Skip to main content

MoodLoopGP: Generating Emotion-Conditioned Loop Tablature Music with Multi-granular Features

  • Conference paper
  • First Online:
Artificial Intelligence in Music, Sound, Art and Design (EvoMUSART 2024)

Abstract

Loopable music generation systems enable diverse applications, but they often lack controllability and customization capabilities. We argue that enhancing controllability can enrich these models, with emotional expression being a crucial aspect for both creators and listeners. Hence, building upon LooperGP, a loopable tablature generation model, this paper explores endowing systems with control over conveyed emotions. To enable such conditional generation, we propose integrating musical knowledge by utilizing multi-granular semantic and musical features during model training and inference. Specifically, we incorporate song-level features (Emotion Labels, Tempo, and Mode) and bar-level features (Tonal Tension) together to guide emotional expression. Through algorithmic and human evaluations, we demonstrate the approach’s effectiveness in producing music conveying two contrasting target emotions, happiness and sadness. An ablation study is also conducted to clarify the contributing factors behind our approach’s results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Only major and minor modes were considered in this study.

  2. 2.

    new_measure is the token representing the start of a new bar.

  3. 3.

    There is also a score for low valence/arousal in the final layer.

References

  1. Adkins, S., Sarmento, P., Barthet, M.: LooperGP: a loopable sequence model for live coding performance using guitarpro tablature. In: Johnson, C., Rodríguez-Fernández, N., Rebelo, S.M. (eds.) EvoMUSART 2023. LNCS, vol. 13988, pp. 3–19. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-29956-8_1

    Chapter  Google Scholar 

  2. Alain, G., Chevalier-Boisvert, M., Osterrath, F., Piche-Taillefer, R.: Deepdrummer: generating drum loops using deep learning and a human in the loop. In: The 2020 Joint Conference on AI Music Creativity (2020)

    Google Scholar 

  3. Blood, A.J., Zatorre, R.J., Bermudez, P., Evans, A.C.: Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat. Neurosci. 2(4), 382–387 (1999)

    Article  Google Scholar 

  4. Chew, E., et al.: Mathematical and computational modeling of tonality. AMC 10(12), 141 (2014)

    MathSciNet  Google Scholar 

  5. Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q., Salakhutdinov, R.: Transformer-XL: attentive language models beyond a fixed-length context. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 2978–2988. Association for Computational Linguistics, Florence, Italy (2019). https://doi.org/10.18653/v1/P19-1285, https://aclanthology.org/P19-1285

  6. Dalla Bella, S., Peretz, I., Rousseau, L., Gosselin, N.: A developmental study of the affective value of tempo and mode in music. Cognition 80(3), B1–B10 (2001)

    Article  Google Scholar 

  7. Daynes, H.: Listeners’ perceptual and emotional responses to tonal and atonal music. Psychol. Music 39(4), 468–502 (2011)

    Article  Google Scholar 

  8. Fernández-Sotos, A., Fernández-Caballero, A., Latorre, J.M.: Influence of tempo and rhythmic unit in musical emotion regulation. Front. Comput. Neurosci. 10, 80 (2016)

    Article  Google Scholar 

  9. Ferreira, L.N., Whitehead, J.: Learning to generate music with sentiment. In: Proceedings of the 20th International Society for Music Information Retrieval Conference, pp. 384–390 (2019)

    Google Scholar 

  10. Grekow, J., Dimitrova-Grekow, T.: Monophonic music generation with a given emotion using conditional variational autoencoder. IEEE Access 9, 129088–129101 (2021)

    Article  Google Scholar 

  11. Han, S., Ihm, H., Lee, M., Lim, W.: Symbolic music loop generation with neural discrete representations. Proceedings of the 23th International Society for Music Information Retrieval Conference (2022)

    Google Scholar 

  12. Han, S., Ihm, H., Lim, W.: Symbolic music loop generation with VQ-VAE. arXiv preprint arXiv:2111.07657 (2021)

  13. Herremans, D., Chew, E., et al.: Tension ribbons: quantifying and visualising tonal tension. (2016)

    Google Scholar 

  14. Hsu, J.L., Liu, C.C., Chen, A.L.: Discovering nontrivial repeating patterns in music data. IEEE Trans. Multimedia 3(3), 311–325 (2001)

    Article  Google Scholar 

  15. Huang, C.F., Huang, C.Y.: Emotion-based AI music generation system with CVAE-GAN. In: 2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE), pp. 220–222. IEEE (2020)

    Google Scholar 

  16. Hung, T.M., Chen, B.Y., Yeh, Y.T., Yang, Y.H.: A benchmarking initiative for audio-domain music generation using the freesound loop dataset. Proceedings of the 22th International Society for Music Information Retrieval Conference (2021)

    Google Scholar 

  17. Hutchings, P.E., McCormack, J.: Adaptive music composition for games. IEEE Trans. Games 12(3), 270–280 (2019)

    Article  Google Scholar 

  18. Juslin, P.N.: Cue utilization in communication of emotion in music performance: relating performance to perception. J. Exp. Psychol. Hum. Percept. Perform. 26(6), 1797 (2000)

    Article  Google Scholar 

  19. Kalansooriya, P., Ganepola, G.D., Thalagala, T.: Affective gaming in real-time emotion detection and smart computing music emotion recognition: implementation approach with electroencephalogram. In: 2020 International Research Conference on Smart Computing and Systems Engineering (SCSE), pp. 111–116. IEEE (2020)

    Google Scholar 

  20. Keskar, N.S., McCann, B., Varshney, L.R., Xiong, C., Socher, R.: Ctrl: a conditional transformer language model for controllable generation. arXiv preprint arXiv:1909.05858 (2019)

  21. Loth, J., Sarmento, P., Carr, C., Zukowski, Z., Barthet, M.: Proggp: from guitarpro tablature neural generation to progressive metal production. The 16th International Symposium on Computer Music Multidisciplinary Research (2023)

    Google Scholar 

  22. Madhok, R., Goel, S., Garg, S.: Sentimozart: music generation based on emotions. In: ICAART (2), pp. 501–506 (2018)

    Google Scholar 

  23. McVicar, M., Fukayama, S., Goto, M.: Autoleadguitar: automatic generation of guitar solo phrases in the tablature space. In: 2014 12th International Conference on Signal Processing (ICSP), pp. 599–604. IEEE (2014)

    Google Scholar 

  24. Panda, R., Redinho, H., Gonçalves, C., Malheiro, R., Paiva, R.P.: How does the spotify api compare to the music emotion recognition state-of-the-art? In: 18th Sound and Music Computing Conference (SMC 2021), pp. 238–245. Axea sas/SMC Network (2021)

    Google Scholar 

  25. Ruiguo-Bio: Ruiguo-bio/midi-miner: Python midi track classifier and tonal tension calculation based on spiral array theory (2023). https://github.com/ruiguo-bio/midi-miner

  26. Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161 (1980)

    Article  Google Scholar 

  27. Sarmento, P., Holmqvist, O., Barthet, M., et al.: Ubiquitous music in smart city: musification of air pollution and user context (2022)

    Google Scholar 

  28. Sarmento, P., Kumar, A., Carr, C., Zukowski, Z., Barthet, M., Yang, Y.H.: DadaGP: a dataset of tokenized guitarpro songs for sequence models. In: Proceedings of the 22th International Society for Music Information Retrieval Conference, pp. 610–618 (2021)

    Google Scholar 

  29. Sarmento, P., Kumar, A., Chen, Y.H., Carr, C., Zukowski, Z., Barthet, M.: GTR-CTRL: instrument and genre conditioning for guitar-focused music generation with transformers. In: Johnson, C., Rodríguez-Fernández, N., Rebelo, S.M. (eds.) EvoMUSART 2023. LNCS, vol. 13988, pp. 260–275. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-29956-8_17

    Chapter  Google Scholar 

  30. Sarmento, P., Kumar, A., Xie, D., Carr, C., Zukowski, Z., Barthet, M.: Shredgp: guitarist style-conditioned tablature generation. In: Proceedings of the 16th International Symposium on Computer Music Multidisciplinary Research (CMMR) 2023. (2023)

    Google Scholar 

  31. Sulun, S., Davies, M.E., Viana, P.: Symbolic music generation conditioned on continuous-valued emotions. IEEE Access 10, 44617–44626 (2022)

    Article  Google Scholar 

  32. Takahashi, T., Barthet, M.: Emotion-driven harmonisation and tempo arrangement of melodies using transfer learning

    Google Scholar 

  33. Tan, H.H., Herremans, D.: Music fadernets: controllable music generation based on high-level features via low-level feature modelling. Proceedings of the 21th International Society for Music Information Retrieval Conference (2020)

    Google Scholar 

  34. Tan, X., Antony, M., Kong, H.: Automated music generation for visual art through emotion. In: ICCC, pp. 247–250 (2020)

    Google Scholar 

  35. Tripodi, I.J.: Setting the rhythm scene: deep learning-based drum loop generation from arbitrary language cues. arXiv preprint arXiv:2209.10016 (2022)

  36. Webster, G.D., Weir, C.G.: Emotional responses to music: interactive effects of mode, texture, and tempo. Motiv. Emot. 29, 19–39 (2005)

    Article  Google Scholar 

  37. Williams, D., Kirke, A., Miranda, E.R., Roesch, E., Daly, I., Nasuto, S.: Investigating affect in algorithmic composition systems. Psychol. Music 43(6), 831–854 (2015)

    Article  Google Scholar 

  38. Yang, S., Reed, C.N., Chew, E., Barthet, M.: Examining emotion perception agreement in live music performance. IEEE Trans. Affect. Comput. 14(02), 1442–1460 (2023). https://doi.org/10.1109/TAFFC.2021.3093787

    Article  Google Scholar 

  39. Yeh, Y.T., Chen, B.Y., Yang, Y.H.: Exploiting pre-trained feature networks for generative adversarial networks in audio-domain loop generation. In: Proceedings of the 23th International Society for Music Information Retrieval Conference (2022)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the EPSRC UKRI Centre for Doctoral Training in Artificial Intelligence and Music (Grant no. EP/S022694/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenqian Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, W., Sarmento, P., Barthet, M. (2024). MoodLoopGP: Generating Emotion-Conditioned Loop Tablature Music with Multi-granular Features. In: Johnson, C., Rebelo, S.M., Santos, I. (eds) Artificial Intelligence in Music, Sound, Art and Design. EvoMUSART 2024. Lecture Notes in Computer Science, vol 14633. Springer, Cham. https://doi.org/10.1007/978-3-031-56992-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56992-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56991-3

  • Online ISBN: 978-3-031-56992-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics