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Evolving Learning Rate Optimizers for Deep
Neural Networks

Pedro Carvalho, Nuno Lourenço, and Penousal Machado

Abstract—Artificial Neural Networks (ANNs) became popular
due to their successful application difficult problems such image
and speech recognition. However, when practitioners want to
design an ANN they need to undergo laborious process of
selecting a set of parameters and topology. Currently, there are
several state-of-the art methods that allow for the automatic
selection of some of these aspects. Learning Rate optimizers are
a set of such techniques that search for good values of learning
rates. Whilst these techniques are effective and have yielded good
results over the years, they are general solution i.e. they do not
consider the characteristics of a specific network.

We propose a framework called AutoLR to automatically
design Learning Rate Optimizers. Two versions of the system
are detailed. The first one, Dynamic AutoLR, evolves static and
dynamic learning rate optimizers based on the current epoch and
the previous learning rate. The second version, Adaptive AutoLR,
evolves adaptive optimizers that can fine tune the learning rate for
each network eeight which makes them generally more effective.
The results are competitive with the best state of the art methods,
even outperforming them in some scenarios. Furthermore, the
system evolved a classifier, ADES, that appears to be novel and
innovative since, to the best of our knowledge, it has a structure
that differs from state of the art methods.

I. INTRODUCTION

Artificial Neural Networks (ANN) are an important part
of modern Artificial Intelligence. These systems are adept
at solving a variety of different tasks, showing a remarkable
performance in the fields of computer vision [1], [2], medicine
[3] and natural language processing [4], [5].

ANN’s design is loosely inspired by the workings of the
human brain. Like their biological counterpart ANNs are
comprised of several small units called neurons (or nodes).
These units are interconnected and each connection has an
associated value called a weight. The weights determine the
strength of the connections between neurons. When using an
ANN for a specific problem there is a set of weight values that
are most adequate to find a solution to he problem at hand. The
process through which the correct set of weight for a given
task are found is called training. Training is paramount for the
creation of an ANN that is able to correctly and consistently
solve the target problem. The importance of this process led
to extensive research into how ANNs should be trained and
how to regulate this training. As a result there are currently
several methodologies and/or hyperparameters used to tune the
training process, one such hyperparameter being the learning
rate (LR).
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Learning rate is a numeric value that scales changes made
to the weights during training. The learning rate utilized has
a profound impact on the effectiveness of training. A learning
rate value that is too low may result in an excessively slow
and ineffective training; a learning rate value that is too high
may result in an erratic training process where the network
never converges towards a set of stable weights. There is also
evidence that, as training progresses, the best course of action
is to adjust the learning rate online as seen in [6]. The high
impact of the learning rate in training efficiency motivated
the research community to find a variety of ways to optimize
the use of this parameter. These learning rate optimizations
solutions will be referred to as LR optimizers throughout the
rest of this work. There are several LR optimizers with varying
levels of complexity and effectiveness [7], [8], [9], [10]. One
aspect most LR optimizers share, however, is their generality.
Since training is ubiquitous across most applications of ANNs,
LR optimizers are designed to be effective regardless of the
problem or network in question.

This general approach has led to the creation of LR op-
timizers that are effective and easy to use, but it also raises
the question: Can LR optimizations be pushed further if we
specialize these mechanisms to the problem in question?

To answer this question we must first establish a way
to specialize LR optimizers for a specific problem. Since
ANNs are comprised of many interdependent components
and parameters it is impossible for a human to understand
all the dimensions required for manual specialization. It is
possible, however, to use a search algorithm to perform this
specialization automatically. Evolutionary algorithms (EA) are
the most suited for this task; these heuristic algorithms are able
to navigate complicated problem spaces efficiently through
biologically inspired procedures (e.g. crossover, mutation, se-
lection). Using an EA it is possible to test several different
optimizers and combine the best performing ones to achieve
progressively better results. These evolved optimizers can then
be compared with standard, man-made optimizers to assess the
benefits of specialization.

In this article we present and evaluate a framework that
is able to evolve optimizers for specific machine learning
problems. Furthermore, the resulting evolved optimizers are
benchmarked against state of the art standard optimizers.
Finally, the applicability of evolved optimizers in general
cases is also tested empirically. The results suggest that the
evolved optimizer are able to compete with state of the art
standard solutions, outperforming them in some test scenarios.
Furthermore, some evolved optimizers exhibit novel behavior
not found in the literature.
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The structure of this paper is the following:
• Section 2 gives a historical background on the standard

LR optimization techniques discovered over the years.
• Section 3 describes AutoLR, the framework created to

evolve LR optimizers on a general level. Sections 4 and
5 are in-depth explanations of the important components
of the framework.

• Section 6 outlines the experiments performed to assess
the viability of AutoLR. This section also presents and
analyses the results obtained in our experimentation.

• Section 7 reviews the work presented in this article and
summarize our contributions.

II. BACKGROUND

ANNs are configured by a set of hyperparameters. One
such parameter is the learning rate, this parameter scales the
changes made to the network’s weights during training. This
parameter has a profound effect on the effectiveness of the
training and the network’s subsequent performance.

After each training epoch the system compares the output
of the network with the expected output and calculates the
error. Based on this error, back propagation [11] is used to
calculate the changes that should be made to each individual
weight (known as the gradient). There are several optimizers
that take the gradient and use it the change the weights. The
term learning rate refers to a value that is used in many of
these optimizers to scale the gradient before it is applied to
the weights.

The original learning rate optimizer, SGD [10], simply sets
the new weight (wt) to be the difference between the old
weight (wt−1) and the product of the learning rate (lr) with
the gradient (∇l), shown in Equation 1.

wt = wt−1 − lr ∗ ∇l(wt−1) (1)

Traditionally, a single learning rate value is used for the
entirety of training. In this case, all the tuning must be done
before the training starts. The issue with this approach is that
one is often forced to rely of experience and trial-and-error
to find a good static learning rate. This task becomes even
harder when other hyper parameters are considered. Since
the hyperparameters in ANNs are inter-dependent there is
no guarantee the learning rate remains adequate once other
parameters are adjusted.

These limitations led to the creation of dynamic learning
rates. Dynamic learning rates varies as training progresses. A
most common approach is to start with a high learning rate
that decreases as training progresses. This approach is effective
because it covers a range of different learning rate values and
decreases the value over time which is theoretically desirable.
Dynamic approaches are commonly used [12], [13] as they
typically outperform static learning rates [6].

Dynamic learning rates are still limited because they have
no knowledge of what is happening throughout the training
process. The optimizers can change the learning rate based on
the training epoch but not based on changes in the gradient.
This lead to the development of the most sophisticated LR
optimizers; adaptive LR optimizers.

Adaptive learning rate optimizers are variations of SGD
that use additional functions to adjust the learning rate for
each weight individually. Adaptive optimizers are able tune
the different learning rate for individual weights through the
use of auxiliary variables that are tracked for each weight.
The simplest adaptive optimizer is the momentum optimizer
[14]. Equation 2 shows this variation of SGD. In this solution
the auxiliary variable is a momentum term (xt) that increase
the size of adjustments made to weights that keep changing
in the same direction. This term is accompanied by two
constants. Learning rate (lr) is responsible for directly scaling
the gradient. The momentum constant (mom) takes a value
between 0 and 1 that dictates how strong the effect of the
momentum is.

xt = mom ∗ xt−1 − lr ∗ ∇l(wt−1)

wt = wt−1 + xt
(2)

A variation of the momentum optimizer, known as Nes-
terov’s momentum [9] is presented in Equation 3. Nesterov’s
momentum varies from the original because the gradient is cal-
culated for the weight plus the momentum term. The optimizer
is able to look-ahead and make corrections to the direction
suggested by the momentum. This is beneficial because the
momentum term is slow to change and can hinder the training
process as a result.

xt = mom ∗ xt−1 − lr ∗ ∇l(wt−1 +mom ∗ xt−1)
wt = wt−1 + xt

(3)

RMSprop is an unpublished optimizer that divides the
learning rate by a moving discounted average of the changes
made to the weights. Practically speaking this optimizer will
decrease the learning rate when a weight is changing rapidly
and increase it when the weight stagnates. This learning
rate annealing simultaneously helps the weights converge and
prevents them from stagnating. In Equation 4 xt is the moving
average term and ρ is the exponential decay rate used for this
same average. The root of the moving average is then used in
wt to scale the learning rate and gradient.

xt = ρxt−1 + (1− ρ)∇l(wt−1)
2

wt = wt−1 −
lr ∗ ∇l(wt−1)√

xt + ε

(4)

The final optimizer we will be discussing is Adam [8]. In
the original work Adam is shown to outperform the other
optimizers present on several problems. Adam is similar to
RMSprop but it attempts to correct the bias that comes with
starting the moving average at 0. The new term zt is used
to correct this bias. Adam also uses xt−1√

yt−1
to calculate a

range where it expects the gradient to remain consistent. In
Equation 5 xt and yt are both moving averages; consequently,
β1 and β2 are exponential decay rates for the averages (similar
to ρ in Equation 4).



3

xt = β1xt−1 + (1− β1)∇l(wt−1)

yt = β2yt−1 + (1− β2)∇l(wt−1)
2

zt = lr ∗
√

1− βt
2

(1− βt
1)

wt = wt−1 − zt ∗
xt√
yt + ε

(5)

III. AUTOLR
AutoLR [15] is an open source [16] framework developed

to evolve LR optimizers. In the context of this work this
framework is utilized to assess the benefits of creating LR
optimizers specialized for specific machine learning tasks.

AutoLR should be used in two phases. In the first phase,
evolution is performed using Dynamic Structured Grammatical
Evolution [17]. The evolution stage requires the following
components:
• Engine
• Grammar
• Fitness Function
• Evolutionary Parameters
• Machine Learning Task
Each of these components is described in depth in the next

section.
Once the evolution phase is complete it is recommended that

an additional step is taken to validate the quality of the LR
optimizers produced. We call this phase benchmark. In the
benchmark phase the evolved optimizers are compared with
their standard counterparts on the task used during evolution.

IV. EVOLUTION

A. Engine

In the context of this work, LR optimizers will be executable
computer code. Certain approaches are best suited to evolve
this type of individuals, namely Genetic Programming (GP)
and Grammatical Evolution [18] (GE). We opted to use
GE because the optimizers have common structure among
them. GE enables the enforcement of this structure through
an understandable and easily editable grammar. We chose
to used a variation of GE in AutoLR, Dynamic Structured
Grammatical Evolution (DSGE) [17].

In traditional GE, the genotype is a single list of integers
that are translated into solutions using the grammar. Using a
single list genotype handicaps the approaches locality since
the meaning of a segment of the genotype depends on what
precedes it. In other words, small changes in genetic material
can lead to very different individuals in traditional GE and this
makes evolution arduous. In DSGE, the genotype holds one list
of integers for each production in the grammar. This change
improves locality since the genetic material is closely tied to
a specific part of the grammar. With improved locality DSGE
is able to enact a more efficient evolution which motivated its
use in AutoLR.

The original DSGE is implemented in Python. This lan-
guage also has extensive support for machine learning (through
the Tensorflow [19] and Keras [20] libraries) and the whole
framework was built in it as a result.

B. Grammar
Adequate grammar design is paramount for successful evo-

lution [21], [22]. The grammar used determines the type of LR
optimizers the system is able to create. While grammar design
is largely subjective, there are a few guidelines that should be
taken into account during this process.

The first step when creating a grammar for AutoLR is
ensuring the system is able to reproduce some of the standard
LR optimizers. Our objective when using this tool is to go
beyond the standard approaches; nevertheless the presence of
these optimizers is important as it ensures the evolutionary
process is able to produce functional individuals that can guide
evolution. Additionally, the presence of standard optimizers in
the evolutionary phase serves as a sanity check that guarantees
the system is creating functions that will help solve the target
problem.

Since evolutionary algorithms demand a large quantity of
computational resources, one must also take measures to
prevent the creation of a problem space that is too complex.
The grammar utilized effectively defines the search space the
algorithm will be navigating. Consequently it is important
that, when designing the grammar, we consider the complexity
of the resulting search space. Ideally, the search space such
be concise enough that the algorithm is able to explore it
effectively with the resources available but complex enough
that the resulting individuals are adequate.

Finally, it is important to consider that grammars can be
biased in order to favor the creation of certain individuals.
Biasing the grammar can be an efficient way of accelerating
the progress of the search process. In an unbiased grammar
there is a risk that the number of useful individuals is so small
in comparison to the number of all possible individuals that
the evolutionary algorithm is simply unable to progress. In
AutoLR we are using the evolutionary algorithm to create solu-
tions with a specific task. Finding the common ground between
these desirable solutions and biasing the grammar towards this
common ground decreases the number of invalid individuals
without compromising the system’s ability to innovate.

C. Fitness Function
Developing a fitness function in this context can be a

challenging task. The most obvious and necessary component
of the fitness function is that the generated individual most be
used to solve the machine learning task. It is recommended
however that additional measures are taken to ensure the
fitness value is an accurate measure of the solutions actual
performance.

In order to ensure that the evolved optimizer is helping
with the resolution of the machine learning task chosen it is
important to consider the possibility of overfitting. Using the
score obtained in training directly as the fitness is not ideal
since the evolved individual might be unable to generalize
beyond the training data. To address this one should take the
network trained using the evolved optimizer and test it on a
new dataset; the score obtained in this second dataset is a more
accurate representation of the solution’s true fitness. It must
also be noted that due to the nature of AutoLR it is possible
that the evolved optimizers will implicitly become optimized
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towards the second dataset as well. Consequently, the user
should always keep a third dataset, that is never used during
the evolutionary process, for benchmarking purposes.

There are several stochastic components to the machine
learning process; this means that when testing the same
solution twice it is expected that the results will be slightly
different. In some situations we might find solutions that are so
inconsistent that the result of a single trial is not an accurate
measure of their true fitness. In these cases it is paramount
that the fitness function is able to work around these incon-
sistencies. In order to address these it is necessary to increase
the number of trials performed on a single solution. However
since both machine learning and evolutionary algorithms are
resource intensive approaches, it is desirable that this increase
in trials is kept to a minimum.

The number of trials can be minimized through additional
mechanisms. It is important for LR optimizers to be able to
produce good results consistently, based on this fact we found
two mechanisms that can be used to reduce the number of
trials. The first mechanism exploits the fact that a large number
of individuals produced by the evolutionary algorithm are not
functional optimizers; multiple trials are only necessary when
we are looking to discern between the better of two optimizers.
Defining a minimum acceptable score creates a threshold that
a candidate solution must surpass in order to warrant repeat
trials. Once a solution has been evaluated several times it is
also necessary to devise a way to consolidate all the results
into a single fitness value. While using the average is the most
straightforward answer we found that using the minimum score
across all trials further incentivizes the system to produce
solutions that are consistently good.

D. Machine Learning Task

Since the machine learning part of the system is isolated,
AutoLR can be applied to virtually any machine learning task.
The only requirement for integration is that the task chosen is
capable of utilizing the generated optimizers. To be the best
of our knowledge, any machine learning task where training
is performed can benefit from AutoLR.

In order to solve a machine learning problem we typically
require a neural network and a dataset. The network and
dataset chosen will be used by the framework through the
fitness function. Both the network and data used affect the
cost of experiments; bigger networks and data will slow
down the training process and, as a result, the evolutionary
process. In this work all the experiments were performed for
a single combination of network and dataset at a time. Not
all optimizers produced in this way will be able to generalize
to other task. It is possible to evolve optimizers for several
networks or datasets (or even both) but the efficacy of this
approach is unproven.

While the AutoLR’s versatility enables it to evolve op-
timizers for most problems, it is important to consider the
trade-offs that come with this tool. While AutoLR has several
parameters that control the cost of its trials, we found that
in order to produce a solution that is significantly better
than standard approaches requires a considerable amount of
resources. It is important to consider that while surpassing

standard optimizers is a costly endeavor, producing evolved
optimizers of comparable performance is much less so. In
the field of LR optimizers, ideas from inferior optimizers are
frequently reused and expanded upon by more sophisticated
approaches. Consequently, optimizers created by AutoLR can
theoretically showcase a way to improve the standard approach
in use.

V. BENCHMARK

In the previous section we presented several guidelines
that help the reader perform successful evolutionary runs.
It is important to highlight that many of these techniques
aim to reduce the time spent assessing which individual’s
fitness. It is expected that, in the process of speeding up
the fitness function, the fitness values produced lose some
of their accuracy. In other words, the fitness function used
during the evolution phase yields an approximation of the
solution’s real ability to solve the task. As a result, it is
important that additional steps are taken in order evaluate
the evolved optimizers’ true fitness and how they benchmark
against standard approaches. This step of the experiment is
called the benchmark phase.

In the benchmark phase we are only going to be eval-
uating solutions a negligible amount of times compared to
the evolution. Consequently, it is recommended to make the
fitness function as accurate as possible, even if it becomes
significantly slower as a result. In this phase, it is also possible
to use all available data to make the most accurate assessment
possible.

When comparing evolved optimizers with the standard ones
it is also important to avoid testing on any of the data present
during the evolutionary process. Since the fitness function
effectively guides the evolutionary process it is possible that
the solutions produced have become attached to the data used.
If benchmarking is performed on this same data the evolved
optimizers will have an inherent advantage, compromising the
results.

VI. EXPERIMENTS

In order to analyze and validate the performance of our pro-
posal several experiments were performed using the AutoLR
framework. The object of these experiments was to evolve and
benchmark optimizers of different classes.

A. Dynamic AutoLR

Dynamic AutoLR (DLR) [15] is an implementation of
AutoLR designed to evolve static and dynamic optimizers.
The union of these two types of optimizers is also known
as learning rate schedulers or learning rate policies.

This implementation of the system was created to validate
the hypothesis that optimizers evolved through the framework
are useful and comparable with standard approaches. Learning
rate schedulers benefit from some characteristics that make
them the ideal for a proof of concept. All LR optimizers are
mathematical functions, but compared to the more complex
adaptive optimizers, learning rate schedulers only take two
inputs (previous learning rate and epoch) and produce a
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new learning rate from those. Since policies have access to
such limited information, the behaviors they produce can be
approximated with decisions trees. The number of operations
used in decision trees is much smaller than the one used for
mathematical functions. As a result, the grammars used to
produce decision trees can be plainer and easier to navigate
for the evolutionary algorithm.

The grammar and design decisions made for DLR are
explained in detail in other works [15]. The most important
characteristic of the grammar used is that the resulting in-
dividuals are comprised of a series of if-the-else constructs.
These individuals evaluate a series of conditions using the
current epoch and learning rate and return a new learning rate
for the next epoch. It is important to note that these types
of individuals do not replicate standard dynamic optimizers
directly. Instead, these decision trees are able to approximate
methods such as decaying [23] and cyclical [24] learning rates.
The parameters used for DLR can be found in [15].

These experiments were also used to assess the impact that
early stop has on the evolutionary process. Experimentation
in DLR is separated into two scenarios: scenario I trains the
network for 100 epoch and uses an early stop mechanism;
scenario II trains the network for 20 epochs and no early stop.

Image classification was the problem chosen as there is a
vast backlog of research on the topic. The presence of this
backlog enabled us to use proven models and datasets allowing
our focus to be on the tuning of the evolutionary component.

When choosing a dataset it is important to consider two
aspects. The difficulty of the dataset must be high since it
is crucial for the system to be able to differentiate between
mediocre and great optimizers. If the chosen problem is too
easy, all competent optimizers will obtain indistinguishably
good scores. The other aspect that must be considered is the
size of each example. Bigger images take longer to classify;
thousands of images are classified in each training epoch
and, since training itself is performed thousands of times
throughout the experiment, the resulting slow down is massive.
We found that Fashion-MNIST is a good balance between
a dataset that is too easy (such as the regular MNIST) and
one that is too complex (such as CIFAR-10). In evolution,
7000 instances were used for training, 1500 for validation and
another 1500 for testing. Fashion-MNIST itself is separated
into a training and a testing dataset. All the instances present
in evolution are part of the training set. As a result, the
evolutionary process never comes into contact with Fashion-
MNIST’s test examples. This is extremely important since
this test data can be used to make an unbiased and fair
benchmark later. Figure 1 illustrates how the data is split
between evolution and benchmark. During evolution, data
augmentation was also used.

The neural network architecture used in DLR comes from
DENSER [25]. This architecture is unique because it was
created by an evolutionary algorithm, similar to the optimizers
AutoLR produces. This characteristic makes this network an
interesting one for this experiment. Since this architecture is
quite complex it is more likely that there is room for the LR
optimizer to be specialized. Additionally, DENSER evolves
architectures with a static learning rate of 0.01; this policy

is a good baseline for the benchmark phase since we know it
works well for the network.

The final aspect of evolution that must be discussed is the
fitness function. The evolutionary runs for DLR are short; as
a result there is no need to utilize any of the possible opti-
mizations previously discussed. The function used is shown in
Algorithm 1. It is important to highlight that the learning rate
policy never comes into contact with the test data directly, this
prevents the evolutionary algorithm from overfitting policies
to the data.

Algorithm 1: Simplified version of the fitness function
used in DLR
params: network, learning_rate_policy, training_data,

validation_data, test_data
1 trained_network ← train(network,

learning_rate_policy, training_data, validation_data);
2 fitness_score ← get_test _accuracy(trained_network,

test_data);
3 return fitness_score;

For each of the sets of 10 evolutionary runs, the best
evolved schedulers was selected for benchmarking. Before
moving onto the results it is important to analyze the shape
of these evolved policies. By comparing the shape of the
evolved solutions to the standard ones we can learn about the
similarities between the two approaches.

Policy A was produced in scenario I, where the early
stop mechanism is active. Policy A alternates between three
learning rate values: a minimum, an intermediate one and a
maximum; in that order. This policy appears to use some of
the ideas present in the cyclical learning rates found in [24].
The policy changes between these value every epoch. The
policies presented in that work vary the learning rate in a
more controlled way, nevertheless we find the fact the system
was able to produce similar behavior with no prior knowledge
of the method is noteworthy.

Policy B is a static learning rate policy for the first 60 and
produces erratic behavior afterwards. It is important to keep in
mind, however, that since this policy was evolved in scenario
II the training performed only lasted for 20 epochs. As a result,
all learning rate changes after epoch 20 did not manifest during
the evolutionary process.

Three benchmarks were performed for DLR:
• Benchmark I - Replicates the conditions of Scenario I.

Network is trained for 100 epochs with the early stop
mechanism.

• Benchmark II - Replicates the conditions of Scenario II.
Network is trained for only 20 epochs, with no early
stop.

• Benchmark III - Designed to assess the peak performance
of the optimizers. Network is trained for 100 epochs,
with no early stop.

In order to benchmark the evolved policies it is necessary
to establish a baseline. The network architecture we are using
was evolved using a static learning rate of 0.01; this policy
will serve as the baseline since we know it works well with
the network. Since this policy is the baseline it will be tested
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Fashion-MNIST
Training Data

60000 Examples

Test Data Fashion-MNIST
Test Data

10000 Examples

Fitness
Function

Training Data

Validation Data

Test Data

Data SplitValidation Data

Training Data

Data SplitBenchmark
Function

Figure 1: Difference in data used for evolution (fitness function) and benchmark (benchmark function).

in all three benchmarks. The evolved optimizers will only be
tested in their native conditions (benchmark I for policy A,
benchmark II for policy B).

1) Results: Each policy was tested on each of their scenar-
ios five times. The results of these trials are shown in Table I.

PolicyBenchmark A B Baseline
Validation 75.09 ± 16.79% 85.87 ± 0.25%I Test 69.24 ± 24.07% 85.01 ± 0.36%
Validation 85.42 ± 0.87% 85.55 ± 0.38%II Test 84.82 ± 0.71% 84.39 ± 0.22%
Validation 89.38 ± 0.39% 89.13 ± 0.33% 88.85 ± 0.22%III Test 88.68 ± 0.22% 86.58 ± 1.47% 87.47 ± 0.37%

Table I: Accuracy of the evolved policies (A & B) on their
evolutionary environment (benchmark 1 & 2 respectively)
and scenario 3 (representative of max policy performance),
compared with the baseline policy.

Benchmark I compares policy A with the baseline policy
using a training of 100 epochs with early stop. It is interesting
to note that results show that, despite being evolved in these
same conditions, policy A performed worse than the baseline.
The variation in results obtained by the evolved policy in this
benchmark were extremely large in comparison to all other
results so we performed an analysis of each trial individually.
The reason policy A under-performs in this benchmark is
because the balance between the policy and the early stop
mechanism is delicate; in some runs an early stop is triggered
within the first epochs of training, leading to a poor perfor-
mance. When the policy is able to overcome the first epochs
without activating the mechanism, it is able to outperform the
baseline.

Benchmark II compares policy B with the baseline policy
using 20 epochs of training and no early stop. The results in
this benchmark are straightforward. Policy B obtains a better
test score on average than the baseline. It should be noted that
the evolved policy outperforms because it does not overfit as
much as the baseline; this is evidenced by the difference in
accuracy when moving from validation to test data. Finally
it must be noted that policy B is more inconsistent than the
baseline, despite showing better results on average.

Benchmark III compares both of the evolved policies with
the baseline, training for 100 epochs with no early stop. This
benchmark is designed to assess if the upper limit of the
evolved policies is superior to that of standard solutions. Policy
A produces the best and most consistent test scores in this
benchmark. It is interesting to note that, despite being evolved

using the early stop mechanism, this policy benefits greatly
from its removal. Policy B is able to achieve results similar to
policy A in validation but suffers a loss in performance when
moved to testing due to overfitting. This loss is expectable
since the policy evolved a static learning rate to learn in 20
epochs; when moved into 100 epochs, this same learning rate
is unable to make the most of the extra resources. Finally,
the baseline seems to learn slowly and accurately in this
benchmark since it is weaker in validation than the evolved
policies but is hardly affected by overfitting.

We found that these results show that AutoLR has potential
to create interesting and competitive optimizers. DLR only
works with a small subset of all LR optimizers that are not
commonly regarded as the best approaches available. These
facts motivated the development of a second version of the
system that deals with the more complex adaptive optimizers.

B. Adaptive AutoLR
Adaptive AutoLR (ALR) is an implementation of the Au-

toLR framework to evolve adaptive optimizers. The key differ-
ence between this version of the system and DLR is that the
grammar (and resulting solutions) are far more complex. When
dealing with learning rate policies the function always returns
a learning rate; this means that the worst case scenario is that
the learning rate chosen is inadequate. Adaptive optimizers are
a small group of functions that, when combined, are supposed
to adjust the weight of the network based on the gradient. This
definition is much broader than that of a learning rate policy.
This added complexity demands the number of evaluations
used in evolution be increased by a few orders of magnitude.
The cost of experiments is far greater in ALR and several
changes made from DLR are motivated by this fact.

Another consequence of the broad definition of adaptive
optimizer is that the majority of possible solutions are not
able to train the network. The easiest way to counteract this
issue would be through a restrictive grammar that limits the
types of optimizers that can be evolved. In this work we
are interested in promoting optimizers that deviate from the
standard approaches as much as possible and, as a result,
will be avoiding such restrictions. This in turn means that the
presence of individuals that can guide the evolutionary process
must be guaranteed and incentivized. The full grammar used
for ALR cannot be included due to space restrictions but
an abridged version is presented in Figure 2 (full version
can be found in [16]). When designing the grammar for
ALR reproducibility was a high priority i.e. the grammar
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is capable of producing a large amount of standard adap-
tive optimizers (e.g. SGD, RMSprop, Adam). The resulting
individuals are comprised of 4 functions, named: x_func,
y_func, z_func and weight_func. Functions x through z
work as the auxiliary functions found in standard adaptive
optimizers; these functions have an associated result that is
carried between epochs (e.g. xt). weight_func is the weight
update function, the result of this function will the used
as the weight for the next epoch. Figure 2 only shows the
productions related to the x and weight functions; y and z
have the same productions as x except for a few exceptions.
The auxiliary functions are executed in the following order:
x then y and finally z. This order is important because each
auxiliary function has access to the result of those that precede
it in the order, in their terminal production. Naturally, the
weight function is executed after all the auxiliaries and has
access to all their results. There are several productions in
this grammar that are identical. These productions cannot be
combined because we want SGE to keep the genotype of
each individual function segregated. The operations chosen
for the func productions were all chosen for their presence
in standard adaptive optimizers. The constants used in the
const productions follow a sigmoidal distribution between
0 and 1. This distribution is used instead of a linear one
because adaptive solutions frequently utilize values very close
to 1 as decaying factors. The gradient cannot be directly used
by the weight function; this encourages the use of auxiliary
functions. Auxiliary functions’ terminals are also biased so
the gradient is picked more often, speeding up the discovery
of functioning optimizers. The auxiliary functions naturally
accumulate their value which makes it harder for them to
clearly relay the gradient to the weight function. While this
cumulative property is desirable, it makes the initial discovery
of functioning optimizers very difficult. The expr productions
are included to allow the system to easily discover out to
remove the cumulative property from the function.

Since reproducibility was a top priority when designing the
grammar it is exceedingly important to highlight the behaviors
that cannot be evolved. In order to keep performance as
quick as possible the auxiliary functions are calculated using
Tensorflow’s gradient descent training operation. This decision
makes it impossible to calculate modified gradients such as the
one used in Nesterov’s momentum since, to be the best of our
knowledge, it is not possible to obtain this information without
using the corresponding training operation. Additionally, some
adaptive optimizers allow the use of different initial values for
their auxiliary variables. In ALR, all auxiliary variables are
initialized as 0; enabling the evolution of initial values could
hurt the development of the functions so we opted not to do
so.

The fitness function suffered some changes in order to im-
prove the consistency of the evolved solutions and evaluation
speed. The updated function is shown in Algorithm 2. The
optimizers are now trained and tested up to 5 five times.
After each of these trials the system checks if the test score
is above a minimum acceptable score. If the optimizer does
not hit the threshold then the rest of the trials are canceled.
This decreases the amount of resources spent on evaluating

<start> ::= x_func, y_func, z_func, weight_func =
<x_expr>, <y_expr>, <z_expr>, <weight_expr>

<x_expr> ::= add(x, <x_update>) | <x_update>
<x_update> ::= <x_func> | <x_terminal>
<x_func> ::= negative(<x_expr>)

| subtract(<x_expr>, <x_expr>)
| multiply(<x_expr>, <x_expr>)
| pow(<x_expr>, <x_expr>)
| square(<x_expr>)
| divide_no_nan(<x_expr>, <x_expr>)
| add(<x_expr>, <x_expr>) | sqrt(<x_expr>)

<x_terminal> ::=<x_const> | x | grad | grad
<x_const> ::= 4.53978687e-05 | . . . | 9.99954602e-01

. . .

<weight_expr> ::= <weight_func> | <weight_terminal>
<weight_func> ::= negative(<weight_expr>) | ...

<weight_terminal> ::=<weight_const> | x | y | z
<weight_const> ::= 4.53978687e-05 | . . . | 9.99954602e-01

Figure 2: CFG for the optimisation of learning rate optimizers.

mediocre optimizers. Furthermore, the worst score out of the
5 trials is used as the optimizers fitness; selecting the worst
score penalizes inconsistent solutions.

The network architecture was also changed to favor a faster
training. The network used in ALR can be found in [26]. This
network is compatible with the Fashion-MNIST dataset and
much faster to train due to a reduced number of weights. We
also found that the data augmentation was slowing down the
training process significantly so it was replace with additional
data.

Two benchmarks were designed for AutoLR. Benchmark I
compares the evolved optimizers with several standard adap-
tive optimizers; this benchmark will show us how the evolved
solutions compare to the man made approaches that were
developed over the years. Each of the standard optimizers was
chosen to represent an advancement in the field:
• Nesterov Momentum - Momentum-based optimizers.
• RMSprop - Discounted moving averages as a scaling

factor.
• Adam - Bias correction.
Benchmark II uses the evolved optimizers in a different

network and dataset to test their quality as out of the box
optimizers. In this scenario the optimizers are compared with
Adam which is informally regarded as the best optimizer prior
to hyperparameter optimization. The dataset chosen for this
scenario was CIFAR-10 as it is a common problem used
to evaluate machine learning approaches. This dataset was
not used during evolution due to its large size but since
the benchmark phase requires few evaluations this is not
a problem. The architecture used was the Keras CIFAR-10
architecture found in [27].

These benchmarks are summarized in Table III.
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Algorithm 2: Simplified version of the fitness function
used to evaluate optimizers in ALR

params: network, learning_rate_optimizer,
training_data_groups, validation_data,
test_data, trial_number,

1 minimum_acceptable_score ← 0.8;
2 fitness_score ← 1.0;
3 trial_count ← 0;
4 while trial_count < trial_number do
5 trained_network ← train(network,

learning_rate_optimizer,
training_data_groups[trial_count],
validation_data);

6 trial_test_score ←
get_test_accuracy(trained_network, test_data);

7 if trial_test_score < fitness_score then
8 fitness_score ← trial_test_score;

9 if trial_test_score < minimum_acceptable_score
then

10 return fitness_score;

11 trial_count ++;

12 return fitness_score;

SGE Parameter Value
Number of runs 9

Number of generations 1500
Number of individuals 20

Tournament size 5
Mutation rate 0.15

Dataset Parameter Value
Training set 53000 instances from the training

10600 instances per trial
Validation set 3500 instances from the training

Test set 3500 instances from the training
Early Stop Value

Patience 5
Metric Validation Loss

Condition Stop if Validation Loss does not
improve in 5 consecutive epochs

Network Training Parameter Value
Batch Size 1000

Epochs 100
Metrics Accuracy

Table II: Experimental parameters.

1) Results: Two optimizers were selected from the evolu-
tionary runs. The first one selected was the best performing
optimizer across all runs, a simplified version of this optimizer
is shown in Equation 6.

wt = wt−1 − 0, 0009 ∗ sign(∇l(wt−1)) (6)

This optimizer is unusual in a few ways. The gradient is
never used; only its sign. As a result this optimizer always
changes the weights by a fixed amount in the direction of
the gradient. We named this optimizer the Sign Optimizer.
The Sign optimizer does not exhibit any adaptive behavior;
since evolving adaptive optimizers was the main object of this
system we decided to also select the best adaptive optimizer
for benchmark.

Scenario Network Architecture Dataset Optimizers
Evolved
Adam

RMSpropI Keras-MNIST Fashion-MNIST

Nesterov
EvolvedII Keras-CIFAR10 CIFAR10 Adam

Table III: Benchmark scenarios for Adaptive AutoLR.

The best adaptive optimizer is simplified in Equation 7. This
optimizer is, as far as we know, a novel approach to adaptive
optimizers. The unique aspect of this solution is the presence
of a squared auxiliary variable that was not found in standard
approaches. This optimizer is named Adaptive Evolutionary
Squared (ADES) after its defining characteristic.

yt = (1− 0, 08922)yt−1

− (0, 08922 ∗ y2t−1 + 0, 0891yt−1∇l(wt−1)

+ 0, 0891∇l(wt−1))

wt = wt−1 + yt

(7)

In Benchmark I the evolved optimizers (Sign and ADES)
are compared with standard approaches in their native machine
learning task. The standard optimizers were all tested using
their default parameters as found in the Keras library. The
results are shown in Table IV. In this scenario ADES’ test
accuracy is close to RMSprop and Adam, surpassing Nes-
terov’s momentum. The Sign optimizer did not perform as
well. The minuscule increments performed by this optimizer
do not allow the network to consistently perform as well as
the others. This is evidenced by the test accuracy achieved
with this optimizer as well as the comparatively large standard
deviation. In sum, the results obtained with ADES in this
benchmark are promising. Although the evolved optimizer did
not obtain the best results it was able to remain competitive
with methods that have been researched for years.

In Benchmark II the evolved optimizers are compared with
Adam on a different machine learning task. The purpose of this
experiment is to analyze how useful the evolved optimizers are
as standalone tools removed from the framework. The results
are shown in Table V. The most notable result is that ADES
is the best performing optimizer in this benchmark. While
the difference in accuracy is not massive it is important to
acknowledge that an evolved optimized is able to out perform
a state of the art solution outside of its native task. This is
particularly interesting when we consider that the supposed
advantage of an evolved optimizer is that it is fine tuned for the
task it is evolved in. The fact that ADES remains competitive
when moved to other problems props up AutoLR as a tool to
create general optimizers.

Optimizers Validation Accuracy Test Accuracy Generalization Rate
ADES 93.05 ± 0.49% 92.45 ± 0.20% 99.36%
Sign 91.88 ± 0.87% 89.80 ± 0.59% 97.75%

Adam 93.40 ± 0.36% 92.67 ± 0.12% 99.21%
RMSprop 93.34 ± 0.37% 92.71 ± 0.19% 99.32%
Nesterov 91.97 ± 0.36% 90.62 ± 0.32% 99.21%

Table IV: Benchmark results of evolved (ADES, Sign) and
standard (Adam, RMSprop, Nesterov) optimizers in scenario
I (Fashion-MNIST).
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Optimizers Validation Accuracy Test Accuracy Generalization Rate
ADES 80.53 ± 0.81% 79.72 ± 0.42% 99.00%
Sign 62.89 ± 1.42% 62.11 ± 2.18% 98.75%

Adam 79.19 ± 0.71% 78.76 ± 0.31% 99.46%

Table V: Benchmark results of evolved (ADES, Sign) and
standard (Adam, RMSprop, Nesterov) optimizers in scenario
II (CIFAR10).

C. Bayesian Optimization

In light of the results suggesting that ADES could be utilized
as a general LR optimizer a final experiment was conducted.
To better understand the potential of ADES we performed
Bayesian optimization on the hyperparameters of all adaptive
optimizers (including ADES) in all problems tackled in this
work. In this experiment we are looking to understand how
applicable ADES is compared to standard approaches.

Tables VI, VII and VIII show the results of all four
optimizers across the three tasks. For tasks I and II the ranking
is the same: Nesterov’s momentum performs the best, followed
by ADES, Adam and RMSprop in that order. The margin are
small but once again ADES is shown to be able to compete
with the standard approaches. In the third task ADES showed
some bizarre behavior. While this is not reflected in the final
results, observed during the optimization process that certain
hyperparameter values were not able to train the network in
any capacity. In other words, when unoptimized ADES could
produce accuracy as low as 10% in task III. In the final results
ADES was not able to perform as well as the other optimizers,
perhaps because the hyperparameters were not as easily tuned.

Task Optimizer Parameters Test Accuracy
lr beta1 beta2Adam 0.004786418106 0.9013530508 0.9440879038 92.57%

lr momentumNesterov 0.01241733151 0.9279183679 92.84%

lr rhoRMS 0.001828827734 0.9750144315 92.50%

beta1 beta2

I

ADES 0.9800744569 0.9968261576 92.69%

Table VI: Best results obtained by the four optimizers during
bayesian optimization in Task I

Task Optimizer Parameters Test Accuracy
lr beta1 beta2Adam 1.60E-03 0.935380748 0.9405771305 80.01%

lr momentumNesterov 0.01392763473 0.9807391289 80.84%

lr rhoRMS 1.83E-03 0.9750144315 78.76%

beta1 beta2

II

ADES 0.9417022005 0.9720324493 80.61%

Table VII: Best results obtained by the four optimizers during
bayesian optimization in Task II

Task Optimizer Parameters Test Accuracy
lr beta1 beta2Adam 1.14E-04 0.9417022005 0.9720324493 92.83%

lr momentumNesterov 0.004455187854 0.9107494129 92.90%

lr rhoRMS 1.14E-04 0.9302332573 92.71%

beta1 beta2

III

ADES 0.9876389152 0.9894606664 91.76%

Table VIII: Best results obtained by the four optimizers during
bayesian optimization in Task III

VII. CONCLUSION

This work documents the implementation and validation of
the AutoLR framework. This framework is capable of produc-
ing novel LR optimizers through an evolutionary algorithm.
Two sets of experiments were performed in order to assess the
viability of this approach. In these experiments the framework
was given limited resources to evolve optimizers. During the
evolutionary process there was no incentive for the solutions to
imitate traditional optimizers as they were rated solely based
on their performance.

The first round of experimentation focused on the develop-
ment of simple dynamic LR optimizer approximations. The
best optimizer evolved in these experiments showed consis-
tently better results than the established baseline.

Since dynamic LR optimizers are only a small subset of
modern learning rate optimization, we developed another,
more comprehensive experimental setup. In the second set of
experiments the system was able to evolve all types of LR op-
timizers, including the more sophisticated adaptive optimizers.
One of the optimizers evolved under these circumstances was
able to perform on par with the established baselines.

This optimizer, called ADES, showed other interesting prop-
erties. Despite being evolved in a specific environment this
optimizer was able to out perform Adam (a standard optimizer
known for its adaptability) when moved to a different task.
This is notable since an evolved optimizer’s supposed advan-
tage is the opportunity to specify for the task it is evolved in.
This result prompted another test where bayesian optimization
was performed on several LR optimizers (including ADES)
across multiple tasks. In this test ADES was still able to
perform on par with standard solution suggesting it may be
used as a standalone tool. Furthermore, the results obtained
with ADES indicate that the AutoLR framework can be used
to create new general LR optimizers that can be used on a
breadth of problems. To summarize, the contributions of this
paper are as follows:
• The proposal of AutoLR, an evolutionary framework

capable of producing LR optimizers.
• Evolution, benchmark and analysis of two types evolved

optimizers: dynamic and adaptive.
• The discovery of ADES, the first automatically generated

LR optimizer capable of competing with state of the art
learning rate optimization approaches.
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