Skip to main content
Log in

Solar radiation prediction using multi-gene genetic programming approach

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Accurate estimation of solar radiation both spatially and temporally is important for engineering studies related to climate and energy. The multi-gene genetic programming (MGGP) is proposed as a new compact method for this purpose, which is verified to yield more accurate solar radiation estimations in Turkey. Meteorological data such as extraterrestrial solar radiation, sunshine duration, mean of monthly maximum sunny hours, long-term mean of monthly maximum air temperatures, long-term mean of monthly minimum air temperatures, monthly mean air temperature, and monthly mean moisture data are selected as the MGGP model inputs. In the prediction models, the meteorological data measured from 163 stations in seven climate areas of Turkey over the period 1975–2015 are used. The MGGP model results for solar radiation prediction are found to be more accurate than the values given by some conventional empirical equations such as Abdalla, Angstrom, and Hargreaves–Samani. The performance of MGGP is also assessed for Turkey by single-data and multi-data models. The multi-data models of MGGP and the calibrated empirical equations are found to be more successful than the single-data models for solar radiation prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdalla YAG (1994) New correlation of global solar radiation with meteorological parameters for Bahrain. Int J Solar Energy 16:111–120

    Google Scholar 

  • Alam S, Kaushik S, Garg N (2009) Assessment of diffuse solar energy under general sky condition using artificial neural network. Appl Energy 86:554–564

    Google Scholar 

  • Altun F, Dirikgil T (2013) The prediction of prismatic beam behaviours with polypropylene fiber addition under high temperature effect through ANN, ANFIS and fuzzy genetic models. Compos Part B Eng 52:362–371

    Google Scholar 

  • Angstrom A (1924) Solar and terrestrial radiation. QJR Meteorol Soc 50:121–126

    Google Scholar 

  • Antonopoulos VZ, Papamichail DM, Aschonitis VG, Antonopoulos AV (2019) Solar radiation estimation methods using ANN and empirical models. Comput Electron Agric 160:160–167

    Google Scholar 

  • Aytek A, Kisi O (2008) A genetic programming approach to suspended sediment modelling. J Hydrol 351(3–4):288–298

    Google Scholar 

  • Azamathulla H, AbGhani A, Zakaria NA, Lai SH, Chang CK, Leow CS, Abuhasan A (2008) Genetic programming to predict ski-jump bucket spill-way scour. J Hydrodyn 20(4):477–484

    Google Scholar 

  • Bayazidi, A.M., Wang, G.-G., Bolandi, H., Alavi, A.H.,Gandomi, A.H., 2014. Multigene genetic programming for estimation of elastic modulus of concrete. Mathematical problems in engineering. Article ID 474289

  • Bayram S, Al-Jibouri S (2016) Efficacy of estimation methods in forecasting building projects' costs. J Constr Eng Manag 142(11):050160121–050160129

    Google Scholar 

  • Bayram S, Ocal M, Laptali OE, Atis C (2016) Comparison of multi layer perceptron (MLP) and radial basis function (RBF) for construction cost estimation: the case of Turkey. J Civil Eng Manag 22:480–490

    Google Scholar 

  • Bilgili M, Sahin B (2010) Comparative analysis of regression and artificial neural network models for wind speed prediction. Meteorog Atmos Phys 109(1–2):61–72

    Google Scholar 

  • Bois B, Pieri P, Van Leeuwen C, Wald L, Huard F, Gaudillere JP, Saur E (2008) Using remotely sensed solar radiation data for reference evapotranspiration estimation at a daily time step. Agric For Meteorol 148:619–630

    Google Scholar 

  • Chen J, He L, Yang H, Ma M, Chen Q, Wu SJ, Xiao Z (2019) Empirical models for estimating monthly global solar radiation: a most comprehensive review and comparative case study in China. Renew. Sust Energy Rev 108:91–111

    Google Scholar 

  • Citakoglu H (2015) Comparison of artificial intelligence techniques via empirical equations for prediction of solar radiation. Comput Electron Agric 118:28–37

    Google Scholar 

  • Citakoglu H, Cobaner M, Haktanir T, Kisi O (2014) Estimation of monthly mean reference evapotranspiration in Turkey. Water Resour Manag 28(1):99–113

    Google Scholar 

  • Cobaner M (2011) Evapotranspiration estimation by two different neuro-fuzzy inference systems. J Hydrol 398(3–4):292–302

    Google Scholar 

  • Cobaner M, Citakoglu H, Kisi O, Haktanir T (2014) Estimation of mean monthly air temperatures in Turkey. Comput Electron Agric 109:71–79

    Google Scholar 

  • Cobaner M, Babayigit B, Dogan A (2016a) Estimation of groundwater levels with surface observations via genetic programming. J Am Water Works Assoc 108:E335–E338

    Google Scholar 

  • Cobaner M, Babayigit E, Babayigit B (2016b) Estimation of groundwater level with genetic programming using meteorological data. Nigde Univ J Eng Sci 5(2):177–187

    Google Scholar 

  • Coppola E Jr, Poulton M, Charles E, Dustman J, Szidarozvsky F (2003) Application of artificial neural networks to complex groundwater management problems. Nat Resour Res 12(4):303–320

    Google Scholar 

  • Coulibaly P, Anctil F, Aravena R, Bobee B (2001) Artificial neural network modeling of water table depth fluctuations. Water Resour Res 37(4):885

    Google Scholar 

  • Dastorani MT, Moghadamnia A, Piri J, Rico Ramirez M (2010) Application of ANN and ANFIS models for reconstructing missing flow data. Environ Monit Assess 166(1–4):421–434

    Google Scholar 

  • ElNesr MN, Alazbaa AA, Amina MT (2015) Estimation of shortwave solar radiations in the Arabian Peninsula: a new approach. Desalin Water Treat 57(1):37–50

    Google Scholar 

  • Fadare DA, Irimisose I, Oni AO, Falana A (2010) Modeling of solar energy potential in Africa using an artificial neural network. Am J Sci Ind Res 1(2):144–157

    Google Scholar 

  • Fan J, Wu L, Zhang F, Cai H, Zeng W, Wang X, Zou H (2019a) Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: a review and case study in China. Renew Sust Energy Rev 100:186–212

    Google Scholar 

  • Fan J, Wua L, Zhanga F, Caia H, Mab X, Baic H (2019b) Evaluation and development of empirical models for estimating daily and monthly mean daily diffuse horizontal solar radiation for different climatic regions of China. Renew. Sust.Energy. Rev. 105:168–186

    Google Scholar 

  • Gandomi AH, Alavi AH (2012a) A new multi-gene genetic programming approach to nonlinear system modeling, part i: materials and structural engineering problems. Neural Comput & Applic 21(1):171

    Google Scholar 

  • Gandomi AH, Alavi AH (2012b) A New multi-gene genetic programming approach to nonlinear system modeling, part ii: geotechnical and earthquake engineering problems. Neural Comput & Applic 21(1):189

    Google Scholar 

  • Gandomi AH, Sajedi S, Kiani B, Huang Q (2016) Genetic programming for experimental big data mining: a case study on concrete creep formulation. Autom Constr 70:89–97

    Google Scholar 

  • Guan L, Yang J, Bell JM (2007) Cross-correlation between weather variables in Australia. Build Environ 42(3):1054–1070

    Google Scholar 

  • Hadi SJ, Tombul M (2018) Monthly streamflow forecasting using continuous wavelet and multi-genegenetic programming combination. J Hydrol 561:674–687

    Google Scholar 

  • Hargreaves, G.H., Samani, Z.A., 1982. Estimating potential evapotranspiration.J.Irrig. Drain. Eng. 108(3), 225–230

  • Hontoria L, Aguilera J, Zufiria P (2005) An application of the multilayer perceptron: solar radiation maps in Spain. Sol Energy 79(5):523–530

    Google Scholar 

  • Kaba K, Sarıgül M, Avcı M, Kandırmaz HM (2018) Estimation of daily global solar radiation using deep learning model. Energy. 162(2018):126–135

    Google Scholar 

  • Kalogirou, S.A., Neocleous, C., Paschiardis, S., Schizas, C., 1999. Wind speed prediction using artificial neural networks. European Symposium on Intelligent Techniques ESIT ’99, June 3–4, Crete (Greece)

  • Kashid SS, Maity R (2012) Prediction of monthly rainfall on homogeneous monsoon regions of India based on large scale circulation patterns using genetic programming. J.Hydrol. 454–455:26–41

    Google Scholar 

  • Keshtegara B, Mert C, Kisi O (2018) Comparison of four heuristic regression techniques in solar radiation modeling: Kriging method vs RSM, MARS and M5 model tree. Renew. Sust Energy Rev 81(2018):330–341

    Google Scholar 

  • Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge

    Google Scholar 

  • Kumar B, Jha A, Deshpande V, Sreenivasulu G (2014) Regression model for sediment transport problems using multi-gene symbolic genetic programming. Comput Electron Agric 103:82–90

    Google Scholar 

  • Kurugodu HV, Bordoloib S, Hongc Y, Garg A, Garg A, Sreedeep S, Gandomi AH (2018) Genetic programming for soil-fiber composite assessment. Adv Eng Softw 122:50–61

    Google Scholar 

  • Laman M, Uncuoglu E (2009) Prediction of the moment capacity of pier foundations in clay using neural networks. Kuwait J Sci Eng 36(1B):33–52

    Google Scholar 

  • Linares-Rodríguez A, Ruiz-Arias JA, Pozo-Vázquez D, Tovar-Pescador J (2011) Generation of synthetic daily global solar radiation data based on ERA-interim reanalysis and artificial neural networks. Energy. 36:5356–5365

    Google Scholar 

  • Llasat MC, Snyder RL (1998) Data error effects on net radiation and evapotranspiration estimation. Agric For Meteorol 91(3/4):209–221

    Google Scholar 

  • Mashaly, A.F., and Alazba A.A., 2016. Comparison of ANN, MVR, and SWR models for computing thermal efficiency of a solar still, International J. Green Energy, 13(10), 1016–1025

  • Meenal R, Selvakumar AI (2018) Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters, Renew. Energy 121:324–343

    Google Scholar 

  • Mehdizadeh S, Behmanesh J, Khalili K (2016) Comparison of artificial intelligence methods and empirical equations to estimate daily solar radiation. J Atmos Solar Terr Phys 146:215–227

    Google Scholar 

  • Mehr AD, Nourani V, Kahya E, Hrnjica B, Sattar AMA, Yaseeng ZM (2018) Genetic programming in water resources engineering: a state–of–the-art review. J Hydrol 566:643–667

    Google Scholar 

  • Mohammadi K, Shamshirband S, Tong CW, Alam KA, Petkovic D (2015a) Potential of adaptive neuro-fuzzy system for prediction of daily global solar radiation by day of the year. Energy Convers Manag 93:406–413

    Google Scholar 

  • Mohammadi K, Shamshirband S, Tong CW, Arif M, Petkovic D, Sudheer C (2015b) A new hybrid support vector machine–wavelet transform approach for estimation of horizontal global solar radiation. Energy Convers Manag 92:162–171

    Google Scholar 

  • Mohandes M, Rehman S, HalawaniTO (1998) Estimation of global solar radiation using artificial neural networks. Renew Energy 14(1–4):179–184

    Google Scholar 

  • Mubiru J, Banda EJKB (2008) Estimation of monthly average daily global solar irradiation using artificial neural networks. Sol Energy 82(2):181–187

    Google Scholar 

  • Nasruddin, Budiyanto MA, Nawara R (2017) Comparative study of the monthly global solar radiation estimation data in Jakarta. 2nd international Tropical Renew. Energy Conference. Earth Environ Sci 105:1–6

    Google Scholar 

  • Ododo JC, Sulaiman AT, Aidan J, Yuguda MM, Ogbu FA (1995) The importance of maximum air temperature in the parameterisation of solar radiation in Nigeria. Renew Energy 6(7):751–763

    Google Scholar 

  • Olatomiwa L, Mekhilef S, Shamshirband S, Mohammadi K, Petkovic D, Sudheer C (2015) A support vector machine–firefly algorithm-based model for global solar radiation prediction. Sol Energy 115:632–644

    Google Scholar 

  • Ozoegwu CG (2018) New temperature-based models for reliable prediction of monthly mean daily global solar radiation. J Renew Sustain Energy 10(2):1–15

    Google Scholar 

  • Pedrino EC, Yamada T, Lunardi TR, de M Vieira JC (2019) Islanding detection of distributed generation by using multi-gene genetic programming based classifier. Appl Soft Comput J 74:206–215. https://doi.org/10.1016/j.asoc.2018.10.016

    Article  Google Scholar 

  • Rahimikhoob A (2010) Estimating global solar radiation using artificial neural network and air temperature data in a semi-arid environment. Renew Energy 35(9):2131–2135

    Google Scholar 

  • Rehman S, Mohandes M (2008) Artificial neural network estimation of global solar radiation using air temperature and relative humidity. Energy Policy 36(2):571–576

    Google Scholar 

  • Samadianfard S, Majnooni-Heris A, NomanQasem S, Kisi O, Shamshirband S, Chau K (2019) Daily global solar radiationmodeling using data-driven techniques and empirical equations in a semi-arid climate. Eng App Comput Fluid Mech 13(1):142–157

    Google Scholar 

  • Searson, D.P.; Leahy, D.E.; & Willis, M.J., 2010. GPTIPS: an open source genetic programming toolbox for multigene symbolic regression. Proceedings of the International Multi Conference of Engineers and Computer Sci. 1:17. IMECS, Hong Kong

  • Siqueira AN, Tiba C, Fraidenraich N (2010) Generation of daily solar irradiation by means of artificial neural net works. Renew Energy 35(11):2406–2414

    Google Scholar 

  • Tymvios FS, Jacovides CP, Michaelides SC, Scouteli C (2006) Comparative study of Angstrom’s and artificial neural networks’ methodologies in estimating global solar radiation. Sol Energy 78:752–762

    Google Scholar 

  • Uncuoglu E, Laman M, Saglamer A, Kara HB (2008) Prediction of lateral effective stresses in sand using artificial neural network. Soils Found 48(2):141–153

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Turkish State Meteorological Service for providing the long-term monthly mean of meteorological data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatice Citakoglu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Citakoglu, H., Babayigit, B. & Haktanir, N.A. Solar radiation prediction using multi-gene genetic programming approach. Theor Appl Climatol 142, 885–897 (2020). https://doi.org/10.1007/s00704-020-03356-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-020-03356-4

Keywords

Navigation