
Designing Competitive Bots for a Real Time
Strategy Game using Genetic Programming

A. Fernández-Ares, P. Garćıa-Sánchez,
A.M. Mora, P.A. Castillo, and J.J. Merelo

Dept. of Computer Architecture and Computer Technology,
CITIC-UGR, University of Granada, Spain
antares@ugr.es,pablogarcia@ugr.es

Abstract. The design of the Artificial Intelligence (AI) engine for an
autonomous agent (bot) in a game is always a difficult task mainly done
by an expert human player, who has to transform his/her knowledge
into a behavioural engine. This paper presents an approach for conduct-
ing this task by means of Genetic Programming (GP) application. This
algorithm is applied to design decision trees to be used as bot’s AI in
1 vs 1 battles inside the RTS game Planet Wars. Using this method it
is possible to create rule-based systems defining decisions and actions,
in an automatic way, completely different from a human designer doing
them from scratch. These rules will be optimised along the algorithm
run, considering the bot’s performance during evaluation matches. As
GP can generate and evolve behavioural rules not taken into account by
an expert, the obtained bots could perform better than human-defined
ones. Due to the difficulties when applying Computational Intelligence
techniques in the videogames scope, such as noise factor in the evalua-
tion functions, three different fitness approaches have been implemented
and tested in this work. Two of them try to minimize this factor by con-
sidering additional dynamic information about the evaluation matches,
rather than just the final result (the winner), as the other function does.
In order to prove them, the best obtained agents have been compared
with a previous bot, created by an expert player (from scratch) and then
optimised by means of Genetic Algorithms. The experiments show that
the three used fitness functions generate bots that outperform the opti-
mized human-defined one, being the area-based fitness function the one
that produces better results.

1 Introduction

Real-Time Strategy (RTS) games are a sub-genre of strategy-based videogames
in which the contenders struggle to control a set of resources, units and struc-
tures that are distributed in a playing arena. A proper control and a sound
strategy and tactics for handling these units is essential for winning the game,
which happens after the game objective has been fulfilled, normally eliminating
all enemy units, but sometimes also when certain points or game objectives have
been reached.



Their main feature is their real-time nature (which is explicit in its denomi-
nation, real time strategy games), i.e. the player is not required to wait for the re-
sults of other players’ moves as in turn-based games. Command and ConquerTM,
StarcraftTM, WarcraftTM and Age of EmpiresTM are examples of RTS games.

Two levels of AI are usually considered in RTS games [1]: the first one, inter-
preted by a Non-Playing Character (NPC), which is also a bot, makes decisions
over the whole set of units (workers, soldiers, machines, vehicles or even build-
ings); the second level is devoted implement the behaviour of every one of these
small units. These two level of actions, which can be considered strategic and
tactical, make them inherently difficult to be designed by a human; but this dif-
ficulty is increased by their real-time nature (usually addressed by constraining
the time that each bot can use to make a decision) and also for the huge search
space that is implicit in its action.

For these reasons, in this work a Genetic Programming (GP) approach is
proposed as an automatic method to create the Artificial Intelligence (AI) engine
of autonomous agents in a RTS. The objective of GP is to create functions or
programs to solve determined problems, moreover the individual representation
is usually in form of a tree, formed by operators (or primitives) and variables
(terminals). The aim of using GP in this scope is the creation of behavioural rule-
based engines following an heuristic, algorithmic and automatic process. Thus,
instead of implementing them from scratch by a human (expert or not), this
method will define a set of rules that could be more complex (or simpler) than
those defined by the humans. In addition, this algorithm is able to evaluate every
possible set of rules, assigning to that set a value according to the corresponding
bot’s performance (during battles). Thus, these sets will be improved (evolved)
along the algorithm run in order to increase that bot’s performance.

In order to implement and test this proposal, we have considered the game
Planet Wars, a RTS which was presented under the Google AI Challenge 20101.
It has been used by several authors for the study of computational intelligence
techniques in RTS games [2–4], due to it is a simplification (just one type of
resource and one type of unit) of the elements that those commercial RTSs
present. Thus, the players in this game just can manage planets and starships
(or just ships). The aim is conquering the whole galaxy in the current map,
against an enemy trying to do the same. The planets can produce new ships and
the ships are destroyed one by one for both players when they crash.

Three different fitness functions will be presented and tested in this paper:
the first one is a variation of the previously used victory-based fitness [2], which
evaluates all the individuals in the population by playing five different matches
(in five different maps) against a sparring bot. The aim of the repetitions is
to avoid the noisy factor present in these dynamic environments [5, 6]. Due to
this, the fitness value for an individual could dramatically vary between different
matches, since it depends on the pseudo-stochastic opponent’s actions, and also
on its own non-deterministic decisions. The other two presented fitness functions
also point to reduce the influence of noise in the evolution, but using additional

1 http://planetwars.aichallenge.org/



data obtained during the execution of the bot. Thus, they consider the number
of ships generated by each bot rather than the number of turns and compute,
respectively, a linear regression (Slope) based on the percentage of ships with
respect to the total, and the integral (Area) of the function which represents
these numbers. All of them consider the final results of every individual (bot)
after the aforementioned five matches (on average).

The work is then focused on proving the value of these evolved rule-based
control systems for the agents. To this end, several experiments have been con-
ducted, considering the aforementioned fitness functions, and an evolutionary
bot as rival. This bot, called GeneBot, was presented in a previous work [2].

2 Background and problem description

2.1 Genetic Programming

Genetic Programming (GP) [7] is a kind of Evolutionary Algorithm (EA), that
is, a probabilistic search and optimization algorithms gleaned from the model
of darwinistic evolution, based on the idea that in nature structures undergo
adaptation. EAs work on a population of possible solutions (individuals) for the
target problem and use a selection method that favours better solutions and a
set of operators that act upon the selected solutions. However, GP is a struc-
tural optimisation technique where the individuals are represented as hierarchical
structures (typically tree) and the size and shape of the solutions are not defined
a priori as in other methods from the field of evolutionary computation, but they
evolve along the generations. So, the main difference with respect to GAs is the
individual representation and the genetic operators to apply, which are mainly
focused on the management (and improvement) of this kind of structure. The
flow of a GP algorithm is the same as any other EA: a population is created at
random, each individual in the population is evaluated using a fitness function,
the individuals that performed better in the evaluation process have a higher
probability of being selected as parents for the new population than the rest and
a new population is created once the individuals are subjected to the genetic
operators of crossover and mutation with a certain probability. The loop is run
until a predefined termination criterion is met.

2.2 Planet Wars Game

In this paper we work with a version of the game Galcon, aimed at performing
bot’s fights which was used as base for the Google AI Challenge 2010 (GAIC)2.

A Planet Wars match takes place on a map (see Fig. 1) that contains several
planets (neutral, enemies or owned), each one of them with a number assigned
to it that represents the quantity of ships that the planet is currently hosting.

The aim of the game is to defeat all the ships in the opponent’s planets.
Although Planet Wars is a RTS game, this implementation has transformed it

2 http://ai-contest.com



Fig. 1. Simulated screenshot of an early stage of a run in Planet Wars. White planets
belong to the player (blue colour in the game), dark grey belong to the opponent (red in
the game), and light grey planets belong to no player. The triangles are fleets, and the
numbers (in planets and triangles) represent the ships. The planet size means growth
rate of the amount of ships in it (the bigger, the higher).

into a turn-based game, in which each player has a maximum number of turns
to accomplish the objective. At the end of the match, the winner is the player
that remains alive, or that which owns more ships if more than one survives.

There are two strong constraints which determine the possible methods to
apply to design a bot: a simulated turn takes just one second, and the bot is
not allowed to store any kind of information about its former actions, about the
opponent’s actions or about the state of the game (i.e., the game’s map).

Therefore, the aim in this paper is to study the improvement of a bot ac-
cording to the state of the map in each simulated turn (input), returning a set
of actions to perform in order to fight the enemy, conquering its resources, and,
ultimately, wining the game.

3 State of the art

RTS games have been used extensively in the computational intelligence area
(see [8] for a survey).

Among other techniques, Evolutionary Algorithms have been widely used
as a Computational Intelligence method in RTS games [8]. For example, for
parameter optimization [9], learning [10] or content generation [11].



One of these types, Genetic Programming, has been proved as a good tool
for developing strategies in games, achieving results comparable to human, or
human-based competitors [12]. They also have obtained higher ranking than
solvers produced by other techniques or even beating high-ranking humans [13].
GP has also been used in different kind of games, such as board-games [14],
or (in principle) simpler games such as Ms. Pac-Man [15] and Spoof [16] and
even in modern video-games such as First Person Shothers (FPS) (for example,
UnrealTM [17]). With respect to RTS games, there are just a few applications
on pathfinding [18] and definition of tactics in an abstract tactical game [19].
In this paper, the aim is to apply GP inside a modern RTS, in order to define
the whole behavioural engine for an autonomous player (non-player character),
trying to improve a rule-based system previously defined by a human expert.

Planet Wars, the game used in this work, has also been used in other re-
searches as an experimental framework for agent testing. We have considered
this game in some previous studies [20, 2, 21, 3, 22], mainly applying Genetic
Algorithms for evolving (the parameters of) a behavioural engine previously de-
fined by a human expert from scratch. Those works have respectively defined a
first approach, compared different implementations, analysed the noise influence,
defined expert bots, and implemented co-evolutionary approaches.

The present work means a new step in this research line, which tries to avoid
the strict limitations that the initial bot had, i.e. since it was defined by a human
expert, it had a fixed structure (a Finite State Machine) which just offers a few
degrees of improvement, namely a set of eight parameters. The use of GP here
will provide us with a new tool for completely redefine the bot’s AI engine, which
could also get better results than previous bots. Thus GP has been applied to
create the Decision Tree that the bot will use to make decisions during the game.
In order to prove the method value, the resulting agents will be compared with
a competitive bot previously presented: GeneBot [2], our initial bot improved by
means of Genetic Algorithms. This bot also proved (in that work) to be better
than a human-defined bot (AresBot).

4 GPBot

The Genetic Programming-based bot or GPBot evolves a set of rules which,
in turn, models a Decision Tree. During the evolution, every individual in the
population (a tree) must be evaluated. To do so, the tree is set as the behavioural
engine of an agent, which is then placed in a map against a rival in a Planet Wars
match. Depending on the obtained results, the agent (i.e. the individual) gets a
fitness value, that will be considered in the evolutionary process as a measure of
its validity.

Thus, during the match the tree will be used (by the bot) in order to select
the best strategy at every moment, i.e. for every planet a target will be selected
along with the number of ships to send from one the other.
The used Decision Trees are binary trees of expressions composed by two different
types of nodes:



– Decision: a logical expression formed by a variable, a less than operator (<),
and a number between 0 and 1. It is the equivalent to a “primitive” in the
field of GP.

– Action: a leave of the tree (therefore, a “terminal”). Each decision is the
name of the method to call from the planet that executes the tree. This
method indicates to which planet send a percentage of available ships (from
0 to 1).

The decisions are based in the values of different variables which are computed
considering some other variables in the game. They are defined by a human
expert, and are:

– myShipsEnemyRatio: Ratio between the player’s ships and enemy’s ships.
– myShipsLandedFlyingRatio: Ratio between the player’s landed and flying

ships.
– myPlanetsEnemyRatio: Ratio between the number of player’s planets and

the enemy’s ones.
– myPlanetsTotalRatio: Ratio between the number of player’s planet and total

planets (neutrals and enemy included).
– actualMyShipsRatio: Ratio between the number of ships in the specific planet

that evaluates the tree and player’s total ships.
– actualLandedFlyingRatio: Ratio between the number of ships landed and

flying from the specific planet that evaluates the tree and player’s total
ships.

Finally, the possible decisions are:

– Attack Nearest (Neutral—Enemy—NotMy) Planet: The objective is the near-
est planet.

– Attack Weakest (Neutral—Enemy—NotMy) Planet: The objective is the
planet with less ships.

– Attack Wealthiest (Neutral—Enemy—NotMy) Planet: The objective is the
planet with higher lower rate.

– Attack Beneficial (Neutral—Enemy—NotMy) Planet: The objective is the
more beneficial planet, that is, the one with highest growth rate divided by
the number of ships.

– Attack Quickest (Neutral—Enemy—NotMy) Planet: The objective is the
planet easier to be conquered: the lowest product between the distance from
the planet that executes the tree and the number of ships in the objective
planet.

– Attack (Neutral—Enemy—NotMy) Base: The objective is the planet with
more ships (that is, the base).

– Attack Random Planet.
– Reinforce Nearest Planet: Reinforce the nearest player’s planet to the planet

that executes the tree.
– Reinforce Base: Reinforce the player’s planet with higher number of ships.



– Reinforce Wealthiest Planet: Reinforce the player’s planet with higher grown
rate.

– Do nothing.

An example of a possible decision tree is shown below. This example tree has a
total of 5 nodes, with 2 decisions and 3 actions, and a depth of 3 levels.

if(myShipsLandedFlyingRatio < 0.796)

if(actualMyShipsRatio < 0.201)

attackWeakestNeutralPlanet(0.481);

else

attackNearestEnemyPlanet(0.913);

else

attackNearestEnemyPlanet(0.819);

The bot’s behaviour is explained in Algorithm 1.

Algorithm 1 Pseudocode of the proposed agent. The same tree is used during
all the agent’s execution

// At the beginning of the execution the agent receives the tree
tree ← readTree()
while game not finished do

// starts the turn
calculateGlobalPlanets() // e.g. Base or Enemy Base
calculateGlobalRatios() // e.g. myPlanetsEnemyRatio
for Each p in PlayerPlanets do

calculateLocalPlanets(p) // e.g. NearestNeutralPlanet to p
calculateLocalRatios(p) //e.g actualMyShipsRatio
executeTree(p,tree) // Send a percentage of ships to destination

end for
end while

Next section explains one of the main components of the evolutionary process,
i.e. the fitness function. As previously stated, three different functions have been
implemented, which are used to evaluate the agent’s performance during the
matches.

5 Fitness Functions

5.1 Fitness based in Victories

This a variation of the hierarchical fitness considered in [2]. In this approach, an
individual is better than another if it wins in a higher number of maps. In case
of equality of victories, then the individual with more turns to be defeated (i.e.



the stronger one) is considered as better. The maximum fitness in this work is,
therefore, 5 victories and 0 turns. For two bots, A and B, the fitness comparison
(and therefore, their order inside the population) is defined as Algorithm 2 shows.

Algorithm 2 Comparison between two individuals using hierarchical fitness.

A,B ∈ Population
if A.victories = B.victories then

if A.turns >= B.turns then
A is better than B

else
B is better than A

end if
else

if A.victories > B.victories then
A is better than B

else
B is better than A

end if
end if

In this fitness, we are only interested in the final result (position and number
of turns). We do not include in the analysis how the bot has reached them. The
problem of this function is that the consideration of two different terms makes
it difficult the comparison between different evaluations.

Thus, in this work two additional evaluation functions have been proposed
in order to let easier and fairer comparison methods between bots, trying to
add another factor in order to reduce the influence of noise [5]. Both of them
are based in the percentage of ships belonging to each player in every turn.
They are normalized considering the total amount of ships in the game for that
turn (including neutrals ships in neutral planets), so for each player, there is a
different cloud of ships. Below, are described the two alternatives to deal with
this cloud of points for the fitness function: the use of slopes and areas.

5.2 Fitness based in Slope

In this case, a square regression analysis is computed in order to transform the
cloud of points into a simple line. The line is represented as y = α × x + β,
where α and β are calculated as shown in Equations 1 and 2, computing a least
squares regression. For every bot in the simulation we calculate α and (slope).
This slope is the fitness of every bot for that simulation.

α =

∑n
i=1(Xi − X̄i)(Yi − Ȳi)∑n

i=1(Xi − X̄i)2
(1)

β = Ȳ − αX̄ (2)



Theoretical maximum and minimum values are set for this fitness. An op-
timum bot that wins in the first turn, has an ideal slope of 1, so this is the
maximum value of our fitness. On the other hand, a bot that loses in the first
turn, has a slope of −1. Thus, if we calculate the slope, we know if the bot
WINs (slope > 0) or LOSEs slope < 0. The values of the different battles are
summed to compute the global slope. Then, the bot with the highest value will
be the best is each turn or battle.

5.3 Fitness based in Area

In this function, the integral of the curve of the bot’s live-line is used for calcu-
lating the area that is ‘covered’ by the fitness cloud of points (see Equation 3).
This area is normalized considering the number of turns, and thus it represents
the average percentage of ships during the battle for each player.

area =

∫ t

0
%ships(x)dx

t
(3)

As in previous case, maximum and minimum values has been set for this
fitness. If an optimal bot wins in the first turn, the area of each live-line is close
to 1, so this is the maximum value of the fitness. Otherwise, if a bot loses in the
first turn, its live-line area is close to 0. In this case, we do not extract additional
about which bot wins the battle, because the area of the live-line is not related
with the winner of the battle. Thus, we are losing some information.

6 Experimental Setup

Sub-tree crossover and 1-node mutation evolutionary operators have been used,
following other researchers’ proposals that have used these operators obtaining
good results [17]. In this case, the mutation randomly changes the decision of
a node or mutate the value with a step-size of 0.25 (an adequate value empiri-
cally tested). Each configuration is executed 30 times, with a population of 32
individuals and a 2-tournament selector for a pool of 16 parents.

To test each individual during the evolution, a battle with a previously cre-
ated bot is performed in 5 different (but representative) maps provided by Google
is played. Also, as proposed by [2], and due to the noisy fitness effect, all indi-
viduals are re-evaluated in every generation.

A publicly available bot has been chosen for our experiments3. The bot to
confront is GeneBot, proposed in [2]. As stated, this bot was trained using a GA
to optimize the 8 parameters that conforms a set of hand-made rules, obtained
from an expert human player experience. Table 1 summarizes all the parameters
used.

After all the executions we have evaluated the obtained best individuals in all
runs confronting to the other bots in a larger set of maps to study the behaviour

3 It can be downloaded from https://github.com/deantares/genebot



Parameter Name Value

Population size 32

Crossover type Sub-tree crossover

Crossover rate 0.5

Mutation 1-node mutation

Mutation step-size 0.25

Selection 2-tournament

Replacement Steady-state

Stop criterion 50 generations

Maximum Tree Depth 7

Runs per configuration 30

Evaluation Playing versus GeneBot [2]

Maps used in each evaluation map76, map69, map7, map11, map26
Table 1. Parameters used in the experiments.

of the algorithm and how good are the obtained bots versus enemies and maps
that have not been used for training.

The used framework is OSGiLiath, a service-oriented evolutionary frame-
work. The generated tree is compiled in real-time and injected in the agent’s
code using Javassist 4 library. All the source code used in this work is available
under a LGPL V3 License in http://www.osgiliath.org.

7 Results

Table 2 shows the obtained results after executing 20 times each approach, i.e.
GP algorithm using every fitness implementation. Although these fitness are not
comparable, as they obviously apply different metrics, the Victory-based fitness
achieves values near to the optimum (5) at the end of the run (look at the
best individual and average population values). The Slope and Area fitness yield
results under their theoretical optimum, as they depend on more information
ranges (variation in the number of ships). Area obtains slightly better values
than Slope.

Average best fitness Average population fitness

Victory 4,761 ± 0,624 4,345 ± 0,78

Slope 2,296 ± 0,486 2,103 ± 0,486

Area 2,838 ± 1,198 2,347 ± 0,949
Table 2. Average results obtained for each approach at the end of the runs. Everyone
has been tested 20 times.

4 www.javassist.org



Even though the Victory-based fitness yields better results (near optimal),
to do a fair comparison, we have confronted the 20 best bots obtained with
each configuration (one per run) against GeneBot. However these matches have
been performed in 9 different maps than those where the bots were trained
(evolved). These maps, provided by Google, are considered as representative,
because they have different features to promote a wide set of strategies, i.e.
different distributions of planets, sizes and number of initial ships.

This experiment has been conducted in order to validate if the bots obtained
by the proposed approaches can be competitive in terms of quality in maps
not used for evolution/evaluation. Results are shown in Figure 2. As it can be
seen, again the Victory-based fitness achieves significantly better results than
the other methods.

0
20

40
60

80
10

0

VICTORY FITNESS

%
 V

ic
to

rie
s

0
20

40
60

80
10

0
AREA FITNESS

0
20

40
60

80
10

0

SLOPE FITNESS

Fig. 2. Boxplot of average percentage of victories of the bots obtained by each approach
vs. GeneBot. 9 different matches have been performed per bot in different maps.

Finally, an additional experiment has been conducted, proposing a direct
comparison between the three methods. To this end each of the best individuals
obtained per approach has been tested competing against all the rest (in a vs 1
battles) in 9 matches per pair of bots, one per representative map.

This allows a comparison with a wider number of bots, and also, allows the
analysis of their behavior against rivals not previously used during training (as in
the experiment above). The boxplots of the average percentage of victories from
the best bots obtained by each method are shown in Figure 3. It is clear from
the image that the Slope fitness does not get good results with respect to the
other methods. This can be explained because the this fitness loses information
during the run, in comparison with the others, obtaining bots less aggressive.



The Victory-based fitness achieves better results in average, being also more
robust (small standard deviation). However, looking at the Area fitness results,
they outperform several times the Victory results, obtaining more victories.

0
20

40
60

80
10

0

VICTORY FITNESS

%
 V

ic
to

rie
s

0
20

40
60

80
10

0

AREA FITNESS

0
20

40
60

80
10

0

SLOPE FITNESS

Fig. 3. Boxplot of average percentage of victories of the best bots obtained by each
method vs. the rest.

There is still a final remark, which concerns to the percentage of draw
matches. As it can be seen in Table 3. The Victory-based fitness achieves more
draws against bots of the same type than the other approaches. This can be
explained because they use less information to perform the evolution, obtaining
quite similar behaviours. This is also reinforced by previous results in which
the bots of this fitness seemed to perform similarly, obtaining close number of
victories and thus, getting small standard deviation values.

Victory Area Slope

Victory 62.06% 23.15 % 12.47 %

Slope - 19.07 % 12.50 %

Area - - 11.87 %
Table 3. Percentage of draw matches between bots per fitness approach.



8 Conclusions

The objective of this work is to validate if using Genetic Programming can create
competitive bots for RTS games, and study the behaviour of different fitness
functions, as they can affect directly to the creation of these bots. Three different
fitness functions have been compared to generate bots for the Planet Wars game.
A competitive bot available in the literature (GeneBot) has been used to evaluate
the generated individuals (fighting against it). This bot was the best one obtained
in an evolutionary process which optimized different parameters inside a human-
designed behavioural engine.

Different information of the run of the game is taken into account in these
functions to obtain a metric to guide the evolution. The results show differences
depending on the fitness used: a victory-based fitness that prioritizes the number
of victories generate better bots in average than fitness that take into account
the number of spaceships during all the run of the battle. This can be explained
because this fitness exploits the individuals to generate more aggressive bots.
However, their performance decreases confronting versus different types of bots.

In future work, other rules will be added to the proposed algorithm (for
example, ones analysing the map) and more competitive enemies will be used.
In addition, the approach could be implemented and tested in more complex
RTS games, such as Starcraft, or even in different videogames like UnrealTM or
Super MarioTM .

Acknowledgements

This work has been supported in part by FPU research grant AP2009-2942
and projects SIPESCA (G-GI3000/IDIF, under Programa Operativo FEDER de
Andalućıa 2007-2013), CANUBE (CEI2013-P-14), ANYSELF (TIN2011-28627-
C04-02) and PYR-2014-17 included in GENIL - CEI BIOTIC (Granada).

References

1. Ahlquist, J.B., Novak, J.: Game Artificial Intelligence. Game Development Essen-
tials. Thompson Learning, Canada (2008)

2. Fernández-Ares, A., Mora, A.M., Merelo, J.J., Garćıa-Sánchez, P., Fernandes, C.:
Optimizing player behavior in a real-time strategy game using evolutionary al-
gorithms. In: IEEE Congress on Evolutionary Computation (CEC 2011). (2011)
2017–2024

3. Fernández-Ares, A., Garćıa-Sánchez, P., Mora, A.M., Merelo, J.J.: Adaptive bots
for real-time strategy games via map characterization. In: 2012 IEEE Conference
on Computational Intelligence and Games, CIG 2012, IEEE (2012) 417–721

4. Lara-Cabrera, R., Cotta, C., Leiva, A.J.F.: On balance and dynamism in pro-
cedural content generation with self-adaptive evolutionary algorithms. Natural
Computing 13(2) (2014) 157–168



5. Mora, A.M., Fernández-Ares, A., Merelo, J.J., Garćıa-Sánchez, P., Fernandes,
C.M.: Effect of noisy fitness in real-time strategy games player behaviour opti-
misation using evolutionary algorithms. J. Comput. Sci. Technol. 27(5) (2012)
1007–1023

6. Guervós;, J.J.M.: Using a wilcoxon-test based partial order for selection in evolu-
tionary algorithms with noisy fitness. Technical report, GeNeura group, university
of Granada (2014)

7. Koza, J.R.: Genetic Programming: On the programming of computers by means
of natural selection. MIT Press, Cambridge, MA (1992)

8. Lara-Cabrera, R., Cotta, C., Fernández-Leiva, A.J.: A review of computational
intelligence in rts games. In: FOCI, IEEE (2013) 114–121

9. Esparcia-Alcázar, A.I., Mart́ınez-Garćıa, A.I., Mora, A.M., Merelo, J.J., Garćıa-
Sánchez, P.: Controlling bots in a first person shooter game using genetic algo-
rithms. In: IEEE Congress on Evolutionary Computation, IEEE (2010) 1–8

10. Stanley, K.O., Bryant, B.D., Miikkulainen, R.: Real-time neuroevolution in the
nero video game. IEEE Transactions on Evolutionary Computation (2005) 653–
668

11. Mahlmann, T., Togelius, J., Yannakakis, G.N.: Spicing up map generation. In:
Proceedings of the 2012t European conference on Applications of Evolutionary
Computation. EvoApplications’12, Berlin, Heidelberg, Springer-Verlag (2012) 224–
233

12. Sipper, M., Azaria, Y., Hauptman, A., Shichel, Y.: Designing an evolutionary
strategizing machine for game playing and beyond. IEEE Transactions on Systems,
Man and Cybernetics Part C: Applications and Reviews 37(4) (2007) 583–593

13. Elyasaf, A., Hauptman, A., Sipper, M.: Evolutionary design of freecell solvers.
IEEE Transactions on Computational Intelligence and AI in Games 4(4) (2012)
270–281

14. Benbassat, A., Sipper, M.: Evolving both search and strategy for reversi players
using genetic programming. (2012) 47–54

15. Brandstetter, M., Ahmadi, S.: Reactive control of ms. pac man using information
retrieval based on genetic programming. (2012) 250–256

16. Wittkamp, M., Barone, L., While, L.: A comparison of genetic programming and
look-up table learning for the game of spoof. (2007) 63–71

17. Esparcia-Alcázar, A.I., Moravec, J.: Fitness approximation for bot evolution in
genetic programming. Soft Computing 17(8) (2013) 1479–1487

18. Strom, R.: Evolving pathfinding algorithms using genetic pro-
gramming. Gamasutra Webpage (Accessed on 25/05/2014)
URL=http://www.gamasutra.com/view/feature/131147/evolving pathfinding algorithms .php?print=1.

19. Keaveney, D., O’Riordan, C.: Evolving robust strategies for an abstract real-time
strategy game. In Lanzi, P.L., ed.: CIG, IEEE (2009) 371–378

20. Fernández-Ares, A., Mora, A.M., Merelo, J.J., Garćıa-Sánchez, P., Fernandes,
C.M.: Optimizing strategy parameters in a game bot. In: Proc. 11th Interna-
tional Work-Conference on Artificial Neural Networks, IWANN 2011, Springer,
LNCS, vol. 6692 (2011) 325–332

21. Mora, A.M., Fernández-Ares, A., Merelo, J.J., Garćıa-Sánchez, P.: Dealing with
noisy fitness in the design of a RTS game bot. In: Proc. Applications of Evolution-
ary Computing: EvoApplications 2012, Springer, LNCS, vol. 7248 (2012) 234–244

22. Fernández-Ares, A.J., Mora, A.M., Arenas, M.G., Garćıa-Sánchez, P., Merelo, J.J.,
Castillo, P.A.: Co-evolutionary optimization of autonomous agents in a real-time
strategy game. In: Proc. Applications of Evolutionary Computing: EvoApplications
2014, Springer (2014) In Press


