Skip to main content

Evolution and Hypercomputing in Global Distributed Evolvable Virtual Machines Environment

  • Conference paper
Book cover Engineering Self-Organising Systems (ESOA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4335))

Included in the following conference series:

Abstract

Inspired by advances in evolutionary biology we extended existing evolutionary computation techniques and developed a self-organising, self-adaptable cellular system for multitask learning, called Evolvable Virtual Machine (EVM). The system comprises a specialised program architecture for referencing and addressing computational units (programs) and an infrastructure for executing those computational units within a global networked computing environment, such as Internet. Each program can be considered to be an agent and is capable of calling (co-operating with) other programs. In this system, complex relationships between agents may self-assemble in a symbiotic-like fashion. In this article we present an extension of previous work on the single threaded, single machine EVM architecture for use in global distributed environments. This paper presents a description of the extended Evolvable Virtual Machine (EVM) computational model, that can work in a global networked environment and provides the architecture for asynchronous massively parallel processing. The new computational environment is presented and followed with a discussion of experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nowostawski, M., Epiney, L., Purvis, M.: Self-Adaptation and Dynamic Environment Experiments with Evolvable Virtual Machines. In: Brueckner, S.A., Serugendo, G.D.M., Hales, D., Zambonelli, F. (eds.) ESOA 2005. LNAI (LNCS), vol. 3910, pp. 46–60. Springer, Berlin Heidelberg New York (2006)

    Chapter  Google Scholar 

  2. Bush, V.: As we may think. The Atlantic Monthly (1945), http://www.theatlantic.com/doc/194507/bush

  3. Nelson, T.H.: A file structure for the complex, the changing and the indeterminate. In: Proceedings of the ACM 20th National Conference, Cleveland, OH, pp. 84–100. ACM Press, New York (1965)

    Google Scholar 

  4. Nowostawski, M., Purvis, M., Cranefield, S.: An architecture for self-organising Evolvable Virtual Machines. In: Brueckner, S.A., Serugendo, G.D.M., Karageorgos, A., Nagpal, R. (eds.) Engineering Self-Organising Systems. LNCS (LNAI), vol. 3464, Springer, Heidelberg (2005)

    Google Scholar 

  5. Eigen, M., Schuster, P.: The Hypercycle: A Principle of Natural Self-Organization. Springer, Heidelberg (1979)

    Google Scholar 

  6. Wright, S.: Evolution in mendelian populations. Genetics 16(3), 97–159 (1931)

    Google Scholar 

  7. Margulis, L.: Origin of Eukaryotic Cells. University Press, New Haven (1970)

    Google Scholar 

  8. Margulis, L.: Symbiosis in Cell Evolution. Freeman & Co., San Francisco (1981)

    Google Scholar 

  9. Mereschkowsky, K.S.: Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol. Zentralbl. 25, 593–604 (1905)

    Google Scholar 

  10. Wallin, I.: Symbionticism and the Origin of Species. Williams&Wilkins, Baltimore (1927)

    Google Scholar 

  11. Gupta, R.S., Golding, G.B.: The origin of the eukaryotic cell. Trends in Biochemical Sciences 21(10), 166–171 (1996)

    Article  Google Scholar 

  12. Margulis, L., Sagan, D.: Microcosmos: Four Billion Years of Evolution from Our Microbial Ancestors. Summit Books, New York (1986)

    Google Scholar 

  13. Bray, D.A., Lewis, J., Raff, M., Roberts, K., Watson, J.D.: Molecular biology of the cell, 3rd edn. Garland Publishing, New York (1994)

    Google Scholar 

  14. Schmidhuber, J.: A general method for incremental self-improvement and multiagent learning. In: Yao, X. (ed.) Evolutionary Computation: Theory and Applications, pp. 81–123. Scientific Publishers Co., Singapore (1999)

    Google Scholar 

  15. Vose, M.D.: The Simple Genetic Algorithm: Foundations and Theory. In: A Bradford Book, MIT Press, Cambridge (1999)

    Google Scholar 

  16. Kugel, P.: Thinking may be more than computing. Cognition 18, 128–149 (1986)

    Google Scholar 

  17. Sipper, M.: The emergence of cellular computing, vol. 32(7), pp. 18–26. IEEE Computer, Los Alamitos (1999)

    Google Scholar 

  18. Wolfram, S.: Universality and complexity in cellular automata. Physica D 10, 1–35 (1984)

    Article  MathSciNet  Google Scholar 

  19. Teuscher, C.: Information processing in cells and tissues. BioSystems 76, 3–5 (2004)

    Article  Google Scholar 

  20. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, Oxford (2000)

    Google Scholar 

  21. Schmidhuber, J.: Environment-independent reinforcement acceleration. Technical Note IDSIA-59-95, IDSIA, Lugano (1995)

    Google Scholar 

  22. Baxter, J.: A model of inductive bias learning. Journal of Artificial Intelligence Research 12, 149–198 (2000)

    MATH  MathSciNet  Google Scholar 

  23. Caruana, R.: Multitask learning. In: Machine Learning, vol. 28, pp. 41–75. Kluwer Academic Publishers, Dordrecht (1997)

    Google Scholar 

  24. Thrun, S.: Is learning the n-th thing any easier than learning the first? In: Touretzky, D., Mozer, M. (eds.) Advances in Neural Information Processing Systems, vol. 8, pp. 640–646. MIT Press, Cambridge (1996)

    Google Scholar 

  25. Thom, R.: Structural stability and morphogenesis. Addison Wesley, New York (1975)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sven A. Brueckner Salima Hassas Márk Jelasity Daniel Yamins

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Nowostawski, M., Purvis, M. (2007). Evolution and Hypercomputing in Global Distributed Evolvable Virtual Machines Environment. In: Brueckner, S.A., Hassas, S., Jelasity, M., Yamins, D. (eds) Engineering Self-Organising Systems. ESOA 2006. Lecture Notes in Computer Science(), vol 4335. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69868-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69868-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69867-8

  • Online ISBN: 978-3-540-69868-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics