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Abstract

Both established and emergent business rely heavily on data, chiefly those
that wish to become game changers. The current biggest source of data is the
Web, where there is a large amount of sparse data. The Web of Data aims at
providing a unified view of these islands of data. To realise this vision, it is re-
quired that the resources in different data sources that refer to the same
real-world entities must be linked, which is they key factor for such a uni-
fied view. Link discovery is a trending task that aims at finding link rules that
specify whether these links must be established or not. Currently there are
many proposals in the literature to produce these links, especially based on
meta-heuristics. Unfortunately, creating proposals based on meta-heuristics
is not a trivial task, which has led to a lack of comparison between some well-
established proposals. On the other hand, it has been proved that these link
rules fall short in cases in which resources that refer to different real-world
entities are very similar or vice versa.

In this dissertation, we introduce several proposals to address the previ-
ous lacks in the literature. On the one hand we, introduce Eva4LD, which is a
generic framework to build genetic programming proposals for link dis-
covery; which are a kind of meta-heuristics proposals. Furthermore, our
framework allows to implement many proposals in the literature and com-
pare their results fairly. On the other hand, we introduce Teide, which
applies effectively the link rules increasing significantly their precision with-
out dropping their recall significantly. Unfortunately, Teide does not learn
link rules, and applying all the provided link rules is computationally expen-
sive. Due to this reason we introduce Sorbas, which learns what we call
contextual link rules.

xiii





Resumen

Las empresas que desean establecer un precedente en el panorama ac-
tual tienden a recurrir al uso de datos para mejorar sus modelos de negocio.
La mayor fuente de datos disponible es la Web, donde una gran canti-
dad es accesible aunque se encuentre fragmentada en islas de datos. La Web
de los Datos tiene como objetivo dar una visión unificada de dichas islas,
aunque el almacenamiento de los mismos siga siendo distribuido. Para ofre-
cer esta visión es necesario enlazar los recursos presentes en las islas de datos
que hacen referencia a las mismas entidades del mundo real. Link disco-
very es el nombre atribuido a esta tarea, la cual se basa en generar reglas de
enlazado que permiten establecer bajo qué circunstancias dos recursos de-
ben ser enlazados. Se pueden encontrar diferentes propuestas en la literatura
de link discovery, especialmente basadas en meta-heurísticas. Por desgra-
cia comparar propuestas basadas en meta-heurísticas no es trivial. Por otro
lado, se ha probado que estas reglas de enlazado no funcionan bien cuan-
do los recursos que hacen referencia a dos entidades distintas del mundo real
son muy parecidos, o por el contrario, cuando dos recursos muy distintos
hacen referencia a la misma entidad.

En esta tesis presentamos varias propuestas. Por un lado, Eva4LD es un
framework genérico para desarrollar propuestas de link discovery basa-
das en programación genética, que es un tipo de meta-heurística. Gracias a
nuestro framework, hemos podido implementar distintas propuestas de la
literatura y comprar justamente sus resultados. Por otro lado, en la tesis pre-
sentamos Teide, una propuesta que recibiendo varias reglas de enlazado las
aplica de tal modo que mejora significativamente la precisión de las mis-
mas sin reducir significativamente su cobertura. Por desgracia, Teide es
computacionalmente costoso debido a que no aprende reglas. Debido a es-
te motivo, presentamos Sorbas que aprende un tipo de reglas de enlazado
que denominamos reglas de enlazado con contexto.
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Chapter1

Introduction

T
his chapter introduces our PhD work. It is organised as follows: Sec-
tion §1.1 introduces the context of our research work; Section §1.2
presents an overview of the related work; Section §1.3 presents the
hypothesis that has motivated our work and states our thesis; Sec-

tion §1.4 summarises our main contributions; Section §1.5 sketches the
collaborations that we have conducted throughout the development of this
dissertation; finally, Section §1.6 describes the structure of this document.

1



2 Chapter 1. Introduction

1.1 Research context

The feasibility of many emerging business relies on the availability and
inter-operability of suitable on-line datasets [3]. The Web of Data provides
business with islands of data (availability) that can be transparently used as
required by the business models (inter-operability). The Web of Data builds
on the Linked-Data principles that support the idea that resources within dif-
ferent datasets that refer to the same real-world entities must be linked so as
to facilitate data inter-operability [10]. Link rules are intended to help link-
ing resources automatically relying on different kind of relations, e.g., spatial
or temporal coverage, we focus only on owl:sameAs that relates resources
representing the same real-world entity.

The whole process to link two datasets is known as link discovery; which
consists in two phases: the former aims at generating link rules that en-
code whether two resources should be linked, and the latter, focuses on
efficiently applying these rules. Learning link rules consist in selecting trans-
formation and similarity metrics that are applied to the literals of the data
properties of two resources to check if they can be considered similar enough;
if they are, then the input resources are linked; otherwise, they are kept apart.
Furthermore, linking two datasets entails performing a Cartesian prod-
uct of their resources, and then, applying a link rule over all the resource
pairs to check whether they should be linked. The product is usually very
large, due to this reason is why researchers have proposed so-called block-
ing techniques; which aim at reducing the number of resource pairs that have
to be checked when applying a rule.

Learning link rules is a task that requires to explore a number of po-
tential solutions that is very large; due to this reason researchers have
approached the problem relying of meta-heuristics proposals. This kind of
proposals are inspired by nature and their main feature is their capabil-
ity to explore in parallel a large space of solutions, and generally, manage to
find a suitable solution. Therefore, it is not unusual to find proposals that
learn link rules following the genetic programming approach, which belong
to a particular kind of meta-heuristics that are known as evolutive proposals.

The literature provides several genetic programming based proposals for
link discovery [21, 28, 29, 41, 42, 44, 49, 51]. These proposals generate link
rules relying on several heuristics, and then, refine such rules using a func-
tion that is able to quantify the effectiveness of the link rules. Genetic
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programming builds on a fixed template that encodes its main functional-
ity, which is always the same, and a set of heuristics that change depending
on the specific implementation, which are intend to refine the rules.

Despite the large number of link discovery proposals, as far as we know,
these proposals have not been compared under the same experimental cir-
cumstances. Some surveys presented a comparison of these proposals from a
conceptual point of view, and some other just gather the results from the orig-
inal papers of the proposals; furthermore, each proposal was executed
following different method of evaluation, e.g., k-fold or exhaustive, and with
different number of examples. Furthermore, the authors did not rely on sta-
tistical analysis to support claims regarding the comparison of the proposals.
In particular, genetic programming proposals lack a comparison survey due
to the lack of a generic framework to build specific implementations, and
then, compare these implementations; thus, comparing them under the same
experimental circumstances is unfeasible. Therefore, it is not clear which
genetic programming proposal works better in the scenarios of the literature.

We have also realised that the link rules generated by current proposals
usually fall short when linking resources that refer to different real-world en-
tities that have a similar representation, or when link rules have to deal with
resources that have very different representations but which refer to the
same real-world entities. Our experience proves that been able to address
these two challenges is paramount to link real-world scenarios. The rea-
son for this drawback is the fact that link rules compare the data properties of
the resources been linked, but consider no related resources in such link-
ing process preventing them to capture restrictions about the contextual
information of such resources.

1.2 Related work

Link discovery is a task equivalent to record linkage in the relational
databases field, due to this reason in the following sub-sections we first
present an overview of the literature concerning link discovery surveys in re-
lational databases. Then, we describe surveys of link discovery proposals in
the Web of Data. Next, we present research works related to methodologies
defined for Ontology Matching, that is different from link discovery. Finally,
since we focus on genetic programming proposals we aim at presenting how
the most well-known proposals compared their results with other proposals.



4 Chapter 1. Introduction

1.2.1 Link discovery in relational databases

In the literature of relational databases, the task of record linkage ad-
dresses the same problem of link discovery [16, 30]. The most well-known
surveys are the ones proposed by Köpcke and Rahm [33], Köpcke and others
[34], and Elmagarmid and others [24].

Köpcke and Rahm [33] presented a survey analysing a large number
of proposals, namely: BN [37], MOMA [54], SERF [8], Active Atlas [53],
MARLIN [9], Multiple Classifiers System [58], Operator Trees [12], TAI-
LOR [23], FEBRL [15], STEM [32], Context Based Framework [14]. Köpcke
and Rahm grouped them according to their features: a) Entity type, whether
proposals are able to deal with data modelled as trees (XML) or only tabu-
lar data; b) Blocking methods, used by the proposals to deal with large
amount of data; c) Matching algorithms, that specify whether two records re-
fer to the same real-world entity; d) Whether proposals are able to combine
different matching algorithms; and e) Whether the approach is manual, su-
pervised, semi-supervised, or unsupervised. Then, the authors compare the
evaluations results published in the corresponding research papers of each
proposal in terms of F1. Finally, the authors conclude that: a) Current pro-
posals have high effectiveness, efficiency, generality and low manual effort;
b) There is a trend in using supervised and hybrid approaches; c) Frame-
works evaluations use diverse methodologies, measures, and datasets that
hinder the comparison of their results and, therefore, they see a strong need
for standardised benchmarks, make available the prototype implementations,
and data used by the proposals to learn.

Köpcke and Rahm proposed a framework to build and evaluate machine
learning proposals applied to entity resolution [34]. Using that frame-
work the same authors compared the effectiveness of several classifiers [36],
namely: Decision tree, Logistic regression, SVM, Multiple learning, Base-
line strategy. In their paper, the authors first analyse the datasets used in the
evaluation of several entity resolution papers introducing those that are go-
ing to be used by them. Then authors analyse proposals that follow a manual
approach, as a result they compare the effectiveness obtained in terms of Pre-
cision, Recall, and F1. Next, the authors do the same for supervised proposals
in the same datasets, as a result they compare their effectiveness in terms of
labelling effort and F1. Finally, the authors concluded that: a) SVM learning
proposals are suitable especially in the bibliographic datasets from the bench-
mark; b) the E-commerce datasets are especially challenging since they
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require large training data sets. c) The best scalability was achieved by the
proposals implemented with the PPJoin+ framework, however scalability is
something to be still improved.

Elmagarmid and others [24] presented a survey that leans towards entity
matching approaches rather than specific proposals. In their work the au-
thors characterize in a taxonomy the different approaches that proposals may
follow, classifying a large number of them. Unfortunately, neither experimen-
tal data is presented not the results obtained in the specific datasets by the
classified proposals.

1.2.2 Link discovery in the Web of Data

In the link discovery literature there are two surveys, by Nentwig and oth-
ers [39] and Soru and Ngomo [50]. In addition, each year the OAEI initiative
organises a contest in which one challenge is link discovery. Every year, a
summary report is published; in this section, we focus on the 2017 report.

Nentwig and others [39] presented a paper analysing a wide num-
ber of proposals and their features, namely: RiMOM [52], KnoFuss [45],
AgreementMaker [20], Silk [56], CODI [27], LIMES [40], LogMap [31], SER-
IMI [4], Zhishi.links [47], SLINT+ [43]. Nentwig and others first compared
their different features: a) Data formats supported by the proposals, i.e.,
SPARQL, RDF, OWL; b) Whether they are manual, supervised, or unsu-
pervised; c) Runtime optimization, if proposals use blocking or filtering
approaches; d) Matching strategies, the approach followed by the propos-
als; e) Whether proposals support post-processing tasks, e.g., clerical review;
f) Whether proposals support parallel processing; g) If proposals have GUI;
and h) source code or prototype availability. Then, the authors report on the
datasets in which the proposals were evaluated. Finally, the authors compare
the results in terms of the F1 score. Their conclusions are: a) most propos-
als focus on simple property-based matching proposals instead of using the
ontological context with structural matchers; b) Efficiency must be im-
proved by means of parallel execution, filtering proposals and blocking; c) To
assess the comparison of the effectiveness and efficiency of the different pro-
posals it would be valuable to have a common set of benchmarks to test the
proposals, even with the same hardware if possible.

Soru and Ngomo [50] compared the effectiveness of several machine
learning approaches, namely: Multi-Layer Perceptron, Logistic Regression,
Linear SMO, Decision Table, J48, Linear Regression, Random Trees, Linear
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SVM, Polynomial-3 SVM, and Naïve Bayes. Soru and Ngomo aimed at an-
swering three main questions: a) Which of the machine learning approaches
achieves the average best F1 score; b) Which of the machine learning ap-
proaches is most robust against noise; c) Which of the approaches is the most
time-efficient. To find the answers, the authors executed several propos-
als and compared their results in terms of average F1. As a result, the authors
state the following answers for such questions: a) Random Trees and Multi-
Layer Perceptron obtained the best results; b) Noisy datasets suggest that
Multilayer Perceptron are the most robust to be used; c) All approaches scale
well but random trees were the fastest in a few datasets. d) As a general con-
clusion, the authors suggest using Multi-Layer Perceptron as they achieve
acceptable runtimes are robust against noise.

1.2.3 Ontology matching methodologies

Ontology matching is the task of aligning the terms defined in an ontol-
ogy with the terms of another, although this task may look similar to link
discovery they are quite different tasks. In ontology matching the num-
ber of elements to be aligned is much less that the number of resources to be
linked in link discovery. In addition, one may know beforehand the terms re-
lated to a type, but different resources of the same type may have different
data properties or literals. Therefore, both tasks have differences in their
goals and how to achieve them.

Nevertheless they are related since one approach followed by ontol-
ogy matching proposals is to perform a link discovery task between the data
instances of two types, each one of a different ontology. Building on the num-
ber of links generated, the proposal can decide if both types should be
aligned. This approach is known as data interlinking, that is the name of
the OAEI challenge from which most of the link discovery proposal use
their datasets; due to the fact that data interlinking and link discovery are
essentially the same.

The yearly OAEI initiative contest has a challenge of data interlink-
ing, in which all participant proposals are analysed and compared [1]. Some
participants are Silk [56], LogMap [31], SERIMI [4], or Zhishi.links [47]. Par-
ticipating proposal are evaluated in terms of runtime, number of instances
linked, Precision, Recall, and F1. Each year new datasets to participate in this
challenge are released, although the ones released in 2010 are the most used
in the literature. In the OAEI results the features of the proposals are not com-
pared, they only focus on effectiveness. In addition, the yearly reports always
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use a Bernoulli significance test to support the claims regarding which pro-
posal is better. As a result of each yearly paper, a ranking is computed and
they report the top-three proposals. The OAEI does not count with a proper
methodology, but some guidelines that were devised by García-Castro and
Gómez-Pérez [26] are followed to carry out the experiments.

1.2.4 Genetic programming based proposals
The generation of link rules has being extensively addressed in the litera-

ture by proposal based on genetic programming algorithms [21, 28, 29, 41, 42,
44, 49, 51]. We classify these proposals into three groups, namely: a) Super-
vised proposals that require annotations to be provided with; b) Active
Learning proposals that implement an algorithm that requests annotations
from the user as needed; c) Unsupervised proposals that do not require any
annotations; and d) Hybrid proposals that include some external logic in
addition to the basic genetic programming algorithm. In the genetic pro-
gramming algorithms, the link rules are represented as trees of functions;
therefore, they typically use tree-manipulation functions.

Supervised proposal. Isele and Bizer [28] presented Genlink, their proposal
follows a 2-fold validation applied to a narrowed version of the datasets. In
their experiments they compared the results obtained in terms of iterations,
training runtime and F1, and validation F1 with the proposal by de Car-
valho and others [21]. However, the results used in their comparison were
taken from the original paper by de Carvalho and others instead of comput-
ing both proposals under the same experimental conditions. The datasets
used in by Isele and Bizer [28] and de Carvalho and others [21] were the ones
released by the OAEI contest in 2011, and the ones from the benchmark
by Chaudhuri and others [13]. In addition, Genlink is the only genetic pro-
gramming proposal that introduces an algorithm to pair the data properties
of the resources from different datasets; which consist in applying a Leven-
shtein function to all the possible label pairs and keeping only those with a
perfect score, i.e., 1.00. Genlink is part of the well-known link SILK suite [56].

de Carvalho and others [21] evaluated their proposal following a 10-fold
validation on a narrowed version of the dataset, however instead of rely-
ing on k− 1 training sub-sets, the authors used one for training and another
for validation, thus, a kind of 2-fold validation rather than 10-fold. Au-
thors reported their results in terms of runtime, training F1, and validation F1.
Some of the datasets used were extracted from the benchmark by Chaud-
huri and others [13], and others generated with the synthetic data generator
of FEBRL [15]. Finally, no comparison with other proposals was reported.
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Besides their proposal, de Carvalho and others [22] also presented an arti-
cle related to genetic programming algorithms that analysed the impact of
the different parameter turnings.

Active learning proposal. Ngomo and Lyko [41] presented Eagle. The au-
thors performed a first experiment in which they applied a handcrafted link
rule and used its results as a gold standard, then relied on Eagle to obtain a
rule as close as possible. Then, authors performed some experiments on the
datasets used by FEBRL [15] and MARLIN [9] and they compared the re-
sults in terms of the F1 score and the running time. The datasets in which a
link rule was used as gold standard are Dailymed-Drugbank and DBpedia-
LinkedMDB, the other experiments were run in the dataset of DBLP-ACM
extracted from the benchmark devised by Köpcke and others [35]. Eagle is
part of the well-known LIMES suite [40].

Isele and others [29] presented an upgrade of Genlink called ActiveGen-
link. ActiveGenlink works in the same way of its previous version but
includes an active learning algorithm based on a query strategy that relies on
a heuristic to iteratively select meaningful annotated examples from avail-
able data and required users to accept or decline such examples in order to
keep learning link rules.

Freitas and others [25] presented an upgrade of the proposal by de Car-
valho and others [21] by including an algorithm of active learning. The active
learning is based on a committee of functions that provides the regular pro-
posal of de Carvalho and others with annotated examples, in case that the
committee is not able to reach a verdict a user must make the call of whether
use or not the annotated examples.

Unsupervised proposal. Borges and others [11] proposed an upgrade for
the proposal by de Carvalho and others [21] to make it unsupervised;
unfortunately, this upgrade is intended to work solely on bibliography
datasets.

Nikolov and others [44] presented an unsupervised proposal. The nov-
elty of their proposal is its custom objective function that takes the size of the
link rules into account by combining the results of a Pseudo-F1 function with
a function called neighbourhood growth, which was devised by the au-
thors. The authors evaluated their proposal, first, using narrowed versions of
the OAEI benchmark of 2010 and 2011 from the data interlinking track, and
then, with some curated datasets. In addition, the authors relied on some pre-
processing techniques to clean the data (such as removing stop words), and
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to index data so the linking process was faster. The proposal by Nikolov
and others [46] is available as part of the well-known framework KnoFuss.

Hybrid proposal. Singh and Sharan [49] proposed an adaptive genetic pro-
gramming algorithm. Their proposal relies on a heuristic that can be applied
to any genetic programming algorithm that learns effective link rules in less
time than regular genetic programming algorithms. The heuristic is based on
several policies to prune the link rules learnt that are unappealing by two
means: the size of the link rules and the F1. The authors evaluated their pro-
posal relying on the 2010 OAEI datasets and the CORA dataset by Chaudhuri
and others [13].

Sun and others [51] proposed an entity resolution approach combined
with genetic programming. Their proposal uses a genetic programming algo-
rithm that relies on custom functions to select, cross, mute, replace, and create
link rules. The link rules that this algorithm handles have a fixed structure de-
fined by the authors, therefore, preventing them to grow in size. The proposal
relies on the F1 score as the fitness function. The authors evaluated their pro-
posal using a narrowed version of the CORA dataset [13], and compared their
results with the proposals by Isele and Bizer [28] and de Carvalho and oth-
ers [21]. Nevertheless, the authors did not execute the literature proposals,
but just compared the results reported by Isele and Bizer [28] and [21].

1.2.5 Discussion

Research proposals like the ones by Elmagarmid and others [24], Köpcke
and Rahm [33], Köpcke and others [34], Nentwig and others [39], and Soru
and Ngomo [50] are suitable for practitioners and researchers since they anal-
yse the features of the proposals and this is useful to select proposals
based on a set of requirements. However, selecting proposals based on their
effectiveness is something that requires an analysis that relies on statisti-
cal significance tests to support its claims. The OAEI results may provide
an overview of the effectiveness of different ontology matching propos-
als to practitioners; unfortunately, this task is slightly different from link
discovery and may fall short when linking two datasets.

Regarding the genetic programming proposals from the literature [21, 28,
29, 41, 42, 44, 49, 51], none of them actually compares its results with other
proposal proposals in the same experimental conditions. The authors usu-
ally compare their results with the ones reported in the articles of the other
proposals, and furthermore, no ranking of the results obtained is computed.
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1.3 Research rationale
According to Yuhanna and others [57], data integration is a paramount

tasks for both emergent and consolidated companies. Vargas and others [55]
also claim that the current problem is moving from a web of data is-
lands to a real Web of Data. Link discovery is a key task to realise this vision.
In a truly Web of Data, one may have access to a piece of data and navi-
gate through the related data, independently from whether they are hosted
by the same provider or a different provider. Belissent and others [6] also
pointed out how having this Web of Data is clearly profitable for the business
models of many companies. Furthermore, Belissent and others [7] have iden-
tified ten key-factors in the technology related to processing data: the fifth
one state that the Web should be a large graph of data stored in dis-
tributed environments, but correctly linked so that it can be viewed as a
unique dataset. This argumentation leads to the following hypothesis:

The trends that companies are adopting nowadays suggest that ex-
ploiting the data in the Web is becoming paramount for their business.
Nevertheless, current data are fragmented in isolated datasets that
must be linked, effectively and efficiently, so as to relate the data re-
garding the same real-world entities that are available in disparate
islands of data. Companies who wish to play a major role in this
world are interested in proposals to link data.

Assuming this hypothesis, our analysis of the related work reveals two
key-points. The former one is that link discovery proposals based on meta-
heuristics, such as the genetic programming, have not being properly
compared due to the lack of a framework that enables a fair experimental en-
vironment; and thus, it is not clear which proposal behaves the better. The
latter is that the existing link discovery proposals lack a proper approach to
improve the precision of the integration results since they do not exploit con-
textual data. These two points clearly justifies working on a framework that
helps implement genetic programming proposals, and allows a fair compari-
son between them, and enhancing these proposals by significantly improving
the their precision without degrading their recall. This argumentation leads
to the following thesis, which we prove in this dissertation:

On the one hand, it is possible to fairly compare link discovery pro-
posals based on meta-heuristics, and rank them building on their
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results to conclude which behaves better depending on the scenario.
On the other hand, it is possible to significantly improve the preci-
sion of the link discovery proposals without a significant drop in
their recall. We conjecture that combining link rules and exploiting
contextual information is the key.

1.4 Summary of contributions
Our main contributions are the following:

Eva4LD: it is a generic genetic programming framework to implement spe-
cific proposals that perform link discovery. It is easily configurable by
end-users and brings the opportunity to test new implementations of
genetic programming proposals for link discovery, and, on the other
hand, allows to compare the different proposals under the same experi-
mental conditions. Bringing a fair environment to compare them. We
have one journal paper presenting Eva4LD that is currently under
review.

Teide: it is an approach that combines several link rules to exploit the context
of each resource. It aims at improving the precision without drop-
ping recall. Teide aims at addressing resources that are different but
have very similar representations, or on the contrary, have different rep-
resentations but refer to the same real-world entities. We have one
workshop [19], and two conference papers [17, 18].

Sorbas: this proposal aims at learning contextual link rules, instead of only
applying rules efficiently like Teide. We have proved that this ap-
proach is as effective as Teide, but more computationally efficient. We
have one journal paper about Sorbas that is currently under review.

1.5 Collaborations
The motivation to work on this dissertation comes from two national

research projects. The former is ISIDORO, in which we worked on data inte-
gration and we studied the link discovery proposals. We realised the lack of a
common environment to fairly compare the proposals, and then, we found
out that link rules had this drawback when facing similar resources that are
different, and different resources that are the same. Later, in the project VOR-
TEX, we worked on combining the link rules to improve their precision
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without dropping their recall; and Teide was devised for this task. Then, we
realised that Teide was computationally expensive, so we devised Sor-
bas which aims at fixing this drawback. In addition, during the PhD we
collaborated with Dr. Carlos Rivero from the Rochester Institute of Technol-
ogy in New York, USA. Our combined effort settled the pillar ideas on top of
which Teide and Sorbas were built.

1.6 Structure of this dissertation

This dissertation is organised as follows:

• The introduction comprises this chapter, in which we motivate our re-
search work and conclude that there are two main needs to cover. The
former is to have a fair experimental environment to compare ge-
netic programming proposals, and the latter, that link rules fall short
when addressing some resources to be linked.

• Chapter §2 reports on our generic framework to implement specific
genetic programming proposals for link discovery, and thus, a fair ex-
perimental environment. In addition, it provides a statistical ranking of
the main proposals from the literature and three additional proposals
that we have devised.

• Chapter §3 describes our proposal called Teide, which combines link
rules as so to their precision is significantly improved without a
significant drop in their recall.

• Chapter §4 presents our proposal Sorbas, which learns contextual link
rules to link two datasets. In terms of effectiveness the link rules learnt
by Sorbas are the same of how Teide combines and applies the link
rules. In terms of efficiency, however, once the rules are learnt by Sorbas
this approach outperforms Teide.

• Appendix §A reports on the computing facility we used in our experi-
ments and the different scenarios in which we relied to perform our
experimentation.

• Appendix §B introduces our running examples in which we explain the
different proposals and showcase some examples.



Chapter2

Eva4LD:AGeneticFramework

T
his chapter introduces our framework called Eva4LD, which helps
practitioners to implement genetic programming-based link discov-
ery proposals. It is organised as follows: Section §2.1 introduces the
context of our framework; Section §2.2 presents some preliminary

concepts; Section §2.3 describes and explains our framework; Section §2.4 de-
scribes several instantiations of our framework; Section §2.5 explains and
describes the experiments conducted with our implementations; and finally,
Section §2.6 recaps on the conclusions drawn from our experiments.

13
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SELECT

CROSS

MUTATE

CREATE

EVALUATE

REPLACE

0.70 0.50 0.80

EVALUATE 0.62

Figure 2.1: A sample genetic programming workflow.

2.1 Introduction

We have devised a framework called Eva4LD that is intended to help
implementing link discovery proposals based on supervised genetic pro-
gramming algorithms from the literature. These algorithms aim at generating
an initial set of potential solutions for a problem, and then at refining such so-
lutions relying on a function that quantifies how good one solution is. The
different steps in which solutions go through in these algorithms are meant to
refine elements that conform the solutions, so the overall quality of the
solutions improves.

Genetic programming algorithms are inspired by genetic algorithms,
the main difference between these two are the solutions they handle. In
the former, solutions are meant to be executable models; in the latter the
solutions are flat data structures that represent a solution for a maxi-
mization/minimization problem. In the context of link discovery, genetic
programming algorithms handle link rules represented like trees of functions
as potential solutions. The function used to evaluate the quality of such link
rules usually involves evaluating the link rules against a set of reference links.
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Jaro

dblp:name nsf:name “0.80”

Mult

“0.90”

mult(jaro(dblp:name,nsf:name,0.80), 0.90)

Figure 2.2: Expressing a link rule as a tree solution.

Figure §2.1 shows a sample workflow: it first creates a set of link rules,
then, it evaluates how good these rules are by means of a score in range
0.00 . . 1.00. Next, some of these link rules are selected and combined by
means of crossover and mutation functions. As a result new link rules are ob-
tained, which are evaluated as well. Finally, the new link rules replace some
of the initial ones; if a stop criterion has being reached, the algorithm stops re-
turning the set of link rules computed in so far; otherwise this process is
repeated until a stop criterion is met.

Our framework is composed of a template, which is a generic algorithm
that provides a harness to implement a variety of genetic programming algo-
rithms by instantiating a number of variation points. By implementing the
different variation points different proposals may be built.

2.2 Preliminaries

In this section, we introduce the concepts required to explain our
framework.

Definition 2.1 (Dataset) A dataset is a set of RDF triplets that follows the
W3C specification [5]. The triplets consist of a subject and a predicate that are
IRIs, and an object that can be either a literal or an IRI. The IRI of the sub-
jects uniquely identify resources within the dataset, the IRI of the predicates
refers to a namespace of a vocabulary (e.g. schema.org, owl, or foaf). Predi-
cates are typically called data properties when they associate subjects with
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objects that are literals; they are typically called object properties when they
associate subjects with objects that are IRIs of other subjects.

Example 2.1 Our running example from Section §B.1 presents two sample
datasets that are based on the DBLP and the NSF datasets, which are de-
scribed in Appendix §A.2. The resources are depicted in greyed boxes whose
shapes encode their classes (i.e., the value of property rdf:type), the proper-
ties are represented as labelled arrows, and the literals are encoded as
strings.

Definition 2.2 (Link) A link is a triplet that relates the subject IRIs of two
resources. The predicate that links the IRIs can be owl:sameAs if both
resources refer to the same real-world entities, or on the contrary, owl:
differentFrom if they refer to different entities.

Example 2.2 Assuming the datasets depicted in Section §B.1, the following
are sample links:

(dblp:weiwang, owl:sameAs, nsf:weiwang1),
(dblp:weiwang, owl:differentFrom,nsf:weiwang2),
(dblp:weiwang, owl:differentFrom,nsf:binliu),
(dblp:binliu, owl:sameAs, nsf:binliu),
(dblp:binliu, owl:differentFrom,nsf:weiwang1)),
(dblp:binliu, owl:differentFrom,nsf:weiwang2)),
(dblp:euzenat, owl:differentFrom,nsf:weiwang1),
(dblp:euzenat, owl:differentFrom,nsf:weiwang2), and
(dblp:euzenat, owl:differentFrom,nsf:binliu).

Definition 2.3 (Scenario) A scenario is a triplet that consist of two datasets
containing resources that refer to the same real-world entities, and a set of
links that relate the resources within these datasets.

Example 2.3 We define the scenario Researchers relying on our running ex-
ample described in Section §B.1 based on DBLP and NSF datasets, D1 and D2

respectively, and the set of links L

(dblp:weiwang, owl:sameAs, nsf:weiwang1),
(dblp:weiwang, owl:differentFrom,nsf:weiwang2),
(dblp:weiwang, owl:differentFrom,nsf:binliu),
(dblp:binliu, owl:sameAs, nsf:binliu),
(dblp:binliu, owl:differentFrom,nsf:weiwang1),
(dblp:binliu, owl:differentFrom,nsf:weiwang2),



2.2. Preliminaries 17

(dblp:euzenat, owl:differentFrom,nsf:weiwang1),
(dblp:euzenat, owl:differentFrom,nsf:weiwang2), and
(dblp:euzenat, owl:differentFrom,nsf:binliu).

The Researchers scenario is defined by the tuple (D1, D2, L).

Definition 2.4 (Link Rule) A link rule is a model that given two resources
determines whether they refer to the same real-world entities. Link rules
build on aggregate metrics, string metrics, and transformation metrics that
are used to compare the values of a subset of data properties. When a rule is
applied between two resources, the data properties within the rule are re-
placed by their actual values in the context of these resources. After such
replacement, the link rule is evaluated obtaining a value between 0.00, entail-
ing that resources are not linked, or 1.00, entailing that such resources are
linked by a triplet (IRI1, owl:sameAs, IRI2), where IRI1 is the subject IRI of
the first resource and IRI2 of the second.

Example 2.4 Consider the datasets DBLP and NSF depicted in Section §B.1,
and the link rule:

r: link(A,R) if rdf:type(A) = dblp:Author,

rdf:type(R) = nsf:Researcher,
NA = dblp:name(A),NR = nsf:name(R),
S1 = jaro(NA, normalize(NR)),
S1 − 0.80

1.00− 0.80
> 0.

To link the resources within these datasets, first we need to consider the
pairs of dblp:Author and nsf:Researcher resources, namely:

(dblp:weiwang,nsf:weiwang1),
(dblp:weiwang,nsf:weiwang2),
(dblp:weiwang,nsf:binwliu),
(dblp:binliu, nsf:weiwang1),
(dblp:binliu, nsf:weiwang2),
(dblp:binliu, nsf:binwliu),
(dblp:euzenat, nsf:weiwang1),
(dblp:euzenat, nsf:weiwang2), and
(dblp:euzenat, nsf:binwliu).

Then for each of these pair of resources the link rule r is instantiated by re-
placing the data properties with the literals that these resources have. For
instance, the pair (dblp:weiwang,nsf:weiwang2) instantiates the link rule as
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jaro(“WeiWang”, normalize(“Wang,Wei”)). The result such expression is
1.00, therefore, evaluating r obtained a score of 1.00 as well. As a re-
sult, r would return tuple (dblp:weiwang, owl:sameAs, nsf:weiwang2) for
dblp:weiwang and nsf:weiwang2.

Definition 2.5 (Chromosome) A chromosome is a tuple that relates a link
rule and its effectiveness score.

Example 2.5 Figure §2.2 shows a link rule can be mapped or expressed as a
tree. A chromosome using such rule is defined as (r, 0.47), where 0.47 is the
effectiveness score of r.

2.3 Template
In this section, we present the template of our framework, which is

sketched in Algorithm §2.1. It provides a harness in which the variation
points are written in capital letters. Later, we provide additional details on
how to instantiate the variation points.

The template gets as input a scenario (D1, D2, L) and, as a result, it pro-
vides a set of link rules R learnt. In addition, the template is fed with some
arguments: a maximum population size s, the crossover probability pc, and
the mutation probability pm.

The different steps performed in our template shown in Algorithm §2.1
are: i) Create a set of chromosomes C known as parents; ii) Create a set of
chromosomes called offspring by selecting link rules from the chromo-
somes within the parents set, selected link rules are combined by means of
crossover and mutation variation points to build new link rules, which are
then transformed into new chromosomes to fill the offspring set; iii) Cre-
ate a new parents set by combining the offspring set and the previous parents
set. iv) Repeat this steps until a stop criterion is reached.

Example 2.6 Let us work on the Researchers scenario from our previ-
ous examples, which consist of the datasets DBLP and NSF described in
Section §B.1, and the following set of links L:

(dblp:weiwang, owl:sameAs, nsf:weiwang1),
(dblp:weiwang, owl:differentFrom,nsf:weiwang2),
(dblp:weiwang, owl:differentFrom,nsf:binliu),
(dblp:binliu, owl:sameAs, nsf:binliu),
(dblp:binliu, owl:differentFrom,nsf:weiwang1),
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GenericTemplate(S) : R

parameters s, pc, pm

– Step i)
C: = ∅
R :=CREATE(s)

for r in R do
M :=ComputeConfusionMatrix(D1, D2, L, r)

c :=(r, EVALUATE(M, r))

C :=C ∪ {c}

end

– Step ii)
R :=∅
while ¬STOP(C) do

C ′ := ∅
while |C ′| < s do

R :=SELECT(C)

if random(0.00, 1.00)> pc then
R :=CROSSOVER(R)

end
if random(0.00, 1.00)> pm then
R :=MUTATE(R)

end
for r in R do

M :=ComputeConfusionMatrix(D1, D2, L, r)

c ′ :=(r, EVALUATE(M, r))

C ′ :=C ′ ∪ {c ′}

end
end
– Step iii)
C :=REPLACE(C,C ′)

end
R :=rules(C)

end

Algorithm 2.1: Template for genetic-programming algorithms.
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(dblp:binliu, owl:differentFrom,nsf:weiwang2),
(dblp:euzenat, owl:differentFrom,nsf:weiwang1),
(dblp:euzenat, owl:differentFrom,nsf:weiwang2), and
(dblp:euzenat, owl:differentFrom,nsf:binliu).

We provide as arguments for the maximum population size s a value of 3,
and 0.40 for the crossover pc and mutation pm probabilities, respectively.

First, due to the value of s a number of three link rules are generated by
the variation point CREATE, for instance:

r1: link(A,R) if rdf:type(A) = dblp:Author,

rdf:type(R) = nsf:Researcher,
NA = dblp:name(A),NR = nsf:name(R),
S1 = jaro(NA,NR),
S1 − 0.92

1.00− 0.92
> 0.

r2: link(A,R) if rdf:type(A) = dblp:Author,

rdf:type(R) = nsf:Researcher,
AA = dblp:affiliation(A),NR = nsf:name(R),
S1 = levenshtein(AA,NR),
S1 − 0.21

1.00− 0.21
> 0.

r3: link(A,R) if rdf:type(A) = dblp:Author,

rdf:type(R) = nsf:Researcher,
NA = dblp:name(A),NR = nsf:name(R),
AA = dblp:affiliation(A), UR = nsf:university(R),
S1 = cosine(NA,NR), S2 = jaccard(AA, UR),

average(
S1 − 0.37

1.00− 0.37
,
S2 − 0.87

1.00− 0.87
) > 0.

Then, such rules are evaluated obtaining an effectiveness score of 0.63,
0.27 and 0.79, respectively, by means of the variation point EVALUATE. Us-
ing these link rules and their scores three new chromosomes are computed, c1
that is (r1, 0.63), c2 that is (r2, 0.27), and, c3 that is (r3, 0.79). All chromosomes
conform the set of parents C = {(r1, 0.63), (r2, 0.27), (r3, 0.79)}.

The variation point EVALUATE relies on a confusion matrix M to evalu-
ate the effectiveness of a rule. The confusion matrix M is computed by means
of ComputeConfusionMatrix which links using r the resources of D1

and D2. By comparing the links obtained by r, i.e., L ′, and the ones in L
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this method computes the true positives as tp = |L ′ ∩ L|; false positives as
fp = |L ′ \ L|; true negatives as tn = |{l | owl:differentFrom ∈ l∧ l ∈ L}|− fp;
and the false negatives as fn = |{l | owl:sameAs ∈ l∧ l ∈ L}| − tp. As a re-
sult, the confusion matrix is defined as the tuple M = (tp, fp, tn, fn). Relying
on this matrix EVALUATE computes an effectiveness score.

Second, the offspring set C ′ is computed. The SELECT variation point
picks some rules from the parents set C, for instance, r1, r2 and r3. Then
all rules are combined to build new ones by means of variation points
CROSSOVER and MUTATE with a probability of 0.40 for both variation
points. In both cases, a random variable uniformly distributed in interval
[0.00, 1.00] is sampled; if the results is greater than the crossover or the muta-
tion probabilities, then these variation points are executed. As a result, a set
of rules R is computed, containing:

r4: link(A,R) if rdf:type(A) = dblp:Author,

rdf:type(R) = nsf:Researcher,
AA = dblp:affiliation(A),NR = nsf:name(R),
S1 = cosine(AA, normalize(NR)),
S1 − 0.21

1.00− 0.21
> 0.

r5: link(A,R) if rdf:type(A) = dblp:Author,

rdf:type(R) = nsf:Researcher,
NA = dblp:name(A),NR = nsf:name(R),
AA = dblp:affiliation(A), UR = nsf:university(R),
S1 = levenshtein(NA,NR), S2 = jaccard(AA, UR),

average(
S1 − 0.37

1.00− 0.37
,
S2 − 0.87

1.00− 0.87
) > 0.

r6: link(A,R) if rdf:type(A) = dblp:Author,

rdf:type(R) = nsf:Researcher,
NA = dblp:name(A),NR = nsf:name(R),
S1 = jaro(NA,NR),
S1 − 0.92

1.00− 0.92
> 0.

Notice that some are new link rules like r4 and r5, and others are not,
like r6. Finally, these rules are transformed into chromosomes by evaluat-
ing them by means of EVALUATE variation point and included in the
offspring set, in this case, C ′ = {(r4, 1.00), (r5, 0.94), (r6, 0.63)}.

Third, a new set of parents is computed by combining the offspring set C ′

and the parents set C by means of the REPLACE variation point. For instance,
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if C = {(r1, 0.63), (r2, 0.27), (r3, 0.79)} and C ′ = {(r4, 1.00), (r5, 0.94), (r6, 0.63)},
the new parent set is C = {(r4, 1.00), (r5, 0.94), (r2, .027)}.

Finally, each time a set of parents is computed, the template checks
whether a stop criterion is met and stops accordingly. In the case of our ex-
ample, a solution obtained a score of 1.00 in its effectiveness score, which is a
widely extended stop criterion in genetic programming algorithms. As a re-
sult, in our example the algorithm would output R = {r4, r5, r2}. Further
sections detail the variation points of our template.

2.3.1 Variation point: CREATE

The variation point CREATE aims at generating link rules, which are built
following different heuristics depending on the implementation of this varia-
tion point. We define CREATE(s) = R where s is the maximum population
size, and R is set of link rules. This function generates a number of s link rules.

Example 2.7 In our running example this variation point generates the fol-
lowing link rules, e.g., {r1, r2, r3}, from our previous examples. The rules are
created selecting random string metrics and combining them with data prop-
erties and thresholds selected randomly as well. In addition, some rules may
combine two string metrics with an aggregate metric, like r3.

2.3.2 Variation point: SELECT

The variation point SELECT picks several chromosomes from a given set,
and then retrieves their link rules. We define SELECT(C) = R where C is a set
of chromosomes and R is a set of link rules. This function chooses from the set
C a number of chromosomes following a certain heuristic, and then, retrieves
their link rules. Some of the implementations may get the number of chromo-
somes to select as a configuration parameter; for instance this variation point
may select five chromosomes but only output two link rules.

Example 2.8 Assuming the set of chromosomes C = {(r1, 0.63), (r2, 0.27),
(r3, 0.79)}, this variation point may select the chromosomes (r1, 0.63), (r2, 0.27),
(r3, 0.79) and output only the link rules r3 and r2 as a result. The heuris-
tic to selected the link rules in this case is to choose the ones with the best and
the worst evaluation scores.

2.3.3 Variation point: CROSSOVER

The variation point CROSSOVER combines several link rules to pro-
duce new ones. We define CROSSOVER(R) = R ′ where R and R ′ are sets of
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link rules. This function combines several link rules from R producing a new
set of link rules R ′.

Example 2.9 Assuming as input R = {r2, r3} where r2 and r3 were described in
our previous examples. This variation point swaps the levenshtein in r2 with
the cosine in r3. As a result R ′ is {r ′4, r ′5} where:

r ′4: link(A,R) if rdf:type(A) = dblp:Author,

rdf:type(R) = nsf:Researcher,
AA = dblp:affiliation(A),NR = nsf:name(R),
S1 = cosine(AA,NR),
S1 − 0.21

1.00− 0.21
> 0.

r5: link(A,R) if rdf:type(A) = dblp:Author,

rdf:type(R) = nsf:Researcher,
NA = dblp:name(A),NR = nsf:name(R),
AA = dblp:affiliation(A), UR = nsf:university(R),
S1 = levenshtein(NA,NR), S2 = jaccard(AA, UR),

average(
S1 − 0.37

1.00− 0.37
,
S2 − 0.87

1.00− 0.87
) > 0.

2.3.4 Variation point: MUTATE

The variation point MUTATE produces new link rules by modifying the
input link rules. We define MUTATE(R) = R ′ where R and R ′ are sets of link
rules. This function chooses a rule from R, and then, modifies one or more
elements in such rule depending on the implementation.

Example 2.10 Assuming as input R = {r ′4, r5} from our previous example.
This variation point may modify r ′4 by including a string transformation, i.e.,
normalize. As a result the set R ′ contains {r4, r5}, where r4 is:

r4: link(A,R) if rdf:type(A) = dblp:Author,

rdf:type(R) = nsf:Researcher,
AA = dblp:affiliation(A),NR = nsf:name(R),
S1 = cosine(AA, normalize(NR)),
S1 − 0.21

1.00− 0.21
> 0.

2.3.5 Variation point: REPLACE

The variation point REPLACE aims at combining two sets of chromo-
somes. We define REPLACE(C,C ′) = C ′′ where C,C ′ and C ′′ are sets of
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chromosomes, such that C and C ′′ have the same size. This function replaces
some of the chromosomes in C with the chromosomes in C ′" producing as
results C ′′, the heuristic used depends on the implementation.

Example 2.11 Assuming as C the set {(r1, 0.63), (r2, 0.27), (r3, 0.79)} and as C ′

the set {(r4, 1.00), (r5, 0.94), (r6, 0.63)}. This variation point produces as result
the set C ′′ containing {(r4, 1.00), (r5, 0.94), (r2, 0.27)}.

2.3.6 Variation point: STOP

The variation point STOP aims at establishing when a suitable solu-
tion has being found by the proposal, and thus, it should stop. We define
STOP(C) = t where C is a set of chromosomes and t is a Boolean value
that specifies if a criterion was met. In addition this variation point re-
quires two configuration parameters that are natural numbers, i.e., maximum
iterations i and maximum generations g.

Example 2.12 Assuming a value of 3 for the maximum iterations, a value of 2
as maximum generations, and {(r1, 0.63), (r2, 0.27), (r3, 0.79)} as the set C.
When this variation point is called for the first time internally counts the cur-
rent number iterations done, i.e., 1. Since this number is smaller than the
maximum iterations, the variation point returns false. Then, this method
is called again receiving {(r4, 1.00), (r5, 0.94), (r2, 0.27)} as the set C, inter-
nally counts the current iteration, i.e., 2. As a result, it outputs true since the
solution has the maximum score, i.e., r4 with 1.00.

2.3.7 Variation point: EVALUATE

The variation point EVALUATE aims at quantifying a rule relying on a
confusion matrix; which is obtained by applying a certain link rule in the con-
text of two datasets D1 and D2. We define EVALUATE(M, r) = f where M is a
confusion matrix, r the link rule related to such matrix, and f is a nor-
malised number between 0.00 and 1.00 representing the effectiveness score
achieved; where 0.00 is the worst achievable and is 1.00 the best.

Example 2.13 Consider the confusion matrix M = (2, 1, 0, 0) related to the
link rule r1. Then, the score of r1 is 0.66 considering the Precision as func-
tion to obtain the effectiveness score; which is computed as tp/(tp+ fp), in
this case 2/(2+ 1).
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Carvalho Eagle Genlink

CREATE Random-Trees Random-Trees Create-Genlink

SELECT Roulette Wheel Tournament Tournament

REPLACE Random (µ + ß) Generational

CROSSOVER Tree-Crossover Tree-Crossover Crossover-Genlink

MUTATE Tree-Mutation Tree-Mutation Mutation-Genlink

EVALUATE F1 F1 F1

Table 2.1: Variation points instantiations by literature proposals.

Gen1 Gen2 Gen3

CREATE Random-Trees Random-Trees Random-Trees

SELECT Tournament Tournament Roulette Wheel

REPLACE (µ + ß) (µ + ß) Random

CROSSOVER Tree-Crossover Tree-Crossover Crossover-Genlink

MUTATE Mutation-Genlink Tree-Mutation Tree-Mutation

EVALUATE F1 F1 F1

Table 2.2: Variation points instantiations by our proposals.

2.4 Implementations
We used our framework to implement three well-known supervised ge-

netic programming-based proposals of link discovery from the literature, i.e.,
de Carvalho and others [21], Eagle [41], and Genlink [28].

To implement the proposals from the literature we instantiated the varia-
tions points CREATE, SELECT, CROSSOVER, MUTATE, REPLACE, STOP,
and EVALUATE using the same functions as the original proposals. Ta-
ble §2.1 describes the instantiation of these variation points depending on the
proposal. Some of the functions presented in Table §2.1 are well-known in the
context of the genetic programming [2, 38, 48], i.e., Random-Trees, Roulette
Wheel, Tournament Selection, Random replace, (µ + β), Generational re-
place, Tree Crossover, Tree Mutation, and F1. Nevertheless, others are custom
functions that are not common in the genetic programming literature, i.e.,
Crossover Genlink, Mutation Genlink, and Objective Genlink.

The proposals in the literature can be categorised into elitist, i.e., Eagle,
and random, i.e., Genlink and Carvalho. On the one hand, the elitist propos-
als prioritize the chromosomes that are more effective, i.e., have a higher
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score. On the other hand, the random proposals prioritize chromosomes ran-
domly or by mixing chromosomes with the highest and the lowest scores.
The former approach is faster and very good in scenarios where the search
space of solutions has few local maximums, as a drawback it is difficult for
them to escape local maxima. The latter approach is slower since it ex-
plores more solutions from the search space, but it is unlikely that this
approach will get stuck into a local maximum.

Considering the nature of the proposals, i.e., elitist or random approaches,
and after analysing the proposals from the literature we present three new ge-
netic programming proposals, i.e., Gen1, Gen2, and Gen3. The approach
followed by Gen1 and Gen2 is highly elitist; on the contrary, Gen3 is highly
random. Table §2.2 shows the instantiation of the variation points of our
proposals, i.e., Gen1, Gen2, and Gen3.

In the following sub-sections, we aim at explaining the functions used in
each of the variation points of our to template to implement the genetic
programming algorithms from the literature, and our own.

2.4.1 CREATE implementations

The variation point CREATE that Carvalho, Eagle, Gen1, Gen2, and
Gen3 rely on is known as Random-trees. Genlink implements a tailored-
function for this variation point known as Create-Genlink. Next we provide a
description for both:

Definition 2.6 (Random-trees) This implementation randomly generates link
rules, optionally, depending on the implementation this function can restrict
the size of the link rules generated.

Example 2.14 This function may generate as link rule r1 but it might also
have generated a rule like r2, both described previously. In this case, al-
though r1 is an acceptable rule, r2 compares attributes that are not suitable in
this scenario.

Definition 2.7 (Create-genlink) This function is a tailored-implementation
proposed by Isele and Bizer [28]. Their implementation relies on two main
steps, the former one aims at finding pairs of data properties, the sec-
ond one to build link rules. The former applies the string metric levenshtein
between all the values of the data properties within D1 and D2, those that ob-
tain a score below a certain threshold θ are considered as a pair of suitable
data properties. The later builds up a link rule that uses such properties: first
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it randomly selects an aggregation metric, second a random string met-
ric is selected to compare one data property pair, third, with a probability of
0.50 a transformation metric is added to one of the data properties. In addi-
tion, with a probability of 0.50 another comparison may be added to the
aggregation following the same procedure.

Example 2.15 For instance, Create-Genlink may find as suitable data proper-
ties the following set of pairs {(dblp:name, nsf:name), (dblp:affiliation,
nsf:university)} from the datasets DBLP and NSF described in Section §B.1.
Considering one pair from such set of data property pairs, a first link rule is
generated:

r ′: link(A,R) if rdf:type(A) = dblp:Author,

rdf:type(R) = nsf:Researcher,
NA = dblp:name(A),NR = nsf:name(R),
S1 = jaro(NA, NR),

average(
S1 − 0.80

1.00− 0.80
) > 0.

Then with a probability of 0.50 per data property in r ′ a transforma-
tion metric may be appended. In our case let’s assume that only the first data
property in r obtained such probability; thus, the rule would now be r ′′:

r ′′: link(A,R) if rdf:type(A) = dblp:Author,

rdf:type(R) = nsf:Researcher,
NA = dblp:name(A),NR = nsf:name(R),
S1 = jaro(capitalize(NA),NR),

average(
S1 − 0.80

1.00− 0.80
) > 0.

Finally, with a probability of 0.50 another string metric may be added fol-
lowing the same procedure, in our case for the sake of this example let’s
assume that the final rule is r ′′.

2.4.2 SELECT implementations

The variation point SELECT on which Carvalho and Genlink rely is
known as Roulette Wheel. Eagle, Gen1, Gen2, and Gen3 rely on a func-
tion for this variation point known as Tournament. Next, we provide a
description for both:

Definition 2.8 (Roulette Wheel) This function is also known as Fitness pro-
portionate selection. It assigns a fitness level fi to each chromosome ci in C

following the next formula:
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fi =
ci.v∑|C|

i=1 score(ci)
.

where ci is each of the chromosomes in C and score(ci) is the score
assigned by the EVALUATE variation point to the link rule of such chromo-
some. Once all chromosomes have a fitness level assigned, a random number
between 0.00 and 1.00 is generated and the chromosomes with such number
as value of their fitness level are selected from C. Notice that the fitness lev-
els are normalised, thus they fulfil that

∑|C|

i=1 fi has to be 1.00. The Roulette
Wheel repeats this process until it has selected a number of link rules
specified by a user.

Example 2.16 Consider that a user wishes to select tow chromosomes from
set of chromosomes C = {c1, c2, c3}, where c1 is (r1, 0.63), c2 is (r2, 0.27), and c3
is (r3, 0.79). This implementation computes the following fitness levels: 0.37
for c1, 0.16 for c2, and 0.47 for c3. Now a random number is generated, for in-
stance 0.32. Since 0.32 is between the fitness level of c1, i.e., 0.37, and c2, i.e.,
0.16, then the chromosome c1 is selected. Next, the second chromosome is se-
lected, this time the random number is 0.70; since 0.70 is above the fitness
level of c3, i.e., 0.47, then this chromosome is selected. As a result the set of
link rules R = {r1, r3} is output.

Definition 2.9 (Tournament) This function receives from a user two addi-
tional configuration parameters, a tournament size ts and the number of link
rules to be selected. The function takes a number of ts chromosomes from C

randomly, then from those chosen, it keeps the one with the best score by
means of EVALUATE. Finally, this function returns the link rule of the se-
lected chromosome. This process is repeated until the number of link rules
specified by the user is selected.

Example 2.17 Consider that a user wishes to select three chromosomes, the
tournament size ts is 2, and the set of chromosomes C = {c1, c2, c2}, where c1
is (r1, 0.63), c2 is (r2, 0.27), and c3 is (r3, 0.79). This implementation ran-
domly selects two chromosomes from C, for instance c1 and c3. Then it keeps
the one with the best score, i.e., c3, and extracts its rule r3. Next, the sec-
ond rule is selected using the same procedure, assuming this time c1 and c2
were selected, the chosen link rule would be r1 since its chromosome c1 has a
score of 0.63 which is the highest. Finally, the third link rule is selected simi-
larly; assuming that this time c3 and c1 were selected the output rule would
be r3. As a result, the set R = {r1, r3} of link rules is output.
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2.4.3 CROSSOVER implementations

The variation point CROSSOVER that Carvalho, Eagle, Gen1, and Gen2
rely on is known as Tree-Crossover. Genlink and Gen3 rely on a tailored-
function for this variation point known as Crossover-Genlink. Next, we
provide a description for both:

Definition 2.10 (Tree-Crossover) This function is meant to receive two link
rules. Then it selects in both two compatible elements, which can be ei-
ther metrics, attribute layers, or thresholds. By compatible we refer to metrics
of the same kind, for instance an aggregate metric is not compatible with a
string metric. Next, this function swaps the selected elements, along with,
their nested elements. As a result, two new link rules are output.

Example 2.18 Consider as input the link rules r1 and r3 from our examples.
First, two pair of compatible elements are selected, for instance, if the se-
lected element in r3 is average then no crossover can be applied since r1
has no compatible elements, i.e., aggregate metrics. Assuming jaro is se-
lected in r1, the available options in r3 are cosine and jaccard, the resulting
rule of swapping with cosine would be r5. Assuming 0.92 is selected from
r1 and 0.87 from r3, then the result would be the following because the
thresholds are the only compatible elements to swap in both cases:

r7: link(A,R) if rdf:type(A) = dblp:Author,

rdf:type(R) = nsf:Researcher,
NA = dblp:name(A),NR = nsf:name(R),
S1 = jaro(NA,NR),
S1 − 0.87

1.00− 0.87
> 0.

r8: link(A,R) if rdf:type(A) = dblp:Author,

rdf:type(R) = nsf:Researcher,
NA = dblp:name(A),NR = nsf:name(R),
AA = dblp:affiliation(A), UR = nsf:university(R),
S1 = cosine(NA,NR), S2 = jaccard(AA, UR),

average(
S1 − 0.37

1.00− 0.37
,
S2 − 0.92

1.00− 0.92
) > 0.

Definition 2.11 (Crossover-Genlink) This is a tailored-function devised
by Isele and Bizer [28], which is meant to be applied between two link rules.
This function randomly selects one element from a link rule, and then ran-
domly applies one sub-crossover function from the list below. The selected
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sub-crossover depends on the selected element, since not all are applicable to
all the elements. The available sub-crossover functions are:

• Tree-crossover: this function is the same as the one explained above in
the Tree-Crossover.

• Mixed-crossover: when a string metric is chosen from a former link rule
and an aggregate metric is chosen from a second link rule to be crossed,
this function changes the first string metric with the aggregate metric.

• Aggregate-crossover: when an aggregate metric is chosen to be crossed,
this function randomly selects in both input rules an aggregate met-
ric. Then, it appends to the first all the string metrics from the second.
Next, for each element appended in the first aggregation it removes
with a probability of 0.50 each of them.

• Transformation-crossover: when a transformation is chosen to be
crossed, this function replaces in the former rule the selected transfor-
mation with the transformation selected in the second link rule; if the
second transformation has nested transformation metrics these are also
included in the first rule.

• Threshold-crossover: when a threshold is chosen to be crossed, this
function computes the average of two selected thresholds and sets as
new threshold in the first rule such value.

• Constant-Crossover: when a constant is chosen to be crossed,
this function does the same operations performed by the
threshold-crossover.

Example 2.19 (Mixed-crossover) Assuming the rules r1 and r3 from our ex-
amples. Then, the selected string metric in the former rule could be jaro and
the aggregate metric in the later is average, then this function replaces the for-
mer string metric with the later aggregate metric, and then appends the
former string metric. As a result the new output link rule would be:

r9: link(A,R) if rdf:type(A) = dblp:Author,

rdf:type(R) = nsf:Researcher,
NA = dblp:name(A),NR = nsf:name(R),
S1 = jaro(NA,NR),

average(
S1 − 0.92

1.00− 0.92
) > 0.
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Example 2.20 (Aggregate Crossover) Assuming the rules r3 and r9 from our
examples. Then, this function randomly selects one aggregate metric from
both rules, i.e., average in this case because it is the only aggregate met-
ric that they have. Following, it appends to the first link rule all the string
metrics of the second:

r ′10: link(A,R) if rdf:type(A) = dblp:Author,

rdf:type(R) = nsf:Researcher,
NA = dblp:name(A),NR = nsf:name(R),
AA = dblp:affiliation(A), UR = nsf:university(R),
S1 = jaro(NA,NR),
S2 = cosine(NA,NR),
S3 = jaccard(AA, UR),

average(
S1 − 0.92

1.00− 0.92
,
S2 − 0.37

1.00− 0.37
,
S3 − 0.87

1.00− 0.87
) > 0.

Next, for each of the elements append to average a probability is obtained,
e.g., 0.60 for the jaro, 0.93 for the cosine, and 0.23 for jaccard. Then elements
with a probability below 0.50 are removed. As a result the new rule is:

r10: link(A,R) if rdf:type(A) = dblp:Author,

rdf:type(R) = nsf:Researcher,
NA = dblp:name(A),NR = nsf:name(R),
S1 = jaro(NA,NR),
S2 = cosine(NA,NR),

average(
S1 − 0.92

1.00− 0.92
,
S2 − 0.37

1.00− 0.37
) > 0.

Example 2.21 (Transformation-crossover) Considering the following new
rules:

r ′11: link(A,R) if rdf:type(A) = dblp:Author,

rdf:type(R) = nsf:Researcher,
NA = dblp:name(A),NR = nsf:name(R),
S1 = jaro(uppercase(NA),NR),
S1 − 0.70

1.00− 0.70
> 0.

r12: link(A,R) if rdf:type(A) = dblp:Author,

rdf:type(R) = nsf:Researcher,
NA = dblp:name(A),NR = nsf:name(R),
S1 = jaccard(NA, tokenise(stem(lowercase(NR))),
S1 − 0.19

1.00− 0.19
> 0.
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This function selects in both link rules a transformation metric, e.g., up-
percase from the former and stem from the later. Then it replaces the metric
in the first link rule with the one in the second, and its nested transformation
metrics. As a result, the rule obtained is:

r11: link(A,R) if rdf:type(A) = dblp:Author,

rdf:type(R) = nsf:Researcher,
NA = dblp:name(A),NR = nsf:name(R),
S1 = jaccard(stem(lowercase(NA)), lowercase(NR),
S1 − 0.70

1.00− 0.70
> 0.

Example 2.22 (Threshold-crossover) Assuming the rules r1 and r2 from our
examples. Then, this function first selects randomly two thresholds, one from
each rule, e.g., 0.92 from r1 and 0.21 from r2. Then, it computes their aver-
age value and replaces the threshold in the former link rule, i.e., 0.57 in r1
instead of 0.92. As a result, the new rule would be:

r13: link(A,R) if rdf:type(A) = dblp:Author,

rdf:type(R) = nsf:Researcher,
NA = dblp:name(A),NR = nsf:name(R),
S1 = jaro(NA,NR),
S1 − 0.57

1.00− 0.57
> 0.

Example 2.23 (Constant-Crossover) Considering the rules:

r ′14: link(A,R) if rdf:type(A) = dblp:Author,

rdf:type(R) = nsf:Researcher,
NA = dblp:name(A),NR = nsf:name(R),
S1 = jaro(NA,NR),

multiply(
S1 − 0.13

1.00− 0.13
, 0.93) > 0.

r15: link(A,R) if rdf:type(A) = dblp:Author,

rdf:type(R) = nsf:Researcher,
AA = dblp:affiliation(A),NR = nsf:name(R),
S1 = cosine(AA,NR),

minimum(
S1 − 0.57

1.00− 0.57
, 0.29) > 0.

This function first selects randomly two constants, one from each rule,
e.g., 0.93 from r14 and 0.29 from r15. Then, it computes their average value,
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i.e., 0.61. The new value replaces the constant selected in the former rule. As
a result, the new rule is:

r14: link(A,R) if rdf:type(A) = dblp:Author,

rdf:type(R) = nsf:Researcher,
NA = dblp:name(A),NR = nsf:name(R),
S1 = jaro(NA,NR),

multiply(
S1 − 0.13

1.00− 0.13
, 0.61) > 0.

2.4.4 MUTATE implementations

The variation point MUTATE that Carvalho, Eagle, Gen1, and Gen2 rely
on is known as Tree-Mutation. Genlink and Gen3 rely on a tailored-function
for this variation point known as Mutation-Genlink. Next, we provide a
description for both:

Definition 2.12 (Tree-Mutation) This function relies on a pool of available
metrics of different types, i.e., aggregate, string, and transformation, and two
sets of data properties from two datasets each. It selects one element from a
link rule and randomly changes it from another that belongs to the pool of
metrics (in this case puts one compatible metric), data property pair, or a ran-
dom number if the selected element was a threshold or a constant. This
process is repeated for a number of link rules as specified by a user.

Example 2.24 Consider the rule r14 from our examples, and the set of met-
rics {maximum,average,minimum, levenshtein, jaro} and the set of data
properties {dblp:name, dblp:affiliation} for DBLP and {nsf:name, nsf:
university} NSF datasets; respectively. Assuming that the selected element
from r14 is multiply, then a new rule r16 could replace the aggregate
metric from the another list, i.e., average. Assuming that the selected ele-
ment is jaro then a new rule r17 could replace such metric from another
form the list, i.e., cosine. Assuming the selected element is dblp:name,
then the new rule r18 could replace such property from any other con-
tained the list of DBLP data properties, i.e., dblp:affiliation. Assuming a
threshold or a constant is selected form r14 it will be substitute by a ran-
dom number, i.e., r19 with the new threshold 0.85 or r20 with the constant
replaced by 0.08. In all these cases the output rules would be:

r16: link(A,R) if rdf:type(A) = dblp:Author,

rdf:type(R) = nsf:Researcher,
NA = dblp:name(A),NR = nsf:name(R),
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S1 = jaro(NA,NR)

average(
S1 − 0.13

1.00− 0.13
, 0.61) > 0.

r17: link(A,R) if rdf:type(A) = dblp:Author,

rdf:type(R) = nsf:Researcher,
NA = dblp:name(A),NR = nsf:name(R),
S1 = cosine(NA,NR)

multiply(
S1 − 0.13

1.00− 0.13
, 0.61) > 0.

r18: link(A,R) if rdf:type(A) = dblp:Author,

rdf:type(R) = nsf:Researcher,
AA = dblp:affiliation(A),NR = nsf:name(R),
S1 = jaro(AA,NR)

multiply(
S1 − 0.13

1.00− 0.13
, 0.61) > 0.

r19: link(A,R) if rdf:type(A) = dblp:Author,

rdf:type(R) = nsf:Researcher,
NA = dblp:name(A),NR = nsf:name(R),
S1 = jaro(NA,NR)

multiply(
S1 − 0.85

1.00− 0.85
, 0.61) > 0.

r20: link(A,R) if rdf:type(A) = dblp:Author,

rdf:type(R) = nsf:Researcher,
NA = dblp:name(A),NR = nsf:name(R),
S1 = jaro(NA,NR)

multiply(
S1 − 0.13

1.00− 0.13
, 0.08) > 0.

Definition 2.13 (Mutate-Genlink) This is a tailored-function devised by Isele
and Bizer [28], which receives a singleton set of link rules R. It first creates a
random link rule by means of Create-Genlink, and then, applies a Crossover-
Genlink function between the new link rule and the one in the input set R.
The new link rule is output within a unary set of link rules R ′.

Example 2.25 Consider the rule r14 from our examples as input. Then,
Mutate-Genlink first creates a new link rule relying on Create-Genlink, for
instance:

r ′21: link(A,R) if rdf:type(A) = dblp:Author,
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rdf:type(R) = nsf:Researcher,
NA = dblp:name(A),NR = nsf:name(R),
S1 = jaro(uppercase(NA),NR)

average(
S1 − 0.43

1.00− 0.43
) > 0.

Then, it applies the Crossover-Genlink to obtain a new link rule. As a
result, the new mutated rule could be:

r21: link(A,R) if rdf:type(A) = dblp:Author,

rdf:type(R) = nsf:Researcher,
NA = dblp:name(A),NR = nsf:name(R),
S1 = jaro(uppercase(NA),NR)
S2 = jaro(NA,NR)

average(
S1 − 0.43

1.00− 0.43
,
S2 − 0.13

1.00− 0.13
) > 0.

2.4.5 REPLACE implementations

The function for the variation point REPLACE in which Carvalho re-
lies is known as Random. Eagle, Gen1, and Gen2 rely on a function known as
(µ + β). Genlink and Gen3 rely on a function known as Generational. Next,
we provide a description for all these functions:

Definition 2.14 (Random) This function randomly selects chromosomes
from C and C ′ and stores them in the set C ′′ until the size of this set equals the
size of C.

Example 2.26 Consider the set of chromosomes C = {(r1, 0.63), (r2, 0.27),
(r3, 0.79)} and C ′ = {(r4, 1.00), (r5, 0.94), (r6, 0.63)}. This function may gener-
ate as resulting set C ′′ = {(r2, 0.27), (r4, 0.80), (r5, 0.10)}, by selecting the first
chromosome from the set C and the other two from C ′.

Definition 2.15 ((µ+ β)) This function combines the input set of chromo-
somes C and C ′ into a new one, i.e., C ′′. Then, it sorts the chromosomes in C ′′

by the score of their rules, and finally keeps a number of |C| chromosomes
that have the highest scores.

Example 2.27 Consider the set of chromosomes C = {(r1, 0.63), (r2, 0.27),
(r3, 0.79)} and C ′ = {(r4, 1.00), (r5, 0.94), (r6, 0.63)}. This function creates
a resulting set that combines both C and C ′ chromosomes, i.e.,
C ′′ = {(r1, 0.63), (r2, 0.27), (r3, 0.79), (r4, 1.00), (r5, 0.94), (r6, 0.63)}. Then this
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function sorts the chromosomes in C ′′ by the score of the link rules,
i.e., C ′′ = {(r4, 1.00), (r5, 0.94), (r3, 0.79), (r1, 0.63), (r6, 0.63), (r2, 0.27)}. Finally,
it keeps only the first |C| chromosomes in C ′′ with the highest score. As a
result, the set C ′′ = {(r4, 1.00), (r5, 0.94), (r3, 0.79)} is output.

Definition 2.16 (Generational) This function favours the set of chromosomes
representing the offspring. Therefore, this function always returns the set of
chromosomes corresponding to them.

Example 2.28 Consider the set of chromosomes C = {(r1, 0.63), (r2, 0.27),
(r3, 0.79)} and C ′ = {(r4, 1.00), (r5, 0.94), (r6, 0.63)}; being the former set the
parents, and the later the offspring set. This function returns a new set of
chromosomes C ′.

2.4.6 STOP implementation

The STOP variation point requires a set of chromosomes C, a number of
maximum iterations, i, and a maximum of generations g. In the litera-
ture, as far as we know, no other implementation rather than the standard
one has being used by proposals to generate link rules.

Definition 2.17 (Standard STOP) This implementation relies on the follow-
ing criterion: a) Each time STOP is called internally counts the iterations
done, when this number is equal to i the variation point STOP outputs true;
b) If during a number of g iterations the fitness score of all the chromo-
somes in C does not changed at all the variation point STOP outputs true;
c) When a chromosome has a fitness score of 1.00, i.e. the maximum possible,
the variation point STOP outputs true.

Example 2.29 Consider a value of 2 for the maximum iterations, and
{(r16, 0.84), (r17, 0.76), (r18, 0.44)} as the set C. When this variation point
is called for the first time internally counts as current iterations 1.
Since this number is smaller than the maximum iterations, the vari-
ation point returns false. Then, this method is called again receiving
{(r17, 0.84), (r18, 0.44), (r20, 0.62)} as the set C, internally counts as current iter-
ations 2. As a result, it outputs true since the current iterations have reached
the same value of the maximum iterations.

2.4.7 EVALUATE implementations

The EVALUATE variation point requires a function to compute an effec-
tiveness score f relying on a confusion matrix, i.e., M = (tp, fp, tn, fn), and
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its related link rule. Carvalho, Eagle, Gen1, Gen2, and Gen3 rely on the F1,
and Genlink on a tailored-version of the Matthews Correlation Coefficient
known as Objective-Genlink. Next, we explain both formulas:

Definition 2.18 (F1) This function computes the effectiveness score as follows
f = 2 ∗ P ∗ R/(P + R), where P = tp/(tp+ fp) and R = tp/(tp+ fn). As a re-
sult, a normalised score between 0.00 and 1.00 is output; where 0.00 is the
lowest and 1.00 the highest achievable.

Definition 2.19 (EVALUATE-Genlink) This function is based on the
Matthews Correlation Coefficient formula mcc. It combines the result of
such formula with the number of metrics that a link rule has, relying
on the function op. This function is meant to penalize the effective-
ness of a link rule in base of how many functions it has. This
function is defined as follows f = mcc − 0.05 ∗ op(r), where mmc is
((tp ∗ tn) − (fp ∗ fn))/

√
(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn).

2.5 Experimental analysis
In this section, we introduce the results and conclusions achieved in our

experiments. We aim at executing the proposals form the literature, and ours,
under the same experimental environment. Our goal is to determine the pro-
posal that behaves the best considering five well-known datasets from the
literature.

2.5.1 Experimental environment
Implementation. We implemented our framework†1 using Java 1.8 and the
following components: Jena TDB 3.2.0 to work with RDF data, Jena ARQ 3.2.0
to work with SPARQL queries, MOEA 2.12 framework to work with genetic
techniques, and Simmetrics 1.6.2, Secondstring, and JavaStringSimilarity to
work with string similarity functions. We used the implementations pro-
vided by the original papers for functions CREATE, SELECT, CROSSOVER,
MUTATE, REPLACE, EVALUATE, and OBJECTIVE.

Running experiments. We run our experiments in the facility described in
Appendix §A.1. In addition we defined 49 different setups to run each pro-
posal, each setup is a tuple (i, p, pc, pm, g); where i is the maximum number of
iterations, p is the maximum population size, pc is the crossover probability,
pm is the mutation probability, and g is the maximum number of generations.
Appendix §A.3 reports all the setup specified to run our experiments.

†1The framework is available at https://github.com/AndreaCimminoArriaga/EvA4LD.

https://github.com/AndreaCimminoArriaga/EvA4LD
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Running method. We run the proposals following a 2-fold cross vali-
dation, for each setup defined we executed ten times each proposal; as
suggested by Isele and Bizer [28] in their paper on Genlink. Carvalho and Ea-
gle articles did not provide detailed information of how they ran their
experiments. In addition, Isele and Bizer [28] compared Genlink and Car-
valho proposals in their article; therefore, we decided that their running
method was the most suitable to follow.

Datasets sizes. Following the experimental methodology defined by Isele
and Bizer [28] in their paper on Genlink, we split the datasets of the sce-
narios into other two sub-datasets of smaller sizes with non-overlapping
resources; in addition we provided a sub-set of the links owl:sameAs and
owl:differentFrom existing between the resources in such sub-datasets. Re-
lying on the scenarios described in Appendix §A.2, we defined the size of the
sub-datasets according to the ones used by Isele and Bizer [28]:

• In the Restaurants and RestaurantsZ scenarios we used 112 resources
per sub-dataset, from which 56 are related by means of owl:sameAs

and the rest by owl:differentFrom.

• In the Persons1 scenario we used 500 resources per sub-dataset, from
which 250 resources are related by means of owl:sameAs, and the rest
by means of owl:differentFrom.

• In scenario Persons2 each sub-dataset has 400 resources, from which 200

are related by means of owl:sameAs and the rest by owl:differentFrom

• In the scenario Articles each sub-dataset counts with 1600 resources
from which 800 are related by means of owl:sameAs, and the rest by
means of owl:differentFrom.

2.5.2 Experimental results

In this section, we introduce the results of our experimentation. Fig-
ures §2.3, §2.4, §2.5, §2.6, and §2.7 depict the precision versus recall obtained
by the resultant link rules when they were applied in the validation phase.
Our goal is to check how the link rules generated by the proposals behave in
our scenarios.

In Figures §2.3, §2.4, §2.5, §2.6, and §2.7 it can be observed that propos-
als generate link rules that behave well in all the scenarios. In general
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Figure 2.3: Evaluation results in scenario Persons1.

terms Gen1, Gen2, and Eagle always obtain results that seem to be bet-
ter, and be grouped in the same place. Carvalho, Genlink, and Gen3 tend to
obtain sparser results, from which some are not as good as the results ob-
tained by the previous proposals. We can conclude that there are two patterns
of behaviour, some proposals generate link rules focused in the same so-
lution space, and other, obtain sparser results. However, we still cannot
conclude which proposal obtained better results in these scenarios.

2.5.3 Statistical analysis

The results obtained by the different proposals in each scenario are shown
in Table §2.3, which expose the average validation value obtained by the dif-
ferent proposals with all their setups. The first column of Table §2.3 refers to
the scenarios, and the rest of columns are the average F1 achieved by
each of the proposals in such scenario. We highlighted the proposals that
obtained the highest F1 in a given scenario. In addition, we run a Bergmann-
Hommel’s ranking (using a p-value of 0.05) to determine in this scenarios
which proposal performs better, Table §2.4 reports the ranking results. No-
tice that the ranking only reports the best proposals in the context of these
scenarios, not as a global result.
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Figure 2.4: Evaluation results in scenario Persons2.
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Figure 2.5: Evaluation results in scenario Restaurants.
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Figure 2.6: Evaluation results in scenario RestaurantsZ.
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Figure 2.7: Evaluation results in scenario Articles.
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Carvalho Eagle Gen1 Gen2 Gen3 Genlink

Persons1 0.99 1.00 1.00 1.00 1.00 1.00

Persons2 0.90 0.96 0.98 0.98 0.90 0.95

Articles 0.99 1.00 1.00 1.00 0.99 0.99

Restaurants 0.99 1.00 1.00 1.00 0.99 0.98

RestaurantsZ 0.98 1.00 1.00 1.00 0.97 0.97

Table 2.3: Average F1 score.

Persons1 Persons2 Articles Restaurants RestaurantsZ

#1
Gen1,Gen2,

Eagle,Genlink
Gen1,Gen2 Gen1 Gen1,Gen2

Gen1,Gen2,

Eagle

#2 Gen3 Eagle Gen2
Carvalho,

Eagle,Gen3

Carvalho,

Gen3

#3 Carvalho Genlink
Carvalho,

Eagle
Genlink Genlink

#4 -
Carvalho,

Gen3
Gen3 - -

#5 - - Genlink - -

Table 2.4: Bergmann-Hommel’s ranking based on F1 score.

Observing Table §2.3 the proposals Gen1 and Gen2 always achieve the
highest F1 independently of the scenario, Gen1 achieves as well the highest
F1 except in the Persons2 scenario. Relying on this results we could con-
clude that Gen1 and Gen2 are the proposals that perform the best; however
this would not be true since, on the one hand we do not know which perform
better between Gen1 and Gen2, and, on the other hand, we do not have statis-
tical support to state that they perform better that the others in terms of
effectiveness.

In order to determine, in the context of these scenarios, the proposal
that performs better we ran the Bergmann-Hommel’s ranking, which re-
sults are exposed in Table §2.4. Relying on this table we observe that Gen1
and Gen2 are always in the first place of the rank, but sometimes we can-
not affirm that they are better than the rest since, for instance, in Persons1 the
proposal Genlink is in the position #1 of the ranking as well. As a re-
sult, we conclude that Gen1 and Gen2 behave better than the rest, although in
some specific scenarios like Persons1 they may be as good as other proposals
that usually rank in the last position most of the times.
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2.6 Summary

In this chapter, we have introduced a framework that we have devised,
which provides a harness to implement a variety of genetic programming-
based link discovery proposals. Our framework relies on a template with
several variation points that, once implemented by specific functions, con-
forms a genetic programming-based proposal. Relying in the framework we
have implemented three proposals from the literature, and we presented
three custom proposals. Finally, we have presented the results of apply-
ing the proposals in five different scenarios by ranking their results using a
Bergmann-Hommel test.





Chapter3

Teide: BootstrappingLinkRules

T
his chapter introduces our proposal to bootstrap link rules, which
has been proved that increases the precision of the rules without
a significant drop in their recall. It is organised as follows: Sec-
tion §3.1 introduces the context of our work; Section §3.2 provides

the details of our proposal; Section §3.3 describes the experiments con-
ducted with Teide; and finally, Section §3.4 recaps on the conclusions drawn
from our experiments.

45
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3.1 Introduction

In the previous chapter, we introduced the framework that we have de-
vised to implement genetic programming-based proposals for link discovery.
These proposals learn link rules that are used to link resources that re-
fer to the same real-world entities but that are allocated in two different
datasets. However, the rules learnt rely only on the data properties of the re-
sources that are analysed to be linked. We found out that these rules have a
drawback when applied. These rules are not able to cope with resources with
very similar data properties that refer to different entities, entailing that their
precision drops in this kind of scenarios.

We devised a new proposal known as Teide that applies link rules follow-
ing a different approach, which is able to cope with resources that have
similar data properties. Teide consists in three main components, namely: the
first one learns link rules relying on any proposal from the literature, the sec-
ond one filters out the links that the link rules produce when applied, and the
third relies on two voting strategies to select the most reliable filtered links.

The link rule learner can be any implementation built with our frame-
work from the previous chapter. It requires a set of links owl:sameAs and
owl:differentFrom in order to learn a set of link rules. The implementa-
tion should learn link rules for different types of resources in the datasets,
from which at least one learnt rules one should be kept. As a result, we obtain
a list of link rules that link different types of resources, from this set one is se-
lected to be improved using our approach and the rest are the supporting
rules. Notice that as far as we obtain a list of link rules to be applied between
different types of resources, the method to obtain such rules does not matter.

The filter is an ad-hoc component that works as follows: it takes a link rule
and executes it to produce a set of candidate links; then, it analyses the neigh-
bours of the resources involved in each candidate link by boosting the
remaining rules; links in which the corresponding neighbours are simi-
lar enough are preserved as true positive links whilst the others are discarded
as false positive links. The selector is an ad-hoc component that works as fol-
lows: it takes the filtered links and the supporting rules used to filter them;
then, it performs a voting strategy regarding how many rules filtered the
same link and another voting strategy regarding how many links were fil-
tered by each rule; finally, a subset of the filtered links is selected and
preserved as the rest are discarded.
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Example 3.1 Our running example from Section §B.2 presents two sam-
ple datasets that are based on the DBLP and the NSF datasets; described in
Appendix §A.2. The resources are depicted in greyed boxes whose shapes en-
code their classes (i.e., the value of property rdf:type), the properties are
represented as labelled arrows, and the literals are encoded as strings. The
genetic component learns the following link rules in this scenario, which we
represent using a Prolog-like notation for the sake of readability:

r1: link(A,R) if rdf:type(A) = dblp:Author, rdf:type(R) = nsf:Researcher,
NA = dblp:name(A),NR = nsf:name(R),
S1 = levenstein(lfname(NA), lfname(NR)),
S1 − 0.80

1.00− 0.80
> 0.

r2: link(A, P) if rdf:type(A) = dblp:Article, rdf:type(P) = nsf:Paper,
TA = dblp:title(A), TP = nsf:title(P),
jaccard(lowercase(TA), lowercase(TP)),
S1 − 0.65

1.00− 0.65
> 0.

where levenstein and jaccard denote the well-known string similarity met-
rics (normalised to interval [0.00, 1.00]), lfname is a transformation metric
that normalises people’s names as “last name, first name”, and lowercase is a
transformation metric that changes a string into lowercase.

Intuitively, link rule r1 is applied to a resource A of type dblp:Author and
a resource R of type nsf:Researcher; it computes the normalised Leven-
shtein metric between the normalised names of the author and the researcher;
if it is greater than 0.80, then the corresponding resources are linked. Link
rule r2 should now be easy to interpret: it is applied to a resource A of type
dblp:Article and a resource P of type nsf:Paper and links them if the nor-
malised Jaccard metric amongst the lowercase version of the title of article A

and the title of paper P is greater than 0.65.
Realise that link rule r1 links resources dblp:weiwang and nsf:weiwang1

or dblp:binliu and nsf:binwliu, which are true positive links, but also dblp:
weiwang and nsf:weiwang2, which is a false positive link. In cases like this,
the only way to make a difference between such resources is to anal-
yse their neighbours, be them direct (e.g., dblp:weiwang and dblp:article2)
or transitive (e.g., nsf:weiwang1 and nsf:paper2).

3.2 Bootstrapping process
In this section we introduce our bootstrapping process, which consist of

namely a filtering method, a similarity metric, and a method to select suitable
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filterLinks(r, S,D1, D2, θ, µ, ρ) : K

K := ∅
(C1, C2) := (sourceClasses(r), targetClasses(r))

L1 := apply(r,D1, D2)

for r ′ ∈ S do
(C ′

1, C
′
2) := (sourceClasses(r ′), targetClasses(r ′))

(P1, P2) := (findPath(C1, C
′
1, D1), findPath(C2, C

′
2, D2))

L2 = apply(r ′, D1, D2)

for (p1, p2) ∈ P2 × P2 do
for (a, b) ∈ L1 do

(A,B) := (findResources(a, p1, D1), findResources(b, p2, D2))

E := L2 ∩ (A× B)

w := computeSimilarity(A,B, E)

if w ≥ θ then
K := K ∪ {(a, b)}

end
end

end
end
K := selectLinks(K, µ, ρ)

end

Algorithm 3.1: Method to filter links.

links between resources generated as result of this process. In following sub-
sections we aim at introducing each of these elements that conform our
bootstrapping proposal

3.2.1 Filtering links

Algorithm §3.1 presents the method to filter links. It works on a link rule
r, a set of supporting link rules S, a source dataset D1, a companion dataset
D2, and a threshold θ that we explain later. It returns K, which is the subset of
links produced by base link rule r that seem to be true positive links.

The method first initialises K to an empty set, stores the source and the tar-
get classes of the base link rule in sets C1 and C2, respectively, and the links
that result from applying it to the source and the companion datasets in set L1.

The main loop then iterates over the set of supporting link rules us-
ing variable r ′. In each iteration, it first computes the sets of source and target
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classes involved in link rule r ′, which are stored in variables C ′
1 and C ′

2, re-
spectively; next, it finds the set of paths P1 that connect the source classes in
C1 with the source classes in C ′

1 in dataset D1; similarly, it finds the set of
paths P2 that connect the target classes in C2 with the target classes in
C ′

2 in dataset D2. By path between two sets of classes, we mean a se-
quence of object properties that connect resources with the first set of classes
to resources with the second set of classes, irrespective of their direction. Sim-
ply put: the idea is to find the way to connect the resources linked by the base
link rule with the resources linked by the supporting link rule, which is done
by the intermediate and the inner loops.

The intermediate loop iterates over the set of pairs of paths (p1, p2) from
the Cartesian product of P1 and P2. If there is at least a pair of such paths, it
then means that the resources involved in the links returned by base link rule
r might have some neighbours that might be linked by supporting link rule r ′.

The inner loop iterates over the collection of links (a, b) in set L1. It first
finds the set of resources A that are reachable from resource a using path p1 in
source dataset D1 and the set of resources B that are reachable from resource
b using path p2 in the companion dataset D2. Next, the method applies sup-
porting link rule r ′ to the source and the companion dataset and intersects the
resulting links with A× B so as to keep resources that are not reachable from
a or b apart; the result is stored in set E. It then computes the similarity of sets
A and B; intuitively, the higher the similarity, the more likely that resources a
and b refer to the same real-world entity. If the similarity is equal or greater
than threshold θ, then link (a, b) is added to set K; otherwise, it is filtered out.
When the main loop finishes, set K contains the collection of links that
involve neighbours that are similar enough according to the supporting rules.

We do not provide any additional details regarding the algorithms to find
paths or resources since they can be implemented using Dijkstra’s algorithm
to find the shortest paths in a graph. Computing the similarity coefficient is a
bit more involved, so we devote a subsection to this ancillary method below.

Example 3.2 Relying on our running example presented in Section §B.2,
and assuming the link rule r1 as the base link rule, i.e., we are inter-
ested in linking authors and researchers, and we use link rule r2 as the
support link rule, i.e., we consider both their articles and papers. Their
source classes are C1 = {dblp:Author} and C ′

1 = {dblp:Article}, and their tar-
get classes are C2 = {nsf:Researcher} and C ′

2 = {nsf:Paper}. Link rule r1
returns the following set of links L1:

(dblp:weiwang,nsf:weiwang1),
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(dblp:weiwang,nsf:weiwang2), and
(dblp:binliu, nsf:binwliu).

Note that the first and the third links are true positive links, but the sec-
ond one is a false positive link. Link rule r2 returns the following set of links
L2, which are true positive links:

(dblp:article1, nsf:paper3),
(dblp:article2, nsf:paper2),
(dblp:article4, nsf:paper2), and
(dblp:article5, nsf:paper5).

The sets of paths amongst the source and target classes of r1 and r2 are,
respectively, P1 = {⟨dblp:writtenBy⟩} and P2 = {⟨nsf:leads, nsf:supports⟩}.
Now, the links in L1 are scanned and the resources that can be reached from
the resources involved in each link using the previous paths are fetched.

Link l1 = (dblp:weiwang,nsf:weiwang1) is the first to be analysed. The
method finds A = {dblp:article1, dblp:article2, dblp:article3, dblp:article4}
by following resource dblp:weiwang through path ⟨dblp:writtenBy⟩; it also
finds B = {nsf:paper1, nsf:paper2, nsf:paper3} by following resource nsf:
weiwang1 through path ⟨nsf:leads, nsf:supports⟩. Now, supporting link
rule r2 is applied and the results are intersected with A× B so as to keep links
that are related to l1 only; the result is the following set of links E:

(dblp:article1, nsf:paper3),
(dblp:article2, nsf:paper2), and
(dblp:article4, nsf:paper2).

Then, the similarity of A and B in the context of E is computed, which
returns 0.67; intuitively, there are chances that l1 is a true positive link.

Link l2 = (dblp:weiwang, nsf:weiwang2) is the next to be analysed. The
method finds A = {dblp:article1, dblp:article2, dblp:article3, dblp:article4}
by following resource dblp:weiwang through path ⟨dblp:writtenBy⟩; next,
it finds B = {nsf:paper4} by following resource nsf:weiwang2 through path
⟨nsf:leads, nsf:supports⟩. Now, supporting link rule r2 is applied and the re-
sult is intersected with A× B, which results in E = ∅. In such a case, the
similarity is zero, which intuitively indicates that it is very likely that l2 is a
false positive link.

Link l3 = (dblp:binliu, nsf:binwliu) is analysed next. The method finds
A = {dblp:article5} by following resource dblp:binliu through path ⟨dblp:
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computeSimilarity(A,B, E) : d

A ′ := reduce(A,E)

B ′ := reduce(B, E)

W := intersect(A ′, B ′, E)

d := |W|/min{|A ′|, |B ′|})

end

Algorithm 3.2: Method to compute similarity.

writtenBy⟩; next, it finds B = {nsf:paper5} by following resource nsf:
binwliu through path ⟨nsf:leads, nsf:supports⟩. Now, supporting link rule
r2 is applied and the result is intersected with A × B, which results in
E = {(dblp:article5, nsf:paper5)}. The similarity is now 1.00, i.e., it is very
likely that link l3 is a true positive link.

Assuming that θ = 0.50, for instance, the filterLinks method would
then return set K = {(dblp:weiwang,nsf:weiwang1), (dblp:binliu, nsf:
binwliu)}. Note that the previous value of θ is intended for illustration pur-
poses only because the running example must necessarily have very little
data.

3.2.2 Computing neighbours similarity

Algorithm §3.2 shows our method to compute similarities. Its input con-
sists of sets A and B, which are two sets of resources, and E, which is a set
of links between them. It returns the Szymkiewicz-Simpson overlapping
coefficient, namely:

overlap(A,B) =
|A ∩ B|

min{|A|, |B|}

The previous formula assumes that there is an implicit equality relation to
compute A ∩ B, |A|, or |B|. In our context, this relation must be inferred from
the set of links E by means of Warshall’s algorithm to compute the reflexive,
commutative, transitive closure of relation E, which we denote as E⋆.

The method to compute similarities relies on two ancillary functions,
namely: reduce, which given a set of resources X and a set of links E re-
turns a set whose elements are subsets of X that are equal according to E⋆, and
intersect, which given two reduced sets of resources X and Y and a set of
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links E returns the intersection of X and Y according to E⋆. Their definitions
are as follows:

reduce(X, E) = {W | W ∝ W ⊆ X∧W ×W ⊆ E⋆)}
intersect(X, Y, E) = {W | W ∝ W ⊆ X∧ ∃W ′ : W ′ ⊆ Y ∧W ×W ′ ∈ E⋆}

where X ∝ ϕ denotes the maximal set X that fulfils predicate ϕ, that is:

X ∝ ϕ ⇔ ϕ(X)∧ ( ̸ ∃X ′ : X ⊆ X ′ ∧ ϕ(X ′))

The method to compute similarities then works as follows: it first reduces
the input sets of resources A and B according to the set of links E; it then com-
putes the intersection of both reduced sets; finally, it computes the similarity
using Szymkiewicz-Simpson’s formula on the reduced sets.

Example 3.3 Analysing link l1 = (dblp:weiwang, nsf:weiwang1) results in
sets A = {dblp:article1, dblp:article2, dblp:article3, dblp:article4}, B = {nsf:
paper1, nsf:paper2, nsf:paper3}, and E = {(dblp:article1, nsf:paper3), (dblp:
article2, nsf:paper2), (dblp:article4, nsf:paper2)}. If E is interpreted as an
equality relation, then it is straightforward to realise that dblp:article2 and
dblp:article4 can be considered equal, because dblp:article2 is equal to
nsf:paper2 and nsf:paper2 is equal to dblp:article4. Thus, set A is re-
duced to A ′ = {{dblp:article1}, {dblp:article2, dblp:article4}, {dblp:article3}}
and set B is reduced to B ′ = {{nsf:paper1}, {nsf:paper2}, {nsf:paper3}}. As
a conclusion, |A ′ ∩ B ′| = |{{dblp:article1, nsf:paper3}, {dblp:article2, dblp:
article4, nsf:paper2}}| = 2, |A ′| = 3, and |B ′| = 3; so the similarity is 0.67.

When link l2 = (dblp:weiwang, nsf:weiwang2) is analysed, A = {dblp:
article1, dblp:article2, dblp:article3, dblp:article4}, B = {nsf:paper4}, and
E = ∅. Since the equality relation E⋆ is then empty, the similarity is zero
because the intersection between the reductions of sets A and B is empty.

Regarding link l3 = (dblp:binliu, nsf:binwliu), the method first com-
putes A = {dblp:article5}, then B = {nsf:paper5}, and, finally, E = {(dblp:
article5, nsf:paper5)}. As a conclusion, |A ′ ∩ B ′| = |{{dblp:article5, nsf:
paper5}}| = 1, |A ′| = 1, and |B ′| = 1, where A ′ and B ′ denote, respectively, the
reductions of sets A and B; so the similarity is 1.00.

3.2.3 Selecting links

Algorithm §3.3 shows the method to select the best links out of a set of
correspondences. Its input consists of a set of correspondences K, a thresh-
old µ to the minimum number of times that a link must have been selected by
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selectLinks(K, µ, ρ) : L

M := {(s, t) | ∃r ′ : (s, t, r ′) ∈ K}

S := {r ′ | ∃s, t : (s, t, r ′) ∈ K}

g := µ max{n | ∃a, b : (a, b) ∈ M∧ n = |rules(a, b, K)|}

d := ρ max{m | ∃r ′ : r ′ ∈ S∧m = |links(r ′, K)|}

U := {(a, b) | (a, b) ∈ M∧ |rules(a, b, K)| ≥ g}

V := {r ′ | r ′ ∈ S∧ links(r ′, K) ≥ d}

L := {(a, b) | (a, b) ∈ M∧ ((a, b) ∈ U∧ rules(a, b, K) ∩ V ̸= ∅)}
end

Algorithm 3.3: Method to select filtered links.

a supporting link rule so that it can be selected by this method (top links),
and an additional threshold ρ to the minimum number of times that a
supporting link rule must have selected a link so that links that have been se-
lected by that link rule can be selected by this method (top link rules) even if
they are not top links.

This method relies on two ancillary functions, namely: links, which
given a supporting link rule r ′ returns the set of links that it has se-
lected, and rules, which given a link (a, b) returns the set of link rules that
have selected it. The previous functions are formally defined as follows:

links(r ′, K) = {(a, b) | ∃r ′ : (a, b, r ′) ∈ K}

rules(a, b, K) = {r ′ | ∃a, b : (a, b, r ′) ∈ K}

The method to select links first projects the set of correspondences K onto
the set of links M and the set of supporting link rules S. It then com-
putes g as a percentage, according to µ, of the maximum number of link rules
that have selected each candidate link; it also computes d as a percentage, ac-
cording to ρ, of the maximum number of links that a support link rule has
selected as candidates. Next, it computes the set of top links U as the set of
links in M that have been selected by at least g link rules; similarly, it com-
putes the set of top link rules V as the set of link rules in S that have selected
at least d links. The resulting set of links L is computed as the subset of links
in M that are either top links or have been selected by top link rules.

3.3 Experimental analysis
In this section, we first describe our experimental environment and then

comment on our results obtained in the experiments. The goal of our experi-
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mentation is to show that Teide significantly improves the precision of a link
rule in the different scenarios studied without a significant drop in the recall.

3.3.1 Experimental environment

Implementation. We implemented our proposal†1 with Java 1.8 and the fol-
lowing components: Jena TDB 3.2.0 to work with RDF data, ARQ 3.2.0 to
work with SPARQL queries, and Simmetrics 1.6.2, SecondString 2013-05-02,
and JavaStringSimilarity 1.0.1 to compute string similarities.

Running experiments. We run our experiments in the facility described in
Appendix §A.1. In addition, we used Genlink as baseline to learn link rules,
which was implemented relying on our framework presented in the previ-
ous chapter. We chose this proposal since it was the one that achieved the
worst positions in the statistical ranking that we performed and we aim at
showing that Teide improves even the last-ranked proposal. However, any
proposal from the state of the literature could be used.

Measures. On the one hand, we explored a large portion of the parame-
ter space to establish optimal values for θ, µ, ρ in each scenario. On the
other hand, we measured the number of links returned by each proposal
(Links), precision (P), recall (R), and the F1 score (F1). We also computed the
normalised differences in precision (∆P), recall (∆R), and F1 score (∆F1),
which measure the ratio from the difference found between the baseline and
our proposal and the maximum possible difference for each performance
measure.

Datasets sizes. Our experiments rely on some of the scenarios described in
Appendix §A.2. For these experiments, we used the following datasets:

• In scenario Restaurants, we used 113 and 752 resources in each sub-
dataset, respectively. In addition, we provided 112 owl:sameAs links
and 84 864 owl:differentFrom links.

• In scenario Persons1, we used 500 resources per sub-dataset; from which
we provided 500 owl:sameAs links and 249, 500 owl:differentFrom
links.

†1The prototype is available at https://github.com/AndreaCimminoArriaga/TeidePlus.

https://github.com/AndreaCimminoArriaga/TeidePlus
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• In scenario Persons2, the sub-dataset have 400 and 600 resources, re-
spectively. In addition, we provided 400 owl:sameAs links and 239, 600

owl:differentFrom links.

• In scenario Publications, the sub-dataset consisted of 108 resources from
the RAE and 98 resources from the Newcastle. In addition, we provided
108 owl:sameAs links and 10, 476 owl:differentFrom links.

• In scenario Authors, the sub-dataset consisted of 9, 076 resources from
the DBLP, respectively; we provided 9, 076 owl:sameAs links and
82, 364 , 700 owl:differentFrom links.

• In scenario Researchers, the sub-dataset consisted of 100 resources from
the DBLP and 130 resources from the NSF. In addition, we provided 33

owl:sameAs links and 12, 967 owl:differentFrom links.

• In scenario Films, the sub-dataset consisted of 691 resources from the
BBC and 445 resources from the DBpedia. In addition, we provided 445

owl:sameAs links and 307, 050 owl:differentFrom links.

• In scenario Movies, the sub-dataset consisted of 96 resources from the
DBpedia and 101 resources from the IMDb. In addition, we provided 58

owl:sameAs links and 9, 638 owl:differentFrom links.

• In scenario Doremus16-9ht, the sub-dataset have 40 and 40 resources,
respectively. In addition, we provided 32 owl:sameAs links and 1, 584

owl:differentFrom links.

• In scenario Doremus16-fp, the sub-dataset have 85 and 41 resources, re-
spectively. In addition, we provided 41 owl:sameAs links and 3, 444

owl:differentFrom links.

• In scenario Doremus17-ht, the sub-dataset have 238 and 238 resources,
respectively. In addition, we provided 47 owl:sameAs links and 56, 597

owl:differentFrom links.

• In scenario Doremus17-fp, the sub-dataset have 75 and 75 resources, re-
spectively. In addition, we provided 15 owl:sameAs links and 5, 610

owl:differentFrom links.

3.3.2 Experimental results

The results are presented in Table §3.1. We analyse them in terms of
precision, recall, and the F1 score.
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Scenario links P R F1 µ links P R F1 ΔLinks ΔP ΔR ΔF1

Researchers 127 0.25 0.97 0.40 0.01 0.02 0.74 33 0.97 0.97 0.97 -94 0.96 0.00 0.95

Authors 78,348 0.12 1.00 0.21 1.00 0.07 0.03 9,069 1.00 1.00 1.00 -69,279 1.00 0.00 1.00

Films 525 0.85 1.00 0.92 0.10 0.00 0.03 461 0.96 1.00 0.98 -64 0.74 0.00 0.72

Movies 118 0.27 0.55 0.36 0.60 0.00 0.03 41 0.68 0.48 0.57 -77 0.57 -0.12 0.32

Publications 404 0.22 0.82 0.35 0.30 0.13 0.03 68 0.72 0.45 0.56 -336 0.64 -0.45 0.32

Restaurants 103 0.90 0.83 0.87 0.10 0.08 0.58 96 0.97 0.83 0.89 -7 0.69 0.00 0.19

Persons1 1655 0.29 0.96 0.45 0.01 0.01 0.01 691 0.69 0.96 0.81 -964 0.57 0.00 0.65

Persons2 1340 0.22 0.74 0.34 0.01 0.01 0.01 451 0.65 0.74 0.69 -889 0.55 -0.01 0.53

Doremus16-9ht 29 0.83 0.75 0.79 0.01 0.01 0.01 24 1.00 0.75 0.86 -5 1.00 0.00 0.33

Doremus16-fp 221 0.14 0.76 0.24 0.01 0.01 0.01 44 0.61 0.66 0.64 -177 0.55 -0.13 0.52

Doremus17-ht 1880 0.03 1.00 0.05 0.01 0.01 0.01 127 0.34 0.91 0.49 -1753 0.32 -0.09 0.47

Doremus17-fp 808 0.02 1.00 0.04 0.01 0.01 0.01 9 0.67 0.40 0.50 -799 0.66 -0.60 0.48

0.69 -0.12 0.54

0.01 0.19 0.01Iman-Davenport's test

Average Δ

Genlink Teide

Table 3.1: Experimental effectiveness and efficiency.

It is clear that our technique improves the precision of the rules learnt by
GenLink in every scenario. In average, the difference in precision is 69%. The
worst improvement is 32% in the Doremus17-ht scenario since these datasets
are clearly unbalanced: resources in one sub-dataset have such a differ-
ent representation from the resources in the other that link rules are not able
to capture their similarity; this obviously makes it impossible for our pro-
posal to find enough context to make a decision. The best improvement is
100% in the Researchers scenario since there are 9, 069 authors with very sim-
ilar names, which makes it almost impossible for GenLink to generate rules
with good precision building solely on the attributes of the resources.

The normalised difference of recall ∆R shows that our proposal generally
retains the recall of the link rules learnt by GenLink, except in the Movies,
Publications, Doremus16-fp, and Doremus17-fp scenarios. The problem with
the previous scenarios was that there are many incomplete resources, that is,
many resources without neighbours. For instance, there are 43 papers in
the Newcastle dataset that are not related to any authors. The incomplete-
ness of data has also a negative impact on the recall of the base link rules. In
our prototype, we are planning on implementing a simple check to identify
incomplete resources so that the links in which they are involved are not dis-
carded as false positives, but identified as cases on which our proposal cannot
make a sensible decision.

We also studied ∆F1, which denotes the normalised difference in F1
score. Note that it is 54% in average, which is a large difference. How-
ever, without a statistical analysis we cannot conclude that Teide improves
the precision of the rules without a significant drop in the recall.
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3.3.3 Statistical analysis

The statistical analysis is reported under the table displayed in Table §3.1,
we applied the Iman-Iman-Davenport’s test with an alpha of 0.05 to check if
there are significant differences between the precision, entailing that our pro-
posal improves the precision, and there are no significant differences in the
recall, entailing that our proposal may have a bit of less recall but without a
relevant significance.

The p-value computed by Iman-Davenport’s test in terms of precision is
0.01; since it is clearly smaller than the standard confidence level, we can
interpret it as a strong indication that there is enough evidence in our experi-
mental data to confirm the hypothesis that our proposal works better than the
baseline regarding precision.

Iman-Davenport’s test for recall returns 0.19 as the corresponding p-
value; since it is larger than the standard confidence level, it may be
interpreted as a strong indication that the differences in recall found in our
experiments are not statistically significant. In other words, the cases in
which data are that incomplete do not seem to be common-enough for them
to have an overall impact on our proposal.

The corresponding Iman-Davenport’s p-value for the F1 is 0.01, which can
be interpreted as a strong indication that the difference is significant from a
statistical point of view. Overall, this result confirms that our proposal helps
improve precision without degrading recall and that the improvement in
precision is enough for the F1 score to improve significantly.

At the light of these results, we can conclude that Teide improves signifi-
cantly the precision of the link rules, without a significant difference in the
recall.

3.4 Conclusions
Data inter-operability of business systems based on Web of Data requires

to link the resources that are available in different datasets and represent the
same real-world entities. Such links are generated by link rules that take the
values of the attributes of the resources into account, but not their neigh-
bours, which sometimes results in false positives that have a negative impact
on their precision. We have presented a novel proposal called Teide that re-
lies on a genetic programming proposal to learn a set of link rules and then
boosts them, which has proven to improve the overall F1 score.





Chapter4

Sorbas: LearningContext-Aware
LinkRules

T
his chapter introduces our proposal to learn link rules that con-
sider the context of data, which has been proved that increases the
precision of the rules without a significant drop in their recall. It is
organised as follows: Section §4.1 introduces the context of our pro-

posal; Section §4.2 describes and explains our proposal; Section §4.3 explains
and reports the experiments conducted with our implementations; and
finally, Section §4.4 recaps on the conclusions drawn from our experiments.

59
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4.1 Introduction

The previous chapter introduced our proposal Teide to bootstrap link
rules, and take advantage of the context of the resources been linked. How-
ever, we realised that since Teide does not export any rule, it just applies
them, there is no re-usability and, in addition, the execution time was high
due to the fact that not all the supporting link rules are useful to link re-
sources, and those that are not, are applied constantly. As a result, a lot of
comparisons that are not necessary are performed by Teide, which increases
its execution time.

In this chapter, we present an approach known as Sorbas that learns
context-aware link rules building on the acontextual rules learnt by any pro-
posal from the literature, or just provided by a user. By context-aware, we
mean that the rule takes into account the data properties of the resources be-
ing linked and the data properties of their neighbours. By learning the rules,
a user may rely on a training set in which learning a context-aware link rule
is computationally affordable, and once the rule is learnt, use our ap-
proach Teide or Sorbas to apply the learnt rule. As a result, the applying more
precise rules will take less time.

4.2 Learning process

The input to our learning method is a base rule R, a set of support rules S,
and two datasets D1 and D2. We assume that the rules have been learnt with
the first component, that is, they are acontextual; we also assume that
the datasets provide resources that are representative enough of the re-
sources that we wish to link. Our goal is to learn a context-aware rule that
combines base rule R with a subset of support rules S to improve the preci-
sion when linking similar datasets. Our proposal works in three steps: it first
learns a set of correspondences, next filters some of them out, and then
instantiates a template to produce the resulting rule.

The first step learns a set of correspondences K, which are tuples of the
form (A,B, T, P1, P2). In the previous tuple, A and B denote two resources that
are linked by means of base rule R; P1 and P2 denote two paths, that is, two
sequences of object properties that relate resources A and B to two subsets of
direct or indirect neighbours; and T denotes a support rule that estab-
lishes some links amongst the previous subsets of neighbours. There can be
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many correspondences, but the method filters out the ones in which the sub-
sets of direct or indirect neighbours cannot be considered similar enough
according to the links found by support rule T . Intuitively, the correspon-
dences keep the links whose context can be considered similar enough not to
be false positive links.

The second step consists in selecting the support rules in the set of corre-
spondences K that have generated enough links. We use a threshold γ that is
computed using grid parameter search to set the minimum number of links
that a support rule must have generated so that it can be selected. We first
compute a set with the counters of links in K that have been generated by
each support rule T given two paths P1 and P2, that is, we compute:

P = {C | ∃T, P1, P2 : C = |links(K, T, P1, P2)|}

where links is defined as follows:

links(K, T, P1, P2) = {(A,B) | (A,B, T, P1, P2) ∈ K}

The set of support rules selected is then defined as the set of sup-
port rules that generate at least γ percent the maximum number of links
generated by a support rule, that is:

V = {(T, P1, P2) | |links(K, T, P1, P2)| ≥ γ maxP}

Note that V stores triplets in which each support rule is accompanied by
two paths; the reason is that a link rule may generate many links, but we
are interested in links amongst resources that are directly or indirectly re-
lated to the original resources whose linkage must be decided. (In a previous
instance-driven approach to find links, we realised that this is a good
heuristic [17].)

The final step consist in generating the resulting context-aware rule,
which is an instantiation of the following template:

link(A,B) if R(A,B)∧ ∃(T, P1, P2) ∈ V :
X = findResources(A, P1)∧ Y = findResources(B, P2)∧
E = {(U,V) | U ∈ X∧ V ∈ Y ⇒ T(U,V)} ∧
computeSimilarity(X, Y, E) ≥ θ

The previous template is a general model for which our procedure learns
the following parameters: R, which denotes a base rule, V, which de-
notes the set of support rules and paths selected previously, and θ, which is a
similarity threshold that we learn by means of grid parameter search.
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computeCorrespondences(R, S,D1, D2, θ) : K

K := ∅
(RS, RT ) := (sourceClasses(R), targetClasses(R))

L1 := apply(R,D1, D2)

for T ∈ S do
(TS, TT ) := (sourceClasses(T), targetClasses(T))

(Q1, Q2) := (findPaths(RS, TS, D1), findPaths(RT , TT , D2))

L2 = apply(T,D1, D2)

for (P1, P2) ∈ Q1 ×Q2 do
for (A,B) ∈ L1 do

(X, Y) := (findResources(A, P1, D1), findResources(B, P2, D2))

E := L2 ∩ (X× Y)

if computeSimilarity(X, Y, E) ≥ θ then
K := K ∪ {(A,B, T, P1, P2)}

end
end

end
end

end

Algorithm 4.1: Method to learn correspondences.

Intuitively, resources A and B can be linked if they are linked by the base
rule and their neighbourhoods are similar enough. The neighbours are simi-
lar enough if there is at least a support rule T with paths P1 and P2, such that:
let X denote the neighbours of resource A by following path P1, let Y de-
note the neighbours of resource B by following path P2, and let E be the set of
links that support rule T finds amongst X and Y; the neighbours are simi-
lar enough if X and Y are deemed similar enough according to the links that
the supporting rule has found.

Method findResources is very simple, so we do not provide any addi-
tional details. In the subsections below, we delve into the intricacies of
computing correspondences and similarities.

4.2.1 Computing correspondences

Figure §4.1 provides the pseudo-code to the method to learn correspon-
dences. It works on a base rule R, a set of support rules S, two datasets D1

and D2, and a similarity threshold θ. It returns a set of correspondences K.
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The method first initialises K to an empty set, stores the source and the tar-
get classes of the base rule in sets RS and RT , respectively, and the links that
result from applying it to the input datasets in set L1.

The main loop then iterates over the set of support rules using vari-
able T . In each iteration, it first computes the sets of source and target
classes involved in rule T , which are stored in variables RS and RT , respec-
tively; next, it finds the set of paths Q1 that connect the source classes in RS

with the source classes in TS in dataset D1; similarly, it finds the set of
paths Q2 that connect the target classes in RT with the target classes in TT
in dataset D2. Simply put: the idea is to find the paths to relate the re-
sources linked by the base rule with the resources linked by the support rule,
which is done by the intermediate and the inner loops.

The intermediate loop iterates over the set of pairs of paths (P1, P2) from
the Cartesian product of Q1 and Q2. If there is at least a pair of such paths, it
then means that the resources involved in the links returned by base rule R

might have some neighbours that might be linked by support rule T . The in-
ner loop iterates over the collection of links (A,B) in set L1, that is, the links
returned by the base rule. It first finds the set of resources X that are re-
lated to resource A using path P1 in dataset D1 and the set of resources Y that
are related to resource B using path P2 in dataset D2. Next, the method ap-
plies support rule T to datasets D1 and D2 and intersects the resulting
links with X × Y in order to filter out the resources that are not neigh-
bours of A or B; the result is stored in set E. It then computes the similarity of
sets A and B. If it is greater than or equal to threshold θ, then correspondence
(A,B, T, P1, P2) is added to set K; otherwise, it is filtered out.

Method findPaths basically resorts to Dijkstra’s well-known algorithm to
find the shortest paths in a graph. We do not provide any additional de-
tails regarding methods sourceClasses, targetClasses, findResources, and
apply because they are straightforward.

4.2.2 Computing similarity

Figure §4.2 shows our method to compute similarity. Its input consists of
sets X and Y, which are two sets of resources, and E, which is a set of links be-
tween them. It returns the Szymkiewicz-Simpson overlapping coefficient,
namely:

overlap(X, Y) =
|X ∩ Y|

min{|X|, |Y|}
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computeSimilarity(X, Y, E) : D

X ′ := reduce(X, E)

Y ′ := reduce(Y, E)

W := intersect(X ′, Y ′, E)

D := |W|/min{|X ′|, |Y ′|})

end

Algorithm 4.2: Method to compute similarity.

The previous formula assumes that there is an implicit equality relation to
compute X ∩ Y, |X|, or |Y|. In our context, this relation must be inferred from
the set of links E by means of Warshall’s algorithm to compute the reflexive,
commutative, transitive closure of relation E, which we denote as E⋆.

The method to compute similarities relies on two ancillary methods,
namely: reduce, which given a set of resources X and a set of links E re-
turns a set whose elements are subsets of X that are equal according to E⋆, and
intersect, which given two reduced sets of resources X and Y and a set of
links E returns the intersection of X and Y according to E⋆. Their definitions
are as follows:

reduce(X, E) = {W | W ∝ W ⊆ X∧W ×W ⊆ E⋆}

intersect(X, Y, E) = {W | W ∝ W ⊆ X∧ ∃W ′ : W ′ ⊆ Y ∧W ×W ′ ∈ E⋆}

where X ∝ ϕ denotes the maximal set X that fulfils predicate ϕ, that is:

X ∝ ϕ ⇔ ϕ(X)∧ ( ̸ ∃X ′ : X ⊆ X ′ ∧ ϕ(X ′))

The method to compute similarities then works as follows: it first reduces
the input sets of resources X and X according to the set of links E; it then com-
putes the intersection of both reduced sets; finally, it computes the similarity
using Szymkiewicz-Simpson’s formula on the reduced sets.

4.2.3 Illustration

The running example introduces in Section §B.2 presents an excerpt of the
DBLP dataset and an excerpt of the NSF dataset. The first component learns
the following rules in this scenario, where levenshtein and jaccard are the
well-known string similarity functions, lfname is a function that trans-
forms names into format “last name, first name”, and lowercase is a function
that changes a string into lowercase:
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r1: link(A,R) if rdf:type(A) = dblp:Author, rdf:type(R) = nsf:Researcher,
NA = dblp:name(A),NR = nsf:name(R),
S1 = levenstein(lfname(NA), lfname(NR)),
S1 − 0.87

1.00− 0.87
≥ 0.

r2: link(A, P) if rdf:type(A) = dblp:Article, rdf:type(P) = nsf:Paper,
TA = dblp:title(A), TP = nsf:title(P),
S1 = jaccard(lowercase(TA), lowercase(TP)), .
S1 − 0.65

1.00− 0.65
≥ 0.

r3: link(A,U) if rdf:type(A) = dblp:Affiliation, rdf:type(U) = nsf:Award,

TA = dblp:name(A), TU = nsf:uid(U),
S1 = jaccard(lowercase(TA), lowercase(TU)),
S1 − 0.95

1.00− 0.95
≥ 0.

Intuitively, rule r1 is applied to a resource A of type dblp:Author and a
resource R of type nsf:Researcher; it computes the Levenshtein similarity be-
tween the names of the author and the researcher after transforming them; if
it is at least 0.80, then the corresponding resources are linked. Rules r2 and r3
should now be easy to understand.

Let us analyse the case in which the base rule is r1 and the support rules
are r2 and r3; that is, we are interested in linking DBLP authors and
NSF researchers. Rule r1 returns the following links: {(dblp:weiwang, nsf:
weiwang1), (dblp:weiwang, nsf:weiwang2), (dblp:binliu, nsf:binwliu)};
note that the first and the third links are true positive links, but the sec-
ond one is a false positive link. Rule r2 returns the following links:
{(dblp:article1, nsf:paper3), (dblp:article2, nsf:paper2), (dblp:article4, nsf:
paper2), (dblp:article5, nsf:paper5) }, which are true positive links. Fi-
nally rule r3 returns {(dblp:affiliation1, nsf:award4)}, which are also true
positive links. The sets of paths between the source and target classes of
r1 and r2 are {⟨dblp:writtenBy⟩} and {⟨nsf:leads, nsf:supports⟩}. Further-
more, the paths between the source and target classes of r1 and r3 are {⟨dblp:
relatedTo⟩} and {⟨nsf:leads⟩}, respectively.

Link l1 = (dblp:weiwang,nsf:weiwang1) is analysed first. The method
finds X = {dblp:article1, dblp:article2, dblp:article3, dblp:article4} by fol-
lowing resource dblp:weiwang through path ⟨dblp:writtenBy⟩; similarly,
it finds Y = {nsf:paper1, nsf:paper2, nsf:paper3} by following resource nsf:
weiwang1 through path ⟨nsf:leads, nsf:supports⟩. Now, support rule r2 is
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applied and the results are intersected with X× Y so as to keep links that
are related to l1 only; the result is E = {(dblp:article1, nsf:paper3), (dblp:
article2, nsf:paper2), (dblp:article4, nsf:paper2)}. Then, the similarity of X

and Y in the context of E is computed, which returns 0.67; intuitively, there
are chances that l1 is a true positive link.

Link l2 = (dblp:weiwang,nsf:weiwang2) is analysed next. The method
finds X = {dblp:article1, dblp:article2, dblp:article3, dblp:article4} by fol-
lowing resource dblp:weiwang through path ⟨dblp:writtenBy⟩; next, it finds
Y = {nsf:paper4} by following resource nsf:weiwang2 through path ⟨nsf:
leads, nsf:supports⟩. Now, support rule r2 is applied and the result is inter-
sected with X× Y, which results in E = ∅. In this case, the similarity is zero,
which intuitively indicates that it is very likely that l2 is a false positive link.

Link l3 = (dblp:binliu, nsf:binwliu) is analysed next. The method finds
A1 = {dblp:article5} by following resource dblp:binliu through path ⟨dblp:
writtenBy⟩; next, it finds Y1 = {nsf:paper5} by following resource nsf:
binwliu through path ⟨nsf:leads, nsf:supports⟩. Now, support rule r2 is ap-
plied and the result is intersected with X1 × Y1, which results in E = {(dblp:
article5, nsf:paper5)}. The similarity is now 1.00, i.e., it is very likely that link
l3 is a true positive link. The method then finds X2 = {dblp:affiliation1} by
following resource dblp:binliu through path ⟨dblp:relatedTo⟩; next, it finds
X2 = {nsf:award4} by following resource nsf:binwliu through path ⟨nsf:
supports⟩. Now, support rule r3 is applied and the result is intersected
with X2 × Y2, which results in E = {(dblp:affiliation1, nsf:award4)}. The
similarity is 1.00, again this points out that l3 is likely to be a true positive link.

Assume that θ = 0.50 and γ = 0.70, which are intended for il-
lustration purposes only. Method computeCorrespondences returns set
K = {(dblp:weiwang,nsf:weiwang1), (dblp:binliu, nsf:binwliu)}. We now
have to analyse support rules r2 and r3 and the links that they produced
given the paths shown previously. Support rule r2 produces links l1 and l3,
and support rule r3 produces only link l3; therefore, every support rule that
returns at least 2γ = 1.40 links taking into account the previous paths is se-
lected. In other words, support rule r2 is selected and support rule r3 is
discarded. The resulting context-aware rule is as follows:

r∗: link(A,B) if r1(A,B),
X = findResources(A, ⟨dblp:writtenBy⟩),
Y = findResources(B, ⟨nsf:leads, nsf:supports⟩),
E = {(U,V) | U ∈ X∧ V ∈ Y ⇒ r2(A,B)},
computeSimilarity(X, Y, E) ≥ 0.50.
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The intuitive interpretation is that r∗ links resources A and B if rule r1
links them and they have some neighbours (using paths ⟨dblp:writtenBy⟩
and ⟨nsf:leads, nsf:supports⟩), respectively) that can be linked by means of
rule r2 and it results in two sets of resources whose similarity is at least 0.50.

4.3 Experimental analysis
In this section, we first describe our experimental environment and then

comment on our results regarding effectiveness and efficiency. Finally, we
present our statistical analysis to support our findings.

4.3.1 Experimental environment

Implementation. We implemented our proposal†1 with Java 1.8 and the fol-
lowing components: Jena TDB 3.2.0 to work with RDF data, ARQ 3.2.0 to
work with SPARQL queries, and Simmetrics 1.6.2, SecondString 2013-05-02,
and JavaStringSimilarity 1.0.1 to compute string similarities.

Running experiments. We run our experiments in the facility described
in Appendix §A.1. We used Sorbas as baseline to learn link rules rely-
ing on one sub-dataset; in addition, we run Teide in the same sub-dataset as
well. Next, we applied the learnt link rules from Sorbas into a new non-
overlapping sub-dataset; we ran the same rules using Teide. We aim at
showing that in the first step, Sorbas takes as much time as Teide to learn
context-aware link rules, nevertheless, in the second step Sorbas spends
much less time than Teide to apply the link rules.

Measures. On the one hand, we explored a large portion of the parame-
ter space to establish optimal values for θ, γ in each scenario. On the other
hand, we measured the number of links returned by each proposal (Links),
precision (P), recall (R), and the F1 score (F1).

Datasets sizes. We set up the following evaluation scenarios†2:

• In the Restaurants the training sub-datasets have 112 and 752 resources,
respectively. In addition, we provided 56 owl:sameAs links and 42, 432

owl:differentFrom links. The validation datasets have 112 and 752 re-
sources, respectively. We provided 56 owl:sameAs links and 42, 432

owl:differentFrom links.
†1The prototype is available at https://github.com/AndreaCimminoArriaga/Sorbas.
†2The datasets are available at http://dx.doi.org/10.5281/zenodo.2555034.

https://github.com/AndreaCimminoArriaga/Sorbas
http://dx.doi.org/10.5281/zenodo.2555034
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• In the scenario Publications the training sub-datasets have 108 and 98

resources, respectively. In addition, we provided 54 owl:sameAs links
and 5, 238 owl:differentFrom links. The validation datasets have 108

and 98 resources, respectively. We provided 54 owl:sameAs links and
5, 238 owl:differentFrom links.

• In the scenario Movies the training sub-datasets have 62 and 129 re-
sources, respectively. In addition, we provided 29 owl:sameAs links
and 4, 848 owl:differentFrom links. The validation datasets have 62

and 130 resources, respectively. We provided 29 owl:sameAs links and
4, 848 owl:differentFrom links.

• In the scenario Films the training sub-datasets have 691 and 445 re-
sources, respectively. In addition, we provided 222 owl:sameAs links
and 153, 525 owl:differentFrom links. The validation datasets have 691

and 445 resources, respectively. We provided 223 owl:sameAs links and
153, 525 owl:differentFrom links.

• In the scenario Authors the training sub-datasets have 4, 545 and 9, 076

resources, respectively. In addition, we provided 14 owl:sameAs links
and 244, 689 owl:differentFrom links. The validation datasets have 512

and 707 resources, respectively. We provided 328 owl:sameAs links and
243, 048 owl:differentFrom links.

• In the scenario Researchers the training sub-datasets have 130 and 101

resources, respectively. In addition, we provided 17 owl:sameAs links
and 6, 548 owl:differentFrom links. The validation datasets have 130

and 101 resources, respectively. We provided 16 owl:sameAs links and
6, 549 owl:differentFrom links.

• In the Persons1 the training sub-datasets have 482 and 500 resources, re-
spectively. In addition, we provided 250 owl:sameAs links and 124, 750

owl:differentFrom links. The validation datasets have 484 and 500 re-
sources, respectively. We provided 250 owl:sameAs links and 124, 750

owl:differentFrom links.

• In scenario Persons2 the training sub-datasets have 528 and 400 re-
sources, respectively. In addition, we provided 200 owl:sameAs links
and 119, 800 owl:differentFrom links. The validation datasets have 530

and 400 resources, respectively. We provided 200 owl:sameAs links and
119, 800 owl:differentFrom links.
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• In scenario Doremus16-9ht the training sub-datasets have 25 and 32 re-
sources, respectively. In addition, we provided 16 owl:sameAs links
and 496 owl:differentFrom links. The validation datasets have 25 and
32 resources, respectively. We provided 16 owl:sameAs links and 496

owl:differentFrom links.

• In scenario Doremus16-fp the sub-dataset have 29 and 42 resources, re-
spectively. In addition, we provided 20 owl:sameAs links and 820

owl:differentFrom links. The validation datasets have 30 and 41 re-
sources, respectively. We provided 21 owl:sameAs links and 820 owl:
differentFrom links.

• In scenario Doremus17-ht the sub-dataset have 132 and 238 resources,
respectively. In addition, we provided 23 owl:sameAs links and 28, 300

owl:differentFrom links. The validation datasets have 129 and 238 re-
sources, respectively. We provided 24 owl:sameAs links and 28, 297

owl:differentFrom links.

• In scenario Doremus17-fp the sub-dataset have 75 and 75 resources, re-
spectively. In addition, we provided 7 owl:sameAs links and 2, 805

owl:differentFrom links. The validation datasets have 75 and 75 re-
sources, respectively. We provided 8 owl:sameAs links and 2, 805 owl:
differentFrom links.

4.3.2 Experimental results

Table §4.1.(a) reports on the number of links generated by each proposal
and their average precision, recall, and F1 score using 2-fold cross valida-
tion. In the case of Sorbas, we also report on the values learnt for thresholds θ
and γ.

Note that the number of links than Teide and Sorbas generated is approxi-
mately the same. The average precision of Teide and Sorbas are 0.71± 0.21

and 0.74 ± 0.23, respectively. Recall that we are dealing with scenarios in
which the datasets have many similar resources that are actually differ-
ent, and also many dissimilar resources that are actually the same. Both Teide
and Sorbas take the context of the resources to be linked into account,
which helps make a difference between the previous cases. Note that the re-
calls of Teide and Sorbas are 0.76± 0.21 and 0.78± 0.19, respectively. Realise
that the F1 score of Teide and Sorbas are 0.71± 0.19 and 0.75± 0.2, respec-
tively. The conclusion is that both Sorbas and Teide are similar to each other
regarding their effectiveness.
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Links P R F1 Links P R F1

Researchers 26 0.59 1.00 0.74 0.01 0.84 16 1.00 1.00 1.00

Authors 338 0.97 1.00 0.98 0.01 0.01 338 0.97 0.99 0.98

Films 232 0.96 1.00 0.98 0.01 0.85 232 0.96 1.00 0.98

Movies 32 0.50 0.55 0.52 0.01 0.01 32 0.50 0.55 0.52

Publications 44 0.64 0.39 0.48 0.01 0.01 66 0.62 0.76 0.68

Restaurants 49 0.96 0.84 0.90 0.01 0.01 49 0.96 0.84 0.90

Persons1 336 0.72 0.96 0.82 0.01 0.01 336 0.72 0.96 0.82

Persons2 195 0.69 0.67 0.68 0.01 0.01 195 0.69 0.67 0.68

Doremus16-9th 12 1.00 0.75 0.86 0.01 0.01 12 1.00 0.75 0.86

Doremus16-fp 19 0.58 0.52 0.55 0.01 0.01 18 0.56 0.48 0.51

Doremus17-ht 58 0.34 0.83 0.49 0.01 0.01 58 0.34 0.83 0.49

Doremus17-fp 7 0.57 0.57 0.57 0.01 0.01 7 0.57 0.57 0.57

Scenario

Teide Sorbas

a) Effectiveness results

Learning set Validation set Learning set Validation set

Researchers 17'01'' 15'56'' 16'15'' 00'58''

Authors 08'09'' 23'54'' 06'11'' 18'31''

Films 51'00'' 48'46'' 44'38'' 01'57''

Movies 17'59'' 13'59'' 10'19'' 00'27''

Publications 01'46'' 01'58'' 02'00'' 00'09''

Restaurants 00'31'' 00'32'' 00'31'' 00'34''

Persons1 02'11'' 04'17'' 02'11'' 01'29''

Persons2 01'25'' 01'22'' 01'21'' 01'22''

Doremus16-9th 00'45'' 00'41'' 01'07'' 00'10''

Doremus16-fp 12'03'' 12'49'' 11'54'' 00'13''

Doremus17-ht 17'19'' 12'33'' 23'33'' 01'50''

Doremus17-fp 06'17'' 06'05'' 02'21'' 00'12''

Scenario

Teide Sorbas

b) Efficiency results

Table 4.1: Experimental effectiveness and efficiency

Table §4.1.(b) shows our experimental results regarding efficiency. Note
that Teide is an instance-driven proposal that does not attempt to learn any
rules, whereas Sorbas is a rule learner. We divided our scenarios into learn-
ing and validation sets in order to perform 2-fold validation. In Table §4.1.(b),
the column regarding the learning set must be interpreted as the time taken
to link the resources in this set in the case of Teide and the time taken to learn
context-aware rules from this set in the case of Sorbas; the column regarding
the validation set must be interpreted as the time taken to link the re-
sources in this set in the case of Teide and the time taken to apply the
context-aware rules learnt previously in the case of Sorbas.

Regarding the learning set, Teide took 16 ′22 ′′ ± 23 ′58 ′′ in average and Sor-
bas took 16 ′54 ′′ ± 22 ′38 ′′ in average. That is, it seems that the time taken to
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Iman-Davenport

Proposal Rank P-Value

Sorbas 1.54

Teide 1.46

Iman-Davenport

Proposal Rank P-Value

Sorbas 2.33

Teide 2.21

Iman-Davenport

Proposal Rank P-Value

Sorbas 1.42

Teide 1.58

Precision

F1 score

Empirical rank

P-Values that are smaller than 0.05 a

0.88

0.52

Empirical rank

Recall

Empirical rank

0.76

a) Relevance of the effectiveness

Iman-Davenport

Proposal Rank P-Value

Sorbas 1.71

Teide 1.29

Iman-Davenport

Proposal Rank P-Value

Sorbas 1.92

Teide 1.08
5.17E-13

P-Values that are smaller than 0.05 are greyed.

Efficiency on the learning set

Empirical rank

2.93E-08

Efficiency on the validation set

Empirical rank

b) Relevance of the efficiency

Table 4.2: Statistical analysis.

link the dataset and to learn context-aware rules from it are very similar. Re-
garding the validation set, the difference is more clear: note that the average
time taken by Teide is 16 ′54 ′′ ± 22 ′38 ′′ and the average time taken by Sor-
bas is 02 ′19 ′′ ± 05 ′09 ′′. That is, it seems that applying a rule that was learnt
previously helps save much computing time.

4.3.3 Statistical analysis

We have confirmed our conclusion regarding the effectiveness of Sor-
bas by means of a statistical analysis, cf. Table §4.2.(a). Let us focus on the F1
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score since it combines precision and recall. Note that Sorbas and Teide ob-
tained a p-value of 0.52 which is way above 0.05; the same happens for
the precision p-value 0.76, and the recall p-value 0.88. These results are a
strong statistical indicator that there are no relevant differences in terms of
effectiveness between Sorbas and Teide.

To confirm our conclusions about the efficiency of Sorbas, we anal-
ysed the experimental results using Iman-Davenport’s test, cf. Table §4.2.(b).
Note that the p-value is nearly zero in both cases, which is a strong indica-
tion that the differences in rank are statistically significant. Simply put, the
experimental results support the idea that Sorbas is more efficient than Teide.

4.4 Conclusions

Data inter-operability of business systems based on Web of Data requires
to link the resources that are available in different datasets and represent the
same real-world entities. Such links are generated by link rules that take the
values of the attributes of the resources into account, but not their neigh-
bours, which sometimes results in false positives that have a negative impact
on their precision. We have presented a novel proposal that leverages a ge-
netic programming to learn a set of link rules and then boosts them, which
has proven to improve the overall F1 score.
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Conclusions

Nowadays the Web of Data has become a vital resource for many compa-
nies. In order to exploit the full potential of the Web of Data it is necessary to
provide an unified a linked view of their datasets, many of which are
currently isolated. Link discovery is the task that aims at linking the re-
sources in different datasets that refer to the same real-world entities. The
proposals to perform link discovery must analyse a large space of poten-
tial solutions, and due to this reason, many address this problem relying
on meta-heuristics; such as the genetic programming. Nevertheless, build-
ing this kind of proposal is not a trivial task, and thus, compare the current
proposals under the same experimental conditions has not been done. In ad-
dition, we have proved that these rules are not as precise as they could be
since they fall short when linking resources that refer to the same real-
world entity but are dissimilar, and on the contrary, when resources that refer
to different real-world entities are similar.

In this dissertation, we address these challenges and provide a solution.
We devised a framework that allows to implement genetic programming pro-
posals, and thus, also compare them fairly under the same experimental
conditions. Relying on our framework we implemented three proposals
in the literature and we devised three additional ones. Then, using well-
established scenarios from the literature we ranked these proposals by means
of their effectiveness. As a result, we conclude which behaves better in the dif-
ferent scenarios. As far as we know, the literature does not count with a clear
methodology to follow when comparing the results this kind of proposals.
Due to this reason, in future, we would like to propose a methodology based
on hypothesis testing to compare link discovery proposals. In addition, we
would like to present several heuristics that allow to reduce the search space
of any link discovery proposal before it is executed, easing the computation
that shall be performed by any proposal to find a suitable link rule.
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On the other hand, we have analysed the precision of the link rules in sce-
narios where we found out that they fall short. This challenge is addressed by
Teide that is a proposal that receives a set of link rules, and then, applies
such rules exploiting these rules that link resources related with other re-
sources being linked too, i.e., exploits the context of data that can be linked
with the rules provided. The main drawbacks of Teide is that it requires to ex-
plore the data to find relevant resources in both data sources that can be
linked with any provided rule, and also, the fact that not all the pro-
vided rules are appealing but Teide has to analyse their suitability; this leads
to an expensive computational cost. To short out the complexity of Teide, we
devised Sorbas that learns contextual link rules that encode the functional-
ity achieved by Teide; in other words, Sorbas is as effective as Teide but much
more efficient. Our results advocate that both Teide and Sorbas improve sig-
nificantly the precision of the link rules without a significant drop of their
recall. In addition, we statistically proved that Sorbas is more efficient that
Teide, but their results are equivalent.

Summing up, assuming that our research hypothesis is accepted, we think
that we have sufficiently proven our thesis. We hope that our results can
effectively help companies to integrate data coming from sparse islands of in-
formation available on the Web. We also think that we have opened up an
interesting research path that may soon lead to new research results.
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ExperimentalEnvironment

T
his chapter introduces the details of the experimental environment
used in our experiments. It is organised as follows: Section §A.1 de-
scribes the computing facility we used; Section §A.2 presents the
different scenarios of our experiments; and finally, Section §A.3 de-

scribes the setups that we defined to run genetic programming-based link
discovery proposals.
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A.1 Computing facility
We run our experiments on a computer that was equipped with four In-

tel Xeon E5-2690 cores at 2.60 GHz and 4 GiB of RAM. The operating system
was CentOS Linux 7.3.

A.2 Linking scenarios
Next, we introduce the scenarios that we used in our experiments. Most

of them come from the literature and have not being curated nor modified; a
few were curated or handcrafted in the context of this PhD thesis.

Researchers. This scenario relies on the 100 top authors from the Digi-
tal Bibliography & Library Project †1 (DBLP) in 2015, and 130 researchers with
the same names that were found in the National Science Foundation †2 (NSF).
The datasets and the gold standard of this scenario were created and cu-
rated by us. The Researcher scenario has been used in several articles [17–19],
that have validated and refined the data and the gold standard.

Authors. This scenario consist of 9 076 authors from the Digital Bibliogra-
phy & Library Project (DBLP) who share the same names, or very similar, but
who are known to be different people. The datasets were created by us, how-
ever DBLP already has deduplicated all these authors, and therefore, the gold
standard was extracted directly from the DBLP. The Authors scenario has
been used in several articles [17–19]

Films. This scenario consist of 691 movies from the BBC and 445 films
from DBpedia, having movies and films similar titles. Notice that this sce-
nario uses a subset of the original BBC and DBpedia datasets. Due to the
smaller size of these datasets, the gold standard was written by us. The Films
scenario has been used in several articles [17–19]

Movies. This scenario consist of 96 movies from DBpedia and 101 films
from the well-known IMDb database. The movies and films were selected by
us due to the similarity of their titles. Notice that these datasets are sub-
sets of the original ones. Thanks to their smaller size we wrote the gold
standard. The Movies scenario has been used in several articles [17–19]

†1The dataset is available at https://dblp.uni-trier.de.
†2The dataset is available at https://www.nsf.gov/.

https://dblp.uni-trier.de
https://www.nsf.gov/
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Publications. This scenario is built on top of 108 publications from the Re-
search Assessment Exercise (RAE) and 98 papers published by the Newcastle
university. The publications and papers were selected due to the similarity of
their titles. The RAE and the Newcastle datasets were published by the RKB-
Explorer †3, the he gold standard of scenario was provided by the LinkLion
data portal†4.

Articles. This scenario consist of 1 600 articles from the Digital Bibliogra-
phy & Library Project (DBLP) and 800 articles from the ACM Digital Library.
The datasets and the gold standard were devised by Köpcke and others [35]
and published in the Leipzig repository†5.

RestaurantsZ. This scenario consist of 112 and 752 restaurants extracted
from the Fodor’s and Zagat’s restaurant guides. The datasets of this sce-
nario were defined in the DuDe repository†6, that was devised by Chaudhuri
and others [13]. The gold standard of this scenario was provided as well
by Chaudhuri and others [13].

Restaurants. this scenario consist of 113 and 752 restaurants. The datasets
and the gold standard were defined in the Ontology Alignment Evalua-
tion Initiative (OAEI) contest of 2010†7; relying on the RestaurantsZ scenario.
This scenario is very is well-known in the link discovery literature, and it has
been used widely. It introduces noise in the data, for instance some restau-
rants have the same name but different telephones although they are the
same, or the same address is written differently in two resources that refer to
the same restaurants.

Persons1. This scenario consist of 500 and 500 resources of people whose
names are very similar but are different people and vice versa. The datasets
and the gold standard were defined in the Ontology Alignment Evalua-
tion Initiative (OAEI) contents of 2010§†7. This scenario is very is well-known
in the link discovery literature, and it has been used widely.

†3The dataset is available at http://www.rkbexplorer.com/data/.
†4The dataset is available at http://www.linklion.org/.
†5The dataset is available at https://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/

benchmark_datasets_for_entity_resolution.
†6The dataset is available at https://hpi.de/naumann/projects/data-quality-and-cleansing/dude-duplicate-

detection.html#c114715.
†7The dataset is available at http://oaei.ontologymatching.org/2010.

http://www.rkbexplorer.com/data/
http://www.linklion.org/
https://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution
https://hpi.de/naumann/projects/data-quality-and-cleansing/dude-duplicate-detection.html#c114715
https://hpi.de/naumann/projects/data-quality-and-cleansing/dude-duplicate-detection.html#c114715
http://oaei.ontologymatching.org/2010
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Persons2. This scenario consist of 400 and 600 resources of different people.
The datasets and the gold standard were defined in the Ontology Align-
ment Evaluation Initiative (OAEI) contents of 2010§†7. This scenario is similar
to Persons1, but introduces more noise and wrong literals in the data making
harder for the proposal to distinguish similar resources that refer to dif-
ferent people. This scenario is very is well-known in the link discovery
literature, and it has been used widely.

Doremus16-9ht. This scenario consist of 40 music works that are catalogued
by the French National Library and 40 music works from the Paris Philhar-
monic. The datasets and the gold standard were defined in the Ontology
Alignment Evaluation Initiative (OAEI) contest of 2016†8. The very same mu-
sic works of these datasets have spelling mistakes, or have some data
properties mixed up on purpose. The bottom line of this scenario is to have
resources with very different literals, although they refer to the same music
work.

Doremus16-fp. This scenario consist of 85 music works that are cata-
logued by the French National Library and 41 music works from the Paris
Philharmonic. The datasets and the gold standard were defined in the On-
tology Alignment Evaluation Initiative (OAEI) contest of 2016§†8. Different
music works in this datasets have very similar, or even the same, data proper-
ties. The bottom line of this scenario is to have resources that are almost the
same, but refer to different music works.

Doremus17-ht. This scenario consist of 238 music works that are cata-
logued by the French National Library and 238 music works from the Paris
Philharmonic. The datasets and the gold standard were defined in the Ontol-
ogy Alignment Evaluation Initiative (OAEI) contest of 2016†9; extending the
scenario of Doremus16-9ht. The very same music works of these datasets
have spelling mistakes, or have some data properties mixed up on pur-
pose. The bottom line of this scenario is to have resources with very different
literals, although they refer to the same music work.

Doremus17-fp. This scenario consist of 75 music works that are catalogued
by the French National Library and 75 music works from the Paris Philhar-
monic. The datasets and the gold standard were defined in the Ontology

†8The dataset is available at http://oaei.ontologymatching.org/2016/.
†9The dataset is available at http://islab.di.unimi.it/content/im_oaei/2017/.

http://oaei.ontologymatching.org/2016/
http://islab.di.unimi.it/content/im_oaei/2017/
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Alignment Evaluation Initiative (OAEI) contest of 2017§†9; extending the sce-
nario of Doremus16-fp. Different music works in this datasets have very
similar, or even the same, data properties. The bottom line of this scenario is
to have resources that are almost the same, but refer to different music works.

We distinguish two kind of scenarios from the list above, those that have
been used link discovery in the literature, and those that entail a challenge for
link discovery proposals due to the similarity of different resources or the
noise of data that makes the same resources to have very different literals.
The former kind comprises RestaurantsZ, Restaurants, Persons1, Persons2,
Articles. The latter kind comprises Researchers, Authors, Films, Movies, Pub-
lications, Restaurants, Persons1, Persons2, Doremus16-9ht, Doremus16-fp,
Doremus17-ht, Doremus17-fp.

A.3 Genetic programming setups

We defined 49 different setups to run our proposals. In Chapter §2,
we defined a setup as a tuple (i, p, pc, pm, g); where i is the maxi-
mum number of iterations, p is the maximum population size, pc is the
crossover probability, pm is the mutation probability, and g is the maxi-
mum number of generations. We gave three values to each argument: short,
medium and a large. We assigned different range of values to each ele-
ment in the setups following this criterion: we combined short iterations
with medium and large iterations; medium iterations with short, medium
and large population; and large iterations with short and medium popu-
lation. Then we did the same for crossover and mutation probabilities.
Finally, we combined all generated values for iterations with popula-
tion and crossover with mutation probabilities. The values that arguments
may take are i = {20, 50, 100}, p = {20, 100, 500}, pc = {0.25, 0.50, 0.75} and
pm = {0.25, 0.50, 0.75}; we set the maximum generations g to 10. Figure §A.1
recaps all the setups and the values for their arguments that we defined to
run genetic programming-based link discovery proposals.
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# i p pc pm g # i p pc pm g

0 50 20 0.25 0.50 10 25 50 100 0.50 0.75 10

1 50 20 0.25 0.75 10 26 50 100 0.75 0.25 10

2 50 20 0.50 0.25 10 27 50 100 0.75 0.50 10

3 50 20 0.50 0.50 10 28 100 100 0.25 0.50 10

4 50 20 0.50 0.75 10 29 100 100 0.25 0.75 10

5 50 20 0.75 0.25 10 30 100 100 0.50 0.25 10

6 50 20 0.75 0.50 10 31 100 100 0.50 0.50 10

7 100 20 0.25 0.50 10 32 100 100 0.50 0.75 10

8 100 20 0.25 0.75 10 33 100 100 0.75 0.25 10

9 100 20 0.50 0.25 10 34 100 100 0.75 0.50 10

10 100 20 0.50 0.50 10 35 20 500 0.25 0.50 10

11 100 20 0.50 0.75 10 36 20 500 0.25 0.75 10

12 100 20 0.75 0.25 10 37 20 500 0.50 0.25 10

13 100 20 0.75 0.50 10 38 20 500 0.50 0.50 10

14 20 100 0.25 0.50 10 39 20 500 0.50 0.75 10

15 20 100 0.25 0.75 10 40 20 500 0.75 0.25 10

16 20 100 0.50 0.25 10 41 20 500 0.75 0.50 10

17 20 100 0.50 0.50 10 42 50 500 0.25 0.50 10

18 20 100 0.50 0.75 10 43 50 500 0.25 0.75 10

19 20 100 0.75 0.25 10 44 50 500 0.50 0.25 10

20 20 100 0.75 0.50 10 45 50 500 0.50 0.50 10

21 50 100 0.25 0.50 10 46 50 500 0.50 0.75 10

22 50 100 0.25 0.75 10 47 50 500 0.75 0.25 10

23 50 100 0.50 0.25 10 48 50 500 0.75 0.50 10

24 50 100 0.50 0.50 10

Table A.1: Setups defined to run proposals.
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RunningExamples

T
his chapter exposes the running examples that we introduce to
showcase our proposals. It is organised as follows: Section §B.1 de-
scribes the first running example based on the Researchers scenario;
and Section §B.2 presents the second running example that extends

the former example.

81
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B.1 Researchers
This running example aims at illustrate a set of resources from the

DBLP and NSF, which refer to people. Figure §B.1 depicts this running
example, it contains three resources of type dblp:Author and three of
type nsf:Researcher. The dblp:Author resources count with two data prop-
erties, i.e., dblp:name and dblp:affiliation, whereas the nsf:Researcher
resources count with three data properties, i.e., nsf:name, nsf:topic, and nsf:
university.

The first challenge with which every link discovery proposal must cope is
aligning the data properties to be compared in order to link the differ-
ent resources. In this case, the suitable data properties to be compared by
a link rule are, on the one hand, dblp:name and nsf:name, and, on
the other hand, dblp:affiliation and nsf:university. Regularly, compar-
ing the names would be enough to link resources, however, it should be
noticed that some NSF resources have the same name but refer to differ-
ent people, i.e., nsf:weiwang1 and nsf:weiwang2. As a result, both pair of
attributes are required to link the resources correctly.

The second challenge with which link discovery proposals must deal is
the format used to encode the names of people. On the one hand, DBLP en-
codes the names by writing first the name and the surname, on the other
hand, NSF encodes the names by writing the surname a comma and then the
name. As a result, a link discovery proposal must rely on string transforma-
tions, and specifically in one that normalizes the name encodings, in order to
link these resources properly.

B.2 Researchers with context
Chapters §3 and §4 explain two proposals that link instances relying on

their data properties and the data properties of the resources related, i.e., the
context. The running example devised in this section aims at extending the
Researchers running example, by including resources as context for the re-
sources been linked. The goal of this running example is to show of our
context-based proposals work, and their related concepts.

Figure §B.2 depicts this running example, it contains two resources of type
dblp:Author and three of type nsf:Researcher. The dblp:Author and the
nsf:Researcher resources have only one data property, i.e., dblp:name
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dblp:weiwang

“UCLA”

nsf:weiwang1

nsf:weiwang2

“Wang, Wei”

“Biology”

“Wang, Wei”

nsf:name

nsf:name

dblp:Author nsf:Researcher

dblp:binliu

“Bin Liu”

dblp:namedblp:affiliation

“NEC Labs”

DBLP dataset NSF dataset

dblp:affiliation dblp:name

“Wei Wang”

dblp:euzenat

“Jérôme Euzenat”

dblp:namedblp:affiliation

“INRIA”

“Computer Science”nsf:topic

“UCLA”nsf:university

nsf:topic

“CMU”

nsf:binwliu

“Computer Science”

“Liu, Bin W.”nsf:name

nsf:topic

“NEC Labs”

nsf:university

nsf:university

Figure B.1: Researchers running example.

and nsf:name. Then they have several object properties that connect them
to their publications. In the case of dblp:Author the publications are di-
rectly connected, whereas the publications in the NSF are connected to the
nsf:Researcher through several intermediary resources which type is nsf:
Award. The DBLP and NSF publications have their titles in common

The first challenge with which a link proposals must cope is to iden-
tify suitable pairs of data properties to link instances. Resources of type dblp:
Author and nsf:Researcher have a pair suitable data properties, i.e., dblp:
name and nsf:name, nevertheless nsf:weiwang1 and nsf:weiwang2 have
the same name but refer to different people. Resources of type dblp:Article

and nsf:Paper have a pair of suitable data properties dblp:title and nsf:title.
Finally, the resources of type dblp:Affiliation and nsf:Award have the pair
of suitable attributes dblp:name and nsf:uid.

The second challenge with which a link proposals must cope is to han-
dle the different encodings used to express the names of the resources of
type dblp:Author and nsf:Researcher. As a result, link discovery proposals
should count with string transformations to handle the different encodings.
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dblp:affiliation1

dblp:weiwang

dblp:article1

dblp:article2 dblp:article3

dblp:article4

“Wei Wang”“Flexible and…”

“Read only…”“Grid based…”

“Grid-Based…”

nsf:weiwang1

nsf:award1 nsf:award2

nsf:paper1

nsf:paper2

nsf:paper3

nsf:weiwang2

nsf:award3

nsf:paper4

“Wang, Wei”

“Fuzzy resolution…”

“Grid-Based…”
“Flexible and…”

“Comp. Sci.”
“Comp. Sci.”

“Biology”

“Phenotypes of…”

“Wang, Wei”

dblp:title dblp:title

dblp:writtenBy dblp:writtenBy

dblp:title dblp:title

dblp:writtenBy dblp:writtenBy

dblp:name

nsf:name

nsf:leadsnsf:leads

nsf:leads

nsf:supports

nsf:supports

nsf:supports

nsf:title

nsf:title
nsf:title

nsf:title

nsf:supports

nsf:name

nsf:type

nsf:type

nsf:type

dblp:Author dblp:Article nsf:Researcher nsf:Award nsf:Paper

nsf:binwliu

nsf:award4

nsf:paper5

“Comp. Sci.”

“Alpha: An…”

“Liu, Bin W.”

nsf:leads

nsf:title

nsf:supports

nsf:name

nsf:type

dblp:binliu

dblp:article5

“Bin Liu” “ALPHA - An…”

dblp:writtenBy

dblp:name

dblp:title

dblp:relatedTo

“NEC Labs”

dblp:name
“Nec Labs”

nsf:uid

dblp:Affiliation

DBLP dataset NSF dataset

Figure B.2: Researchers with context running example.
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