Skip to main content

Short and Medium Term Blood Glucose Prediction Using Multi-objective Grammatical Evolution

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12104))

Abstract

In this paper we investigate the benefits of applying a multi-objective approach for solving a symbolic regression problem by means of grammatical evolution. In particular, we continue with previous research about finding expressions to model the glucose levels in blood of diabetic patients. We use here a multi-objective Grammatical Evolution approach based on NSGA-II algorithm, considering the root mean squared error and an ad-hoc fitness function as objectives. This ad-hoc function is based on the Clarke Error Grid analysis, which is useful for showing the potential danger of mispredictions. Experimental results show that the multi-objective approach improves previous results in terms of Clarke Error Grid analysis reducing the number of dangerous mispredictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The International Diabetes Federation estimates around 415 million diabetic patients [17] (rising from 108 million since 1980), which is about 8–10% of prevalence on adults over 18 years, and it is the seventh leading cause of death in 2016, with 1.6 million deaths directly caused by diabetes and 2.2 million additional deaths attributable to high blood glucose.

  2. 2.

    When constructing prediction models that help in the recommendation, we can use variables (features) that include the information involved in the recommendation process and thus be able to use them effectively. This does not mean that we use information from the future.

References

  1. Bakhtiani, P.A., Zhao, L.M., El Youssef, J., Castle, J.R., Ward, W.K.: A review of artificial pancreas technologies with an emphasis on bi-hormonal therapy. Diab. Obes. Metab. 15(12), 1065–1070 (2013)

    Article  Google Scholar 

  2. Clarke, W., Cox, D., Gonder-Frederick, L., Carter, W., Pohl, S.: Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diab. Care 10(5), 622–628 (1987)

    Article  Google Scholar 

  3. Contador, S., Hidalgo, J.I., Garnica, O., Velasco, J.M., Lanchares, J.: Can clustering improve glucose forecasting with genetic programming models? In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1829–1836. ACM (2019)

    Google Scholar 

  4. Contreras, I., Oviedo, S., Vettoretti, M., Visentin, R., Vehí, J.: Personalized blood glucose prediction: a hybrid approach using grammatical evolution and physiological models. PLoS ONE 12(11), e0187754 (2017)

    Article  Google Scholar 

  5. Dassau, E., et al.: Artificial pancreatic beta-cell protocol for enhanced model identification. In: Diabetes, vol. 58, pp. A105–A106. American Diabetes Association, Alexandria (2009)

    Google Scholar 

  6. De Falco, I., Della Cioppa, A., Koutny, T., Krcma, M., Scafuri, U., Tarantino, E.: Genetic programming-based induction of a glucose-dynamics model for telemedicine. J. Netw. Comput. Appl. 119, 1–13 (2018)

    Article  Google Scholar 

  7. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms, vol. 16. Wiley, Hoboken (2001)

    MATH  Google Scholar 

  8. Gevers, M.: Identification for control: from the early achievements to the revival of experiment design*. Eur. J. Control 11(4), 335–352 (2005)

    Article  MathSciNet  Google Scholar 

  9. Hemberg, E., Ho, L., O’Neill, M., Claussen, H.: A comparison of grammatical genetic programming grammars for controlling femtocell network coverage. Genet. Program Evolvable Mach. 14(1), 65–93 (2013)

    Article  Google Scholar 

  10. Hidalgo, J.I., et al.: Identification of models for glucose blood values in diabetics by grammatical evolution. In: Ryan, C., O’Neill, M., Collins, J.J. (eds.) Handbook of Grammatical Evolution, pp. 367–393. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78717-6_15

    Chapter  Google Scholar 

  11. Hidalgo, J.I., Colmenar, J.M., Kronberger, G., Winkler, S.M., Garnica, O., Lanchares, J.: Data based prediction of blood glucose concentrations using evolutionary methods. J. Med. Syst. 41(9), 142 (2017)

    Article  Google Scholar 

  12. Lourenço, N., Colmenar, J.M., Hidalgo, J.I., Garnica, Ó.: Structured grammatical evolution for glucose prediction in diabetic patients. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1250–1257. ACM (2019)

    Google Scholar 

  13. Man, C.D., Micheletto, F., Lv, D., Breton, M., Kovatchev, B., Cobelli, C.: The UVA/PADOVA type 1 diabetes simulator: new features. J. Diab. Sci. Technol. 8(1), 26–34 (2014)

    Article  Google Scholar 

  14. Mays, L.: Diabetes mellitus standards of care. Nurs. Clin. North Am. 50(4), 703–711 (2015). Pathophysiology and Care Protocols for Nursing Management

    Article  Google Scholar 

  15. Messori, M., Toffanin, C., Favero, S.D., Nicolao, G.D., Cobelli, C., Magni, L.: Model individualization for artificial pancreas. Comput. Methods Programs Biomed. 171, 133–140 (2016)

    Article  Google Scholar 

  16. Moreno-Salinas, D., Besada-Portas, E., López-Orozco, J., Chaos, D., de la Cruz, J., Aranda, J.: Symbolic regression for marine vehicles identification. IFAC-PapersOnLine 48(16), 210–216 (2015)

    Article  Google Scholar 

  17. Ogurtsova, K., et al.: IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diab. Res. Clin. Pract. 128, 40–50 (2017)

    Article  Google Scholar 

  18. Oviedo, S., Contreras, I., Quirós, C., Giménez, M., Conget, I., Vehi, J.: Risk-based postprandial hypoglycemia forecasting using supervised learning. Int. J. Med. Inform. 126, 1–8 (2019)

    Article  Google Scholar 

  19. Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055930

    Chapter  Google Scholar 

  20. Sparacino, G., Zanderigo, F., Corazza, S., Maran, A., Facchinetti, A., Cobelli, C.: Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series. IEEE Trans. Biomed. Eng. 54(5), 931–937 (2007)

    Article  Google Scholar 

  21. Steil, G., et al.: Interstitial fluid glucose dynamics during insulin-induced hypoglycaemia. Diabetologia 48(9), 1833–1840 (2005)

    Article  Google Scholar 

  22. Sun, Q., et al.: A dual mode adaptive basal-bolus advisor based on reinforcement learning. IEEE J. Biomed. Health Inform. 23, 2633–2641 (2018)

    Article  Google Scholar 

  23. Velasco, J.M., et al.: Enhancing grammatical evolution through data augmentation: application to blood glucose forecasting. In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol. 10199, pp. 142–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55849-3_10

    Chapter  Google Scholar 

  24. Weissberg-Benchell, J., Antisdel-Lomaglio, J., Seshadri, R.: Insulin pump therapy. Diab. Care 26(4), 1079–1087 (2003)

    Article  Google Scholar 

  25. Yu, C., Zhao, C.: Rapid model identification for online glucose prediction of new subjects with type 1 diabetes using model migration method. IFAC Proc. Vol. 47(3), 2094–2099 (2014). 19th IFAC World Congress

    Google Scholar 

Download references

Acknowledgments

This work has been supported by: Fundación Eugenio Rodriguez Pascual 2019 grant -Desarrollo de sistemas adaptativos y bioinspirados para el control glucémico con infusores subcutáneos continuos de insulina y monitores continuos de glucosa (Development of adaptive and bioinspired systems for glycaemic control with continuous subcutaneous insulin infusors and continuous glucose monitors); The Spanish Ministerio de Innovación Ciencia y Universidad - grant RTI2018-095180-B-I00; Madrid Regional Government-FEDER grants B2017/BMD3773 (GenObIA-CM); and Y2018/NMT-4668 (Micro-Stress- MAP-CM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ignacio Hidalgo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Contador, S., Colmenar, J.M., Garnica, O., Hidalgo, J.I. (2020). Short and Medium Term Blood Glucose Prediction Using Multi-objective Grammatical Evolution. In: Castillo, P.A., Jiménez Laredo, J.L., Fernández de Vega, F. (eds) Applications of Evolutionary Computation. EvoApplications 2020. Lecture Notes in Computer Science(), vol 12104. Springer, Cham. https://doi.org/10.1007/978-3-030-43722-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43722-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43721-3

  • Online ISBN: 978-3-030-43722-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics