Skip to main content

d(Tree)-by-dx: Automatic and Exact Differentiation of Genetic Programming Trees

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2019)

Abstract

Genetic programming (GP) has developed to the point where it is a credible candidate for the ‘black box’ modeling of real systems. Wider application, however, could greatly benefit from its seamless embedding in conventional optimization schemes, which are most efficiently carried out using gradient-based methods. This paper describes the development of a method to automatically differentiate GP trees using a series of tree transformation rules; the resulting method can be applied an unlimited number of times to obtain higher derivatives of the function approximated by the original, trained GP tree. We demonstrate the utility of our method using a number of illustrative gradient-based optimizations that embed GP models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We have used NLopt version 2.5 downloadable from https://github.com/stevengj/nlopt/archive/v2.5.0.tar.gz.

References

  1. Bartholomew-Biggs, M.C., Brown, S., Christianson, B., Dixon, L.C.W.: Automatic differentiation of algorithms. J. Comput. Appl. Math. 124, 171–190 (2000). https://doi.org/10.1016/S0377-0427(00)00422-2

    Article  MathSciNet  MATH  Google Scholar 

  2. Baydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J.M.: Automatic differentiation in machine learning: a survey. J. Mach. Learn. Res. 18(1), 5595–5637 (2017). http://jmlr.org/papers/v18/17-468.html

    MathSciNet  MATH  Google Scholar 

  3. Camacho, E.F., Bordons, C.: Model Predictive Control, 2nd edn. Springer, London (2004)

    MATH  Google Scholar 

  4. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization. Society for Industrial and Applied Mathematics (2009). https://doi.org/10.1137/1.9780898718768

  5. Gandomi, A.H., Alavi, A.H., Ryan, C. (eds.): Handbook of Genetic Programming Applications. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20883-1

    Book  Google Scholar 

  6. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, Reading (1989)

    MATH  Google Scholar 

  7. Hock, W., Schittkowski, K.: Test Examples for Nonlinear Programming Codes. Lecture Notes in Economics and Mathematical Systems, vol. 187. Springer, Heidelberg (1981). https://doi.org/10.1007/978-3-642-48320-2

    Book  MATH  Google Scholar 

  8. Izzo, D., Biscani, F., Mereta, A.: Differentiable genetic programming. In: 20th European Conference (EuroGP 2017), Amsterdam, The Netherlands, pp. 35–51 (2017). https://doi.org/10.1007/978-3-319-55696-3_3

    Google Scholar 

  9. Johnson, S.G.: The NLopt nonlinear-optimization package (2019). http://ab-initio.mit.edu/nlopt

  10. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scaling. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36599-0_7

    Chapter  Google Scholar 

  11. Kraft, D.: Algorithm 733: TOMP-Fortran modules for optimal control calculations. ACM Trans. Math. Softw. 20(3), 262–281 (1994). https://doi.org/10.1145/192115.192124

    Article  MathSciNet  MATH  Google Scholar 

  12. Mousavi Astarabadi, S.S., Ebadzadeh, M.M.: Avoiding overfitting in symbolic regression using the first order derivative of GP trees. In: Genetic and Evolutionary Computation Conference (GECCO Companion 2015), Madrid, Spain, pp. 1441–1442, 11–15 July 2015. https://doi.org/10.1145/2739482.2764662

  13. Ni, J., Drieberg, R.H., Rockett, P.I.: The use of an analytic quotient operator in genetic programming. IEEE Trans. Evol. Comput. 17(1), 146–152 (2013). https://doi.org/10.1109/TEVC.2012.2195319

    Article  Google Scholar 

  14. Rockett, P., Hathway, E.A.: Model-predictive control for non-domestic buildings: critical review and prospects. Build. Res. Inform. 45(5), 556–571 (2017). https://doi.org/10.1080/09613218.2016.1139885

    Article  Google Scholar 

  15. Rudin, W.: Principles of Mathematical Analysis. McGraw-Hill, New York (1976)

    MATH  Google Scholar 

  16. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006). https://doi.org/10.1007/s10107-004-0559-y

    Article  MathSciNet  MATH  Google Scholar 

  17. Waltz, R.A., Morales, J.L., Nocedal, J., Orban, D.: An interior algorithm for nonlinear optimization that combines line search and trust region steps. Math. Program. 107(3), 391–408 (2006). https://doi.org/10.1007/s10107-004-0560-5

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge supported by the UK Engineering and Physical Sciences Research Council (EPSRC) under grant EP/N022351/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Rockett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rockett, P., Lopes, Y.K., Dou, T., Hathway, E.A. (2019). d(Tree)-by-dx: Automatic and Exact Differentiation of Genetic Programming Trees. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2019. Lecture Notes in Computer Science(), vol 11734. Springer, Cham. https://doi.org/10.1007/978-3-030-29859-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29859-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29858-6

  • Online ISBN: 978-3-030-29859-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics