Skip to main content
Log in

Application of artificial neural networks and genetic programming in vapor–liquid equilibrium of C1 to C7 alkane binary mixtures

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this study, the capacity of artificial neural networks (ANNs) and genetic programming (GP) in making possible, fast and reliable predictions of equilibrium compositions of alkane binary mixtures is investigated. A data set comprising 847 data points was gathered and used in both training the proposed ANN and generating the closed-form expressions of the GP procedure. The results obtained demonstrate the relative precision of the proposed ANN, while, on the other hand, exhibit that the GP model, although less precise, affords high CPU time efficiency and simplicity. Concisely, the proposed models can serve the purpose of being close first estimates for more thermodynamically rigorous vapor–liquid equilibrium calculation procedures and do obviate the necessity for the availability of a large set of experimental binary interaction coefficients. Mean absolute errors of 0.0100 and 0.0404 for liquid compositions and of 0.0054 and 0.0254 for vapor-phase mole fractions, for the proposed ANN and GP models, respectively, are a testament to the reliability of the proposed models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hornik K (1991) Approximation capabilities of multilayer feedforward networks. Neural Netw 4:251–257. doi:10.1016/0893-6080(91)90009-T

    Article  Google Scholar 

  2. Widrow B, Rumelhart DE, Lehr MA (1994) Neural networks: applications in industry, business and science. Commun ACM 37:93–105. doi:10.1145/175247.175257

    Article  Google Scholar 

  3. Azari A, Atashrouz S, Mirshekar H (2013) Prediction the Vapor–Liquid Equilibria of CO2-Containing Binary Refrigerant Mixtures Using Artificial Neural Networks. ISRN Chem Eng 2013:1–11. doi:10.1155/2013/930484

    Article  Google Scholar 

  4. Nguyen VD, Tan RR, Brondial Y, Fuchino T (2007) Prediction of vapor–liquid equilibrium data for ternary systems using artificial neural networks. Fluid Phase Equilib 254:188–197. doi:10.1016/j.fluid.2007.03.014

    Article  Google Scholar 

  5. Bilgin M (2004) Isobaric vapour-liquid equilibrium calculations of binary systems using neural network. J Serbian Chem Soc 69:669–674. doi:10.2298/JSC0409669B

    Article  Google Scholar 

  6. Sharma R, Singhal D, Ghosh R, Dwivedi A (1999) Potential applications of artificial neural networks to thermodynamics: vapor–liquid equilibrium predictions. Comput Chem Eng 23:385–390. doi:10.1016/S0098-1354(98)00281-6

    Article  Google Scholar 

  7. Nikkholgh MR, Moghadassi AR, Parvizian F, Hosseini SM (2010) Estimation of vapour-liquid equilibrium data for binary refrigerant systems containing 1,1,1,2,3,3,3-heptafluoropropane (R227ea) by using artificial neural networks. Can J Chem Eng. doi:10.1002/cjce.20272

    Google Scholar 

  8. Mohanty S (2005) Estimation of vapour liquid equilibria of binary systems, carbon dioxide–ethyl caproate, ethyl caprylate and ethyl caprate using artificial neural networks. Fluid Phase Equilib 235:92–98. doi:10.1016/j.fluid.2005.07.003

    Article  Google Scholar 

  9. Faúndez CA, Quiero FA, Valderrama JO (2010) Phase equilibrium modeling in ethanol + congener mixtures using an artificial neural network. Fluid Phase Equilib 292:29–35. doi:10.1016/j.fluid.2010.01.001

    Article  Google Scholar 

  10. Petersen R, Fredenslund A, Rasmussen P (1994) Artificial neural networks as a predictive tool for vapor–liquid equilibrium. Comput Chem Eng 18:S63–S67. doi:10.1016/0098-1354(94)80011-1

    Article  Google Scholar 

  11. Sathya R, Abraham A (2013) Comparison of Supervised and unsupervised learning algorithms for pattern classification. Int J Adv Res Artif Intell. doi:10.14569/IJARAI.2013.020206

    Google Scholar 

  12. Bishop CM, Roach CM (1992) Fast curve fitting using neural networks. Rev Sci Instrum 63:4450. doi:10.1063/1.1143696

    Article  Google Scholar 

  13. Cramer NL (1985) A representation for the adaptive generation of simple sequential programs. In: Proceedings 1st international conference on genetic algorithms. Laurence Erlbaum Associates Inc., pp 183–187

  14. Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge

    MATH  Google Scholar 

  15. Schmidt M, Lipson H (2009) Distilling free-form natural laws from experimental data. Science 324:81–85. doi:10.1126/science.1165893

    Article  Google Scholar 

  16. Gandomi AH, Alavi AH, Ryan C (2015) Handbook of genetic programming applications. Springer, Berlin. doi:10.1007/978-3-319-20883-1

    Book  Google Scholar 

  17. Langdon WB, Gustafson SM (2010) Genetic Programming and evolvable machines: ten years of reviews. Genet Program Evolv Mach 11:321–338. doi:10.1007/s10710-010-9111-4

    Article  Google Scholar 

  18. Korea Thermophysical Properties Data Bank (KDB) (2015). http://www.cheric.org/research/kdb/

  19. NIST standard reference database 103b (NIST TDE) (2015). http://trc.nist.gov/tde.html

  20. Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signal Syst 2:303–314. doi:10.1007/BF02551274

    Article  MathSciNet  MATH  Google Scholar 

  21. Marquardt DW (1963) An Algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441. doi:10.1137/0111030

    Article  MathSciNet  MATH  Google Scholar 

  22. Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q J Appl Math 2:164–168

    Article  MathSciNet  MATH  Google Scholar 

  23. Hagan MT, Menhaj MB (1994) Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5:989–993. doi:10.1109/72.329697

    Article  Google Scholar 

  24. Schmidt M, Lipson H (2015) Eureqa, Nutonian Inc., http://www.nutonian.com

  25. Peng DY, Robinson DB (1976) A new two-constant equation of State. Ind Eng Chem Fundam 15:59–64. doi:10.1021/i160057a011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliakbar Roosta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 86 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roosta, A., Hekayati, J. & Javanmardi, J. Application of artificial neural networks and genetic programming in vapor–liquid equilibrium of C1 to C7 alkane binary mixtures. Neural Comput & Applic 31, 1165–1172 (2019). https://doi.org/10.1007/s00521-017-3150-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3150-1

Keywords

Navigation