(0.99)min fitness evaluations and obtain a 99%

chance of success. We then simply need to count how many fitness evaluations we

performed before we got to this value of i. This is a straightforward summation of a

power series, which can be at most — —^ (0 .9 9 )  • if i is large.
AT —1

It is more likely that there is no value of i for which the schedule of (12) exactly hits 

the 99% computational effort of the problem. Suppose that there is a value of i for which 

k' is slightly less than C£'(0.99)min. We would then perform at least one extra step in i.

If the optimal parameters computed for this extra step were close enough to optimal so 

that our performance did not degrade greatly, we would be very likely to exceed a formal 

99% probability of success for the entire schedule. Accounting for this extra step, we

(  1achieve a 99% probability of success after performing k  +1H C£'(0.99)min fitness
V K-\

evaluations in total. This functional form can be minimized to solve for k  using (13).

die

f  1 A
= 0 (13)

K - 1

(13) has one feasible solution: k  = 2. With this choice of k ,  we have the final result 

of (14): we can solve an unknown problem with 99% probability by performing at most 

4 ^ ( 0 .9 9 ) ^  fitness evaluations.

^ „ , < 4 C £ ( 0 . 9 9 ) min (14)
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Having a reasonable model of GP performance has enabled us to derive a useful 

upper bound on the amount of work that we must perform even when we do not know the 

optimal settings a priori. The bound thus derived is, at worst, a constant factor higher 

than the optimal value. We can therefore use comparisons between computational effort 

measured at the optimal parameter settings to infer relationships among the 

computational efforts on typical systems. This last statement is not only true for the 

model presented above; it will hold whenever (15) is true, where k  is an arbitrary 

constant. This may enable efficient solution of a broader set of models than the 

hypothetical model presented above.

C E ^ ^ k C E i  0 .9 9 U  (15)

Determining whether this sort of model is appropriate for GP problems would involve 

considering the performance curves of many GP problems, and is beyond the scope of 

this work. We are very interested in what the GP theory community can add to this sort 

of modelling effort.

Automatic Parameter Setting for Population Size and Generation 
Number

One final note before we close this chapter. In our work with the scientist algorithm, 

we suffer from the common problem of not knowing what values of Mand G are optimal. 

Here is a straightforward algorithm for determining these key parameter settings for a 

Genetic Programming system, C h o o s e -P o p u l a t i o n -S iz e -A n d -G e n e r a t i o n -N u m b e r . 

As determining good settings for the population size and generation number with any 

confidence requires many successful runs, this algorithm is only appropriate for
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benchmark problems for testing GP systems against one another. Choose-Population- 

Size-An d -Generation-Number assumes that there is a single local minimum in the 

computational effort as a function o f population size Mand number o f  generations G and 

that there are no points o f  inflection in the computational effort graph. However, it does 

not assume that computational effort is linear in either parameter, which it generally is 

not.

There are a few tricks embedded in Choose-Population-Size-And-Generation- 

N umber that we should explain briefly. The algorithm overall has three components. 

Throughout the algorithm, we track the number of runs performed and number of 

successes achieved for each combination of Mand G evaluated.

First, we find a successful set of parameter settings Mand G that can solve the 

problem subject to our success criterion using Find-Initial-M-G. We iterate between 

four candidate models so as not to be too inefficient. These models represent good 

choices if the underlying problem is best solved by random search, by hill-climbing, by a 

Santa Fe ant-like model, or by a model that balances Mand G. Otherwise Find-Initial- 

M-G works like Model-Based-EC-Solver, presented above. These parameter settings 

are then used to compute an initial estimate of the computational effort required to solve 

the problem, CEest.

Second, we construct an exponentially distributed grid over M  and G based on the 

estimated computational effort and user-supplied parameter, /?. The values of this grid 

are chosen so that M is no smaller than 4 and G is no smaller than 1. Specifically, we can 

choose Musing the schedule of (16), and G using (17).
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M i = [ r C E esl+ 0 .5 \^ i = 0.
CE...

log,

a  =
CF
— —+ 0.5

M,
Vi = 0...

CF
t o & t - r -

(16)

(17)

Third, Ch o o s e -P o p u l a t io n -S iz e -A n d -G e n e r a t io n -N u m b e r  iteratively improves 

the error bounds at each point in the grid until a desired relative precision is achieved. It 

estimates upper and lower bounds on the computational effort at each point in the grid 

from the data observed so far, correcting for multiple comparison errors using the 

Bonferroni inequality. The algorithm them conducts experiments using this grid to 

improve the error bounds on the computational effort at each point. In each round, a 

fixed number of fitness evaluations roughly equal to CEest is performed at each point

along the grid. Because the G = 1 computational efforts are degenerate in M, we only 

perform experiments for the highest value of M. The grid’s limiting generations are then 

refined if possible, by dropping all treatments that are no longer competitive with the best 

candidate. We determine the best candidate by computing the smallest upper bound for 

computational effort among the entire population of competing parameter settings, CAlub.

This is then compared against the estimated lower bounds on computational effort for 

each treatment to determine which treatments can be safely dropped. This focusses 

computer time on the best parameter settings as the algorithm progresses. By comparing 

confidence interval bounds rather than doing formal hypothesis testing, we gain an 

additional measure of conservatism in the algorithm. This is important because of the 

statistical issues with computational effort discussed in Chapter 4. More runs are 

performed until the target confidence interval width is achieved for the best parameter
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setting. Finally, we return the estimated confidence interval and the set of best candidate 

values for Mand G.

Algorithm  3a: C h o o se-Po pu la tio n -S ize -An d -Gen er a tio n -Num ber

Input: tournament size T; a fitness operator / :  T —> E  for which smaller values
represent better solutions; a success criteria success: R. -> B that returns 1 iff 
the given fitness value counts as a success; a base /? that controls the 
schedule of values of M  and G attempted; a desired success probability z, and a 
target relative error e that represents the 1 a  target relative error desired for the 
ultimate computational effort estimate 

Output: an estimated computational effort CEz and a set of statistically 
likely best candidates for M  and G

[CEest,M ] <—F in d -In itia l-M -G  T, f { t ) , success, (3 

[M,G] <— M ake-M -G -G rid J3,M, CEest 
do

for i <-1 to |.M|

G <^gt
T  CF

if G > 0
runs <— < GM

0 otherwise 
if G > 2 or G = 1 a  runs > 2 then

hero < - E v o lv e -T r e e s  M, T, G, f  (t) 
U p d a te -D a ta b a se -W ith -S u c ce sse s  M, G, success 

end if 
end for
£ < - U pdate-Generation-Limits M  

until Estimate-CE-Relative-Error( M  )< e 
return Estimate-CE- An d -Best-Candidates( M )
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Algorithm 3b: F ind-Initial-M-G
Input: tournament size T\ a fitness operator / :  T —> E  for which smaller values

represent better solutions; a success criteria success: R. —» B that returns 1 iff 
the given fitness value counts as a success; a base /? that controls the 
schedule of values of Mand G attempted 

Output: initial parameter settings for M  and a point estimate of the computational 
effort CE„„, that can achieve success

CEest< - 1 
for ever

G < r ~  1

i f  Successful-Evolution-Possible(M, T, G, 1, f ( t ) ,  success) then exit for

Model 1: GP-hard problems -  1 run, G = 1, M  = CEes

M < - -  Model 2: Santa-Fe-like problems

G <— 41ogr M  + l

r <r~
CE ,est

MG
if Successful-Evolution-Possible(M, T, G, r, f ( t ) ,  success) then exit for

'JCE. -  Model 3: balanced M, G approachM  <—

G<r~M
if Successful-Evolution-Possible(M, T, G, 1, f i t ) ,  success) then exit for 
M  <— 7 -  Model 4: small population size -  GP hill-climbing

G <- CEesi
M

if  Successful-Evolution-Possible(M, T, G, 1, f i t ) ,  success) then exit for 
CEest^ f C E est 

end for
return [CEest,M]
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Algorithm  3c: S uccessful-Evo lu tio n -Possible

Input: population size M; number of generations G; tournament size T; number of runs r; 
a fitness operator / :  T —» R for which smaller values represent better solutions; a 
success criteria success: R -» B that returns 1 iff the given fitness value counts 
as a success

Output: true if a successful evolution obtained, false otherwise

for j  4-1 to r do
hero <— E v o l v e -T r e e s  M, T, G, f ( t )
U p d a t e -D a t a b a s e -W it h -S u c c e s s e s  M, G, success 
if success ( / ( hero)) = 1 then return true

end for 
return false

Algorithm  3d: Upda te-Da ta b a se -W ith -S uccesses

Input: population size M; number of generations performed G; success criteria
success : K a B  that returns 1 iff the given fitness value counts as a success, 
access to the best fitness values for each generation of the last run of 
E v o l v e -T r e e s

Globals: a sparse matrix SM G that tracks the number of successes and a sparse matrix 
NMjG that tracks the number of runs performed

Output: none

Let bestFitness [g) be the best fitness achieved at generation g  in the last run 
for g <— 0 to G -  1 do 

NM , ^ N Mig+l

SM g <— SM g + success {bestFitness ( g ) j 
end for

Algorithm  3e: Update-G eneratio n -L imits

Input: a set of population sizes M

Globals: a sparse matrix SM G that tracks the number of successes and a sparse matrix 

N w c that tracks the number of runs performed
Output: a set of limiting generation numbers Q

[ C E LB ,C E ce”lral,C E ub]  ^  E s t im a t e - C o n f id e n c e - I n t e r v a l s  M  

c e m> <- m inC E ^cM,G

for i <— 1 to |Ad|

M  <r~ M .
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G,nax<-G|NM>g=OVg>G

S GmdX 
do

g < ~ g ~ l  
while g > 0 and CE“ g > CElub

Q i ^ g  
end for 
return Q

Algorithm  3f: Estim a te-Co n fid en c e -Intervals

Input: a set of population sizes M
Globals: a sparse matrix SM G that tracks the number of successes; a sparse matrix

NM G that tracks the number of runs performed; and a target upper bound on
Type-I statistical error a  

Output: a list of estimates for the lower bound, central value and upper bound on the 
computational effort for each value of M  and G

treatments <— maxNM g >0

for / 1 to |M |

M < -M f
Gmax & | g = 0 Vg > G 
for g < - 0  to Gmax

[ C £ , CEcentral, CEub ] E st im a t e -C o m p u t a t io n a l -E ff o r t  M, g, NM g,

MzM 8
a

treatments
X

Z—Z  9i* 0  1

LB
'M ,g  i

i central 
' M , g

'central

end for 
end for
return [CEiS,CE“wra/,C E ^ ]
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Algorithm 3g: Estimate-CE-Relative-Error

Input: a set of population sizes M
Globals: a sparse matrix NM G that tracks the number of runs performed and

the target upper bound on Type-I statistical error a  as used by 
E st im a t e -C o n f id e n c e -In t e r v a l s  

Output: an estimate of the ratio of standard deviation of the best computational effort to 
the best computational effort

Z cnt

treatments <— V  maxNM >0 
aum g

x2
=z
f = ------ --------
“x y}2 n  treatments

[ C E “ , C E cenlral, C E UB ]  < -  E s t im a t e - C o n f i d e n c e - I n t e r v a l s  M  

M best <- arS min (mrin Ce m 7' )
M  V G >

G best a rg m in ^ m in C E ^ )

i f C E "  q = l o r C E ™  G =00 return 00
■***best ’G best best’ 1best

return
I jtjf r 1

M best >Ubest

LB
crit V M u ,  ,G»'best

Algorithm  3h: Estim a te -CE-A nd -B est-Candidates

Input: a set of candidate population sizes M m
Globals: a sparse matrix N w G that tracks the number of runs performed and

the target upper bound on Type-I statistical error a  as used by 
E st im a t e -C o n f id e n c e -In t e r v a l s  

Output: the list \CEbest,M ,Q \ , where CEbest is an estimate of the best computational 
effort, and M  and Q are arrays of candidates for the best values of M and G

[CE£B, CEcm,ral, CE™ ] <— E s t im a t e -C o n f id e n c e -In t e r v a l s  M in 
index <— 1
CElub <— minCE™e 

for z <— 1 to |At'" |

Gmax<~G\lSM'g = 0 V g > G  
for g <- 0 to Gmax
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if C E - g < CElub then

H n d e x  M  

^index S

index <— index +1 
end if 

end for 
end for

return minCE T g M ,Q
M,G  ’

One component of this algorithm remains to be described. We need to estimate the 

computational effort for each value of M, G, number of successes S, and number of trials 

N. To do this effectively, we should really find exact a  and 1 - a  confidence intervals 

for the binomial probability. We begin with (18), the general formula for the probability 

of an unknown binomially distributed variable. The problem of confidence interval 

estimation is that of course, we observe values for N  and S but do not have any 

knowledge of p. We adopt a model of uniform prior probability for the variable p, and 

get (19a) and (19b) for the upper and lower bounds.

B (N ,S;p) =
N \N-S

PLB= 1

P S ( 1 - p Y

dp
a

p=l f  N

J I
_  p=p\s=S

Pm =

P=l f  N 

p~Q\s=S
dp

a  ■■

0

p=P( sH2p = 0 V S=0

dp
P=e f  S

p = o V  i = o  

1

if iS > 0

otherwise

if S < N

otherwise

(18)

(19a)

(19b)
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These integrals can be solved efficiently using the incomplete beta distribution 

[Press 1992d], but users may not have this special function implemented in their 

mathematics libraries. We will adopt a compromise position. For S = 0 and S = N, (19a) 

and (19b) have elegant solutions in the conventional transcendental functions for p, 

namely (20a) and (20b).

We use the conventional a  and 1 - a  confidence intervals for a binomially 

distributed variable for all other values of S. If these confidence intervals cover 0 or 1, 

we give up and revert to (20a) if p < 0.5 or (20b) if p  > 0.5. After we have reliable 

confidence intervals for p, we can compute the computational effort using (1) as normal. 

The algorithm is given in E s t im a t e - C o m p u t a t io n - e f f o r t .

, 1 / V + l if S = N (20a)

(20b)if 5 = 0
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Algorithm 3i: Estimate-Computational-Effort
Input: population size M; generation number G; number of trials N, number of

successes S, desired type I error probability a , and zcrit, the lower critical value 
of the standard normal distribution for a  

Globals: the target probability of success for the computational effort, z 
Output: a list of estimates for the lower bound, central value and upper bound on the 

computational effort

We can use a progressive algorithm like Find-Initial-M-G to automatically make 

progress among a variety of possible scientist interventions as well. Suppose we have 

methods a, b, and c at our disposal for the scientist algorithm. We can alternate between 

all three of them to see which will be the most effective. An obvious approach would be 

to merely run all three methods in parallel, by time-slicing, and thereby incur at most a

B<-z<jp
if /> = 0 or p - B  < 0 or p  = 1 or p  + B>  1 then

if p < 0.5 then

MN+l

else
,1 /JV +l

end if
else

p LB < - p - B
PUB <r~p + B

end if

Let CE{z,p) be ■< 0 p  = 1
00 p  = 0

p = 1

M(G +1)---------  otherwise
ln l - p

return [ CE(z, p LB ), CE(z, p), CE(z, p UB )]
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threefold penalty versus using the optimal approach. This is similar to F in d - I n it ia l - M -  

G. A more sophisticated approach would be to try the three methods for a short while, 

and to discriminate between them based on how good the discovered solutions are. We 

could then allocate effort based on the results of experiments already performed. Of 

course we encounter the pitfalls of estimating success probability from best achieved 

fitness pointed out in Chapter 3. Better still would be to try out all three methods serially, 

and use good partial solutions achieved with one method to improve the performance of 

the others. This approach is the topic of the next chapter.
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Chapter 7: Techniques That Can Be Used With the 
Scientist Algorithm

The scientist algorithm introduced in Chapter 2 presents a way to extend and use the 

functionality of genetic programming to make concrete progress on harder problems. We 

presented there the idea that we could envision a sort of toolkit of little algorithms and 

pieces that the scientist algorithm could use while working on a problem. In this chapter, 

we will present three “tools”, or algorithms, which will be useful for the scientist 

algorithm. For some of the tools, we will also show experiments to demonstrate the 

utility of the tools on some aspects of hard problems. The three “tools” we will consider 

are the use of multiobjective optimization in genetic programing; principal components 

analysis to reduce the dimensionality of multiobjective programs; and a new idea we call 

incremental evolution.

On the Use of Multiobjective Methods in Genetic Programming

Multiobjective methods can be very useful in standard genetic programming. One 

problem in genetic programming is that of retaining good solutions to problems.

Retaining good solutions is normally accomplished using elitism, which is the process of 

copying a few elite individuals over into a new population when it is formed. Elitism has 

the downside of reducing the diversity of the population and thereby forcing premature 

convergence, which can result in poorer solution quality. To see how multiobjective 

methods can be useful for genetic programming, we have engineered a simple example 

that illustrates some of the gains possible with a little manipulation of the standard GP 

paradigm.
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Figure 1
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This diagram illustrates the observed difference in success 
probability when regressing a one-, two- and three-parameter 
Gaussian function. The one-parameter Gaussian fixes n = 0 and a = 
1, while the two-parameter Gaussian fixes only o = 1. The data 
from 1000 trials o f each treatment are shown; we observed 33 
successes in the one-parameter case, 3 successes in the two- 
parameter case, and 0 successes in the three-parameter case. The 
same function and terminal sets were used in each case. The 
population size was held constant at 4000 individuals per 
generation, and no elitism was used.

Consider the 

generalization task for the 

Gaussian symbolic 

regression problem of 

Chapter 1. In Fig. 1, we see 

the probability of success for 

fitting the one-parameter (x 

varies), two-parameter (x and 

pi vary) and three-parameter 

(x, n and a vary) Gaussian 

functions. As more 

parameters are added for a 

given problem, we see a 

greatly reduced probability of

success and hence greatly increased work-to-success.

The computed 99% success computational effort point statistics for the three 

settings are 18 million for the 1-D problem, 150 million for the 2-D problem, and infinity 

for the 3-D problem. Since the counting statistics are quite poor (we have 33, 3 and 0 

successes, respectively), finding a valid confidence interval for the computational effort 

will be challenging. Instead, we take a hint from Koza [Koza 1992], and relax the 

success criterion somewhat.
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Rather than defining success as exactly 

matching the target function for each 

of the 50 test cases, we can use an 

arbitrary "success" criterion for 

closeness. Fig. 2 shows the success 

probability of an approximate version 

of the task as a function of generation 

number. This easier task can give us a 

relative idea of how challenging the 

problem really is: we achieved much 

higher success rates for the 1-D 

problem, modestly higher for the 2-D 

problem, and still 0% for the 3-D 

problem.

Figure 2

60% 

50% 

40% 

, 30% 

! 20% 

10% 

0%
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-•« 1 Parameter 
-■*- 2 Parameter

10 20 30
Generation

40 50

This diagram illustrates the observed difference in 
approximate “close hit” probabilities when regressing a 
one-, two- and three-parameter Gaussian function. We 
define a “close hit” as approximations with total error on 
50 regression points less than 0.1. Notice the change in 
vertical scale as compared with Fig. 1. As in Fig. 1, the 
one-parameter Gaussian fixes /< = 0 and <7=1, while the 
two-parameter Gaussian fixes only <7=1. The data 
from 1000 trials o f each treatment are shown; we 
observed 473 successes in the one-parameter case, 12 
successes in the two-parameter case, and no successes in 
the three-parameter case after 50 generations. The same 
function and terminal sets were used in each case. The 
population size was held constant at 4000 individuals 
per generation, and no elitism was used.

Reasonable confidence intervals for the computational effort of this easier 

problem are 1.27 million [1.14 million, 1.41 million] for the one-dimensional problem;

70 million [39 million, 125 million] for the two-dimensional problem; and 

oo [254 million, oo ] for the three-dimensional problem. We can see a real possibility to 

improve the mean performance by making progress on one parameter at a time. Suppose 

that we could solve the two-dimensional problem using the solution to the one­

dimensional problem. If we manage the improvement using the same amount of work as 

it took to solve the 1-D problem in the first place, we would see an improvement of a

Chapter 7: Techniques That Can Be Used With the Scientist Algorithm

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



188

Figure 3 Figure 4

a

expj ( S )

©  ©  0 Vs

factor of roughly 30 in effort. This process might then be performed again, to solve the 

previously insoluble three-dimensional problem.

The back-story for why we 

have chosen to look at the 

Gaussian problem can now be 

revealed: we can showa series 

of successful solutions to the 

© 1-D, 2-D and 3-D problems.

We can then infer what would 

be required to go from one 

solution to the next, by hand, 

to illustrate how the process 

might be automated. For 

instance, the human solution 

of the one-dimensional problem shown in Fig. 3 can be

w

A solution to the one­
dimensional Gaussian 
problem. When the hatched 
nodes are replaced as in 
Fig. 4, a solution to the two- 
dimensional Gaussian is 
produced.

<lnsert>

sqrt

A solution to the two- 
dimensional Gaussian problem. 
This tree was produced by a 
substitution o f the diagonally 
hatched nodes from the one­
dimensional solution shown in 
Fig. 3. Further, a solution to the 
three-dimensional Gaussian 
problem can be achieved by
replacing the shaded node and

promoted to a solution of the two-dimensional by a single by inserting a subtree in the
position marked "Insert", as in 

substitution of a 3-node subtree as in Fig. 4. This can then Fi§- 5-

be transformed into a solution of the full three-dimensional problem by replacing a 1- 

node subtree with a 5-node subtree on the left branch, and by inserting a two-node inter­

tree on the right branch as in Fig. 5. Since these subtrees are small, it seems likely that 

they will be available for GP to use as recombination targets. We can use the tree 

enumeration functions of Chapter 5 to show that there are 266 trees of size 3 or smaller, 

including the replacement tree of Fig. 4, and 19 635 trees of size 5 or smaller, such as the
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replacement tree on the left branch o f Fig. 5. O f course, rotations and mirror image 

functions ensure that at least four functionally equivalent trees exist that compute

the required subfunction in the second case. We can
Figure 5

naively estimate the probability that a crossover from a

a .
random subtree will contribute a correct subtree as the

./ \ inverse o f number o f small trees, multiplied by the

number o f target nodes available. A quick side

(7) ^  Q  computation produces the result 266 • 12 » 3 200 in the

/  \  first case, and ^  • 12 « 70 000 evaluations in the
V  4

A solution to the three- second attempt. This compares favourably with the
dimensional Gaussian problem. This
tree was produced by substituting the roughly 70 million and more than 250  million attempts 
dense horizontally hatched nodes
from the two-dimensional solution . . , ,  . , .  . . .
shown in Fig. 4, as well as inserting that WOuld b e  reclUired ln  an a b ' lm tl°  egression.
the shaded nodes in the tree on the
right branch. Now, the question becomes one of mechanics.

Genetic programming has no foresight; thus all positive moves must be strictly local 

gains or they will not be retained. Notice that this is different from saying that only local 

improvements are pursued, such as in a greedy hill-climbing application. In a standard 

GP with elitism, the single best individual is retained, and is then available to beget child 

trees in the next generation. However, we now encounter a problem. Consider the case 

where we have a perfect solution to the one-variable problem, and we now want to 

generalize our solution to additionally solve the two-variable problem. For instance, we 

might add a few new test cases to our test set, drawn at random from the two-dimensional 

problem. However, we need to retain perfect solutions on the existing one-dimensional 

test cases, while simultaneously trying to optimize some two-dimensional test cases. A
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conventional "add up all the fitnesses" approach will probably not work, since we will 

likely lose the perfect solution that we attained by sacrificing some of the 

performance on those test cases for increased performance on the new test case. This 

process has much in common with multiobjective optimization, which brings us to the 

title of this chapter.

Multiobjective optimization, in the context of evolutionary computing, is 

normally concerned with satisficing. In satisficing, there are normally two or more 

desirable output dimensions, such as speed and program size. Tradeoffs intrinsic to the 

problem mean that improved values on one dimension result in reduced performance on 

another dimension. We can then define the Pareto frontier [Pareto 1906] as the set of 

discovered solutions where no point meet or exceed the solutions' performance on all 

available dimensions.

We will use the successful algorithm NSGA-2 [Deb 2001] as an example of a 

multiobjective optimization algorithm. Two major modifications to the standard genetic 

algorithm are required for multiobjective optimization (MOO for short). The first is in 

how fitness is allocated. The second is in how elitism is handled. First, fitness 

allocation. In NSGA-2, all points in the Pareto frontier are given first rank, and are sub­

ranked by the distance to the neighbouring points on the frontier, such that more sparse 

points outrank denser points. All these points on the Pareto frontier are eliminated from 

the point set; and a new Pareto frontier is constructed from the remaining points. The 

process is repeated until all points are given a relative rank. Once the points are all 

ranked, tournament selection proceeds as normal.
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Figure 6

Mean Children per Parent - Tournament (Generation 0)
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A two-dimensional representation o f the first generation o f the 
1-variable Gaussian problem. The raw fitness values are ranked 
and shown on the X-axis; the actual tree size is shown on the Y- 
axis. Also indicated is the mean number o f children for each 
individual, assuming tournaments o f size 7.

Figure 7

Mean Children per Parent - NSGA 2 (Generation 0)
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A two-dimensional representation o f the first generation o f the 
1-variable Gaussian problem. The raw fitness values are ranked 
and shown on the X-axis; the actual tree size is shown on the Y- 
axis. Also indicated is the mean number o f children for each 
individual, assuming tournaments o f  size 7. Here, the selection 
algorithm from NSGA-2 is used to allocate children.

We can illustrate this 

process with an example; in 

Fig. 6, we have diagrammed 

the initial generation of a one- 

variable Gaussian problem, as 

a two-dimensional graph of 

size and fitness. The points 

are shaded by their relative 

probability of selection. This 

is proportional to the mean 

number of children they will 

beget in the next generation.

This can be compared 

with Fig. 7, where we have 

used NSGA-2's algorithm for 

selection to determine the 

intensity of the points. Notice 

that now points with small 

size as well as points with 

high fitness are productive in 

the next generation.
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The second change that a multiobjective algorithm requires over a standard one­

dimensional optimization algorithm is in the behaviour of elitism. The goal of any 

standard multiobjective algorithm is to fill out, as much as possible, the uncovered Pareto 

frontier of the function. To accomplish this task efficiently, we must preserve discovered 

solutions that are at the Pareto frontier so that we don't lose good solutions.

Multiobjective algorithms such as NSGA-2 typically maintain the Pareto frontier at each 

generation by copying individuals in the Pareto frontier directly into the next generation. 

There are other techniques used in different methods, but NSGA-2’s will suffice for our 

purposes here.

Using the methods of multiobjective techniques such as NSGA-2 in our context can 

solve the problem we mentioned earlier. We are certain to retain our individuals that 

have solved the one-dimensional problem, even as we seek improved performance on 

secondary objectives.

There is a caveat, however, when dealing with multiobjective techniques. Due to 

geometrical considerations, the surface area-to-volume ratio of a high-dimensional shape 

becomes larger as the dimensionality increases. We can see this effect by considering the 

equations for the hyper-volume and hyper-surface area of a hypercube. The volume of a 

hypercube is trivially given by (1). A hypercube of dimension d  has 2d faces, so we 

obtain (2) for the surface area of a hypercube.

The surface area-to-volume ratio of a unit hypercube is therefore simply 2d. The 

surface area-to-volume ratio for a unit sphere is d  [Weisstein 2006], For simple convex
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shapes generally, the ratio will be 0 ( d ) , and we find many more points on the surface of

a high-dimensional manifold than in the interior. This has a notable consequence that 

multiobjective methods do not work as well in higher dimensions; essentially very many 

of the data points end up on the Pareto frontier, which is a surface of dimension d  -  1. 

With most of the population on the Pareto frontier, many of the points end up competing 

to be in the first rank due to a purely geometric effect. The selection pressure for high 

dimensions then quickly decays to nil. Indeed, the situation can often be worse than this, 

since in many variants we aim for a fixed number of points in the Pareto frontier for each 

dimension of the search less one. We then find 0{n d~l) points in the Pareto frontier,

which quickly overwhelms the population size, typically on the order of a thousand 

points. We appear to be in real trouble. For instance, our symbolic regression problem 

has a fitness score of dimension 50, namely the absolute error at each point. It is for this 

reason that much of the research in multiobjective optimization takes place with 2- or 3- 

dimensional data.

We can propose a partial solution to this problem. Instead of performing direct 

multiobjective optimization with the entire vector of results, we can apply principal 

components analysis to the problem to lump the high-dimensional data down to a lower 

dimensionality. This is the subject of our next section.

Principal Components Analysis in Genetic Programming

Principal components analysis (PCA) is the process of determining how sets of data 

can be clustered by linear combinations of the axes to make a lower-dimensional 

subspace that holds most of the information of the original data [Hotelling 1953,
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PlanetMath 2006]. In our context, we will use PC A to reduce the dimensionality of a 

multiobjective optimization problem, so that two or three principal dimensions remain for 

us to optimize. PCA is described elsewhere; it consists of diagonalizing the correlation 

matrix between each pair of variables in a population. The eigenvalues of the diagonal 

matrix indicate how much of the variables' variability is accounted for by each axis. The 

eigenvectors corresponding to each eigenvalue are the weightings of the primitive vector 

that optimally cover the data set. PCA is a greedy algorithm; from an algorithmic point 

of view, one vector of norm 1 is chosen first, to account for as much of the variability 

among the data as possible. Then variability along this axis is factored out and another 

axis, orthogonal to the first, is chosen that covers as much of the remnant variability as 

possible. The process repeats until all the variability in the original data set is accounted 

for. In fact, the search is often not performed in a strictly greedy way, but all components 

are optimized simultaneously. We can, therefore, algorithmically determine the main 

components or factors that explain much of the data.

The magnitude of the eigenvalues reflects the number of degrees of freedom 

explained for which the corresponding eigenvector accounts. Of course, we will need to 

either determine beforehand how many eigenvectors to obtain, or use an adaptive 

scheme. One common stopping technique is to add new eigenvectors until a single 

eigenvector accounts for less than a degree of freedom worth of information. To avoid 

threshold effects, we stop discovering new factors when the magnitude of an eigenvector 

falls below 0.5 degrees of freedom.

PCA in a GP environment offers the possibility of automatically identifying 

“good directions” in which to look, since MO As work best with just a few dimensions.
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To illustrate the utility of PCA as an effective tool in directing the search process, we 

performed a principal components analysis of the 50-dimensional fitness values obtained 

after the initial generation of a GP run. To avoid infinities, we used the relative ranks of 

the fitness values instead of the raw fitness values as arguments to the PCA.

This gets around many problems such as fitness variables being of different units.

Fitness outcomes are often measured on different scales -  for instance, the number of 

faults performed by a program might be measured as a countable integer, while total error 

might be a real-valued outcome with a potentially infinite range. These fitness variables 

are measured with different units and their distributions may well be unrelated. Rather 

than run a PCA on the raw data, we can rank the observed values that we get back from 

GP’s fitness evaluations among each dimension. Nonlinearity of the density of states in 

the fitness dimensions will also be addressed by taking the ranks in this way.

For these experiments, the demonstration problem is the one-variable Gaussian

symbolic regression problem. Fig. 8

Figure 8

Weights After Generation 0

shows the weights of the first two 

factors, which are the only factors 

that account for more than half a 

degree of freedom of influence.

We can see some interesting 

structure in these weights already: 

the first factor,//, reflects general

This diagram illustrates the weights o f  the two largest fitness; it is essentially equivalent to
factors in the first generation o f the 1-parameter Gaussian
problem discovered by principal components analysis. the usual sum of fitness values. The
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second factor reflects the fact that the argument of the one-dimensional Gaussian is 

negative for test cases 1 through 25, and is positive for test cases 26 through 50.

Principal components analysis in this case is using variability in the fitness values of 

randomly-generated test functions to discover this second factor.

We performed the same procedure on an evolved population, here generation 42 of 

the same run shown in Fig. 8. Generation 42 is the first generation to show a perfectly 

successful individual on this problem, although by this time, much of the population is 

already highly fit. The factor weightings are shown in Fig. 9; again, only two 

eigenvectors explained most of the data.

We see that, again, the first
Figure 9

factor corresponds to general
Weights After First Success

fitness. However, we can see that 

the majority of evolved organisms 

are discriminating based on
SBf1 
Of2

whether they perform well in 

central regions of the Gaussian, or 

in the tails. f2 shows that a new
Index

This diagram illustrates the weights o f the two largest axis with large positive weights in
factors in the 42nd generation o f a particular run o f the 1-
parameter Gaussian problem, discovered by principal the central region and modest
components analysis. The 42nd generation is the first
generation that discovered a perfectly successful individual in .. • i . • .i ..^  jmj negative weights m the tails of the

distribution maximally

discriminates between the fitness values attained in this generation. If you look closely at

the graph, you can see a minor artifact of the PCA: since the weightings for factor f2 are
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so large in the middle, the weightings for factor f l  decrease slightly there to ensure that 

the total weighting for each variable, scaled by its eigenvalue, adds to one.

Finally, we wanted to test the hypothesis that PCA could be useful in selecting 

factors for simplifying multidimensional optimization. We performed an interesting 

experiment. After generation 42 of this run, we swapped one of the test cases out for a 

single test case from a related problem -  we used a test case from a two-parameter 

Gaussian problem instead. The intent behind this experiment is that if PCA is useful in 

identifying dimensions that are “interesting” to an evolved population, we should see the 

replaced test case as a clear signal in the column weights. Fig. 10 confirms this

suspicion. Notice that in this 

figure we can see the effects of 

our “natural” factor f2 of Fig. 9 

superimposed on the strong 

effect of our experimental 

modification.

Now we are in a position to 

identify the utility of PCA in 

multiobjective optimization for 

genetic programming. Our 

thought is that PCA can be 

used automatically by the 

scientist framework to identify 

a few most "important" or “interesting” dimensions on which to progress. Since

Chapter 7: Techniques That Can Be Used With the Scientist Algorithm
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W eights After Tweaked Fitness C ase #37,1 Generation After Success

100%

80%

60%

[Pf2
20%

0%

-40%

Index

This diagram illustrates the weights o f  the two largest factors 
in generation 43 of a particular run, discovered by principal 
components analysis. This 43rd generation is the generation 
immediately after the successful generation, but we have 
replaced the 38th data point o f the 1-parameter Gaussian with a 
data point chosen at random from the 2-parameter Gaussian. 
Notice the strength o f this parameter as identified by the 
principal components analysis technique.
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multiobjective methods retain elites along the Pareto frontier, we will not throw away 

individuals that perform the best on either the first factor f l ,  or on any stationary auxiliary 

factors. However, there is one detail specific to multiobjective optimization that we 

should point out. In Fig. 11, we have shown the first generation of the one-variable

Gaussian problem, evaluated 

on the new axes f l  and f2.

Since the diagonalization 

process allocates columns with 

negative weights, we find that 

much of the population lies 

below zero in terms of 

performance. This is undesired 

from the viewpoint of 

multiobjective optimization, 

which assumes that smaller 

values in each dimension are to 

be preferred. Here, we are 

trying to minimize the effects of a second dimension, so having a very large negative 

value off2 is not useful. Taking the absolute value would seem to be an obvious remedy, 

but this has an unintended consequence -  the fitness value 0 on/2 is readily achievable, 

as seen in Fig. 11. Therefore, this putative solution will tend to eliminate diversity from 

the population, which is hardly our intent! The goal of moving to a multidimensional 

representation is to enable the search to explore and populate different regions of the
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Figure 11

Mean Children per Parent - 2-Factor solution NSGA 2 (Generation 0)
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A two-dimensional representation o f the first generation of 
the 1-variable Gaussian problem. The data o f factor f l  are 
ranked and shown on the X-axis; the f2  factor is shown on the Y- 
axis. Also indicated through colouring is the mean number of 
children for each individual, assuming tournaments o f size 7. 
Here, the selection algorithm from NSGA-2 is used to allocate 
children.
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search space -  that is, to choose simpler subproblems when progress on the main problem 

is hard to come by. If the auxiliary dimensions are to be considered as “interesting” 

properties of the search space, then we should populate them with candidate solutions as 

well, just to see what we get. Therefore, small absolute values off2 are interesting, as are 

large absolute values off2. Once we have an idea of a figure-of-merit, it is 

straightforward to make a conventional multiobjective fitness dimension. We might 

consider small values off2 and large values off2 worth exploring, and so we can define 

the auxiliary variables aux2 and aux3 from f2 as in (3). We would then introduce auxl 

and aux3 as new objectives and remove f2.

auxl = - abs(f2) (3 a)
aux 3 -  abs(f2) (3 b)

Now we have two additional objectives, which can be treated together or 

separately. We would expect slower progress towards the main goal,//, since 

multiobjective methods do evolve more slowly. This new definition of auxiliary 

variables that are automatically determined can allow for innovative approaches. It also 

accords well with the scientist framework in general, since we may want to perform little 

experiments to see which of the new dimension awc2 and aux3 are best suited to 

overcoming fitness plateaux and providing an extra push to GP when it gets stuck.

Consider the fitness weightings shown in Fig. 10. Here, the second factor f2

measures the degree of interest in finding good solutions to the newly introduced task,

that of performing well with a changed mean /u. This suggests a new line of attack: use 

multiobjectivity to introduce new problem types or subtypes to existing solutions.

Chapter 7: Techniques That Can Be Used With the Scientist Algorithm
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Adding Additional Tasks as New Objectives for GP

Recall from our discussion of fitness records that one of the insights from this thesis 

is that we should break down problems into the most basic cases possible. We then are 

left with the problem of composing solutions. It may be the case that composing 

solutions can be performed automatically by GP, without any explicit coding necessary 

on our part. For instance, suppose that a problem P breaks down naturally into two 

simple cases, PI and P2. If we can solve PI and P2 separately by genetic programming, 

we can get solutions to each subcase in a restricted environment where problem solution 

is quite feasible. We can then have GP automatically combine the solutions without 

human intervention using C o m p o s it io n - A lg o r it h m .

Algorithm  1: C o m po sitio n -A lgorithm

Input: 2 trees t] and t2 that successfully solve two different fitness objectives, as defined 
by the fitness objectives f x(t) and f 2(t).

Output: a valid tree t that may solve both problems to completion

treesi <— tt Vi = 1..2
Population Initialization: generate M - 2  random trees and add them in 
for j  < r- 3 toM do

treesj  <- R a n d o m -T r e e

end for
trees <- M u l t i o b j e c t i v e - E v o l v e - S t a r t i n g - W i t h  trees, j \ ,  f 2,M ,G  
r e t u r n C h o o s e - B e s t - S a t i s f i e r trees, f x, f z ,M

Since multiobjective algorithms such as NSGP-2 never lose the most highly fit 

individuals on any axis, C o m p o s i t io n - A lg o r i t h m  cannot ever do worse than reproduce 

tx and t2. Fig. 12 gives an indication of what may happen when C o m p o s it io n -  

A l g o r i t h m  is used to combine fit subsolutions. Of interest here is the adaptation of the
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Figure 12
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NSGA-2 algorithm [Deb 2001] to 

genetic programming, and of the 

fact that the true Pareto frontier is 

the single point in the bottom-left 

comer of Fig. 12. In 

multiobjective terms, we would 

say that the Pareto frontier is 

degenerate.

While we have not performed
Diagram o f the intended dynamical behaviour o f  

C o m p o s i t i o n - A l g o r i t h m .  The initial bi-objective population „
is seeded with two heroes, which represent successful solutions these sorts of experiments with
to the two subproblems with fitness values indicated by f  and
f2. Random points are generated to fill the population, giving COMPOSITION-ALGORITHM, we 
the indicated Pareto frontier o f successful solutions. A
multiobjective algorithm such as NSGA-2 is then used to have performed a related
evolve the population towards the ultimate objective. This data
and graph are schematic only, and do not represent observed experiment very often with
data.

regular and repeated success, 

which we expect that the reader will find convincing. For the particular case where we 

have a primary and an anciliary goal, there is an embedding which has the same effect as 

C o m p o s i t io n - A lg o r i t h m  but that does not require going to a full multidimensional 

optimization technique. Suppose that we have two fitness objectives f x(t) and f 2(t).

We distinguish this case by preferring progress on f x(t) over progress on f 2(t) . If fx(t)

and f 2(t) are integral-valued and f 2(t) has a maximum achievable value ( f2 )mux, we

might combine the two objectives into a single fitness function, / (t) = f l(t) + m
U )  + iV ̂  /  m ax

This will modify the behaviour of the evolution of the GP, since now GP will prefer
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individuals by / 2 during the evolution; essentially breaking ties in /  by / 2. There is 

another way to adapt a single fitness function that is a much closer analogy to 

C om position-A lgorithm . Suppose that we use / 2 to break ties only when

/ ( i )  = min / .  In this case, we are essentially beginning a new phase of evolution once 

/  is satisfied, namely “work on /  but not at the expense of your perfect solution to /

The new fitness function/is shown in (4). This new algorithm is given below as Alg. 2, 

Evolve-Trees-Preferred-Fitness.

We can also adapt (4) to work with non-integral values, as in (5). If f 2 has no largest

possible value, we can use an arctangent transform to allow our method to work anyway, 

as in (6). This tactic is generally only possible for those problems for which /  is a

success-based fitness measure by GP: no successes on /  will result in simple

conventional one-dimensional evolution on / .  Since (6) is the most general case, we

have used it for Evolve-Trees-Preferred-Fitness.

/ ( 0  if / ( 0 > m i n /

otherwise
m ax

( 4 )

/ ( 0  if / ( 0  > m in /
f  ( 0  -  {fl  )max + fl  ( 0  Otherwise

( 5 )

/  (0  + arctan /  (t) otherwise
(6)
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Algorithm  2: Ev o lve -Tr ees -Pr eferr ed -F itness

Input: population size M, number of generations G, tournament size T\
a primary fitness operator f : T  —» R  for which smaller values represent better
solutions; min f x, which is the best possible value of f x; an ancillary fitness
operator f 2 : T -» E  which is to evaluate progress once f x is satisfied

Output: a tree t e T which has a small fitness on f x and, if f x is satisfied, has a small
fitness on f 2.

f i t ) if /i(0 > m in /J
Let n

f  (t) + arctan f 2 (t)----  otherwise
. 2

return E v o l v e - T r e e s  M, T, G, f i t )

We mentioned above that we have used E v o lv e - T r e e s - P r e f e r r e d - F i t n e s s  

extensively in our research in this thesis. We have used it primarily for parsimony 

pressure. This technique nearly always reduces functions to nearly optimal tree sizes; 

indeed, it has often produced shorter trees than we were able to write by hand. We have 

used it both with an existing population, and as a follow-on step to make parsimonious 

trees when using the scientist algorithm. The later version is given as an explicit 

algorithm in E v o lv e - T in y - T r e e s ,  which can be used verbatim in S c i e n t i s t -  

A lg o r i t h m .  Here we have used values of G, T, and M , indicated by the subscript shrink, 

that are optimized for what we call “shrinkwrapping”, the process that E v o lv e - T in y -  

T r e e s  adds to conventional optimization.

Chapter 7: Techniques That Can Be Used With the Scientist Algorithm
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Algorithm  3: Ev o lve -T iny-Trees

Input: population size M, number of generations G, tournament size T\
a fitness operator / :  T  — > R  for which smaller values represent better 
solutions; min / ,  which is the best possible value of /

Output: a tree t e T  which has a small fitness on /  and, if /  is satisfied, is very small.

hero <r- E v o l v e - T r e e s  M, T, G, f ( t)
Re-evolve: prepare to evolve again seeding hero in a new population
trees { <— hero
Population Initialization: generate M -  1 random trees and add them in 
for j  <— 2 to M  do

trees j  < -  R a n d o m -T r e e

end for
Shrinkwrapping: now evolve as usual with the modified fitness function / neM,

/ ( 0  i f / ( f )  > m in /
Let f  (i) = ' tt

neW f  (0  + arctan size{t) -  — otherwise

return E v o l v e - T r e e s - S t a r t i n g - W i t h  trees,Mshrink,Tshrink,GshrinkJ new

Figs. 13 and 14 show one example using E v o lv e - T in y - T r e e s  to shrink a very fit 

tree. Fig. 13 shows a typical tree that is highly fit evolved by GP for a problem of sorting 

an array of integers of size 2. It has 43 nodes. It is reduced by shrinkwrapping into the 

solution of Fig. 14, which has 12 nodes. It is clear that this algorithm greatly increases 

the readability and parseability of the code.
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Figure 13 Figure 14

>
afl an A typical result of 

shrinkwrapping the highly fit 
tree o f Fig. 13. This program 
correctly solves the problem o f  
sorting two slots in an array 
whose addresses are indicated 
by A and B.

To demonstrate the

usefulness of this technique, 

we performed a simple 

experiment. We generated, 

using conventional genetic 

programming, 274 correct 

solutions to the artificial ant 

on the Santa Fe trail with 600 

time steps allowed. Of these 274 successful solutions, we chose the 14 that were of

A highly fit tree generated by standard genetic programming. 
This program correctly solves the problem o f sorting an array of 
two integers. A and B are variables, given the values 0 and 1 at 
evaluate-time.
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the largest size allowed in our system, 50 nodes. For each of these 14 runs, we performed 

100 runs of the re-evolve section of E v o lv e - T in y - T r e e s .  We used a population size 

Msk™* ~ 7 ’ tournament size Tshrink = 7, and Gshrjnk = 320 generations. These choices

were made from work described later on in this section. In Fig. 15, we show the

distribution of 100

Figure 15

Distribution o f the sizes of successful Santa Fe ant solutions before 
and after calling E v o l v e -T in y -T r e e s . The x-axis measures tree size 
in nodes; the scale is 0 to 50. The hashed bar on the far right is the 
initial distribution at size 50. The histograms are the distributions of  
outcomes after 100 runs using the settings described in the main text. 
The dotted line on the left is the smallest possible tree, o f size 11, that 
solves the artificial ant on the Santa Fe trail problem.

independent runs 

starting from each of the 

14 maximum-size correct 

trees. Fig. 15 also 

indicates the smallest 

possible size achievable 

for the Santa Fe ant 

problem, as discovered by 

the enumeration procedure 

of Chapter 5. Clearly, the 

algorithms generated by 

GP have a certain 

minimum complexity 

associated with them; 

however, it is interesting to 

note that one of our 14 

tests shrank down to one 

of the 48 second-smallest
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trees achievable. Of course, in each of the 14 cases, the correctness of the fit solution 

was preserved.

It is also possible to use this trick to optimize for other secondary properties other 

than the size of a successful tree. Much human programming tends to use the more 

common symbols and references, such as 0, rather than using unusual symbols and 

expressions, such as x -  x. In some of our work, we wanted to generate trees that were 

both small and of low entropy. Parsimony pressure might elide these strange artifacts 

away, but we were looking for a more direct way to simplify programming code. We can 

coerce GP into generating a simple, parseable version of the code by rewarding trees that 

have a small diversity of node types. To do this, we walk the tree and accumulate the 

number of times each node is used in the source tree. We can use the tree manipulation 

nomenclature from Chapter 5 to define this vector of node type counts rigorously. We 

previously defined three vectors of use in completely describing a given function tree. 

The arity vector a of a problem stores the number of nodes types of each arity. The 

geometry vector g  of a tree stores the vector of node arities in a pre-order traversal of a 

tree. We also defined the labelling vector I of a tree as the vector of node alternatives 

chosen for each tree element, numbered consecutively from 0 to at -1 . We will need a

way to uniquely number each kind of node, regardless of its arity. This is readily 

achieved by the following procedure. We give all the arity-0 nodes their own labelling 

numbers, 0 to a0- 1. Arity-one nodes then add the count of arity-0 nodes to their 

labelling number, giving numbers in the range a0 to a0+a{-  I. The process continues 

likewise until all distinct node types have been labelled. Mathematically, (7) defines a
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label mapping function m that takes an arity vector a, an arity of the node arity, and a 

node label label, m then provides a unique number for each node type in a tree.

arity

m(a, arity, label) = label + (7)
f = l

We can then compute the number of occurences of each node type in a tree using

(8), where s is the size of the tree.

1 if ml a, c t, /,) = /\  > j > j )  ( 8 )

0 otherwisev . - Z
7=1

This vector v of node weights is then used to determine the entropy of the new tree.

H
Let amax be . We define the normalized size-weighted entropy e as (9). The

/=o

normalization ensures that e - s  when the entropy is maximized; that is, when each node 

type appears the same number of times.

In—
e — j-g  5 (9)

Ins

An advantage of using a size-weighted entropy measure like this is that we can 

weight the node types to include a preference or aversion for certain nodes. This is 

readily accomplished by modifying (9) to include a “weight” wi for each node type. This

gives us (10), where we have performed a weighted normalization. This weighted 

version of the equation will be useful to us in the next section.

v  v i 1 v i
L w i - l n -

e = - s — £ L  (10)
^max - .i i  1

V  — In —
/=o s s
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We have performed some experiments to determine good settings for the variables 

M shrink and Gshrink, using the unweighted size-weighted entropy measure of (9). Using a

constant value of Tshrink = 7, we looked at two different shrinkwrapping problems. The

first was an “easy” task where a tree of size 49 was shrunk to minimal entropy and tree 

size using (9). The final tree is 9 nodes in size. It was called “easy” because the task was 

relatively easy, and so fitness-preserving transformations weren’t difficult to come by. 

The second task was a “hard” task where a semantically different tree of about the same 

size was shrunk to an optimal size-weighted entropy. The fitness function in the second 

case was more challenging, requiring on average 9 times more computational effort to 

find a solution than the “easy” problem. The shrinkwrapping operation might be 

expected to be more difficult. The final tree in this case is 10 nodes in size. In both 

cases, E v o lv e -T in y -T re e s  was used, save that only a single run of the initial evolution 

was performed for all subsequent shrinking operations. For the “easy” problem, we 

required 1270 ±30% fitness evaluations to shrink the successful program to optimality, 

50% of the time. For the “hard” problem, we needed 1900 + 35% fitness evaluations to 

shrink the successful program to optimality, 50% of the time. To get the conventional

99% success probabilities, multiply these scores by = 6.64. Our best settings for
In 0.5

the two problems were determined by a procedure similar to that performed in Chapter 6 

-  that is, we varied the population size across an exponentially distributed set of values 

around what we found to be a good parameter setting. Unlike Chapter 6, we performed 

independent runs in the number of generations, since so little time was required for each 

run. The best settings for 99% success of the “easy” problem were found by performing

Chapter 7: Techniques That Can Be Used With the Scientist Algorithm

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



210

4 independent runs of M= 5 individuals for 320 generations. The best settings for 99% 

success of the “hard” problem were found by performing 8 independent runs of M=  7 

individuals for 220 generations. Perhaps predictably, in each case the behaviour around 

these optimal settings is fairly tolerant of small variations. We can therefore recommend 

some intermediate settings such as M=  7, G = 320, and 11 independent runs. This 

requires twice as many fitness evaluations as the optimal choice for the “hard” problem 

above, and aims for a 99% success rate overall. It is interesting to note that for the 

shrinkwrapping problem, optimal performance for GP is achieved by a kind of hill- 

climbing operation. We can tell this by noting that the optimal success probability is 

achieved when the population size is small and many generations are performed. This 

suggests that many relatively easy incremental steps are best for GP’s success. It is likely 

that the evolution here proceeds stepwise through many small modifications, in a kind of 

hill-climbing.

One final note on multiobjective optimization with respect to program evolution. It 

seems likely that the combination of principal components analysis with multiobjective 

optimization will prove to be a valuable addition to the toolkit of available interventions, 

particularly when we adopt a fitness record approach to fitness measurement, as 

described in Chapter 2.
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Scalable Difficulty, Incremental Evolution, and The Inductive 
Method for Genetic Programming

We will discuss another important way in which the difficulty of a genetic 

programming problem may be lowered or raised, by evolving a partial solution to a hard 

problem on an easy version of the problem. We then can try to extend our easy solution 

into the more challenging complete domain. For instance, O’Reilly showed that sorting 

an array is easy if the swap primitive is included in the function set; and difficult 

otherwise [O'Reilly 1995]. Other work on evolving sorting in genetic programming was 

done by Kinnear [Kinnear Jr. 1993]. One sort of progressive-challenge protocol that the 

scientist algorithm can use is to first solve the sort problem for an array of size 2. The 

solution to this problem is simply conditional-swap; swap the two elements if and only if 

they are out-of-order. The scientist algorithm might then generalize this successful 

solution to a subroutine taking two parameters, namely the indices of the two data 

elements used in the swap. If correctly generalized, this primitive would then be highly 

productive in evolving a general sorting algorithm from scratch. Notice that this 

progressive-challenge framework is useful for many problems of interest to computer 

scientists; indeed, it is the principal technique by which advances in computer science are 

made.

To determine whether these operations can actually work in practice, we implemented 

the previous example and performed experiments to quantify exactly how beneficial the 

progressive-challenge approach is on this problem, in terms of computational effort.

First, let us describe the problem.
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The Integer-Sorting Problem

The integer-sorting problem is defined using a problem-generation oracle of the type 

introduced in Chapter 2. We define the oracle 0{n) as an algorithm that, when provided 

with a scalar n, returns an array of n unique integers chosen randomly on the interval 

[-23I,231 -1]. The genetic programming system is allowed to use the language primitives 

of Fig. 16 when finding solutions, with some small variations for different tests. As for 

the most common case in genetic programming, all nodes return a value, and there is 

exactly one data type used for all function inputs and outputs. For our problem, integers 

are a natural choice for this universal return type.

A few of the functions indicated
Figure 16

Terminal Arity Meaning
TO; T1; etc.

A
B
N

Zero; One, Two

GetAtx 
SetTO x; SetT1 x 

N egate x 
Add x, y  
Sub v. i 

SetAt x, y  
lf>0 condition, clause 

Sirnple-For variable, start, 
____________end, clause

terminal tem porary variable accesso rs  
terminal algorithm-assigned constant
terminal algorithm-assigned constant
terminal array length
terminal constant values

  array accesso r
tem porary variable assignm ent 

arithmetic negation 
addition 

subtraction 
array elem ent assignm ent 

conditional evaluation

looping primitive

in Fig. 16 deserve explanation. 

The terminals TO, T1 access per- 

run variables in the function 

tree, and are initialized with 0 on 

evaluation state. A and B will

be explained in the context of 

evaluation. N is a read-only 

constant storing the size of the 

current array, and the named 

integers Zero, One and Two are 

constant literals. The temporary variable assignment operators SetT0(x) and SetTlfx) 

return the value assigned to the new variable, as does the array assignment operator 

SetAt(x, y). The array accessor function GetAt(x) returns the value of the array at address

Functions and terminals for the integer-sorting problem. 
Multiple terminals and functions o f the same kind are indicated 
on the same row. All functions and terminals return an integer; 
exact semantics are described in the main text.
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x. This can force an out of range error, which is tracked separately in a per-evaluation 

data structure. In the case of an error, the index x  is returned. The arithmetic operations 

Negate, Add, and Sub have their normal behaviour on signed 32-bit integers. Since there 

is no explicit sequencing operator, Add and Sub are often used by GP for their side-effect 

of evaluating the two operands in sequential order. The conditional operator 

lf>0(condition, clause) invokes special evaluation rules to behave correctly. The 

condition is evaluated first, and if the result is strictly greater than 0, the dependent clause 

is evaluated and its result returned. If the dependent clause is not evaluated, the condition 

is returned instead. The Simple-For operator has 4 parts. The first part, the variable 

identifier, is evaluated for the side effect of touching a variable. Whatever variable is last 

accessed or named in this subtree is tracked, and is used as the loop iterator. If no 

assignable variable is touched in this phase -  for instance, if the constant Zero is used as a 

loop variable -  an illegal loop variable error is noted, and the function returns the loop 

subtree value. The initializer is then evaluated, and its return value is used to initialize 

the loop variable. When the loop executes, the loop maximum subtree is reevaluated at 

each iteration and the loop exits whenever the loop variable exceeds the loop maximum. 

If the loop does not exit, the dependent clause is evaluated, and then the loop iterator is 

incremented. Since we can now easily write an infinite loop, we must be able to arrest 

slow programs in a timely manner. We define a maximum number of evaluations for 

which we will allow the program to run, and if this limit is exceeded, we interrupt the 

evaluation, return the last partially-evaluated result, and note an “evaluations-exceeded” 

error for the program.
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Successful evolution of fit genetic programs lives or dies on the fitness operator. We 

have tried a fitness-record approach as described in Chapter 2 for this problem. We 

define four different outcome variables for this problem. If any data position in the array 

has been modified, we set a fitness flag isInitialPosition indicating that we are no longer 

in the initial position. We then count the number of array positions that are filled with 

values that were not in the provided array, and store it in a fitness variable numberWrong. 

Let p(x)  be the position of the array element x = at in the correctly sorted array.

Finally, we define a fitness variable distanceScore as the sum of absolute distances 

between the elements of the array and their target position using (11).

rt-1

distanceScore -  E M M  (n )
i=0

To test using conventional genetic programming to solve this problem, we combined 

these four fitness elements together to get a conventional fitness function. Let s  be 

numberWrong, the number of unexpected values introduced during fitness evaluation.

We then define the fitness function/ using (12).

... . f n2 if isInitialPosition and s  + distanceScore > 0
f (a )  = \ (12)

[ns + distanceScore otherwise

This is a fairly conventional definition; the largest possible contribution to the 

distance score is achieved when data that should be in the first position appears in the last 

position, for a contribution to distanceScore of n -  1. Accordingly, we score a fitness 

value of n for each unexpected value that occurs. If no variable is touched, we score a 

fitness value equivalent to discovering that each value in the array is unexpected, unless 

the array happens to be perfectly sorted to begin with. In this case, we should leave the
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array alone, and so we assign a fitness score of 0 if the program correctly does nothing. 

With respect to the environment of randomly generated test cases, we can choose the 

number of test cases over which to evaluate the data dynamically. We will use the 

variable t to indicate the number of test cases to consider when evaluating candidate 

individuals. For the single scalar fitness value case, we simply added the fitness scores 

achieved on each test case together to get a composite score.
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Incremental Evolution

To see if the integer sorting problem is soluble using standard GP, we first tried 

solving it directly. No successes were found in 1000 runs for an array of size n = 10 

using 20 randomly-generated test cases. We then considered evolving solutions to 

smaller problems first. Since problems of size n = 1 are trivially solved by any program 

that does not touch the accessed array, we considered the n = 2 problem next. Using 6 

randomly-generated test cases, we were able to obtain a considerable number of 

successes from some random genetic programming runs. For testing purposes, we 

dropped the Simple-For operator from the function set, since no looping was expected to 

be necessary. The solutions discovered seemed to cluster into three distinct algorithms 

(after simplification), which are shown in Fig. 17. Of interest is that genetic

programming 

automatically 

discovered two

Figure 17

Method Evolved code Usual C form Algorithm

1 (lf>0 (- (getAt 0) (t0= (getAt 1))) 
(- (setAt 1 (getAt 0)) (setAt 0 10)))

t = a[1]; 
if (a[0] > t) { 

a[1] = a[0]; 
a[0] = t;

}

conditional
auxiliary
variable

swap

2
(lf>0 (- (getAt 0) (getAt 1)) (setAt 

1 (+ (getAt 0) (lf>0 (setAt 0 
(getAt 1)) 0))))

if (a[0] > a[1]){ 
a[1] = a[0] +

(a[0] = a[1]) > 0 
? 0  
: a[0]);

}

conditional 
stack-store 

swap on 
positive aQ

3
(lf>0 (- (getAt 0) (getAt 1)) (setAt 
0 (- (getAt 0) (+ (neg (getAt 1)) 

(setAt 1 (getAt 0))))))

if (a[0] >a[1]){  
t = -a[1] +

(a[1] = a[0]); 
a[0] = a[0] - 1;

}

conditional
arithmetic

swap

Three different automatically evolved algorithms for sorting two integers 
correctly. The evolved code has been shortened and simplified using EVOLVE- 
Tiny-Trees. The algorithms have been classified into the three categories 
listed here based on their functional characteristics.

ways to sort two 

distinct numbers 

that do not involve 

the use of a 

temporary variable. 

For the second 

method of Fig. 17, 

the stack-store

swap, the processor stack is used as a temporary variable.
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The specific version of the algorithm appearing in Fig. 17 requires that the array elements 

be positive to work correctly, as they were when this algorithm was evolved. For the 

third method, the arithmetic swap, the sum a[0] -  a[ 1] is computed as an intermediate

variable; the algorithm then recovers a[ 1] = a[0] -  (a[0] -  a[l]) to complete the swap. It is

perhaps interesting that while we had heard of the arithmetic swap trick, the stack-store 

swap was unknown to the author. This is another case where genetic programming 

discovered a solution unknown to the implementor.

Having determined that genetic programming can automatically evolve solutions to 

what we might call the sort-2 problem, we determined the computational efficiency and 

optimal settings for this problem using the exponential parameter setting procedure of 

Chapter 6. Approximately optimal values were attained using M=  2 500, G = 20, and 81 

runs to get 99% confidence intervals. The expected number of runs to get a 50% success 

rate with these settings is therefore 640 000 fitness evaluations. We can conclude that for 

this problem and representation, even sorting 2 array elements correctly from scratch is 

non-trivial.

We were then curious as to see whether we could reduce the computational effort 

required to solve this problem still more. As it happens, for arrays of size 2, there are 

exactly two kinds of test case behaviour: either the data arrive in-order, or they arrive 

out-of-order. If the data are in-order, the correct behaviour is to do nothing. If the data 

are out-of-order, the correct behaviour is to swap the data. Our insight here is that the 

fitness contrast is sufficiently obvious that an automatic technique such as factor analysis 

could readily identify the difference between these test cases. The algorithm C lu s te r -
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B y -Fitness evaluates a number o f  randomly-generated function trees on a set o f  test 

cases to determine which test cases would be candidates for grouping together.

Algorithm  4: C luster -By -F itness

Input: population size M, number of generations G, tournament size T;
a vector of n test cases ‘T  = upon which to make progress, a

fitness operator that maps performance by a tree t e T on a test case t  e 'T  to a 
fitness value / :  T, T  -» R for which smaller values are better, and an external 
clustering algorithm C lu s t e r  that clusters an n x M  matrix into some natural 
clusters

Output: a partitioning p : T  -> \Tv T2,...,Tn} .

Population Initialization: generate M  random trees 
for j  <— 1 toM do

treesj  < - R andom -T ree  

end for
Evaluation: evaluate the M  random trees on each of the n test cases 
for y <— 1 toM do 

for i <— 1 to n do
fitnessij <— f  {treesj,t^

end for 
end for
return C lu s t e r  fitnesst y

We have ourselves used &-Means and A d aptive-^ -M eans clustering algorithms with 

C lu s te r -B y -F itn e ss , although any clustering algorithm would likely be appropriate for 

this task. After we have clustered the test cases in this way, it may be easier to evolve 

solutions to the subsets of fitness cases than to evolve solutions to all the test cases at 

once. This is clearly true for clustering data on the sort-2 problem, since fully half of the 

test cases can be trivially solved by simply ignoring the given array and returning. This 

results in many perfect solutions at population initialization, including all the functions of 

size 1. What is perhaps not obvious is that solving the “hard” population and 

generalizing the solutions is easier than solving the entire problem at once.
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Suppose that we begin a new genetic programming run with the task of solving sort-2 

where all of the test cases require an inversion. We can name this new problem 

sort-2-(b, a), since we are sorting all the cases where the larger case occurs first in the 

array. We use the same setup as before; that is, we leave out the For operator but 

otherwise perform a full evolution. This simpler problem is optimized using population 

size M=  2 000, G = 10, where 22 independent runs should be used to solve the problem 

with 99% probability. This gives a computational effort of 68 000 fitness evaluations to 

solve the problem 50% of the time, a factor of 9.5 times less than a solution of the 

complete problem. We can make a profit in computational effort if we can find out how 

to automatically use the solution of sort-2-(b, a) to induce the solution to sort-2. To 

perform this task, we will introduce a new automatic subroutine-generation feature to the 

genetic programming algorithm, the automatically defined library function or ADLF for 

short.

Automatically Defined Library Functions

In his second book on genetic programming [Koza 1994], Koza introduced 

automatically definedfunctions or ADFs as a way for genetic programming to improve 

performance on difficult problems. To implement this feature, one or more auxiliary 

trees are added to each individual in the genetic programming population. These 

additional trees are viewed as functions that can be called by what is now renamed the 

“main branch” of the genetic programming forest. The overall layout and behaviour of a 

genetic programming tree with ADFs is shown in Fig. 18. The main branch of a genetic 

programming tree with automatically defined functions may call new functions 

corresponding to each of the ADFs available. For instance, in Fig. 18, one ADF with a
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single parameter is available for the 

main branch to use. When the main 

branch encounters an ADF node, any 

subtrees of the ADF node are 

evaluated and passed in to the ADF 

as formal parameters. Execution 

passes to the appropriate numbered 

ADF, and a return value is computed. 

This return value is used as the result 

of the ADF node in the main branch. 

In the most usual case, each 

individual in a genetic programming 

population has its own set of ADF subtrees, which evolve along with the main branch. 

We will use a variant of this ADF to make a useful subroutine out of a proven successful 

solution.

We define an automatically defined library function, or ADLF, in parallel to 

Koza’s ADFs. Evaluation proceeds exactly as in the ADF case. Unlike in the ADF case, 

however, library functions are stored in a globally accessible archive, and are available 

for use by all members of an evolving population. The main branch can then use the 

ADLFs as additional functions, but the ADLFs are not generally evolved along with the 

main code: they are automatically manufactured from successful individuals by the 

algorithm M a k e -ADLF. The scientist algorithm can then try a new run with a candidate 

ADLF and see if it does, in fact, improve performance. If so, the new ADLF can be used

Figure 18

Main branch MPo)
/ '  "\ / ... "\

i  then r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i  *  I

,  r < " >  >I - l I A= I ! A ] +

...

\  /  \  / ^ ' N
0 ) \ B ) \ B  )

\  y V /  V /

An example o f  a function with a single automatically 
defined function with one parameter. The tree on the left 
is the main branch o f the function, where evaluation 
begins. When the special node f 0 is encountered, 
execution passes to the first automatically-defined 
function, on the right. Any subtrees are evaluated and 
substituted in as formal parameters to the ADF. The 
return value from the ADF is then returned to be used in 
computing the main branch.
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in subsequent evolution; if not, the scientist algorithm can give up on the new ADLF and 

go back to the drawing board. M ake-ADLF converts a successful solution of a simpler 

subproblem to an ADLF to be used in future evolutions. M ake-ADLF uses the candidate 

parameters A, B, and so on that are chosen and allocated by the related algorithm 

E v o lv e-A D L F -C a n d id a te . We will describe the operation of E v o lv e -ADLF- 

C a n d id a te  first.

When writing a subroutine, a human programmer has a sense of which information 

might make good formal parameters. An automatic process has no means of choosing, so 

we must have the algorithm do something else. One early solution that we tried was to 

choose formal parameters randomly, by substituting leaf nodes in a correct solution with 

formal parameters in an ADLF. This worked well enough in specific instances, but was 

computationally inefficient due to the exponential number of ways that / terminal nodes 

could be allocated to p  formal parameters in an ADLF. After some analysis and testing, 

we arrived at a better solution. When evolving a function tree that we hope to convert 

into an ADLF, we augment the terminal set with what we call “candidate formal 

parameters.” We name the candidate formal parameters A, B, and so on. When the 

correct solution is turned into an ADLF by M ak e-ADLF, these candidate formal 

parameters become the new ADLF’s formal parameters. These candidate formal 

parameters may be constant, or may covary along with test cases in a way that is 

described in the next section. For the process of converting the solution of sort-2-(b, a) 

into a useful ADLF for evolving sort-2, for example, we used constant values of A = 0 

and B = 1. In the definition of E v o lv e-A D L F -C a n d id a te , we use the easily enumerable 

symbols A1? A2, and so on to mean the variables A, B, etc. E v o lv e-A D L F -C a n d id a te
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uses the size-weighted variant of E v o l v e -T i n y -T r e e s  using (10) in place of size(t) to 

ensure that future subroutine calls to the ADLF are efficient and use the formal 

parameters where appropriate. We weight the terminal nodes so that the candidate formal 

parameters Ai are preferred over regular terminals; that way, the weighted shrinking

operation w ill use them. Specifically, w e have had some success using the weights as 

defined in (13) with E v o lv e -T in y -T re e s  in E vo lve-A D L F -C an d id a te .

0.5 if i refers to a member of \ A , ] 
w,=\ X j j  (13)

[ 1 otherwise

Algorithm  5: Ev o lve -ADLF-Candidate

Input: population size M; number of generations G; tournament size T;
a vector of n test cases ' t  = [tv t 2, . . . , tn] upon which to make progress; a

fitness operator that maps performance by a tree t e T on a test case t  e 'T  to a 
fitness value / :  T ,T  -> M for which smaller values are better; min / ,  which is
the best possible value of / ,  and a vector-valued function form als: 'T  —> that 
assigns each test case a vector of candidate formal values.

Output: an optimized candidate ADLF hero

Evolve a successful individual:
Augment the terminal set of the problem by d  additional terminals {A15 A2,..., Arf}

In the following evolution, assign A,. = ( formals{ t ^  \/i = \...cN j = \ . . .n  and use 

the weighted variant equation (10) in place of size(t)
n

hero E v o l v e -T i n y -T r e e s  M, G, T, > nfnun
i= l

end in 
return hero

Once we have a candidate library function hero, we will make an ADLF from the 

function using M ake-ADLF. We can then use the new ADLF to try to evolve a 

successful individual for the encompassing problem.
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Algorithm 6: Make-ADLF
Input: a candidate ADLF function tree hero.
Output: an automatically defined library function adlf

adlf <— hero
For each node node in adlf do

If node e  {At, A2, A d} a  node = A,, then
node <— p i

end if 
end for 
return adlf

Returning now to the problem of evolving sort-2 from a successful solution to 

sort-2-(b, a), we performed some tests to determine whether this technique can provide a 

savings in computational effort. Fig. 19 shows the results of these tests. We can see that

performing the evolution in two steps
Figure 19

71 500+15%
68 000+15% 1 900+20%

10

sort-2-(b,a) 

x 2d00

- *  shrinkwrap

1 600+22 %

sort-2

220x7 5x288

640 000±25%

sort-2

20 x 2500

results in a ninefold decrease in net 

computational effort.

As is typical in evolutionary 

systems, what we think may be a 

correct ADLF may not, in fact, work 

correctly. Ideally, we would like to 

test an ADLF by using it in a context 

similar to that in which it willApproximate computational effort and optimal 
parameter settings required for each of the three steps of 
a serial evolution using the ADLF-making functions of
this section. CE for a direct evolution of sort-2 is shown ultim ately be used. For the sort-2 
as well. The numbers on the top of each box are 
computational effort and estimated 95% relative 
confidence intervals; the numbers underneath each box 
are the optimal main parameters for the evolution, in the 
form G x M .  Performing an evolution in two stages is 
found in this problem instance to require about 9 times 
fewer fitness evaluations.

problem, no specific after-evolution 

testing was performed; after shrinking
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and simplification, the program could be verified by inspection, as it was easily human- 

readable. This will not be possible in general for automatic systems or for more complex 

solutions, so another solution will be required.

A good way would be to test the new ADLF by using it as a subroutine on a different 

problem that is known or suspected to be more challenging than the problem that 

generated the ADLF. Such a problem might be one that solves a larger number of test 

cases, as sort-2 is to sort-2-(b, a); or one that is more complex, such as sort-3 is to sort-2. 

The algorithm T e st-  A D LF-C andid a t e  tests a candidate ADLF, and accepts it only if it 

improves the typical performance of new function trees on a harder problem.

Determining how much effort to put into testing a candidate ADLF is a little dicey; we 

could use a progressive algorithm like that described in Chapter 6, or run the evolution 

with the new ADLF head-to-head against the same system without the new ADLF. In 

practice, we have simply chosen “reasonably good” parameters for subsequent evolutions 

and used T est-A D L F -C an d id ate  as is.

Algorithm  7: T est-ADLF-Candidate

Input: population size M; number of generations G; tournament size T;
a candidate ADLF adlf to test, a fitness operator / : T —» E  for which smaller 
values represent better solutions for a problem that is more challenging than 
the problem on which adlf was evolved 

Output: true if the ADLF is acceptable, false otherwise

S U m default S U m adlf 0

for i <r-1 to 3 do
™mdefault < - sumdefault + / (  E v o lv e -T r e e s  M, G, T, f { t ) , f min)

Augment the function set of the problem by adlf 
sumadlf < - sumadlf + / (  E v o lv e -T r e e s  M, G, T, f { t ) , / min)

return sumadlf <sumdefault
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Finally, we would like to evolve a correct solution to the general case. For this 

ultimate test, we skip directly from size 3 to a much larger size which we take as 

representative of the general case. We used size 10 as effectively meaning “infinite size”. 

Since the number of possible orderings of n elements is n\, a successful solution is 

unlikely to exploit a particular configuration at size 10. This choice is also justified by 

the fact that generating solutions for sort-3, sort-4, and sort-5 in turn without the benefit 

of our sort-2-based ADLF becomes exponentially more difficult, with no observed 

successes in 1000 trials for sort-5. Unsurprisingly, we also observed no successes in 

1000 trials for a direct evolution to sort-10. Fitting an exponential regression to the 

observed computational efforts of the direct evolutions which succeeded gives a 99% 

computational effort of very roughly CE « 400 • 1012. This is likely to be an 

underestimate since the curve appears to be quadratic in n, much like Fig. 4 of Chapter 2. 

Direct evolution of a solution to sort-10 is difficult even when an ADLF from sort-2 is

available; however, we able to get 

reliable successes with a 99% 

computational effort of roughly 

50 000 000 fitness evaluations. We 

then performed a comparatively 

inexpensive shrinkwrap operation to 

get the representative tree shown in 

Fig. 20.

The overall operation of the 

scientist algorithm on this problem is
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t0  ) ADLF

An example o f an evolved solution to the sort-10 
problem, after shrinking. The leftmost subtree o f height 2 
is an alias o f  the optimal subtree tO; otherwise this evolved 
tree is o f minimum size for solving the sorting problem.
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sketched in Fig. 21, along with estimated computational efforts for each step. With this 

last step, we have accomplished an implementation of the initial goal of this thesis -  

scalable genetic programming.

To demonstrate that this process can be fully automated without any intervention, we 

implemented the evolution chain of Fig. 21 as a set of peri scripts using Sean Luke’s ECJ 

[Luke 2001] to perform the evolutions. This implementation of the scientist algorithm 

was then run until a successful sorting algorithm was evolved.

Figure 21

133 000±25%

1 900+20% 60 000±5( 50 000 000±50%

ibrt-

2 2 0 x 7 2 2 0 x 7

shrinkwrapshrinkwrap sort-nsort-3-test

> 400 000 000 000 000

sort-10

Approximate computational effort and optimal parameter settings required for each o f five steps o f  a serial 
evolution using the ADLF-making functions o f  this section, demonstrating scalable genetic programming. The 
numbers on the top o f each box are computational effort and estimated 95% relative confidence intervals; the 
numbers underneath each box are the optimal main parameters for the evolution, in the form G x M .  The 
computational effort for sort-10 is estimated based on logarithmic regression from observed success rates on 
smaller problems, and is likely conservative.
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Chapter 8: Conclusion

Thesis Synthesis

One of the overarching goals of artificial intelligence is to duplicate human-level 

performance. The Turing test is by far the most famous operationalization of this idea 

[Turing 1950]. We have contributed to work on an empirical problem domain-by- 

problem domain categorization of the Turing test, called the Turing ratio [Masum 2002]. 

In the context of scalable genetic programming, the most salient issue from this paper is 

that of intelligence amplification. Intelligence amplification considers how the algorithm 

achieves its performance level to measure the autonomy of an AI technique. At one 

extreme, a program has a full list of answers given to it; at the other extreme it starts with 

zero domain knowledge and succeeds in learning good solutions. In between, there are 

various degrees of “cooking”: exhaustive enumeration of cases, hand-designed primitive 

functions, intermediate reinforcement mechanisms, externally supplied fitness functions, 

and so forth. This distinction is analogous to that between rote and deep learning: in the 

former, all knowledge is given by the teacher; while in the latter, the teacher suggests 

insights and poses problems but the student does most of the problem-solving. In terms 

of artificial intelligence, a contrast could be made between the checkers program Chinook 

[Schaeffer 1996], which uses opening book, end-game and pure horsepower to play 

checkers; and Blondie 24 [Fogel 2002], which evolved a neural-net to evaluate boards by 

playing humans online.

We can draw an analogy between teaching style and algorithm design. A general- 

purpose algorithm separates a general problem into a set of base cases and a set of 

inductive cases, solves each separately, and derives a correct and hopefully efficient
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solution for any input. This can be distinguished from a lookup-table approach, where 

solutions for simple cases are precomputed and enumerated. Both of these techniques are 

combined in practical problem solving, with the more general approach being preferred, 

but more difficult and expensive to achieve.

Genetic programming has traditionally been located near the autonomous end of the 

intelligence amplification spectrum, in that a relatively simple algorithm generates 

innovation. The problem-specific smarts is encoded largely through the fitness function; 

and indirectly through the set of functions and terminals available to the evolutionary 

system. We seek herein to extend this intelligence amplification from solving a particular 

well-defined problem to being able to solve a problem with a scalable difficulty 

parameter. In this thesis, we push the frontier of automatic problem solving a few small 

steps towards human performance. We did so at the cost of adding some complexity in 

terms of expanding the genetic programming problem-specification and -validation 

paradigm, as well as using genetic programming as a subroutine. However, as these 

additional tasks require only constant additional effort, we see that the intelligence 

amplification of scalable genetic programming remains high.

The scientist algorithm presented in Chapter 2 and elaborated on in Chapters 5, 6, and 

7 represents an attempt to encode some of the smarts of human algorithm design as a 

programming toolkit. The overall idea is to use genetic programming as an innovation 

subroutine while making progress in a reliable way towards an ultimate goal. Fig. 1 

shows the overall operation of the genetic programming algorithm.
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Figure 1

P o p u  a t io n

z a t io n

The S c i e n t i s t - A l g o r i t h m  of Chapter 

2 is more like a scaffold than a complete 

algorithmic description of the scientist 

framework. We can get a better sense of 

how the scientist algorithm works by

Figure 2

Evolve Base Case

Canonical operation o f the genetic programming 
algorithm. Function trees are represented by 
triangles in this diagram. The circle labelled “f  ’ 
represents the fitness function. Fitness values are 
represented by their ranks.

considering the sequence of steps performed at 

the end of Chapter 7. Fig. 2 illustrates this 

discovery process which led to a 

demonstration of scalable genetic 

programming.

The labels of Fig. 2 clearly indicate the 

analogy to algorithm design. The familiar

TEST-ADLF ^

Evolve Inductive 
Case

Operation o f the scientist algorithm in 
Chapter 7. The canonical GP algorithm of  
Fig. 1 has been condensed to three circles 
feeding into one another. The circle labelled 
“L” represents the library o f automatically 
defined library functions available for use in 
further evaluations. This clearly shows the use 
of genetic programming as a subroutine in the 
scientist algorithm.

divide-and-conquer technique of algorithm design begins with one or a few base cases 

and moves to an inductive case. We implemented an analogous process for genetic
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programming, to make successful progress on a previously insoluble problem. While this 

straightforward approach will work for some problems, it will not work for them all.

Other problems may require more trial-and-error than this; for instance, the careful 

characterization of optimal values for Mand G of C h o o se-P o p u la tio n -S ize-A n d -  

G en era tion -N u m b er  of Chapter 6 may prove useful in finding good parameter settings. 

Certainly the statistical approach embodied in U p d ate-G en era tion -L im its , also from 

Chapter 6, is a reliable way to determine whether a given experimental intervention is 

productive or not. This algorithm draws on the hard-won insights of Chapters 3 and 4 as 

to how best to perform hypothesis testing for evolutionary computation. This careful 

statistical measurement can be applied as well to scientist interventions, as a means of 

validating the work performed by GP.

In this thesis, we felt it was more important to introduce and prove productive ideas 

than to exhaustively test them. To make concrete progress on scalable genetic 

programming, we hoped to illustrate the problem and highlight the major innovations that 

will be required to achieve this goal reliably and automatically. By advancing along the 

variability levels of Fig. 1 of Chapter 2, we can move towards human performance in 

algorithm generation, and hence improve automatic problem solving.

Contributions to the Field

While the work performed on scalable genetic programming is the most exciting part 

of this dissertation, it is probably the contributions towards evaluating and comparing 

stochastic search algorithms that will be the most useful. While we suspect that the 

overwhelming majority of published conclusions about evolutionary computation 

performance are correct, it is essential to have and use reliable yardsticks if serious
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progress is to be made. Chapters 3 and 4 go a long way towards achieving this end. It is 

our hope that these results will not only gain acceptance in the evolutionary computation 

community, but be more widely accepted in the broader field of artificial intelligence. 

Indeed, the experimental parameter-setting approach embodied in C h o o se -P o p u la tio n -  

S ize-A n d -G en eration -N u m b er is already a highly useful subroutine for the common 

problem of setting parameters in stochastic search systems.

Another significant contribute of this thesis is in using genetic programming to 

automatically discover parsimonious solutions using E v o lv e -T in y -T rees . Parsimonious 

programs are required to obtain one of the advantages of genetic programming over 

competing techniques, in that human-readable and -comprehensible solutions can be 

achieved automatically. Much has been written about code bloat in genetic 

programming, culminating in Terrance Soule’s Ph.D. thesis in [Soule 1998]. While 

mitigating bloat during evolution for the purposes of for computational efficiency 

remains valuable, E v o lv e -T in y -T re e s  enables optimal and near-optimal code size for 

success-based problems. The related algorithm E v o lv e -T r e e s -P r e fe r r e d -F itn e ss  is 

useful in other contexts as well; for instance, we have used it to reduce the number of 

time steps required for the artificial ant on the Santa Fe trail. We suspect that many 

auxiliary variables can be satisfied in this way, through serial evolving.

Adopting a top-level algorithm that conducts experiments to make progress will be 

useful in many more contexts than the algorithms and proofs-of-concept provided herein. 

Consider the algorithm sketch of Fig. 2. Genetic programming is a fantastic source of 

innovation and problem-solving ability. Great gains can be achieved by using genetic 

programming as a subroutine. We have demonstrated that useful subroutine discovery
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can be automatically and reliably achieved by some naive algorithms combined with 

some simple experimentation. The systematic experimentation is the key component that 

allows clear and unambiguous progress to be made when validating subroutines. While 

there is a strong case to be made that genetic programming continuously experiments to 

make progress, the ability to identify useful subroutines, prove them, and protect them 

from the destructive manipulations of genetic programming is new. The automatic 

gathering and use of statistical information to make informed decisions about which 

avenues and manipulations are productive has wider applicability than CHOOSE- 

P op u la tion -S ize -A n d -G en era tion -N u m b er . Incremental evolution and statistical 

analysis adds a kind of ratcheting mechanism to the relative chaos of genetic 

programming, leading it progressively upwards toward ultimate problem solution. This, 

in a way, combines “good old-fashioned artificial intelligence” with the robustness of 

evolutionary techniques. This kind of synthetic approach is a valuable contribution of 

this thesis.

We would be remiss if we did not draw attention to one of the major surprises of this 

work -  namely that breaking problems down to the simplest non-trivial components can 

have major benefits in terms of problem-solving ability. The experiments on sorting of 

Chapter 8 demonstrate that even solving the nearly trivial problem of sorting a reversed 

array of size 2 has an order-of-magnitude benefit on solving the sorting problem of size 2. 

The exciting thing about this observation is that we can automatically determine these 

easy cases through an algorithm like C lu s te r -B y -F itn e ss  of Chapter 8. The 

combination of some experimentation, some automatic analysis through clustering, and
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some subroutine induction is a powerful technique that will have wider utility than just 

the sorting example introduced here.

Genetic programming has achieved many impressive successes, as demonstrated by 

Fig. 1 of Chapter 1. However, most of these sucesses are outside of the nominal target 

domain of programming. Increasing the generalizability and power of genetic 

programming on traditional programming tasks is a significant advance, even if only 

early steps have been demonstrated here.

Recommendations and Advice

By way of summary, we would like to highlight some of the recommendations and 

advice for practitioners uncovered through the experiments performed in this thesis. Our 

first concrete advice comes from the work of Chapters 3 and 4: use effective success 

probability or computational effort to compare EC techniques where success is an 

achievable outcome. Use these same measures to compare the difficulty of problems for 

automatic programming. For problems where continuous improvement is the goal, 

effective mean best fitness and the _y-test are the best techniques to use, depending on 

whether one wants to do parametric or non-parametric testing. For all of these methods, 

biases in the underlying statistics require a significant number of experiments: hundreds 

of experiments rather than dozens. All these measures, but especially computational 

effort estimates, should always be presented the number of runs performed. The best 

generation results from Chapter 4 are salient as well, suggesting that we should also 

report the number of competing treatments investigated. This last value can be readily 

estimated by comparing confidence intervals; any treatment that may be the best 

treatment should be added to the count of competing treatments.
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Experimentation on genetic programming has shown a surprising result: evolutionary 

computation problems are often close to GP-hard. For difficult problems, we would be 

well-advised to try evolving solutions with small trees, since the density of solutions is 

highest there. The work of Chapter 5 suggests that systematically considering all small 

trees and making subroutines from these small trees can be a productive approach, even 

when a problem is nearly GP-hard. The modelling work and experiments of Chapter 6 

suggest that with small population sizes, we need not be too precise in the number of 

generations performed. For large populations, however, we can waste a great deal of 

work if we do not choose the number of generations carefully. The results there point to 

a fairly broad minimum in the computational effort, which suggests that choosing 

population sizes to within a factor of two or three is probably sufficient for many 

problems.

Future Work

This dissertation opens many doors. This has the necessary consequence that much 

experimentation and validation remains to be done. The statistical work of Chapter 3 

reveals that problems can be empirically categorized into two different kinds: success- 

based and improvement-based problems. These kinds of problems require different 

comparison methodologies. Computational effort is an excellent tool to use for success- 

based problems; however, Chapter 4 shows that there are some pitfalls to using this 

technique to compare algorithms. A  version o f the computational effort algorithm that 

corrects for the biases of Chapter 4 is still lacking, although the work presented here 

should enable a robust bias-estimation procedure.
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Early tests on Choose-Population-S ize-An d -Generation-N um ber  seem  

promising; however, we would like to test this algorithm on a wider set o f  test problems.

It would seem to be a worthwhile effort to simply rerun C h o o se-P o p u la tio n -S ize-A n d -  

G en era tion -N u m b er  on the set of test problems introduced in [Koza 1992] and [Koza 

1994]. Reliable numbers for computational effort, best population size and best 

generation number would provide a solid foundation for informing parameter choice on 

other problems. Another advantage of a broad investigation of performance would be in 

providing data to inform candidate GP theories of success.

The modelling approach of Chapter 6 seems to us very promising. After considering 

enough problems, it seems likely that a semi-empirical model of EC performance could 

be fashioned. The data of Koza’s Genetic Programming series [Koza 1992, Koza 1994, 

Koza 1999, Koza 2004] would be an excellent starting place for this effort. Regenerating 

the qualitative model of Chapter 6 for each instance of a broad problem suite would go a 

long way towards quantifying the benefits of different genetic programming interventions 

such as automatically defined functions. It is possible that a parameterized model of 

success probability could result from such an effort; this would allow a refinement of 

C h o o se-P o p u la tio n -S ize-A n d -G en era tio n -N u m b er  that needs only to estimate a few 

model parameters. This would be far more efficient than the current algorithm, which 

must compete hundreds or thousands of treatments against one another to ascertain best 

parameter settings.

The four models that we cycled among in F in d -In itia l-M -G  represent more a proof- 

of-concept than serious work. Using additional best-parameter data from a broader set of 

problems would enable more efficient behaviour in this algorithm. While it is perhaps
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obvious, it is worth mentioning that an informed selection of good parameter settings will 

have a direct payoff in the number and kind of human-competitive problems that GP can 

solve. This is equally true for the subroutine-manufacturing code of S y ste m a tic -  

S u b r o u tin e -G e n e r a liz a t io n  and M ake-A D LF. These two subroutine-generating 

algorithms are proved on specific problems; testing them over a broader problem suite 

would be a significant advance.

On the topic of subroutine-generating functions, testing the scientist algorithm further 

on other scalable problems is an obvious next step. Fortunately, most of the problems in 

[Koza 1994] are virtually designed for scalability, so coming up with test problems 

should not pose a major obstacle. Many problems in first- and second-year computer 

science courses are also scalable problems that should be amenable to the scalable 

genetic programming technique. Inducing subroutines on a broader set of problems 

should prove very interesting, both in terms of the successes achieved and the identity of 

the subroutines generated. One exciting possibility bears special consideration. We 

might present a slightly beefed-up version of the scientist algorithm with a portfolio of 

problems to solve. If these problems all share and can contribute to a common 

automatically defined function library, we may find the equivalent of human-designed 

programming library functions being evolved. For instance, sorting is a useful library 

function for a broad set of algorithms; providing a sorting operator as an evolved 

primitive operation will likely enable the efficient solution of some sorts of otherwise- 

insoluble problems. Serious progress along these lines will require the adaptation of 

evolved data structures to the genetic programming paradigm as well. Some work has 

already been done along these lines, particularly in [Langdon 1998b], A companion
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effort to the present work on scalable genetic programming that elucidates scalable data 

structures would be a very productive endeavour. With evolved data structures, 

automated and scalable programs, subroutine generation and a co-evolved validation 

mechanism, we can imagine a very powerful automated problem-solving system could be 

fashioned. Using the scientific method, embodied through experimentation and 

hypothesis testing, will be key to the success of such a programming system.
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Appendix 1: How Does Genetic Programming Work?

In this appendix, we will illustrate the conventional problem that genetic 

programming is expected to solve in human terms, so that the reader can appreciate how 

difficult the task is. We will make use of an thought experiment similar to Searle's 

"Chinese Room" allegory [Searle 1980, Searle 1984] to clearly illustrate the problem.

This appendix is written as a narrative, unlike the remainder of this thesis.

Genetic Programming Room Allegory

Suppose that you are ushered into a closed room with two tables. One of the 

tables has a number of piles of different tokens, each with a number inscribed on it. The 

other table is empty. Each token looks something like a tinker toy disc: it is flat, round, 

has a number inscribed on one side of it, and has one or more short stems of an elastic 

material sticking out from the perimeter with a little plastic knob at the end. Some of the 

tokens have no knobs. There are several different kinds of token and many copies of 

each kind of token on die table. After some investigation, it seems that there are seven 

kinds of token in all. Picking up one of the tokens, you discover that it has a slot at the 

top; the slot looks like the knobs could probably fit into it. A moment’s notice shows that 

each token has the same kind of slot at the top. Since the stems are flexible, you can 

probably recombine any tokens with any other tokens easily - they fit snugly once 

plugged together. Since there is ony one slot per token, you are constrained to produce 

trees with the token set. The stems are flexible enough that you can avoid geometrical 

problems with the tokens intersecting one another.
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The room has a rotating change door along one wall, like those at the ticket 

counter at a movie theatre. The change door has a large flat surface that rotates around. 

There is a button labelled "submit" beside the change door. You figure that a completed 

tree of tokens will fit nicely into it. There is a numeric readout on the same wall as the 

change door, which looks like an old-style plasma number display. It looks like the 

display can also spell the words "Error" and "Success" - you can see the letters lightly 

traced over the presently darkened display. A poster on the wall to the left of the number 

display has the text "Score:" written on it, like a label.

There is a second much larger display, maybe the size of a blackboard, on the 

wall beside the first display. It is currently black. You aren't sure exactly what this one 

does. Having nothing else to do, you examine the tokens more closely. The tokens 

labelled 0 , 1 and 2 have only a slot at the top of the token, and no stems coming out of 

them. The other four tokens, labelled 3, 4, 5, and 6 , have two stems each at the bottom, 

and a slot at the top. All of a sudden, a person comes in the door. She says, “you can't go 

for lunch until the word "Success" lights up on the display.” "Oh, yeah, one more thing: 

the best that you can score is eight," and she closes the door. You hear a distinct locking 

sound.

Since you have some time to kill, you try putting some tokens together. They 

stick together nicely. You walk over to the change door and put the tree in the 

compartment. You rotate the change door, and push the button. Almost instantly, the 

word "Error" appears on the score display. The big blackboard display draws a cartoon 

picture of your tree, with the word "Error" beside it. The change door rotates on its own, 

and gives you your tree back.
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Figure 1 Your second and third attempts give

IIError" as well, and you start to lose faith that

anything will work. It looks like it could be a

long time until lunch. For your fourth

attempt, you try plugging in 1-tokens along

the bottom edge of your tree, giving the

picture in Fig. 1. Once again, the change door

The first successful tree attempt for the GP rotates, and you expect another "Error".
room.

However, this time you are rewarded

for your persistence, since the display lights up "4". A little trial and error later, you 

figure out that you always need to terminate the tree by making sure all the slots at the 

bottom end of the tree are attached to 0, 1, or 2 tokens, or else you will get an error. As 

you submit each successive tree, the big display updates to keep all the trees you've been 

working on and the score they achieved in view.

After a few more random trials, you decide that perhaps a more systematic 

approach might be in order. You decide to try out all the three-node trees. After a little 

experimentation, you discover that there are twelve of them in total. They give the scores 

shown in Fig. 2, shown on the next page. If there is one thing to notice, it is that the 

results are consistent: all of our attempts gave scores of four! You begin to wonder if the 

machine might be broken, and visions of an quick exit from the room begins to recede. 

You are about to call for a technician, when it occurs to you - maybe you need three 

layers of nodes to make a successful tree. Back to the drawing board. Continuing with 

the systematic theme, you decide to try all combinations that can be made with two "4"
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tokens. If these all return a score of four points as well, you're going to give up and try to 

rouse somebody.

Figure 2
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All possible 3-node trees for the tree creation problem, and their 
scores.
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The first nine such trees are shown in Fig. 3, and the second set of nine in Fig. 4.

Figure 3
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First set o f 9 combinations achievable using two "4" tokens.

The good news is that we've managed to get a score other than four. The bad 

news is that our new high scores is still four, as all the new scores are worse than four! 

Another thing that you notice is that when the leaf nodes hold a "1, 2, 3" combination in 

any order, the score is three. Interesting.
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Figure 4
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Well, if a pair of 4 nodes at the top doesn't work, perhaps a 4 and a 5 will. You 

resolve to systematically try all of these trees. The results are heartening - your first tree 

with the "1,2,3" 

configuration, labelled 

"AI" in Fig. 5, scores 

you a whopping five 

points! Maybe there's 

hope of finishing this 

off in time for lunch 

after all.

There are eighteen 

such trees in all; the 

other nine are shown in 

Fig. 6 , offering few 

surprises. It appears 

that any permutation of 

"1,2,3" in the leaf 

nodes gives us a 

superior score, while 

variants with the

doublets "1, 1, 2 " and the like give a score of only four.
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Figure 6
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Continuing in the systematic vein, you try some trees involving the binary nodes 4 

and 6 . All of the various

configurations are 

summarized in Fig. 7. Of 

note here is that 4 and 6 at 

the root of the tree seem to 

behave like 4 and 5 do - in 

fact, there appears to be no 

significant difference 

between the two. A quick 

check of 4 and 7 just to be 

sure is in order. Wait a

Figure 7
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minute! The first tree you 

try, tree "BE", seems to 

contradict the trend. It 

gives a score of only three, 

just like the 4-4 trees did!

Carefully checking your 

work, you try out all the

other configurations, as shown in Fig. 8 . Sure enough, all the other configurations return 

a score of either four in the "a, a, b" case or three in the "a, b, c" case.

Combinations achievable using a "4" and a "6" token. The 
symbols a, b,  and c may be assigned to the tokens "1", "2" and "3" as 
differing variables, giving the indicated scores. One example using a 
“4” and a “7” token is indicated (BE).
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Figure 8 
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Appendix 1: How Does Genetic Programming Work?

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



249

Having tried all the combinations with a 4 in the topmost position, you figure that 

perhaps it would be useful to

try 5, 6 , and 7 there. In the 

interests of time, perhaps it
Figure 9
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Appendix 1: How Does Genetic Programming Work?

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Figure 10

250

BY:
CO =3

\
c )

Combinations achievable using a "7" token at the root. The symbols a,  b,  
and c may be assigned to the tokens "1", "2" and "3" as differing variables, 
giving the indicated scores.

It would appear that some of the two-node combinations have an affinity for one 

another. For instance, the 5-4, 5-7, 6-4, 6-7, 7-5 and 7-6 pairs all produce scores of five, 

while the opposite pairs give scores of three. Adding in the results of the previously 

encountered 4-5 and 4-6 pairs suggests that these pairs seem to reinforce one another.

What to try next? Obviously, we'll need to try a larger tree, one with 4 layers, 

perhaps. A quick calculation shows that our systematic approach will become quite 

arduous at this point, since there are 43 = 64 ways to lay out just the 3 topmost nodes! 

Let's try using 5 as the topmost node, 7 as the right intemode, and variously 4, 5, 6 and 7 

as the left intemodes. A few minutes later, the trees labelled "BZ" through "CC" appear
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on the big display, with scores as shown in Fig. 11. This gives us a score of four, which 

is unsurprising, given that we have only used the terminal nodes 2 and 3 here.

Figure 11
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Some balanced full trees o f height 3 and their respective scores. The tree 
labelled CE is the same as CC, but grafted as a right child onto a small tree o f  
height 2.

Perhaps a variant using 4, 6 , or 7 for the bottom-leftmost node with the leaf nodes 

"1,2,2, 3" might be in order. They also give scores of four, except for the variant using
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Figure 12

CF: CG:

7, which has a score of five. At this point, maybe we should revisit the decision of using 

a 5 as the root node; swapping in a 6 node gives us the tree labelled "CD", which has the 

disappointingly poor score of three. Perhaps moving to a larger tree might be in order? 

Starting at tree "CC", we extend it by one node in the upwards direction, as shown in tree 

"CE". This gives us the default score of four, so let's try something else.

Perhaps a 

better strategy 

would be to 

duplicate the 

whole subtree -  

so that we have a 

single root, and 

then two 

geometrically 

similar subtrees 

lying underneath 

that. A first 

attempt along this 

line gives us the 

relatively

successful trials shown as trees "CF" through "CH" in Fig. 12. Now we’re really getting 

somewhere -  notice that we have found two different ways of achieving the impressive 

score of six! Perhaps if we replace the lone 1 nodes hanging off the leftmost children of

A
i
V .

/
/

6  )  = 5

y \

C
DII

....
\

r  " (
\ .... ...  /

/ ■ -
\

V ....... \

i 5  i v 7  ) (  5  ) (  6  )

\ ...... A/  \
\ / \

/ .... \
\ .... y

/  \

A ..... ..<  ) ...... X

/
/■ '* .... \

\
\

/ ..... / ' - <  ) .... A  A - y  / ....... n

1 I i  4  j i 1 ) \ 6  ) i 1  ! I 4  ) i

. . y  > y  v

1 ) [ 7  \

v.. -y v . / \ . . . _ y ..... '  \ ..... /

/  \  
A ..... \ \  y

/  
/  

..... \

\
\

\

/ y .... N  / ...... A A  >
[ 2  ) ( 3  ) [ 2  ) 3  ) [ 2  i i 3  i { 2  \ '
" v .... x  V J  \ J V  J  V \ ...... /

CH: Cl:

/ \

A
\ . y

( 5 i I
6  )

V ; J
/ \ /

\

'x / ...... \  / ' > ~ N
[ 7  ) { 1 ) i 7  j

/ V - /  v- > ..... <
/  \ /

/
/  \  

y  \ / " .... \  /
; 2 )  { 3  ) [ 2  )

'a .... y ..... /

W  = 5/  \
f  V V \1 5 )  l e )
> A V /

/  \  /  \/ \
\
y..

/  \

2 } [ 2
 y v ...

J J  v/
/
i 3\

\
\ %

Some combinations o f  achievable trees with height 4. These are chosen so as 
to have geometrically similar subtrees under the root, in this case “4, 2, 3”,
“6, 2, 3”, and “7 ,2 , 3”.
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the subtrees under the root with full subtrees, we might be able to continue on and score 

even higher than our new best of six! Our first attempt along these lines, tree "Cl" of Fig. 

12, isn't that impressive - a single point degradation from our new best trees. Going back 

a step, we can rotate in other successful combinations of nodes, as in trees "CJ" and "CK" 

of Fig. 13.

Maybe 

increased height 

is the answer 

again! We can 

designate the 

successful tree 

"CK" as a 

subtree, and

Figure 13
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then try hanging 

tree "CK" off 

various

subtrees. Three 

quick attempts, 

shown by trees 

"CL" through

CL: CM : CN:
= 3
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The trees “CJ” and “CK” are combinations achievable of height four with 
geometrically similar subtrees under the root. Trees “CL”, “CM”, and “CN” use 
the symbol “CK” to indicate the entire tree labelled “CK”, which is attached as a 
subtree under the root node.

"CN" in Fig. 13, give positively awful results, scoring three, two, and two respectively.
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Let's go back 

and try these same 

tricks again, but 

using matching 

nodes under the 

root this time. We 

get the trees "CO" 

through "CU", as 

shown in Fig. 14. 

These duplicate 

but do not exceed 

prior successes. It 

does feel nice to 

have several sixes 

available to us. 

Getting frustrated, 

and hungry, we try 

a single larger tree 

with nice

symmetry properties.

Figure 14
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The trees “CQ” and “CR” are combinations achievable o f  height four with 
geometrically similar subtrees under the root. Trees “CS”, “CT”, and “CU” use 
the symbol “CR” to indicate the entire tree labelled “CR”, which is attached as a 
subtree under the root node.
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The height five 

tree "CV" shown in 

Fig. 15 has nice, 

regular numbering but 

only scores four from 

the screen. An idea 

strikes: perhaps a 

subtree rotation will 

matter to the problem. 

A little experiment 

with the rotation pairs 

"CW” and "CX", also 

shown in 

Fig. 15, give the 

same score of six.

Figure 15
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A large tree, another tree o f similar geometry to previous high-scoring 
trees, and a rotational variant o f this tree.
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Figure 16

CY: CZ:
( 0 = 6O- A

\
\

a a;
i g ) 
/  \

( 5

( A  = 6
> a

/  \

/  \  
m  r o
> <  >  <

/■..\

k
/  \

>...X
3 I 3 ).. y i 4 ) 4 I ( 2  ) (  2  )

\  y v y \  /.....

 x
I 1 { 2  ) i 1 ]V /  v j

( 1 i 3 i

A  v_y

Some more 

tests with 

rotations of 

previously 

successful trees 

give the same 

results, shown 

in Fig. 16. It 

would appear 

that the scoring 

function is 

rotation 

invariant. At 

this point, the 

door opens, and 

the attendant

invites us out for lunch, and for a discussion of our 79 attempts at this problem,
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Rotational variants o f previously successful trees, designed to test rotation 
invariance o f the scoring function.
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Analysis of the Genetic Programming Room Allegory

As you can see from the above story, several interesting things were happening. 

The most apparent thing is that it is not at all obvious what kind of problem we are 

solving when the context and labels are removed. A second thing is that a scoring 

function that returns only a single integer makes it very difficult to measure progress.

Did we move from a score of 5 to 6 because of the height of the tree? Was it due to the 

shape of the tree? Did the specific nodes that we chose make a difference? Does the 

“fitness function” like repetitive subunits? When placed in such a context, the number of 

possible hypotheses multiply almost without bound. Lacking auxiliary or additional 

information, we can’t even tentatively determine what problem we were attacking. Much 

like Searle’s original Chinese Room thought experiment, we are somehow ignorant of the 

information processing task that we are accomplishing. This is true even though we 

clearly made progress on the problem at hand without having any particular knowledge 

of the identity of the problem. Indeed, with a little more time and a few more trials, we 

might have been able to come up with a perfect solution without knowing the identity of 

the problem at all! It is this last point that gives us some confidence that genetic 

programming can make progress without explicit modelling of the problem at hand -  

after all, we managed to.

A little analysis of the problem-solving techniques used by the participant in the 

above allegory suggests some common threads that we might use to improve genetic 

programming. Some heuristics appear to have been used by the participant in attempting 

to solve the genetic programming problem. Firstly, try the simplest trees first. The 

searcher used approximately a breadth-first search through the space of all possible trees,
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at least until this became prohibitive. Secondly, try to infer relationships among entities. 

For instance, several attempts were made to determine the associativity of the operators 

4, 5,6, and 7. At the end, a tentative decision was made about rotations not being 

significant. Thirdly, go from the best. At each step, there is a best tree in mind, which is 

used as a template to make new variants. Finally, try little experiments to see if a 

particular intervention improves or degrades performance.

Of these four heuristics, genetic programming in its present form uses only the 

third, in the form of differential selection when choosing parents and in elitism. That 

alone can get you pretty far, but we can implement some of the other tricks as well. In 

this thesis, we discuss how trying the simplest trees first can be a very productive strategy 

in Chapter 5. We make an attempt at determining the relationships among entities herein, 

though it may well be a productive idea as well. Trying out little experiments is at the 

core of the scientist algorithm, which is introduced in Chapter 2 and expanded upon in 

the latter half of the thesis.

We hope that this small gedankenexperiment has been interesting and thought- 

provoking for the reader. One more thing. The problem in question in the GP room 

allegory is “give the solution to even-3-parity”. That is, the task is to make a program 

that will answer TRUE if and only if zero or two of the inputs are TRUE. The three 

terminal nodes, “1”, “2” and “3” are the input values of the problem, the three inputs that 

will be combined. The four connecting nodes, “4” through “7”, represent the boolean
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Figure 17

Computational Effort log Comp. Eft.
k_______ GP GP+ADF GP GP+ADF
3 96 000 64 000 5.0 4.8
4 384 000 176 000 5.6 5.2
5 6 528 000 464 000 6.8 5.7
6 70 176 000 1 344 000 7.8 6.1

Approximate computational effort to 
solve even-£-parity with 99% success rate 
as a function o f the number of Boolean 
predicates considered, k. Computational 
effort numbers are accurate to roughly a 
factor o f two, given the number o f runs 
performed in these experiments. Trials 
are performed both with Automatically 
Defined Functions, marked as 
GP  + A D F , and without, marked as G P . 
The data given for k  =  6 for the GP 
treatment are extrapolated from the earlier 
data, and are consistent with the absence 
o f any successes in 19 trials. All data are 
taken from [Koza, 2000],

functions AND, OR, negated-AND and negated-

OR, respectively. The score

presented to the subject is the number of rows of

the truth table of the program which

match the truth table row of the target problem.

The best possible score is indeed eight, 

representing a perfectly correct solution. As 

shown in Fig. 17, genetic programming routinely 

solves this problem and related problems of larger 

size without any explicit knowledge whatsoever of 

the problem. The smallest tree that we could find

that solves the problem is of size 19, although 

we did not try all the 1891919 462 400 trees 

of sizes 13,15, and 17 to be sure. One 

particularly elegant perfect solution of size 

19, found using the size-weighted entropy 

code described in Chapter 7 is shown in 

Fig. 18.

Figure 18

A function tree generated by genetic 
programming and optimized by breaking ties by 
size-weighted entropy that perfectly solves the 
Even-3-Parity problem o f this Chapter. The 
nodes “0”, “1” and “2” represent the three 
inputs o f the problem. “3” is the boolean 
function AND, “4” is the function OR, and “5” 
is the function Negated-AND. Three subtree 
rotations have been performed on the nodes 
marked with a heavy outline to increase the 
symmetry of the solution.
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