Skip to main content

Using Grammar-Based Genetic Programming for Mining Disjointness Axioms Involving Complex Class Expressions

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12277))

Abstract

In the context of the Semantic Web, learning implicit knowledge in terms of axioms from Linked Open Data has been the object of much current research. In this paper, we propose a method based on grammar-based genetic programming to automatically discover disjointness axioms between concepts from the Web of Data. A training-testing model is also implemented to overcome the lack of benchmarks and comparable research. The acquisition of axioms is performed on a small sample of DBpedia with the help of a Grammatical Evolution algorithm. The accuracy evaluation of mined axioms is carried out on the whole DBpedia. Experimental results show that the proposed method gives high accuracy in mining class disjointness axioms involving complex expressions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www.w3.org/TR/owl2-syntax/#Disjoint_Classes.

  2. 2.

    Available for download at http://bit.ly/2OtFqHp.

  3. 3.

    https://virtuoso.openlinksw.com/.

  4. 4.

    http://bit.ly/32YEQH1.

  5. 5.

    https://wiki.dbpedia.org/.

References

  1. Guarino, N., Oberle, D., Staab, S.: What is an ontology? In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. IHIS, pp. 1–17. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-92673-3_0

    Chapter  Google Scholar 

  2. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing? Int. J. Hum. Comput. Stud. 43(5–6), 907–928 (1995)

    Article  Google Scholar 

  3. Zhu, M.: DC proposal: ontology learning from noisy linked data. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7032, pp. 373–380. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25093-4_31

    Chapter  Google Scholar 

  4. Völker, J., Vrandečić, D., Sure, Y., Hotho, A.: Learning disjointness. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 175–189. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72667-8_14

    Chapter  Google Scholar 

  5. Völker, J., Fleischhacker, D., Stuckenschmidt, H.: Automatic acquisition of class disjointness. J. Web Semant. 35, 124–139 (2015)

    Article  Google Scholar 

  6. Lehmann, J.: Dl-learner: learning concepts in description logics. J. Mach. Learn. Res. 10, 2639–2642 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Reynaud, J., Toussaint, Y., Napoli, A.: Redescription mining for learning definitions and disjointness axioms in linked open data. In: Endres, D., Alam, M., Şotropa, D. (eds.) ICCS 2019. LNCS (LNAI), vol. 11530, pp. 175–189. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23182-8_13

    Chapter  Google Scholar 

  8. Rizzo, G., d’Amato, C., Fanizzi, N., Esposito, F.: Terminological cluster trees for disjointness axiom discovery. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 184–201. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58068-5_12

    Chapter  Google Scholar 

  9. Nguyen, T.H., Tettamanzi, A.G.B.: Learning class disjointness axioms using grammatical evolution. In: Sekanina, L., Hu, T., Lourenço, N., Richter, H., García-Sánchez, P. (eds.) EuroGP 2019. LNCS, vol. 11451, pp. 278–294. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16670-0_18

    Chapter  Google Scholar 

  10. Nguyen, T.H., Tettamanzi, A.G.B.: An evolutionary approach to class disjointness axiom discovery. In: WI, pp. 68–75. ACM (2019)

    Google Scholar 

  11. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  12. Vanneschi, L., Poli, R.: Genetic programming – introduction, applications, theory and open issues. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing, pp. 709–739. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-540-92910-9_24

    Chapter  Google Scholar 

  13. O’Neill, M., Ryan, C.: Grammatical evolution. Trans. Evol. Comput. 5(4), 349–358 (2001). https://doi.org/10.1109/4235.942529

    Article  Google Scholar 

  14. Tettamanzi, A.G.B., Faron-Zucker, C., Gandon, F.: Possibilistic testing of OWL axioms against RDF data. Int. J. Approx. Reason. 91, 114–130 (2017)

    Article  MathSciNet  Google Scholar 

  15. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)

    Article  MathSciNet  Google Scholar 

  16. De Luca, A., Termini, S.: A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory. Inf. Control 20, 301–312 (1972)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work has been supported by the French government, through the 3IA Côte d’Azur “Investments in the Future” project managed by the National Research Agency (ANR) with the reference number ANR-19-P3IA-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thu Huong Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, T.H., Tettamanzi, A.G.B. (2020). Using Grammar-Based Genetic Programming for Mining Disjointness Axioms Involving Complex Class Expressions. In: Alam, M., Braun, T., Yun, B. (eds) Ontologies and Concepts in Mind and Machine. ICCS 2020. Lecture Notes in Computer Science(), vol 12277. Springer, Cham. https://doi.org/10.1007/978-3-030-57855-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57855-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57854-1

  • Online ISBN: 978-3-030-57855-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics