Skip to main content

Towards Discrete Phenotypic Recombination in Cartesian Genetic Programming

  • Conference paper
  • First Online:
  • 849 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13399))

Abstract

The tree-based representation model of Genetic Programming (GP) is largely used with subtree crossover for genetic variation. Unlike Cartesian Genetic Programming (CGP) which is commonly used merely with mutation. Compared to comprehensive knowledge about recombination in the field of tree-based GP, the state of knowledge in CGP appears to be comparatively poor. Even if CGP was officially introduced over twenty years ago, the role of recombination in CGP has been recently considered an open issue. Several promising steps have been taken in recent years, but more research is needed to develop towards a more comprehensive and holistic perspective on crossover in CGP. In this work, we propose a phenotypic variation method for discrete recombination in CGP. We compare our method to the traditional mutation-only CGP approach on a set of well-known symbolic regression problems. The initial results presented in this work demonstrate that the use of our proposed discrete recombination method performs significantly better than the traditional mutation-only approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/GMUEClab/ecj.

References

  1. Bäck, T., Hoffmeister, F., Schwefel, H.: A survey of evolution strategies. In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the 4th International Conference on Genetic Algorithms, San Diego, CA, USA, July 1991, pp. 2–9. Morgan Kaufmann (1991)

    Google Scholar 

  2. Beyer, H., Schwefel, H.: Evolution strategies - a comprehensive introduction. Nat. Comput. 1(1), 3–52 (2002). https://doi.org/10.1023/A:1015059928466

  3. Clegg, J., Walker, J.A., Miller, J.F.: A new crossover technique for cartesian genetic programming. In: Thierens, D., et al. (eds.) Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO 2007, London, 7–11 July 2007, vol. 2, pp. 1580–1587. ACM Press (2017). https://doi.org/10.1145/1276958.1277276. http://www.cs.bham.ac.uk/~wbl/biblio/gecco2007/docs/p1580.pdf

  4. De Jong, K., Spears, W.: On the virtues of parameterized uniform crossover. In: Proceedings of the 4th International Conference on Genetic Algorithms, pp. 230–236. Morgan Kaufmann Publishers, San Mateo (1991)

    Google Scholar 

  5. Hrbacek, R., Dvorak, V.: Bent function synthesis by means of cartesian genetic programming. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 414–423. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-2_41

    Chapter  Google Scholar 

  6. Husa, J., Kalkreuth, R.: A comparative study on crossover in cartesian genetic programming. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., García-Sánchez, P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 203–219. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77553-1_13

    Chapter  Google Scholar 

  7. Husa, J., Sekanina, L.: Evolving cryptographic boolean functions with minimal multiplicative complexity. In: IEEE Congress on Evolutionary Computation, CEC 2020, Glasgow, United Kingdom, 19–24 July 2020, pp. 1–8. IEEE (2020). https://doi.org/10.1109/CEC48606.2020.9185517.

  8. Kalganova, T.: Evolutionary approach to design multiple-valued combinational circuits. In: Proceedings of the 4th International Conference on Applications of Computer Systems, ACS 1997, Szczecin, Poland, pp. 333–339 (1997)

    Google Scholar 

  9. Kalkreuth, R.: A comprehensive study on subgraph crossover in cartesian genetic programming. In: Guervós, J.J.M., Garibaldi, J.M., Wagner, C., Bäck, T., Madani, K., Warwick, K. (eds.) Proceedings of the 12th International Joint Conference on Computational Intelligence, IJCCI 2020, Budapest, Hungary, 2–4 November 2020, pp. 59–70. SCITEPRESS (2020). https://doi.org/10.5220/0010110700590070.

  10. Kalkreuth, R., Rudolph, G., Droschinsky, A.: A new subgraph crossover for cartesian genetic programming. In: McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., García-Sánchez, P. (eds.) EuroGP 2017. LNCS, vol. 10196, pp. 294–310. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55696-3_19

    Chapter  Google Scholar 

  11. Kalkreuth, R.T.: Reconsideration and Extension of Cartesian Genetic Programming. Ph.D. thesis (2021). https://doi.org/10.17877/DE290R-22504. http://dx.doi.org/10.17877/DE290R-22504

  12. Kaufmann, P., Kalkreuth, R.: An empirical study on the parametrization of cartesian genetic programming. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2017, pp. 231–232. ACM, New York (2017). https://doi.org/10.1145/3067695.3075980. http://doi.acm.org/10.1145/3067695.3075980

  13. McDermott, J., et al.: Genetic programming needs better benchmarks. In: Proceedings of the 14th International Conference on Genetic and Evolutionary Computation Conference, GECCO 2012, Philadelphia, Pennsylvania, USA, 7–11 July 2012, pp. 791–798. ACM (2012). https://doi.org/10.1145/2330163.2330273

  14. Miller, J.F., Thomson, P., Fogarty, T.: Designing electronic circuits using evolutionary algorithms. arithmetic circuits: a case study. In: Genetic Algorithms and Evolution Strategies in Engineering and Computer Science, pp. 105–131. Wiley (1997)

    Google Scholar 

  15. Miller, J.F.: An empirical study of the efficiency of learning boolean functions using a cartesian genetic programming approach. In: Banzhaf, W., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, 13–17 July 1999, vol. 2, pp. 1135–1142. Morgan Kaufmann (1999). http://citeseer.ist.psu.edu/153431.html

  16. Miller, J.F., Wilson, D.G., Cussat-Blanc, S.: Evolving programs to build artificial neural networks. In: Adamatzky, A., Kendon, V. (eds.) From Astrophysics to Unconventional Computation. ECC, vol. 35, pp. 23–71. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-15792-0_2

    Chapter  Google Scholar 

  17. Miller, J.F.: Cartesian genetic programming: its status and future. Genet. Program. Evolvable Mach. 21(1), 129–168 (2020). https://doi.org/10.1007/s10710-019-09360-6

  18. Poli, R., Langdon, W.B.: On the ability to search the space of programs of standard, one-point and uniform crossover in genetic programming. Technical report CSRP-98-7, University of Birmingham, School of Computer Science (January 1998). ftp://ftp.cs.bham.ac.uk/pub/tech-reports/1998/CSRP-98-07.ps.gz. Presented at GP-98

  19. Poli, R., Langdon, W.B.: On the search properties of different crossover operators in genetic programming. In: Koza, J.R., et al. (eds.) Genetic Programming 1998: Proceedings of the 3rd Annual Conference, University of Wisconsin, Madison, Wisconsin, USA, 22–25 July 1998, pp. 293–301. Morgan Kaufmann (1998). http://www.cs.essex.ac.uk/staff/poli/papers/Poli-GP1998.pdf

  20. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Dr.-Ing. Ph.D. thesis, Thesis, Technical University of Berlin, Department of Process Engineering (1971)

    Google Scholar 

  21. Rechenberg, I.: Evolutionsstrategie Optimierung technischer Systeme nach Prinzipien der biologishen Evolution. Frommann Holzboog Verlag, Stuttgart (1973)

    Google Scholar 

  22. Rudolph, G.: Global optimization by means of distributed evolution strategies. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 209–213. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0029754

    Chapter  Google Scholar 

  23. Schwefel, H.P.: Evolutionsstrategien für die numerische Optimierung, pp. 123–176. Birkhäuser Basel, Basel (1977). https://doi.org/10.1007/978-3-0348-5927-1_5

  24. Schwefel, H.P.: Numerical Optimization of Computer Models. Wiley, USA (1981)

    MATH  Google Scholar 

  25. Scott, E.O., Luke, S.: ECJ at 20: toward a general metaheuristics toolkit. In: López-Ibáñez, M., Auger, A., Stützle, T. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2019, Prague, Czech Republic, 13–17 July 2019, pp. 1391–1398. ACM (2019). https://doi.org/10.1145/3319619.3326865

  26. Sekanina, L., Walker, J.A., Kaufmann, P., Platzner, M.: Evolution of electronic circuits. In: Miller, J.F. (ed.) Cartesian Genetic Programming. Natural Computing Series, pp. 125–179. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17310-3_5

  27. da Silva, J.E.H., Bernardino, H.: Cartesian genetic programming with crossover for designing combinational logic circuits. In: 7th Brazilian Conference on Intelligent Systems, BRACIS 2018, São Paulo, Brazil, 22–25 October 2018, pp. 145–150. IEEE Computer Society (2018). https://doi.org/10.1109/BRACIS.2018.00033

  28. Suganuma, M., Kobayashi, M., Shirakawa, S., Nagao, T.: Evolution of deep convolutional neural networks using cartesian genetic programming. Evol. Comput. 28(1), 141–163 (2020). https://doi.org/10.1162/evco_a_00253

  29. Syswerda, G.: Uniform crossover in genetic algorithms. In: Schaffer, J.D. (ed.) Proceedings of the 3rd International Conference on Genetic Algorithms, George Mason University, Fairfax, Virginia, USA, June 1989, pp. 2–9. Morgan Kaufmann (1989)

    Google Scholar 

  30. Turner, A.J.: Improving crossover techniques in a genetic program. Master’s thesis, Department of Electronics, University of York (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Kalkreuth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kalkreuth, R. (2022). Towards Discrete Phenotypic Recombination in Cartesian Genetic Programming. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds) Parallel Problem Solving from Nature – PPSN XVII. PPSN 2022. Lecture Notes in Computer Science, vol 13399. Springer, Cham. https://doi.org/10.1007/978-3-031-14721-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14721-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14720-3

  • Online ISBN: 978-3-031-14721-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics