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Abstract: Among the most important characteristics of autonomous vehicles are the safety and
robustness in various traffic situations and road conditions. In this paper, we focus on the development
and analysis of the extended version of the canonical proportional-derivative PD controllers that are
known to provide a good quality of steering on non-slippery (dry) roads. However, on slippery roads,
due to the poor yaw controllability of the vehicle (suffering from understeering and oversteering),
the quality of control of such controllers deteriorates. The proposed predicted PD controller (PPD
controller) overcomes the main drawback of PD controllers, namely, the reactiveness of their steering
behavior. The latter implies that steering output is a direct result of the currently perceived lateral-
and angular deviation of the vehicle from its intended, ideal trajectory, which is the center of the
lane. This reactiveness, combined with the tardiness of the yaw control of the vehicle on slippery
roads, results in a significant lag in the control loop that could not be compensated completely by
the predictive (derivative) component of these controllers. In our approach, keeping the controller
efforts at the same level as in PD controllers by avoiding (i) complex computations and (ii) adding
additional variables, the PPD controller shows better quality of steering than that of the evolved (via
genetic programming) models.

Keywords: autonomous vehicles; automated steering; slippery road conditions; PD controllers;
predictive model

1. Introduction

Essentially every year, the demand for autonomously controlled road motor vehicles (hereafter
referred to as cars) is rising, and now they could be used both as a taxi [1] or as personal cars.
Consequently, the demand for precise control models that provide the safest and fastest transit of the
passengers to their destinations is growing. Hereinafter, we consider a control model to be a control
feedback mechanism, the description of which we will provide in the following sections. Among the
main aspects of such models, the automated control of steering of the car is achieved by continuously
adjusting the steering angle of the front wheels of the car. At the moment, the PD controllers are
among the most widely used for the steering control of autonomous cars [2,3]. Despite being generally
effective under the ordinary dry road conditions and simple to implement, these controllers suffer from
several drawbacks. One of them is that, due to the simplicity of structure and low number of variables,
they cannot properly cooperate with the physics of the vehicle in the case of a slippery road [2]. When
humans drive the car, we dynamically adapt our steering behavior depending on the features of the
car (e.g., length, width, mass,) and the road conditions (dry, wet, snowy, etc.) in a way that is difficult
to mimic in both PD and PID controllers due to their hard structure with a small number of variables.
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In addition, the reactivity of these controllers implies that the steering output is a direct result of the
currently perceived lateral- and angular deviation of the car from its intended, ideal trajectory. For
convenience, here, as in previous studies, we consider the middle of the lane to be the desired ideal
trajectory. Because these deviations are used as an error in the error-correcting, feedback control of
the steering of the car, the required non-zero value of the error during cornering would result in a
trajectory of the car that is always offset to the “outside” of the corner. Consequently, if the turning
is initiated as an obstacle-avoiding maneuver, the car will inevitably circumnavigate the obstacle at
a distance that is always lower than that of the intended, ideal trajectory, which, in turn, leads to an
increased risk of a collision with the obstacle. Moreover, the reactiveness, combined with the tardiness
of the yaw control of the car on slippery roads (as a result of the significant reduction of the steering
forces—due to the reduced friction coefficient between the tires and the road—that have to overcome
the given non-zero yaw moment of inertia of the car) results in a significant lag in the control loop that
could not be compensated completely by the predictive (derivative) component of these controllers.

Another challenge of adopting the PD and PID controllers is finding the optimal values of the
scaling coefficients of these controllers for the particular road conditions. The optimization of these
parameters by human experts often requires extensive knowledge in both the control theory and vehicle
dynamics. Automated tuning of the parameters, on the other hand, might require applying heuristic
approaches that are notorious with their long runtime even when using a significant computational
power [4,5].

In order to address the above-mentioned challenges of the canonical PD controllers, in which
the control output is calculated as a weighted sum of the control errors and their derivatives, in our
previous research we proposed a PID steering controller featuring an arbitrary (rather than an additive)
internal structure, developed heuristically via genetic programming [6].

Another approach to improve the PD controller is adding prediction mechanics. Predictive
models were already widely used in application to autonomous vehicles [7] for non-slippery road
conditions. One of the most widely used methods is the Model Predictive Control (MPC) [8] and
its modifications [9,10]. This method, however, features some drawbacks, which would hinder its
applicability to the considered application. One of them is the computational overhead associated
with (i) the need to predict too far ahead and (ii) the significant complexity of the predictive model
(which would be even greater in slippery road conditions due to the complex nature of the vehicle
dynamics of the sliding car).

In this work, we modified the original PD controller by replacing one of the terms with its predicted
value. We tried to compensate for the drawbacks of the controller by avoiding (i) adding additional
variables and (ii) modifying the structure of the controller that would increase the controller effort.
Rather, by using the predicted (instead of the current) value of just one perceived variable, pertinent
to the state of the car—the lateral deviation from the center of the road—we demonstrated that the
quality of steering of the car on slippery roads could be significantly improved with the same set of
perception information of the controller; yet, assuming the availability of the map of the road ahead.

The remainder of this paper is organized as follows. Section 2 explains the materials and methods
of our research. In Section 3, we present the experimental results. Section 4 discusses the experimental
results, and Section 5 draws a conclusion.

2. Materials and Methods

2.1. Environment and the Car Simulator TORCS

In this work, TORCS [7] was employed to perform a simulation of the experiments. This tool
provides an accurate simulation of both the physics environment and mechanics of a car (engine, etc.).
For the experiments, a racing model of a rear-wheel-drive car of the Mercedes brand was used, and a
list of its parameters is shown in Table 1 below, and Figure 1 shows its view during the races.
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Table 1. Main parameters of the simulated car.

Feature Value

Model CLK DTM
Length, m 4.76
Width, m 1.96
Height, m 1.17
Mass, kg 1050

Front/rear weight repartition 0.5/0.5
Height of center of gravity, m 0.25
Coefficient of friction of tires 1.0

Drivetrain Front engine, rear wheels drive
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Figure 1. Snapshots of the simulated car.

As we mentioned earlier [6], the choice of TORCS over different alternatives as a simulator in
our experiments was also determined by its computational efficiency, safety, and the availability of its
source code.

2.2. The Track

In our experiments, a route called a “fish hook” was constructed (Figure 2). Its length is only
300 m, but its shape contains a straight line, a sharp transition to the left turn, and a long right turn
afterward. Such a track belongs to a difficult type of tracks for a human driver.
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Figure 2. Hook-type test track.

Usually, during the first section of the route—straight—the driver accelerates and, at the maximum
speed, begins the passage of the turn. The peculiarity of this rotation is that it does not contain a
transition spiral curve part between the straight and the rotation sections. A spiral curve is a geometric
element that can be added to a regular curve and provides a gradual transition (red part in Figure 3)
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from movement in a straight line (blue part in Figure 3) to movement along a circle (green part in
Figure 3).
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Figure 3. Rotation curve. The transition between the straight part (blue) and circular part (green) is a
spiral curve (red). Picture is taken from https://cifrasyteclas.com/clotoide-la-curva-que-vela-por-tu-
seguridad-en-carreteras-y-ferrocarriles/.

A sharp transition from a straight line to a turn results in stability losses, which, if the track
is slippery, may cause an accident. The spiral provides a transition zone, where the driver slowly
turns the steering wheel, lateral acceleration slowly increases when entering the spiral or slowly
decreases when exiting the spiral and stability is not lost. Such spiral transitions were originally
introduced on the railways for safety reasons. They were also implemented on highways in recent
years. The mathematical form of the spiral varies [8]. One of the common forms is the Euler or
clothoid spiral [9]. In India, the usual transition curve is a hyperbole third-order, and in Germany,
autobahns are designed as a continuous series of linked clothoids without tangential sections or circular
curves [10]. In the proposed study, the track did not have such transitions. We did this in order to
achieve maximum generalization.

In our set of experiments, we did a car runs on the flat road without height changes. Parameters of
the track are shown in Table 2. Also, for the experiments, we varied three types of slippery conditions
and friction µ between the tires of the car and the surface of the track: rain (µ = 0.5), rain and snow
(µ = 0.3), and ice (µ = 0.1).

Table 2. Main features of the test track.

Feature Value

Total length, m 300
Lane width, m 20

Length of sector 1, m 90
Radius of turn 1, R1 m 50
Length of sector 2, m 210

Radius of turn 2, R2, m 50

2.3. Servo Control as a PD Controller

In our earlier studies, we showed that the canonical well-known servo control (Figure 4) is a
variation of the PD controller. To avoid repetition, we give here only the main statements; the details
can be found in our paper [6].

https://cifrasyteclas.com/clotoide-la-curva-que-vela-por-tu-seguridad-en-carreteras-y-ferrocarriles/
https://cifrasyteclas.com/clotoide-la-curva-que-vela-por-tu-seguridad-en-carreteras-y-ferrocarriles/
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Figure 4. Servo-control model of steering as a PD steering controller. The steering angle function (SAF),
defining the steering angle δ is implemented as a sum of the proportional-(P) and derivative (D) terms
of the error—the deviation e from the center of the lane.

The steering angle defined by this model is a linear combination of scalable deviation from the
desired trajectory parameters—the distance e and angle θ shown in Figure 5. The SAF (steering angle
function) of the servo control model could be expressed as the following Equation (1):

δ = k1 e + k2 θ (1)

where δ is the steering angle, and the optimal values of the scaling coefficients (gains) k1 and k2 have
an impact to the main requirements to the steering [11]—smoothness, fast response, and stability in the
way the car returns to the center of the lane after it deviates from it. These parameters could be chosen
from the steering lock angle restrictions in 300 in different ways depending on the specific conditions
and features of the road [4].
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in the calculation of the steering angle δ according to the servo-control model.

For small angles θ and very short periods of time dt:

θ ≈ de⁄dx = de⁄(V dt) (2)
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For constant speed V, Equation (2) could be rewritten as:

θ ≈ kv de⁄dt = kv e’ (3)

Applying simple mathematical transformations, we can represent Equation (1) in the following
shape expressed the servo-control model of steering as a PD controller:

δ = k1 e + k2 (kv e’) = k1 e + k*2 e’ (4)

where e’ is the first derivative of the lateral deviation of the car from the center of the lane. From
the PD controller point of view, servo control model represents by itself a closed-loop system. The
input—measured process value is equal to the absolute value of the error e—the deviation of the car from
the center of the lane. Its output—the control variable—the steering angle δ, is a sum of the proportional
(P) and derivative (D) terms of the error. The controller attempts to minimize the value of the error
by constantly adjusting the steering angle δ, which, presumably, would yield a trajectory as close as
possible to the center of the lane.

2.4. Extending the Servo-Control Model: A PD Steering Controller with Prediction

The main common disadvantage of both PD controllers is lagging. It results in an even worse
effect on the slippery road. In addition, many real-world physics effects are not taken into account in
the controller equations. In practice, these disadvantages lead to the late entrance to the turn, attempts
to return to desired trajectory, oversteering and disadvantageous position at the start of second turn,
exiting, which could only result in consecutive course deviations, as demonstrated in Figure 6.
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Figure 6. Tracking of the center of the car on the track during the race with friction 0.1 and 1.05 VCR. In
the highest point of the trajectory, a crash was occurring.

While the second disadvantage was already addressed in previous research [6], we did not manage
to find sources regarding the first one.

The vehicle position could be predicted using current velocity (Figure 7; Figure 8):

δ = k1epredicted + k2θ (5)

where θ is the angle between the car direction and the road, and epredicted is the distance between the
predicted car center and the road calculated by the following Equations (5)–(9):

epredicted = F
(
xpredicted , ypredicted

)
(6)
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xpredicted = x0 + Vxt = x0 + Vt cosα (7)

ypredicted =y0 + Vyt = y0 + Vt sinα (8)

α = θ+ Aroad (9)
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Here, xpredicted and ypredicted are predicted coordinates of the position of the car, Aroad is the angle
of the road at the point that is closest to the car, F is the function calculating the distance between
the car and the center of the lane, V, Vx, is the speed of the car, and its two orthogonal components,
respectively, t. is the predicting time interval, and α is the angular deviation of the car from the center
of the lane.

This controller we called Predictive PD controller (PPD controller).
It seems natural to also predict the yaw angle. However, it was not performed in our experiments.

The reasons for this are not only atomicity of changes that facilitate development and analysis, but
the aspiration to achieve human-like behavior of professional and experienced drivers. In contrast
to the canonic controller, drivers often use the future position prediction for steering. According to
the research [12], having to deal with a lot of information, the human brain experiences cognitive
pressure with high speed, which results in a decrease of field of view. In such conditions, it has to
operate only the prediction of the position, not the yaw angle. On the other hand, such limitations of
human perception do not limit researches in the development of probably more precise models, which
predicts both parameters. Nevertheless, such investigations are left for further research and, here, we
were curious about how much a change of the value of one of the parameters will affect the quality of
driving. We elaborate on this in the discussion section of the paper.
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2.5. Steering Controller Obtained by Genetic Programming (GP)

To achieve a more thorough and complete analysis of the new controller, in this paper, we also
presented the results of experiments conducted with the previously obtained model with an extended
set of parameters and relaxed structure, evolved via a genetic programming (GP-RMEP) [6] method.

The GP approach allowed us to construct a controller of arbitrary complexity and structure, which
showed results significantly superior to the canonical PD controller [6]. It took a lot of time at the
stage of evolution to build a control equation that would demonstrate good results simultaneously in
different environmental conditions, but the resulting model showed good results in terms of vehicle
speed during the race and quality of the trajectory. However, as it turned out, this model also has its
drawbacks; in particular, it produces frequent oscillations of the steering wheel, which, in the long
term, can cause mechanical damage similar to what race cars get. Although this is not a critical flaw, it
encourages us to continue research in this area. To avoid self-repetition, we present here in Table 3
only its main parameters, while our previous work contains the details [6].

Table 3. Parameters of genetic programming (GP).

Parameter Value

Evolved individuals SAF δ

Genetic representation Parse tree

Set of non-terminals (functions) {+, −, *, /}

Set of terminals

Variables pertinent to the state of the car, and their derivatives:
lateral deviation (e, e’), speed (V), steering angle(δ), lateral
acceleration (a, a’) angular deviation (θ, θ’), and a random

constant (C)

Population size 200 individuals

Selection Binary tournament, ratio 0.1

Elitism Best 4 individuals

Crossover Single point, random, ratio 0.9

Mutation Single point, random, ratio 0.05

Fitness value Sum of (i) the area under the trajectory of the car around the
center of the lane and (ii) the average of its lateral velocity.

Termination criteria (#Generations > 200) or (no improvement of fitness during 16
consecutive generations)

2.6. Target Quality Function Evaluation

The target quality function value is intended to estimate the quality of the steering produced
by the obtained SAF. We defined the criteria of such a quality from the desired characteristics of
the trajectory of the car during the trial. It is simulated on a given test track (as shown in Figure 2)
featuring a given friction coefficient µ, as follows: first, the simulated car is initially positioned at the
starting position of the track. Then the car accelerates slowly to a given target speed. In order to render
the task of controlling the car challenging, but solvable, the target speed was constant (maintained
by simulated cruise control), and equal to 0.85, 0.9, and 0.95 of the critical speed VCR. The critical
speed VCR is the speed at which the car theoretically could pass the turns of the test track with the
given coefficient of friction without losing control, running off the track, and eventually crashing. This
speed is approximated as the speed at which the centrifugal forces during a steady-state cornering [13]
become theoretically equal to the friction force. At the traveling speed of 0.85 of VCR, the car inherently
suffers from intermittent instability (due to the yaw inertia both in the entry and exit of corners, and
due to dynamic lateral weight transfer in corners [3,7]) that we intend to counter by the use of the
obtained SAF. The car, traveling at VCR (or above) is theoretically uncontrollable. Consequently, there
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would be no existing SAF that results in a steerable car. Similarly, a car traveling considerably slower
than VCR does not suffer from any instability, and its steering could be accomplished adequately by
the canonical servo-control models. The speeds of the car during the trials on the track with different
friction coefficients are shown in Table 4.

Table 4. Speed of the car during the trial on the test track with different friction coefficients.

#Road
Condition

Friction of
Tires, µt

Friction of Road
Surface, µs

Overall Friction,
µ = µt × µs

Critical Speed,
VCR, m/s

Speed of the
Car

(0.85 VCR), m/s

Speed of the
Car (0.9 VCR),

m/s

Speed of the
Car

(0.95 VCR), m/s

1 1.0 0.5 (rainy) 0.5 15.65 13.3 14.2 15

2 1.0 0.3 (icy and
snowy) 0.3 14 10.4 11 11.6

1.0 0.1 (icy) 0.1 12.12 6 6.3 6.7

The speed of the car is kept constant during the trial by a simple, handcrafted cruise control
mechanism that maps the difference between the desired speed (e.g., as shown in Table 4, 13.3 m/s for
the trial on a track with friction coefficient µ = 0.5) and the actual one into an increment (or decrement)
of the position of accelerator pedal. As the car reaches the desired speed, the steering of the car is
assumed by the obtained SAF. Then, the latter starts to continuously (with a sampling frequency of 40
Hz) produce the desired steering angle δ calculated for the currently perceived values of the parameters
pertinent to the state of the car. The desired trajectory of the car is the center of the lane. The estimation
of the current trajectory obtained via the SAF with new parameters is calculated with the same target
quality function as earlier [4] with the purpose of a correct result comparison.

According to this, the target quality function F is a weighted sum of the following two components:
(i) the area AT under the trajectory of the car around the center of the lane (as an integral of the absolute
value of lateral deviation e) and (ii) the average of the lateral velocity VL_AVR (as an integral of the
lateral acceleration a) of the car:

F = AT + CV VL_AVR (10)

We would like to note that for different steering tasks, we might need to keep track of both
components of the target quality function of obtained SAF separately (and to implement a two-objective
optimization [14]) instead of fusing both these components in a single scalar value. This would allow
us to obtain a set of Pareto-optimal SAF that features different combinations of the area under the
trajectory of the car and the average of its lateral velocity. SAF featuring a wide area under the trajectory
might be needed in a slow and comfortable lane change on a low-traffic highway. On the other hand,
the SAF that results in oscillating trajectories with higher lateral accelerations might be needed to safely
circumnavigate suddenly appeared obstacles. However, for the given task, the proposed evaluation of
the target quality function is sufficient.

3. Experimental Results

For each road condition described in Table 4, we developed a new analytic equation and tested
them with different levels of target speed. We pick optimal parameters for a PD controller according to
algorithms in our previous work [6] to optimize its quality function and controller perception. So, we
ran simulations for predictive PD, best PD, and, constructed via genetic programming [7], GP-RMEP
controlling models. Algorithms were designed for the same track with the same conditions and the
same estimation quality function F, so we could compare them. Resulting car trajectories are presented
in Figure 9.



Algorithms 2020, 13, 48 10 of 17

Algorithms 2020, 13, x FOR PEER REVIEW  10 of 18 

  
(a) (b) 

 
(c) 

  
(d) (e) 

 
(f) 

0

50

100

150

200

0 100 200 300 400

Y 
co

or
di

na
te

, m

X coordinate, m

PD controller
PPD controller
GP-RMEP controller

0

50

100

150

200

0 100 200 300 400

Y 
co

or
di

na
te

, m

X coordinate, m

PD controller
PPD controller
GP-RMEP controller

0

50

100

150

200

0 100 200 300 400

Y 
co

or
di

na
te

, m

X coordinate

PD controller
PPD controller
GP-RMEP controller

0

50

100

150

200

0 100 200 300 400

Y 
co

or
di

na
te

, m

X coordinate, m

PD controller
PPD controller
GP-RMEP controller

0

50

100

150

200

0 100 200 300 400

Y 
co

or
di

na
te

, m

X coordinate, m

PD controller
PPD controller
GP-RMEP controller

0

50

100

150

200

0 100 200 300 400

Y 
co

or
di

na
te

, m

X coordinate, m

PD controller
PPD controller
GP-RMEP controller

Figure 9. Cont.



Algorithms 2020, 13, 48 11 of 17

Algorithms 2020, 13, x FOR PEER REVIEW  11 of 18 

  
(g) (h) 

 
(i) 

Figure 9. Car trajectories on the track tuned with prediction SAF of standard PD controller for 
friction coefficients. The purple curves correspond to the GP-RMEP controller, blue curves to the 
trajectories controlled by SAF with prediction, red curves to the original SAF. (a) 0.85 ,0.5 ߤ ௖ܸ௥; (b) 
 ,0.1 ߤ ௖ܸ௥; (g) 0.95 ,0.3 ߤ ௖ܸ௥; (f) 0.9 ,0.3 ߤ ௖ܸ௥; (e) 0.85 ,0.3 ߤ ௖ܸ௥; (d) 0.95 ,0.5 ߤ ௖ܸ௥; (c) 0.9 ,0.5 ߤ
0.85 ௖ܸ௥; (h) 0.9 ,0.1 ߤ ௖ܸ௥; (i) 0.95 ,0.1= ߤ ௖ܸ௥. 

As Figure 9 illustrates, under each road condition, the trajectory provided by the PD controller 
version with prediction was better (i.e., closer to the center of the lane). In Figure 10, the changes of 
steering angle for parameters ߤ = 0.3, 0.95 ௖ܸ௥  is shown. It could be noted that the new controller 
provides smooth steering, similar to the PD controller but with lower amplitude. This characteristic 
also corresponds to driving stability. We analyzed the smoothness of each function as a number of 
sign changes in the approximate first derivative: ݀ = ߪ∆ 

ൗݐ∆ . The results were as follows: 
GP-RMEP—349 changes, PD controller—218 changes, PPD controller—98 changes. This PPD 
controller is more stable than PD and has lower angle change amplitudes. As for comparison with 
the GP method, the high frequency of oscillations makes them less influencing but exhausts the tires 
and mechanical parts of the steering. We compared their target quality function values, and the 
results are shown in Table 5. 

 
Figure 10. Dynamics of the steering angle for different types of controllers—the controller input is 
ߤ = 0.3, 0.95 ௖ܸ௥. 

0

50

100

150

200

0 100 200 300 400

Yc
oo

rd
in

at
e,

 m

X coordinate, m

PD controller
PPD controller
GP-RMEP controller

0

50

100

150

200

0 100 200 300 400

Yc
oo

rd
in

at
e,

 m

X coordinate, m

PD controller
PPD controller
GP-RMEP controller

0

50

100

150

200

0 100 200 300 400

Yc
oo

rd
in

at
e,

 m

X coordinate, m

PD controller
PPD controller
GP-RMEP controller

-0.4

-0.2

0

0.2

0.4

0.
0

1.
1

2.
3

3.
5

4.
8

6.
0

7.
2

8.
4

9.
5

10
.7

11
.8

12
.9

14
.0

15
.1

16
.3

17
.5

18
.7

20
.0

21
.2

22
.4

23
.7

24
.9

A
ng

le
, r

ad

Time, second

GP-RMEP controller
PD controller
PPD controller

Figure 9. Car trajectories on the track tuned with prediction SAF of standard PD controller for friction
coefficients. The purple curves correspond to the GP-RMEP controller, blue curves to the trajectories
controlled by SAF with prediction, red curves to the original SAF. (a) µ 0.5, 0.85 Vcr; (b) µ 0.5, 0.9 Vcr;
(c) µ 0.5, 0.95 Vcr; (d) µ 0.3, 0.85 Vcr; (e) µ 0.3, 0.9 Vcr; (f) µ 0.3, 0.95 Vcr; (g) µ 0.1, 0.85 Vcr; (h) µ 0.1, 0.9
Vcr; (i) µ =0.1, 0.95 Vcr.

As Figure 9 illustrates, under each road condition, the trajectory provided by the PD controller
version with prediction was better (i.e., closer to the center of the lane). In Figure 10, the changes of
steering angle for parameters µ = 0.3, 0.95Vcr is shown. It could be noted that the new controller
provides smooth steering, similar to the PD controller but with lower amplitude. This characteristic
also corresponds to driving stability. We analyzed the smoothness of each function as a number of sign
changes in the approximate first derivative: d = ∆σ

∆t . The results were as follows: GP-RMEP—349
changes, PD controller—218 changes, PPD controller—98 changes. This PPD controller is more stable
than PD and has lower angle change amplitudes. As for comparison with the GP method, the high
frequency of oscillations makes them less influencing but exhausts the tires and mechanical parts of
the steering. We compared their target quality function values, and the results are shown in Table 5.
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Figure 10. Dynamics of the steering angle for different types of controllers—the controller input is
µ = 0.3, 0.95Vcr.
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Table 5. Steering controllers target quality function for each parameter combination.

#Road
Condition

Overall
Friction µ

0.85 of Critical 0.9 of Critical 0.95 of Critical

PD PPD GP-RMEP PD PPD GP-RMEP PD PPD GP-RMEP

1 0.5 685 298 373 711 334 318 843 364 385
2 0.3 1693 383 374 1801 417 399 1854 458 413
3 0.1 1659 408 381 1717 432 420 1782 471 461

As the results shown in Table 5 demonstrate, the PPD controller outperforms the PD and is
comparable with the GP-RMEP controller in terms of target quality function. Thus, the new controller
has a trajectory close to the best trajectory obtained with the GP controller but does not have oscillations
that could lead to mechanical damage [15]. Since, according to our earlier studies [6,13], oscillations in
the GP-RMEP method are part of its tactics aimed at increasing and maintaining the largest slip angle
on tires and, accordingly, cannot be removed from the method without reducing the speed and safety
of the car, the result we obtained, which is close in quality to GP-RMEP and free from oscillations, is an
important result for us.

Also during the analysis of the proposed model, we discovered several features, as described below.

3.1. Time Needed to Return on Desired Trajectory

The first feature is a more rapid return to the center lane. As shown in Table 6, in each considered
case, the time needed to return on the desired trajectory decreased by 4% to 11%, which corresponds to
10-20 m of movement with speeds from Table 4 and could be crucial for safety.

Table 6. Times needed to return to the lane center, second.

#Road
Condition

Overall
Friction µ

0.85 of Critical 0.9 of Critical 0.95 of Critical

PD PPD GP-RMEP PD PPD GP-RMEP PD PPD GP-RMEP

1 0.5 14.72 13.71 14.18 14.56 13.57 12.81 14.44 13.35 13.52
2 0.3 18.47 17.59 17.18 18.3 17.89 17.19 18.19 17.1 16.9
3 0.1 37.51 34.58 33.14 35.59 32.17 31.42 34.31 30.48 30.16

These times demonstrate how fast the vehicle returns from the position occupied while being
affected by the forces during the turn. The parameter is directly related to the safety of a driver. Large
values could correspond to both a noticeable distance to desired trajectory or inconvenient vehicle
orientation. Both cases may cause the following complications, resulting, for instance, in a turning
vehicle in oncoming traffic.

3.2. Critical Speed Rising

Another feature of the proposed approach, which improves safety, is demonstrated in Figure 11.
Here, with identical environment parameters, the vehicle without prediction, moving at a speed above
critical, loses control and crashes, while the model with prediction successfully finishes the race. The
reason for this results from differences in trajectories. As it was shown in previous studies [6], the
vehicles’ critical speed during the turn is proportional to

√
R. The model with prediction starts the turn

earlier, which results in increased R, and as a result, increased critical speed. In target quality function,
this should lead to improvements in the parameter, corresponding to the car stability—second addend
in Equation (10). This is covered in the Discussions Section in Table 7.
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Figure 11. Car trajectory on the track tuned with prediction SAF of standard PD controller for friction
coefficient µ = 0.1 with target speed equal to 1.05VCR. The blue curve corresponds to the trajectory
controlled by PPD controller, and red to the original PD controller.

Table 7. Distance to the obstacle for each parameter combination, meter.

#Road
Condition

Overall
Friction µ

0.85 of Critical 0.9 of Critical 0.95 of Critical

PD PPD GP-RMEP PD PPD GP-RMEP PD PPD GP-RMEP

1 0.5 8.88 12.14 12.33 8.73 11.81 12.07 8.34 11.4 11.84
2 0.3 8.09 10.81 11.6 7.93 10.79 11.38 7.91 10.74 11.14
3 0.1 8.03 10.87 11.23 7.89 10.8 11.16 7.86 10.07 10.9

3.3. Safe Distance

The third feature is increased distance to potential obstacle during the turn, i.e., the moment of
the minimal stability of a car (Figure 12).
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d 

Figure 12. Distance between the car and obstacle (road turn) that caused the turn friction coefficient
µ = 0.3 with target speed equal to 0.95VCR.

Due to prediction, the vehicle starts the turn earlier. This not only makes the trajectory smoother
and increases turn radius but also allows avoiding potential causes of turn—road twist or unexpected
obstacle. According to data from Table 7, the average distance to an obstacle increased by 35%.

These numbers, as well as the values of the target quality function, indicate the remoteness of the
results occurred by each method from the desired ones (if they were equal to zero, the car would move
along the chosen trajectory without deviations caused by instability). In other words, these numbers
could be interpreted as the error amount of methods. Figure 13 demonstrates distance and angle errors
for all compared methods. In these terms, PPD performs better than PD and has similar changes of
amplitudes with the GP-RMEP controller.
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Figure 13. Distance error (left picture) and yaw angle error (right picture) with 0.95 Vcr and 0.3µ.

4. Discussion

Data from Table 8 demonstrate that improvements of a new model affected both target quality
function addends—deviation from the trajectory and lateral acceleration. An increase of one of
the parameters may lead to the decrease of another. The closer the vehicle is to the center of the
lane, the stronger the forces affecting it during the turn. However, in this case, the new model
demonstrated improvements in both parameters, so called non-zero sum, which indicates qualitative
model enhancement in contrast to parameter tuning.

Table 8. Steering controllers target quality function for each parameter combination split by addends
corresponding to deviation from the center of the lane and lateral acceleration, respectively.

#Road
Condition

Overall Friction
µ

0.85 of Critical Speed 0.9 of Critical Speed 0.95 of Critical Speed

PD PPD PD PPD PD PPD

1 0.5 239 + 446 79 + 219 255 + 456 103 + 231 288 + 555 110 + 254
2 0.3 779 + 914 186 + 196 823 + 978 215 + 201 870 + 984 252 + 206
3 0.1 1241 + 418 346 + 62 1291 + 426 367 + 65 1305 + 477 405 + 66

Another issue that was not covered previously is the value of prediction time distance. In other
words, it is the task of finding the optimal parameter for Equations (7)–(9). Previously, the value was
chosen manually for each configuration and was in the range [0.8 . . . 1.8] seconds. Too short of a
prediction time does not allow achieving the effect described in Section 2.4 and leads to trajectory Type
(1) in Figure 14. In contrast, too long of a period provides changes to the trajectory, which makes it too
far from that desired, as shown on Trajectory (3), Figure 14.Algorithms 2020, 13, x FOR PEER REVIEW  15 of 18 
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Figure 14. Different types of the car trajectory behavior depending on the prediction time. From (1) to
(3), this duration becomes longer.
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Therefore, we ran a series of experiments in order to find the optimal value of this parameter.
Figure 15 shows the results. We started the search from the small prediction times provided trajectory (1)
and increased the time value until the result become equal to 1000 (which means the car crashed).
The optimal values of prediction time could not be less than what we start from because they will
turn into the PD controller results, and they could not be more than those that lead to the car crash
already because of its remoteness from reality. We also note that an increase of target speed along with
a decrease of friction coefficient increases the optimal prediction time. In other words, under less stable
conditions, the prediction should be farther.
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Figure 15. Target quality function convergence of the PPD controllers under the different speed levels
and friction values (µ = 0.1, 0.3, 0.5) depends on time prediction.

Another thought that we mentioned before in the Introduction Section is a special form of the safe
trajectory that has a linear curvature profile, which is comfortable for the turning car with high speed.

In order to compare the obtained by PPD controller trajectory shape with clothoid, we combined
them on a single plot. Clothoid could be constructed by solving the system of differential equations
below, called the “reconstruction equation”.

A clothoid is uniquely defined by:

• Coordinates and heading at which it starts: (x0, y0, θ0);
• Its length L;
• Its linear curvature function, which is determined by the two coefficients (k0, k1).

With these five values (x0, y0, θ0, L, k0, k1), we can evaluate the clothoid’s position and heading
(x(s), y(s), θ(s)) at any point s in area [0; L]. We did that by solving the following equations:

x′(s) = cosθ(s)

Now, in Figure 16, we can see that our new model produces a trajectory that has a very similar
shape to the clothoid (0, 0, 0, 100, 0, 0.1), which was turned around the center.
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Figure 16. Trajectory of the first left and right turns combined with clothoid spiral. Both turns
demonstrate a gradually increasing turning radius.

According to the researches [16], the best and smoothest transition curve to be used as a section of
the path is the clothoid. The fact that the PPD controller we developed approached the same conclusion
with its results, along with their comparison with the results of other controllers, once again indirectly
indicates the effectiveness of the new controller.

5. Conclusions

We researched and implemented the predictive PD controller in the TORCS simulator environment
for the race car model (Mercedes CLK). In spite of the fact that we tested a car with specific parameters
(a race car), providing, among other things, greater stability (for example, the height of its center of
gravity is lower than usual), some of the found features and control tactics can be applied to regular
cars. The height of the center of the gravity—together with the lateral forces—would determine
the amount of the lateral weight transfer of the car on cornering, which, in turn, would affect the
distribution of the normal forces on the tires. On slippery roads, due to the lower lateral forces applied
to the cornering car (due to the lower friction coefficients), we assume that the lateral weight transfer
would be negligible, regardless of the height of the center of the gravity of the car. This controller relies
on the predicted position of a vehicle instead of the current position. The several series of experiments
confirmed the relevance of the applicability of such an approach in practice. In fact, the new model
demonstrated not only better results but also more native and adequate behavior, which provides
greater safety and stability of driving on a slippery road. Based on the reaction style adopted by the
human driver to the obstacle that appears in the field of view, this model is able to avoid them by
changing its behavior in advance. Depending on the selected speed, the optimal prediction time was
computed. During the analysis of the method, it was compared with previously studied methods,
which we referred to in this article (PD, PID, GP-RMEP). During the comparison, it turned out that
our modification of the PD controller showed results close to those found using genetic programming
(GP-RMEP), which demonstrated best adaptability and applicability on slippery roads. The additional
studies of this parameter, involving machine learning, are left for further research.
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