
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS

EVOLUČNÍ PŘÍSTUP K SYNTÉZE A OPTIMALIZACI
BĚŽNÝCH A POLYMORFNÍCH OBVODŮ

EVOLUTIONARY APPROACH TO SYNTHESIS AND OPTIMIZATION OF ORDINARY

AND POLYMORPHIC CIRCUITS

DISERTAČNÍ PRÁCE
PHD THESIS

AUTOR PRÁCE Ing. ZBYŠEK GAJDA
AUTHOR

VEDOUCÍ PRÁCE doc. Ing. LUKÁŠ SEKANINA, Ph.D.
SUPERVISOR

BRNO 2011

Abstract
This thesis deals with the evolutionary design and optimization of ordinary and polymor-
phic circuits. New extensions of Cartesian Genetic Programming (CGP) that allow reducing
of the computational time and obtaining more compact circuits are proposed and evalu-
ated. Second part of the thesis is focused on new methods for synthesis of polymorphic
circuits. Proposed methods, based on polymorphic binary decision diagrams and polymor-
phic multiplexing, extend the ordinary circuit representations with the aim of including
polymorphic gates. In order to reduce the number of gates in circuits synthesized using
proposed methods, an evolutionary optimization based on CGP is implemented and eval-
uated. The implementations of polymorphic circuits optimized by CGP represent the best
known solutions if the number of gates is considered as the target criterion.

Keywords
Polymorphic gate, polymorphic circuit, digital circuit design, evolutionary design, evolu-
tionary optimization, Cartesian Genetic Programming.

Bibliographic Citation
Zbyšek Gajda: Evolutionary Approach to Synthesis and Optimization of Ordinary and
Polymorphic Circuits, PhD thesis, Brno, FIT BUT, 2011

Abstrakt
Tato disertační práce se zabývá evolučním návrhem a optimalizací jak běžných, tak poly-
morfních digitálních obvodů. V práci jsou uvedena a vyhodnocena nová rozšíření kartézského
genetického programování (Cartesian Genetic Programming, CGP), která umožňují zkrá-
cení výpočetního času a získávání kompaktnějších obvodů. Další část práce se zaměřuje
na nové metody syntézy polymorfních obvodů. Uvedené metody založené na polymorfních
binárních rozhodovacích diagramech a polymorfním multiplexovaní rozšiřují běžné reprezen-
tace digitálních obvodů, a to s ohledem na začlenění polymorfních hradel. Z důvodu snížení
počtu hradel v obvodech syntetizovaných uvedenými metodami je provedena evoluční opti-
malizace založená na CGP. Implementované polymorfní obvody, které jsou optimalizovány
s využitím CGP, reprezentují nejlepší známá řešení, jestliže je jako cílové kritérium brán
počet hradel obvodu.

Klíčová slova
Polymorfní hradlo, polymorfní obvod, návrh digitálních obvodů, evoluční návrh, evoluční
optimalizace, kartézské genetické programování.

Citace
Zbyšek Gajda: Evolutionary Approach to Synthesis and Optimization of Ordinary and
Polymorphic Circuits, disertační práce, Brno, FIT VUT v Brně, 2011

Evolutionary Approach to
Synthesis and Optimization of
Ordinary and Polymorphic Circuits

Prohlášení
Prohlašuji, že jsem tuto disertační práci vypracoval samostatně pod vedením doc. Lukáše
Sekaniny.

. .
Zbyšek Gajda

3. března 2011

Poděkování
Na tomto místě bych rád poděkoval Lukáši Sekaninovi, který byl mým školitelem během
doktorského studia. Velmi si cením jeho neutuchající podpory během výzkumu a jeho
neocenitelné pomoci při psaní článků i této práce.

Dále děkuji zaměstnancům Ústavu počítačových systémů za skvělé pracovní podmínky
a přátelské prostředí, jmenovitě vedoucímu ústavu, Zdeňku Kotáskovi, kolegům, Michalu
Bidlovi, Jiřímu Jarošovi, Martinu Strakovi, Josefu Strnadelovi, Václavu Šimkovi, Jaroslavu
Škarvadovi, Richardovi Růžičkovi, a asistentce ústavu, Marii Gaďorkové.

V neposlední řadě děkuji rodičům, Marii a Janu Gajdovým, a všem dobrým duším,
které mi dodávaly sílu a přinášely inspiraci.

Výsledky této práce vznikly za podpory Grantové agentury České republiky a Minis-
terstva školství, mládeže a tělovýchovy v rámci projektů: Metody návrhu polymorfních čís-
licových obvodů, GAČR, GA102/06/0599, 2006-2008, Návrh a obvodová realizace zařízení
pro automatické generování patentovatelných invencí, GAČR, GA102/07/0850, 2007-2009,
Integrovaný přístup k výchově studentů DSP v oblasti paralelních a distribuovaných sys-
témů, GAČR, GD102/05/H050, 2005-2008 a Výzkum informačních technologií z hlediska
bezpečnosti, CEZ MŠMT, MSM0021630528, 2007-2013.

c© Zbyšek Gajda, 2011.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 4
1.1 Thesis Organization . 5

2 Overview of Digital Circuit Design 6
2.1 Digital Circuits – Principles . 6
2.2 Standard Representations of Logic Functions 7
2.3 Combinational-Circuit Synthesis . 7

2.3.1 Two-level minimization methods . 8
2.3.2 Multi-level representations . 9
2.3.3 Synthesis tools . 10

2.4 Application-Specific Circuits . 11
2.4.1 Combinational multiplier . 11
2.4.2 Binary sorters . 12
2.4.3 Even parity . 12

3 Evolutionary Design of Digital Circuits and Evolvable Hardware 14
3.1 Evolutionary Algorithms . 14
3.2 Evolvable Hardware . 17
3.3 Cartesian Genetic Programming . 18

3.3.1 Basic CGP . 18
3.3.2 Circuit evolution using CGP . 19

3.4 Scalability Problem . 21

4 Polymorphic Electronics 23
4.1 Polymorphic Gates . 23
4.2 Polymorphic Circuits . 24

4.2.1 REPOMO32 platform . 26
4.3 Applications of Polymorphic Electronics . 26

4.3.1 Polymorphic FIR filter . 27
4.3.2 Polymorphic controller . 27
4.3.3 Self-checking adder . 27

5 Goals 29

6 Extensions of Standard Cartesian Genetic Programming 30
6.1 Design Phase and Optimization Phase . 30
6.2 Modified Fitness Functions . 30
6.3 Selection Strategies . 32

1

6.4 Short-Circuit Evaluation . 33
6.5 Training-Set Reorganization . 33

7 Evolutionary Optimization of Circuit Designs 35
7.1 Benchmark Problems . 35

7.1.1 Small binary multipliers . 36
7.1.2 Binary majority circuits . 36
7.1.3 The LGSynth91 benchmarks . 36

7.2 Experimental Setup . 37
7.3 Experimental Results . 37

7.3.1 Evaluation time reduction . 37
7.3.2 Evolution from a random population 39
7.3.3 Post-synthesis optimization . 39

7.4 Summary . 43

8 Utilization of Polymorphic Gates in Evolutionary Design 47
8.1 Gate-Level and Transistor-Level Designs . 48
8.2 The NAND/NOR and NOR/NAND Polymorphic Gates 50
8.3 Experimental Setup . 50
8.4 Experimental Results . 52

8.4.1 The one-bit full adder . 52
8.4.2 The two-bit adder . 52
8.4.3 Majority circuits . 54

8.5 Summary . 55

9 Polymorphic Circuit Design 58
9.1 Polymorphic Circuit Synthesis Problem . 58
9.2 Proposed Methods . 59

9.2.1 Evolutionary Design . 59
9.2.2 Polymorphic BDD-based Synthesis 60
9.2.3 Polymorphic Multiplexing . 62

9.3 Benchmark Circuits . 64
9.4 Experimental Results . 65

9.4.1 Direct evolutionary design using CGP 65
9.4.2 Results of Polymorphic BDDs . 65
9.4.3 Results of Polymorphic Multiplexing 66

9.5 Summary . 68

10 Evolutionary Optimization of Polymorphic Circuits 70
10.1 Evolutionary Optimization Algorithm . 70
10.2 Experimental Setup . 71
10.3 Experimental Results . 71

10.3.1 Short-circuit evaluation . 71
10.3.2 Circuit optimization . 71

10.4 Summary . 72

11 Conclusions 81
11.1 Contributions . 81
11.2 Possibilities of Future Research . 82

2

Bibliography 84

3

Chapter 1

Introduction

Although the foundation of the digital circuit design dates from the 1950s, there are still
many open areas to explore. New opportunities occasionally grow when new technologies
are invented. Polymorphic electronics can be considered as one of them. Polymorphic
electronics can give us an alternative to conventional digital electronics in some application
domains. Researchers expect the utilization of this technology in connection with embodied
intelligence where capabilities of sensing and logic operations can be combined in one com-
pact structure, a polymorphic circuit. In continuing research based on graphene technology,
scientists are developing components with polymorphic functionality that can be reconfig-
ured on the fly into six different logic gates [99]. Unfortunately, conventional synthesis
algorithms are not directly applicable for solving the polymorphic circuit synthesis problem
which is, in fact, a more difficult case than the classic digital circuit synthesis problem.

A synthesis algorithm operates over a circuit representation. Various models have been
devised to represent digital circuits in such a form which is suitable for synthesis algorithms.
Boolean expressions, truth tables and Binary Decision Diagrams (BDD) among others have
been utilized. The synthesis algorithms are capable of transforming the initial circuit repre-
sentation (which is derived from the behavioral specification) onto a circuit representation
which is suitable for subsequent circuit fabrication. Usually the goal of logic synthesis is
to represent a circuit in the simplest way. The circuit representation, together with the
synthesis algorithm, determines the space of possible implementations that one can obtain
as a result of the synthesis process.

It remains unclear how to represent a gate-level polymorphic circuit and to define such
transformations over a chosen representation which will lead to an efficient implementation
of the polymorphic circuit using a given set of ordinary and polymorphic gates. A partial
success was achieved using evolutionary design methods which do not pose any requirements
on the representation or the set of transformations. However, because the methods are
search-based, they are not scalable and only relatively small polymorphic circuits have
evolved from scratch. Recall that a similar discipline, evolutionary optimization, allows us
to optimize the circuits which have been created by the usage of conventional methods.

This thesis further develops the concept of evolutionary circuit design and optimization
that have been known for almost 20 years. The evolutionary approach is primarily applied to
the area of polymorphic circuit synthesis with the aim of proposing new synthesis algorithms
which lead to more compact circuits.

4

1.1 Thesis Organization

This thesis is organized as follows. The basic principles of digital circuit design are intro-
duced in Chapter 2. This chapter is mainly devoted to basic general design and optimization
methods. It introduces some application-specific methods too. An introduction to the evo-
lutionary circuit design is given in Chapter 3 together with the description of Evolvable
Hardware concepts and some issues related to evolutionary circuit design. The state of
the art of polymorphic electronics area is summarized in Chapter 4. Chapters 2, 3, 4
represent prerequisites for understanding the remaining chapters. The goals of the thesis
are formulated in Chapter 5. Subsequent chapters represent the main contributions of the
thesis.

Several extensions for the evolutionary algorithm, especially standard Cartesian Genetic
Programming (CGP), are proposed in Chapter 6. We divide the evaluation process into the
design phase and optimization phase that allows for a more accurate experimental setup to
be applied. We modify the standard fitness function to support an optimization with pri-
orities. We also propose a new selection strategy. For speeding up of the complex-problem
evaluation, we introduce the short-circuit evaluation and the training-set reordering to the
parallel simulation. The proposed extensions are utilized in the following experiments.

The optimization of ordinary digital circuits is performed in Chapter 7. For evaluation
of the results of optimization, we utilize various benchmarks including the multipliers,
majority circuits and the LGSynth91 benchmark set. The optimization is performed using
the extended CGP and its results are summarized in Section 7.4.

The gate-level evolutionary design with the aim of reducing the number of utilized
transistors is investigated in Chapter 8. The prioritized fitness function utilized in Cartesian
Genetic Programming is examined on the adder and majority benchmarks. In order to
reduce the number of transistors in obtained circuits, we add specific polymorphic gates to
the set of available gates. Results of the experiments are summarized in Section 8.5.

Proposed methods for polymorphic-circuits design are described and evaluated in Chap-
ter 9. In particular, the standard Cartesian Genetic Programming, Polymorphic Multiplex-
ing and Polymorphic Binary Decision Diagrams are utilized in the design. We propose a
set of benchmarks to compare the algorithms for polymorphic circuit synthesis.

Chapter 10 subsequently deals with the evolutionary optimization of polymorphic cir-
cuits conducted by the extended CGP. The best-obtained polymorphic circuits are summa-
rized in Section 10.4

Conclusions, the main contributions of this thesis and future work are given in Chap-
ter 11.

5

Chapter 2

Overview of Digital Circuit Design

The understanding of terms, which are common in digital circuit design, is important for
one’s orientation in the following chapters. So, let us briefly introduce some principles,
structures and methods which are widely used in digital circuit design. Note that the
following overview is mostly based on [109].

2.1 Digital Circuits – Principles

Digital logic encapsulates the analog world by mapping an infinite set of real values for a
physical quality into two subsets which correspond to just two possible numbers or logic
values, 0 and 1. As a result, digital logic circuits can be analyzed and designed functionally,
using Boolean algebra, truth tables and other abstract means, to describe the operation by
binary digits or bits (0s and 1s) in a circuit.

A logic circuit, whose output values depend only on its current input values, is called a
combinational circuit. Its operation is fully described by a truth table that lists all combi-
nations of input values and the output value(s) produced by each of them. A circuit with
memory, whose outputs depend on the current input and the sequence of past inputs, is
called a sequential circuit. The behavior of such a circuit may be described by a state table
that specifies its output and the next state as functions of its current state and input.

The most basic digital combinational circuits are called gates. In general, a gate has one
or more inputs and produces an output which is a function of the current input value(s).
While the inputs and outputs may be analog effects such as voltage, they are modeled as
taking on just two discrete logic values, 0 and 1. The most common implementations of
gates are the AND, OR, NOT, NOR, NAND and XOR gates.

A combinational circuit may contain an arbitrary number of logic gates but no feedback
loops. A feedback loop is a signal path of a circuit that allows the output of a gate to
propagate back to the input of that same gate; such a loop generally creates sequential
circuit behavior.

In a real design problem, we usually start out with an informal description of the circuit.
Often the most challenging and creative part of design is to formalize the circuit description.
A formal circuit description defines the circuit’s input and output signals and specifies its
functional behavior by means of the truth tables and logic expressions. Once we have
created the formal description, we can usually follow a synthesis procedure to obtain a logic
diagram for a circuit with required functional behavior.

The synthesis procedures are mostly introduced for a one-output circuit description,

6

but combinational circuits may have one or more outputs. Most synthesis techniques can
be extended in an obvious way from a single-output to multiple-output circuit synthesis
procedure, for instance, repeating the steps for each output of a circuit description.

2.2 Standard Representations of Logic Functions

Five popular representations for a combinational logic function are suggested [109]: a truth
table; an algebraic sum of minterms (a canonical sum); a minterm list using

∑
notation; an

algebraic product of maxterms (a canonical product); and a maxterm list using
∏

notation.
Each one of these representations specifies exactly the same information. For the purpose
of the thesis, we introduce the truth table representation and canonical sum.

Truth table

The most common representation of a logic function is the truth table. This representation
simply lists the output of the circuit for every possible input combination. Traditionally,
the input combinations are arranged in rows in ascending binary counting order, and the
corresponding output values are written in a column that is next to the rows.

Canonical sum

The logic function can also be expressed algebraically. In order to do so, we first need to
give some definitions: a literal is a variable or the complement of a variable; a product term
is a single literal or a logical product of two or more literals; a sum-of-product expression
is a logical sum of product terms; and a minterm is a product term in which no variable
appears more than once.

There is a close correspondence between the truth table and minterms. A minterm can
be defined as a product term that is logic 1 in exactly one row of the truth table. Based on
the correspondence between the truth table and minterms, we can easily create an algebraic
representation of a logic function from its truth table. The canonical sum of a logic function
is a sum of the minterms corresponding to truth-table rows (input combinations) for which
the function produces logic 1 at the output. The term sum of products (SOP) is widely
used for the canonical sum.

2.3 Combinational-Circuit Synthesis

We can translate any logic expression into an equivalent sum-of-product expression, by
“multiplying it out”. Such an expression may be realized directly with the AND and OR
gates. The inverters are also required for complement inputs [109]. The realized circuit is
known as a two-level AND-OR circuit.

We may insert a pair of inverters between each AND-gate output and corresponding
OR-gate input in a two-level AND-OR circuit. These inverters have no effect on the output
function of the circuit. If these inverters are absorbed into AND and OR gates, we get
AND-NOT gates at the first level and a NOT-OR gate at the second level. These are just
two different symbols for the same type of gate, a NAND gate. Thus, a two-level AND-OR
circuit can be transformed into a two-level NAND-NAND circuit by substituting some gates
[109]. This simple transformation can save a considerable amount of transistors on a chip.

7

One should note that similarly, the canonical product can be realized by an OR-AND
circuit and also this can be transformed into a NOR-NOR circuit.

It is often uneconomical to realize a logic circuit directly from the first logic expres-
sion. Canonical sum expressions are especially expensive because the number of possible
minterms grows exponentially with the number of variables. Thus, we usually minimize a
combinational circuit by reducing its number and size of gates that are necessary to realize
the required function.

2.3.1 Two-level minimization methods

The traditional minimization methods have as their starting point a truth table or, equiva-
lently, a minterm list. Most of the methods are based on a generalization of the combining
theorems in Boolean algebra. That is, if two product terms differ only in the complementing
or not of one variable, we can combine them into a single term with one less variable. So
we save one gate and the remaining gate has one fewer input. Figure 2.1 shows an example
of minimization of the logic term, z = x.y + x̄.y → z = (x+ x̄).y → z = y

z

x

y

z

x

y

z

x

y

a) b) c)

Figure 2.1: Two-level minimization. The circuits (a), (b), (c) are logically equivalent.

Karnaugh maps

A logic function can be expressed graphically into a Karnaugh map [36, 107] which is a
method to simplify a function expression. The Karnaugh map reduces the need for extensive
calculations by taking advantage of humans’ pattern-recognition capability, permitting the
fast identification and elimination of potential race hazards. In the Karnaugh map, variables
are transferred (generally from a truth table) and ordered according to the principles of
the Gray code in which only one variable changes in between squares. Once the map
is generated and the output possibilities are transcribed, the data is arranged into the
largest possible groups containing 2n cells (where n is the number of inputs in an involved
subexpression) and minterms are obtained by using basic Boolean operations.

Quine-McCluskey algorithm

The Quine-McCluskey algorithm [66, 55, 56] (also known as the method of prime implicants)
is another method used for minimization of logic functions. It is functionally identical to
Karnaugh mapping, but the tabular form makes it more efficient for use in computer al-
gorithms, and it also gives a deterministic way to check that the minimal form of a logic
function has been reached. It is sometimes referred to as the tabulation method. The algo-
rithm, and also other algorithms based on this one, is characterized by an implementation
of two phases which are known as a prime-implicant generation and a covering-problem
solution.

8

Note that an implicant is a “covering” (a sum term) of one or more minterms in a sum
of products of a logic function. A prime implicant of a function is an implicant that cannot
be covered by a more general implicant.

Other minimization methods

The above mentioned methods may be considered as basic methods. Many researchers have
discovered more effective ways to minimize combinational logic functions [109].

Some minimization problems are just too big to be solved by an “exact” algorithm.
Rather than finding a provably minimal expression for a logic function, heuristic methods
attempt to find a near-minimal one. Even for problems that can be solved by an “exact”
method, a heuristic method may find a good solution much faster. The most successful
heuristic program, Espresso-II [5], produces minimal or near-minimal results for a majority
of problems.

Multiply-output minimization can be handled by straightforward, fairly mechanical
modifications to single-output minimization methods. However, by looking at multiply-
output minimization as a problem in multivalued (non-binary) logic, the designers of the
Espresso-MV [68] algorithm were able to make substantial performance improvements over
Espresso-II.

The number of inputs sometimes reaches hundreds or thousands. Thus, even advanced-
minimization methods (such as Espresso) are unusable here, since their runtime is pro-
hibitively large for such functions. Boolean Minimizer (BOOM) [15] is capable of handling
the functions having thousands of input variables in a reasonable time.

2.3.2 Multi-level representations

Multi-level representations of logic functions have become the key data structures in elec-
tronic design because they provide a good compromise between the compactness of repre-
sentation and the efficiency of manipulation.

Binary Decision Diagrams

Binary Decision Diagrams (BDDs) [13] are data structures that allow for a canonical rep-
resentation and efficient manipulation of logic functions [7]. BDD is an acyclic graph which
is composed of decision nodes and terminal nodes. The BDD decision nodes are labeled by
input variables. The nodes decide on the basis of binary values of the variables. Terminal
nodes possess possible output values which are chosen by the input values of the nodes.
An example of the two-input XOR function, which is represented in BDD, is shown in
Figure 2.2.

The most common variation of BDD is Ordered Binary Decision Diagram (OBDD) [7]
which has input variables in an ordered form. A special variation of BDD is Multi-Terminal
BDD (MTBDD). As its terminal values can be integers, it supports a multivalued logic.

Note that the BDD representation can easily be implemented by multiplexers or look-up
tables1).

1Look-up table (LUT) is a programmable logic component that can implement an arbitrary logic function
up to a fixed number of inputs.

9

1 1 0

x1

x2 x2

0

Figure 2.2: Representation of the eXclusive-OR (XOR) function in Binary Decision Diagram
(BDD). Dashed arrows represent ‘false’ decision (when x1, x2 = 0). Solid arrows represent
‘true’ decision (when x1, x2 = 1).

x2 x2x1 x1

Figure 2.3: Representation of the eXclusive-OR (XOR) function in And-Invert Graph
(AIG). Nodes represent the AND operators; terminal nodes represent input variables; and
the marked edges represent negation.

And-invert graph

And-Invert Graph (AIG) [29, 63] is a directed, acyclic graph that represents a structural
implementation of the logical functionality of a circuit or network. An AIG consists of: two-
input nodes representing logical conjunction (the AND operators); terminal nodes labeled
with variable names; and edges optionally containing markers indicating logical negation
(see example of the XOR function in Figure 2.3). This representation of a logic func-
tion is rarely structurally efficient for large circuits, but is an efficient representation for
manipulation of logic functions.

Conversion from the network of logic gates to AIGs is fast and scalable. It only requires
that every gate can be expressed in terms of AND gates and inverters. AIGs allows also a
reverse conversion (mapping) of them into networks composed of arbitrary gates.

2.3.3 Synthesis tools

SIS [88], MVSIS [8] and ABC System [2] are the most common open synthesis tools used
in the synthesis-algorithm community. The ABC System, supports various representations
of logic functions, such as the sum of products, Binary Decision Diagrams, but primarily
And-Invert Graphs. It can perform many operations over these representations (primarily
over AIGs), such as conversions, minimizations, combinational equivalence checking and
synthesis or mapping. The above mentioned tools can be freely used by the research
community.

10

2.4 Application-Specific Circuits

The existence of hierarchy and modularity together with a frequent repetition of several
basic building elements are the fundamental properties of digital circuits. It is natural
that efficient design methods have appeared in the field of digital-circuit design [78, 109].
The methods have been developed from principles of decomposition, minimization and
re-usability.

Application-specific designs are specialized implementations for certain tasks. Their
main characteristics is that they are generic structures where the structures are designed us-
ing building components, such as full adders. The building components can either be generic
structures or designed by minimization methods. Another advantage of the application-
specific structures is that they are capable of outperforming the minimization methods in
certain cases.

Some examples of application-specific circuits are introduced in the following sub-
sections. They will be used as benchmark circuits in the following chapters. It should
be noted that optimizations presented in the thesis are mostly focused on area reduction.
Hence basic implementations of the generic circuits were chosen without considering delay
or other targets.

2.4.1 Combinational multiplier

A combinational multiplier can be designed in a basic way as the Carry-Ripple multiplier
or the Carry-Save multiplier. While the Carry-Ripple multiplier is more intuitive (see
Figure 2.4a), the Carry-Save multiplier is faster but the size of both is the same in terms
of gates. The multipliers are composed of full-adders (FA), half-adders (HA) and the AND
gates. This implementation is perfectly scalable.

b2a3

b3a3

p4p5p6p7

a1 b2 b2b2

b3b3b3 a1

a1

a1

b1 b1 b1

b0b0b0b0 a2

a2

a2

a2

a3 a0

a0

a0

a0

a3 b1

p3 p2 p1 p0

FA FA HAHA

FA

FA FAFA

HAFAFA

HA

p4p5p6p7 p3 p2 p1 p0

a0a1a2a3a0a1a2a3

HAHA HAHA

a) b)

Figure 2.4: Examples of a binary multiplier: a) the 4bx4b multiplier b) a constant-coefficient
multiplier which multiplies four-bit input by the 1001 binary value

Constant-coefficient multiplier

A constant-coefficient multiplier multiplies an input value by a single predefined constant.
Multipliers of this type can be useful in the design of FIR filters [84]. The benefit of the

11

constant-coefficient multiplier (with respect to a universal multiplier) is that it can be
implemented on a smaller area and with shorter delay. This is because it does not utilize
adders and the AND gates on positions where the constant vector holds the logic 0 (see
Figure 2.4b).

2.4.2 Binary sorters

Generic sorters usually implement a common sorting algorithm, such as the Bubble sort
or the Merge sort. However, the input-values exchanges are performed by minimum-
and maximum-decision components in a circuit implementation which is usually based
on sorting-network principles [40]. Binary sorters sort a binary vector. The transformation
of an ordinary sorter into a binary sorter is a straightforward process. Minimum (min) and
maximum (max) components (see Figure 2.5a) are just converted into AND and OR gates
(see Figure 2.5b). Note that the area-optimal sorters have very different schemes for the
various number of inputs [120].

o

i

i

i
2

1

0

0

1

2
o

o

max

max
max

min

min min o

i

i

i
2

1

0

as

0

1

2
o

o

as

a) b)

Figure 2.5: Examples of the three-input sorter: a) scheme of the ordinary sorter b) scheme
of the binary sorter

Binary majority circuits

A binary majority circuit detects the majority (dominance, median) of the input values. It
returns logic 1 only, if more logic 1s than logic 0s are given at the circuit inputs. The major-
ity circuit can be derived from binary sorters where the “middle” output (o1 in Figure 2.5b)
is considered only. The decide components, which have no influence on the “middle” output,
can be wiped out.

2.4.3 Even parity

In some cases, it is inefficient to represent a logic function by the standard canonical form.
Some problems can easily be expressed by Reed-Muller canonical form [24] which is usually
an exclusive-or sum of products.

An even-parity circuit detects the even parity of the input values. The parity can be
implemented in a serial way (see Figure 2.6a) or a cascade way (see Figure 2.6b) through
the utilization of the XOR gates. The ways differ only in delays where the cascade imple-
mentation is faster. The area-cost is the same for both implementations.

12

i
0

i
1

i
2
i
3

o

i
0

i
1

i
2

i
3

o

a) b)

Figure 2.6: An example of the four-input even parity: a) the scheme of the serial parity b)
the scheme of the cascade parity

13

Chapter 3

Evolutionary Design of Digital
Circuits and Evolvable Hardware

The aim of this chapter is to briefly introduce the evolutionary approach to engineering
design which is needed for orientation in the following chapters. In particular, evolutionary
algorithms will be employed for the design and optimization of digital circuits. A brief
introduction to Evolvable Hardware is also included.

3.1 Evolutionary Algorithms

Evolutionary algorithms (EAs) are stochastic search algorithms inspired by Darwin’s theory
of evolution [47, 78]. The search space is a space which contains all possible considered
solutions of the problem. Instead of working with one solution at a time (as random search,
hill climbing algorithm or other search methods do [57]), these algorithms work with a
population of candidate solutions (individuals). Every new population is formed by using
genetically inspired operators (such as crossover and mutation) and by selection pressure
which guides the evolution towards better areas of the search space. The evolutionary
algorithms receive guidance by evaluating every candidate solution to define its fitness
value. The fitness value, calculated by a fitness function, indicates how well the solution
fulfills the problem objective (specification).

For the most part, a higher fitness value implies a greater chance that an individual
will “live” for a longer period of time and produce offspring who will inherit a parental
genetic information. This leads to the production of a novel genetic information and to
novel solutions of the problem. The fundamental structure of an evolutionary algorithm is
captured in Figure 3.1 and its data-flow diagram is illustrated in Figure 3.2.

Because the objects in the search space can be arbitrary structures (e.g. real-valued
vectors, circuits), it is often helpful to distinguish between a representation space (genotype
space) and a solution space (phenotype space) [78]. As shown in Figure 3.3, encoded
solutions (genotypes) have to be mapped onto actual solutions (phenotypes). In general,
the problem representation consists of a representation space and the encoding function. The
fitness function is applied to evaluate phenotypes. While the fitness function works with
phenotypes, genetic operators (e.g. crossover, mutation) are defined over genotypes. There
is one important rule in this concept of genotype-phenotype mapping: a small change in the
genotype should induce a small change in the phenotype in order to obtain a reasonably
efficient search algorithm.

14

begin

time t=0

population P(t)

create initial

population P(t)

using P(t−1)

create new

t=t+1

end

terminal
condition?

+

−

for P(t)

evaluate fitness

Figure 3.1: Control-flow diagram of an evolutionary algorithm.

training set

popuation

genetic operations

function

fitness

specification

problem

solution

Figure 3.2: Data-flow diagram of an evolutionary algorithm.

representation space
solution space

fitness−values space

fitness function
encoding function

Figure 3.3: The concept of genotype-phenotype mapping.

Any evolutionary algorithm can be viewed as utilizing one or more genetic operators
which produce new candidate solutions from those previously visited in the search space.
Effective algorithms achieve the balancing of two conflicting goals: exploiting the best so-
lution which has been found up to now; and exploring the search space [57]. Each search
space is different and even identical spaces can appear very different under different repre-
sentations and fitness functions. So there is no way to choose a single search method that
can serve well in all cases [57].

15

Traditionally, four main variants of an evolutionary algorithm are presented [47, 78]:
Genetic Algorithm, Genetic Programming, Evolution Strategy and Evolutionary Program-
ming. For the purpose of this thesis, Genetic Programming and Evolution Strategy are
relevant and need to be introduced.

Genetic Programming

Genetic Programming (GP) [42, 43, 44] has been developed by John R. Koza to allow
automatic programming and program induction. GP does not distinguish between the
representation space and the solution space.

Programs (genotypes) are represented either as tree structures (Tree-based GP) or in a
linear form (Linear GP) using machine-language instructions [78]. A crossover is considered
as a major genetic operator for Genetic Programming. Figure 3.4 shows that the crossover
interchanges randomly chosen subtrees of parents’ trees without the disruption of the syn-
tax. A mutation, another genetic operator, picks a random subtree and replaces it with a
randomly generated one. A selection is typically implemented as a probabilistic operator,
using the relative fitness, which determines the selection probability of an individual. The
most important application of GP is symbolic regression.

+

+

5

5

−

x y z z x

/

*

*

*

* /

xyx

−

zz

Offspring 1

Parent 1

Offspring 2

Parent 2

Figure 3.4: A single-point crossover in Genetic Programming

An evolved program may contain segments which do not alter the result of the program
execution when they are removed from it, that is, semantically redundant segments (e.g.,
i = i + 0). Such segments are referred to as introns [48]. The program size can also
grow uncontrollably until it reaches the tree-depth maximum, while the fitness remains
unchanged. This effect is called a bloat [58]. Problems and benefits of introns, bloat and
their relationship are discussed in [48, 58].

Evolution Strategy

Evolution Strategy (ES) [76] was developed for optimization purposes in industrial appli-
cation by Bienert, Rechenberg and Schwefel in the 1960s. Like Genetic Programming,
Evolution Strategy does not distinguish between a genotype and phenotype. Each individ-
ual is represented as a real-valued vector. A mutation is regarded as the primary genetic

16

operator. It aggregates a normal-distributed random variable and a preselected standard
deviation value which are applied on every gene of a candidate vector.

Evolution Strategy usually selects the parents deterministically. The algorithm provides
two major selection scenarios: (µ+ λ)-ES and (µ, λ)-ES. The (µ+ λ)-ES selects the best µ
individuals from both offspring and parent populations (of size µ+ λ). If an offspring gets
a better fitness value than its parent, the offspring becomes the new parent. Otherwise, the
parent is mutated to create a new offspring. The (µ, λ)-ES selects the best µ individuals
from only the offspring population (of size λ).

Evolutionary design and optimization

Evolutionary algorithms can be utilized in various applications. Bentley’s classification [14]
defines four main categories of an evolutionary-algorithm application: creative evolutionary
design, evolutionary design optimization, evolutionary art and evolutionary artificial-life
forms. From the perspective of the thesis, creative evolutionary design and evolutionary
design optimization are relevant for the following chapters.

In the creative evolutionary design, the evolutionary algorithms have the ability to
generate entirely new designs when they start from little or nothing and are guided purely
by functional performance criteria [14]. An emphasis is placed on novelty and originality.
Creative evolutionary design is able to introduce new genes (variables) in a genotype and
thus to define new search spaces.

In the evolutionary design optimization, an optimization process requires finding a set of
free parameters under consideration, so that a certain quality criterion (the fitness value)
is minimized (or maximized) [12]. Designers usually start the process with an existing
design and parametrize its parts that need improvement. The parameters are encoded
into a genotype and then the evolutionary algorithm is involved in finding a sufficient
solution. Optimization places an emphasis on finding a solution which is as close to the
global optimum as possible.

3.2 Evolvable Hardware

Evolvable hardware (EHW) [25, 30, 78, 100] involves evolutionary algorithms to create
specialized hardware automatically. It brings together artificial intelligence methods and
reconfigurable hardware. In some cases, EHW is capable of changing a hardware architec-
ture and behavior dynamically and autonomously.

EHW problems fall into two categories [25]: evolutionary hardware design and adaptive
systems. The evolutionary hardware design uses evolutionary algorithms to evolve a system
that meets a predefined specification. The adaptive systems reconfigure an existing design
to counteract faults or a changed operational environment. Figure 3.5 illustrates relations
between an evolutionary algorithm (Evolution Engine and Fitness unit) and reconfigurable
hardware.

Two scenarios have been developed for hardware evolution: extrinsic evolution and
intrinsic evolution. In extrinsic evolution, all candidate circuits are simulated to obtain a
fitness score and only the final best solution in the final population is usually physically
implemented. In intrinsic evolution, every individual in every generation is evaluated in
real hardware. The importance of intrinsic evolution was discovered by Thompson [100].

Most reconfigurable devices consist of configurable blocks where functionality and in-
terconnections are controlled by a configuration bitstream. Many types of reconfigurable

17

Reconfigurable
Device

Fitness
Unit

Evolution Engine
genetic operations and

population management

Decoder

chromosome

configuration

responses

fitness

stimuli

Figure 3.5: High-level description of an evolvable hardware approach

devices have been utilized in EHW. Typical reconfigurable devices are Programmable Logic
Arrays (PLAs), Field-Programmable Gate Arrays (FPGAs) for digital designs, Field-Pro-
grammable Analog Arrays (FPAAs) for analog designs and Field-Programmable Transistor
Arrays (FPTAs) which have been applied to implement either digital or analog designs.
Special devices have also been utilized such as a Reconfigurable Polymorphic Module (RE-
POMO) [73] (see Section 4.2.1) or a Multi-Logic-unit Processor (MLP) [108]. More exotic
reconfigurable devices include reconfigurable liquid crystals (Evolution in materio) [26],
reconfigurable molecular array (NanoCell) [32], reconfigurable antenna array [51] and re-
configurable optics (deformable mirrors) [52].

Evolutionary hardware design was employed for the creation of innovative designs such
as small combinational circuits [59], digital filters [31], image operators [78], classifiers [21]
or diagnostic benchmark circuits [65].

Adaptive hardware was involved in several applications, for instance, in self-configurable
integrated circuits [92], adaptive image compression methods [75], myoelectric prosthetic
hand controller [33] or post-fabrication tuning of filters [64].

3.3 Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) is a sub-domain of GP [62]. CGP is a widely-
used method for evolution of programs and digital circuits [62, 59, 104, 35, 17]. In its
basic version which is important for the thesis, candidate circuits are directly represented
in the chromosome. Extensions of CGP have been proposed in recent years, for example,
self-modifying CGP [27], modular CGP [110, 37] or multi-chromosome CGP [111].

3.3.1 Basic CGP

CGP was introduced by Miller and Thompson a decade ago [62]. It resembles the concept of
Genetic Programming but introduces some important modifications: (i) a candidate circuit
is modeled using a directed acyclic graph; (ii) the graph is encoded as a fixed-size string

18

of integers; and (iii) a search is performed using a mutation-based Evolution Strategy (no
crossover is employed). The main advantage of CGP is that it generates very compact
solutions, that is, it can effectively reduce the total number of gates in the case of circuit
evolution [104].

In the basic version of CGP, a candidate circuit is modeled in a matrix of nc × nr
of programmable na-input elements where nc is the number of columns (the horizontal
size) and nr is the number of rows (the vertical size). The number of inputs, ni, and
outputs, no, of the circuit is fixed. Each gate input can be connected either to the output
of a gate placed in the previous l columns or to one of the circuit inputs. The l-back
(level-back) parameter, in fact, defines the level of connectivity, thus reducing/extending
the search space. For example, if l = 1 then only neighboring columns may be connected
(useful in the design of pipeline architecture); if nr = 1 and l = nc then full connectivity
is allowed. Since only combinational circuits will be evolved (in this thesis), no feedback
loops are allowed in candidate circuits. Each gate can be programmed to perform one of
na-input logic operations defined in the Γ gate set. Each element is encoded as a list of
na+ 1 (unsigned) integers where the first na components are elements indexes (connections
of element inputs and elements outputs) and the last component is the index of a logic
operation (from the Γ set). An element input can be connected to either the output of the
preceding element or to a primary circuit input. Every individual is encoded as a list of
elements using nc.nr.(na + 1) + no integers, where the last no components are the elements
indexes which represent the primary circuit outputs. As Figure 3.6 shows, while the size of
chromosome is fixed, the size of phenotype is variable (i.e. some nodes are not used).

0

1

2

1
31

2
40

2

2
50

2

1
61

5

0
70

6

3
81

7

0

7

Figure 3.6: An example of a circuit in CGP with parameters: ni = 3, no = 1, l = 6, nc = 6,
nr = 1, Γ = {0 : AND, 1 : OR}. Elements 4 and 8 are not utilized. Chromosome is: 1,2,1,
2,2,0, 1,2,0, 0,5,1, 3,6,0, 0,7,1, 7. Logic operations of elements are typed in bold. The last
integer indicates the output of the circuit.

3.3.2 Circuit evolution using CGP

The goal of the evolutionary circuit design, when it is applied to logic synthesis, is to obtain a
perfectly working circuit (all assignments to the circuit inputs have to be tested). When the
perfectly working circuit (correct circuit) is obtained, then it should be “optimized”, that
is, the number of utilized gates is minimized. Other optimization criteria can be included;
however, this thesis mostly considers the number of gates only (except Chapter 8). In the
case of the combinational circuit evolution, the fitness function to evaluate a candidate
circuit is typically defined in CGP as [35]:

fitness =

{
b when b < no.2

ni ,
b+ (nc.nr − z) otherwise,

(3.1)

where b is the number of correct output bits obtained as the response for all possible
assignments to the inputs; z denotes the number of gates utilized in a particular candidate
circuit; and nc.nr is the total number of available elements. It can be seen that the term

19

nc.nr − z is considered only if the circuit behavior is perfect, that is, if b = no.2
ni . We

can observe that the evolution is forced (by the fitness function) to first discover a perfect
working solution while the size of circuit is not important. After discovering the correct
solution, the evolution is forced to minimize the number of gates of the correct circuit.

CGP operates with the population of 1 + λ individuals (λ is from 4 to 15 typically).
The initial population is either randomly generated or created by a heuristic procedure.
The initial population can be created using conventional methods or synthesis tools (such
as ABC System, SIS) in the case of the heuristic procedure.

Every new population consists of the best individual of the previous population (previous
generation) which acts as the parental individual. The offspring individuals are created
by a point mutation operator which modifies h randomly selected genes of the parental
individual where h is a user-defined value. The implementation of the mutation operator
has to ensure that the modification of gene is legal. The algorithm is usually terminated
when the maximum number of generations is reached or a sufficient working solution is
obtained.

There is an important rule for the selection of the parental individual. In the case when
two or more individuals are able to become the parent, the individual which has not been
a parent in the previous population will be selected as the new parent. In the case when
there are more candidates then the parent is chosen randomly. This strategy is important
because it ensures diversity in the population. The strategy has been proven to be very
useful in [59, 106].

CGP has been successfully utilized in many applications [59, 17, 77, 41, 39]. It has been
investigated experimentally [61] and extended to support modularity, self-modification and
other features [110, 28]. In particular, it was shown that multipliers evolved by CGP [104]
are smaller than the best known designs of that time (when the number of 2-inputs gates
is the decision criterion).

Redundancy and neutrality

The encoding used in CGP is redundant since there may be genes that are entirely inactive.
These genes do not influence the phenotype and hence the fitness score. This phenomenon
is often referred to as neutrality. The role of neutrality has been investigated in detail
[115, 105, 61]. For example, it was discovered that the most evolvable representations occur
when the genotype is extremely large and in which over 95% of the genes are inactive [61].
But in another example, Collins has shown that for some specific problems, the neutrality-
based search is not the best solution [11]. Miller has also identified that the problem of
bloat is insignificant for CGP [58].

Parallel simulation

Parallel simulation is the technique that can be used to accelerate the circuit evaluation
[59]. The idea of the parallel simulation is to utilize bitwise operators which operate on
multiple bits at a high-level language (such as the C language). The technique performs
more than one evaluation of a gate in a single step. For example, when a combinational
circuit under simulation has three inputs and it is possible to concurrently perform bitwise
operations over 23 = 8 bits in the simulator, then the circuit can be completely simulated
by applying a single 8-bit test vector at each circuit input (see the encoding in Figure 3.7).
In contrast, when it is impossible then the eight three-bit test vectors must be applied
sequentially. Practically, current processors allow us to operate with 64 bit operands, that

20

means, it is possible to evaluate the truth table of a six-input circuit by applying a single 64-
bit test vector at each input. Therefore, the obtained speedup is 64 against the sequential
simulation. In the case that a circuit has more than 6 inputs, then the speedup is constant
(i.e. 64). This technique has been applied in all evolutionary design and optimization
experiments reported in the thesis.

o

i

i

i
2

1

0

00110011

00001111

as

10001000

10000111

01010101

Figure 3.7: Parallel evaluation of a candidate circuit

3.4 Scalability Problem

In the context of the evolutionary circuit design, the scalability problem is often mentioned
in the literature [106, 114, 23]. The implication of the scalability problem is that only
relatively simple circuits have been evolved so far.

The main problem of the evolutionary combinational-circuit design is that the evalua-
tion time of a candidate circuit grows exponentially with the increasing number of inputs
(assuming that all possible input combinations are evaluated by the fitness function) [106].
Hence, the evaluation time becomes the main bottleneck of the evolutionary approach when
complex circuits with many inputs are evolved. Another problem is that the genotype size
grows with the increasing complexity of target circuits. Long chromosomes imply large
search spaces that are usually difficult for EA.

We will briefly introduce some techniques that were developed to suppress the influence
of the scalability problem of the evolutionary circuit design. The most common techniques
are: incremental evolution, the multi-chromosome approach and development.

Incremental evolution and the multi-chromosome approach are based on the decom-
position of a complex problem into sub-problems. The sub-problems can be evolved in a
reasonable time. The technique uses a training set and training vector partitioning [102].
For solving the sub-problems, CGP can be used. The bidirectional incremental evolution
[34] incorporates two approaches: divide-and-conquer [101] and incremental evolution [22].
Bidirectional incremental evolution is based on gradual decomposition of a complex prob-
lem into sub-problems of decreasing complexity and afterwards, on gradual evolution of
sub-problems of increasing complexity into a complex problem. This approach utilizes
the training set and training vector partitioning. The multi-chromosome approach [111] is
based on a genotype which consists of several chromosomes. Each chromosome represents a
solution for one output of a target circuit. The output solutions (chromosomes) are evolved
simultaneously. An individual is represented by the genotype (not by a single chromosome).
This approach utilizes training vector partitioning.

Computational development [3, 45, 82] is usually considered as a non-trivial and indirect
mapping from genotypes to phenotypes in an evolutionary algorithm. In such a case, the
genotype has to contain a prescription for construction of the target object. While the

21

genetic operators work with genotypes, the evaluation of candidate solutions (the fitness
evaluation) is applied on phenotypes created by means of development. The principles
and selected application of development are summarized in [46, 4]. Lindenmayer systems
(L-systems), cellular automata, graph-generation grammars and an instruction-based de-
velopment are major approaches to development. These models were applied to design
digital circuits. The main problem of current development is that resulting circuits are not
competitive with conventional synthesis [4].

22

Chapter 4

Polymorphic Electronics

Polymorphic electronics is a new unconventional sub-area of electronics. It was introduced
by A. Stoica’s group at the NASA Jet Propulsion Laboratory as a new class of electronic
devices that exhibit a new style of (re)configuration [97]. Polymorphic electronics1 has
a superimposed built-in functionality. A change of function does not need reconfigura-
tion/switches as in traditional approaches. The changes of functionality come from an
environment, such as temperature, light, power supply voltage and control signal. Poly-
morphic electronics can be understood as a new reconfigurable technology capable of inte-
grating logic functions with sensing in a single compact structure. In fact, the fundamental
building components, polymorphic logic gates, merge the capability of performing logic op-
erations with sensing. Hence polymorphic gates would also be very useful in building the
embodied intelligence—intelligent devices, whose functionality emerges in interaction with
a physical environment [6]. Although polymorphic gates can be implemented relatively
effectively using current CMOS technology, we can expect an expansion of polymorphic
devices with further development of nanoelectronics and molecular electronics.

Current research in the area of polymorphic electronics can be split into three fields:
design of reliable polymorphic gates, development of synthesis algorithms and development
of applications. We will briefly survey them in the following sections.

4.1 Polymorphic Gates

Polymorphic gates play a central role in polymorphic electronics. The polymorphic gate is
capable of switching among two or more logic operations (functions). However, the selection
of the operation is performed unconventionally. The logic operation of a polymorphic gate
depends on some external factors, for example, on the level of the power supply voltage
(Vdd), temperature, light or some other external signals [74, 93, 94, 95, 96, 97, 98, 118, 119].

A polymorphic gate implements several logic operations according to a control signal
which can hold different values. For purposes of this thesis, we denote a bi-functional
polymorphic gate as X1/X2, where X1 is the logic operation of the first mode (mode 1) and
X2 of the logic operation of the second mode (mode 2). For example, Stoica’s polymorphic
bi-functional NAND/NOR gate [93] controlled by Vdd operates as the NOR gate for Vdd =
1.8 V (mode 1) and the NAND gate for Vdd = 3.3 V (mode 2).

Table 4.1 surveys the polymorphic gates reported in the literature. The gates were
designed mostly through an evolutionary approach [94, 98, 116]. Only three of them have

1Polymorphic electronics is also known as polytronics [97]

23

been fabricated so far; the remaining polymorphic gates were either simulated or tested in
a field programmable transistor array (FPTA-2). The six-transistor NAND/NOR gate
[93] controlled by the power-supply voltage, Vdd, was fabricated in the 0.5-micron HP
technology. The ten-transistor NAND/NOR gate [95] controlled by Vdd was fabricated in
the 0.5-micron HP technology. Another eight-transistor NAND/NOR gate [74] controlled
by Vdd was fabricated in the 0.7-micron AMIS technology.

Table 4.1: Existing polymorphic gates. The ‘Trans.’ label denotes utilized transistors and
the ‘Ref.’ label denotes references in the literature.

Gate Control Values Control Trans. Ref.
AND/OR 27/125◦C temperature 6 [97]
NAND/NOR 80/120◦C temperature 12 [96]
AND/OR/XOR 3.3/0.0/1.5 V control signal 10 [97]
AND/OR 3.3/0.0 V control signal 6 [97]
NAND/NOR/NXOR/AND 0/0.9/1.1/1.8 V control signal 11 [118]
NAND/WIRE/AND 0.0/1.0/-1.8 V control signal 9 [119]
WIRE/OR/XOR/AND2b/NAND/AND1b 0.0/0.2/0.4–0.8/1.0/1.2–1.6/1.8 V control signal 19 [94]
NAND/NOR 0/2.5 V control signal 10 [89]
NOR/NAND 0/2.5 V control signal 8 [72]
NAND/XOR 0/2.5 V control signal 9 [70]
AND/OR 1.2/3.3 V supply voltage 8 [98]
NAND/NOR 3.3/1.8 V supply voltage 6 [93]
NAND/NOR 3.3/1.8 V supply voltage 10 [95]
NAND/NOR 5/3.3 V supply voltage 8 [74]

Figure 4.1 shows one of possible designs of the polymorphic NAND/NOR gate which was
published in [74]. Logic operations of this circuit are controlled by the power supply voltage.
Circuit responses (the Z label) are demonstrated for all possible input combinations (the A,
B labels) in Figure 4.2. The waveforms come from measurements of the gate implementation
in the 0.7-micron AMIS technology.

Figure 4.3 shows a circuit symbol of a polymorphic gate. If logic operations of a gate are
not obvious from the context, the logic operations are given as a part of the gate symbol.
Because the circuit symbols for any polymorphic gates are not yet under any international
(even national) standard, thus the symbol given in Figure 4.3 is presented for local usage
in circuit schemes of this thesis.

However, some gates, which are introduced in Table 4.1, do not exhibit electronic prop-
erties as good as standard CMOS gates. For example, very high power consumption was
reported for the NAND/NOR gate [74]. Due to this fact, the spectrum of applications is
limited for polymorphic electronics nowadays.

4.2 Polymorphic Circuits

Having polymorphic gates, researchers have begun to develop new methods for synthesis of
digital circuits that contain polymorphic gates [18, 53, 79, 87]. The main motivation is to
obtain reconfigurable (and thus potentially adaptive) circuits for a very low cost and without
the necessity to implement a reconfiguration infrastructure, such as switches, multiplexers
or configuration registers. Figure 4.4a shows an example of a polymorphic digital circuit and

24

Figure 4.1: Transistor-level implementation of the NAND/NOR gate published in [74]. The
gate realizes the NAND operation for Vdd from 3.9 to 5.0 V and the NOR operation for Vdd
from 3.0 to 3.7 V. The A,B labels denote the inputs and the Z label denotes the output.

Figure 4.2: Behavior of the NAND/NOR polymorphic gate [74] measured at 5 kHz. The
A, B labels denote the inputs and the Z label denotes the output.

Figures 4.4b,c show its equivalent behavior in both modes of the polymorphic NAND/NOR
gate. The equivalent functions are f1 = i0 ∧ i1⊕i2 in mode 1 and f2 = i0 ∨ i1⊕i2 in mode 2.

25

NAND/NOR

A

B
Z

Figure 4.3: A circuit symbol of a polymorphic NAND/NOR gate.

Figure 4.4: a) Example of a polymorphic circuit; b) Equivalent circuit in mode 1; c) Equiv-
alent circuit in mode 2

4.2.1 REPOMO32 platform

A Reconfigurable Polymorphic Module (REPOMO) [73, 85, 103] has been developed in
order to investigate electrical properties of polymorphic circuits and to demonstrate the
applications of polymorphic electronics. The REPOMO32 platform contains an array of 32
configurable logic elements; each of them can perform the AND, OR, XOR and polymorphic
NAND/NOR logic operation. Since the set of logic operations is complete, the platform
can perform any logic function (of course, functionality is limited by the chip size). This
chip utilizes the NAND/NOR gates [74] controlled by power supply voltage, Vdd. When
Vdd = 5.0 V the polymorphic gate exhibits the NAND operation and when Vdd = 3.3 V
the gate exhibits the NOR operation. The remaining ordinary (conventional) gates do not
change their logic operations with a shift of Vdd (from 3.0 V to 5.0 V). Figure 4.5 shows
the block structure of the REPOMO32 platform.

4.3 Applications of Polymorphic Electronics

Papers [97, 98] suggest various areas in which polymorphic gates can be utilized. Appli-
cations of polymorphic electronics, which were reported or proposed so far, are given as
references in the following summary:

(i) Automatic change of circuit behavior when a power supply is not sufficient [84].

(ii) Implementation of low-cost reconfigurable/adaptive systems that are able to adjust
their behavior inherently in response to certain control signals, such as multi-functional
counters [70, 118].

(iii) Implementation of novel concepts for testing and diagnosing of electronic circuits, such
as self-checking adders [54, 74] utilization or reduction of test vector volume [90].

(iv) Implementation of a hidden function (invisible for the user) which can be activated
in a specific environment [97, 98].

(v) Intelligent sensors for biometrics, robotics and industrial measurement [97, 98].

(vi) Reverse engineering protection [97, 98].

In the following paragraphs we briefly introduce some applications that have been de-
veloped at FIT BUT.

26

Figure 4.5: The REPOMO32 block structure published in [85].

4.3.1 Polymorphic FIR filter

The polymorphic FIR filter [84] with backup mode enabling power saving (see Figure 4.6)
can operate in two modes. In the first mode (standard mode), the filter performs a normal
function. In the second mode (backup mode), the filter operates with a reduced power
supply voltage. In this mode, some filter coefficients are reconfigured and the rest of the
filter is disconnected. Experiments have indicated that power consumption can significantly
be reduced in the backup mode while the quality of filtering remains reasonable. One
should note that the reconfigurable constant-coefficient multipliers of the FIR filter are
implemented using the NAND/NOR polymorphic gates.

4.3.2 Polymorphic controller

Let us imagine that an intelligent controller is needed in some application. A feature of that
controller is that it can skip less important states under some circumstances, such as low
power or high temperature. An example of such a controller is the three-bit polymorphic
controller published in [69, 70, 71] (see Figure 4.7). This controller has seven states in the
normal mode and five states in the backup mode. Note that in this design, the next-state
logic is implemented utilizing the NAND/XOR polymorphic gates.

4.3.3 Self-checking adder

The polymorphic self-checking adder [74, 80, 81, 85] does not utilize any additional signals
to indicate the fault. The adder is able to detect a reasonable number of stuck-at-faults

27

reconfigurable

multiplier

Figure 4.6: FIR filter with backup mode enabling power savings published in [84].

Figure 4.7: Multi-functional circuit which operates as a controller [69] with different oper-
ational modes.

by oscillations at the Cout output while the control signal of polymorphic gates oscillates.
The logic circuitry of the self-checking full-adder can be seen in Figure 4.8. Note that this
adder utilizes the NAND/NOR gates and has reasonable area overhead.

Figure 4.8: Full adder with the self-checking feature taken from [81]. It utilizes NAND/NOR
polymorphic gates.

28

Chapter 5

Goals

Previous chapters have shown that Cartesian Genetic Programming is applicable to design
and optimization of the digital circuits. However, we would like to improve some parts of
the algorithm in order to get better solutions.

At the beginning, we need to put several questions to ourselves in the field of circuit
design and optimization that will lead our research. Is it possible to optimize current
implementations of application-specific circuits with the evolutionary algorithm? And what
algorithm or its extension is suitable to be involved in the optimization process? How shall
we modify conventional circuit synthesis methods in order to allow them to operate with
polymorphic gates? Can we minimize the number of gates in polymorphic circuits that we
have designed by “adapted” conventional methods? What benchmarks should be utilized
to compare the results?

For answering these questions, we have defined the following goals for the doctoral
thesis:

• To employ Cartesian Genetic Programing and its modifications as an evolutionary
algorithm in the ordinary-circuit optimization with the goal of improving existing
results of combinational circuit synthesis.

• To utilize specific polymorphic gates in ordinary circuits to minimize the circuit size
in terms of the number of utilized gates. Cartesian Genetic Programing will be used
with the modified fitness function.

• To propose and investigate new approaches to polymorphic-circuit design based on
polymorphic multiplexing and polymorphic Binary Decision Diagrams. We will com-
pare the solutions obtained by these two new approaches with solutions obtained
from Cartesian Genetic Programing. Since there is not available any benchmark set
of polymorphic circuits, we will introduce a new set of benchmark circuits to evaluate
and compare the synthesis algorithms.

• There is a possibility that the polymorphic multiplexing and polymorphic Binary
Decision Diagrams will not be able to produce area-inefficient solutions. Thus, the goal
is to employ the extended Cartesian Genetic Programing to optimize a polymorphic
circuit at the gate level.

In order to fairly compare the results of various methods, the solutions will mainly be
sought in the form of circuits composed of the two-input gates.

29

Chapter 6

Extensions of Standard Cartesian
Genetic Programming

For purposes of this thesis, it is useful to extend Cartesian Genetic Programming (CGP).
The extension is necessary for improving the search-space-exploration capabilities and re-
ducing the computation overhead. The extension is derived from the standard CGP in-
troduced in Section 3.3. It should be noted that the definition of a chromosome and its
phenotype remains unchanged.

6.1 Design Phase and Optimization Phase

For our experiments, it is suitable to divide the CGP runtime into two phases. I call them as
the design phase and the optimization phase. The design phase is usually performed before
the optimization phase in CGP (see Figure 6.1). The design phase is typically performed
for searching of a brand-new correct circuit. The search is usually conducted from an initial
population of random individuals. It employs a fitness function which evaluates the circuit
behavior only. When a candidate circuit conforms to the behavioral specification, then
the number of gates becomes important. The optimization phase is typically performed to
optimize (e.g., the number of gates) a fully functional circuit.

The division into two phases offers us better conditions for setting the CGP. Each
phase can utilize different parameters, such as the size of a population, mutation operator,
selection method or fitness function. Note that the design phase and optimization phase
can be executed independently. In other words, the optimization phase does not have to
follow the design phase and also the design phase does not have to precede the optimization
phase. The design phase can be substituted by conventional design tools, such as SIS or
the ABC System.

6.2 Modified Fitness Functions

In order to avoid a conditionally defined fitness function (see the when-otherwise condition
in Equation 3.1), it is useful to define a new fitness function where priorities are set for
various objectives. The intended approach allows us to aggregate various objectives into a
single fitness value. Since the goal is to minimize, the new definition also has a new global
extreme, the minimum, which is the value of 1. Note that the problem is not considered as
multi-objective in this thesis.

30

Figure 6.1: Relations among the search space, design phase and optimization phase.

The new fitness function of one objective is defined as follows:

fitnessp1 = 1 + q1.g1; (6.1)

g1 = 1,

where q1 is the objective (the goal is to minimize q1 here) and g1 is generic constant.
The new fitness function of two objectives (priorities) is defined as follows:

fitnessp2 = 1 + q2.g2 + q1.g1; (6.2)

g1 = 1,

g2 = (fmax(q1) + 1).g1,

where q2 is the more preferred objective over q1; g1, g2 are generic constants and fmax(q1)
gives the maximum value of the q1 objective.

The resulting generic fitness function for n objectives (priorities) is defined as follows:

fitnesspn = 1 + qn.gn + ..+ q1.g1; (6.3)

g1 = 1,

gi = (fmax(qi−1) + 1).gi−1, i = 2..n,

where qj is j-th objective, gj is a generic constant and fmax(qj) is the maximum possible
value of qj for j = 1..n. Furthermore, it holds that qj is preferred objective over qj−1. One
can observe that the objectives are mutually disjunctive.

The standard fitness function for circuit evolution (Equation 3.1) can be redefined ac-

31

cording to Equation 6.2 as follows:

fitnessp′2 = 1 + b̄.g′2 + z.g1 = 1 + b̄.(nc.nr + 1) + z, (6.4)

= 1 + b̄.nc.nr + b̄+ z;

g1 = 1,

g′2 = (fmax(z) + 1).g′1 = nc.nr + 1,

where b̄ is the number of incorrect bits obtained for all possible input combinations; z is
the number of utilized gates; and nc.nr is the total number of programmable elements. The
number of incorrect bits, b̄, can be understood as Hamming distance between the truth
table of the candidate circuit and the truth table of the desired circuit.

The fitnessp′2 function (Equation 6.4) is applicable in both the design phase and opti-
mization phase. However, as we will show later, it is useful (for some cases) to define the
fitness function as follows:

fitnessp′1 = 1 + b̄.g1 = 1 + b̄; (6.5)

g1 = 1.

6.3 Selection Strategies

From the perspective of the thesis, the fitness function and selection strategy are the most
interesting features of the standard CGP. The selection strategy defines which candidate
acts as a parent in the new population. Because the (1 + λ) strategy is often used in CGP,
the lowest-scored individual is always preserved. The result of evolution is then just the
lowest-scored individual of the last generation.

Consider a situation in which a fully working circuit has already been obtained (b̄ = 0)
in the design phase and the number of gates is being optimized now. If the mutation
operator creates an individual, x, with fitness value fx from a parental individual, ρ, and
fx ≤ fρ then x will become a new parental solution ρ′ (assuming that there is no better
result of mutation in the population). However, if the mutation operator creates individual
y with the fitness value fy and (fy > fρ) ∧ (fy ≤ 1 + nc.nr) then ρ will be selected as the
parent for the new population and y will be discarded (assuming that the fitness values of
other solutions are higher than fy). In this way, many new fully functional solutions are
lost.

The new selection strategy and fitness function is proposed only for the situation when
the number of gates is optimized, that is, the fitness value of the best individual is lower
than 1 + (nc.nr + 1). Otherwise, the algorithm works as the standard CGP. Since the
best individual found so far will not be copied to the new population automatically, it is
necessary to store it in an auxiliary variable. Let β denote the best discovered solution and
fβ be its fitness value. In the first population, β is initialized using ρ.

Assume that x1 . . . xλ are individuals (with fitness values fx1 . . . fxλ) created from the
parental solution ρ using the mutation operator and fβ ≤ 1 + nc.nr (that is, we are in the
gate reduction phase now). Because the best individual β and parental individual ρ are
not always identical, we have to determine their new instances β′ and ρ′ separately. The
best-discovered solution is defined as:

β′ =

{
β when fβ ≤ fxi , i = 1 . . . λ,
xj otherwise,

(6.6)

32

where xj is the lowest-scored individual for which fxj < fβ holds. If multiple individuals
exist that have lower fitness than fβ in {x1 . . . xλ}, we will choose the best one of them.
The new parental individual is defined as:

ρ′ =

{
ρ when ∀i, i = 1 . . . λ : fxi ≥ 1 + (nc.nr + 1)
xj otherwise,

(6.7)

where xj is a randomly selected individual from those in {x1 . . . xλ} which obtained the
fitness score lower than 1 + (nc.nr + 1). In other words, the new parent must be a fully
functional solution; however, the number of gates is not important for its selection. Note
that the result of evolution is no longer ρ but β. The proposed strategy will be denoted as
the SeS-2 strategy and the traditional strategy as the SeS-1 strategy.

6.4 Short-Circuit Evaluation

The fitness evaluation procedure which probes every assignment to the inputs (i.e., 0..2n−1)
is the main time bottleneck. We will show that when a correct circuit is finally found (b̄ = 0
in Equation 6.4) and the goal is to minimize the number of gates, it is possible to reduce
the evaluation time. The accurate evaluation is important when a correct circuit has not
been found yet. In that case, we have to know the fitness score as precisely as possible (that
is, the exact number of bits has to be calculated) in order to obtain a relatively smooth
fitness landscape.

Short-circuit evaluation is an evaluation enhancement proposed in this thesis. In order
to make the evaluation of a candidate circuit as quickly as possible (assuming that the
parent circuit is correct), it is only tested whether a candidate circuit is working correctly
or incorrectly. In the case that a candidate circuit does not produce a correct output
value for the p-th input vector during the evaluation, the remaining 2n − p− 1 vectors are
not evaluated and the circuit gets the worst possible score (b̄ = fmax(b̄)). Experimental
results (in Section 7.3.1) will show that this technique reduces the computational overhead
significantly.

6.5 Training-Set Reorganization

One can observe that ordered test vectors (0..2n − 1) could lead to a situation when some
parts of a circuit are not tested in the earlier phases of evaluation. Hence the training-set
reorganization is proposed to reorder the input vectors (and corresponding output vectors)
so that more circuit parts are tested from the beginning of the evaluation. This strategy
could be beneficial if the candidate circuit would have many inputs and the short-circuit
evaluation would be involved. The reorganization itself is done by changing the order of
test vectors randomly. Figure 6.2 illustrates the reorganization of vectors when the parallel
simulation (see Section 3.3.2) is involved.

The advantage of this approach is that the reorganization proceeds only in the ini-
tialization phase of an evolutionary algorithm and thus it has no additional overhead on
an evaluation process. The influence of the reorganization on the evaluation time will be
covered in Section 7.3.1.

33

Figure 6.2: Reorganization of bit pairs when the parallel simulation is involved: a) before
the reorganization, b) after the reorganization

34

Chapter 7

Evolutionary Optimization of
Circuit Designs

There are many applications of Cartesian Genetic Programming (CGP) in which the objec-
tive is not only to evolve a fully functional solution. One or several additional parameters
have to be optimized in order to obtain a competitive solution. Evolutionary design of
digital circuits is a typical example [30]. In order to compete with conventional synthesis
algorithms, evolved circuits should be smaller, faster or less power consuming in comparison
to circuits which have been designed conventionally. Because the requirement of correct
functionality is more important than the additional requirements, the design problem is not
usually treated as multi-objective. Hence CGP is used to find a fully functional solution
first, and then the obtained solution is optimized to meet other criteria. The subsequent
optimization can be formulated as a multi-objective problem, for example, when we are
looking for a suitable trade off between the circuit size and delay. In practical design, the
fitness function is explicitly modified after achieving a fully functional solution to reflect
the additional criteria. For the rest of the chapter, let us assume that there is only one
additional criterion – to find as compact a phenotype as possible, that is, to minimize the
number of gates.

In this chapter, we will show that Cartesian Genetic Programming can lead to area-
efficient digital circuits even if the requirement on the gate reduction is not specified ex-
plicitly. It is shown that the specific selection strategy (SeS-2) can provide more compact
circuits than the standard CGP. It is interesting that this strategy does not prefer explicitly
smaller phenotypes in a parent selection. The strategy is especially well-performed when it
is applied in the post-synthesis phase to optimize the circuits which have been synthesized
using conventional methods. This phenomenon has been examined on multiplier circuits,
majority circuits and the LGSynth91 benchmark circuits. The compared strategies are
the selection strategies, SeS-1 and SeS-2, which were introduced in Section 6.3. We will
also answer an obvious question on how it is possible that the size of phenotype can be
minimized implicitly in the SeS-2 strategy.

7.1 Benchmark Problems

Selection strategies will be evaluated in the task of combinational circuits synthesis. Small
multipliers, majority circuits and the LGSynth91 benchmark circuits will be used as test
circuits.

35

7.1.1 Small binary multipliers

Design of small binary multipliers is the most popular benchmark problem for gate level
circuit evolution. Because the direct CGP approach is not scalable, it works only for the
4bx4b multipliers (i.e. 8-input/8-output circuits) and smaller. Table 7.1 summarizes the
best known results for various multipliers according to [59, 104]. In those experiments,
CGP has been used with two-input AND, XOR gates and the AND gate with one input
inverted (x̄ ∧ y). Parameters of CGP were set as l = nc, λ = 4 and the mutation operator
has modified three genes of chromosome; the remaining parameters were given in Table 7.1.
CGP was initialized by conventional designs. The fitness function was constructed according
to Equation 3.1 or its equivalent representation in the SeS-1 selection strategy.

For this class of circuits, CGP is capable of creating innovative designs, that is, circuits
containing fewer gates than the best conventional implementations. However, it is impor-
tant to carefully initialize CGP parameters. For example, in order to reduce the search
space the gate set should contain just the logic gates that are important for multipliers
(the solutions denoted as CGP in Table 7.1 were obtained using Γ′ = {x.y, x ⊕ y, x̄.y}).
However, the gate realizing x̄.y is not usually considered as a single gate in digital design.
Its implementation can be constructed using two gates, the AND and NOT gates. Hence,
we also included CGP∗ to Table 7.1 which is the result obtained when one considers the
realizing x̄.y as two gates in the multipliers shown in [104].

Table 7.1: The number of two-input gates in the best implementations of multipliers ac-
cording to [59, 104].

Multiplier Conventional CGP CGP∗ nr × nc Generation Limit
2bx2b 8 7 9 1 × 7 10,000
3bx2b 17 13 14 1 × 17 200,000
3bx3b 30 23 25 1 × 35 20,000,000
4bx3b 47 37 44 1 × 56 200,000,000
4bx4b 64 57 67 1 × 67 700,000,000

7.1.2 Binary majority circuits

Binary majority circuits are relatively small circuits that are useful for testing the short-
circuit evaluation method (see Section 6.4). Since the number of inputs are high and search
space is relatively small, the evaluation can be terminated early for almost all candidate
solutions.

7.1.3 The LGSynth91 benchmarks

For further comparison of the selection strategies, we have selected 16 circuits from the
LGSynth91 benchmark suite [113] (see Table 7.6). As selected circuits have up to 14 in-
puts and 16 outputs, they are suitable for evolutionary optimization, that is, the scalability
problem is not significant. In this case, we have utilized CGP in the post-synthesis phase,
that is, CGP is employed to reduce the number of gates in already synthesized circuits. In
this experiment, we have used the ABC-System synthesis tool [2] to perform the (conven-
tional) synthesis as a replacement of the design phase in the evolutionary algorithm. Each
circuit is represented as a netlist of gates in the BLIF format (Berkeley Logic Interchange
Format). This format is transparent because it is a list of all interconnected single-output

36

combinational gates in the human-readable form. And so, it can be adopted by other syn-
thesis methods such as CGP. In addition, the ABC-System tool can utilize the user-defined
set of available gates for the synthesis process.

7.2 Experimental Setup

CGP is used according to its definition in Section 3.3. The initial population is generated
either randomly or by using fully functional solutions obtained from conventional synthe-
sis methods or from the best known conventional designs. When CGP is applied as a
post-synthesis optimizer, then the number of gates in the conventional synthesis result will
be denoted m (it is assumed that each gate possesses up to 2 inputs). In cases of the
random initialization, the parameter nc is set according to the expected circuit size. Expe-
rience shows that some redundancy in genotype size is beneficial to the search process(see
Section 3.3.2) [61].

CGP will operate with parameters nc = m,nr = 1, l = nc, na = 2. This setting
imposes no structural restrictions on generated combinational circuits. In all experiments,
the population size is 1 + 14. For the design phase, the mutation operator modifies three
genes (integers) of the chromosome. For the optimization phase, the mutation operator
modifies from 1 to 14 genes with the uniform distribution (it modifies seven genes on
average). We have used the gate set Γ = {x.y, x+ y, x̄, x.y, x+ y, x⊕ y, x, 0, 1} ≡ {AND,
OR, NOT, NAND, NOR, XOR, identity, const0, const1} where NOT and identity are
unary operations (taking the first input of an element) and constk is constant generator
with the value k (taking also the first input of an element). If it is not mentioned explicitly,
then each experiment is repeated 10 times with a 100 million generation limit. In all
experiments, we compare the SeS-1 and SeS-2 selection strategies (see Section 6.3). We
also examine the short-circuit evaluation (Section 6.4) on suitable benchmarks and then
examine the training-set reorganization, as well.

7.3 Experimental Results

We have performed three classes of experiments. In the first class of experiments, we have
investigated the benefits of the short-circuit evaluation and test-vector reorganization. In
the second class, we have focused on the post-evolutionary-design optimization. In the
third one, we have compared the selection strategies using various benchmarks.

7.3.1 Evaluation time reduction

The first class of experiments is focused on the benefits of short-circuit evaluation and
training-set reorganization. Table 7.2 shows the results of the experiments. We can see
that the effect of the short-circuit evaluation becomes observable when a benchmark has
more than 6 inputs. It is due to the 64-bit parallel simulation (64 = 26) of candidate circuit
performed on the 64-bit processor. From the results, it can be seen that a computation is
faster when the short-circuit-evaluation enhancement is involved. Figure 7.1 shows a com-
putation time reduction for the selected benchmarks. The initial population was initialized
by circuits designed by the ABC-System tool. Since the running overhead of the short
circuit evaluation and test-vector reorganization is insignificant, we consider these methods
as beneficial.

37

Table 7.2: The mean number of evaluations of the benchmark circuits (the ‘Evals.’ col-
umn). Meaning of the labels: ‘Ins.’ and ‘Outs.’ denote the number of circuit inputs
and outputs; ‘Reorg?’ denotes “Has the training-set reorganization been involved?”; ‘Tot.
Evals.’ denotes the total number of evaluations when the short-circuit evaluation is not in-
volved; ‘Reduct.’ denotes a reduction of a computational overhead; and ‘Corrects’ denotes
non-destructive mutations.

Benchmark Ins. Outs. nc Strategy Reorg? Tot. Evals. Evals. Reduct. Corrects
[.106] [.106] [.106]

2x2 Mult. 4 4 17 SeS-1 n/a 1,400 1,400 1 284.5
SeS-2 226.5

3x2 Mul. 5 5 16 SeS-1 n/a 1,400 1,400 1 23.0
SeS-2 19.1

3x3 Mult. 6 6 57 SeS-1 n/a 1,400 1,400 1 152.8
SeS-2 208.1

4x3 Mult. 7 7 125 SeS-1 no 2,800 1,677 1.67 121.2
yes 1,541 1.82 136.5

SeS-2 no 1,806 1.55 293.7
yes 1,716 1.63 310.3

4x4 Mult. 8 8 269 SeS-1 no 5,600 2,060 2.72 98.3
yes 1,704 3.29 93.2

SeS-2 no 2,555 2.19 290.2
yes 2,204 2.54 262.6

7b Maj. 7 1 27 SeS-1 no 2,800 1,457 1.92 40.6
yes 1,442 1.94 39.7

SeS-2 no 1,490 1.88 79.5
yes 1,476 1.9 75.0

9b Maj. 9 1 47 SeS-1 no 11,200 1,792 6.25 35.1
yes 1,624 6.9 28.8

SeS-2 no 2,104 5.32 80.2
yes 1,906 5.88 70.4

11b Maj. 11 1 67 SeS-1 no 44,800 2,810 15.94 19.3
yes 1,926 23.26 14.9

SeS-2 no 4,673 9.59 85.3
yes 3,844 11.66 77.8

13b Maj. 13 1 97 SeS-1 no 179,200 5,876 30.5 12.5
yes 3,608 49.66 16.0

SeS-2 no 13,373 13.4 71.1
yes 10,521 17.03 70.5

15b Maj. 15 1 127 SeS-1 no 716,800 18,620 38.5 14.1
yes 6,926 103.49 10.0

SeS-2 no 42,036 17.05 54.4
yes 28,398 25.24 52.0

If we look at the results of the 4bx3b Multiplier or 13-bit Majority benchmarks in
Table 7.2, we will see that the number of correct individuals (see the ‘Corrects’ column)
is higher for enabled reorganization than for a disabled one. We can also observe that
the proportion of evaluations and correct circuits is different in this case. Let us suppose
that direct proportion exists between the amount of correct individuals and the amount of
evaluations, thus the benefit of the reorganization is evident.

The evaluation enhancements do not influence the quality of resulting circuits but they

38

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2x2 3x2 3x3 4x3 4x4

A
v
g

.
re

d
u

c
ti
o

n

Inputs

Multiplier benchmark

SeS-1
SeS-2

 0

 20

 40

 60

 80

 100

 120

 7 8 9 10 11 12 13 14 15

A
v
g

.
re

d
u

c
ti
o

n

Inputs

Majority benchmark

SeS-1
SeS-2

a) b)

Figure 7.1: Average reduction of the computational time in comparison with the complete
truth table evaluation for: a) the Multiplier benchmark; and b) the Majority benchmark.

are capable of accelerating the evolutionary process significantly.

7.3.2 Evolution from a random population

In the second class of experiments, we have evolved multipliers with up to four-input
operands from the initial population generated randomly. According to recommendations
of [61], we intentionally allowed relatively large topologies to be used by CGP. The topology
is always 1 × nc where the nc values were set on the basis of the ABC-System synthesis
results (see Table 7.4).

Table 7.3 summarizes the number of gates (the best and mean values), and the mean
number of generations to reach fully functional solutions and the success rate. As design of
the 2bx2b and 3bx2b multipliers is easy for CGP, we have mainly analyzed the results for
larger problem instances. It can be seen in Table 7.3 that the SeS-2 strategy gives better
results in terms of the best and mean number of gates than the SeS-1 strategy. However,
the mean number of generations is higher for the SeS-2 strategy. We have obtained almost
identical minimal number of gates when compared with [104] (also in Table 7.1, the ‘CGP’
label), even when CGP is randomly initialized and the non-specific set of gates is utilized.

7.3.3 Post-synthesis optimization

The third class of experiments compares the selection strategies when CGP is applied to
reduce the number of gates in already functional circuits.

We compared three approaches of seeding the initial population in the case of multipliers.
The resulting multipliers from the ABC-System tool (denoted as ‘seed:ABC’ in Table 7.4)
are taken as seeds in the first group of experiments. The second group of experiments
is initialized by the best multipliers (denoted as ‘seed:Table 7.1’ in Table 7.4) reported
in paper [104]. The seeds of the third group of experiments are created generically as
the combinational Carry-Save multipliers (denoted as ‘seed: Comb. Mult.’ in Table 7.4)
according to [112]. Table 7.4 shows that the SeS-2 strategy can produce more compact
designs (see the column labeled by ‘Best’) than the SeS-1 strategy. The mean numbers of
gates are given in generations of 1, 2, 5, 10, 20, 50 and 100 million. If the higher number
of generations is used then the smaller circuit can be obtained.

39

Table 7.3: The best-obtained and mean number of gates for the Multiplier benchmark when
CGP starts from a randomly generated initial population. The ‘Mean Gens.’ label denotes
the mean number of processed generations to find a correct individual.

Circuit Strategy nc Best Mean Mean Gens. Success
2bx2b SeS-1 7 7 7 2,738 100%

SeS-2 7 7 2,777 100%
3bx2b SeS-1 16 13 13 651,297 100%

SeS-2 13 13 741,758 100%
3bx3b SeS-1 57 25 27.7 476,812 100%

SeS-2 23 23.4 625,682 100%
4bx3b SeS-1 125 46 52.7 2,714,891 100%

SeS-2 37 43.1 4,271,179 100%
4bx4b SeS-1 269 110 128.3 29,673,418 90%

SeS-2 60 109.4 37,573,311 70%

The best-evolved 4bx4b multiplier is shown in Figure 7.2. It is composed of 56 gates
(taken from Γ, which does not consider the AND gate with one input inverted as a single
gate). The best circuit presented in [104] consists of 57 gates taken from Γ′, or 67 gates if the
Γ gate set is used. We can also express the implementation cost in terms of transistors usage.
While the multiplier shown in Figure 7.2 is composed of 400 transistors, the multiplier
reported in [104] is composed of 438 transistors. It is assumed that the number of transistors
to create a particular gate [112] is the following: 4 for the NAND gate; 4 for the NOR gate;
6 for the OR gate; 6 for the AND gate; 2 for the NOT gate; and 10 for the XOR gate.

A

A

0

1

A

A

B

B

B

B

2

3

0

3

2

1

P

P

P

P

P

P

P

P
0

1

2

3

4

5

6

7

Figure 7.2: Circuit scheme of the best evolved 4bx4b multiplier

Figure 7.3a compares the number of gates of the best-obtained individual, β, during

40

Table 7.4: The best-obtained and the mean numbers of gates in generations (the ‘Gens.’ la-
bel) from 1 to 100 million for the Multiplier benchmarks when the evolutionary algorithm is
initialized by functional solutions of different origin. The ‘Strg.’ label denotes the selection
strategy.

seed: Strg. nc Best 1.106 2.106 5.106 10.106 20.106 50.106 100.106

ABC Gens. Gens. Gens. Gens. Gens. Gens. Gens.
2bx2b SeS-1 17 7 7 7 7 7 7 7 7

SeS-2 7 7 7 7 7 7 7 7
3bx2b SeS-1 16 13 13 13 13 13 13 13 13

SeS-2 13 13 13 13 13 13 13 13
3bx3b SeS-1 57 26 38.2 36.1 34.3 32.6 31 29.8 28.7

SeS-2 23 31.5 28.8 27.2 25 24.5 24.2 23.5
4bx3b SeS-1 125 54 93.2 88.3 79.3 75.6 71.6 66.6 64.4

SeS-2 37 80 68 55.9 49.9 46.9 44.1 41.1
4bx4b SeS-1 269 140 212.4 190.6 178.9 170.9 165.2 158.5 152.4

SeS-2 68 218.2 182.2 151.3 136.5 121.2 107 93.3

seed: Strg. nc Best 1.106 2.106 5.106 10.106 20.106 50.106 100.106

Table 7.1 Gens. Gens. Gens. Gens. Gens. Gens. Gens.
2bx2b SeS-1 9 7 7 7 7 7 7 7 7

SeS-2 7 7 7 7 7 7 7 7
3bx2b SeS-1 14 13 13 13 13 13 13 13 13

SeS-2 13 13 13 13 13 13 13 13
3bx3b SeS-1 25 23 25 25 24.7 23.9 23.5 23.2 23.1

SeS-2 23 25 25 24.7 24.4 24.2 23.5 23.1
4bx3b SeS-1 44 36 38.5 37.8 37.1 36.8 36.8 36.4 36.3

SeS-2 35 37.9 37.1 36.5 36.4 36.2 36.2 36.1
4bx4b SeS-1 67 57 59.6 58.8 58 57.8 57.5 57.3 57.1

SeS-2 56 59.5 59.2 58.7 58.3 57.2 56.8 56.8

seed: Strg. nc Best 1.106 2.106 5.106 10.106 20.106 50.106 100.106

Comb.Mult. Gens. Gens. Gens. Gens. Gens. Gens. Gens.
2bx2b SeS-1 8 7 7 7 7 7 7 7 7

SeS-2 7 7 7 7 7 7 7 7
3bx2b SeS-1 17 13 13 13 13 13 13 13 13

SeS-2 13 13 13 13 13 13 13 13
3bx3b SeS-1 30 23 28 28 28 27.8 27.6 26.5 25.8

SeS-2 23 28 28 27.6 26.8 25 24.4 23.4
4bx3b SeS-1 45 37 43 43 43 42.4 41.9 40.6 39.2

SeS-2 37 43 43 42.6 42.2 41.5 39.9 38.4
4bx4b SeS-1 64 59 62.9 62.6 62.6 62.3 61.5 60.6 60.2

SeS-2 59 62.9 62.9 62.8 62.4 62 61.3 60.8

the progress of evolution of the 4bx4b multipliers for the SeS-1 and SeS-2 strategies (the
values were taken from the best run; CGP was initialized by the ABC-System-designed
individual). Figure 7.3b shows the number of gates of the parent individual, ρ, during
the same experiment. Figures 7.4a,b also show the number of gates of the best-obtained-
individual, β, and the parent-individual, ρ, but they represent the mean values of 10 runs
for each strategy. It can be seen that the parent is different from the best-obtained solution
for the SeS-2 strategy (the curve is not monotonic). We can also observe that the SeS-1
strategy provides better results than the SeS-2 strategy in the earlier stages of the evolution.
However, the SeS-2 strategy outperforms the SeS-1 strategy when more generations are used

41

for the evolution.

 0

 50

 100

 150

 200

 250

 300

 0 1
e

+
0

7

 2
e

+
0

7

 3
e

+
0

7

 4
e

+
0

7

 5
e

+
0

7

 6
e

+
0

7

 7
e

+
0

7

 8
e

+
0

7

 9
e

+
0

7

 1
e

+
0

8

N
u

m
b

e
r

o
f

g
a

te
s

Generations

4x4 Multiplier seeded by ABC

SeS-2
SeS-1

 0

 50

 100

 150

 200

 250

 300

 0 1
e

+
0

7

 2
e

+
0

7

 3
e

+
0

7

 4
e

+
0

7

 5
e

+
0

7

 6
e

+
0

7

 7
e

+
0

7

 8
e

+
0

7

 9
e

+
0

7

 1
e

+
0

8

N
u

m
b

e
r

o
f

g
a

te
s

Generations

4x4 Multiplier seeded by ABC

SeS-2
SeS-1

a) b)

Figure 7.3: The number of gates during the evolution run: a) the best-obtained individ-
ual, β; b) parent individual, ρ. Measurements of the best runs of the 4bx4b Multiplier
benchmarks which have been initialized by the ABC-System design.

 0

 50

 100

 150

 200

 250

 300

 0 1
e

+
0

7

 2
e

+
0

7

 3
e

+
0

7

 4
e

+
0

7

 5
e

+
0

7

 6
e

+
0

7

 7
e

+
0

7

 8
e

+
0

7

 9
e

+
0

7

 1
e

+
0

8

N
u

m
b

e
r

o
f

g
a

te
s

Generations

4x4 Multiplier seeded by ABC

SeS-2
SeS-1

 0

 50

 100

 150

 200

 250

 300

 0 1
e

+
0

7

 2
e

+
0

7

 3
e

+
0

7

 4
e

+
0

7

 5
e

+
0

7

 6
e

+
0

7

 7
e

+
0

7

 8
e

+
0

7

 9
e

+
0

7

 1
e

+
0

8

N
u

m
b

e
r

o
f

g
a

te
s

Generations

4x4 Multiplier seeded by ABC

SeS-2
SeS-1

a) b)

Figure 7.4: The mean number of gates during ten independent runs of the 4bx4b Multiplier
benchmark: a) the best-obtained individual, β; b) parent individual, ρ.

Table 7.5 shows what has happened when more generations are used. For each bench-
mark circuit and strategy (SeS-1 and SeS-2), two groups of runs with a different generation
limit were performed (30 runs per 100 million generations and 3 runs per 1 billion genera-
tions). The total number of evaluated individuals is the same for both groups. It can be
seen that the SeS-2 strategy achieves better minimization results than the SeS-1 strategy
when more generations are used.

Table 7.6 gives the best-obtained and mean number of gates for the LGSynth91 bench-
mark circuits when the evolutionary algorithm starts from already working circuits. The
initial circuits, seeds (of the size given by nc), were obtained from the original LGSynth91
library of circuit netlists (in the BLIF format). They were mapped using the ABC-System
tool on two-input gates of the Γ set. The ‘Expect. Gates’ is the estimated number of
gates (after a synthesis) given in [113]. It can be seen that the SeS-2 strategy is more
successful than the SeS-1 strategy in most cases. In general, CGP gives better results than

42

Table 7.5: The best-obtained, worst and mean number of gates for the Multiplier and
Majority benchmarks when evolved with a different generation limit. CGP was initialized
by the ABC designs. The ‘Ins.’ and ‘Outs.’ labels denote number of circuit inputs and
outputs. The ‘G.p.R.’ label denotes the number of generations per one run.

Benchmark Ins. Outs. Strategy Runs G.p.R. [.106] Best Worst Mean
4bx3b Multiplier 7 7 SeS-1 30 100 54 78 67.73

SeS-2 30 100 36 51 41.50
SeS-1 3 1,000 48 74 63.33
SeS-2 3 1,000 35 36 35.67

4bx4b Multiplier 8 8 SeS-1 30 100 140 163 152.87
SeS-2 30 100 65 125 90.53
SeS-1 3 1,000 128 143 137.33
SeS-2 3 1,000 56 58 57.00

9b Majority 9 1 SeS-1 30 100 31 38 34.40
SeS-2 30 100 24 32 28.77
SeS-1 3 1,000 28 31 29.33
SeS-2 3 1,000 24 30 27.67

11b Majority 11 1 SeS-1 30 100 48 61 54.97
SeS-2 30 100 32 53 39.20
SeS-1 3 1,000 44 53 48.33
SeS-2 3 1,000 31 42 38.33

13b Majority 13 1 SeS-1 30 100 69 85 79.27
SeS-2 30 100 46 78 60.77
SeS-1 3 1,000 75 82 78.00
SeS-2 3 1,000 47 48 47.33

‘Expect. Gates’ because it does not employ any deterministic synthesis algorithm; all the
optimizations are being done implicitly without any structural biases.

7.4 Summary

We have seen, so far, that the selection of a parent individual on the basis of its bare
functionality (and so neglecting the number of gates) provides slightly better results at the
end of the evolution (when the goal is to reduce the phenotype size) than the standard
approach of CGP. We have experimentally confirmed that CGP can implicitly find a very
compact phenotype even if it is not required explicitly. This strategy is especially useful
for the optimization of larger circuits where the first fully functional solution discovered
by CGP (or its initializing circuit, seed, created by a conventional method) is far from
optimum in terms of the phenotype size.

How is it possible that the SeS-2 selection strategy really works? It is important to recall
that the fitness-function landscape is rugged and neutral in the case of the digital circuit
evolution using CGP [105, 60]. Hence relatively simple mutation-based search algorithms
are more successful than sophisticated search algorithms and genetic operators such as those
developed in the field of genetic algorithms and estimation of distribution algorithms. In
the standard CGP, generating the offspring individuals is biased to the best individual that
has been discovered so far. The best individual is changed only if a better or equally-scored
solution is found. In the SeS-2 strategy, the changes of the parent individual are more

43

Table 7.6: The best-obtained and mean number of gates of the LGSynth91 benchmark
when CGP starts from the initial solutions (of size nc) which have been synthesized using
the ABC-System tool. Note that the alu4 benchmark was optimized only three times due
to the time-consuming evaluations. ‘Expect. Gates’ denotes the number of utilized gates
which are expected after an optimization [113].

Circuit Inputs Outputs Expect. Seed Size Best Best Mean Mean
ni no Gates nc SeS-1 SeS-2 SeS-1 SeS-2

9symml 9 1 43 216 53 23 68.5 25.5
C17 5 2 6 6 6 6 6 6
alu2 10 6 335 422 134 73 149 89.4
alu4 14 8 681 764 329 274 358 279
b1 3 4 13 11 4 4 4 4
cm138a 6 8 17 19 16 16 16 16
cm151a 12 2 33 34 24 23 24 23
cm152a 11 1 n/a 24 22 21 22.1 21.8
cm42a 4 10 17 20 17 17 17 17
cm82a 5 3 27 12 10 10 10 10
cm85a 11 3 38 41 23 22 24.1 22
decod 5 16 22 34 30 26 30 26.1
f51m 8 8 43 146 29 26 32.9 27.3
majority 5 1 9 10 8 8 8 8
x2 10 7 42 60 27 27 29.6 27.4
z4ml 7 4 20 40 15 15 15 15

frequent because the only requirement for a candidate individual is to be fully functional.
Hence we consider that the SeS-2 strategy is more “explorative” than the used one in the
standard CGP (the SeS-1 strategy).

Our hypothesis is based on two crucial features of CGP – neutrality of search and
redundancy of encoding [105, 61, 60] (see Section 3.3.2). We argue that a consideration
of fully functional but not necessarily the smallest-discovered individuals as parents leads
to a smaller number of harmful mutations and, therefore, it leads to a better search space
exploration in comparison with the standard SeS-1 strategy. The search algorithm then
can easily escape from the local extremes in the optimization phase of the SeS-2 strategy.

Our hypothesis is that if a high degree of redundancy is present in the genotype, the
SeS-2 selection strategy will generate more functionally correct individuals than the SeS-1
strategy (the standard CGP). And because the fitness landscape is rugged and neutral,
then the SeS-2 strategy will be more efficient in finding compact circuit implementations
than the SeS-1 strategy (the standard CGP). In order to verify this hypothesis, we have
measured the number of mutations that lead to the functionally correct circuits. When
CGP is initialized by a working circuit, we have in fact measured the number of neutral or
useful mutations. Figure 7.5 compares the results for the SeS-1 and SeS-2 strategies in the
experiments that are reported in Tables 7.2, 7.3 and 7.4. The y-axis is labeled as MNM
which stands for ‘Millions of Non-destructive Mutations’. For small multipliers (2bx2b,
3bx2b), the SeS-1 strategy always yields higher MNM which contradicts our hypothesis.
However, these really small multipliers are not interesting because the problem is easy and
an optimal solution can be discovered very quickly. In cases of more difficult circuits, the
SeS-2 strategy provides higher MNM in most cases, especially when a sufficient redundancy

44

is available (see Figures 7.5a, 7.5d). When the best resulting multipliers of paper [104] are
used to seed the initial population, the SeS-1 strategy has always greater non-destructive
mutations than the SeS-2 strategy (see Figure 7.5b). It corresponds with the theory that
the evolutionary algorithm (with almost zero redundancy in the genotype) has got stuck at
the local extreme and the SeS-2 strategy does not have any space to work.

 0

 50

 100

 150

 200

 250

 300

 350

 400

2x2 3x2 3x3 4x3 4x4

M
N

M

Multiplier

Seed:ABC

SeS-1
SeS-2

 0

 10

 20

 30

 40

 50

2x2 3x2 3x3 4x3 4x4

M
N

M

Multiplier

Seed:Table 7.1

SeS-1
SeS-2

a) b)

 0

 5

 10

 15

 20

 25

 30

 35

 40

2x2 3x2 3x3 4x3 4x4

M
N

M

Multiplier

Seed:Comb. Mult.

SeS-1
SeS-2

 0

 50

 100

 150

 200

 250

 300

 350

 400

2x2 3x2 3x3 4x3 4x4

M
N

M

Multiplier

Random Intial Population

SeS-1
SeS-2

c) d)

Figure 7.5: Millions of Non-destructive Mutations (MNM) for different experiments (mean
values given)

The number of non-destructive mutations was counted every 1,000 generations and
the resulting value was plotted as a single dot to Figure 7.6a (the 3bx3b multiplier) and
Figure 7.6b (the 4bx4b multiplier). The best runs initialized by the ABC-System designs
are shown in both cases. It is evident that significantly more correct individuals on average
have been generated for the SeS-2 strategy. It can be seen that while the SeS-1 strategy
tends to create a relatively stable amount of correct individuals in time (the dispersion is
approximately 200 individuals for the 4bx4b multiplier), great differences are observable in
the amount of correct individuals for the SeS-2 strategy (the dispersion is approximately
1,000 individuals for the 4bx4b multiplier). That also supports the idea of the biased search
of the SeS-1 strategy.

45

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0 1
e

+
0

7

 2
e

+
0

7

 3
e

+
0

7

 4
e

+
0

7

 5
e

+
0

7

 6
e

+
0

7

 7
e

+
0

7

 8
e

+
0

7

 9
e

+
0

7

 1
e

+
0

8

N
o

n
-d

e
s
t.

 m
u

ts
.

p
e

r
1

0
0

0
 g

e
n

s
.

Generations

3x3 Multiplier seeded by ABC

SeS-2
SeS-1

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 1
e

+
0

7

 2
e

+
0

7

 3
e

+
0

7

 4
e

+
0

7

 5
e

+
0

7

 6
e

+
0

7

 7
e

+
0

7

 8
e

+
0

7

 9
e

+
0

7

 1
e

+
0

8

N
o

n
-d

e
s
t.

 m
u

ts
.

p
e

r
1

0
0

0
 g

e
n

s
.

Generations

4x4 Multiplier seeded by ABC

SeS-2
SeS-1

a) b)

Figure 7.6: The number of non-destructive mutations per 1,000 generations of: a) the 3bx3b
Multiplier benchmark; b) the 4bx4b Multiplier benchmark

46

Chapter 8

Utilization of Polymorphic Gates
in Evolutionary Design

This chapter shows that the evolutionary design of digital circuits, which is conducted at
the gate-level, is able to produce human-competitive circuits at the transistor-level. In
addition to the standard gates, we utilize polymorphic gates (such as the NAND/NOR
and NOR/NAND gates; see Table 4.1 for gates which are controlled by an external control
signal) which consist of a few transistors, but exhibit non-trivial three-input logic functions.
The proposed implementations of adders and majority circuits, which utilize these gates,
can contain fewer transistors than conventional implementations of these circuits. Moreover,
the utilization of these unconventional gates can significantly improve the success rate of a
search process. It should be noted that we will not utilize polymorphic gates controlled by
the power-supply voltage in this chapter.

Stoica et al. noted [91]: “From the evolvable hardware perspective, it is interesting to
have programmable granularity, allowing the sampling of novel architectures together with
the possibility of implementing standard ones. The optimal choice of elementary block
type and granularity is task dependent.” Therefore, its designer’s challenge to define the
representational bias in order to obtain a suitable search space within the entire space of
possible solutions.

While the evolutionary design conducted at a certain level is able to provide optimized
solutions for a particular level (such as the transistor level), it is very difficult to evolve
at such a particular level more complicated circuits that are typically designed at a higher
level (such as the gate level). On the other hand, when the evolution is conducted at a
higher level, then a particular complex solution might be found; however, it is not usually
optimal from the perspective of lower levels which have to be taken into account when the
evolved circuit has to be fabricated.

This fact is also visible in the standard design process of digital circuits. Complex digital
circuits are designed at the RT level (register-transfer level) or at the gate level. Various
optimization techniques are utilized to obtain an optimized gate-level circuit. Optimized
solution is then implemented using well-known transistor-level implementations of standard
logic gates which are available in the so-called cell library. However, the final transistor-level
solution might not be optimal at all.

For example, the logic expression Y = A.B + C.D (a corresponding circuit is shown in
Figure 8.1a) seems to be optimized at the gate level. It requires two AND gates, along with a
single OR gate and inverter; it costs 20 transistors (see Figure 8.1c). However, the function

47

Y can be implemented using eight transistors only when the special AND-OR-Invert circuit
is employed (see Figure 8.1b). The reason is that the transistor level allows implementing
this particular circuit much easier than a standard gate-level optimization suggests. As
circuit designers know this fact, they do map RT-level designs to the elementary components
of the cell library that are optimized for a particular fabrication process.

c)

A

B

C

D

Y

AND

OR

a)

C

A

A

B D

C

Y

B

D

b)

A

B

D

C

Y

Figure 8.1: And-Or-Invert Circuit: a) the gate-level implementation, b) the transistor-level
(CMOS) implementation, c) a naive gate-level implementation

Unfortunately, in the field of evolutionary design of digital circuits, designers usually do
optimize the number of standard gates. They ignore the real circuit cost [59, 106, 9, 121] on a
chip (perhaps with the exception of [1]). Although the evolutionary circuit design has proven
that it is able to generate the gate-level circuits which lie beyond the scope of human designs
[59, 44, 38], these benefits have not been demonstrated so far for nontrivial digital circuits
considered at the transistor level. Note that some implementations of simple gates were
evolved at the transistor level [38, 49, 117]; however, as mentioned above, the evolutionary
design of more complicated digital circuits directly at the transistor level is currently outside
the capabilities of commonly available computers. In particular, Langeheine argues that
the evolutionary design of a single XOR gate is quite difficult [49].

We will utilize Cartesian Genetic Programming (CGP) to evolve gate-level combina-
tional circuits with the aim of minimizing the number of transistors in target designs. The
goal is to show that the utilization of special elementary circuit components (polymorphic
gates), which are optimized for the transistor level, can reduce the number of transistors in
some digital circuits. The adders and majority circuits are examined as benchmark circuits.

8.1 Gate-Level and Transistor-Level Designs

Let us consider a one-bit full adder. This circuit has two operands, A and B, and the input
carry, Cin. It generates the sum:

S = A⊕B ⊕ Cin; (8.1)

and the output carry:
Cout = AB +BC +AC (8.2)

These equations, 8.1 and 8.2, have been derived from the truth table of this circuit and
optimized using standard operations of Boolean algebra [109]. Since the circuit contains a

48

three-input XOR gate, three two-input AND gates and a three-input OR gate, it utilizes
38 transistors. In order to calculate the number of transistors, we have to look at Table 8.1
which gives the typical number of transistors for the implementation of digital gates.

Table 8.1: Logic gates and the typical number of transistors to implement them.

Gate Inputs Notation Transistors
AND 2 AND2 6

3 AND3 8
OR 2 OR2 6

3 OR3 8
NOT 1 NOT 2
XOR 2 XOR2 8/10

3 XOR3 12/16
NAND 2 NAND2 4

3 NAND3 6
NOR 2 NOR2 4

3 NOR3 6
MUX 2+1 MX 6
NAND/NOR 2+1 NAND/NOR 10
NOR/NAND 2+1 NOR/NAND 8

However, a standard static CMOS VLSI implementation of the one-bit full adder utilizes
only 24 transistors [112] (see Figure 8.2). The number of transistors can even be reduced to
22 when so-called transmission gates are utilized [122]. Zimmermann and Gupta compared
different implementations of full adders in terms of area, delay and power consumption [123].
The implementation cost of adders is strongly connected with the cost of the XOR gate.
While the standard static CMOS two-input XOR gate is implemented using 10 transistors,
only 8 transistors are sufficient if transmission gates can be utilized. Cheng and Hsieh
compared various implementations of the three-input XOR gate [10]. Their paper also
shows that the three-input XOR gate can be implemented using 12 transistors.

A

A

A

A

A

A

A

B

B

B

A

B B

B B

B

C

C

C

C

C

C

Cout

S

Figure 8.2: Standard 24-transistor implementation of the static one-bit full adder

Miller et al. evolved a very unconventional implementation of the one-bit full adder [59].
Although they have not optimized the number of transistors, Figure 8.6a shows that the
evolved circuit can be implemented using 22 transistors only as it contains two two-input
XOR gates and a single multiplexer.

49

8.2 The NAND/NOR and NOR/NAND Polymorphic Gates

We intend to utilize two polymorphic (unconventional) three-input gates [89] that are not
usually considered by circuit designers. It will be shown in Section 8.4 that the evolutionary
design approach is able to effectively utilize these uncommon components as building blocks
for more complex circuits.

The NAND/NOR gate as well as the NOR/NAND gate has three inputs, A,B and Sel,
and operates according to Table 8.2. As Figure 8.3 shows, these gates perform multiplexing
of the NAND logic operation and the NOR logic operation according to a selection input,
Sel. Table 8.1 suggests that their implementation should utilize 14 transistors (6 transis-
tors for the multiplexer, 4 transistors for the NAND gate and 4 transistors for the NOR
gate). However, the NAND/NOR gate can be implemented using 10 transistors only (see
Figure 8.4a), while the implementation of the NOR/NAND gate utilizes only 8 transistors
(see Figure 8.4b).

Table 8.2: Truth tables of the NAND/NOR and NOR/NAND gates

Sel A B NAND/NOR NOR/NAND
0 0 0 1 1
0 0 1 1 0
0 1 0 1 0
0 1 1 0 0
1 0 0 1 1
1 0 1 0 1
1 1 0 0 1
1 1 1 0 0

A

B

Sel

A

B

Sel

NAND/NOR

YY Y
A

B

Sel

NOR/NAND
A

B

Sel

Y

a) b)

Figure 8.3: Gate-level implementation of the NAND/NOR gate (a) and the NOR/NAND
gate (b).

8.3 Experimental Setup

Extended Cartesian Genetic Programming (see Chapter 6) was employed as an evolution-
ary algorithm for the design of circuits. This extension utilizes the polymorphic gates,
which are controlled by a control signal together with ordinary gates. A candidate digital
circuit is represented using a one-dimensional array of programmable nodes, nc × 1. Each
programmable element has three inputs and a single output. It can be programmed to
realize one of logic operations specified in the Γu gate set (see Table 8.1).

50

a) b)

Figure 8.4: CMOS implementation of the NAND/NOR gate (a) and the NOR/NAND gate
(b) gate proposed in [89].

Digital circuits are encoded as arrays of integers of the size 4nc + no, where nc is the
number of elements and no is the number of circuit outputs. Figure 8.5 shows a circuit
consisting of three inputs, two outputs and five programmable elements. The encoding of
circuits corresponds to the encoding which was introduced in Section 3.3.

a(0)

b(1)

c(2)

3

or

4

mx

5

xor

6

or

7

and0

2

2

1

2

3

0

1

2

1

3

5

3

2

1

y

z

Figure 8.5: Example of encoding of a three-input/two-output circuit. Chromosome is
encoded as: 0,2,2,0; 1,3,2,3; 0,2,1,2; 1,5,3,0; 3,1,2,1; 7,5. Logic operations are encoded as:
0 for OR, 1 for AND, 2 for XOR, 3 for MX. Note that only the elements labeled by 3, 5
and 7 are utilized in the phenotype.

We do change the mutation rate after achieving a perfect functionality, that is, before
a transistor utilization is minimized. For the design phase, the algorithm modifies hd = 3
genes of the chromosome. For the optimization phase, the algorithm modifies from 1 to 14
genes (ho) of the chromosomes (that is seven genes on average). The algorithm operates
with a population of 1 + λ individuals (in this case λ = 14). The initial population is
randomly generated.

The fitness function for the design phase reflects Equation 6.5. In addition to maximizing
the functionality, we minimize the number of transistors, the number of gates and delay
(at the gate level) in the optimization phase. This is achieved by using a prioritized fitness

51

function which is derived for four objectives from Equation 6.3:

fitnessp3 = 1 + q4.g4 + q3.g3 + q2.g2 + q1.g1, (8.3)

where q4 denotes the number of incorrect bits computed by the candidate circuit (which
possess the highest priority), q3 is the total number of utilized transistors, q2 is the number of
utilized gates and q1 denotes delay of the circuit (which possess the lowest priority). Generic
constants, g0, g1, g2 and g3, are generated as in Equation 6.3. The number of transistors
is calculated for the gates utilized in the phenotype according to Table 8.1 (XOR2 utilizes
10 transistors and XOR3 utilizes 12 transistors). Other parameters remain the same as in
Chapter 6 (or in Section 3.3) or are specified in the following section.

8.4 Experimental Results

This section reports the experimental results which were obtained for four target bench-
marks: one-bit full adder, two-bit adder, five-input majority circuit and seven-input ma-
jority circuit.

8.4.1 The one-bit full adder

In order to evolve a one-bit full adder, we set the size of genotype to 20 × 1 and the
generation limit up to 1,000,000 generations. We tested different combinations of gates in
the Γ set and different transistor utilizations for those gates. We have run 50 independent
experiments for each set of gates. Table 8.3 lists: the gates included into Γ; the average
number of generations (AvgG) needed to find a fully functional solution (not necessarily
optimized for transistor utilization); and examples of best-evolved implementations. We
can observe that the 22-transistor implementation was found for all proposed combinations
of gates. Figure 8.6 shows examples of the best implementations.

Table 8.3: Resulting implementations of the 1-bit full adder for different sets of gates,
Γ1..Γ6. The number of utilized transistors is given for each gate.

Gates AvgG XOR2 XOR3 MX NOT NAND/NOR NOR/NAND Best Implementations
Γ1 386.9 10 12 6 2 - - 3.MX+2.NOT = 22 tr. (C1)
Γ2 334.9 10 12 6 2 10 8 NOR/NAND+XOR3+NOT = 22 tr. (C2)
Γ3 367.4 10 16 6 2 - - C1
Γ4 259.3 10 16 6 2 10 8 C1 and C2
Γ5 329.2 8 12 6 2 - - 2.XOR2+MX = 22 tr.
Γ6 394.9 8 12 6 2 10 8 C2

8.4.2 The two-bit adder

The two-bit adder calculates the two-bit sum and output carry for two two-bit operands and
the input carry, that is, the circuit has five inputs and three outputs. In order to investigate
which set of gates is suitable for this problem, we compared 10 different gate sets (denoted
as #1. .#10 in the following tables). We set a genotype topology to 60×1 and a generation
limit of up to 1,000,000 generations. We performed 100 independent experiments for each
gate set.

52

B

Cin

A
S

Cout

B

A

Cin

NOR/NAND

Cout

S

a) b)

Figure 8.6: Evolved 1-bit full adders

The first part of Table 8.4 provides the mean number of utilized gates in the best-
obtained circuits of all runs. Thus, we can observe those gates that are useful for this
particular problem. An empty space means that a gate was not included in the set of gates.
The second part of Table 8.4 gives the mean values for some parameters calculated from
the best-obtained circuits of the 100 independent runs: the number of utilized transistors,
the number of utilized gates, circuit delay (measured at the gate level), the fitness value
and the number of generations. ‘Succ. Rate’ denotes the number of runs (out of 100 runs)
in which a correctly working circuit was evolved.

Table 8.4: The two-bit adder benchmark. The mean values of some parameters are calcu-
lated from 100 independent runs for ten different sets of gates.

Gate Set #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
AND2s 3.27 0.18 0.03 11 7.93
OR2s 2.13 0.13 0.1 7.6 -
XOR2s 3.95 1.55 0.44
NOTs 0.69 0.99 1.22 17 2.59 2.9 2.52 -
NAND2s 0.86 0.22 0.11 17.71 15.69
NOR2s 0.88 0.2 0.07 17.26 15.95
AND3s 0 0 4 0.12
OR3s 0.01 0 0.21 -
XOR3s 0.93 1.53
NAND3s 0 0 1.13 1.45
NOR3s 0.01 0.01 1.44 1.25
MXs 3.55 0.88

NAND/NORs 0.55
NOR/NANDs 1.51
Transistors 80.24 53.62 49.62 132 101 77.68 77.82 77.24 76.36
Gates 11.78 7.77 6.45 32 18.45 18.84 18.74 20.03 19.73
Delay 5.56 4.05 3.56 10 8.03 7.9 7.88 7.45 7.57
Fitness 2,535,619 2,882,840 2,867,875 22,408,827 2,166,756 5,737,087 5,452,684 5,879,844 4,878,742

Generations 38,686.8 32,793.2 21,386.8 997,862 156,150 863,785 855,925 848,595 755,830
Succ. Rate 100% 100% 100% 1% 100% 31% 34% 29% 44% 0%

Figure 8.7 shows the best implementation of the two-bit adder that we have evolved.
By connecting two conventional one-bit full adders or two Miller’s one-bit full adders [59]
into the Carry-Ripple adder, we can obtain a solution with 44 transistors. Evolved solution
utilizes two NOR/NAND gates, two three-input XOR gates and a NOT gate, so it utilizes
42 transistors.

53

NOR/NAND
NOR/NAND

S0

S1

Cout

Cin

A1

B1

B0

A0

Figure 8.7: Evolved two-bit adder

8.4.3 Majority circuits

If only the two-input AND and two-input OR gates can be utilized, then according to a
sorting network-based implementation [40], the five-input majority circuit consists of 10
such gates (that is 60 transistors) and the seven-input majority circuit consists of 20 such
gates (that is 120 transistors).

In order to evolve a five-input majority circuit and seven-input majority circuit, we
have set the genotype topology to 60 × 1 and the generation limit up to 10,000,000 gen-
erations. Tables 8.5 and 8.6 summarize the mean values of parameters calculated from
100 independent runs for ten different sets of gates. Both tables illustrate that the utiliza-
tion of uncommon gates significantly improves the quality of evolved solutions (see the #3
column).

Table 8.5: The five-input majority benchmark. The mean values of some parameters are
calculated from 100 independent runs for ten different sets of gates.

Gate Set #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
AND2s 4.59 0.55 0.06 8 3.28
OR2s 4.23 0.75 0.12 2.99 8.67
XOR2s 0.38 0.32 0.01
NOTs 0.11 0.42 0.1 12 0 2.97 2.76 11.33
NAND2s 1.17 1.47 0.27 11.36 9.23
NOR2s 1.03 0.99 0.19 11.8 9.45
AND3s 0.3 0.09 2 1.3
OR3s 0.27 0.05 1.45 2.67
XOR3s 0.33 0.01
NAND3s 0.15 0 2.25 2
NOR3s 0.08 0.03 2.01 2.09
MXs 3.25 0.36

NAND/NORs 0.95
NOR/NANDs 2.48
Transistors 65.74 51.08 36.14 88 59.62 58.94 59.26 54.86 55.86 96
Gates 11.51 8.88 4.72 22 9.02 13.61 13.81 14.2 14.31 22.67
Delay 5.49 4.51 3.18 7 4.61 5.12 5.23 5.59 5.49 7.33
Fitness 2,481,648 2,873,457 2,817,610 5,445,075 2,012,203 1,563,433 1,564,636 1,548,288 1,552,015 5,388,845

Generations 40,677.9 12,130.5 9,348.8 996,910 7,461.89 37,914.7 35,905.9 37,436.9 49,098.4 990,743
Succ. Rate 100% 100% 100% 1% 100% 100% 100% 100% 100% 3%

Table 8.7 shows basic properties of selected five-input majority circuits that we have
evolved. It can be seen in Figure 8.8 that the best circuit has only 32 utilized transis-
tors, that is, three NOR/NAND gates, one NOR gate and one NAND gate. Without the

54

Table 8.6: The seven-input majority benchmark. The mean values of some parameters are
calculated from 100 independent runs for ten different sets of gates.

Gate Set #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
AND2s 9.67 1.54 0.59 - -
OR2s 8.67 1.87 1.21 - -
XOR2s 1.08 1.29 0.16
NOTs 0.14 0.79 0.65 - - 5 6.12 -
NAND2s 0.83 1.68 0.61 17 19.6
NOR2s 1.72 1.18 0.63 20.14 15.75
AND3s 0.48 0.28 - - -
OR3s 0.63 0.32 - -
XOR3s 1.33 0.21
NAND3s 0.6 0.13 7.5 4.2
NOR3s 0.56 0.1 5.14 5.12
MXs 7.73 1.84

NAND/ORs 3.21
NOR/NANDs 3.36
Transistors 131.44 124.6 97.49 113 111.43 113.6 106
Gates 22.11 19.68 13.32 24.5 25.29 28.8 27
Delay 8.44 7.55 5.68 6.5 7.86 9 8.62
Fitness 5,399,959 3,392,049 3,156,677 9,046,069 8,728,553 7,006,954 7,309,033

Generations 849,817 370,296 135,659 973,505 971,021 979,242 979,381
Succ. Rate 36% 94% 98% 0% 0% 4% 7% 5% 8% 0%

utilization of the uncommon gates, the algorithm is able to find the implementation which
utilizes 40 transistors. Note that a conventional implementation of this benchmark contains
60 transistors. The transistor-optimized conventional solution, which was proposed in [67],
utilizes 38 transistors.

Table 8.7: Some properties of the best evolved five-input majority circuits.

Circuit #1 #2 #3 #4 #5 #6
Ordinary Gates 8 2 7 0 8 7
NAND/NORs – 0 – 1 – –
NOR/NANDs – 3 – 3 – –
Transistors 40 32 42 34 46 48
Gates 8 5 7 4 8 7
Delay 4 3 4 3 3 3

Table 8.8 shows basic properties of selected seven-input majority circuits that we have
evolved. It can be seen in Figure 8.9 that the best circuit has only 60 utilized transistors,
that is, two NOR/NAND gates, two NAND/NOR gates and three three-input XOR gates.
The best evolved circuit, which utilizes standard gates, utilizes 86 transistors.

8.5 Summary

Our task was to design non-trivial digital circuits (more complicated than a single gate)
and, simultaneously, to create such implementations of those circuits that are optimized for
the target platform, that is, rather for the transistor level than for the gate level. As we

55

NOR/NAND

out0

in4

in3

in2

in1

in0

NOR/NAND

NOR/NAND

Figure 8.8: Evolved five-input majority circuit

Table 8.8: Some properties of the best evolved seven-input majority circuits.

Circuit #1 #2 #3
Ordinary Gates 15 2 13
NAND/NORs – 2 –
NOR/NANDs – 2 –
Transistors 86 60 96
Gates 15 6 13
Delay 9 3 6

NAND/NOR
NOR/NAND

NAND/NOR

NOR/NAND

in6

in5

in4

in3

in2

in1

in0

out0

Figure 8.9: Evolved seven-input majority circuit

are not able to evolve these circuits directly at the transistor level1, the evolutionary design
and optimization were performed at the gate level. However, the implementation cost of
candidate circuits was evaluated at the transistor level.

Except for the standard gates, we utilized two polymorphic gates which were well-suited
as basic components for the circuits that we wanted to evolve. In most cases, evolved solu-
tions utilize fewer transistors than well-optimized transistor-level conventional implemen-
tations as well as existing evolved implementations. Experimental results show that the
utilization of the uncommon gates significantly helps the evolution to find good solutions

1As far as we know, no similar results have been reported in the available literature. Probably because
available computing resources are not sufficient.

56

(see the averages in the #3 column of Tables 8.4, 8.5, 8.6). Table 8.9 summarizes the re-
sults. Therefore, the identification of the suitable transistor-level components (that is, the
gates such as the NAND/NOR, NOR/NAND or AND-OR-Invert gates) and the utilization
of them as building components at the gate level represents a promising method for the
design of non-trivial digital circuits which are optimized at the transistor level. As Table 8.3
shows, the method is really able to minimize the number of transistors in target circuits
when different implementation costs are assigned to the gates.

Table 8.9: The number of transistors in the best implementations of test circuits. ‘EA’
denotes the evolutionary algorithm; ‘EA+PG’ denotes the evolutionary algorithm with
polymorphic gates.

Method
Circuit Conventional EA EA+PG
1-bit adder 22 22 22
2-bit adder 44 44 42
5-input majority 38 40 32
7-input majority - 86 60

Another advantage of the proposed method is that when the algorithm operates with
gates, and those gates are correctly implemented using transistors, then the final solution
will exhibit a desired electrical behavior. It often happens during evolutionary digital
circuit design which is conducted at the transistor-level that some transistors are not used
as switches (i.e., they operate in the active region). This leads to circuits which exhibit
undesired properties such as high power consumption.

On the other hand, we have not considered some important aspects in these experiments.
Although we have been optimizing the delay at the gate level, the delay of evolved solutions
is not necessarily optimized for the transistor level. We also did not deal with the power
consumption of evolved circuits. We did not consider the placement and routing aspects of
evolved circuits on a chip. These issues should be investigated in a future paper.

In comparison with Koza’s highly computationally-demanding genetic-programming
method [44], our approach allowed us to design target circuits in a relatively short time. A
single run of the algorithm which uses 60 programmable elements and produces 1,000,000
generations requires 30 seconds for the one-bit full adder, 154 seconds for the two-bit adder
(or the five-input majority) and 198 seconds for the seven-input majority circuit on average
when they are computed at a common PC which is equipped with an Athlon64 X2 4800+
processor.

57

Chapter 9

Polymorphic Circuit Design

In the area of polymorphic circuit design, we have focused on the design of bi-functional
polymorphic circuits in this thesis. The design space is situated on a gate level. Target
circuits consist of polymorphic gates1 together with ordinary2 gates.

9.1 Polymorphic Circuit Synthesis Problem

The following problem formulation resembles the definition proposed in [79, 87]. The goal of
the bi-functional polymorphic-circuit synthesis can be formulated as the problem of finding
such a circuit which performs its required functions [79]: f1 in the first mode (mode 1) and
f2 in the second mode (mode 2) of polymorphic gates (see Section 4.1). We will denote a
bi-functional polymorphic circuit as f1/f2, where f1 is the logic function of the first mode
and f2 is the logic function of the second mode, mode 2.

One must remember that a polymorphic gate is denoted as X1/X2, where X1 is the
logic operation of the first mode and X2 is the logic operation of the second mode. The
method used to physically control the mode of polymorphic gates is not important in the
proposed synthesis problem formulation. The polymorphic gate implements two operations
according to a control signal which can hold two different values. The ordinary gates
performs only one operation, however, their functionality must fully be defined for each
mode. For example, the conventional NAND gate considered for polymorphic circuits must
perform the NAND operation in both modes (denoted as NAND/NAND). Let Γ(1) denote
a set of ordinary gates. Let Γ(2) denote a set of polymorphic gates. Let Γ denote a set of all
gates, Γ = Γ(1)∪Γ(2). The requirements on the Γ set with respect to the logic completeness
have been investigated in [50].

Any polymorphic circuit can formally be represented by an oriented graphG = (V,E, ϕ),
where V is the set of vertexes; E is the set of edges between the vertexes, E = {(a, b)|a, b ∈
V }; and ϕ is the mapping of logic operation (gate) to each vertex, ϕ : V → Γ. Note that
V models the gates and E models the connections of the gates. The circuit (and also its
graph) is in the k-th mode if all gates are in the k-th mode.

Given that Γ and logic functions f1 and f2 are required in modes 1 and 2, the problem of
the bi-functional circuit synthesis at the gate level is formulated as follows: find a graph ,G,
representing the digital circuit which performs the f1 logic function in the first mode and

1Here, polymorphic gates do not utilize any special control logic signal. Their logic function is controlled
using the power-supply-voltage levels, temperature, etc.

2We mean standard two gates.

58

the f2 logic function in the second mode. Various additional requirements can be specified,
such as minimization of delay or area.

Unfortunately, this problem cannot be approached by conventional synthesis methods
directly since they do not allow representing polymorphic logic functions and manipulating
with them.

The problem formulation can naturally be extended for k different functions according
to k modes of polymorphic gates; however, for simplicity, we will deal with bi-functional
circuits in this thesis.

Note that paper [53] also deals with the polymorphic-circuits synthesis problem; how-
ever, the goal of synthesis is different: a target circuit is constructed to perform a single
function independently on the mode of polymorphic gates.

9.2 Proposed Methods

We propose three methods to approach the polymorphic-circuit-synthesis problem in this
section. The first one is based on the evolutionary design using Cartesian Genetic Pro-
gramming. The remaining approaches extend the conventional synthesis methods to be
applicable for polymorphic circuits. While Polymorphic Binary Decision Diagrams enable
inserting the polymorphic gates at the input part of the target circuit, Polymorphic Mul-
tiplexing allows the polymorphic gates to be included at the output part of the target
circuit.

9.2.1 Evolutionary Design

The polymorphic circuit synthesis can be approached using extended Cartesian Genetic
Programming as it is introduced in Section 3.3. The main extensions of the standard CGP
are the extensions of a gate set and the fitness function.

The set of gates, Γ, is extended by polymorphic gates. It should be noted that ordinary
gates must be able to work in both polymorphic modes correctly.

The evaluation of the fitness function is performed for each mode of gates separately.
The following fitness-function definition is capable of evaluating a candidate circuit in both
phases, the design phase and the optimization phase:

fitnessp′′2 = 1 + (b̄1 + b̄2).g2 + z.g1 = 1 + (b̄1 + b̄2).(nc.nr + 1) + z, (9.1)

= 1 + b̄1.nc.nr + b̄2.nc.nr + b̄1 + b̄2 + z;

g1 = 1,

g2 = (fmax(z) + 1).g1 = nc.nr + 1,

where b̄1 (respectively b̄2) is the number of incorrect bits obtained for all possible combina-
tions in the first mode (respectively in the second mode), z is the number of utilized gates
and nc.nr is the total number of programmable elements. The number of incorrect bits,
(b̄1 + b̄2), can be understood as Hamming distance between the obtained truth table and
the target truth table. The fitness function (Equation 9.1) is derived from Equations 6.2
and 6.4.

Acceleration of evaluation

For acceleration of the evaluation process, the parallel simulation (see Section 3.3.2) and
short-circuit evaluation (see Section 6.4) are utilized. The parallel simulation takes place

59

in the design and optimization phase, while the short-circuit evaluation takes place only
in the optimization phase. The parallel simulation has to be performed for each mode of
gates separately (see Figure 9.1).

11101110

01010101

01010101

00110011

00001111

00110011

00001111
11100001

10000111

NAND/NOR

10001000

Figure 9.1: Parallel simulation of a candidate polymorphic circuit

The short-circuit evaluation for polymorphic circuits is described and examined in de-
tail in Chapter 10 which also focuses on the optimization phase where the short-circuit
evaluation is very useful.

9.2.2 Polymorphic BDD-based Synthesis

We propose Polymorphic Binary Decision Diagrams (Polymorphic BDD) to extend the
standard Decision Diagrams. We will show how we construct Polymorphic BDD and trans-
form this BDD to the corresponding polymorphic circuits.

Binary Decision Diagrams

Decision Diagram (DD) [13] over a set of Boolean variables, Xn = {x1, .., xn}, and a non-
empty terminal set, T , is defined as a directed acyclic graph, G = (V,E), with exactly one
root node and the following properties:

• A node in V is a non-terminal or terminal node.

• A non-terminal node is labeled by variable xi and has two successors low(xi) and
high(xi) in V .

• A terminal node is labeled with a value from T .

The size of DD is given by the number of its nodes. The level i is the set of nodes
labeled by xi. A DD is ordered, if each variable is encountered at most once on each path
from the root to a terminal node and the variables are encountered in the same order on
each path.

Binary Decision Diagram (BDD) is defined as DD over Xn [13]; however, its terminal
set is T = {0, 1}. If the BDD has root node v, then BDD represents a Boolean function
fv defined as follows: If v is a terminal node of value 0 (or 1), then fv = 0 (or fv = 1);
and if v is a non-terminal node labeled with index xi then fv is the function fv(x1, .., xn) =
x̄i.flow(v)(x1, .., xn) + xi.fhigh(v)(x1, .., xn), where flow(v) (or fhigh(v)) denotes the function
represented by low(v) (or high(v)). We can also call the non-terminal nodes as if-then-else
nodes, that is, if xi is true, then fv = fhigh else fv = flow.

Multi-Terminal BDD (MTBDD) [16] is the extension of BDD which allows integers to
be placed in terminal nodes. Decision variables still remains Boolean.

We define Polymorphic BDD as MTBDD in which terminal integers represent elemen-
tary polymorphic functions.

60

Design of Polymorphic BDD

Let f1 denote a target function in the first mode and f2 denote a target function in the
second mode (according to Section 9.1). Let R1 and R2 be the truth tables for f1 and
f2. Let us assume that R1 and R2 are fully defined and ordered. Then the design of
Polymorphic BDD, which represents f1 and f2, is a three-step procedure:

1. Create the truth table, R, of the polymorphic circuit as a composition of R1 and R2.
The truth table, R, has 2n rows, n columns with all the input variable assignments
and two columns with logic output values for the f1 and f2 logic functions.

2. Choose a decision variable, xc (where c is from 0 to n − 1), and divide R into
2n/2 segments (rows) in such a way that the input assignment differs only in xc
in each segment (see Figure 9.2a). From each segment, extract a signature, S =
23.s21 + 22.s20 + 21.s11 + 20.s10 ≡ (s21s20s11s10)2, that is the least significant bits
come from f1 and the most significant bits come from f2; the values of variables
s21, s20, s11, s10 are determined according to a conversion matrix (see Figure 9.2b).

3. Process the resulting 2n/2-row truth table R′ (see Figure 9.2c) using a chosen algo-
rithm for the MTBDD processing to create an optimized DD structure.

0
b)

10

21

20

1 2
x s s

11

0 s s

1 s s
 +2.0+2.1=8

3

2

1

0
S =2.0+2.0+
00

0 1 6

1 0 6

1 1 11

21
x x x s s

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

0 0 8

2 01 1
x x s
2

R:

c)a)

R’:

Figure 9.2: Transformation process of the three-bit Majority/Parity truth table from R to
R′ (s1 denotes the majority; s2 denotes the even parity): a) truth table R before transfor-
mation; b) conversion matrix of the S signature ; and c) transformed truth table R′.

Figure 9.2 shows an example of processing the R-truth-table (which represents Ma-
jority/Parity functionality) into the transformed table, R′. The values of the s column
represent simple polymorphic functions (see Table 9.1).

Polymorphic BDD which is constructed using the proposed algorithm can further be
optimized by using standard techniques that are applicable for MTBDD. The optimization
techniques include:

• Reducing identical (redundant) branches (type I [13]).

• Reducing (redundant) non-terminal (if-then-else) node with the same branches (type
S [13]).

• Reordering the input variables.

61

Table 9.1: Transformation of signatures to elementary polymorphic functions: ‘id’ denotes
the identity function, and ‘neg’ denotes the logic inversion.

S s1 / s2 S s1 / s2 S s1 / s2 S s1 / s2
0 0 / 0 4 0 / neg 8 0 / id 12 0 / 1
1 neg / 0 5 neg / neg 9 neg / id 13 neg / 1
2 id / 0 6 id / neg 10 id / id 14 id / 1
3 1 / 0 7 1 / neg 11 1 / id 15 1 / 1

An example of a reduced BDD can be seen in Figure 9.4a. This BDD represents the
three-bit Majority/Parity function.

Note that for modeling a multi-output problem, BDD can be extended to multi-output
BDD simply by the creation of BDD for each output of a modeled problem (circuit).
Resulting BDDs can be merged into an extended BDD in order to reduce (redundant)
equivalent branches which can be shared.

Synthesis of Polymorphic BDD into polymorphic circuit

Transformation of Polymorphic BDD to the polymorphic circuit is a straightforward pro-
cedure. Firstly, the decision non-terminal (if-then-else) nodes are directly mapped onto
two-input ordinary multiplexers. The edges of BDD are transformed as signal lines that
interconnect the multiplexers. This creates a network of multiplexers. Afterwards, termi-
nal nodes are implemented as elementary polymorphic circuits according to the conversion
table shown in Figure 9.3. The elementary polymorphic circuits utilize the ordinary and
NAND/NOR polymorphic gates. If, for some reason, another set of gates has to be used,
a different conversion table has to be created. Finally, the elementary polymorphic circuits
are connected to the multiplexer network corresponding to BDD.

Figure 9.4a shows the reduced Polymorphic BDD for the three-bit Majority/Parity
benchmark and Figure 9.4b shows its implementation which utilizes the polymorphic gates
together with multiplexers and ordinary gates.

Elementary polymorphic circuits (see Table 9.3) have been created by using the extended
CGP for the design of polymorphic circuits. So, it is not a big challenge to create another
table for a different set of (ordinary and polymorphic) gates.

9.2.3 Polymorphic Multiplexing

A straightforward approach to the implementation of polymorphic circuits is the utilization
of a polymorphic multiplexer, pmux. This multiplexer propagates the A signal in the first
mode and the B signal in the second mode of polymorphic gates. The gate-level imple-
mentation of the polymorphic multiplexer, pmux, shown in Figure 9.5, is based on the
NAND/NOR and ordinary gates. This implementation utilizes five gates. The multiplexer
was created using the elementary polymorphic circuits, id/0, 0/id (proposed in Figure 9.3),
and the OR gate. We will use this implementation for comparisons of various synthesis
methods which are proposed in this thesis. However, it is expected that a more compact
and efficient transistor-level solution of the polymorphic multiplexer will be available in the
future.

62

"0"

x
"0"

x
"1"

x x

"1"

x

"1"

"0"

x

"0"

"1"

"0"

xx
"1"

x

"0"

x

"1"

"0"
"1"

"1"

"0"

4:0/neg0:0/0 8:0/id 12:0/1

13:neg/11:neg/0 5:neg/neg

2:id/0 6:id/neg 10:id/id 14:id/1

3:1/0 7:1/neg 11:1/id 15:1/1

9:neg/id

x

x

Figure 9.3: Conversion table for the transformation procedure of Polymorphic BDD into a
polymorphic circuit

86

1/id id/neg 0/id

x

x1 1

2

11

x

"0"

"0"

0/id

id/neg

1/id

x

x

x

0

0

0

s

x

x

x

1

1

2

a) b)

Figure 9.4: Reduced Polymorphic BDD (a) and the corresponding polymorphic circuit (b)
for the three-bit Majority/Parity problem.

Polymorphic Multiplexing works as follows. Let us consider that a target polymorphic
circuit has to implement the f1 function together with the f2 function. A conventional
approach is used to synthesize the M1 module implementing f1 and another circuit, while
the M2 module is implementing f2 independently. The output of the synthesized circuits are
then multiplexed using polymorphic multiplexers as shown in Figure 9.6a. This approach
will be denoted as Independent Modules (IM). Note that for especially smaller circuits it
is also possible to use evolutionary circuit design instead of conventional methods to create
the modules. Larger modules are usually designed by conventional design methods.

63

Figure 9.5: Polymorphic multiplexer at the gate level

pmux

pmux

f2

f1

M

M

2

1

om−1

o0.
.
.

...

in−1

i0
.
.
.

pmux

pmux

f1

f2
om−1

o0.
.
.

...

in−1

i0
.
.
.

a) b)

Figure 9.6: Multiplexing of conventional circuits by polymorphic multiplexers: a) indepen-
dent modules, and b) sharing gates between modules.

In order to reduce the number of gates, the goal of synthesis can be to maximize the
amount of gates that are shared by both circuits (see the intersection in Figure 9.6b).
Espresso [5] and ABC-System[2] are conventional circuit synthesis methods that we have
chosen to synthesize particular modules. We applied them with the aim of minimizing
the number of gates in both modules and sharing as many gates as possible between the
modules.

9.3 Benchmark Circuits

As no commonly-used benchmark set is available to evaluate proposed synthesis algo-
rithms, we will introduce a new one. The proposed benchmark set consists of 14 circuits
(see Table 9.2). This benchmark set can be divided into three subsets of problems: the
Multiplier/Sorter circuits of the variable size; the Majority/Parity circuits of the vari-
able size; and the polymorphic constant-coefficient multipliers (a subset denoted as xCon-
stant/xConstant). An example of the constant-coefficient benchmark is the x67/x127 circuit
which multiplies an input value by 67 in the first mode and by 127 in the second mode of
polymorphic gates.

Combining a multiplier and binary sorter in the Multiplier/Sorter benchmark was chosen
for several reasons. The multiplier benchmark is very popular in the (evolutionary) circuit
design community and its synthesis is not trivial. The sorter accompanies the multiplier
because it has also the same number of inputs and outputs. The Multiplier/Sorter circuits
have been used as benchmarks in literature; however, this is only for up to eight inputs/eight
outputs [79, 87, 18]. It should be noted that the area-optimal multipliers as well as sorters
have significantly different structures for a given numbers of inputs.

64

Table 9.2: Proposed benchmarks
Benchmark Subset Shortcut Inputs Outputs Mode 1 Mode 2

M/S4 4 4 2x2-bit multiplier 4-bit sorter
M/S5 5 5 3x2-bit multiplier 5-bit sorter

Multiplier/Sorter M/S6 6 6 3x3-bit multiplier 6-bit sorter
M/S7 7 7 4x3-bit multiplier 7-bit sorter
M/S8 8 8 4x4-bit multiplier 8-bit sorter
M/S9 9 9 5x4-bit multiplier 9-bit sorter
M/P7 7 1 7-bit majority 7-bit parity

Majority/Parity M/P9 9 1 9-bit majority 9-bit parity
M/P11 11 1 11-bit majority 11-bit parity
M/P13 13 1 13-bit majority 13-bit parity

x67/x127 7 14 multiply by 67 multiply by 127
xConstant/xConstant x131/x251 8 16 multiply by 131 multiply by 251

x257/x509 9 18 multiply by 257 multiply by 509
x521/x1021 10 20 multiply by 521 multiply by 1021

Similarly, majority and parity circuits have the same number of inputs and completely
different structures (utilized in the Majority/Parity benchmarks). The reason for including
the xConstant/xConstant benchmarks was motivated by application [84].

9.4 Experimental Results

For all proposed benchmarks, we have designed polymorphic circuits using all three design
methods: direct evolutionary design, Polymorphic-Binary-Decision-Diagram-based synthe-
sis; and Polymorphic-Multiplexing-based synthesis.

9.4.1 Direct evolutionary design using CGP

For benchmark problems, 10 runs of CGP were performed in each experiment; the popula-
tion size was 15, three genes were mutated in the design phase (if not specified elsewhere),
seven genes were mutated on average in the optimization phase and up to 100 million
generations were produced in each run.

The results for the Multiplier/Sorter benchmark are given in Table 9.3. The results are
reported for the best setting of CGP parameters that have been found. Table 9.4 sum-
marizes the results for the Majority/Parity benchmark. In this case, CGP can evolve
Majority/Parity benchmark circuits with up to 13 inputs. The results for the xCon-
stant/xConstant benchmark are summarized in Table 9.5.

9.4.2 Results of Polymorphic BDDs

Table 9.6 shows the results of the Polymorphic-BDD method for various benchmark prob-
lems. By ‘Gates’ we mean common two-input gates (the AND, OR, XOR, NAND, NOR
gates), polymorphic two-input NAND/NOR gates, two-input multiplexers and one-input
inverters. In Polymorphic-BDD design procedure, the reduction of redundant branches, re-
dundant nonterminal (if-then-else) nodes with the same branches and reordering the inputs
were applied.

65

Table 9.3: Parameters and results of CGP for the Multiplier/Sorter benchmark. Gates
in the ‘Gate set’ row are numbered as: 1 – NAND/NOR, 2 – AND, 3 – OR, 4 – XOR,
5 – NAND, 6 – NOR, 7 – NOT A, 8 – NOT B, 9 – MOV A and 10 – MOV B, where MOV
denotes the identity operation. The ‘Mutated genes’ label denotes the number of genes
mutated in the design phase. The ‘Generations avg.’ label denotes the average number of
generations when a correct circuit has been found.

Multiplier/Sorter 2x2b/4b 3x2b/5b 3x3b/6b 4x3b/7b
Input/outputs 4 5 6 7
u× v 10× 12 100× 1 120× 1 16× 16
L-back 1 100 120 16
Mutated genes 1 2 4 4
Gate set 1, 2, 9, 10 1–4, 9, 10 1–10 1, 2, 9, 10
Successful runs 100% 100% 90% 30%
Generations (avg.) 52,580 854,900 26,972,648 62,617,151
Min. # of gates 23 30 52 113

Table 9.4: Parameters and results of CGP for the Majority/Parity benchmark. The gate
set includes the NAND/NOR, AND, OR, XOR, NAND, NOR, NOT gates and identity
operation.

Majority/Parity 7b 9b 11b 13b
Inputs 7 9 11 13
u× v 80× 1 120× 1 120× 1 160× 1
L-back 80 120 120 160
Successful runs 100% 90% 50% 10%
Generations (avg.) 766,362 4,762,745 8,145,890 9,712,501
Min. # of gates 25 42 61 80

Table 9.5: Parameters and results of CGP for the xConstant/xConstant benchmark. The
gate set includes the NAND/NOR, AND, OR, XOR, NAND, NOR, NOT gates and identity
operation.

xConstant/xConstant x67/x127 x131/x251 x257/x509
Inputs 7 8 9
Outputs 14 16 18
u× v 320× 1 640× 1 320× 1
L-back 320 640 320
Successful runs 60% 10% 30%
Generations (avg.) 7,192,359 46,833,855 40,002,719
Min. # of gates 94 239 116

9.4.3 Results of Polymorphic Multiplexing

We have used the Espresso and ABC-System synthesis tools to synthesize the modules
of benchmark circuits with the aim of minimizing the number of gates and sharing as
much gates as possible between the modules. Table 9.7 shows the results of the Espresso
and ABC-System tools for the benchmark problems (see the rows labeled ‘Espresso’ and
‘ABC’). One should note that multi-input gates produced by the Espresso method were

66

Table 9.6: Results of the Polymorphic-BDD design method for the Multiplier/Sorter, Ma-
jority/Parity and xConstant/xConstant benchmarks.

Multiplier/Sorter 2x2/4b 3x2/5b 3x3/6b 4x3/7b 4x4/8b 5x4/9b
Input/outputs 4 5 6 7 8 9
Nodes 19 37 79 135 253 412
Terminals 9 10 11 11 12 12
Gates 31 50 94 150 269 428

Majority/Parity 7b 9b 11b 13b
Inputs 7 9 11 13
Nodes 21 34 49 66
Terminals 5 5 5 5
Gates 31 41 59 73

xConstant/xConstant x67/x127 x131/x251 x257/x509 x521/x1021
Inputs 7 8 9 10
Outputs 14 16 18 20
Nodes 205 407 326 882
Terminals 16 16 15 16
Gates 228 430 348 905

converted to equivalent circuits composed of two-input gates.
We have also used the best-known optimized implementations of independent modules

that we have interconnected by polymorphic multiplexers, that is, no sharing of gates
between the modules were enabled. Results (denoted as ‘IM’) are given in Table 9.7 too.
It can be seen that the strategy of independent modules leads to fewer gates; however, the
circuits synthesized by the IM method are still large and have to be further optimized.

Table 9.7: Polymorphic-Multiplexing design results of the Multiplier/Sorter, Major-
ity/Parity and xConstant/xConstant benchmarks.

Multiplier/Sorter 2x2/4b 3x2/5b 3x3/6b 4x3/7b 4x4/8b 5x4/9b
Inputs/outputs 4 5 6 7 8 9
Espresso 77 168 419 960 2309 —
ABC 37 61 119 198 359 679
IM 39 57 79 111 145 180

Majority/Parity 7b 9b 11b 13b
Inputs 7 9 11 13
Espresso 752 — — —
ABC 39 58 79 112
IM 33 49 63 83

xConstant/xConstant x67/x127 x131/x251 x257/x509 x521/x1021
Inputs 7 8 9 10
Outputs 14 16 18 20
Espresso — — — —
ABC 244 513 364 983
IM 308 352 396 540

67

9.5 Summary

The best implementations (in terms of the number of gates) obtained by the proposed
methods are summarized for all benchmark circuits in Table 9.8. The best-achieved results
are typed in bold. Although the direct polymorphic circuit evolution using CGP is not
scalable, it can be considered as a very successful method for small problem instances. We
applied only a basic set of operations to optimize Polymorphic BDDs. We expect that some
improvements will be obtained by applying more advanced optimization techniques over
BDDs. Results of Espresso were calculated only for some of the benchmark circuits because
resulting circuits are too large and thus they are not competitive with other methods. The
highest number of gates produced by Espresso is mainly due to the fact that many-input
gates have to be transformed to circuits composed of two-input gates. Hence Espresso is
considered as the weakest method for the polymorphic synthesis problem.

Table 9.8: Summary of the number of gates obtained by all methods for the benchmark
problems. The set of gates includes the NAND/NOR polymorphic gate.

Circuit Ins. Outs. CGP BDD Esp ABC IM
M/S4 4 4 23 31 77 37 39
M/S5 5 5 30 50 168 61 57
M/S6 6 6 52 94 419 119 79
M/S7 7 7 113 150 960 198 111
M/S8 8 8 — 269 2,309 359 145
M/S9 9 9 — 428 — 679 180
M/P7 7 1 25 31 752 39 33
M/P9 9 1 42 41 — 58 49
M/P11 11 1 61 59 — 79 63
M/P12 13 1 80 73 — 112 83
x67/x127 7 14 94 228 — 244 308
x131/x251 8 16 239 430 — 513 352
x257/x509 9 18 116 348 — 364 396
x521/x1021 10 20 — 905 — 983 540

Although we have considered only the NAND/NOR gate and polymorphic circuits with
two modes, the proposed methods can easily be extended to utilize other polymorphic gates.
In order to compare various settings, the methods have been used with other sets of gates:
the ordinary gates with the NAND/XOR gate (see results in Table 9.9); and the ordinary
gates with the NAND/NOR and NOR/NAND gate (see results in Table 9.10). Espresso
was excluded from subsequent experiments due to its inefficiency in comparison to other
synthesis methods.

It can be noticed that the results for Polymorphic Multiplexing (the ‘ABC’ and ‘IM’
designs) are the same in Tables 9.8 and 9.10. It is because the number of utilized gates
of the polymorphic multiplexer is the same for both gate sets: ordinary gates with the
NAND/NOR gate; and ordinary with the NAND/NOR and NOR/NAND gates. The
NAND/NOR gate accompanied with the NOR/NAND gate does not give us an advan-
tage in the lower number of utilized gates of the polymorphic multiplexer. On the other
hand, the utilization of both polymorphic gates gives us smaller circuit designs in other

68

Table 9.9: Summary of the number of gates obtained by the methods for the benchmark
problems. The set of gates includes the NAND/XOR polymorphic gate.

Circuit Ins. Outs. CGP BDD ABC IM
M/S4 4 4 22 31 33 35
M/S5 5 5 35 50 56 52
M/S6 6 6 60 94 113 73
M/S7 7 7 94 150 191 104
M/S8 8 8 — 269 351 137
M/S9 9 9 — 428 670 171
M/P7 7 1 23 32 38 32
M/P9 9 1 34 42 57 48
M/P11 11 1 56 60 78 62
M/P13 13 1 — 74 111 82
x67/x127 7 14 109 229 230 294
x131/x251 8 16 214 431 497 336
x257/x509 9 18 98 349 346 378
x521/x1021 10 20 — 906 963 520

Table 9.10: Summary of the number of gates obtained by the methods for the benchmark
problems. The set of gates includes the NAND/NOR and NOR/NAND polymorphic gates.

Circuit Ins. Outs. CGP BDD ABC IM
M/S4 4 4 17 28 37 39
M/S5 5 5 33 47 61 57
M/S6 6 6 57 91 119 79
M/S7 7 7 101 147 198 111
M/S8 8 8 — 226 359 145
M/S9 9 9 — 425 679 180
M/P7 7 1 22 27 39 33
M/P9 9 1 38 39 58 49
M/P11 11 1 55 55 79 63
M/P13 13 1 — 71 112 83
x67/x127 7 7 100 222 244 308
x131/x251 8 8 215 424 513 352
x257/x509 9 9 109 342 366 396
x521/x1021 10 10 — 899 983 540

cases.
We can see from the summaries (Tables 9.8, 9.9 and 9.10) that there is no single method

which outperforms the other methods.
The circuits synthesized using the aid of conventional methods are still large and they

have to be further optimized.

69

Chapter 10

Evolutionary Optimization of
Polymorphic Circuits

Polymorphic circuits created using the methods based on Polymorphic Multiplexing or
Polymorphic Binary Decision Diagrams are quite large in many cases and thus are inef-
ficient. In the case of Polymorphic Multiplexing, polymorphic gates are solely located at
the outputs of a circuit. In the case of Polymorphic BDDs, the polymorphic gates are
located close to the inputs of a circuit. In order to minimize the total number of gates, it is
desirable to integrate polymorphic gates deeply into the circuit structure and also increase
the ratio of polymorphic gates to ordinary gates. We will show later in our experiments
that increasing the ratio of polymorphic gates usually leads to decreasing the total number
of gates.

10.1 Evolutionary Optimization Algorithm

The evolutionary algorithm introduced in Section 9.2.1 was taken as the basis for evolu-
tionary optimization of polymorphic circuits. For purposes of optimization, polymorphic
circuits are converted into the CGP representation. Since presented CGP uses two-input
nodes, all components have to utilize up to two inputs. Therefore, the three-input multi-
plexer is converted into four two-input gates (in the BDD-based design), the three-input
AND-gate is converted into two two-input gates (in the Espresso-based designs), etc.

As we know from Chapter 7 the modified selection strategy is beneficial in the opti-
mization phase. As the strategies are defined in Section 6.3, they do not have to be further
modified to handle the polymorphic ability. However, we will denote these strategies uti-
lized for the polymorphic circuit optimization as follows: the traditional strategy, as the
SeS-1’ strategy, and the modified strategy as the SeS-2’ strategy.

Acceleration of optimization

For acceleration of optimization, the parallel simulation and short-circuit evaluation are
utilized. The parallel evaluation was described earlier in Sections 6.4 and 9.2.1. One
must remember that it has to be run for each mode of polymorphic gates separately. The
short-circuit evaluation (see Section 6.4) extended for polymorphic circuits takes place even
for small circuits. A candidate circuit is evaluated for both modes of gates separately as
mentioned earlier. When a candidate circuit is recognized to be incorrect for the first mode
of polymorphic gates, then the evaluation of the circuit is terminated.

70

10.2 Experimental Setup

We have focused on two areas in experiments: gate-level minimization using proposed
selection strategies and reduction of computational overhead using short-circuit evaluation.

The effect of the short-circuit evaluation will be measured using the proposed evolution-
ary algorithm (Section 10.1). The algorithm is used with a population size of 15 individuals
and the nc × 1 topology, where nc is the number of elements in the seed which comes from
the polymorphic-multiplexing design method based on the ABC-System implementations.
The mutation operator modifies seven genes on average. Each experiment is performed
ten times. The number of generations depends on the complexity of a benchmark problem
and is given for particular benchmarks in Table 10.2. Results will be given for the parallel
simulation on the 64-bit architecture.

CGP is, in fact, seeded with a fully functional but non-optimal design with respect
to the number of gates. The goal of optimization is to reduce the number of gates. We
will compare the traditional SeS-1’ selection strategy which explicitly counts the number
of gates with the unconventional SeS-2’ selection strategy.

We will show in Section 10.3 that the unconventional SeS-2’ selection strategy signif-
icantly improves the results of optimization, although it does not take into account the
number of gates explicitly.

10.3 Experimental Results

10.3.1 Short-circuit evaluation

Table 10.1 gives the computational effort of optimization for CGP seeded using ABC-based
designs. The ‘Reduction’ column of Table 10.1 shows the reduction of the computational
time which is achievable when candidate circuits are evaluated with the short-circuit eval-
uation (see Sections 6.4 and 10.1).

Figure 10.1 shows graphically the computational reduction from Table 10.1. We can
see that the curves of the selection strategies are close to each other in comparison to the
curves shown in Figure 7.1. The reason is probably that the evolutionary-optimization
algorithm of polymorphic circuit designs has not utilized the training-set reorganization
(see Section 6.5) in this case. On the other hand, this feature does not influence the quality
of optimized circuits, but instead speeds up the evaluation.

10.3.2 Circuit optimization

Table 10.2 shows the results obtained by applying evolutionary optimization on the bench-
mark circuits created by the polymorphic-BDD-based synthesis. For both selection strate-
gies, we compared the number of gates (best, worst, mean) and the average number of
polymorphic gates. We can observe that SeS-1’ and SeS-2’ give us very different results.

Similarly, Table 10.3 shows the results when CGP was seeded by the polymorphic-
multiplexing synthesis with support of the ABC synthesis tool. We can observe that the
best solutions are significantly different too.

In a similar way, Table 10.4 shows the results when CGP was initialized by the Espresso-
based synthesis. Not all benchmarks were optimized (even designed) because we reached
the limits of the Espresso algorithm implementation. Differences between the selection
strategies are significant.

71

Table 10.1: The mean number of evaluations. ‘Tot. Evals.’ denotes the total number of
evaluations when the short-circuit evaluation is not involved.

Benchmark Ins. Outs. nc Strategy Tot. Evals. Evaluations Reduction
[106] [106]

M/S4 4 4 45 SeS-1’ 30 17.6 1.70
SeS-2’ 17.5 1.71

M/S5 5 5 71 SeS-1’ 300 172.7 1.74
SeS-2’ 172.1 1.74

M/S6 6 6 131 SeS-1’ 300 170.5 1.76
SeS-2’ 170.8 1.76

M/S7 7 7 212 SeS-1’ 6,000 2,128.8 2.82
SeS-2’ 2,216.7 2.71

M/S8 8 8 375 SeS-1’ 12,000 2,896.0 4.14
SeS-2’ 3,040.2 3.95

M/S9 9 9 697 SeS-1’ 24,000 4,740.5 5.06
SeS-2’ 4,872.0 4.93

M/P7 7 1 41 SeS-1’ 60 19.6 3.06
SeS-2’ 19.6 3.06

M/P9 9 1 60 SeS-1’ 240 36.3 6.61
SeS-2’ 36.8 6.52

M/P11 11 1 81 SeS-1’ 9,600 1,037.3 9.25
SeS-2’ 1,024.1 9.37

M/P13 13 1 114 SeS-1’ 38,400 3,729.2 10.30
SeS-2’ 3,851.2 9.97

x67/x127 7 14 274 SeS-1’ 600 214.5 2.80
SeS-2’ 223.7 2.68

x131/x251 8 16 547 SeS-1’ 1,200 340.2 3.53
SeS-2’ 341.2 3.52

x257/x509 9 18 410 SeS-1’ 2,400 672.1 3.57
SeS-2’ 647.3 3.71

x521/x1021 10 20 1028 SeS-1’ 4,800 906.5 5.29
SeS-2’ 895.6 5.36

Finally, Table 10.5 gives the results of evolutionary optimization initialized with the
polymorphic-multiplexing-based synthesis which have been composed of independent mod-
ules.

Presented results indicate that the SeS-2’ strategy clearly outperforms the SeS-1’ strat-
egy. This phenomenon was also observed during the optimization of conventional circuits
(see Section 7.4). For example, see Figure 10.2, which demonstrates a typical run of CGP,
and Figure 10.3, which demonstrates the average behavior of CGP on the particular bench-
mark.

10.4 Summary

In comparison with conventional synthesis, proposed methods require significantly more
computational time. The reason is that the synthesis problem of a polymorphic circuit

72

 0

 1

 2

 3

 4

 5

 6

 7

 4 5 6 7 8 9

A
v
g

.
R

e
d

u
c
ti
o

n

Inputs

Multiplier/Sorter Benchmark

SeS-1
SeS-2

 0

 2

 4

 6

 8

 10

 12

 14

 7 8 9 10 11 12 13

A
v
g

.
re

d
u

c
ti
o

n

Inputs

Majority/Parity Benchmark

SeS-1
SeS-2

a) b)

 0

 1

 2

 3

 4

 5

 6

 7

 7 8 9 10

A
v
g

.
R

e
d

u
c
ti
o

n

Inputs

xConstant/xConstant Benchmark

SeS-1
SeS-2

c)

Figure 10.1: Average reduction of the computational time in comparison with the complete
truth table evaluation for: a) Multiplier/Sorter benchmark; b) Majority/Parity benchmark;
and c) xConstant/xConstant benchmark.

 0

 50

 100

 150

 200

 250

 300

 350

 0 1
e

+
0

7

 2
e

+
0

7

 3
e

+
0

7

 4
e

+
0

7

 5
e

+
0

7

 6
e

+
0

7

 7
e

+
0

7

 8
e

+
0

7

 9
e

+
0

7

 1
e

+
0

8

N
u

m
b

e
r

o
f

g
a

te
s

Generations

4x4 Multiplier/8-bit Sorter Benchmark

SeS-2
SeS-1

 0

 50

 100

 150

 200

 250

 300

 350

 0 1
e

+
0

7

 2
e

+
0

7

 3
e

+
0

7

 4
e

+
0

7

 5
e

+
0

7

 6
e

+
0

7

 7
e

+
0

7

 8
e

+
0

7

 9
e

+
0

7

 1
e

+
0

8

N
u

m
b

e
r

o
f

g
a

te
s

Generations

4x4 Multiplier/8-bit Sorter Benchmark

SeS-2
SeS-1

a) b)

Figure 10.2: The number of gates of: a) the best-obtained individual, β, and b) parent
individual, ρ (taken from the best runs of the 4x4-bit Multiplier/8-bit Sorter benchmark
which were initialized by the ABC designs).

is more difficult than the conventional synthesis and also the main role is played by the
evolutionary search which is time consuming. The computation time of the direct CGP
evolution can be expressed as follows: it takes 80 seconds to generate one million generations

73

Table 10.2: Results of the evolutionary optimization initialized by the polymorphic-BDD-
based synthesis. The ‘GpR’ label denotes generations per run. The ‘PolyG’ label denotes
the average ratio of polymorphic gates in optimized circuits.

Benchmark Ins. Outs. nc GpR Strategy Best Worst Mean PolyG
[106]

M/S4 4 4 98 1 SeS-1’ 27 33 30.0 11%
SeS-2’ 20 24 21.7 28%

M/S5 5 5 173 10 SeS-1’ 46 56 52.0 8%
SeS-2’ 35 56 39.4 26%

M/S6 6 6 345 10 SeS-1’ 103 129 116.5 4%
SeS-2’ 81 97 87.0 17%

M/S7 7 7 569 100 SeS-1’ 174 194 184.7 6%
SeS-2’ 112 137 125.8 19%

M/S8 8 8 1,043 100 SeS-1’ 355 407 385.7 8%
SeS-2’ 256 289 274.5 13%

M/S9 9 9 1,867 100 SeS-1’ 530 572 553.1 30%
SeS-2’ 471 525 503.0 27%

M/P7 7 1 98 1 SeS-1’ 31 44 39.9 15%
SeS-2’ 27 36 32.3 17%

M/P9 9 1 148 1 SeS-1’ 49 79 65.4 8%
SeS-2’ 44 64 55.5 12%

M/P11 11 1 210 10 SeS-1’ 71 97 86.2 11%
SeS-2’ 49 82 59.2 17%

M/P13 13 1 276 10 SeS-1’ 97 138 113.2 7%
SeS-2’ 70 109 88.0 13%

x67/x127 7 14 860 10 SeS-1’ 218 262 234.9 3%
SeS-2’ 141 188 176.2 15%

x131/x251 8 16 1,668 20 SeS-1’ 560 607 583.1 2%
SeS-2’ 535 622 570.7 9%

x257/x509 9 18 1,343 50 SeS-1’ 286 369 331.9 5%
SeS-2’ 194 237 218.3 16%

x521/x1021 10 20 3,568 20 SeS-1’ 1,289 1,381 1,334.2 1%
SeS-2’ 1,407 1,554 1,481.5 6%

for the four-input polymorphic circuit on the Athlon64 3200+ processor. For a seven-input
polymorphic circuit, 207 seconds are needed for the same processor.

Table 10.6 (see the ‘Design time’ label) gives the average time required to construct the
4x4-bit multiplier/8-bit sorter by proposed methods on the Athlon64 X2 4800+ processor.
Except for the Polymorphic-BDD synthesis (when brute force was used for the optimal
ordering of input variables), the design time is quite reasonable. It is almost zero if inde-
pendent modules are available in advance. The main bottleneck is the optimization time
imposed by CGP which is in the order of hours for this circuit. However, this time can
be reduced by decreasing the number of generations if a slightly larger solution is accept-
able. Figures 10.2 and 10.3 demonstrate the relation between the number of gates and the

74

Table 10.3: Results of evolutionary optimization initialized by the ABC-based synthesis.
The ‘GpR’ label denotes generations per run. The ‘PolyG’ label denotes the average ratio
of polymorphic gates.

Benchmark Ins. Outs. nc GpR Strategy Best Worst Mean PolyG
[106]

M/S4 4 4 45 1 SeS-1’ 19 22 20.2 37%
SeS-2’ 18 21 19.3 36%

M/S5 5 5 71 10 SeS-1’ 36 43 39.0 27%
SeS-2’ 32 37 34.8 28%

M/S6 6 6 131 10 SeS-1’ 71 85 77.2 21%
SeS-2’ 59 72 66.2 24%

M/S7 7 7 212 100 SeS-1’ 110 135 121.4 25%
SeS-2’ 88 107 97.1 24%

M/S8 8 8 375 100 SeS-1’ 192 227 213.6 22%
SeS-2’ 166 213 181.7 22%

M/S9 9 9 697 100 SeS-1’ 366 411 384.6 23%
SeS-2’ 323 378 348.3 21%

M/P7 7 1 41 1 SeS-1’ 29 33 31.3 17%
SeS-2’ 21 33 29.2 20%

M/P9 9 1 60 1 SeS-1’ 45 53 48.6 20%
SeS-2’ 42 50 45.5 17%

M/P11 11 1 81 10 SeS-1’ 66 72 70.9 17%
SeS-2’ 62 71 68.3 18%

M/P13 13 1 114 10 SeS-1’ 88 95 91.7 18%
SeS-2’ 80 95 85.6 21%

x67/x127 7 14 274 10 SeS-1’ 111 143 130.2 28%
SeS-2’ 85 114 96.4 25%

x131/x251 8 16 547 20 SeS-1’ 209 241 220.7 25%
SeS-2’ 187 222 202.3 22%

x257/x509 9 18 410 50 SeS-1’ 133 162 146.3 26%
SeS-2’ 112 130 122.4 25%

x521/x1021 10 20 1,028 20 SeS-1’ 346 429 380.7 22%
SeS-2’ 326 380 359.1 20%

generation (i.e. the time spent by optimization).
The best implementations (in terms of the number of gates for the gate set which

includes the NAND/NOR gate) obtained by proposed methods and subsequent CGP opti-
mization are summarized for all benchmark circuits in Table 10.7. The best-achieved results
are typed in bold. The Polymorphic-Multiplexing-based synthesis using independent mod-
ules or the ABC-System tool followed by the CGP optimization provide the best results
for larger circuits. The optimization of the Polymorphic-BDD synthesis does not perform
as well as the optimization of the Polymorphic-Multiplexing-based synthesis. Table 10.7
also shows that no single method outperforms other methods in all problem instances. By
using the proposed methods, we were able to significantly improve the gate utilization of

75

Table 10.4: Results of evolutionary optimization initialized by the Espresso-based synthesis.
The ‘GpR’ label denotes generations per run. The ‘PolyG’ label denotes the average ratio
of polymorphic gates.

Benchmark Ins. Outs. nc GpR Strategy Best Worst Mean PolyG
[106]

M/S4 4 4 92 1 SeS-1’ 22 29 25.8 21%
SeS-2’ 20 24 21.6 31%

M/S5 5 5 183 10 SeS-1’ 49 59 52.8 17%
SeS-2’ 30 40 36.4 25%

M/S6 6 6 436 10 SeS-1’ 123 149 132.0 8%
SeS-2’ 75 104 84.4 24%

M/S7 7 7 979 100 SeS-1’ 239 274 258.4 6%
SeS-2’ 116 157 135.6 21%

M/S8 8 8 2,330 100 SeS-1’ 616 697 646.3 3%
SeS-2’ 318 404 375.3 14%

M/P7 7 1 755 1 SeS-1’ 230 272 246.7 3%
SeS-2’ 44 184 90.3 12%

 0

 50

 100

 150

 200

 250

 300

 350

 0 1
e

+
0

7

 2
e

+
0

7

 3
e

+
0

7

 4
e

+
0

7

 5
e

+
0

7

 6
e

+
0

7

 7
e

+
0

7

 8
e

+
0

7

 9
e

+
0

7

 1
e

+
0

8

N
u

m
b

e
r

o
f

g
a

te
s

Generations

4x4 Multiplier/8-bit Sorter Benchmark

SeS-2
SeS-1

 0

 50

 100

 150

 200

 250

 300

 350

 0 1
e

+
0

7

 2
e

+
0

7

 3
e

+
0

7

 4
e

+
0

7

 5
e

+
0

7

 6
e

+
0

7

 7
e

+
0

7

 8
e

+
0

7

 9
e

+
0

7

 1
e

+
0

8

N
u

m
b

e
r

o
f

g
a

te
s

Generations

4x4 Multiplier/8-bit Sorter Benchmark

SeS-2
SeS-1

a) b)

Figure 10.3: The mean number of gates of: a) the best-obtained individuals, β, and b)
parent individuals, ρ (taken from 10 runs of the 4x4-bit Multiplier/8-bit Sorter benchmark
which were initialized by the ABC designs).

almost all benchmark circuits in comparison with the results existing in the present litera-
ture (‘B.L.’ column in Table 10.7). The proposed SeS-2’ strategy significantly improves the
search efficiency.

In most cases, combining the BDD design with evolutionary optimization reduces the
number of gates. However, in some cases, evolutionary optimization can even increase
the number of gates. For example, see the M/P9 benchmark in Table 10.7 in which the
BDD design (without evolutionary optimization) leads to 41 gates while the subsequent
optimization requires 44 gates. The reason for this is that the applied BDD synthesis uses
multiplexers, and these multiplexers have to be transformed into the two-input-gates design
where a single multiplexer is transformed on four two-input gates for CGP.

76

Table 10.5: Results of evolutionary optimization initialized with by the IM-based synthesis.
The ‘GpR’ label denotes generations per run. The ‘PolyG’ label denotes the average ratio
of polymorphic gates.

Benchmark Ins. Outs. nc GpR Strategy Best Worst Mean PolyG
[106]

M/S4 4 4 47 1 SeS-1’ 22 25 23.0 29%
SeS-2’ 19 23 20.6 27%

M/S5 5 5 67 10 SeS-1’ 39 41 39.3 26%
SeS-2’ 34 38 35.9 29%

M/S6 6 6 91 10 SeS-1’ 59 62 61.1 23%
SeS-2’ 58 60 59.3 25%

M/S7 7 7 125 100 SeS-1’ 83 87 84.6 21%
SeS-2’ 80 83 81.4 26%

M/S8 8 8 161 100 SeS-1’ 109 112 110.8 23%
SeS-2’ 105 108 106.9 21%

M/S9 9 9 198 100 SeS-1’ 150 153 151.6 17%
SeS-2’ 148 152 149.8 17%

M/P7 7 1 35 1 SeS-1’ 30 32 31.1 12%
SeS-2’ 27 32 30.5 11%

M/P9 9 1 51 1 SeS-1’ 42 47 43.5 10%
SeS-2’ 41 46 42.9 8%

M/P11 11 1 65 10 SeS-1’ 54 61 59.9 7%
SeS-2’ 51 61 57.3 9%

M/P13 13 1 85 10 SeS-1’ 66 76 71.0 7%
SeS-2’ 65 74 68.1 7%

x67/x127 7 14 350 10 SeS-1’ 137 197 160.1 16%
SeS-2’ 114 171 148.5 18%

x131/x251 8 16 400 20 SeS-1’ 264 271 267.6 14%
SeS-2’ 259 272 267.2 13%

x257/x509 9 18 450 50 SeS-1’ 337 346 342.4 13%
SeS-2’ 340 347 342.7 13%

x521/x1021 10 20 600 20 SeS-1’ 484 497 490.7 10%
SeS-2’ 488 495 492.2 10%

Table 10.6: Design time and optimization time for the 4x4-bit multiplier/8-bit sorter ini-
tialized by the proposed methods.

Method BDD Espresso ABC IM
Elements (nc) 1043 2330 375 161
Generations [106] 100 100 100 100
Design time [s] 345 1 3 0.001
Optimization time [s] 154,015 361,394 21,176 9,261

77

Table 10.7: The minimum number of gates obtained by all methods for the benchmark
problems. The last two columns (‘B.L.’ and ‘Ref.’) give the best known results from the
present literature. The set of gates includes NAND/NOR polymorphic gate. The ‘o’ suffix
of labels located in the right half of the table means that the CGP-based optimization was
applied.

Circuit Ins. Outs. CGP BDD Esp ABC IM BDDo Espo ABCo IMo B.L. Ref.
M/S4 4 4 23 31 77 37 39 20 20 18 19 23 [87]
M/S5 5 5 30 50 168 61 57 35 30 32 34 30 [87]
M/S6 6 6 52 94 419 119 79 81 75 59 58 52 [87]
M/S7 7 7 113 150 960 198 111 112 116 88 80 110 [18]
M/S8 8 8 — 269 2,309 359 145 256 318 166 105 205 [18]
M/S9 9 9 — 428 — 679 180 471 — 323 148 — —
M/P7 7 1 25 31 752 39 33 27 44 21 27 29 [18]
M/P9 9 1 42 41 — 58 49 44 — 42 41 45 [18]
M/P11 11 1 61 59 — 79 63 49 — 62 51 69 [18]
M/P12 13 1 80 73 — 112 83 70 — 80 65 90 [18]
x67/x127 7 14 94 228 — 244 308 141 — 85 114 — —
x131/x251 8 16 239 430 — 513 352 535 — 187 259 — —
x257/x509 9 18 116 348 — 364 396 194 — 112 337 — —
x521/x1021 10 20 — 905 — 983 540 1,289 — 326 484 — —

Another important property of optimized circuit designs initialized by Polymorphic
Multiplexing is that the percentage share of polymorphic gates utilized in resulting circuits
is relatively high. Tables 10.2, 10.3, 10.4 and 10.5 show that the resulting circuits optimized
from the ABC-based synthesis contain 22% polymorphic gates on average (23% was achieved
for the IM-based synthesis), while he BDD-based synthesis only led to 8% and the Espresso-
based synthesis to 3% on average.

From these results, we can observe that the new SeS-2’ strategy significantly outperforms
the standard SeS-1’ strategy in most cases. This is a very interesting phenomenon that has
been investigated for the conventional-circuit evolution proposed in Chapter 7.

We have also optimized circuit designs which support other polymorphic gates. Table 10.8
(and Table 10.9 respectively) shows the results using a gate set which includes the poly-
morphic NAND/XOR gates (and the NAND/NOR and NOR/NAND gates respectively).
We summarized all results in Table 10.10 which shows the gate-level cost of the best-known
implementations discovered so far.

We can observe that utilization of the NAND/XOR gate is especially useful for the Ma-
jority/Parity benchmarks which is natural because of the XOR-based parity construction.
Including the NOR/NAND gate allowed us to reduce the number of gates in comparison
with the original gate set. However, it still remains unclear how to select a suitable set for
a particular polymorphic circuit benchmark.

78

Table 10.8: The minimum number of gates obtained by all methods for the benchmark
problems. The set of gates includes the NAND/XOR polymorphic gate. The ‘o’ suffix of
labels in the right half of the table means that the CGP-based optimization was applied.

Circuit Ins. Outs. CGP BDD ABC IM BDDo ABCo IMo
M/S4 4 4 22 31 33 35 18 18 17
M/S5 5 5 35 50 56 52 36 30 32
M/S6 6 6 60 94 113 73 70 56 59
M/S7 7 7 94 150 191 104 102 80 81
M/S8 8 8 — 269 351 137 221 165 108
M/S9 9 9 — 428 670 171 413 295 146
M/P7 7 1 23 32 38 32 23 21 22
M/P9 9 1 34 42 57 48 37 39 43
M/P11 11 1 56 60 78 62 39 61 57
M/P13 13 1 — 74 111 82 60 81 68
x67/x127 7 14 109 229 230 294 143 84 104
x131/x251 8 16 214 431 497 336 410 181 250
x257/x509 9 18 98 349 346 378 176 115 325
x521/x1021 10 20 — 906 963 520 1171 307 475

Table 10.9: The minimum number of gates obtained by all methods for the benchmark
problems. The set of gates includes NAND/NOR and NOR/NAND polymorphic gates.
The ‘o’ suffix of labels in the right half of the table means that the CGP-based optimization
was applied.

Circuit Ins. Outs. CGP BDD ABC IM BDDo ABCo IMo
M/S4 4 4 17 28 37 39 16 16 16
M/S5 5 5 33 47 61 57 31 30 31
M/S6 6 6 57 91 119 79 64 55 55
M/S7 7 7 101 147 198 111 97 85 77
M/S8 8 8 — 226 359 145 236 155 102
M/S9 9 9 — 425 679 180 403 293 141
M/P7 7 1 22 27 39 33 24 24 24
M/P9 9 1 38 39 58 49 38 38 39
M/P11 11 1 55 55 79 63 42 54 57
M/P13 13 1 — 71 112 83 69 75 63
x67/x127 7 14 100 222 244 308 126 75 104
x131/x251 8 16 215 424 513 352 368 168 244
x257/x509 9 18 109 342 366 396 172 108 310
x521/x1021 10 20 — 899 983 540 1054 283 476

79

Table 10.10: The minimum number of gates achieved by the proposed methods for the
benchmark problems. In addition to polymorphic gates, the gate sets include the AND,
OR, NAND, NOR, XOR and NOT gate.

Benchmark Ins. Outs. {NAND/NOR} {NAND/XOR} {NAND/NOR,
∪Γ(1) ∪Γ(1) NOR/NAND}

∪Γ(1)

M/S4 4 4 18 17 16
M/S5 5 5 30 30 30
M/S6 6 6 52 56 55
M/S7 7 7 80 80 77
M/S8 8 8 105 108 102
M/S9 9 9 148 146 141
M/P7 7 1 21 21 22
M/P9 9 1 41 34 38
M/P11 11 1 49 39 42
M/P13 13 1 65 60 63
x67/x127 7 14 85 84 75
x131/x251 8 16 187 181 168
x257/x509 9 18 112 98 108
x521/x1021 10 20 326 307 283

80

Chapter 11

Conclusions

Evolutionary synthesis and optimization of ordinary and polymorphic circuits are research
topics where unexplored open areas still exist. Polymorphic electronics gave us opportu-
nity to enhance conventional digital electronics in several application domains. We have
employed or modified various well-known approaches, including Cartesian Genetic Program-
ming and Binary Decision Diagrams to improve the synthesis and optimization process of
reasonably large circuits.

Research results have been published in the proceedings of well-recognized interna-
tional conferences, including the NASA/ESA Conference on Adaptive Hardware and Sys-
tems (AHS), IEEE Congress on Evolutionary Computation (CEC), International Confer-
ence on Evolvable Systems (ICES) or Genetic and Evolutionary Computation Conference
(GECCO). Our research was also published in the International Journal of Unconventional
Computing. A summarized description of the proposed design and optimization methods
for polymorphic circuits was accepted for publication in the Journal of Multiple-Valued
Logic and Soft Computing. However, there are still new and original results in this thesis
which have not been published elsewhere.

11.1 Contributions

This section summarizes the main contributions of this thesis.
We have employed Cartesian Genetic Programming (CGP) and its modifications in the

ordinary-circuit optimization and improved existing results of combinational circuit synthe-
sis. It was shown that the novel selection strategy can provide more compact circuits. We
have verified that the selection of the parent individual in Cartesian Genetic Programming
on the basis of its functionality, instead of compactness, leads to smaller phenotypes at the
end of the evolution. The new selection strategy is especially useful for the optimization
of nontrivial circuits if sufficient redundancy is available in terms of available gates and
sufficient time is allowed for the evolution. It is curious that the strategy does not explic-
itly prefer a smaller number of gates in a parent individual selection and after everything,
it is still able to minimize. This phenomenon has been confirmed using experiments per-
formed on common benchmark circuits. We have proposed evaluation enhancements, such
as the short-circuit evaluation or train-set reordering, that speed up computational time
of the candidate circuit evaluation. Results of the ordinary-circuit optimization have been
partially published in the proceedings of the GECCO and ICES conferences [20, 19].

We have utilized specific polymorphic gates in ordinary circuits to minimize the total

81

number of gates. We have used the fitness function with priorities to reach this goal.
We have clearly demonstrated that the evolutionary design of digital circuits which is
conducted at the gate level is able to produce human-competitive circuits at the transistor-
level. We have discovered novel implementations of adders and majority circuits that utilize
the polymorphic NAND/NOR and NOR/NAND gates. The experimental results show that
the concept of Cartesian Genetic Programming is powerful to solve unusual problems of
digital synthesis. A paper on this topic has been published in the proceedings of the GECCO
conference [17].

We have proposed and investigated new approaches to polymorphic-circuit design which
are based on polymorphic multiplexing and polymorphic Binary Decision Diagrams. We
have compared these new approaches with the direct evolution using CGP. Since there is
not any benchmark set available, we have proposed a new set of benchmark problems to
compare the approaches. The new proposed approaches can generate candidate solutions
with an arbitrary size (if they are available by a particular SW implementation, such as
Espresso or the ABC-System tool) in a reasonable time. As we have mentioned earlier, there
has not been any reasonable method for the synthesis of nontrivial polymorphic circuits.
The original CGP can evolve compact solutions, but only for small problems. The papers
on polymorphic-circuit design have been published in the proceedings of the AHS and CEC
conferences [86, 83, 18] and also in an international journal [87].

We have employed the extended CGP to optimize the synthesized polymorphic circuits
at the gate level. In order to reduce the number of gates to a reasonable amount, a time
consuming optimization has to be conducted. However, the evolutionary-based optimiza-
tion procedure seems to be the only way on how to obtain reasonable implementations of
polymorphic circuits nowadays. The results obtained by these proposed methods repre-
sent the best-known solutions if the number of gates is considered as the target criterion.
A paper on the evolutionary optimization of polymorphic circuits has been published in
the proceedings of the CEC conference [18]. The evolved constant-coefficient multipliers
were utilized in the polymorphic FIR filter [84]. We have also physically demonstrated the
behavior of some small polymorphic circuits in the REPOMO32 chip [85].

11.2 Possibilities of Future Research

We have been exploring several research areas in this thesis, but there are still possibilities
to extend the research topics. Some of them are briefly given.

Scalability problem of the polymorphic circuit synthesis is still an important topic. In
order to deal with this problem better, the more advanced adaptation of the ordinary circuit
synthesis is needed. This adaptation has to better utilize merits of polymorphic gates.

The evaluation time is the main bottleneck of the evolutionary optimization using CGP,
so the new approach to reduce the computational time is needed. The adaptation of the SAT
resolving approach proposed by Vašíček and Sekanina in recent times should significantly
speed up the evaluation time of large polymorphic benchmark circuits.

In proposed experiments, the polymorphic gates are utilized in circuits of ordinary
functionality in order to decrease the number of utilized transistors. Only the NAND/NOR
and NOR/NAND gates controlled by an external signal were utilized. Future research will
be devoted to searching for those other unconventional components1 which were overlooked
in the past, but which could serve as area-efficient building blocks for the evolutionary

1Unconventional components could be other polymorphic gates as well.

82

design conducted at the gate level.
All proposed methods are based on a methodology which assumes that the logic func-

tions are fully-defined through the fully-defined truth tables. The extended methods will
take “don’t care values” into account, so that only some input or output combinations have
to be defined.

The new proposed selection strategy is focused on the number of gates in implemen-
tations. The extended approach will take the number of transistors into account. The
approach will not extend a fitness function but a mutation operator. As we assumed, the
proposed selection strategy is influenced by the mutation operator, which in fact, does the
selection. The current operator changes (mutates) all genes of a chromosome with the
same probability. The extended operator will change the genes, which represent larger
gates, more frequently.

83

Bibliography

[1] T. Aoki, N. Homma, and T. Higuchi. Evolutionary synthesis of arithmetic circuit
structures. Artificial Intelligence Review, 20(3–4):199–232, 2003.

[2] Berkley Logic Synthesis and Verification Group. ABC: A System for Sequential
Synthesis and Verification. http://www.eecs.berkeley.edu/˜ alanmi/abc/, 2010.

[3] M. Bidlo. Evolutionary design of generic combinational multipliers using
development. In Evolvable Systems: From Biology to Hardware, volume 2007 of
LNCS, pages 77–88, 2007.

[4] M. Bidlo. Evolutionary Design of Generic Structures Using Instruction-Based
Development. PhD thesis, 2009.

[5] R. K. Brayton, C. McMullen, G. D. Hatchel, and A. Sangiovanni-Vincentelli. Logic
Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers, Boston,
Massachusetts, USA, 1984.

[6] R. Brooks. The relationship between matter and life. Nature, 409(6816):409–411,
2001.

[7] R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Transaction on Computers, 35(8):677–691, 1986.

[8] D. Chai, J.-H. Jiang, Y. Jiang, Y. Li, A. Mishchenko, and R. Brayton. MVSIS 2.0
User’s Manual.
http://embedded.eecs.berkeley.edu/mvsis/doc/mvsis 20 manual.pdf, 2010.

[9] D. Chen, T. Aoki, N. Homma, T. Terasaki, and T. Higuchi. Graph-based
evolutionary design of arithmetic circuits. IEEE Trans. on Evolutionary Computing,
6(1):86–100, 2002.

[10] K.-H. Cheng and V.-C. Hsieh. High efficient 3-input XOR for low-voltage low-power
high speed applications. In Proc. of The First IEEE Asic Pacific Conference on
ASICs, pages 166–169, Seoul, Korea, 1999. IEEE Computer Society.

[11] M. Collins. Finding needles in haystacks is harder with neutrality. In GECCO ’05:
Proceedings of the 2005 conference on Genetic and evolutionary computation, pages
1613–1618. ACM, 2005.

[12] D. Dasgupta and Z. Michalewicz. Evolutionary Algorithms in Engineering
Applications. Springer, Berlin Heidelberg New York, 1997.

84

[13] R. Drechsler and B. Becker. Binary Decision Diagrams: Theory and
Implementation. Kluwer Academic Publishers, Boston, USA, 1998.

[14] P. J. Bentley (ed). Evolutionary Design by Computers. Morgan Kaufmann
Publishers, San Francisco, California, USA, 1999.

[15] P. Fiser. Column-Matching Based Mixed-Mode BIST Technique. PhD thesis, Czech
Technical University in Prague, 2007.

[16] M. Fujita, P. C. McGeer, and J.C.-Y. Yang. Multi-terminal binary decision
diagrams: An efficient data structure for matrix representation. Formal Methods in
System Design, pages 149–169, 2004.

[17] Z. Gajda and L. Sekanina. Reducing the number of transistors in digital circuits
using gate-level evolutionary design. In 2007 Genetic and Evolutionary Computation
Conference, pages 245–252. Association for Computing Machinery, 2007.

[18] Z. Gajda and L. Sekanina. Gate-level optimization of polymorphic circuits using
Cartesian Genetic Programming. In Proc. of 2009 IEEE Congress on Evolutionary
Computation, pages 1599–1604. IEEE Computational Intelligence Society, 2009.

[19] Z. Gajda and L. Sekanina. An efficient selection strategy for digital circuit
evolution. In Evolvable Systems: From Biology to Hardware, LNCS 6274, pages
13–24. Springer Verlag, 2010.

[20] Z. Gajda and L. Sekanina. When does Cartesian Genetic Programming minimize
the phenotype size implicitly? In Proceeding of Genetic and Evolutionary
Computation Conference, GECCO 2010, pages 983–984. Association for Computing
Machinery, 2010.

[21] K. Glette, J. Torresen, T. Gluber, B. Sick, P. Kafmann, and M.Platzner.
Comparing evolvable hardware to conventional classifiers for electromyographic
prostetic hand control. In Proc. of 2008 NASA/ESA Conference on Adaptive
Hardware and Systems, pages 32–39. IEEE Computer Society, 2008.

[22] F. Gomez and R. Miikkkulainen. Incremental evolution of complex general
behaviour. Adaptive Behaviour, 5:317–342, 1997.

[23] T. Gordon and P. Bentley. Evolving hardware. In A. Zomaya, editor, Handbook of
Nature Inspired and Innovative Computing, pages 387–432. Springer Verlag, 2006.

[24] D. Green. Modern Logic Design. Addison-Wesley, 1986.

[25] G. W. Greenwood and A. M. Tyrrell. Introduction to Evolvable Hardware: A
Practical Guide for Designing Self-Adaptive Systems. Wiley-IEEE Press, 2006.

[26] S. Harding. Evolution in materio – PhD thesis. University of York, UK, 2006.

[27] S. Harding, J. F. Miller, and W. Banzhaf. Evolution, development and learning with
self modifying Cartesian Genetic Programming. In GECCO ’09: Proceedings of the
11th Annual conference on Genetic and evolutionary computation, pages 699–706.
ACM, 2009.

85

[28] S. L. Harding, J .F. Miller, and W. Banzhaf. Self-modifying cartesian genetic
programming. In GECCO ’07: Proceedings of the 9th annual conference on Genetic
and evolutionary computation, volume 1, pages 1021–1028. ACM Press, 2007.

[29] L. Hellerman. A catalog of three-variable OR-Inverter and and-inverter logical
circuits. IEEE Trans. Electron. Comput., EC-12:198–223, 1963.

[30] T. Higuchi, Y. Liu, and X. Yao. Evolvable Hardware. Springer, 2006.

[31] B. I. Hounsell, T. Arslan, and R. Thompson. Evolutionary design and adaptation of
high performance digital filters within an embedded reconfigurable fault tolerant
hardware platform. Soft Computing, 8(5):307–317, 2004.

[32] S. M. Husband. Programming the Nanocell,a Random Array of Molecules, PhD.
Thesis. PhD thesis, Rice University, Houston, Texas, USA, 2002.

[33] I. Kajitani, M. Iwata, and T. Higuchi. A GA hardware engine and its applications.
In Higuchi, T., Liu, Y., Yao, X., eds.: Evolvable Hardware, pages 41–63. Springer,
2006.

[34] T. Kalganova. Bidirectional incremental evolution in extrinsic evolvable hardware.
In Proc. of the 2nd NASA/DoD Workshop on Evolvable Hardware, pages 65–74.
IEEE Computer Society, Silicon Valley, USA, July 2000.

[35] T. Kalganova and J. F. Miller. Evolving more efficient digital circuits by allowing
circuit layout evolution and multi-objective fitness. In The First NASA/DoD
Workshop on Evolvable Hardware, pages 54–63, Pasadena, California, 1999. IEEE
Computer Society.

[36] M. Karnaugh. The map method for synthesis of combinational logic circuits.
Transactions of the American Institute of Electrical Engineers part I,
72(9):593–599, 1953.

[37] P. Kaufmann and M. Platzner. Advanced techniques for the creation and
propagation of modules in Cartesian Genetic Programming. In Proc. of Genetic and
Evolutionary Computation Conference, GECCO 2008, pages 1219–1226. ACM, 2008.

[38] A. Keane, M. J. Streeter, and W. Mydlowec. Genetic Programming IV: Routine
Human-Competitive Machine Intelligence. Springer, New York, 2004.

[39] G. M. Khan and J. F. Miller. Evolution of cartesian genetic programs capable of
learning. In Genetic and Evolutionary Computation Conference, GECCO 2009,
Proceedings, Montreal, Québec, Canada, July 8-12, 2009, pages 707–714. ACM,
2009.

[40] D. E. Knuth. The Art of Computer Programming: Sorting and Searching – 2nd
edition. Addison Wesley, 1998.

[41] T. Kowaliw, W. Banzhaf, N. Kharma, and S. Harding. Evolving novel image
features using genetic programming-based image transforms. In Evolutionary
Computation, 2009. CEC ’09. IEEE Congress on, pages 2502–2507, May 2009.

86

[42] J. R. Koza. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge, Massachusetts, USA, 1992.

[43] J. R. Koza. Genetic Programming II: Automatic Discoveryy of Reusable Programs.
MIT Press, Cambridge, Massachusetts, USA, 1994.

[44] J. R. Koza, F. H. Bennett III., D. Andre, and M. A. Keane. Genetic
Programming III: Darwinian Invention and Problem Solving. Morgan Kaufmann
Publishers, San Francisco, California, USA, 1999.

[45] S. Kumar. Investigating Computational Models of Development for the Construction
of Shape and Form, PhD thesis. University of London, UK, 2004.

[46] S. Kumar and P. J. Bentley. On Growth, Form and Computers. Amsterdam,
Netherlands, 2003.

[47] V. Kvasnicka, J. Pospichal, and P. Tino. Evolucne algoritmy. Tlac Vydavatelstvo
STU v Bratislave, Bratislava, SK, 2000.

[48] W. B. Langdon and R. Poli. Foundations of Genetic Programming. Springer, Berlin
Heidelberg, New York, 2002.

[49] J. Langeheine. Intrinsic Hardware Evolution on the Transistor Level. PhD thesis,
Rupertus Carola University of Heidelberg, 2005.

[50] Z. Li, W. Luo, L. Yue, and X. Wang. On the completeness of the polymorphic gate
set. ACM Transactions on Design Automation of Electronics Systems, 15(4), 2010.

[51] D. S. Linden. A system for evolving antennas in-situ. In EH’01: Proceedings of The
3rd NASA/DoD Workshop on Evolvable Hardware, pages 249–255. IEEE Computer
Society, Washington D.C., USA, 2001.

[52] M. Loktev, O. Soloviev, and G. Vdovin. Adaptive Optics – Product Guide. OKO
Technologies, Delft, 2003.

[53] W. Luo, Z. Zhang, and X. Wang. Designing polymorphic circuits with polymorphic
gates: a general design approach. IET Circuits, Devices & Systems, 1(6):470–476,
2007.

[54] M. Mashayekhi, H. H. Ardakani, and A. Omidian. A new efficient scalable BIST full
adder using polymorphic gates. WORLD ACADEMY OF SCIENCE,
ENGINEERING AND TECHNOLOGY, 61:283–286, 2010.

[55] E. J. McCluskey. Minimization of Boolean functions. Bell Sys. Tech. J.,
35(5):1417–1444, 1956.

[56] E. J. McCluskey. Introducing to the Theory of Switching Circuits. McGraw-Hill,
1965.

[57] Z. Michalewicz and D. B. Fogel. How to Solve It – Modern Heuristics. Berlin,
Heidelberg, New York: Springer, 2000.

[58] J. F. Miller. What bloat? Cartesian Genetic Programming on Boolean problems. In
2001 Genetic and Evolutionary Computation Conference Late Breaking Papers,
pages 295–302, 2001.

87

[59] J. F. Miller, D. Job, and V. K. Vassilev. Principles in the evolutionary design of
digital circuits – part i. Genetic Programming and Evolvable Machines, 1(1):8–35,
2000.

[60] J. F. Miller, D. Job, and V. K. Vassilev. Principles in the evolutionary design of
digital circuits – part ii. Genetic Programming and Evolvable Machines,
1(3):259–288, 2000.

[61] J. F. Miller and S. L. Smith. Redundancy and computational efficiency in Cartesian
Genetic Programming. IEEE Transactions on Evolutionary Computation,
10(2):167–174, 2006.

[62] J. F. Miller and P. Thomson. Cartesian Genetic Programming. In Proc. of the 3rd
European Conference on Genetic Programming EuroGP2000, volume 1802 of LNCS,
pages 121–132. Springer, 2000.

[63] A. Mishchenko and R. Brayton. Scalable logic synthesis using a simple circuit
structure. In Proc. IWLS, 2006.

[64] M. Murakawa, S. Yoshizawa, T. Adachi, S. Suzuki, K. Takasuka, M. Iwata, and
T. Higuchi. Analogue EHW chip for intermediate frequency filters. In Evolvable
Systems: From Biology to Hardware, Second International Conference, ICES 98,
volume 1478 of LNCS, pages 134–143, Luasanee,Switzerland, 1998. Springer Berlin,
Heidelberg, Germany.

[65] T. Pecenka, L. Sekanina, and Z. Kotasek. Evolution of synthetic RTL benchmark
circuits with predefined testability. ACM Transactions on Design Automation of
Electronic Systems, 13(3):1–21, 2008.

[66] W. V. Quine. A way to simplify truth functions. Am. Math. Monthly,
60(9):627–631, 1955.

[67] J. M. Quintana, M. J. Avedillo, R. Jimenez, and Rodriguez-Villegas E. Practical
low-cost CPL implementations of threshold logic functions. In Proc. of the 11th
ACM Great Lakes Symposium on VLSI 2001, pages 139–144, West Lafayette,
Indiana, USA, 2001. ACM.

[68] R. L. Rudell and A. Sangiovanni-Vincentelli. Multiple-valued minimization for PLA
optimization. IEEE Trans. CAD, CAD-6(5):727–750, 1987.

[69] R. Ruzicka. New polymorphic NAND/XOR gate. In Proceedings of 7th WSEAS
International Conference on Applied Computer Science, volume 2007 of Computer
Science Challenges, pages 192–196. World Scientific and Engineering Academy, 2007.

[70] R. Ruzicka. On bifunctional polymorphic gates controlled by a special signal.
WSEAS Transactions on Circuits And Systems, 7(3):96–101, 2008.

[71] R. Ruzicka. Dependable controller design using polymorphic counters. In Proc. of
12th Euromicro Conference on Digital System Design, pages 355–362. IEEE
Computer Society, 2009.

88

[72] R. Ruzicka and R. Prokop. Bifunctional NAND/NOR gates as building blocks for
polytronics. In Proceedings of CSE 2008, pages 200–207. The University of
Technology Kosice, 2008.

[73] R. Ruzicka and L. Sekanina. Evolutionary circuit design in REPOMO -
reconfigurable polymorphic module. In Proceedings of the Second IASTED
International Conference on Computational Intelligence, pages 237–241. ACTA
Press, 2006.

[74] R. Ruzicka, L. Sekanina, and R. Prokop. Physical demonstration of polymorphic
self-checking circuits. In Proc. of 14th IEEE International On-Line Testing
Symposium, pages 31–36. IEEE, 2008.

[75] H. Sakanashi, M. Iwata, and T. Higuchi. A lossless compression method for halftone
images using evolvable hardware. In Evolvable Systems: Form Biology to Hardware,
4th International Conference, ICES 2001, volume 2210 of LNCS, pages 314–326,
Tokyo, Japan, 2001. Springer.

[76] H.-P. Schwefel. Evolution and Optimum Seeking. John Wiley, New York, USA, 1995.

[77] L. Sekanina. Image filter design with evolvable hardware. In Applications of
Evolutionary Computing – Proc. of the 4th Workshop on Evolutionary Computation
in Image Analysis and Signal Processing EvoIASP’02, volume 2279 of LNCS, pages
255–266, Kinsale, Ireland, 2002. Springer Verlag.

[78] L. Sekanina. Evolvable Components: From Theory to Hardware Implementations.
Natural Computing Series, Springer Verlag, 2004.

[79] L. Sekanina. Evolutionary design of gate-level polymorphic digital circuits. In
Applications of Evolutionary Computing, volume 3449 of LNCS, pages 185–194,
Lausanne, Switzerland, 2005. Springer Verlag.

[80] L. Sekanina. Design and analysis of a new self-testing adder which utilizes
polymorphic gates. In Proc. of the 10th IEEE Design and Diagnostics of Electronic
Circuits and Systems Workshop DDECS 2007, pages 246–246, Krakow, Poland,
2007. IEEE Computer Society.

[81] L. Sekanina. Evolution of polymorphic self-checking circuits. In Proc. of the 7th
Conf. on Evolvable Systems: From Biology to Hardware, number 4684 in LNCS,
pages 186–197, Wuhan, China, 2007. Springer.

[82] L. Sekanina and M. Bidlo. Evolutionary design of arbitrarily large sorting networks
using development. Genetic Programming and Evolvable Machines, 6(3):319–347,
2005.

[83] L. Sekanina, T. Martinek, and Z. Gajda. Extrinsic and intrinsic evolution of
multifunctional combinational modules. In 2006 IEEE World Congress on
Computational Intelligence, pages 9676–9683. IEEE Computational Intelligence
Society, 2006.

[84] L. Sekanina, R. Ruzicka, and Z. Gajda. Polymorphic FIR filters with backup mode
enabling power savings. In Proc. of the 2009 NASA/ESA Conference on Adaptive
Hardware and Systems, pages 43–50. IEEE Computer Society, 2009.

89

[85] L. Sekanina, R. Ruzicka, Z. Vasicek, R. Prokop, and L. Fujcik. REPOMO32 - new
reconfigurable polymorphic integrated circuit for adaptive hardware. In Proc. of the
2009 IEEE Symposium Series on Computational Intelligence - Workshop on
Evolvable and Adaptive Hardware, pages 39–46. IEEE Computational Intelligence
Society, 2009.

[86] L. Sekanina, L. Starecek, Z. Gajda, and Z. Kotasek. Evolution of multifunctional
combinational modules controlled by the power supply voltage. In Proc. of the 1st
NASA/ESA Conference on Adaptive Hardware and Systems, pages 186–193. IEEE
Computer Society, 2006.

[87] L. Sekanina, L. Starecek, Z. Kotasek, and Z. Gajda. Polymorphic gates in design
and test of digital circuits. International Journal of Unconventional Computing,
4(2):125–142, 2008.

[88] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-Vincentelli. SIS: A
system for sequential circuit synthesis. Technical report, University California,
Berkeley, 1992.

[89] L. Starecek, L. Sekanina, Z. Gajda, Z. Kotasek, R. Prokop, and V. Musil. On
properties and utilization of some polymorphic gates. In 6th Electronic Circuits and
Systems Conference (ECS 2007), pages 77–81. Faculty of Informatics and
Information Technology STU, 2007.

[90] L. Starecek, L. Sekanina, and Z. Kotasek. Reduction of test vectors volume by
means of gate-level reconfiguration. In Proc. of 2008 IEEE Design and Diagnostics
of Electronic Circuits and Systems Workshop, pages 255–258. IEEE Computer
Society, 2008.

[91] A. Stoica, D. Keymeulen, A. Thakoor, T. Daud, G. Klimech, Y. Jin, R. Tawel, and
V. Duong. Evolution of analog circuits on field programmable transistor arrays. In
Proc. of the 2000 NASA/DoD Conference on Evolvable Hardware, pages 99–108,
Palo Alta, California, USA, 2002. IEEE Computer Society.

[92] A. Stoica, D. Keymeyulen, R. S. Zebulum, S. Katkoori, S. Fernando, H. Sankaran,
M. Mojarradi, and T. Daud. Self-reconfigurable mixed-signal integrated circuits
architecture comprising a field programmable analog array and a general purpose
genetic algorithm IP core. In Evolvable Systems: From Biology to Hardware, 8th
International Conference, ICES 2008, volume 5216 of LNCS, pages 225–236, 2008.

[93] A. Stoica, R. Z., X. Guo, D. Keymeulen, I. Ferguson, and V. Duong. Taking
evolutionary circuit design from experimentation to implementation: Some useful
techniques and a silicon demonstration. IEE Proc.-Comp. Digit. Tech.,
151(4):295–300, 2004.

[94] A. Stoica and R. S. Zebulum. Faster evolution of more multifunctional logic circuits.
NASA Tech Briefs, page 10, 2005.

[95] A. Stoica and R. S. Zebulum. Multifunctional logic gate controlled by supply
voltage. NASA Tech Briefs, page 18, 2005.

90

[96] A. Stoica and R. S. Zebulum. Multifunctional logic gate controlled by temperature.
NASA Tech Briefs, page 18, 2005.

[97] A. Stoica, R. S. Zebulum, and D. Keymeulen. Polymorphic electronics. In Proc. of
Evolvable Systems: From Biology to Hardware Conference, volume 2210 of LNCS,
pages 291–302. Springer, 2001.

[98] A. Stoica, R. S. Zebulum, D. Keymeulen, and J. Lohn. On polymorphic circuits and
their design using evolutionary algorithms. In Proc. of IASTED International
Conference on Applied Informatics AI2002, Insbruck, Austria, 2002.

[99] S. Tanachutiwat, J. U. Lee, W. Wang, and C. Y. Sung. Reconfigurable
multi-function logic based on graphene P-N junctions. In Design Automation
Conference, DAC, pages 883–888. ACM, 2010.

[100] A. Thompson. Silicon evolution. In GECCO ’96: Proceedings of the First Annual
Conference on Genetic Programming, pages 444–452, Cambridge, Massachusetts,
USA, 1996. MIT Press.

[101] J. Torresen. A divide-and-conquer approach to evolvable hardware. In Evolvable
Systems: From Biology to Hardware, Second International Conference, ICES 98,
volume 1478 of LNCS, pages 57–65, Luasanee,Switzerland, 1998. Springer Berlin,
Heidelberg, Germany.

[102] J. Torresen. Evolving multiplier circuits by training set and training vector
partitioning. In Proc. of Evolvable Systems: From Biology to Hardware Conference,
volume 2606 of LNCS, pages 165–172. Trondheim, Norway, 2003.

[103] Z. Vasicek, L. Capka, and L. Sekanina. Analysis of reconfiguration options for a
reconfigurable polymorphic circuit. In Proc. of the 2008 NASA/ESA Conference on
Adaptive Hardware and Systems, pages 3–10. IEEE Computer Society, 2008.

[104] V. K. Vassilev, D. Job, and J. F. Miller. Towards the automatic design of more
efficient digital circuits. In The Second NASA/DoD Workshop on Evolvable
Hardware. Palo Alto, California, USA, 2000.

[105] V. K. Vassilev and J. F. Miller. The advantages of landscape neutrality in digital
circuit evolution. In ICES ’00: Proceedings of the Third International Conference
on Evolvable Systems, volume 1801 of LNCS, pages 252–263. Springer-Verlag, 2000.

[106] V. K. Vassilev and J. F. Miller. Scalability problems of digital circuit evolution. In
Proc. of the 2000 NASA/DoD Conference on Evolvable Hardware, pages 55–64,
Palo Alta, California, USA, 2000. IEEE Computer Society.

[107] S. P. Vingron. Karnaugh maps. Switching Theory: Insight Through Predicate Logic,
pages 57–76, 2004.

[108] W. S. Lau and G. Li and K. H. Lee and K. S. Leung and S. M. Cheang.
Multi-logic-unit processor: A combinational logic circuit evaluation engine for
genetic parallel programming. Genetic Programming, 3447:167–177, 2005.

[109] J. F. Wakerly. Digital Design: principles and practices – 3d edition. Prentice Hall,
New Jersey, USA, 2000.

91

[110] J. A. Walker and J. Miller. The automatic acquisition, evolution and re-use of
modules in Cartesian Genetic Programming. IEEE Transactions on Evolutionary
Computation, 12(4):397–417, 2008.

[111] J. A. Walker, J. F. Miller, and R. Cavill. A multi-chromosome approach to standard
and embedded Cartesian Genetic Programming. In GECCO ’06: Proceedings of the
8th annual conference on Genetic and evolutionary computation, pages 903–910,
New York, USA, 2006. ACM.

[112] N. Weste and D. Harris. CMOS VLSI Design: A Circuits and Systems Perspective
– 3rd edition. Addison Wesley, 2004.

[113] S. Yang. Logic Synthesis and Optimization Benchmarks User Guide, Version 3.0.
University of California and Standford University, California, USA, 1991.

[114] X. Yao and T. Higuchi. Promises and challenges of evolvable hardware. IEEE
Transactions on Systems, Man, and Cybernetics, 29(1):87–97, 1999.

[115] T. Yu and J. F. Miller. Neutrality and the evolvability of Boolean function
landscape. In EuroGP ’01: Proceedings of the 4th European Conference on Genetic
Programming, volume 2038 of LNCS, pages 204–217. Springer-Verlag, 2001.

[116] L. Zaloudek and L. Sekanina. Transistor-level evolution of digital circuits using a
special circuit simulator. In Evolvable Systems: From Biology to Hardware, LNCS
5216, pages 320–331. Springer Verlag, 2008.

[117] R. S. Zebulum, M. Pacheco, and M. Vellasco. Evolutionary Electronics – Automatic
Design of Electronic Circuits and Systems by Genetic Algorithms. The CRC Press
International Series on Computational Intelligence, 2002.

[118] R. S. Zebulum and A. Stoica. Four-function logic gate controlled by analog voltage.
NASA Tech Briefs, 30(3):8, 2006.

[119] R. S. Zebulum and A. Stoica. Three-function logic gate controlled by analog
voltage. NASA Tech Briefs, page 17, 2006.

[120] R. Zeno. A Reference of the Best-Known Sorting Networks for up to 16 Inputs.
http://www.angelfire.com/blog/ronz, 2010.

[121] S. Zhao and L. Jiao. Multi-objective evolutionary design and knowledge discovery of
logic circuits based on an adaptive genetic algorithm. Genetic Programming and
Evolvable Machines, 7(3):195–210, 2006.

[122] N. Zhuang and W. Haomin. A new design of the CMOS full adder. IEEE journal of
solid-state circuits, 7(5):840–844, 1992.

[123] R. Zimmermann and R. Gupta. Low-power logic styles: CMOS vs CPL. In
Proceedings of the 22nd European Solid-State Circuits Conference, pages 112–115,
Neuchatel, Switzerland, 1996.

92

	Introduction
	Thesis Organization

	Overview of Digital Circuit Design
	Digital Circuits – Principles
	Standard Representations of Logic Functions
	Combinational-Circuit Synthesis
	Two-level minimization methods
	Multi-level representations
	Synthesis tools

	Application-Specific Circuits
	Combinational multiplier
	Binary sorters
	Even parity

	Evolutionary Design of Digital Circuits and Evolvable Hardware
	Evolutionary Algorithms
	Evolvable Hardware
	Cartesian Genetic Programming
	Basic CGP
	Circuit evolution using CGP

	Scalability Problem

	Polymorphic Electronics
	Polymorphic Gates
	Polymorphic Circuits
	REPOMO32 platform

	Applications of Polymorphic Electronics
	Polymorphic FIR filter
	Polymorphic controller
	Self-checking adder

	Goals
	Extensions of Standard Cartesian Genetic Programming
	Design Phase and Optimization Phase
	Modified Fitness Functions
	Selection Strategies
	Short-Circuit Evaluation
	Training-Set Reorganization

	Evolutionary Optimization of Circuit Designs
	Benchmark Problems
	Small binary multipliers
	Binary majority circuits
	The LGSynth91 benchmarks

	Experimental Setup
	Experimental Results
	Evaluation time reduction
	Evolution from a random population
	Post-synthesis optimization

	Summary

	Utilization of Polymorphic Gates in Evolutionary Design
	Gate-Level and Transistor-Level Designs
	The NAND/NOR and NOR/NAND Polymorphic Gates
	Experimental Setup
	Experimental Results
	The one-bit full adder
	The two-bit adder
	Majority circuits

	Summary

	Polymorphic Circuit Design
	Polymorphic Circuit Synthesis Problem
	Proposed Methods
	Evolutionary Design
	Polymorphic BDD-based Synthesis
	Polymorphic Multiplexing

	Benchmark Circuits
	Experimental Results
	Direct evolutionary design using CGP
	Results of Polymorphic BDDs
	Results of Polymorphic Multiplexing

	Summary

	Evolutionary Optimization of Polymorphic Circuits
	Evolutionary Optimization Algorithm
	Experimental Setup
	Experimental Results
	Short-circuit evaluation
	Circuit optimization

	Summary

	Conclusions
	Contributions
	Possibilities of Future Research

	Bibliography

