skip to main content
10.1145/3341105.3374003acmconferencesArticle/Chapter ViewAbstractPublication PagessacConference Proceedingsconference-collections
research-article
Open Access

Profiled glucose forecasting using genetic programming and clustering

Published:30 March 2020Publication History

ABSTRACT

This paper proposes a method to obtain accurate forecastings of the subcutaneous glucose values from diabetic patients. Statistical techniques are applied to identify everyday situations of glucose behaviors and discover glucose profiles. This knowledge is used to create predictive models with genetic programming. The time series of glucose values, measured using continuous glucose monitoring systems, are divided into 4-hour, non-overlapping slots and clustered using a technique based on decision trees called chi-square automatic interaction detection. The glucose profiles are classified using the decision variables in order to customize the models for different profiles. Genetic programming models created with glucose values from the original dataset are compared to those of models created with classified glucose values. Significant differences and associations are observed between the glucose profiles. In general, using profiled glucose models improves the accuracy of the predictions with respect to those of models created with the original dataset.

References

  1. Hirotogu Akaike. 1998. Information Theory and an Extension of the Maximum Likelihood Principle. Springer New York, New York, NY, 199--213.Google ScholarGoogle Scholar
  2. Markus Berger and David Rodbard. 1989. Computer Simulation of Plasma Insulin and Glucose Dynamics After Subcutaneous Insulin Injection. Diabetes Care 12, 10 (1989), 725--736.Google ScholarGoogle ScholarCross RefCross Ref
  3. Veena H. Bhat, Prasanth G. Rao, P. Deepa Shenoy, K. R. Venugopal, and L. M. Patnaik. 2009. An Efficient Prediction Model for Diabetic Database Using Soft Computing Techniques. In Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. Springer Berlin Heidelberg, Berlin, Heidelberg, 328--335.Google ScholarGoogle Scholar
  4. Carlos Cervigon, J. Ignacio Hidalgo, Marta Botella, and Rafael-J Villanueva. 2017. A genetic algorithm approach to customizing a glucose model based on usual therapeutic parameters. Progress in Artificial Intelligence 6, 3 (2017), 255--261.Google ScholarGoogle ScholarCross RefCross Ref
  5. W. Clarke, D. Cox, L. Gonder-Frederick, W. Carter, and S. Pohl. 1987. Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes Care 10, 5 (1987), 622--628.Google ScholarGoogle ScholarCross RefCross Ref
  6. Diabetes Control and Complications Trial. 2016. Intensive Diabetes Treatment and Cardiovascular Outcomes in Type 1 Diabetes: The DCCT/EDIC Study 30-Year Follow-up. Diabetes Care 39, 5 (2016), 686--693.Google ScholarGoogle ScholarCross RefCross Ref
  7. Ivanoe De Falco, Antonio Della Cioppa, Tomas Koutny, Michal Krcma, Umberto Scafuri, and Ernesto Tarantino. 2018. Genetic Programming-based induction of a glucose-dynamics model for telemedicine. Journal of Network and Computer Applications 119 (2018), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Randall Dougherty, Alan Edelman, and James Hyman. 1989. Nonnegativity, Monotonicity, or Convexity-Preserving Cubic and Quintic Hermite Interpolation. Math. Comp. 52 (04 1989), 471--494.Google ScholarGoogle Scholar
  9. Ya-Xiong Tao (Eds.). 2014. Glucose Homeostatis and the Pathogenesis of Diabetes Mellitus (1 ed.). Progress in Molecular Biology and Translational Science 121, Vol. 121. Academic Press, Alabama, USA. 536 pages.Google ScholarGoogle Scholar
  10. Firas El-Khatib, Steven Russell, David Nathan, Robert Sutherlin, and Edward Damiano. 2010. A Bihormonal Closed-Loop Artificial Pancreas for Type 1 Diabetes. Science translational medicine 2 (04 2010), 6--16.Google ScholarGoogle Scholar
  11. Stephanie Fonda, Drew Lewis, and Robert Vigersky. 2013. Minding the Gaps in Continuous Glucose Monitoring: A Method to Repair Gaps to Achieve More Accurate Glucometrics. Journal of diabetes science and technology 7 (02 2013), 88--92.Google ScholarGoogle Scholar
  12. J. Ignacio Hidalgo, Esther Maqueda, Jose L. Risco-Martan, Alfredo Cuesta-Infante, J. Manuel Colmenar, and Javier Nobel. 2014. glUCModel: A monitoring and modeling system for chronic diseases applied to diabetes. Journal of Biomedical Informatics 48 (2014), 183 -- 192.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Jose Ignacio Hidalgo, Jose Manuel Velasco, Juan Lanchares, Sergio Contador, and Oscar Garnica. 2018. An analysis of solutions based on Genetic Programming to solve problems of symbolic regression of data from continuous glucose monitoring. AEPIA, Granada, Spain. 764--771 pages.Google ScholarGoogle Scholar
  14. Roman Hovorka, Janet M Allen, Daniela Elleri, Ludovic J Chassin, Julie Harris, Dongyuan Xing, Craig Kollman, Tomas Hovorka, Anne Mette F Larsen, Marianna Nodale, Alessandra De Palma, Malgorzata E Wilinska, Carlo L Acerini, and David B Dunger. 2010. Manual closed-loop insulin delivery in children and adolescents with type 1 diabetes: a phase 2 randomised crossover trial. The Lancet 375 (2010), 743 -- 751.Google ScholarGoogle ScholarCross RefCross Ref
  15. George Kaplan, Debbie E Goldberg, Susan Everson-Rose, Richard D Cohen, Riitta Salonen, Jaakko Tuomilehto, and Jukka Salonen. 1996. Perceived Health Status and Morbidity and Mortality: Evidence from the Kuopio Ischaemic Heart Disease Risk Factor Study. International Journal of Epidemiology 25 (05 1996).Google ScholarGoogle ScholarCross RefCross Ref
  16. G. V. Kass. 1980. An Exploratory Technique for Investigating Large Quantities of Categorical Data. Journal of the Royal Statistical Society. Series C (Applied Statistics) 29, 2 (1980), 119--127.Google ScholarGoogle ScholarCross RefCross Ref
  17. Christina-Maria Kastorini, George Papadakis, Haralampos J. Milionis, Kallirroi Kalantzi, Paolo-Emilio Puddu, Vassilios Nikolaou, Konstantinos N. Vemmos, John A. Goudevenos, and Demosthenes B. Panagiotakos. 2013. Comparative analysis of a-priori and a-posteriori dietary patterns using state-of-the-art classification algorithms: A case/case-control study. Artificial Intelligence in Medicine 59, 3 (2013), 175--183.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Maarten Keijzer. 2003. Improving Symbolic Regression with Interval Arithmetic and Linear Scaling. Springer Berlin Heidelberg, Berlin, Heidelberg. 70--82 pages.Google ScholarGoogle Scholar
  19. B. Kovatchev, C. Cobelli, E. Renard, S. Anderson, M. Breton, S. Patek, W. Clarke, D. Bruttomesso, A. Maran, S. Costa, A. Avogaro, C. Dalla Man, A. Facchinetti, L. Magni, G. De Nicolao, J. Place, and A. Farret. 2010. Multinational study of subcutaneous model-predictive closed loop control in type 1 diabetes mellitus: Summary of the results. Diabetes Sci Technol 4 (2010), 1374--1381.Google ScholarGoogle ScholarCross RefCross Ref
  20. John R. Koza. 1992. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA, USA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Sean Luke. 2000. Two fast tree-creation algorithms for genetic programming. IEEE Trans. Evolutionary Computation 4 (2000), 274--283.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lalo Magni, Marco Forgione, Chiara Toffanin, Chiara Dalla Man, Boris Kovatchev, Giuseppe De Nicolao, and Claudio Cobelli. 2009. Run-to-Run Tuning of Model Predictive Control for Type 1 Diabetes Subjects: In Silico Trial. Journal of Diabetes Science and Technology 3, 5 (2009), 1091--1098.Google ScholarGoogle ScholarCross RefCross Ref
  23. Lucy Mays. 2015. Diabetes Mellitus Standards of Care. Nursing Clinics of North America 50, 4 (2015), 703 -- 711.Google ScholarGoogle ScholarCross RefCross Ref
  24. Mirko Messori, Chiara Toffanin, Simone Del Favero, Giuseppe De Nicolao, Claudio Cobelli, and Lalo Magni. 2016. Model individualization for artificial pancreas. Computer Methods and Programs in Biomedicine 171 (2016), 133--140.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. World Health Organization. 2016. Global report on diabetes. Ginebra, Suiza.Google ScholarGoogle Scholar
  26. J. L. Parkes, S. L. Slatin, S. Pardo, and B. H. Ginsberg. 2000. A new consensus error grid to evaluate the clinical significance of inaccuracies in the measurement of blood glucose. Diabetes Care 23, 8 (2000), 1143--1148.Google ScholarGoogle ScholarCross RefCross Ref
  27. Thierry Prud'Homme, Alain Bock, Gregory Francois, and Denis Gillet. 2011. Preclinically assessed optimal control of postprandial glucose excursions for type 1 patients with diabetes. In Automation Science and Engineering (CASE), 2011 IEEE Conference on. IEEE, Institute of Electrical and Electronics Engineers, Trieste, Italy, 702--707.Google ScholarGoogle ScholarCross RefCross Ref
  28. R Core Team. 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/Google ScholarGoogle Scholar
  29. G.M. Steil, K. Rebrin, F. Hariri, S. Jinagonda, S. Tadros, C. Darwin, and M.F. Saad. 2005. Interstitial fluid glucose dynamics during insulin-induced hypoglycaemia. Diabetologia 48, 9 (2005), 1833--1840.Google ScholarGoogle ScholarCross RefCross Ref
  30. Jose Velasco, Oscar Garnica, Juan Lanchares, Marta Botella, and Ignacio Hidalgo. 2018. Combining data augmentation, EDAs and grammatical evolution for blood glucose forecasting. Memetic Computing 10 (06 2018).Google ScholarGoogle Scholar
  31. J. M. Velasco, O. Garnica, S. Contador, J. Lanchares, E. Maqueda, M. Botella, and J. I. Hidalgo. 2017. Data augmentation and evolutionary algorithms to improve the prediction of blood glucose levels in scarcity of training data. In 2017 IEEE Congress on Evolutionary Computation (CEC). 2017 IEEE Congress on Evolutionary Computation (CEC), San Sebastian, Spain, 2193--2200.Google ScholarGoogle Scholar
  32. S. Wagner and M. Affenzeller. 2005. HeuristicLab: A Generic and Extensible Optimization Environment. Springer Vienna, Vienna. 538--541 pages.Google ScholarGoogle Scholar

Index Terms

  1. Profiled glucose forecasting using genetic programming and clustering

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader