Skip to main content
Log in

Genetic programming-based fusion of HOG and LBP features for fully automated texture classification

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Classifying texture images relies heavily on the quality of the extracted features. However, producing a reliable set of features is a difficult task that often requires human intervention to select a set of prominent primitives. The process becomes more difficult when it comes to fuse low-level descriptors because of data redundancy and high dimensionality. To overcome these challenges, several approaches use machine learning to automate primitive detection and feature extraction while combining low-level descriptors. Nevertheless, most of these approaches performed the two processes separately while ignoring the correlation between them. In this paper, we propose a genetic programming (GP)-based method that combines the two well-known features of histograms of oriented gradients and local binary patterns. Indeed, a three-layer tree-based binary program is learned using genetic programming for each pair of classes. The three layers incorporate patch detection, feature fusion and classification in the GP optimization process. The feature fusion function is designed to handle different variations, notably illumination and rotation, while reducing dimensionality. The proposed method has been compared, using six challenging collections of images, with multiple domain-expert GP and non-GP methods for binary and multi-class classifications. Results show that the proposed method significantly outperforms or achieves similar performance to relevant methods from the state-of-the-art, even with a limited number of training instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Huang, Y., Qiu, C., Yuan, K.: Surface defect saliency of magnetic tile. Vis. Comput. 36(1), 85–96 (2020). https://doi.org/10.1007/s00371-018-1588-5

    Article  MathSciNet  Google Scholar 

  2. Jlassi, A., ElBedoui, K., Barhoumi, W., Maktouf, C.: Unsupervised method based on probabilistic neural network for the segmentation of corpus callosum in MRI scans. In: Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, SCITEPRESS—Science and Technology Publications (2019). https://doi.org/10.5220/0007400205450552

  3. Dogra, J., Jain, S., Sood, M.: Glioma extraction from MR images employing gradient based kernel selection graph cut technique. Vis. Comput. (2019). https://doi.org/10.1007/s00371-019-01698-3

    Article  Google Scholar 

  4. Zhang, X., Wang, J., Lu, G., Zhang, X.: Pattern understanding and synthesis based on layout tree descriptor. Vis. Comput. (2019). https://doi.org/10.1007/s00371-019-01723-5

    Article  Google Scholar 

  5. Lumia, R., Haralick, R.M., Zuniga, O., Shapiro, L., Pong, T.-C., Wang, F.-P.: Texture analysis of aerial photographs. Pattern Recogn. 16(1), 39–46 (1983). https://doi.org/10.1016/0031-3203(83)90006-7

    Article  Google Scholar 

  6. Kaiser, A., Ybanez Zepeda, J.A., Boubekeur, T.: A survey of simple geometric primitives detection methods for captured 3D data. In: Computer Graphics Forum, vol. 38, Wiley Online Library, pp. 167–196 (2019)

  7. Trier, Ø.D., Jain, A.K., Taxt, T.: Feature extraction methods for character recognition—a survey. Pattern Recogn. 29(4), 641–662 (1996)

    Article  Google Scholar 

  8. Latif, A., Rasheed, A., Sajid, U., Ahmed, J., Ali, N., Ratyal, N.I., Zafar, B., Dar, S.H., Sajid, M., Khalil, T.: Content-based image retrieval and feature extraction: a comprehensive review. Math. Probl. Eng. (2019). https://doi.org/10.1155/2019/9658350

    Article  Google Scholar 

  9. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996). https://doi.org/10.1016/0031-3203(95)00067-4

    Article  Google Scholar 

  10. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), IEEE. https://doi.org/10.1109/cvpr.2005.177

  11. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A.: Describing textures in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3606–3613 (2014)

  12. Nanni, L., Lumini, A., Brahnam, S.: Survey on LBP based texture descriptors for image classification. Expert Syst. Appl. 39(3), 3634–3641 (2012). https://doi.org/10.1016/j.eswa.2011.09.054

    Article  Google Scholar 

  13. Wu, X., Sun, J.: Joint-scale LBP: a new feature descriptor for texture classification. Vis. Comput. 33(3), 317–329 (2017). https://doi.org/10.1007/s00371-015-1202-z

    Article  Google Scholar 

  14. Palaniappan, K., Bunyak, F., Kumar, P., Ersoy, I., Jaeger, S., Ganguli, K., Haridas, A., Fraser, J., Rao, R.M., Seetharaman, G.: Efficient feature extraction and likelihood fusion for vehicle tracking in low frame rate airborne video. In: 2010 13th International Conference on Information Fusion, IEEE, (2010). https://doi.org/10.1109/icif.2010.5711891

  15. Islam, B., Mahmud, F., Hossain, A.: High performance facial expression recognition system using facial region segmentation, fusion of HOG & LBP features and multiclass SVM. In: 2018 10th International Conference on Electrical and Computer Engineering (ICECE). IEEE, pp. 42–45 (2018). https://doi.org/10.1109/ICECE.2018.8636780

  16. Islam, B., Mahmud, F., Hossain, A., Goala, P.B., Mia, M.S.: A facial region segmentation based approach to recognize human emotion using fusion of HOG & LBP features and artificial neural network. In: 2018 4th International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT), IEEE, pp. 642–646 (2018). https://doi.org/10.1109/CEEICT.2018.8628140

  17. Zhao, Y., Huang, D.-S., Jia, W.: Completed local binary count for rotation invariant texture classification. IEEE Trans. Image Process. 21(10), 4492–4497 (2012). https://doi.org/10.1109/tip.2012.2204271

    Article  MathSciNet  MATH  Google Scholar 

  18. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002). https://doi.org/10.1109/tpami.2002.1017623

    Article  MATH  Google Scholar 

  19. Dhara, A.K., Mukhopadhyay, S., Dutta, A., Garg, M., Khandelwal, N.: A combination of shape and texture features for classification of pulmonary nodules in lung CT images. J. Digit. Imaging 29(4), 466–475 (2016). https://doi.org/10.1007/s10278-015-9857-6

    Article  Google Scholar 

  20. Bira, C., Hobincu, R., Petrica, L., Codreanu, V., Cotofana, S.: Energy-efficient computation of l1 and l2 norms on a FPGA SIMD accelerator, with applications to visual search. In: Proceedings of the 18th International Conference on Computers, Advances in Information Science and Applications, vol. 2, pp. 432–437 (2014)

  21. Koza, J.: Genetic programming as a means for programming computers by natural selection. Stat. Comput. (1994). https://doi.org/10.1007/bf00175355

    Article  Google Scholar 

  22. Al-Sahaf, H., Song, A., Neshatian, K., Zhang, M.: Extracting image features for classification by two-tier genetic programming. In: 2012 IEEE Congress on Evolutionary Computation. IEEE (2012). https://doi.org/10.1109/cec.2012.6256412

  23. Al-Sahaf, H., Song, A., Neshatian, K., Zhang, M.: Two-tier genetic programming: towards raw pixel-based image classification. Expert Syst. Appl. 39(16), 12291–12301 (2012). https://doi.org/10.1016/j.eswa.2012.02.123

    Article  Google Scholar 

  24. Ebner, M., Zell, A.: Evolving a task specific image operator. In: Poli, R., et al. (eds.) Evolutionary Image Analysis, Signal Processing and Telecommunications, pp. 74–89. Springer, Berlin (1999). https://doi.org/10.1007/10704703_6

    Chapter  Google Scholar 

  25. Trujillo, L., Olague, G.: Synthesis of interest point detectors through genetic programming. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation—GECCO ’06. ACM Press (2006). https://doi.org/10.1145/1143997.1144151

  26. Carcagnì, P., Coco, M.D., Leo, M., Distante, C.: Facial expression recognition and histograms of oriented gradients: a comprehensive study. SpringerPlus (2015). https://doi.org/10.1186/s40064-015-1427-3

    Article  Google Scholar 

  27. Tabatabaei, S.M., Chalechale, A.: Noise-tolerant texture feature extraction through directional thresholded local binary pattern. Vis. Comput. (2019). https://doi.org/10.1007/s00371-019-01704-8

    Article  Google Scholar 

  28. Guo, Z., Zhang, L., Zhang, D.: Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recogn. 43(3), 706–719 (2010). https://doi.org/10.1016/j.patcog.2009.08.017

    Article  MATH  Google Scholar 

  29. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: a benchmark. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE (2009). https://doi.org/10.1109/cvpr.2009.5206631

  30. Wang, X., Han, T.X., Yan, S.: An HOG–LBP human detector with partial occlusion handling. In: 2009 IEEE 12th International Conference on Computer Vision. IEEE (2009). https://doi.org/10.1109/iccv.2009.5459207

  31. Douze, M., Gaidon, A., Jégou, H., Marszalek, M., Schmid, C.: INRIA-LEARs video copy detection system. In: TREC Video Retrieval Evaluation (TRECVID Workshop), Gaithersburg, United States (2008). https://hal.inria.fr/inria-00548664

  32. Yilmaz, M.B., Yanikoglu, B., Tirkaz, C., Kholmatov, A.: Offline signature verification using classifier combination of HOG and LBP features. In: 2011 International Joint Conference on Biometrics (IJCB). IEEE (2011). https://doi.org/10.1109/ijcb.2011.6117473

  33. Vargas, F., Ferrer, M., Travieso, C., Alonso, J.: Off-line handwritten signature GPDS-960 corpus. In: Ninth International Conference on Document Analysis and Recognition (ICDAR 2007), vol 2. IEEE (2007). https://doi.org/10.1109/icdar.2007.4377018

  34. Zhang, J., Huang, K., Yu, Y., Tan, T., et al.: Boosted local structured HOG–LBP for object localization. In: Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, pp. 1393–1400 (2011). https://doi.org/10.1109/CVPR.2011.5995678

  35. Ghorbani, M., Targhi, A.T., Dehshibi, M.M.: HOG and LBP: towards a robust face recognition system. In: 2015 Tenth International Conference on Digital Information Management (ICDIM). IEEE (2015). https://doi.org/10.1109/icdim.2015.7381860

  36. Al-Sahaf, H., Zhang, M., Johnston, M.: Binary image classification using genetic programming based on local binary patterns. In: 2013 28th International Conference on Image and Vision Computing New Zealand (IVCNZ 2013). IEEE (2013). https://doi.org/10.1109/ivcnz.2013.6727019

  37. Lensen, A., Al-Sahaf, H., Zhang, M., Xue, B.: Genetic programming for region detection, feature extraction, feature construction and classification in image data. In: Lecture Notes in Computer Science, pp. 51–67. Springer (2016). https://doi.org/10.1007/978-3-319-30668-1_4

  38. Bi, Y., Zhang, M., Xue, B.: Genetic programming for automatic global and local feature extraction to image classification. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2018)

  39. Hwang, W.-J., Wen, K.-W.: Fast kNN classification algorithm based on partial distance search. Electron. Lett. 34(21), 2062 (1998). https://doi.org/10.1049/el:19981427

    Article  Google Scholar 

  40. Ghazouani, H., Barhoumi, W., Antit, Y.: A genetic programming method for scale-invariant texture classification. In: Proceedings of the International Conference on Engineering Applications of Neural Networks (EANN), pp. 593–604 (2020). https://doi.org/10.1007/978-3-030-48791-1_47

  41. Ghazouani, H., Barhoumi, W.: Genetic programming-based learning of texture classification descriptors from local edge signature. Expert Syst. Appl. 161, 113667 (2020). https://doi.org/10.1016/j.eswa.2020.113667

    Article  Google Scholar 

  42. Beygelzimer, A., Langford, J., Ravikumar, P.: Multiclass classification with filter trees. Preprint, June 2

  43. Montana, D.J.: Strongly typed genetic programming. Evol. Comput. 3(2), 199–230 (1995). https://doi.org/10.1162/evco.1995.3.2.199

    Article  Google Scholar 

  44. Danielsson, P.-E.: Euclidean distance mapping. Comput. Gr. Image Process. 14(3), 227–248 (1980). https://doi.org/10.1016/0146-664x(80)90054-4

    Article  Google Scholar 

  45. Nguyen, H.V., Bai, L.: Cosine similarity metric learning for face verification. In: Asian Conference on Computer Vision. Springer, pp. 709–720 (2010)

  46. Satorra, A., Bentler, P.M.: A scaled difference chi-square test statistic for moment structure analysis. Psychometrika 66(4), 507–514 (2001)

    Article  MathSciNet  Google Scholar 

  47. Mallikarjuna, P., Targhi, A., Fritz, M., Hayman, E., Caputo, B., Eklundh, J.-O.: The kth-tips2 database. http://www.nada.kth.se/cvap/databases/kth-tips/

  48. Dana, K.J., van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real-world surfaces. ACM Trans. Gr. 18(1), 1–34 (1999). https://doi.org/10.1145/300776.300778

    Article  Google Scholar 

  49. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algorithms. In: Foundations of Genetic Algorithms, pp. 69–93. Elsevier (1991). https://doi.org/10.1016/b978-0-08-050684-5.50008-2

  50. Fortin, F.-A., Rainville, F.-M.D., Gardner, M.-A., Parizeau, M., Gagné, C.: Deap: evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)

    MathSciNet  Google Scholar 

  51. Suykens, J., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999). https://doi.org/10.1023/a:1018628609742

    Article  Google Scholar 

  52. Rish, I., et al.: An empirical study of the Naive Bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3, pp. 41–46 (2001)

  53. Safavian, S., Landgrebe, D.: A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 21(3), 660–674 (1991). https://doi.org/10.1109/21.97458

    Article  MathSciNet  Google Scholar 

  54. Espejo, P., Ventura, S., Herrera, F.: A survey on the application of genetic programming to classification. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 40(2), 121–144 (2010). https://doi.org/10.1109/tsmcc.2009.2033566

    Article  Google Scholar 

  55. Atkins, D., Neshatian, K., Zhang, M.: A domain independent genetic programming approach to automatic feature extraction for image classification. In: IEEE Congress of Evolutionary Computation (CEC). IEEE (2011). https://doi.org/10.1109/cec.2011.5949624

  56. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  57. Merabet, Y.E., Ruichek, Y., Idrissi, A.E.: Attractive-and-repulsive center-symmetric local binary patterns for texture classification. Eng. Appl. Artif. Intell. 78, 158–172 (2019). https://doi.org/10.1016/j.engappai.2018.11.011

    Article  Google Scholar 

  58. Amirolad, A., Arashloo, S.R., Amirani, M.C.: Multi-layer local energy patterns for texture representation and classification. Vis. Comput. 32(12), 1633–1644 (2016). https://doi.org/10.1007/s00371-016-1220-5

    Article  Google Scholar 

  59. Nguyen, V.-L., Vu, N.-S., Gosselin, P.-H.: A handcrafted normalized-convolution network for texture classification. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 1238–1245 (2017)

  60. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid Barhoumi.

Ethics declarations

Conflict of interest

Mohamed Hazgui declares that he has no conflict of interest. Haythem Ghazouani declares that he has no conflict of interest. Walid Barhoumi declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazgui, M., Ghazouani, H. & Barhoumi, W. Genetic programming-based fusion of HOG and LBP features for fully automated texture classification. Vis Comput 38, 457–476 (2022). https://doi.org/10.1007/s00371-020-02028-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-02028-8

Keywords

Navigation