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In the current pandemic, being able to efficiently stratify patients depending on their probability to develop 
a severe form of COVID-19 can improve the outcome of treatments and optimize the use of the available 
resources. To this end, recent studies proposed to use deep-networks to perform automatic stratification of 
COVID-19 patients based on lung ultrasound (LUS) data. In this work, we present a novel neuro-symbolic 
approach able to provide video-level predictions by aggregating results from frame-level analysis made by 
deep-networks. Specifically, a decision tree was trained, which provides direct access to the decision process 
and a high-level explainability. This approach was tested on 1808 LUS videos acquired from 100 patients 
diagnosed as COVID-19 positive by a RT-PCR swab test. Each video was scored by LUS experts according 
to a 4-level scoring system specifically developed for COVID-19. This information was utilised for both 
the training and testing of the algorithms. A five-folds cross-validation process was utilised to assess the 
performance of the presented approach and compare it with results achieved by deep-learning models alone. 
Results show that this novel approach achieves better performance (82% of mean prognostic agreement) 
than a threshold-based ensemble of deep-learning models (78% of mean prognostic agreement).
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1. INTRODUCTION

The advent of COVID-19 has prompted researchers to look for a way to early detect and effec-
tively monitor patients affected by SARS-Cov 2. In this context, the use of lung ultrasound (LUS)
has been rapidly spreading. Due to its portability, cost-effectiveness, real-time imaging, and safety,
LUS provided the possibility to be widely adopted to evaluate the state of lungs in patients affected
by COVID-19.1–9 LUS can also be used to monitor and triage symptomatic patients.1 In par-
ticular, LUS is often exploited to detect COVID-19 associated interstitial pneumonia and follow
its evolution.2, 10 To this end, different imaging protocols have been suggested together with semi-
quantitative scoring systems.11 In parallel, quantitative methods for assessing the lung parenchyma
are being developed.10, 12–16 These methods, however, are not yet available for a wide deployment
in emergency conditions, due to their current preliminary state. Thus, semi-quantitative scoring
systems based on specific LUS imaging features (e.g., vertical and horizontal artifacts, or con-
solidations) have been widely used during the COVID-19 pandemic.2 In this context, the use of
artificial intelligence (AI) in semi-quantitative scoring systems can reduce the subjectivity in eval-
uation, as well as the evaluation time.17–20

In this study, we use data obtained following an imaging protocol based on 14 scan areas and
a 4-level scoring system, which enables the classification of different lung states.2 A recent study
demonstrated the prognostic value of this methodology when assessing the cumulative score (i.e.,
the sum of scores in the above-mentioned 14 scan areas) at the exam level.21 To evaluate our
approach, we acquired 1808 LUS videos from 100 COVID-19 positive patients, which consist of
366,301 frames in total. These frames are then analyzed by to two DNNs17 that were trained to do
automatic scoring and segmentation of LUS frames based on the four-level scoring system.2 In the
next step, to switch from frame-level to video-level labeling, the output scores of these two DNNs
are considered as features for automatic classification based on a Decision Tree (DT) induced by
means of an evolutionary algorithm called grammatical evolution, following the approach similar
to the one proposed in Ref. 22. Specifically, we compare the video-level scores given by our
automatic approach with the scores given by expert clinicians. Indeed, to perform their evaluation,
clinicians associate a score to each video rather than to each frame. We then assess the performance
of our aggregation approach (both at video-level and exam-level) by comparing the results obtained
by the proposed method with a previously reported empirical aggregation technique.23 We make
our data freely available for further developments1.

This paper is organized as follows. We provide the dataset description and the details of the
proposed approach in Section 2. The results of the proposed method and its comparison with
previously reported results are presented in Section 3. Finally, our conclusions are reported in
Section 4.

2. MATERIALS AND METHODS

In the following, firstly we introduce the summary of the datasets, and then we provide the
details of our proposed approach.

1https://drive.google.com/drive/folders/1Or4dF2fAM23H5fd_yxtq1vyAS8b7pL0s
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Figure 1: Block diagram of the prediction process.

A. DATASET

The dataset consists of 100 patients diagnosed as COVID-19 positive by a reverse transcription
polymerase chain reaction (RT-PCR) swab test. From the 100 patients, 63 (35 male, 28 female;
ages ranging from 26 to 92 years, and average age equal to 63.72 years) were examined within the
Fondazione Policlinico San Matteo (Pavia, Italy), 19 (16 male, 3 female; ages ranging from 34 to
84 years, and average age equal to 63.95 years) within the Lodi General Hospital (Lodi, Italy), and
18 (8 male, 10 female; ages ranging from 23 to 95 years, and average age equal to 52.11 years)
within the Fondazione Policlinico Universitario Agostino Gemelli (Rome, Italy). As a subgroup
of patients was examined multiple times, on different dates (these patients needed to be monitored
with LUS examinations on different dates, to track the development of the disease), a total of 133
LUS exams were performed (94 at Pavia, 20 at Lodi, and 19 at Rome). A total of 1808 LUS videos
were thus acquired (1,290 at Pavia, 276 at Lodi, 242 at Rome), which consist of 366,301 frames
(292,943 at Pavia, 44,288 at Lodi, 29,070 at Rome).

We divide the dataset into 5 different folds and allocate 4 folds to the training phase and 1 fold
to the testing phase (to evaluate the generalizability of the proposed approach). The folds have
been created in such a way that all the data related to a patient (even if there is more than one
exam) lies in a single fold, to avoid “leakage” or biases in the folds.

B. STRUCTURE OF THE PROPOSED APPROACH

Fig. 1 shows the structure of the method proposed in this paper. The process is as follows:
at first, 1808 videos are applied as input to two DNNs, which are described in Ref. 17. The first
DNN only performs frames labeling, while the second one performs frame segmentation. More
specifically, the difference between the two networks consists in the fact that the labeling network
returns a score for the whole frame, while the segmentation network returns a score for each pixel
contained in the frame. In order to use the information coming from the segmentation network, we
assign to the frame a score equal to the highest score among all of its pixels.

Examples of LUS patterns with the associated scores are shown in Fig. 2. This four-level scor-
ing system was designed to grade the lung condition with a score ranging from 0 to 3.2 Specifically,
the scores are assigned by visually analyzing LUS images to detect specific LUS imaging patterns
that are associated to each score. As an example, score 0 is associated with a continuous pleural
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Score 0 Score 1 Score 2 Score 3

Figure 2: Some examples of frames with their corresponding scores.

l0 l1 l2 l3 lmin lmax S0 S1 S2 S3 Smin Smax

Relative frequency of the prediction of the
class i made by the labeling DNN

Minimum and  maximum gravity
level predicted by the labeling DNN

Number of cases in which the
class i corresponds to the worst-case in the 
predictions made by the segmentation DNN

 Minimum and maximum gravity level 
predicted by the segmentation DNN

Figure 3: Final feature vector resulted from both DNNs in Fig. 1.

line and presence of horizontal artifacts, which are characteristic of a healthy lung surface.2 In
contrast, score 3 is associated with the presence of extended (>50% of the pleural line) vertical
artifacts with or without large consolidations 2. Therefore, a higher score represents a worse state
of the lung surface. The first DNN, taken from a spatial transformer, assigns one score for each
frame. However, the second DNN, derived from U-Nets and DeepLab v3+, assigns multiple scores
to each frame, depending on the segmented patters. For this network we consider the worst case
(i.e., the highest score) found in each frame as the final score predicted. In the case that none
of the relevant patterns occurs in a frame, we consider another Score (Score-1). In the feature
extraction stage, to convert the features from frame-level to video-level, we aggregate the outputs
of the two DNNs. For the labeling DNN, we simply use as features the relative frequency of the
prediction of each class (i.e., the argmax of the output vector of each frame). For the segmentation
DNN, instead, we aggregate the features by computing the relative frequency of the worst-case
(i.e., maximum) predicted classes inside each frame. The resulting feature set is summarized in
Fig. 3. Finally, in the classification phase, we feed this feature vector as input to a DT, for the final
scoring of each LUS videos.

C. MULTI-OBJECTIVE GRAMMATICAL EVOLUTION OF DECISION TREES

We exploit the grammatical evolution (GE) algorithm24 to evolve the structure and parameters
of the aggregating DTs. GE is an evolutionary algorithm that allows the evolution of grammars,
encoded in the Backus-Naur form. The grammar we used is shown in Table 1. By using this
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grammar we can leverage GE to build decision trees that have good performance and that allow us
to interpret the results returned by the neural networks.

Table 1: Grammar used to evolve the DTs. The symbol “|" indicates the possibility to choose
between different symbols.

Rule Production
dt ⟨if⟩
if if ⟨condition⟩ then ⟨output⟩ else ⟨output⟩

condition ⟨var⟩⟨op⟩⟨const⟩ | ⟨var⟩⟨op⟩⟨var⟩
var {inputi}; i ∈ [0, 12[

op < | > | ==

output 0 | 1 | 2 | 3 | ⟨if⟩
const [0, 1] with step 10−2

Moreover, we set our DT optimization problem as a multi-objective one, by considering three
objectives, namely the video-level, the exam-level, and the prognostic-level agreement, defined
respectively as follows:

1. Objective 1: Video-level MSE (to be minimized):

1

Nvideos

Nvideos∑
i=1

(yvi − ŷvi )
2; (1)

2. Objective 2: Exam-level MSE (to be minimized):

1

Nexams

Nexams∑
j=1

(yej − ŷej )
2; (2)

3. Objective 3: Prognostic-level agreement (to be maximized):

1

Nexams

Nexams∑
j=1

I(ypj = ŷpj ); (3)

where yvi indicates the ground truth for video i; yej =
14∑
i=1

yvj,i is the ground truth for exam j, i.e., the

sum of the scores of each video of that exam; ypj = I(yej > 24) is the ground truth for the prognosis
j, where I is the indicator function, that outputs 1 if the argument is true, otherwise 0. Note that
the notation ŷab refers to the approximation made by our system for the variable yab . With these
definitions, the multi-objective evaluation is implemented as shown in Alg. 1.
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Algorithm 1: Multi-objective evaluation
Input: T : the DT to evaluate
Input: X1,X2,X3,X4: input features of each fold
Input: v1,v2,v3,v4: video-level ground truth
Input: e1, e2, e3, e4: exam-level ground truth
Input: p1,p2,p3,p4: prognostic-level ground truth
Result: f : a list of objective functions

1 num_folds← 4 // Number of folds used for the training
2 ev ← [];
3 ee ← [];
4 ap ← [];
// Iterate over the training folds

5 for i = 0; i < num_folds; i++ do
// For each fold, compute the metrics and concatenate

6 ev ← concatenate(ev, [video_mse(T,Xi,vi)]) // Eq. 1
7 ee ← concatenate(ee, [exam_mse(T,Xi, ei)]) // Eq. 2
8 ap ← concatenate(ap, [prognostic_agreement(T,Xi,pi)]) // Eq. 3
9 end
// Assign the worst-case to each metric

10 f ← [];
11 f [0]← max(ev);
12 f [1]← max(ee);
13 f [2]← min(ap);
14 return f ;

3. RESULTS

We perform 10 independent runs of grammatical evolution with different random seeds. We
consider for comparisons the best evolved DT (i.e., the DT that shows the maximum prognostic
level across 10 different runs). In Table 2, we show, for each method with different thresholds (i.e.,
the ones used in Ref. 23) the descriptive statistics of the agreement of the method across the 5 folds
(i.e., the four used for training, plus the one used for testing). The agreement for the three metrics
is computed as follows:

1. Video-level agreement:
1

Nvideos

Nvideos∑
i=1

I(| yvi − ŷvi | ≤ Th) (4)

2. Exam-level agreement:
1

Nexams

Nexams∑
i=1

I(| yei − ŷei | ≤ Th) (5)
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3. Prognostic-level agreement:

1

Nexams

Nexams∑
i=1

I(ypi = ŷpi ) (6)

where we use the same notation of Eq. 1-3 and Th indicates a given threshold.
As can be seen, the proposed method has been compared with the results presented in Ref. 23,

which are are based on empiric combination of frame-level predictions made by DNNs. More
specifically, in the “Labeling Only” method, only the labeling DNN have been used, while in
“Labeling + Segmentation” method, the segmentation DNN has also been exploited in combination
with the labeling DNN. The video-level agreement indicates the fraction of videos that are correctly
classified by the algorithm, which is measured based on the degree of compliance between the
experts’ evaluation and the output of the algorithm. We denote the agreement characterized by
an exact match between video-level scores as video-level agreement with threshold Th equal to
0, whereas we refer to the video-level agreement allowing a disagreement up to 1 point as video-
level agreement with Th equal to 1. Therefore, the results of Table 2 for these two values of Th
are presented separately. Similarly, in Table 3 and Table 4 we report the comparison between
the results of our best evolved DT and the results reported in Ref. 23 for the case of exam-level
and prognostic-level agreement respectively. The disagreement threshold Th is set to 2, 5 and 10
for exam-level case and 24 for the prognostic-level one. As the results of Tables 2-4 show, the
proposed approach works better in most cases than the previous two methods presented in Ref. 23,
considering all the three agreement levels, obtaining worst-case improvements of up to 5%. The
best decision tree induced by our method is shown in Fig. 4.

Table 2: Descriptive statistics (in %) of video-level agreement on all the folds. “Th” refers to the
threshold used as tolerance, whose values have been taken from Ref. 23.

Method Th Min Mean Std Med Max
Labeling Only23 0 44.70 50.40 4.28 50.68 57.38

1 82.74 85.87 2.49 85.91 89.76
Labeling + Segmentation23 0 42.35 50.10 5.48 51.43 56.67

1 82.74 85.87 2.43 85.36 89.29
Proposed approach 0 45.88 49.48 2.24 49.77 52.86

1 85.47 88.31 2.29 87.84 92.14

4. CONCLUSIONS

Recently the evaluation of LUS images to assess the severity of COVID-19 patients has re-
ceived significant attention. In addition, the use of artificial intelligence in combination with med-
ical systems can provide greater flexibility and explainability. In this paper, we used two deep
neural networks previously presented in the literature to extracted features (namely, prediction
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Table 3: Descriptive statistics (in %) of exam-level agreement on all the folds. “Th” refers to the
threshold used as tolerance, whose values have been taken from Ref. 23.

Method Th Min Mean Std Med Max
Labeling Only23 2 21.05 32.30 6.75 32.26 41.94

5 45.00 56.95 9.43 57.90 70.97
10 80.00 89.44 6.44 89.47 100.00

Labeling + Segmentation23 2 21.05 30.97 7.58 35.00 38.71
5 45.16 59.44 13.23 52.63 80.64
10 80.00 84.58 6.27 81.25 96.77

Proposed approach 2 21.05 36.36 9.68 38.71 46.88
5 45.00 63.98 11.35 62.50 77.42
10 85.00 91.51 5.34 90.32 100.00

Table 4: Descriptive statistics (in %) of prognostic-level agreement on all the folds. “Th” refers
to the threshold used as tolerance, whose values have been taken from Ref. 23.

Method Th Min Mean Std Med Max
Labeling Only23 24 63.13 78.12 7.96 80.64 85.00
Labeling + Segmentation23 24 57.90 76.78 12.01 83.87 90.00
Proposed approach 24 68.42 82.11 7.51 84.38 90.00

scores) from LUS data, and then we aggregated those features by means of a decision tree (DT).
To account for the multi-faceted nature of this form of aggregation, we optimized the DTs by
means of multi-objective grammatical evolution, aimed at optimizing simultaneously frame-level,
video-level and prognostic-level agreements. We then evaluated the results of the best evolved
DT with respect to the three levels of agreement. Our results indicate that the performance of the
proposed multi-objective approach is in most cases better than previously proposed methods based
on empiric aggregation.
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Figure 4: Best decision tree obtained with the proposed approach.
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