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Summary

Machine learning is impacting modern society at large, thanks to its increasing potential

to e�ciently and e�ectively model complex and heterogeneous phenomena. While ma-

chine learning models can achieve very accurate predictions in many applications, they

are not infallible. In some cases, machine learning models can deliver unreasonable out-

comes. For example, deep neural networks for self-driving cars have been found to pro-

vide wrong steering directions based on the lighting conditions of street lanes (e.g., due

to cloudy weather). In other cases, models can capture and re�ect unwanted biases that

were concealed in the training data. For example, deep neural networks used to predict

likely jobs and social status of people based on their pictures, were found to consistently

discriminate based on gender and ethnicity–this was later attributed to human bias in the

labels of the training data.

The aforementioned issues typically concerned so-called black-box models, i.e., ma-

chine learning models which are too complex to be explained, such as, in fact, deep neural

networks. Consequently, scientists and policy makers have increasingly started to agree

that, for a responsible use of machine learning and Arti�cial Intelligence (AI), it is impor-

tant to be able to explain why a model behaves the way it does: to have explanations about

the reasoning of a model enables to track potential issues, and solve them. Therefore, al-

gorithms are needed that can help explain why a model behaves in a certain why, or that

can directly generate models that are human-interpretable.

Genetic Programming (GP) is a meta-heuristic that can be used to generate machine

learning models in the form of human-readable computer programs, i.e., sequences of

program instructions. GP algorithms work by stochastic search inspired by natural evo-

lution. A population of random programs is iteratively evolved by recombining instruc-

tions into new programs, and by survival of the �ttest, i.e., discarding the worst perform-

ing programs in the population. The program instructions are typically human-written

and human-interpretable. This fact enables the possibility that the entire program is

human-interpretable as well. In an attempt to increase the chances of obtaining human-

interpretable programs, the work presented in this thesis is mostly focused on scenarios

where programs need to contain a limited number of instructions.

While there is promise in using GP to obtain interpretable machine learning models,

GP algorithms typically fall short in terms of e�ciency when compared to many other

machine learning algorithms. A major cause of ine�ciency can be attributed to how the

search steps are performed, i.e., the way program instructions are recombined, and what

mechanisms are in place to keep good programs and discard bad programs. In particu-

lar, the recombination of instructions into new programs is typically done randomly and

without any adaptive method to improve the e�ectiveness of recombination over time.

Recent research in GP has attempted to improve the speed and quality of the search.

Most successful methods to date, however, achieve improvements by (repeatedly) stacking

relatively large blocks of instructions. This leads to obtaining programs so large that any

xi



xii Summary

chance of human-interpretability is ultimately lost. So, currently, a gap still exists: design-

ing competent search mechanisms for GP that focus on obtaining programs of restricted

size. This then immediately leads to the main goal of this thesis: improving GP by the
design and application of algorithms that perform more e�cient and e�ective
search, particularly when the total number of instructions needs to be limited.

To reach our main goal, concepts of modern model-based evolutionary algorithms

called Optimal Mixing Evolutionary Algorithms (OMEAs) from discrete optimization are

brought to GP, and tested on benchmark and real-world problems. OMEAs are a type of

EAs that are of particular interest because in these EAs recombination is con�gured to

dynamically adapt based on information that emerges during the search, so as to improve

e�ciency and e�ectiveness. More speci�cally, OMEAs attempt to learn, on-line, what

building blocks of solution components (in the case of programs: what instructions) belong

together and should be preserved during recombination. By identifying and recombining

building blocks, OMEAs can obtain knock-on e�ects in performance. This has already

enabled OMEAs in other domains than GP to quickly solve high-dimensional problems

that other EAs cannot solve in a reasonable time.

This thesis advances the state of knowledge about GP by presenting the following

major contributions:

1. A new GP algorithm is introduced called GP-GOMEA, which builds upon the Gene-

pool Optimal Mixing Evolutionary Algorithm (GOMEA) that was originally intro-

duced for discrete optimization. The search procedure in GP-GOMEA is dynam-

ically adapted by identifying what program instructions are interdependent and

potentially constitute building blocks, and by subsequently recombining building

blocks (Chapter 2).

2. Limitations of GP-GOMEA for supervised learning problems of non-trivial dimen-

sionality (speci�cally for symbolic regression) are presented and tackled by propos-

ing improvements that enable GP-GOMEA to also work well in these scenarios

(Chapter 3). We further show that another type of GP algorithm (using so-called

semantic backpropagation-based approximately geometric variation) does not scale to

realistic symbolic regression problems, and propose improvements that overcome

this (Chapter 4).

3. Beyond the use of GP-GOMEA to directly synthesize interpretable machine learn-

ing models, we consider the possibility to combine GP-GOMEA (and other GP algo-

rithms) with another machine learning algorithm. We study whether models that

di�erent machine learning algorithms can generate can be made to have a higher

chance of being explainable without incurring a signi�cant performance loss by

changing the feature space that the models are trained upon. In particular, we use

GP-GOMEA and other search algorithms to automatically construct few salient and

small features. We show that for several classi�cation and regression problems and

machine learning algorithms, it is in fact possible to construct features that enable

achieving similar performance with the same machine learning algorithms. In some

cases, performance can even improve. Furthermore, because discovered features are

particularly small, they are themselves likely to be interpretable (we provide exam-

ples). Moreover, because we focus on �nding particularly few (i.e., two) features,
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it becomes possible to plot and visualize the predictions of the machine learning

model, and hence obtain a comprehensive and intuitive representation of its behav-

ior (Chapter 5).

4. We �nally use GP-GOMEA to synthesize regression models in the form of readable

mathematical expressions for a problem of real-world interest. In particular, we

consider the estimation of radiation dose delivered to long-term childhood cancer

survivors who were subject to radiation therapy when no 3D anatomy imaging was

yet introduced in clinical practice. Obtaining 3D estimations (or related metrics) of

the dose to (subvolumes of) organs is important to be able to study how radiation

relates to adverse e�ects that appear decades after the treatment. Unfortunately,

3D dose estimations cannot be obtained in a straightforward manner because of the

lack of 3D anatomy imaging.

First, we study the feasibility of applying machine learning for the goal of estimat-

ing 3D anatomical metrics using scarce information available from patient records

and 2D radiographs (Chapter 6). Second, we develop a method capable of gener-

ating a surrogate 3D anatomy for a patient, given again scarce information. This

pipeline internally employs machine learning models to predict, using a database

of 3D organ segmentations and CT scans, how to assemble a personalized 3D sur-

rogate anatomy. GP-GOMEA is compared with other GP algorithms and machine

learning algorithms of a di�erent nature, as well as with state-of-the-art heuris-

tics for surrogate anatomy construction. GP-GOMEA is found to deliver overall the

most accurate models, which are arguably likely to be interpretable for many peo-

ple (Chapter 7). Finally, alongside information on the patient, we propose to also

include information about the treatment plan to be used as input features. By doing

so, we show that it is possible to use GP-GOMEA to �nd models capable of directly

predicting 3D dose-volume metrics useful for the study of adverse e�ects, without

the need of using a surrogate anatomy (Chapter 8).

Essentially, this thesis shows that leveraging key principles of OMEAs can lead to more

e�cient and e�ective discovery of GP programs. Moreover, OMEAs can �nd programs that

perform well while being particularly compact in terms of number of instructions. We

show that this is generally not the case for other state-of-the-art GP algorithms, and we

provide concrete results on real-world symbolic regression problems, including a clinical

application.

We conclude that OMEAs for GP can be considered to be an important method for the

automatic synthesis of small, and thus likely to be interpretable, machine learning mod-

els. Therefore, these algorithms have the potential to bring explainable machine learning

models into practice in many sensitive applications of societal interest.





Samenvatting

Machine learning heeft invloed op de moderne samenleving als geheel, dankzij de toene-

mende potentie om complexe en heterogene fenomenen e�ciënt en e�ectief te model-

leren. Hoewel machine learning-modellen in veel toepassingen zeer nauwkeurige voor-

spellingen kunnen doen, zijn ze niet onfeilbaar. In sommige gevallen kunnen machine

learning-modellen onwenselijke resultaten opleveren. Er is bijvoorbeeld vastgesteld dat

diepe neurale netwerken voor zelfrijdende auto’s tot verkeerde stuuracties kunnen lei-

den, afhankelijk van de lichtomstandigheden op de rijbaan (bijvoorbeeld vanwege bewolkt

weer). In andere gevallen kunnen modellen ongewenste vooroordelen vastleggen en weer-

spiegelen die in de trainingsgegevens waren verborgen. Bijvoorbeeld, diepe neurale net-

werken die werden gebruikt om te voorspellen wat waarschijnlijk de baan en sociale status

van mensen zijn op basis van hun foto’s, bleken consistent te discrimineren op basis van

geslacht en etniciteit - dit werd later toegeschreven aan menselijke vooringenomenheid

in de labels van de trainingsgegevens.

De bovengenoemde kwesties betro�en typisch zogenaamde black-box-modellen, die

te complex zijn om te worden verklaard, zoals in feite diepe neurale netwerken. Hierdoor

zijn wetenschappers en beleidsmakers het er in toenemende mate over eens geworden

dat het voor een verantwoord gebruik van machine learning en Arti�cial Intelligence (AI)

belangrijk is om te kunnen verklaren waarom een model zich op een bepaalde manier ge-

draagt: het kunnen geven van een verklaring van de redenering van een model maakt het

mogelijk potentiële problemen op te sporen en op te lossen. Daarom zijn algoritmen nodig

die kunnen helpen verklaren waarom een model zich op een bepaalde manier gedraagt, of

die direct modellen kunnen genereren die door mensen kunnen worden geïnterpreteerd.

Genetic Programming (GP) is een meta-heuristiek die kan worden gebruikt om ma-

chine learning-modellen te genereren in de vorm van door mensen leesbare computer-

programma’s, ofwel reeksen programma-instructies. GP-algoritmen werken door middel

van stochastisch zoeken, geïnspireerd op natuurlijke evolutie. Een populatie van wille-

keurige programma’s wordt iteratief geëvolueerd door instructies te combineren om zo

tot nieuwe programma’s te komen, en door het toepassen van het paradigma dat de sterk-

sen overleven, dat wil zeggen, het verwijderen van de slechtst presterende programma’s

in de populatie. De programma-instructies zijn meestal door mensen geschreven en door

mensen interpreteerbaar. Dit feit maakt het mogelijk dat het hele programma ook door

mensen interpreteerbaar is. In een poging tot het vergroten van de kansen op het ver-

krijgen van door mensen interpreteerbare programma’s, is het werk dat in dit proefschrift

wordt gepresenteerd voornamelijk gericht op scenario’s waarin programma’s een beperkt

aantal instructies moeten bevatten.

Hoewel het veelbelovend is om GP te gebruiken voor het verkrijgen van interpreteer-

bare modellen voor machine learning, schieten GP-algoritmen doorgaans tekort in termen

van e�ciëntie in vergelijking met veel andere algoritmen voor machine learning. Een be-

langrijke oorzaak van die ine�ciëntie kan worden toegeschreven aan de manier waarop

xv
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zoekstappen worden uitgevoerd, dat wil zeggen, de manier waarop programma-instructies

worden gecombineerd en welke mechanismen er zijn om goede programma’s te behouden

en slechte programma’s te verwijderen. In het bijzonder wordt de constructie van nieuwe

programma’s middels recombinatie van instructies in bestaande programma’s typisch wil-

lekeurig gedaan en zonder enige adaptieve methode om de e�ectiviteit van recombinatie

te verbeteren.

In recent onderzoek op het gebied van GP is geprobeerd de snelheid en kwaliteit van

het zoekprocess te verbeteren. In de meest succesvolle methoden tot nu toe wordt dit be-

reikt door (herhaaldelijk) relatief grote instructies aan elkaar te knopen. Dit leidt tot pro-

gramma’s die zo groot zijn dat elke kans op menselijke interpreteerbaarheid uiteindelijk

verloren gaat. Momenteel bestaat er dus nog steeds een kloof: het ontwerpen van compe-

tente zoekmechanismen voor GP die gericht zijn op het verkrijgen van programma’s van

beperkte omvang. Dit leidt meteen tot het hoofddoel van dit proefschrift: GP verbeteren
door het ontwerp en de toepassing van algoritmen die e�ciënter en e�ectiever
zoeken, met name wanneer het totale aantal instructies moet worden beperkt.

Om ons hoofddoel te bereiken, worden concepten van moderne modelgebaseerde evo-

lutionaire algoritmen genaamd Optimal Mixing Evolutionary Algorithms (OMEA’s) uit dis-

crete optimalisatie naar GP gebracht en getest op benchmark- en praktijkproblemen.

OMEA’s zijn een type EA’s die in het bijzonder van belang zijn omdat in deze EA’s re-

combinatie is gecon�gureerd om zich dynamisch aan te passen op basis van informatie

die tijdens het zoeken naar voren komt, gericht op het verbeteren van de e�ciëntie en ef-

fectiviteit. Meer speci�ek proberen OMEA’s tijdens het zoekprocess te leren welke bouw-

stenen in de vorm van meendere oplossingscomponenten (in het geval van programma’s:

welke instructies) bij elkaar horen en bewaard moeten blijven tijdens recombinatie. Het

identi�ceren en combineren van bouwstenen vindt zijn doorslag in OMEA’s in de vorm

van verhoodge e�ciëntie. Dit heeft OMEA’s voor andere domeinen dan GP reeds in staat

gesteld om hoog-dimensionale problemen snel op te lossen die andere EA’s niet binnen

een redelijke tijd kunnen oplossen.

Dit proefschrift bevordert de kennis op het gebied van GP door de volgende belangrijke

bijdragen te presenteren:

1. Er wordt een nieuw GP-algoritme geïntroduceerd met de naam GP-GOMEA, dat

voortbouwt op het Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) dat

oorspronkelijk werd geïntroduceerd voor discrete optimalisatie. De zoekprocedure

in GP-GOMEA wordt dynamisch aangepast door te identi�ceren welke programma-

instructies van elkaar afhankelijk zijn en mogelijk bouwstenen vormen, en door

vervolgens bouwstenen te combineren (Hoofdstuk 2).

2. Beperkingen van GP-GOMEA voor gesuperviseerde leerproblemen van niet-triviale

dimensionaliteit (speci�ek voor symbolische regressie) worden gepresenteerd en

aangepakt door verbeteringen voor te stellen waardoor GP-GOMEA ook goed kan

werken in deze scenario’s (Hoofdstuk 3). We laten verder zien dat een ander type

GP-algoritme (met behulp van zogenaamde semantic backpropagation-based approxi-

mately geometric variation) niet schaalt naar realistische symbolische regressiepro-

blemen en stellen verbeteringen voor die dit oplossen (Hoofdstuk 4).
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3. Naast het gebruik van GP-GOMEA om interpreteerbare machine learning-modellen

rechtstreeks te synthetiseren, bekijken we de mogelijkheid om GP-GOMEA (en an-

dere GP-algoritmen) te combineren met een ander machine learning-algoritme. We

onderzoeken of modellen die door verschillende machine learning-algoritmen kun-

nen worden gegenereerd, een grotere kans hebben om verklaard te worden zonder

een aanzienlijk prestatieverlies op te lopen door de kenmerkenruimte (feature space)

waarop de modellen zijn getraind te wijzigen. In het bijzonder gebruiken we GP-

GOMEA en andere zoekalgoritmen om automatisch enkele opvallende en kleine

kenmerken te bouwen. We laten zien dat het voor verschillende classi�catie- en

regressieproblemen en machine learning-algoritmen in feite mogelijk is om kenmer-

ken te bouwen die vergelijkbare prestaties met dezelfde machine learning-algoritmen

mogelijk maken. In sommige gevallen kunnen de prestaties zelfs verbeteren. Omdat

ontdekte kenmerken bijzonder klein zijn, zijn ze zelf waarschijnlijk interpreteerbaar

(we geven voorbeelden). Omdat we ons richten op het vinden van bijzonder weinig

(bijvoorbeeld twee) kenmerken, maken ze het bovendien mogelijk om de voorspel-

lingen van het machine learning-model in kaart te brengen en te visualiseren, en dus

een uitgebreide en intuïtieve weergave van zijn gedrag te verkrijgen (Hoofdstuk 5).

4. Tenslotte gebruiken we GP-GOMEA om regressiemodellen te synthetiseren in de

vorm van leesbare wiskundige uitdrukkingen voor een probleem van maatschap-

pelijk belang. In het bijzonder beschouwen we de schatting van de stralingsdosis

langdurig overlevenden van kinder kanker werden bloot gesteld vanwege een be-

handeling met radiotherapie toen er nog geen 3D-anatomische beeldvorming was

geïntroduceerd in de klinische praktijk. Het verkrijgen van 3D-schattingen (of ge-

relateerde meetwaarden) van de dosis aan (subvolumes) van organen is belangrijk

om te kunnen bestuderen hoe straling verband houdt met nadelige e�ecten die tien-

tallen jaren na de behandeling optreden. Helaas kunnen schattingen van 3D-doses

niet op een eenvoudige manier worden verkregen vanwege het ontbreken van 3D-

beeldvorming van de anatomie.

Eerst bestuderen we de haalbaarheid van het toepassen van machine learning met

als doel het schatten van 3D-anatomische metrieken met behulp van schaarse in-

formatie die beschikbaar is uit patiëntendossiers en 2D-röntgenfoto’s (Hoofdstuk 6).

Dan ontwikkelen we een methode die in staat is om een surrogaat 3D-anatomie voor

een patiënt te genereren, opnieuw gegeven schaarse informatie. De bijkehorende

pijplijn maakt intern gebruik van machine learning-modellen om met behulp van

een database van 3D-orgaansegmentaties en CT-scans te voorspellen hoe een geper-

sonaliseerde 3D-surrogaatanatomie wordt samengesteld. GP-GOMEA wordt verge-

leken met andere GP-algoritmen en machine learning-algoritmen van een andere

aard, evenals met state-of-the-art heuristieken voor surrogaatanatomieconstructie.

GP-GOMEA blijkt over het algemeen de meest nauwkeurige modellen te leveren,

die waarschijnlijk voor veel mensen interpreteerbaar zijn (Hoofdstuk 7). Ten slotte

stellen we voor om naast informatie over de patiënt ook informatie over het behan-

delplan op te nemen ter gebruik als kenmerken. Door dit te doen, laten we zien dat

het mogelijk is om GP-GOMEA te gebruiken om modellen te vinden die in staat zijn

om 3D-dosisvolumemetingen, die nuttig zijn voor de studie van nodelige e�ecten,
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zonder de noodzaak om een surrogaatanatomie te gebruiken, direct te voorspellen

(Hoofdstuk 8).

Dit proefschrift laat in essentie zien dat het gebruik van sleutelprincipes onderliggend

aan OMEA’s kan leiden tot een e�ciëntere en e�ectievere ontdekking van GP-programma’s.

Bovendien kunnen OMEA’s programma’s vinden die goed presteren en toch bijzonder

compact zijn in termen van aantal instructies. We laten zien dat dit over het algemeen

niet het geval is voor andere state-of-the-art GP-algoritmen, en we bieden concrete re-

sultaten voor symbolische regressieproblemen uit de praktijk, waaronder een klinische

toepassing.

We concluderen dat OMEA’s voor GP kunnen worden beschouwd als een belangrijke

methode voor de automatische synthese van kleine, en dus waarschijnlijk interpreteer-

bare, machine learning-modellen. Daarom hebben deze algoritmen de potentie om ver-

klaarbare modellen voor machine learning in de praktijk te brengen in gevoelige toepas-

singen die van maatschappelijk belang zijn.
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Introduction

Machine learning is changing the world. Its applications range from commodities to improve

one’s comfort and entertainment, to crucial decision support for healthcare and �nance. This

thesis regards a particular form of machine learning: Genetic Programming (GP). GP is in-

teresting because it has the possibility to create human-understandable machine learning

models. Enabling human understanding is important to gain new knowledge as well as to

prevent undesirable consequences. However, GP is computationally expensive. This chapter

introduces themain goal of this thesis: improving the e�ciency and e�ectiveness of GP. Firstly,

an introduction to the need for explanations in machine learning, and for more e�cient and

e�ective GP algorithms, is presented (Sec. 1.1). Next, a learning task that mostly recurs in this

thesis is provided, i.e., symbolic regression (Sec. 1.2). The workings of classic GP are then de-

scribed, together with an example of its application for a simple symbolic regression problem

(Sec. 1.3). Reasons are given as to why GP can be considered computationally expensive, and

a key aspect of GP that could be improved to overcome this limitation is presented: variation,

i.e., the way GP takes search steps in the space of programs (Sec. 1.4). In the same section a

small review on the state-of-the-art with respect to variation in GP is given, along with re-

spective limitations, which motivate the research described in this thesis. Finally, the research

questions that constitute the stepping stones of this thesis are presented (Sec. 1.5). Of these,

the �rst half concerns the design of a new GP algorithm, and its tailorization to deal with

symbolic regression problems; the second half concerns the application of such algorithms, to

shed light on otherwise unintelligible machine learning models, as well as to �nd transparent

machine learning models for a clinical application.

1



1

2 1. Introduction

1.1. Machine learning and the need for explanations

M
achine learning is a broad term that stands for the study and application of algo-

rithms that can infer, or “learn”, how to perform a task automatically, in contrast to

be explicitly programmed for it [1]. As such, machine learning has revolutionized the way

humans can tackle the modeling of complex phenomena. Until a few decades ago, people

interested in modeling a phenomenon could only rely on their ingenuity, and would �rst

need to understand the phenomenon in depth. Now, in many situations, this is no longer

necessary: powerful algorithms can automatically detect subtle, non-linear patterns from

data, and infer accurate models for us [2].

Modern machine learning has been found to be competitive with, or even superior

to, human performance in many applications. Examples range from medical applications

(detection of skin cancer [3], detection of Parkinson’s dyskinesia [4]) to natural language

processing (text generation [5], synthesis of regular expressions [6]), from software and

electrical engineering (Android apps crash correction [7], large circuit synthesis [8]) to

gaming (mastering the game of Go [9], playing Atari games [10]).

Due to its appeal and practical usefulness, machine learning is pervading society rapidly

and vastly, and a�ects the daily life of virtually everyone in the civilized world. Popular

hand held devices such as smartphones and smartwatches are coming with all sort of ma-

chine learning-based enhancements, such as vocal assistants, face recognition, and camera

super resolution
1
. What content and what advertisements are proposed on social media

are tailored automatically by machine learning-based pro�ling [11]. The transportation

industry is investing in machine learning to shape what the transportation of goods and

people will look like in the future [12, 13]. Machine learning models are also becoming

more popular in �nance, health care, and even criminal justice, to suggest, respectively,

what people are reliable for loan granting, what particular treatment should be adminis-

tered to whom, and who is likely to have committed a crime [14–16].

Modeling enabled by machine learning is thus having considerable societal impact.

However, not all of this impact is necessarily positive. In recent years, scientists, prac-

titioners, and policy makers alike, are becoming increasingly concerned about possible

misuses of this powerful technology [14, 17–19]. For example, in social pro�ling, models

trained upon biased data that discriminate against particular groups of people may re�ect

these discriminations in their predictions, and accentuate the problem [20, 21]. Similarly,

in health care, models that are not su�ciently comprehensive because they were trained

on a small sample, or on outdated information, may provide suggestions that could end

up being harmful for patients [22]. Because of these sorts of concerns, there is a wide

agreement that it is important that automatic decision support systems, many of which

increasingly adopt machine learning models, provide explanations of how and why they

reach particular outcomes. In other words, there is a growing need to enable human-

interpretability when dealing with processes that rely upon machine learning [23].

Ideally, one could acquire explanations of the predictions of a machine learning model

by inspecting the model itself, and by following the logic wired into it [24]. However, ma-

chine learning models can be very complex, to the point of becoming unintelligible, and

receiving the appellation “black boxes” [15, 24]. Very popular machine learning models

1https://www.techradar.com/news/what-does-ai-in-a-phone-really-mean
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such as ensembles of decisions trees [25, 26] and neural networks [27] are typically con-

sidered to be such black boxes [15, 22]. The former typically builds (at least) hundreds of

decision trees which, if taken singularly, could in principle be interpreted. Yet, due to the

sheer number of these trees, it is essentially impossible to understand the joint e�ect of the

ensemble. Classic neural networks such as multi-layer perceptrons as well as modern con-

volutional networks for image recognition normally use a very small number of non-linear

function types, or even a single one (e.g., the recti�ed linear unit [28]). These functions

are instanced in multiple network nodes, which in turn are arranged into layers that are

densely connected to each other by weighted edges. The number of weighted edges can

range from thousands to billions, making it impossible for a human to understand how

the computations that are performed, relate to outcomes.

While the �exibility of neural networks comes from using a massive number of weights

in conjunction with a few types of non-linear functions, it can be imagined that the num-

ber of weights can be reduced if more types of functions are adopted (linear and non-

linear). In other words, model �exibility might arise from being able to instantiate a wide

range of function compositions. For example, if summation, multiplication, division, and

constant scalars are provided, an outcome of such a procedure could be a Taylor approxi-

mation [29]. Such models can be very interesting with respect to the need for explainable

machine learning. In fact, if the functions to be composed are human-interpretable, and

the compositions are not excessively involved, then the entire model may well be inter-

pretable. In this light, Genetic Programming (GP) represents an interesting class of algo-

rithms, because it precisely operates by automating the composition of human-provided

functions [30, 31].

Since its popularization in the early ’90s, GP has been proven to be a competitive ap-

proach to other machine learning algorithms [32], and has led to several creative, and

sometimes unexpected, outcomes: many human-competitive results have been obtained

by GP so far
2

[33]. Moreover, GP has been found to be capable of delivering human-

interpretable programs [29, 34], and contemporary surveys on explainable machine learn-

ing list GP among the types of algorithm that can shed light on machine learning processes,

by either inferring understandable models directly, or by approximating and explaining

black box models [15, 24].

The potential of GP to search and discover understandable machine learning mod-

els comes, however, with a notable drawback: �nding the best instruction (or function)

composition is a non-convex optimization problem with many symmetries and a priori

unspeci�ed dimensionality, which often requires a large amount of computation e�ort to

achieve results on par with other popular machine learning algorithms (see Sec. 1.4). For

this reason, the main goal of this thesis is to explore the design of GP algorithms that

search for programs (or machine learning models) in a more e�cient and e�ective man-

ner. Since having a small number of instructions can be considered a necessary condition

to improve the chance of human-interpretability, focus is put on restraining the number

of instructions to compose GP programs with. Furthermore, in this thesis the application

of the designed GP algorithms is explored in two ways. First, the capability of GP to work

in synergy with other machine learning algorithms is studied, in an attempt to obtain

more explainable models from those machine learning algorithms. Second, the designed

2http://www.human-competitive.org
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GP algorithms are used for a real-world clinical problem concerning radiation dose recon-

struction for childhood cancer survivors. The aim is to obtain machine learning models

that perform well and that, if desired, can be inspected to understand more about their

behavior.

1.2. Symbolic regression

S
ymbolic regression is a fundamental machine learning problem that recurs in this the-

sis. Symbolic regression benchmark problems are considered in contributions related

to the design of a new GP algorithm, and tasks concerning the clinical application will

be cast to symbolic regression problems. Before delving into what symbolic means in this

context, a short introduction to traditional regression follows.

1.2.1. Traditional regression

Regression is the problem of identifying relationships between variables, i.e., how one (or

more) variable can be expressed as a function of one (or more) other variable. We consider

the case where one variable can be expressed in terms of several other variables. Let y
be a variable that is believed to depend on some other m variables x(1), x(2), . . . , x(m)

.

Each x(j)
(j = 1, . . . ,m) is called an independent variable, or feature, and y is called the

dependent variable, or target. In regression, data is available in the form of n samples of

features and of the target: {(xi, yi)}ni=1, where xi = {x(1)
i , . . . , x

(m)
i } ∈ Rm, and yi ∈ R.

Let f be a function form that is desired to be used to capture the underlying relation-

ship between x and y (e.g., linear, quadratic, logarithmic). The function f is de�ned in

terms of a collection of k free parameters θ ∈ Rk . Regression concerns �nding the op-

timal collection of parameter values θ?, such that the approximation y ≈ f(x, θ?) is as

good as possible.

To evaluate the quality of candidate parameter values θ, a loss function (or cost func-

tion) L is employed that measures the distance between y and f(x, θ), e.g.:

L(θ) = 1
n

n∑
i=1
|yi − f(xi, θ)|p. (1.1)

Typical values of p are 1 and 2, with the latter choice penalizing larger errors more than

the former. Formally, L depends on the data xi, yi, and the chosen f as well as on θ. Here

we consider only θ to be an argument of L to highlight the fact that only θ is subject to

optimization (while the other variables are �xed).

Since the number of observations n can be relatively small with respect to the com-

plexity of the chosen f , �nding the true minimum of a loss function may not be the best

choice. A particular phenomenon to be aware of is over�tting, i.e., the possibility that the

inferred f(x, θ) nicely �ts the original n observations, but will not �t well new observa-

tions, that come from the same source distribution of the �rst n. To detect and combat

over�tting, appropriate validation (e.g., assessing the loss on data that was held-out dur-

ing optimization) and regularization (e.g., using the L1 norm of the weights and/or using

early stopping) may be needed [1].
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1.2.2. From traditional to symbolic regression

Hypotheses regarding the appropriate form of f to use for a particular application can

be hard to make. For example, prior knowledge on the relationship between features and

the target may not be available, or hard to infer due to, e.g., having too many features

(i.e., dimensions) to allow direct plotting and visualization of the data [30, 35]. Symbolic

regression aims at tackling this issue, by attempting to recover the entirety of f at once

(and not only a collection of some real-valued parameters θ) [30]. In other words, symbolic

regression entails �nding the optimal f? in a (sub)space of functions F. A loss function

for symbolic regression can be formulated as:

L(f) = 1
n

n∑
i=1
|yi − f(xi)|p. (1.2)

In this formulation, f is subject to optimization in its entirety. A collection of parameters

θ is not explicitly stated because these parameters are part of f , i.e., we consider two

functions that di�er in some scalar coe�cients to be di�erent functions from F.

Symbolic regression algorithms attempt to discover the entire formula from scratch,

starting from pre-de�ned functions (including constant functions, potentially initialized

at random) called primitives, that are provided by the user. These algorithms combine the

primitives and optimize θ to form candidate functions f , which are evaluated according

to a loss similar to Equation 1.2. It is clear that the search space of symbolic regression is

necessarily larger than the one of traditional regression. Similar to traditional regression,

ways to detect and prevent over�tting need to be applied as well.

Although di�erent types of symbolic regression algorithms exist (e.g., [29, 36, 37]), the

most common algorithms are forms of GP [32]. In the following section, the main charac-

teristics of classic GP are described, in particular to tackle symbolic regression problems.

1.3. Classic genetic programming

G
P is a popular metaheuristic for the automatic synthesis of programs (or, equivalently,

computable functions), typically from examples of desired behavior [30, 31]. Once the

set of primitives and a loss function, in GP called the �tness function, have been de�ned,

GP synthesizes programs by loosely mimicking the concept of Darwinian evolution, i.e.,

by iterative selection and variation of a population of programs [31]. Selection represents

survival of the �ttest, to promote the proliferation of promising programs. Next, in the

variation phase, o�spring programs are created by changing the order, position, and type

of parent programs’ instructions. These iterations of selection and variation are called

generations. Figure 1.1 shows a typical evolution scheme for GP.

Di�erent types of GP algorithms exist, where the way programs are represented is spe-

ci�c to that algorithm. In this thesis, the classic and most popular type of representation is

considered: the tree-based encoding [31]. To illustrate how this representation works, let

us assume to need a program that encodes Newton’s well-known law of gravitation [38]:

F = G
m1m2

r2 , (1.3)

where F is the force of gravity, G is the gravitational constant, m1 andm2 are the masses

of two bodies, and r is the distance between them. An example of a possible tree-based
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Initial population

Generation

Parents O�spring

Evaluation & selection

Variation

Evaluation & selection

Figure 1.1: High-level illustration of typical workings of GP. First, an initial population of

programs is sampled at random. The �tness of each program is evaluated, and the pro-

grams that are currently most successful are selected with larger probability to enter the

pool of parent programs. An o�spring population is created by variation (i.e., recombi-

nation and mutation of the parent pool). A generation is composed of �tness evaluation,

selection, and variation. Generations are repeated until a termination criterion is met, and

the best program found is ultimately returned.

÷

×

G×

m1 m2

×

r r

Figure 1.2: Example of a tree encoding a program that computes the law of gravitation.

encoding that represents a program that computes Equation 1.3 is shown in Figure 1.2. In

the example, primitive instructions used to compose the tree are multiplication (×) and

division (÷), as are the interacting variables (G, m1, m2, r).

To ground the explanation on the workings of classic GP to a familiar example, the

recovery of the aforementioned law of gravitation from data of F,m1,m2 and r is con-

sidered (the constant value of G needs to be found in R), which is a symbolic regression

problem. In this setting, for GP to �nd a program that explains how F is related to the

other variables, means to �nd a function f : R3 → R (three features are considered: m1,

m2, and r).

To run a GP algorithm, �rstly a set of primitives needs to be de�ned. The primitives will

be composed to form programs. In tree-based GP, programs are represented with trees,

and the nodes of the trees implement the primitives. In general, to facilitate the discovery

of a well-performing program, any instruction (function) that is suspected to be part of

the phenomenon should be included among the primitives. For example, consider the

case where measurements of a complex and unintelligible circuit are taken and collected

as data, and a model is sought that approximates the behavior of the original circuit. If sub-
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circuits are known to be part of the total circuit, and these sub-circuits are known, then

instructions that model such sub-circuits should be included as primitives. However, even

in scenarios where no such information is available, GP can still perform competitively to

black-box machine learning algorithms by adopting rather generic primitives [32].

For a typical symbolic regression task, two types of primitives can be identi�ed in GP:

primitives that require inputs, and primitives that do not. Commonly, the set containing

the �rst type of primitives is called function set, while the set containing the second type

of primitives is called terminal set. The function set F for a symbolic regression problem

typically comprises linear and non-linear functions, e.g., F = {+(·, ·), −(·, ·), ×(·, ·),

÷(·, ·), exp(·)}. The terminal set T typically contains identity functions for each feature

x(j)
, as well as constants, e.g., T = {x(1)

, . . . , x(m)
, −1.0, 1.0, π}. Primitives from the

function set constitute non-leaf nodes of the trees, while primitives from the terminal set

constitute leaf nodes (see Fig. 1.2).

Once the primitives have been chosen, the initial population of candidate programs

must be sampled (see Fig. 1.1). This population is typically initialized randomly, i.e., by

generating random trees. Several methods exists to achieve this [31]. For example, the

Grow method is illustrated in Algorithm 1.1, that returns a random tree of a height that is

limited by a user-speci�ed parameter, given the function set and the terminal set.

Algorithm 1.1 Pseudo-code for the creation of a random GP tree.

Input: H : max. height; h: current height (initially 0); F : function set; T : terminal set.

Output: Root node N .

1 function SampleRandomTree(H , h, F , T )

2 if h = H then
3 N ← SampleNodeFrom(T )
4 else
5 N ← SampleNodeFrom(F ∪ T )
6 for i ∈ GetNumberOfExpectedInputs(N) do
7 C ← SampleRandomTree(H,h+ 1,F , T )
8 AppendChildToParentNode(C,N)
9 return N

Once the initial population is sampled, the �tness of each program will be evaluated.

In symbolic regression, the �tness is typically computed using Equation 1.2, with p = 1
(mean absolute error) or p = 2 (mean squared error). To obtain f(xi), i.e., the scalar

output of the program for the i-th data sample, the program must be executed with respect

to the input xi. The execution of the program in tree-based encoding works as follows.

The output is initially requested at the level of the root of the tree. Now, if the root is a

terminal node, i.e., it has no inputs, it can immediately return. If the terminal represents

the j-th feature, then the output is the scalar x
(j)
i . If the terminal represents a constant,

then the output is that constant. Instead, if the root represents a function (e.g., +), then

the root will request the output of its child nodes, and apply the function it represents on

those outputs (e.g., will sum them). The same procedure holds for the child nodes, in a

recursive fashion. Eventually, since leaves are terminal nodes, this recursion terminates,

and the output of intermediate nodes �ows from the bottom to the top of the tree.
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After the �tness of each program has been computed, more �t programs are selected

with larger probability, to become the parents that will breed the o�spring population

(see Fig. 1.1). Selection is normally performed based on �tness ranks, and the most popu-

lar method is called tournament selection [31]. Tournament selection works by randomly

picking s (a parameter called tournament size) programs from the population (with re-

placement), and selecting the most �t one. This is typically repeated until the size of the

selection is the same as the size of the population.

Next is the creation of o�spring programs using the pool of parents. This is achieved

by the use of variation operators. Two classic and still very popular variation operators

in tree-based GP are subtree crossover and subtree mutation [31]. The hypothesis mo-

tivating subtree crossover is that �t parent programs (trees) contain important program

subroutines (subtrees), therefore it is reasonable to attempt to obtain better o�spring by

recombination of these subroutines. Subtree crossover works as follows (see Fig. 1.3): two

nodes in the parent trees are picked (uniformly at random or using some heuristic [30, 39]),

after which two o�spring programs are created by swapping the subtree rooted in those

nodes. Subtree mutation works similarly to subtree crossover, with the di�erence that a

random change is enforced, e.g., to perform an explorative step in the search space. A

mutated o�spring is made by replacing a randomly picked subtree with a new subtree,

that is generated entirely at random (e.g., using Alg. 1.1).

Normally, a number of o�spring programs equal to the population size is generated,

and the o�spring population is then used as a basis for the next generation. Generations

are repeated until a satisfactory result is obtained (e.g., by imposing a �tness to reach), or

a budget is exhausted (e.g., generation limit, time limit).

F1

Parent 1

F2

T1

F1

T1 T2

F2

Parent 2

F2

T2

Subtree crossover

F1

Child 1

F2

T1

F2

T2

F2

Child 2

F1

T1 T2

Figure 1.3: Illustration of subtree crossover. F# and T# represent generic function and

terminal nodes. Highlighted nodes are the roots of the subtrees that are swapped.
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1.3.1. An example of a GP run to recover Newton’s law

As an illustrative example, we consider the task of regressing the right-hand side of the

gravitation law, i.e., how F is determined in Equation 1.3. A dataset is generated by sam-

pling n = 1000 observations, with a �ctitious gravitational constant G = 6.674 (the

scaling by 10−11
is ignored to avoid numerical instability problems), and masses and radii

sampled between 1 and 102
by 102×u

with u uniformly distributed between 0 and 1. To

simulate the presence of noise in the measurements, a normal error ε ∼ N (0, 1) term is

added to the right-hand side of the equation when generating the observations.

A GP using the scheme of Figure 1.1 is considered, with rather standard parameters.

The population size is set to 500, and the trees are generated using Algorithm 1.1. The

�tness is computed using the mean squared error (Eq. 1.2 with p = 2), and selection is

performed with tournaments of size 4. The function set contains {+,−,×, ÷̃, exp, ˜log}.
Tilde operators include protections against numerical errors: ÷̃(a, b) := sign(b)× a

|b|+κ ;

˜log(a) := log(|a| + κ). Here, κ = 10−2
is used. The terminal set contains the three

variables at play, i.e., m1,m2, r, as well as an Ephemeral Random Constant (ERC) [31].

ERC terminals have no speci�c value until a respective node is instantiated (e.g., sampled

from the terminal set to be part of a tree in Alg. 1.1). The value is set to a scalar sampled

randomly from a certain distribution. Here, the value is sampled uniformly at random

between 0 and 10 with up to one decimal. Evolution is performed for a total of 25 genera-

tions. Trees with more than 15 nodes are discarded to avoid producing overly long, hard

to read, programs. Assuming that the nature of the gravitational force F is unknown,

consistency of operations with respect to units of measurements is not enforced.

Figure 1.4 shows, for a particular run, the �tness of the best program found at each

generation, along with the number of nodes composing its tree, and some examples of the

mathematical expression it represents. Over time, very di�erent programs are found, of

di�erent size and involving di�erent functions. In the last generation, a well-performing

program is found of which its expression closely resembles the true law of gravitation

(Eq. 1.3), apart from the constant G being imprecise. Notably, the program expression �ts

the data decently, it is extremely easy to read, and it is possible to interpret the program.

1.4. From classic to modern genetic programming and be-

yond by de-randomizing variation

C
ompared to other machine learning algorithms, perhaps the main disadvantage of GP

is its computational expensiveness. For example in regression, to apply ordinary least

squares to determine the coe�cient of a linear model, the cost is O(m2n) with m being

the number of features/variables, and n the number of observations. To build a decision

tree, O(mn logn) operations are required [25]. Further computation times for popular

supervised machine learning algorithms are reported at: https://bit.ly/2PG0xse.

In GP, it is not straightforward to de�ne an overall computation cost. How di�cult

it is to obtain programs with satisfactory performance largely depends on the problem to

be solved, on the choice of primitives, and on the quality of the variation and selection

methods. If it is assumed that a population size P and a number of generationsG can lead

to satisfactory results (for a given problem, set of primitives, and variation and selection

methods), then the cost of GP will be O(PGmn). The mn term is a crude estimation of

https://bit.ly/2PG0xse
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Figure 1.4: Fitness, number of nodes, and mathematical expression associated with the

best program found by GP along 25 generations.

the cost of evaluating the �tness of programs with some sort of decent performance. To

be more speci�c, to get the output of a program and calculate its �tness, each instruction

needs to be evaluated on the n observations, and it is reasonable to expect �t programs

to have a number of instructions that depends on the number of features m. Because the

mn term in O(PGmn) is essentially �xed by the task, it is PG that should be minimized

to improve the e�ciency of GP. In other words, we want to achieve more (quality of �nal

programs) with less (evolutionary budget). The problem at hand is given, and the choice

of primitives is usually dictated by knowledge of the problem. To minimize PG, one can

thus attempt to improve the e�ectiveness of variation and selection.

Key to the success and e�ciency of an evolutionary algorithm in general is the use

of competent variation. It has long been known that evolutionary algorithms perform

well when variation is capable of combining the right solution components su�ciently

fast, i.e., before the population is taken over by more �t, yet sub-optimal, solutions made

of sub-optimal components [40, 41]. As for any other evolutionary algorithm, this very

much holds for GP as well, and how to improve variation is one of the most important

open questions in the �eld.

Classic variation operators do not attempt to harness any sort of information to en-

hance their chances of leading to better programs. Rather, they typically act completely

at random. For this reason, they are oftentimes referred to as “blind”. The vast majority of

variation operators employed in di�erent forms of GP is blind. In classic tree-based GP, as

explained before, subtree crossover swaps two random subtrees between two respective

solutions (Fig. 1.3). Subtree mutation swaps a random subtree with a random new subtree.

One-point mutation modi�es random nodes with other random nodes [31]. Cartesian GP

represents programs with directed graphs, and mutates node connections [42], at random.

Push GP is often used to handle strongly-typed programs [43], and grammatical evolu-

tion can enforce very particular constraints on the interactions of program instructions,
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by encoding programs with �xed-length binary solutions that are interpreted according

to a grammar [44]. In both cases, the typical variation operators applied remain highly

stochastic, and do not attempt to harness and exploit information that depends on the

problem, or that may emerge while the search progresses.

The goal of this thesis is therefore to design (and apply) a novel GP algorithmwhich pro-

vides a more principled way of performing variation to reduce the amount of computational

e�ort required to obtain accurate programs. Furthermore, as will be described below, for

learning tasks such as symbolic regression, the research panorama of GP lacks suitable

methods to e�ciently evolve programs in scenarios where a small number of program

instructions is desired, to enhance the chance of obtaining human-interpretable models.

Clearly, obtaining small programs is not a su�cient condition for interpretability, but it

can often be considered a necessary one. The positive aspects as well as the limitations of

state-of-the-art contributions to variation in GP are described in more detail next.

1.4.1. Early studies on biasing variation and more recent ones on

geometric semantic variation

The �rst works on improving variation in GP mostly focused on studying the e�ect of

di�erent biases in the recombination and mutation of subtrees. To name a few examples,

in one of the seminal works in GP [30], it is recommended to select nodes for subtree

crossover and subtree mutation with larger probability if they are functions rather than

terminals (90% and 10% respectively) to limit bloat, i.e., excessive growth of the number of

program instructions with limited e�ect on the �tness. For subtree crossover, the intro-

duction of biases related to the positions of the subtrees to swap as well as on the size of

the subtrees have also been explored [45, 46]. Essentially, early works on variation in GP

focused on biasing variation at the level of program syntax, i.e., how the programs look,

e.g., in terms of node types, subtree position, and subtree size for tree-based GP.

The last decade has seen the rise of studies on so-called geometric semantic variation

operators. At the Genetic and Evolutionary Computation COnference (GECCO), the pre-

miere conference on evolutionary computation, papers on geometric semantic variation

in GP were nominated for, or won the best paper award, in 2013 [47], 2015 [48], 2016 [49],

2017 [50], and 2018 [51]. Thanks to works such as [52], many researchers came to the real-

ization that looking beyond syntax is crucial to improve variation in GP. In fact, program

modi�cations that can be considered small in terms of program syntax are not guaranteed

to lead to changes that can be considered small in terms of program output [53]. For ex-

ample, picture an arbitrary tree of which the nodes implement Boolean logic gates such

as AND, OR, and NOT, and ID (the identity function). From a syntactic perspective, changing

the value of a few nodes can be considered a “small” modi�cation. Yet, if the node to be

changed is the root, and the change swaps ID with NOT, then, for any set of inputs, the

output of the program will be the opposite of the one before the change.

For the aforementioned reason, geometric semantic variation focuses on the e�ect

variation will produce at the level of the program semantic, i.e., what the programs do

in terms of the outputs they produce when executed [54–56]. For a task such as sym-

bolic regression, where n samples are given, the program output (or semantic) is the

n-dimensional vector of transformations the program performs upon the input samples

{xi}ni=1. The term geometric comes from the fact that geometric semantic variation at-
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tempts to ensure that the output of an o�spring program is geometrically close to the

output of its parent programs, according to a metric de�ned in the space of the outputs.

For example, this may mean that the output of an o�spring program will be placed on the

hyper-plane that passes through the points represented by the outputs of the parent pro-

grams, or within the hyper-cube that has the outputs of the parent programs as opposing

vertices [52]. Generally, any variation operator that establishes (or attempts to establish)

some sort of geometric relationship between a parent output and any other set of outputs

(e.g., the target variable y can be considered [57]), is called a geometric semantic variation

operator [39, 58].

Geometric semantic variation is a meaningful approach in terms of e�ective and ef-

�cient search because to control how search is directed in the space of program outputs

means to directly control the program quality, since in many tasks the output of a program

directly determines its �tness. In machine learning problems such as symbolic regression,

this property is especially interesting because the loss (�tness) function is often convex

(e.g., Eq. 1.2 for p = 2) and therefore relatively easy to minimize if the right type of vari-

ation is used [52]. For example, consider the well-studied exact geometric semantic vari-

ation operators that were introduced in [52]: the Geometric Semantic Crossover (GSX),

and the Geometric Semantic Mutation (GSM). GSX and GSM are called exact because they

guarantee that the output of an o�spring program will be close to the output of its par-

ent programs. More speci�cally, GSX enforces the output of an o�spring program to be

bounded within a hyper-cube de�ned by the output of the two parent programs. Let f1
and f2 be the functions represented by the �rst and second parent program respectively.

Then, for, e.g., a symbolic regression data set of n observations and m features, recall that

the output of a program is {f(xi)}ni=1 ∈ Rn. GSX produces an o�spring by combining

program instructions (e.g., tree nodes) that perform the following operation:

GSX(f1, f2) := g × f1 + (1− g)× f2, (1.4)

where g is the function represented by a randomly sampled program, with codomain in

[0, 1]n, and 1 is a vector of ones in Rn. For example, g can be generated by sampling a

random tree with Algorithm 1.1, and appending a softmax node on top of the root of that

tree. The aforementioned version of GSX is called the Manhattan version. Another version

of GSX exists, the Euclidean one, where a linear combination of the parent programs is

produced (g is then an n-dimensional vector with constant values in [0, 1]).
GSM works similarly to GSX: it produces an o�spring from one parent with output

that is bounded to be within a hyper-cube with side length r centered on the output of the

parent. If f is the function represented by the parent program, then GSM is de�ned as:

GSM(f) := f + r(g − h), (1.5)

where g and h are functions represented by two respectively randomly sampled programs,

with codomain in [0, 1]n. The value of r is a hyper-parameter to be chosen by the user.

GP equipped with exact geometric semantic variation operators has been shown to be

competitive with other machine learning methods in terms of �nal prediction errors on

several real-world supervised learning problems, including, e.g., street construction [59],

energy forecasting [60], health care [61], and pharmacokinetics [62].
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Unfortunately, along with its advantages in terms of search properties, the aforemen-

tioned exact geometric semantic variation operators come with a burdening limitation:

their use generally results in programs growing to be very large in the number of instruc-

tions. In fact, note that both GSX and GSM re-use the entire function as represented by

the parent program(s) (see Eq. 1.4 and Eq. 1.5). This can only be achieved by preserving

the entire structure (tree) that represents the programs. Because of this, the repeated ap-

plication of GSX results in exponentially larger o�spring, while GSM introduces a linear

growth factor [51, 52].

Ways to reduce program size have been explored for exact geometric semantic varia-

tion. Arithmetic simpli�cation of programs is NP-hard, and heuristics have shown limited

e�ect [52]. Because GSX and GSM essentially perform linear combinations [63], recent

work assessed the possibility to keep track of what unique non-linear function compo-

sitions emerge when using these operators, to then re-arrange them in a compact linear

sum [51]. Still, the program size then does not reduce below thousands of instructions in

practical applications, even on moderately sized datasets. So far, techniques to stop the

search early, i.e., as soon as programs with satisfactory performance are found, seem to

work best to contain the issue [64].

Approximate geometric semantic variation operators di�er from exact variation oper-

ators (like GSX and GSM) in that they lose the guarantee on the position that the o�spring

program’s output will have, but, importantly, they can modify parent programs internally

(e.g., at the level of subtrees) [39, 58, 65]. This means that, in principle, they have a chance

to produce substantially shorter programs than exact geometric variation operators. Lit-

erature con�rms this hypothesis: approximate geometric variation operators typically in-

duce programs much smaller than their exact counterpart. However, the typical number

of instructions can still be of the order of hundreds or thousands [39]. This means that the

programs are still too large to allow interpretability.

In summary, geometric semantic variation operators have been found to make GP

search more e�cient and e�ective, but at the cost of program size. When programs have

a very large number of instructions, any chance of interpreting them is lost. This means

that GP is essentially producing black box models. In such scenarios, the very use of GP

itself becomes questionable, because competitive models can be acquired by other machine

learning algorithms in a fraction of the time taken by GP [32]. Therefore, there is a need

for new variation paradigms that �nd small, accurate programs, in an e�cient manner.

1.4.2. Between syntax and semantics: model-based variation

Another type of variation for GP that has been studied in the last twenty years, is model-

based variation [66–68]. In this context, the term model should not be confused with

the end-product of a machine learning algorithm or GP. Rather, it refers to a statistical

model that contains information on what program instructions, at what positions, and

with which inter-dependencies, are associated with well-performing programs.



1

14 1. Introduction

GP using model-based variation is called model-based GP (or probabilistic model build-

ing GP). In model-based GP, a statistical model is inferred, typically every generation, to

capture the type, location, and inter-dependency of instructions for instance in the form

of a �tting probability distribution (e.g., using a minimum descriptor length metric) [68].

This is normally done using a portion of �t programs that is chosen, e.g., by tournament

selection. At variation time then, the variation operator queries the statistical model to

gain information on how to modify the programs.

The hypothesis behind a model-based approach is that, if salient instruction patterns

can be detected from above-average �t programs, and the information they carry can be

exploited during variation, progress will be more e�cient than by making new combi-

nations blindly. Model-based variation can therefore be considered to be somewhat in

between the purely syntactic and purely semantic variation approaches: the statistical

model captures information at the level of the syntax of programs, yet, this is done on

well-performing programs, which possess favorable subroutines that contribute positively

to their semantic.

The most widely studied form of model-based GP inherits and extends concepts of

Estimation-of-Distribution Algorithms (EDAs) from binary optimization [66–68]. In EDA-

GP, the variation operator samples instructions depending on their position in the encod-

ing used for program representation, based on the information captured by the statistical

model. To use EDAs in GP, �rstly an issue must be solved involving the representation

of programs: normally, GP adopts non-�xed length representations. For example, in tree-

based GP, trees can grow to any shape. Consequently, it is not trivial to establish what

information should be measured in what positions of the trees, so that this information

shares a consistent meaning for any tree in the population.

One of the earliest approaches, the Probabilistic Incremental Program Evolution (PIPE)

[69], tackled the problem of having meaningful representations that can be used in EDAs

for GP by adopting a so-called prototype tree, i.e., a template tree in which the nodes con-

tain probabilities that drive the sampling of possible instructions. To generate a new pro-

gram tree, the prototype tree is parsed top-down, and instructions (i.e., the nodes for the

program tree) are sampled according to the probabilities speci�ed at the nodes of the pro-

totype tree. Hence, the prototype tree embodies a statistical model, in which nodes are

random variables that are associated with a speci�c and semantically consistent node po-

sition for the whole population. The sample space of each random variable composing the

statistical model is the set of possible node types (functions and terminals). In PIPE, the

statistical model employed is the simplest possible: a univariate factorization of the node

types appearing at each position. This means that each random variable is independent,

and no interactions between nodes is modeled.

Following PIPE, di�erent approaches have been proposed, considering more complex

statistical models. For example, the use of marginal product models was considered, es-

timating these models every generation by greedily optimizing the minimum description

length [70]. To model even more complex relationships, the use of Bayesian networks was

explored as well [71]. One work considered the possibility to sample n-grams of nodes

connected by parenthood relationships, after having discovered that these types of rela-

tionships were among the most recurrent patterns emerging from multiple runs of classic

GP [72]. Many other EDA-GP algorithms generate stochastic models that capture infor-
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mation on so-called indirect representations, such as a set of rules (typically, a context-free

grammar) that speci�es how a tree can be constructed [68]. Then, these rules are sampled,

and subsequently queried to generate new trees of di�erent shape and size [73–76]. This

latter type of works belongs to the sub-�eld called grammar-based GP.

Many experimental results from the mentioned literature suggest that model-based

variation is a promising approach to e�ciently �nd programs that are smaller than the

ones found by blind and geometric semantic variation, and that can be very accurate [72].

Even though model-based variation does not exert the same level of control that geomet-

ric semantic variation has in terms of program semantic, it increases the probability of

performing changes that can be, at the same time, syntactically smaller and semantically

more impactful than by using traditional blind variation operators. This has been shown

for a number of synthetic problems (e.g., in [77]), and for symbolic regression of small

known functions (e.g., in [72]).

All in all, model-based variation may seem a promising approach to e�cient and ef-

fective variation without a compromise in program size. However, experimental results

on model-based variation mostly focused on benchmark problems, and considered only

small-dimensional problems [68]. A reasonable explanation for this is that EDA-GP algo-

rithms seem not to scale well to high-dimensional problems. For symbolic regression, none

of the cited works considered a realistic dataset where the true underlying phenomenon

is unknown, and (at least) dozens of features are present. Rather, only small dimensional

synthetic functions are typically investigated (e.g., up to 5 features in [76]). One realistic

task concerning the symbolic regression of a known physics law was considered, yet this

law consists of only 5 features [78]. The fact that EDA-GP algorithms do not work well

on large dimensional problems may not be surprising: the larger the number of primitives

(functions and terminals), the larger the sample space of the random variables compos-

ing the stochastic model. This means that the population size must also be large, before

accurate and helpful estimations can be obtained for variation [72].

Summarizing, work on EDA-GP algorithms has indicated that model-based evolu-

tion holds potential to evolve programs in a principled, more e�ective and e�cient man-

ner. Moreover, the programs found can be rather compact with respect to their perfor-

mance [72]. However, EDA-GP algorithms estimate entire (joint) probability distributions,

and, to work well, they need very large population sizes to tackle high-dimensional prob-

lems. This hinders their ability to scale. Originating from EDA research, the last decade

has seen the rise of a new type of model-based evolutionary algorithm: optimal mixing

evolutionary algorithms. These algorithms were �rst introduced for binary optimization,

and were consistently found to outperform EDAs while requiring smaller population sizes

[79–83]. It is therefore natural to wonder whether bringing this type of algorithms to GP

may improve upon the state-of-the-art.

1.4.3. Optimal mixing evolutionary algorithms

Optimal Mixing Evolutionary Algorithms (OMEAs) have been �rst introduced in genetic

algorithms for binary optimization [79]. OMEAs are a subclass of model-based evolution-

ary algorithms, that attempt to provide a better alternative to EDAs [80].

Given a generic evolutionary algorithm with �xed-length solution representation, EDAs

attempt to estimate both inter-dependencies between positions, i.e., what the (conditional)
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dependencies between random variables are, and the values that should be assumed in

those positions. Consequently, large population sizes are required to capture information

with a su�cient level of accuracy to bring bene�t. This is a potential source of ine�-

ciency. Furthermore, an EDA samples an entire solution at once, and only then the �tness

of the solution is computed. If several sub-solutions exist in a whole solution that have

di�erent impact on the �tness, it is hard to separate these contributions, and exploit their

individual contributions. From now on, these sub-solutions, if they have an above-average

contribution to a solution’s quality, will be generally referred to as building blocks
3
.

OMEAs can already work well with smaller population sizes compared to EDAs for two

key reasons. First, the models employed by OMEAs, called linkage models, only attempt

to establish which positions are inter-dependent, i.e., exhibit strong linkage, and do not

attempt to model which values should be assumed in what positions. The idea is to identify

salient patterns of solution components (i.e., building blocks) that need to be propagated

together when performing variation, so as to avoid the disruption of their positive joint

e�ect. Linkage models often consist of multiple linkage sets that are often arranged in

hierarchical levels. Second, the variation operator of OMEAs, called optimal mixing, mixes

solutions by explicitly attempting to preserve the candidate building blocks as indicated

by the interdependencies captured by the linkage model, and immediately tests for the

impact of each mixing event.

The name optimal mixing comes from the theory of genetic algorithms, where it is

known that the best-possible recombination operator is the one that mixes en block com-

ponents that constitute building blocks [41]. In more detail, optimal mixing works by it-

eratively performing recombination according to blocks of highly dependent components

indicated by the linkage model, and, after each modi�cation, by immediately calculating

the contribution of that modi�cation in terms of �tness. If the �tness becomes worse, then

the change is reverted. Otherwise, the change is kept. This behavior explicitly enforces

selection pressure to focus on the contribution of potential building blocks, something

that is not considered by EDAs, where solutions are modi�ed entirely, and only then eval-

uated [79, 80]. This also causes improvements to be accepted based on whether individual

solutions improve directly, rather than requiring a population-wide selection step. The

latter causes also partial non-improving changes to be selected, which, from a mixing

viewpoint, is not optimal (leading to the name optimal mixing).

The literature on binary optimization shows that OMEAs consistently outperform

EDAs on di�cult optimization problems [79, 81, 83]. Interestingly, however, no OMEA

has ever been proposed for GP. Therefore, an investigation into the design of an OMEA

for GP may well provide new insights and methods to obtaining small and accurate pro-

grams e�ciently. The research questions that lead to the design of an OMEA for GP, as

well as its application, are presented in the next section.

1.5. Research qestions

T
his thesis comprises �ve research questions, the answers to which are aimed at sup-

porting the achievement of the main goal of this thesis: improving the e�ciency and

3
An informal and generic de�nition is used here because several, and more or less formal, de�nitions of building

blocks exist, typically varying depending on the type of evolutionary algorithm considered.
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e�ectiveness of GP, in particular in the scenario where programs are of limited size, to

increase the chances they are interpretable. Two of the research questions concern the

design of an OMEA for GP, and two concern its application to two particular problems,

in an e�ort to provide tangible successful outcomes. One more question is formulated

regarding e�ciency and e�ectiveness of approximate geometric semantic variation for

symbolic regression. In the following, these research questions are listed and described.

Research qestion 1. How can an OMEA be designed for GP, and how does it

fare against state-of-the-art GP algorithms?

The possibility of designing a competent OMEA for GP, and an evaluation on how such

an algorithm fares against the state-of-the-art, is addressed by this question. The goal

is to assess whether OMEAs for GP can, in fact, make GP more e�cient and e�ective.

Benchmark problems where an optimal program is sought are considered for this purpose.

In Chapter 2, for the �rst time, an OMEA for GP is presented. In particular, an adap-

tation of the binary Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) is pre-

sented, called GP-GOMEA [79].

The contents of this chapter are based on the following publication: M. Virgolin, T.

Alderliesten, C. Witteveen, and P.A.N. Bosman. Scalable genetic programming by gene-

pool optimal mixing and input-space entropy-based building-block learning. In Proceed-

ings of the Genetic and Evolutionary Computation Conference (GECCO ‘17), pp. 1041-1048,

ACM (2017).

Researchqestion 2. Does GP-GOMEA work well on realistic cases of symbolic

regression?

EDAs for GP do not scale well on realistic problems such as symbolic regression for real-

world data. Following the promising results on benchmark problems in Chapter 2, we

more closely investigate whether OMEAs for GP (GP-GOMEA in particular), can perform

better in these scenarios that are of high interest from a practical viewpoint.

In Chapter 3 possible limitations of some of GP-GOMEA’s core mechanisms (the link-

age learning in particular) that arise when dealing with realistic symbolic regression, and

that hold in general for supervised learning tasks (e.g., classi�cation) are identi�ed. Fol-

lowing the identi�cation of these limitations, methods to improve GP-GOMEA are pro-

posed and tested in the scenario where symbolic expressions are sought that are su�-

ciently small to have a large chance of being interpretable.

The contents of this chapter are based on the following preprint: M. Virgolin, T.

Alderliesten, C. Witteveen, and P.A.N. Bosman. Improving model-based genetic program-

ming for symbolic regression of small expressions. Accepted for publication in Evolutionary

Computation. Preprint arXiv:1904.02050, arXiv (2019).

Researchqestion 3. Does geometric semantic variation work well on realis-

tic cases of symbolic regression?

After having shown that GP-GOMEA is a promising approach to deal with realistic sym-

bolic regression problems, it is natural to wonder how approximate geometric semantic

variation performs on similar tasks. In other words, with this research question it is as-

sessed whether approximate geometric semantic variation is capable of improving the ef-

https://doi.org/10.1145/3071178.3071287
https://doi.org/10.1145/3071178.3071287
https://doi.org/10.1145/3071178.3071287
https://arxiv.org/abs/1904.02050
https://arxiv.org/abs/1904.02050
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�ciency and e�ectiveness of GP in scenarios that are of interest from a practical viewpoint

(symbolic regression on real-world data).

In Chapter 4 it is shown that, similar to the literature on EDA-GP algorithms, al-

most every work in approximate geometric semantic variation only considered small-

dimensional problems. Subsequent experiments suggest that this method does not actually

work well for symbolic regression of realistic datasets. Consequently, improvements are

proposed to enable approximate geometric semantic variation to work competitively on

realistic datasets.

The contents of this chapter are based on the following publication: M. Virgolin, T.

Alderliesten, and P.A.N. Bosman. Linear scaling with and within semantic backpropagation-

based genetic programming for symbolic regression. In Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO ‘19), pp. 1084-1092, ACM (2019).

Research qestion 4. Can the capability of GP-GOMEA to find small and ac-

curate programs be used to make a machine learning algorithm generate trans-

parent models?

With this question a �rst important application of GP-GOMEA is addressed. Under the

assumption that GP-GOMEA can in fact be e�cient and e�ective in �nding small and

accurate programs, it is interesting to assess whether this property can be exploited to

enable the discovery of more transparent machine learning models trained by a chosen

machine learning algorithm.

This question is addressed in Chapter 5, in which a synergistic combination of GP-

GOMEA with a second machine learning algorithm is explored, where the �rst is used to

evolve small and salient constructed features, and the second trains a small-dimensional

model upon those features. The goal is to reduce the dimensionality of an original set of

features down to only two small and readable constructed features (i.e., symbolic trans-

formations of the original features) so that the behavior (i.e., the predictions for a large

set of inputs) of the �nal machine learning model can be visualized. Moreover, we assess

whether the accuracy of the model obtained this way is better or worse than the accuracy

obtained by using the original (high-dimensional) set of features. This approach is tested

on classi�cation and regression real-world datasets.

The contents of this chapter are based on the publication: M.Virgolin, T. Alderliesten,

and P.A.N. Bosman. On explaining machine learning models by evolving crucial and com-

pact features. Swarm and Evolutionary Computation 53, pp. 100640, Elsevier (2020).

Researchqestion 5. Can GP-GOMEA find models that are accurate and likely

to be interpretable for a clinical problem in pediatric radiation oncology?

To investigate the practical usefulness of GP-GOMEA in a societally-impactful problem, an

application of GP-GOMEA to pediatric oncology is investigated at large. A medical appli-

cation represents a suitable �t for the use of a machine learning algorithm that may deliver

models that doctors can understand and trust. In particular, the application we study is

radiation treatment dose reconstruction for pediatric cancer patients. Children with cancer

that undergo multi-modality treatment including irradiation of the tumor tend to develop

adverse e�ects. To improve pediatric radiation treatment, it is imperative to study how

the radiation dose to sensitive organs is linked to adverse e�ects. Recent studies consider

3D dose distributions. However, this type of �ne-grained information can oftentimes be

https://doi.org/10.1145/3321707.3321758
https://doi.org/10.1145/3321707.3321758
https://doi.org/10.1016/j.swevo.2019.100640
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absent when late adverse e�ects are considered. This is because some late adverse e�ects

can occur decades after the treatment, which might have happened before the advent of 3D

imaging became common practice (e.g., prior to the 1990s in the Netherlands). Therefore,

for children treated decades ago, 3D dose distributions need to be reconstructed (estimated

as accurately as possible). We explored the use of machine learning, and GP-GOMEA in

particular, to improve upon the limitations of existing methods employed in dose recon-

struction. This application is tackled in three chapters.

Chapter 6 introduces the aforementioned problem, and explores the feasibility of using

machine learning (speci�cally random forest [25]) to use the information that is typically

available for patients treated in the past (i.e., without 3D imaging) to predict 3D anatomical

information. This 3D information can then be used to craft (or select) a phantom, i.e., a 3D

surrogate of the true patient anatomy, which can be used to simulate the delivery of the

radiation treatment, to obtain estimations of the 3D dose distribution.

The contents of this chapter are based on the following publication: M. Virgolin,

I.W.E.M. van Dijk, J. Wiersma, C.M. Ronckers, C. Witteveen, A. Bel, T. Alderliesten, and

P.A.N. Bosman. On the feasibility of automatically selecting similar patients in highly indi-

vidualized radiotherapy dose reconstruction for historic data of pediatric cancer survivors.

Medical Physics 45 (4), pp. 1504-1517, Wiley (2018).

In Chapter 7 the concepts of the previous chapter are taken to the next level by pre-

senting an automatic pipeline that can generate patient-speci�c 3D pediatric phantoms of

the abdomen. A comparison is included between GP-GOMEA and other machine learning

algorithms, which are used to provide models that predict, given the (non-3D) informa-

tion available for the patient as an input, how 3D anatomical imaging of other patients

should be assembled into a personalized phantom. The contents of this chapter are based

on the following preprint: M. Virgolin, Z. Wang, T. Alderliesten, and P.A.N. Bosman. Ma-

chine learning for automatic construction of pseudo-realistic pediatric abdominal phan-

toms. Submitted. Preprint arXiv:1909.03723, arXiv (2019). The preprint extends the publi-

cation: M. Virgolin, Z. Wang, T. Alderliesten, and P.A.N. Bosman. Machine learning for

automatic construction of pediatric abdominal phantoms. In Proceedings of SPIE Medical

Imaging 2020: Imaging Informatics for Healthcare, Research, and Applications, International

Society for Optics and Photonics (2020) (to appear).

Lastly, Chapter 8 presents the use of GP-GOMEA to perform dose reconstruction in

a novel way. Instead of attempting to craft a phantom for a patient, machine learning

models are trained to directly estimate key dose-volume metrics that are typically con-

sidered when studying the link between radiation treatment and adverse e�ects. To this

end, the information available for the patient is used as input for the machine learning

models jointly with the information available for the radiation treatment plan. The con-

tents of this chapter are based on the following preprint: M. Virgolin, Z. Wang (shared

�rst co-author), B.V. Balgobind, I.W.E.M. van Dijk, J. Wiersma, P.S. Kroon, G.O. Janssens,

M. van Herk, D.C. Hodgson, L. Zadravec Zaletel, C.R.N. Rasch, A. Bel, P.A.N. Bosman,

and T. Alderliesten. Surrogate-free machine learning-based organ dose reconstruction for

pediatric abdominal radiotherapy. Submitted. Preprint arXiv:2002.07161, arXiv (2020).

https://doi.org/10.1002/mp.12802
https://arxiv.org/abs/1909.03723
https://arxiv.org/abs/2002.07161
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2
Scalable Genetic Programming by

Gene-pool Optimal Mixing

The Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) is a recently introduced

model-based EA that has been shown to be capable of outperforming state-of-the-art alter-

native EAs in terms of scalability when solving discrete optimization problems. One of the

key aspects of GOMEA’s success is a variation operator that is designed to extensively ex-

ploit linkage models by e�ectively combining partial solutions. Here, we bring the strengths

of GOMEA to Genetic Programming (GP), introducing GP-GOMEA. Under the hypothesis

of having little problem-speci�c knowledge, and in an e�ort to design easy-to-use EAs, GP-

GOMEA requires no parameter speci�cation. On a set of well-known benchmark problems we

�nd that GP-GOMEA outperforms standard GP while being on par with more recently intro-

duced, state-of-the-art EAs. We furthermore introduce Input-space Entropy-based Building-

block Learning (IEBL), a novel approach to identifying and encapsulating relevant building

blocks (subroutines) into new terminals and functions. On problems with an inherent degree

of modularity, IEBL can contribute to compact solution representations, providing a large po-

tential for knock-on e�ects in performance. On the di�cult, but highly modular Even Parity

problem, GP-GOMEA+IEBL obtains excellent scalability, solving the 14-bit instance in less

than 1 hour.

The contents of this chapter are based on the following publication: M. Virgolin, T. Alderliesten, C. Witteveen, and P.A.N.

Bosman. Scalable genetic programming by gene-pool optimal mixing and input-space entropy-based building-block learning.

In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO ‘17), pp. 1041-1048, ACM (2017).
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2.1. Introduction

When a problem’s structure has some inherent degree of modularity, being able to e�-

ciently and e�ectively exploit this modularity in an Evolutionary Algorithm (EA), e.g., by

recombining partial solutions, can lead to better solutions much faster than when using

only blind variation operators [1]. The term schemata is often used in Genetic Algorithms

(GAs) to refer to such partial solutions, which can be moderately to completely indepen-

dent from each other.

In Black-Box Optimization (BBO), it is unknown how schemata are encoded, hence it is

not possible to design any speci�c recombination operator beforehand that prevents their

disruption when mixing solutions. In an attempt to learn and exploit problem structure,

model-based EAs use a model to capture such structure [2]. In the case of BBO, model

instances are inferred from the genotype (i.e., the encoding) of promising solutions.

In Genetic Programming (GP), the term Building Blocks (BBs) typically refers to con-

nected parts of the genotype (i.e., connected nodes in tree-based GP) that represent useful

subroutines. Whereas solutions in GAs have a �xed size and the main focus is to avoid

the disruption of schemata, solutions in GP are typically free to grow. Therefore, many

studies have explored steps to re-use BBs by encapsulating them into compact represen-

tations. With one of the �rst attempts, the Automatically De�ned Functions (ADFs) [3], it

has been shown that the re-use of BBs can be extremely bene�cial, making GP capable of

tackling very di�cult, yet highly modular problems such as Even Parity. Many di�erent

approaches have been proposed in the last 25 years (see Sec. 5.2 of [4] for an overview).

However, none of them has shown clear superiority in systematically identifying salient

BBs [5]. Some works even synthesize BBs from randomly chosen subtrees [6, 7]. Other

proposals relax the BBO hypothesis substantially to synthesize BBs from successful runs

on smaller problem instances [8, 9].

Our purpose is to introduce novel, general, and principled ways to identify and exploit

problem structure in tree-based GP. As a �rst contribution, we bring key strengths of the

Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) to tree-based GP, result-

ing in GP-GOMEA. GOMEA is a model-based EA which performs a memetic variation

of solutions by extensively exploiting linkage information, i.e., strong interdependencies

between parts of the genotype [10]. Our second contribution is a novel method to iden-

tify and encapsulate BBs into new terminals and functions in Boolean problems, thereby

enhancing the search space with atomic representations of partial solutions. We call this

method Input-space Entropy-based Building-block Learning (IEBL). IEBL is inspired by

information theory and construction heuristics for classi�cation trees [11], and can po-

tentially be applied to a number of GP algorithms. To the best of our knowledge, no

similar approach to identify salient BBs in GP has ever been proposed. Finally, under the

hypothesis of no knowledge on the problem and for the sake of usability, we set out to

design this algorithm to require no parameter speci�cation.

2.2. GP-GOMEA

The current closest GOMEA implementation on which this GP version is based on is de-

scribed in [10]. The general GOMEA outline is depicted in Algorithm 2.1. At the top

level, GOMEA has the characteristics of any EA with population initialization and the
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Figure 2.1: GP tree encoded by the �xed-length string of size 15 “&+&bbadc¬bab+cd”. Gray

nodes are introns.

generational loop that continues until a termination criterion is met (e.g., population con-

vergence, evaluations limit, time limit). A generation consists of the learning of a linkage

model F (which may be provided beforehand if the problem structure is known a priori)

and the applying of the variation operator GOM to each solution in the population, which

extensively exploits F to improve a solution.

Algorithm 2.1 GOMEA general outline

1 procedure runGOMEA(n)

2 P ←initializePopulation(n)

3 while ¬shouldTerminate() do
4 F ← buildLinkageModel(P)

5 for Pi ∈ P do
6 Oi ← GOM(Pi, F,P)
7 P ← O = {O1, . . . ,On}

2.2.1. Genotype

Although the original implementation of GOMEA works on �xed-length strings of binary

variables, handling variables of higher cardinality is straightforward. This representation

is the �rst step in using GOMEA for GP, as we use it to map discrete values to program

functions and program inputs. Like in Standard GP (SGP), solutions in GP-GOMEA are

trees of variable size composed of terminal and function nodes. Trees can be encoded as

�xed-length strings using preorder tree traversal (Figure 2.1). All nodes but the ones at

maximum depth always have r child nodes, with r the maximum arity (i.e., number of

expected inputs) of the function nodes. We make it possible for GOMEA to work with

variable-size trees even though they are encoded with �xed-length strings. Trees always

have a maximum height. Syntactically, trees are always full, but semantically they are not.

If a terminal appears in an internal node, the subtrees below it are disregarded. Moreover,

for function nodes with arity lower than r, only the leftmost child nodes are evaluated.

Hence, some nodes are introns, i.e., they will be ignored during the evaluation of the tree.

2.2.2. Linkage models

As in the original GOMEA, GP-GOMEA uses the Family Of Subsets (FOS) as linkage model.

The FOS is a set of sets which contain loci, i.e., indices representing positions in the geno-
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type. Each one of these sets speci�es which parts of the genotype should be replaced en

bloc during variation. Note that a FOS containing all and only singletons of each locus,

i.e., F = {{0}, {1}, . . . , {l − 1}}, with l the length of the genotype, models complete

independence among loci. We call this FOS that allows only the variation of one locus at

a time Univariate (U). In this chapter, we analyze the contribution of three di�erent FOSs:

U, Linkage Tree (LT) and Random Tree (RT).

We consider LT as it has so far been found to lead to the best performance on a number

of di�erent BBO problems [10]. A key strength of this model is that it can capture at the

same time multiple levels of dependency (linkage) among loci. An LT can be seen as a tree

where the leaves are singletons (i.e., U) while its internal nodes are built by merging sets in

an iterative fashion, up to reaching the root, i.e., the set that contains all loci. An LT may

be �xed a priori, but especially in a BBO setting, it is learned from the population at each

generation (line 4 of Algorithm 2.1). Speci�cally, a measure of linkage between pairs of loci

is measured using mutual information, i.e., the measure of mutual dependence between

two variables in information theory. New sets are iteratively built by merging sets with

the highest mutual information. Using only combinations of mutual information between

pairs of variables, the hierarchical structure of dependencies expressed by an LT can be

e�ciently learned in O(|P|l2), with |P| the population size [12].

Lastly, RT is built like LT, but using random information instead of measured link-

age. This FOS enables the variation of multiple parts of the genotype like LT, but does

not assume that speci�c parts of the genotype should be kept intact. RT is thus a model

that enables blind variation that di�ers from the classic GP subtree crossover in that any

con�guration of nodes can be swapped.

2.2.3. Gene-pool optimal mixing

The variation operator GOM, that also incorporates selection, always generates an o�-

spring that is at least as �t as the parent. Di�erent from standard crossover in GP where

entire subtrees are swapped, GOM mixes potentially unconnected parts (i.e., tree nodes)

of the �xed-size genotype. Moreover, instead of generating two new solutions from two

parents, it creates an o�spring by iteratively mixing a parent solution with multiple other

solutions.

The procedure is shown in Algorithm 2.2. Given a solution s, an identical o�spring o
is made, and each set Fi of the FOS F is used to try to improve o. Given Fi, a donor d
is randomly picked from the population, and the symbols of o at the loci speci�ed by Fi
are replaced with the symbols of d at the same loci (the j-th symbol of o can be replaced

only with the j-th symbol of d). Replacement is not done if Fi contains all loci, since that

would mean to fully replace o with d, nor if all loci in Fi identify introns of o, because the

semantic of owould not change. If the mixing results in a syntactical change of o, then this

new solution is evaluated. The changes are kept only if the �tness of o does not worsen.

If o never changes during this �rst phase or no new best �tness has been found in the

last 1 + log10(|P|) generations, then the forced improvement phase starts. In this phase

Optimal Mixing is performed by mixing o only with selitist
, the best solution ever found.

Here, changes to o are accepted only in case of strict �tness improvement. Moreover, upon

an accepted change, the procedure stops. If even this does not lead to a change of o, then

o becomes a copy of selitist
.



2.2. GP-GOMEA

2

31

Because root nodes can only be exchanged with root nodes, in the classic ramped

half-and-half generation of the initial population the �rst symbol is always initialized to

represent a function.

Algorithm 2.2 Gene-pool Optimal Mixing

1 function GOM(s, F,P)

2 o← s; fitness[o]← fitness[s]
3 b← o; fitness[b]← fitness[o]

4 I ←inactiveNodes(o)

5 R ←randomPermutation({0, 1, . . . , |F − 1|})
6 c← 0
7 for i ∈ {0, 1, . . . , |F − 1|} do
8 Fi ← F [R[i]]
9 if |Fi| 6= |o| & Fi * I then
10 d←randomDonorSolution(P)

11 oFi ← dFi
12 if o 6= d then
13 evaluateFitness(o)

14 if fitness[o] ≥ fitness[b] then
15 bFi ← oFi ; fitness[b]← fitness[o]

16 I ←inactiveNodes(o)

17 c← 1
18 else
19 oFi ← bFi ; fitness[o]← fitness[b]

20 if c = 0 | noImprovementsStretch() then
21 forcedImprovementOM(o, F )

22 return(o)

2.2.4. Partial evaluations

To enhance the speed of evaluating solutions a simple mechanism can be used in tree-

based GP to perform partial evaluations. We use this also for GP-GOMEA. This is done by

maintaining the output of all tree nodes (i.e., string symbols) in memory. Note that introns

do not have any output. During GOM, track is kept of which nodes are changed. Conse-

quently, only subtrees where at least one (active) node changed, need to be re-evaluated,

whereas the roots of unchanged subtrees can immediately return their cached output.

2.2.5. Interleaved multistart scheme

The task of sizing a problem-speci�c population and genotype (string length or, equiva-

lently, tree height) is crucial in many EAs. Tuning such parameters is often tedious and

time-consuming but also necessary to ensure e�ciency and to guarantee the successful

discovery of (near-)optimal solutions. Setting these parameters wrong can give a vastly

wrong impression of an algorithm’s capabilities. For this reason, we designed GP-GOMEA

so that it does not require the user to specify any parameter. A similar scheme as the one
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Table 2.1: BB identi�cation in IEBL. Columns are the �tness cases,O∗ is the desired output,

O the observed output for the tree depicted in Figure 2.1. Entropy is measured on red cells.

a 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

b 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

c 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

d 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

O 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
O∗ 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1

proposed in [13] is adopted, where multiple runs of the algorithm with di�erent parameter

settings are interleaved. We call this scheme Interleaved Multistart Scheme (IMS).

Speci�cally, every g generations of a GP-GOMEA run, another run with double the

population size performs 1 generation. This is repeated recursively. Similarly, the maxi-

mum tree height (and thus the encoding string length) increases by 1 every 2 runs.

The �rst run is initialized with a population size of 2 in ramped half-and-half, and with

a maximum tree height such that full trees have a number of nodes at maximal depth equal

or bigger than the number of inputs of the problem (i.e., for a problem with n inputs and

functions of maximum arity r, it is dlogr(n)e).
A copy of selitist

, the best solution ever found by any run so far, is stored and used

by all runs in the forced improvement phase of GOM (Algorithm 2.2, line 21). If a new

best solution selitist
is found the size of which (i.e., maximum tree height or, equivalently,

string length) is smaller than the size of solutions evolved by a runR, then a copy of selitist

is made for R that has the same size of the solutions of R and in which empty loci are

�lled with random introns. If the new best solution selitist
has a larger size than the one of

solutions evolved by R, then R is immediately terminated.

Other criteria for the termination of a run R are the following: (i) the population of R
converged to all identical solutions; (ii) a run R′ with larger population achieved a better

average �tness than R or than a run R′′ with bigger population size than R. Finally,

the whole multi-run scheme can be terminated at a speci�c threshold by specifying a

maximum number of evaluations or seconds.

2.3. IEBL

We here describe a novel method to identify and encapsulate useful, small trees into

new terminals and functions, called Input-space Entropy-based Building-block Learning

(IEBL). In this context, we use the term BBs to refer to such small trees. IEBL is aimed at

improving the search process on Boolean problems which exhibit a degree of decompos-

ability, i.e., for which meaningful BBs exist.

The identi�cation of salient BBs is based on �tness cases (pairs of input and desired

output values) and is inspired by information theory and heuristics to build classi�cation

trees. To the best of our knowledge, no similar approach exists in GP. While the identi�ca-

tion method attempts to �nd those BBs that represent partial solutions to the problem, the

encapsulation of BBs changes the search space by providing the EA with compact repre-

sentations of higher-level functionalities that can be used in the search process. Moreover,

IEBL can be applied iteratively, using encapsulated BBs to generate higher-order BBs.
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Here, we show how IEBL can be used in GP-GOMEA, but its salient concepts can

straightforwardly be used in a number of other GP paradigms. The following sections

explain the method in detail.

2.3.1. Identification of BBs

A dedicated population of small trees is used. This is due to some early experiments, con-

�rming literature [5], where we observed that the frequency of known good subtructures

in the population (i.e., the XOR and XNOR functions for the Even Parity problem) does not

necessarily increase during optimization. To generate the dedicated population, we use a

slight variation of the ramped half-and-half method. Speci�cally, roots are always func-

tions and for each tree a subset of the set of all terminal nodes T is used, with cardinality

between 2 and |T |. This increases the redundancy of terminals contained in candidate BBs,

increasing the probability of generating complex interactions between few terminals.

Let I be the set of input variables. Given a BB b, we say that b embodies an input

variable i if there exists at least one non-intron terminal node that represents i in b. Let

J ⊂ I be the set of input variables not embodied by b. We only consider BBs for which

J 6= ∅, as they represent partial solutions using part of the inputs. Let E be the set of

�tness cases for which the execution of b returns a wrong Boolean output. If E = ∅, b
is a solution to the problem and the EA is terminated. A quality-score is assigned to b
by looking at the values taken by the input variables of J in E . Speci�cally, the joint

entropy of the values assumed by the inputs of J in E is measured. Lower entropy is

considered to be better because this means that the �tness cases that are still wrong have

more regularities and thus represent a less complex problem to be solved.

For example, consider the task of regressing a circuit that, given 4 bits, returns 1 when

an even number of bits are set to 1 (4-bits Even Parity). The BB consisting of the tree in

Figure 2.1 outputs 1 only when the input variables a and b are 0. Also, J = {c, d}. E
contains 8 cases. Table 2.1 shows the con�gurations of the input values of c and d over

which the entropy is computed in red. Since “01” and “10” appear each in 3 out of 8

cases, while “00” and “11” appear each 1 out of 8 cases, the entropy is E = −
∑
p log p =

−2 3
8 log( 3

8 )− 2 1
8 log( 1

8 ).

Some BBs are discarded during this procedure, namely those (i) that have the same

output of another BB, but higher or equal entropy; (ii) for which J = ∅; (iii) whose

output is always-false or always-true; (iv) for which I−J = {i}, since the only realizable

functions of i are always-false, always-true, identity and negation.

2.3.2. Encapsulation of BBs — terminal nodes

After the identi�cation method has computed the entropy of BBs, we encapsulate into

new terminals the best (i.e., with lowest entropy) |I| BBs, thus doubling the number of

terminals. Expanding the terminal set e�ectively changes the search space. We limit the

number of new terminals to avoid an excessive complication of the search space. If more

than |I| BBs are found with minimal entropy, then random |I| ones are kept and the others

are discarded.

To enable running IEBL when earlier executions already identi�ed and encapsulated

new BBs, we keep track of which input variables are embodied. This allows to always

de�ne the set J needed to compute the entropy.
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2.3.3. Encapsulation of BBs — function nodes

The best |I| BBs are also used for encapsulation into new function nodes. Let r be the

arity of a BB, i.e., the number of di�erent (non-intron) terminal nodes in it. The functional

encapsulation of this BB is achieved by generating a function node that accepts r children

and, given one of the 2r possible binary con�gurations of the inputs, returns the output

of the BB for that con�guration. We discard BBs leading to duplicate function nodes, i.e.,

those whose arity and output are identical to an already-encapsulated one or to a function

from the starting set F . Further, we discard BBs which realize always-false, always-true

and functions of arity 1.

Similarly to what is done for terminal nodes, we impose a �xed limit of |F| new func-

tion nodes to expand F . If more than |F| BBs have minimal entropy, then |F| at random

are kept.

2.3.4. Implementation of IEBL in GP-GOMEA

To alleviate users from having to choose the dedicated population size and tree height for

IEBL, we propose a scheme to include IEBL in GP-GOMEA that requires no parameter

speci�cation.

IEBL is applied at the start of each new GP-GOMEA run to expand the terminal and

function sets. In particular, for the i-th run, IEBL is iterated i times consecutively to dis-

cover higher-order BBs. This means that the nodes created by the j-th iteration of IEBL

are used (together with the starting functions and terminals) for the generation of the

dedicated population of the j + 1-th iteration of IEBL. For the �rst GP-GOMEA run, the

dedicated population size for IEBL is set to |F|(|F|+t)r , which corresponds to the number

of possibilities for the �rst two levels of an r-ary tree with any function as root, and with

any function or terminal, among t di�erent ones, as children of the root. For the function

set of the Boolean benchmark problems it is r = 2, and we �xed t = 4 to ensure start-

ing from a moderate dedicated population size (i.e., 256 trees). The dedicated population

size is doubled for each new GP-GOMEA run, and the height of the trees constituting the

candidate BBs is initially set to 2 and is incremented by 1 every 4 runs. In other words,

IEBL is applied once before the �rst run of GP-GOMEA, using a dedicated population size

of 256 with trees of height 2; IEBL is applied i times before the i-th run, using a dedicated

population size of 256× 2i−1
in each iteration, with trees of height 2 + bi/4c. If the i-th

IEBL �nds a BB with an entropy of 0, then the number of iterations for all next IEBLs is

frozen to i. Because IEBL provides nodes that inherently embody trees of a certain height,

we lower by 1 the starting tree height of the IMS of GP-GOMEA. To avoid an unbounded

growth of the genotype, we limit the learning of new node functions to BBs with arity 2

only. Finally, unless a BB entropy of 0 is reached, if no lower entropy is found after four

consecutive uses of IEBL (i.e., four new runs of GP-GOMEA), then IEBL is disabled: all cur-

rent GP-GOMEA runs are terminated (the elite solution is also forgotten), and subsequent

runs will no longer use IEBL to learn and use BBs.
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2.4. Experimental setup

The performance of GP-GOMEA
1

is tested in terms of scalability on well-known GP bench-

mark problems. This enables us to compare our algorithm with SGP, but also with state-

of-the-art work. All experiments were executed on a machine mounting 2 Intel
®

Xeon
®

CPU E5-2699 v4 @ 2.20GHz and 630 GB of RAM. Each experiment consists of 30 indepen-

dent runs and only successful experiments are considered. Runs exceeding a time limit of

24 hours or a memory limit of 500 GB are aborted.

2.4.1. Benchmark problems

We consider two sets of benchmark problems. The �rst set is composed of arti�cial prob-

lems often used to assess the performance of model-based EAs, because of their focus on

obtaining speci�c substructures in the genotype. The second set considers well-known

regression problems of Boolean circuits, which di�er from the problems in the �rst set in

that the solution encoding is much more redundant, so that very di�erent solutions have

the same output. In all problems, maximization of the �tness is sought.

Artificial problems

Order is a GP version of the well-known OneMax problem in GA research and is known to

be easy to solve for SGP [14]. Given a problem size n, the terminal set consists of 2n node

variables Xi and their complement X̄i. The function set contains only one node which

is a placeholder for a function of arity 2 with no semantic meaning. The output O of a

tree is a list of its inputs derived from the inorder traversal of its nodes, such that there

are no duplicates and only one of the two complementary inputs is present, depending

on which is encountered �rst in the traversal. For example, if {X3, X̄0, X1, X1, X0, X̄2}
are the inputs appearing in the inorder traversal, the tree outputsO = {X̄0, X1, X̄2, X3}.
The �tness is fn

order
= |O \{X̄0, X̄1, . . . , X̄n−1}|. In other words, the optimal solution is a

tree where, for each i, Xi is present and X̄i is not, or the latter appears afterXi according

to inorder traversal.

The problem Trap employs the same terminal and function sets of Order, but is consid-

ered a hard problem for SGP [14]. This is because of its deceptive �tness function de�ned

for blocks of k variables, which is inspired by the well-known deceptive trap functions

in GA research. The deceptive attractor corresponds to the number of X̄i in the output,

while the needle in the haystack is the optimum of Order. Speci�cally, for a block of k
variables,

fk
Trap

=
{

1 if fk
order

= k

0.75
(

1− fk
order

k−1

)
if fk

order
< k

(2.1)

We denote with Trap-3 and Trap-4 the problem with trap length k of 3 and 4 respectively.

The problem size n is the number of traps.

Like Order and Trap, the tunable benchmark problem introduced in [15], here denoted

with KÜ (from the authors’ surnames), uses binary trees, but with a prede�ned maximum

height. The aim is to synthesize a tree in which function nodes are arranged according to

positional constraints. The size of the problem n corresponds to the maximum tree height.

1
The code is available at https://bit.ly/3ajDUBY

https://bit.ly/3ajDUBY
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The terminal set contains only one node, while the function set contains functions of arity

2, i.e., F = {F0,F1, . . . }. F can be changed together with n to tune problem di�culty. In

this work, we always considerF = {F0, . . . ,F2n−1}. The output of a tree is the output of

its root. A function node outputs the weighted sum of its 2 children’s outputs, determined

according to the constraints: (i) the index of the parent function must be lower than that of

its children; (ii) the index of child 1 must be smaller than the index of child 2. The terminal

has no index and does not violate constraints. If child 1 violates the �rst constraint, then

its output is penalized with a weight of η, and similarly for child 2. If the second constraint

is violated, then the output of both children is penalized with η (we use η = 0.25). Since

the maximum tree height is the problem size n, for this problem the maximum tree height

in the IMS is �xed to n.

Boolean problems

These problems are de�ned with �tness cases, i.e., pairs of input and desired output values.

Di�erent from the arti�cial problems, inputs are now binary. In all these problems the aim

is to synthesize a tree that realizes a Boolean circuit which satis�es all �tness cases, giving

the correct output for any input con�guration. The �tness of a solution is the number

of correct �tness outputs. Boolean circuits we consider are: Comparator, Even Parity,

Majority and Multiplexer. The terminal set contains a terminal for each input, and the

function set contains the logic functions AND, OR, NAND, and NOR.

A circuit realizes the n-inputs Comparator if it outputs true only if the �rst dn/2e bits

represent a number that is lower than the one encoded by the second bn/2c bits. The Even

Parity problem of n inputs expects the output true when the number of input bits set to 1

is even and false otherwise. In Majority, the solution must return true only when at least

dn/2e out of a total of n input bits are set to 1. Finally, a Multiplexer has n = m + 2m
input bits: the �rstm bits encode the address, the second 2m bits encode the data. A circuit

satis�es the Multiplexer problem if it always outputs the value of the data bit encoded by

the address.

2.4.2. Standard GP and state-of-the-art

We compare the scalability of GP-GOMEA with SGP and two state-of-the-art algorithms.

For Order and Trap, the model-based algorithm extended Compact Genetic Programming

(eCGP) is considered [14]. For the Boolean benchmark problems, we consider recent algo-

rithms based on Semantic Backpropagation (SB): the Iterated Local Tree Improvement

(ILTI) [16] and GP using the Random Desired Operator (RDO) [17]. These two algo-

rithms inherently embody the partial evaluations method with which GP-GOMEA is also

equipped, since they require the memorization of each node output. Di�erently from GP-

GOMEA and SGP, these former 2 algorithms always require the de�nition of �tness cases.

For eCGP, we consider the scalability reported in [14]. The performance is obtained

with an empirically pre-computed good population size and on a prede�ned maximum

tree height.

Both ILTI and (GP with) RDO rely on SB, a recent technique in which improvements

at the level of single �tness cases are sought. SB is applied top-down (from the root to the

leaves) and computes, for each node, a desired output O∗. For the root, O∗ is the vector

that satis�es all �tness cases of the problem. The desired output of a child of the root
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is computed by inverting the root function, using O∗ and the current output of its other

children as arguments. The design of inverted functions is not always straightforward, as

sometimes a solution does not exist (e.g., looking for an input for AND with desired output

1 when the other input is 0) or can assume any value (e.g., looking for an input for OR with

desired output 1 when the other input is 1). Among several di�erences, ILTI is an (1,1)-EA,

while RDO is population based. Here ILTI is used in the best performing con�guration,

that is with a (maximum, when more are possible) library size of 450 full trees of height

2. Similarly, for RDO we adopt the best-performing con�guration on Boolean problems

(named RDOp in [17]), which uses a dynamic library of semantically-unique trees taken

from the subtrees in the population instead of a �xed-size library.

We propose two con�gurations for SGP: SGPparam, with hand-picked population size

and initial tree height as typically done in literature, and SGPIMS , enclosed in a scheme

similar to the IMS of GP-GOMEA. For the former, we set the initial tree height to 6 and

the maximum allowed one to 12. The population size for Order is set to 2n+2
(easy prob-

lem), for Trap-3 and KÜ to 2n+7
(di�cult problem), and for Trap-4 to 2n+9

(very di�cult

problem), with n the problem size. As to the Boolean problems, the population size for

Comparator and Majority is set to 2n+5
(medium di�culty). For Even Parity, known to

be di�cult for SGP [3], the population size is 2n+7
. For the 3, 6, and 11-bits Multiplexer

the population size is set to 256, 1024, and 4096, respectively. SGPIMS works with no pa-

rameter speci�cation, within a IMS scheme that di�ers from the one of GP-GOMEA in

the following aspects: (i) there is no common elitist solution among runs, nor a stopping

criteria related to it; (ii) a run performs 1 generation every 8 generations of the smaller

run; (iii) the initial tree height h is computed as the maximum tree height of GP-GOMEA

(Section 2.2.5), and the maximum height is h+4. We experimentally found that increasing

the intervals of the IMS is bene�cial for SGPIMS , since it performs much less evaluations

than GP-GOMEA (with any of the 3 linkage models) per generation. Furthermore, we set

a maximum tree height bigger than the initial tree height because the standard crossover

and mutation swap and generate subtrees of arbitrary height. For both SGP con�gura-

tions, we set tournament selection size to 4, probability of crossover to 0.9, probability

of mutation to 0.1, and reproduction of the best solution. Finally, we equip SGP with the

same caching method of node outputs used in GP-GOMEA, to perform partial evaluations.

2.5. Results & discussions

Scalability graphs are provided in Figure 2.2 for the arti�cial problems, and Figure 2.3 for

the Boolean problems. GP-GOMEA, SGP, ILTI and RDO use partial evaluations. When

IEBL is applied, evaluations of BBs candidates are also counted, and the number of nodes

is obtained by recursively unwrapping encapsulated BBs.

Artificial problems

Results show that GP-GOMEA with LT as the linkage model (GP-GOMEALT) is generally

the best performing algorithm in all metrics: number of evaluations, time, and size of the

�nal solution. On the easy Order problem, for which we run a limited number of instances,

no marked di�erence between both SGP con�gurations and GP-GOMEA with any link-

age model is observed. However, the more di�cult the problem, the more GP-GOMEALT

shows superior performance. On Trap-3, SGPparam markedly outperforms SGPIMS , and
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Figure 2.2: Average, maximum and minimum number of evaluations, time, and number

of nodes in the �nal solution for the arti�cial problems. The problem dimension for Or-

der, Trap-3, and Trap-4 is de�ned in terms of possible terminals. For KÜ, the problem

dimension is de�ned in terms of possible functions.
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Figure 2.3: Average, maximum and minimum number of evaluations, time, and number of

nodes in the �nal solution for the Boolean problems. The problem dimension is de�ned

in terms of number of �tness cases.
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performs slightly better than GP-GOMEALT. This result is possibly due to the immedi-

ate employment of a big population size in SGPparam and a good setting of the initial tree

height. On Trap-4 and KÜ, however, GP-GOMEALT scales better than any other algorithm,

showing an e�ective capability of learning and exploiting the problem structure. On the

evaluations of Order and Trap-3, the scalability of eCGP ofO(n2.86) andO(n3.18) respec-

tively, as reported in [14], is shown. Although it may appear that GP-GOMEALT performs

slightly worse than eCGP, it is important to remember that the performance of eCGP is

obtained on an empirically pre-computed good population size and on a prede�ned initial

tree height, whereas GP-GOMEA runs according to the IMS.

Boolean problems

On the Boolean problems, the di�erence between the linkage models LT and RT used for

GP-GOMEA is far less pronounced, suggesting that the LT is not capable of modeling key

linkage information to help increase e�ciency substantially. This may well be because of

the high redundancy in the representation of solutions, and the consequential fact that

locus-based dependence is not the most important source of problem structure.

GP-GOMEALT and SGPIMS show similar scalability overall, with exception of Majority,

where SGPIMS performs best. Nonetheless, in all other cases GP-GOMEALT reaches the op-

timal solution faster and evolves much smaller solutions. This is also re�ected when com-

paring scalability in terms of time: partial evaluations are much more bene�cial for the

operators of SGP than for GOM (e.g., Figure 2.4 shows a comparison on how time scalabil-

ity is a�ected by partial evaluations in Majority). This is because GOM exchanges multiple

nodes at the same time which are not necessarily connected, requiring to re-compute the

output of the chain of parent nodes scattered in the solution. Di�erent output caching

methods may thus be much more bene�cial for GOM (e.g., storing hash-output of the

most recurrent subtrees). Moreover, GP-GOMEA typically needs much smaller popula-

tions than SGPIMS thanks to the extensive mixing trials performed by GOM, which is also

much less prone to bloat. These aspects are very bene�cial in terms of memory usage:

on di�cult problems like Trap-4 some runs of SGPIMS need even 100 times more memory

than GP-GOMEALT.

Another crucial observation from our results comes from the comparison of SGPIMS

with SGPparam. Whereas the former has inherent overhead due to multiple runs with in-

creasing population and tree size, the second sometimes fails to �nd the optimal solution

on complex problems. Although it is arguable that our parameter choice for SGPparam is

not optimal, some runs converge to a local minimum and are unable to escape it with the

sole aid of mutation. Instead, the employment of multiple runs, each starting on random

genetic material, dramatically increases the chances of �nding the optimal solution. This

also explains the success of GP-GOMEA.

The state-of-the-art algorithms ILTI and RDO generally run faster and require less

evaluations than GP-GOMEA and SGP. It is worth noticing that these algorithms rely on

a �tness function which is de facto di�erent: in the semantic �tness, improvements at the

level of single �tness cases are sought, whereas in its original speci�cation the �tness is

de�ned as the sum of all correct �tness cases. Therefore, SB needs a decomposition of the

�tness to be de�ned, as well as the design of inverted functions, which compromises the

applicability of this powerful technique to general problems. Moreover, whereas SGPparam
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uses sub-optimal parameters, and GP-GOMEA and SGPIMS run with the IMS, ILTI and RDO

use the best performing con�gurations reported. When comparing scalability, ILTI and

RDO are superior on Even Parity and Majority, but not on Comparator and Multiplexer.

In Comparator, the SB-based operators cause solutions to bloat even worse than the classic

operators of SGP, ultimately harming runtime. RDO has particularly poor performance on

Multiplexer, being unable to escape from a local minimum within 24 hours in some runs

of the 11-bits instance.

Lastly, we observe the e�ect of IEBL combined with the on average well-performing

GP-GOMEALT, and see that it is either detrimental or very helpful. By encapsulating BBs

into new terminal and function nodes, the search space is increased consistently. If such

nodes represent partial solutions and can be readily combined into bigger partial solutions,

then the search improves. Otherwise, the search is harmed. In the Multiplexer problem, we

found that IEBL is not capable of learning any reasonably useful BBs, suggesting that the

entropy-based identi�cation method cannot grasp the complex relationships between bits

present in this problem. In Comparator, IEBL does catch some relevant relationships: e.g.,

in the 6-bits instance, which outputs true when b0b1b2 < b3b4b5, the BB which returns 1

only if bi = 0 and bi+3 = 1 is often identi�ed. This BB represents the 2-bits Comparator

between equally signi�cant bits. As another example, the BB returning 1 when b1b2 are

set to 1 is learned, which is part of the solution for the case 011 < 100. However, the

expansion of the search space is so big that even learning seemingly-useful material ends

up being more detrimental than helpful. Similar considerations hold for the learning of

new function nodes. In Majority there is no speci�c pattern to learn, since no speci�c

relationships between bits are needed: the circuit outputs true as long as the majority

of bits is set to one. Finally, in Even Parity, IEBL really leads to excellent performance,

where in fact partial solutions can be combined to form bigger ones, e.g., two 2-bits Even

Parity solutions can be combined with XNOR, which is the function performing a 2-bits

Even Parity, to form the 4-bits one. Although the learning of BBs is noisy, resulting in a

big performance di�erence among best and worst runs, the scalability is the best among

all algorithms, with the number of evaluations increasing sublinearly with the number of

�tness cases.

A downside of IEBL is the size of solutions, which may be lowered by implementing

mechanisms to prefer shorter BBs. In the plot of the evaluations of Even Parity, we also

report the best performance we are aware of, obtained by the Binary Decision Diagrams

(BDD) [18]. BDD scales even better than GP-GOMEALT+IEBL in evaluations. However,

this EA is speci�cally designed for Boolean problems, with a dedicated genotype (diagrams

assuming a �xed variable ordering of inputs) and particular parameter settings (population

size of 5, mutation-only), while GP-GOMEALT+IEBL is a combination of a much more

general EA with a Boolean-dedicated mechanism for learning and exploiting BBs. For

future work, it would be interesting to attempt to automatically detect when the addition

of IEBL is useful so that highly negative e�ects in the performance of GP-GOMEA are

prevented.

2.6. Conclusions

In this chapter we presented GP-GOMEA, a novel, scalable, model-based approach to GP.

Our algorithm requires no parameter speci�cation, which is important for making fair
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Majority problem.

comparisons and for ease-of-use by practitioners. Even though GP-GOMEA is inherently

not-tuned, it shows competitive scalability when compared with the latest state-of-the-art

algorithms, based on semantic backpropagation. Moreover, while these algorithms need

�tness cases and inverted functions to be de�ned, GP-GOMEA does not have these re-

quirements, making it more generally applicable. Compared to SGP, GP-GOMEA exhibits

superior performance on structured problems, while, in general, it evolves much smaller

solutions and requires much less memory and time.

We further introduced a novel method to identify and encapsulate useful BBs into new

terminals and functions, termed IEBL. The novelty of this method is that it tries to harvest

information from the input-space on which �tness cases are de�ned. The combination of

IEBL with GP-GOMEA has been shown to be detrimental in non-modular problems, but

extremely e�cient on a modular problem like Even Parity. In fact, IEBL helps tackling the

complexity of Even Parity to a point where the scalability of GP-GOMEA becomes less

than linear, which ultimately leads to solving the 14-bits instance in less than 1 hour.
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3
Improving Model-based Genetic

Programming for Symbolic
Regression

TheGene-pool OptimalMixing EvolutionaryAlgorithm (GOMEA) is amodel-based EA frame-

work that has been shown to performwell in several domains, including Genetic Programming

(GP). Di�erently from traditional EAs where variation acts blindly, GOMEA learns a model

of interdependencies within the genotype, i.e., the linkage, to estimate what patterns to prop-

agate. In this chapter, we study the role of Linkage Learning (LL) performed by GOMEA in

Symbolic Regression (SR). We show that the non-uniformity in the distribution of the geno-

type in GP populations negatively biases LL, and propose a method to correct for this. We also

propose approaches to improve LL when ephemeral random constants are used. Furthermore,

we adapt a scheme of interleaving runs to alleviate the burden of tuning the population size,

a crucial parameter for LL, to SR. We run experiments on 10 real-world datasets, enforcing a

strict limitation on solution size, to enable interpretability. We �nd that the new LL method

outperforms the standard one, and that GOMEA outperforms both traditional and seman-

tic GP. We also �nd that the small solutions evolved by GOMEA are competitive with tuned

decision trees, making GOMEA a promising new approach to SR.

The contents of this chapter are based on the following preprint: M. Virgolin, T. Alderliesten, C. Witteveen, and P.A.N. Bosman.

Improving model-based genetic programming for symbolic regression of small expressions. Accepted for publication in Evolu-

tionary Computation. Preprint arXiv:1904.02050, arXiv (2019).
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3.1. Introduction

Symbolic Regression (SR) is the task of �nding a function that explains hidden relation-

ships in data, without prior knowledge on the form of such function. Genetic Program-

ming (GP) [1] is particularly suited for SR, as it can generate solutions of arbitrary form

using basic functional components.

Much work has been done in GP for SR, proposing novel algorithms [2–4], hybrids [5,

6], and other forms of enhancement [7, 8]. What is recently receiving a lot of attention

is the use of so-called semantic-aware operators, which enhance the variation process of

GP by considering intermediate solution outputs [9–11]. The use of semantic-aware op-

erators has proven to enable the discovery of very accurate solutions, but often at the cost

of complexity: solution size can range from hundreds to billions of components [9, 12].

These solutions are consequently impossible to interpret, a fact that complicates or even

prohibits the use of GP in many real-world applications because many practitioners de-

sire to understand what a solution means before trusting its use [13, 14]. The use of GP

to discover uninterpretable solutions can even be considered to be questionable in many

domains, as many alternative machine learning algorithms exist that can produce com-

petitive solutions much faster [15].

We therefore focus on SR when GP is explicitly constrained to generate small-sized

solutions, i.e. mathematical expressions consisting of a small number of basic functional

components, to increase the level of interpretability. With size limitation, �nding accurate

solutions is particularly hard. It is not without reason that many e�ective algorithms work

instead by growing solution size, e.g., by iteratively stacking components [11, 16].

A recurring hypothesis in GP literature is that the evolutionary search can be made

e�ective if salient patterns, occurring in the representation of solutions (i.e., the genotype),

are identi�ed and preserved during variation [17]. It is worth studying if this holds for SR,

to �nd accurate small solutions.

The hypothesis that salient patterns in the genotype can be found and exploited is

what motivates the design of Model-Based Evolutionary Algorithms (MBEAs). Among

them, the Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) is recent EA that

has proven to perform competitively in di�erent domains: discrete optimization [18, 19],

real-valued optimization [20], but also grammatical evolution [21], and, the focus of this

chapter, GP [22, 23]. GOMEA embodies within each generation a model-learning phase,

where linkage, i.e. the inter-dependency within parts of the genotype, is modeled. During

variation, the linkage information is used to propagate genotype patterns and avoid their

disruption.

The aim of this chapter is to understand the role of linkage learning when tackling

SR, and consequently improve the GP variant of GOMEA (GP-GOMEA), to �nd small and

accurate SR solutions for realistic problems. We present three main contributions. First,

we propose an improved linkage learning approach, that, di�erently from the original one,

is unbiased with respect to the way the population is initialized. Second, we analyze how

linkage learning is in�uenced by the presence of many di�erent constant values, sampled

by Ephemeral Random Constant (ERC) nodes [17], and explore strategies to handle them.

Third, we introduce improvements to GP-GOMEA’s Interleaved Multistart Scheme (IMS),

a scheme of multiple evolutionary runs of increasing evolutionary budget that executes

them in an interleaved fashion, to better deal with SR and learning tasks in general.
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The structure of this chapter is as follows. In Section 3.2 we brie�y discuss related

work on MBEAs for GP. In Section 3.3, we explain how GP-GOMEA and linkage learning

work. Before proceeding with the description of the new contributions and experiments,

Section 3.4 shows general parameter settings and datasets that will be used along the chap-

ter. Next, we proceed by interleaving our �ndings on current limitations of GP-GOMEA

followed by proposals to overcome such limitations, and respective experiments. In other

words, we describe how we improve linkage learning one step at a time. In particular,

Section 3.5 presents current limitations of linkage learning, and describes how we im-

prove linkage learning. Strategies to learn linkage e�ciently and e�ectively when ERCs

are used are described in Section 3.6. We propose a new IMS for SR in Section 3.7, and use

it in Section 3.8 to benchmark GP-GOMEA with competing algorithms: traditional GP, GP

using a state-of-the-art semantic-aware operator, and the very popular decision tree for

regression [24]. Lastly, we discuss our �ndings and draw conclusions in Section 3.9.

3.2. Related work

We di�erentiate today’s MBEAs into two classes: Estimation-of-Distribution Algorithms

(EDAs), and Optimal Mixing EAs (OMEAs). EDAs work by iteratively updating a prob-

abilistic model of good solutions, and sampling new solutions from that model. OMEAs

attempt to capture linkage, i.e., inter-dependencies between parts of the genotype, and

proceed by variating solutions with mechanisms to avoid the disruption of patterns with

strong linkage.

Several EDAs for GP have been proposed so far. References [25] and [26] are rela-

tively recent surveys on the matter. Two categories of EDAs for GP have mostly emerged

in the years: one where the shape of solutions adheres to some template to be able to

estimate probabilities of what functions and terminals appear in what locations (called

prototype tree for tree-based GP) [27–30], and one where the probabilistic model is used to

sample grammars of rules which, in turn, determine how solutions are generated [31–34].

Research on EDAs for GP appears to be limited. The review of [26] says, quoting: “Unfor-

tunately, the latter research [EDAs for GP] has been sporadically carried out, and reported in

several di�erent research streams, limiting substantial communication and discussion”.

Concerning symbolic regression, we crucially found no works where it is attempted

on realistic datasets (we searched among the work reported by the surveys and other

recent work cited here). Many contributions on EDAs for GP have been validated on hard

problems of arti�cial nature instead, such as Royal Tree andDeceptive Max [35]. Some real-

world problems have been explored, but concerning only a limited number of variables [36,

37]. When considering symbolic regression, at most synthetic functions or small physical

equations with only few (≤ 5) variables have been considered (e.g., by [34, 38]).

The study of OMEAs has emerged the �rst decade of the millennium in the �eld of

binary optimization, where it remains mostly explored to date [39–42]. As to GP, GOMEA

is the �rst OMEA ever brought to GP. GP-GOMEA was �rst introduced in [22] (Chapter 2),

to tackle classic yet arti�cial GP benchmark problems (including some of the ones men-

tioned before), where the optimum is known. The IMS, largely inspired on [43], was also

proposed, to relieve the user from the need of tuning the population size. Population sizing

is particularly crucial for MBEAs: the population needs to be big enough for probability

or linkage models to be reliable, yet small enough to allow e�cient search [44].
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GP-GOMEA has also seen a �rst adaptation to SR, to �nd small and accurate solutions

for a clinical problem where interpretability is important [23]. There, GP-GOMEA was

engineered for the particular problem, and no analysis of what linkage learning brings to

SR was performed. Also, instead of using the IMS, a �xed population size was used. This

is because the IMS was originally designed to enable benchmark problems to be solved

to optimality (Chapter 2). No concern on generalization of solutions to unseen test cases

was incorporated.

As to combining OMEAs with grammatical evolution, [21] also employed GOMEA,

to attempt to learn and exploit linkage when dealing with di�erent types of pre-de�ned

grammars. In that work, only one synthetic function was considered for symbolic regres-

sion, among other four benchmark problems.

There is a need of assessing whether MBEAs can bring an advantage to real-world

symbolic regression problems. This work attempts to do this, by exploring possible lim-

itations of GP-GOMEA and ways to overcome them, and validating experiments upon

realistic datasets with dozens of features and thousands of observations.

3.3. Gene-pool optimal mixing evolutionary algorithm

for GP

Three main concepts are at the base of (GP-)GOMEA: solution representation (genotype),

linkage learning, and linkage-based variation. These components are arranged in a com-

mon outline that encompasses all algorithms of the GOMEA family.

Algorithm 3.1 shows the outline of GOMEA. As most EAs, GOMEA starts by initial-

izing a population P , given the desired population size npop
. The generational loop is

then started and continues until a termination criterion is met, e.g., a limit on the number

of generations or evaluations, or a maximum time. Lines 4 to 8 represent a generation.

First, the linkage model is learned, which is called Family of Subsets (FOS) (explained

in Sec. 3.3.2). Second, each solution Pi is used to generate an o�spring solution Oi by

the variation operator Gene-pool Optimal Mixing (GOM). Last, the o�spring replace the

parent population. Note the lack of a separate selection operator. This is because GOM

performs variation and selection at the same time (see Sec 3.3.3).

For GP-GOMEA, an extra parameter is needed, the tree height (or, equivalently, tree

depth) h. This is necessary to determine the representation of solutions, as described in

the following Section 3.3.1.

Algorithm 3.1 Outline of GOMEA

1 procedure runGOMEA(npop
)

2 P ←initializePopulation(npop)
3 while terminationCriteriaNotMet() do
4 F ←learnFOS(P)
5 O ← ∅
6 for i ∈ {1, . . . , npop} do
7 Oi ←GOM(Pi,P, F)
8 P ← O
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Figure 3.1: Example of tree for GP-GOMEA with h = 3 and r = 2. While 15 nodes are

present, the nodes that in�uence the output are only 7: the gray nodes are introns.

3.3.1. Solution representation in GP-GOMEA

GP-GOMEA uses a modi�cation of the tree-based representation [1] which is similar to

the one used by [27]. While typical GP trees can have any shape, GP-GOMEA uses a �xed

template, that allows linkage learning and linkage-based variation to be performed in a

similar fashion as for other, �xed string-length versions of GOMEA.

All solutions are generated as perfect r-ary trees of height h, i.e., such that all non-leaf

nodes have exactly r children, and leaves are all at maximum depth h, with r being the

maximum number of inputs accepted by the functions (arity) provided in the function set

(e.g., for {+,−,×}, r = 2), and h chosen by the user. Note that, for any node that is

not at maximum depth, r child nodes are appended anyway: no matter if the node is a

terminal, or if it is a function requiring less than r inputs (in this case, the leftmost nodes

are used as inputs). Some nodes are thus introns, i.e., they are not executed to compute

the output of the tree. It follows that while trees are syntactically redundant, they are

not necessarily semantically so. All trees of GP-GOMEA have the same number of nodes,

equal to ` =
∑h
i=0 r

i = rh+1−1
r−1 . Figure 3.1 shows a tree used by GP-GOMEA.

3.3.2. Linkage learning

The linkage model used by GOMEA algorithms is called the Family of Subsets (FOS), and

is a set of sets:

F = {F1, . . . , F|F |}, Fi ⊆ {1, . . . , l}. (3.1)

Each Fi (called FOS subset) contains indices representing locations in the genotype. For

GP-GOMEA, these indices represent node locations. It is su�cient to choose a parsing

order to identify the same node locations in all trees, since trees share the same shape.

In GOMEA, linkage learning corresponds to building a FOS. Di�erent types of FOS

exist in literature, however, the one recommended as default is the Linkage Tree (LT),

by, e.g., [22, 40]. The LT captures linkage on hierarchical levels. An LT is learned every

generation, from the population. To assess whether linkage learning plays a key role,

i.e. whether it is better than randomly choosing linkage relations, we also consider the

Random Tree (RT) [22].
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Linkage tree

The LT arranges the FOS subsets in a binary tree structure representing hierarchical levels

of linkage strength among genotype locations. The LT is built bottom-up, i.e., from the

leaves to the root. The bottom level of the LT, i.e., the leaves, assume that all genotype

locations are independent (no linkage), and is realized by instantiating FOS subsets to

singletons, each containing a genotype location i,∀i ∈ {1, . . . , `}.
To build the next levels, mutual information is used as a proxy for linkage strength.

Mutual information is a sensible choice to represent linkage strength because it expresses,

considering e.g. the pair (i, j) of genotype locations as random variables, the amount of

information gained on i given observations on j (and vice versa). In this light, the popula-

tion can be considered as a set of realizations of the genotype. In particular, the realizations

of each genotype location i are what symbols appear at location i in the population. In a

binary genetic algorithm, symbols are either ‘0’ or ‘1’, while in GP, symbols correspond

to the types of function and terminal nodes, e.g., ‘+’,‘−’,‘x1’,‘x2’. In other words, random

variables can assume as many values as there are possible symbols in the instruction set
1
.

Now, the next step is to compute the mutual information between each and every pair

of locations in the genotype of the entire population. Mutual information between a pair

of locations can be computed after measuring entropy for single locations H(i), and the

joint entropy for locations pairs, H(i, j) (this aspect will be used in Sec. 3.5):

MI(i, j) = H(i) + H(j)− H(i, j),where

H(i) = −
∑

Pi log Pi, H(i, j) = −
∑

Pij log Pij ,
(3.2)

and Pi (Pij ) is the (joint) probability distribution over the symbols at location(s) i (i, j),
which can be estimated by counting occurrences of symbol types in the population geno-

type. This requires to loop over the entire population, and to use nested loops over location

pairs i ∈ {1, . . . , `} and j ∈ {i, . . . , `}, leading to a time complexity of O(npop`2). The

contribution to the entropy of null probability cases (−0 log 0) is set to 0.

Given mutual information between location pairs, we approximate linkage among

higher orders of locations using the Unweighted Pair Group Method with Arithmetic Mean

(UPGMA) [45]. To ease understanding, we now provide an explanation of how UPGMA

is used to build the rest of the LT that is primarily meant to be intuitive. In practice, we

do not use an implementation that strictly adheres to the following explanation, but we

use a more advanced algorithm that achieves the same result while having lower time

complexity, called the Reciprocal Nearest Neighbor algorithm (RNN). For details on RNN,

see [45].

UPGMA operates in a recursive, hierarchical fashion. Consider each singleton contain-

ing a di�erent genotype location i as a cluster Ci, and the mutual information between

location pairs as a measure of similarity S between clusters, i.e., S(Ci, Cj) := MI(i, j).

Let C be the collection of clusters to be parsed, initially containing all location singletons.

Every iteration, �rstly a new cluster Ci? ∪ Cj? is formed by joining the clusters Ci? , Cj?

that have maximal similarity. Secondly, Ci? and Cj? are removed from C, and Ci? ∪ Cj?
is inserted in C. When this happens, a FOS subset is added in the LT that corresponds to

1
More symbols can be possible than the number of instructions in case ERCs are used, since instantiating an

ERC in a solution results in a constant being randomly sampled.
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(contains the same locations of) Ci? ∪Cj? , as parent of the subsets that represent Ci? and

Cj? . Thirdly, the similarity between Ci? ∪ Cj? and every other cluster Ck is computed,

with:

S(Ck, Ci? ∪ Cj?) = |Ci? |
|Ci? |+ |Cj? |

S(Ck, Ci) + |Cj? |
|Ci? |+ |Cj? |

S(Ck, Cj). (3.3)

Iterations are repeated until no more merging is possible, i.e., C = ∅. This necessarily

happens in 2` − 1 iterations. Note that the last iterations sets the root of the LT, i.e., the

subset that contains all genotype locations: {1, . . . , `}. Note also that the structure of the

LT is related to the structure of the tree-like genotype of GP solutions only in the sense

that the LT contains 2` − 1 FOS subsets and the genotype has length `, but it is not a

one-to-one match to the structure of the genotype.

With the e�cient implementation of UPGMA by RNN, the time complexity to build

the LT remains bounded by O(npop`2).

Random tree

While linkage learning assumes an inherent structural inter-dependency to be present

within the genotype that can be captured in an LT, such hypothesis may not be true.

In such a scenario, using the LT might be not better than building a similar FOS in a

completely random fashion. The RT is therefore considered to test this. The RT shares

the same tree-like structure of the LT, but is built randomly rather than using mutual

information (taking O(`)). We use the RT as an alternative FOS for GP-GOMEA.

Algorithm 3.2 Pseudocode of GOM

1 procedure GOM(Pi,P, F )

2 Bi ← Pi; fBi ← fPi ; Oi ← Pi
3 F ←randomShuffle(F)
4 for Fj ∈ F do
5 D ←pickRandomDonor(P)
6 Oi ←overrideNodes(Oi,D, Fj)
7 if Oi 6=? Bi then
8 fOi ←computeFitness(Oi)
9 if fOi ≤ fBi then #Assumption: minimization of f
10 Bi ← Oi; fBi ← fOi
11 else
12 Oi ← Bi; fOi ← fBi
13 else
14 Bi ← Oi

3.3.3. Gene-pool optimal mixing

Once the FOS is learned, the variation operator GOM generates the o�spring population.

GOM varies a given solution Pi in iterative steps, by overriding the nodes at the locations

speci�ed by each Fj in the FOS, with the nodes in the same locations taken from random
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Figure 3.2: Example of variation step performed by GOM for trees with h = 2. Squares

on top of each node indicate the node location according to pre-order traversal (depth-

�rst). GOM replaces the nodes of Oi of which the location is speci�ed by Fj , with the

homologous nodes of D (blue contour).

donors in the population. Selection is performed within GOM in a hill-climbing fashion,

i.e., variation attempts that result in worse �tness are undone.

The pseudo-code presented in Algorithm 3.2 describes GOM in detail. To begin, a

backupBi of the parent solutionPi is made, including its �tness, and similarly an o�spring

solution Oi = Pi is created. Next, the FOS F is shu�ed randomly: this is to provide

di�erent combinations of variation steps along the run and prevent bias. For each set

of node locations Fj , a random donor D is then picked from the population, and Oi is

changed by replacing the nodes speci�ed by Fj with the homologous ones from D. This

process is exempli�ed in Figure 3.2. It is then assessed whether at least one (syntactic) non-

intron node of the tree has been changed by variation (indicated by 6=?
in line 7). When

that is not the case, Oi will have the same behavior as Bi, thus the �tness is necessarily

identical. Otherwise, the new �tness fOi is computed: if not worse than the previous one,

the change is kept, and the backup is updated, otherwise the change is reversed.

Note that if a change results in fOi = fBi , the change is kept. This allows ran-

dom walks in the neutral �tness landscape [46, 47]. Note also that di�erently from tradi-

tional subtree crossover and subtree mutation [1], GOM can change unconnected nodes

at the same time, and keeps tree height limited to the initially speci�ed parameter h. Fi-

nally, GOM does not consider any FOS subset that contains all node locations, i.e., Fj =
{1, . . . , `}, as using such subset would mean to entirely replace Oi with D.

3.4. General experimental settings

We now describe the general parameters that will be used in this chapter. Table 3.1 re-

ports the parameter settings which are typically used in the following experiments, unless

speci�ed otherwise. The notation x represents the matrix of feature values. We use the

Analytic Quotient (AQ) [48] instead of protected division. This is because the AQ is con-

tinuous in 0 for the second operand: x1 ÷AQ x2 := x1/
√

1 + x2
2. Albeit continuity is not

needed by many GP variation operators (including GOM), it is useful at prediction time:

[48] show that using the AQ helps generalization (whereas using protected division does

not). However, the AQ may be considered relatively hard to interpret.

As mentioned in the introduction, we focus on the evolution of solutions that are

constrained to be small, to enable interpretability. We choose h = 4 because this results
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Table 3.1: General parameter settings for the experiments.

Parameter Setting

Function set {+,−,×,÷AQ}
Terminal set x ∪ {ERC}
ERC bounds [min x, max x]
Initialization for GP-GOMEA Half-and-Half as in [23]

Tree height h 4

Train-validation-test split 50%–25%–25%

Experiment repetitions 30

in relatively balanced trees with up to 31 nodes (since r = 2). We consider this size

limitation a critical value: for the given function set, we found solutions to be already

borderline interpretable for us (this is discussed further in Sec. 3.9). Larger values for h
would therefore play against the aim of this study. When benchmarking GP-GOMEA in

Section 3.8, we also consider h = 3 and h = 5 for completeness.

We consider 10 real-world benchmark datasets from literature [12] that can be found

on the UCI repository
2

[49] and other sources
3
. The characteristics of the datasets are

summarized in Table 3.2.

We use the linearly-scaled Mean Squared Error (MSE) to measure solution �tness [7],

as it can be particularly bene�cial when evolving small solutions. This means a fast (cost

O(n) with n number of dataset examples) linear regression is applied between the target y
and the solution prediction ỹ prior to computing the MSE. We present our results in terms

of variance-Normalized MSE (NMSE), i.e.,
MSE(y,ỹ)
var(y) , so that results from di�erent datasets

are on a similar scale.

To assess statistical signi�cance when comparing the results of multiple executions

of two algorithms (or con�gurations) on a certain dataset, we use the Wilcoxon signed-

rank test [50]. This test is set up to compare competing algorithms based on the same

prior conditions. In particular, we employ pairs of executions where the dataset is split

into identical training, validation, and test sets for both algorithms being tested. This is

because the particular split of data determines the �tness function (based on the training

set), and the achievable generalization error (for the validation and test sets). We consider a

di�erence to be signi�cant if a smaller p-value than 0.05/β is found, with β the Bonferroni

correction coe�cient, used to prevent false positives. If more than two algorithms need to

be compared, we �rst perform a Friedman test on mean performance over all datasets [50].

We use the symbols N,

N

to respectively indicate signi�cant superiority, and inferiority

(absence of a symbol means no signi�cant di�erence). The result next to the symbol N (

N

)

signi�es a result being better (worse) than the result obtained by the algorithm that has

the same color of the symbol. Algorithms and/or con�gurations are color coded in each

table reporting results (colors are color-blind safe).

2https://archive.ics.uci.edu/ml/index.php
3https://goo.gl/tn6Zxv



3

54 3. Improving Model-based Genetic Programming for Symbolic Regression

Table 3.2: Regression datasets used in this work.

Name Abbreviation # Features # Examples

Airfoil Air 5 1503

Boston housing Bos 13 506

Concrete compres. str. Con 8 1030

Dow chemical Dow 57 1066

Energy cooling EnC 8 768

Energy heating EnH 8 768

Tower Tow 25 4999

Wine red WiR 11 1599

Wine white WiW 11 4898

Yacht hydrodynamics Yac 6 308

3.5. Improving linkage learning for GP

In previous work on GP-GOMEA, learning the LT was performed the same way it is done

for any discrete GOMEA implementation, i.e. by computing the mutual information be-

tween pairs of locations (i, j) in the genotype (Eq. 3.2) [22]. However, the distribution

of node types is typically not uniform when a GP population is initialized (e.g., function

nodes never appear as leaves). In fact, this depends on the cardinality of the function and

terminal sets, on the arity of the functions, and on the population initialization method

(e.g., Full, Grow, Half-and-Half, Ramped Half-and-Half [51]). Note that it does not depend

on the particular dataset in consideration (except in that the number of features deter-

mines the size of the terminal set). The lack of uniformity in the distribution leads to the

emergence of mutual information between particular parts of the genotype. Crucially, this

mutual information is natural to the solution representation, the sets of symbols and the

initialization process.

If mutual information is used to represent linkage, then linkage will already be ob-

served at initialization. However, it is reasonable to expect no linkage to be present in an

initialized population, as evolution did not take place yet. Figure 3.3 shows the mutual

information matrix between pairs of node locations in an initial population of 1, 000, 000
solutions with maximum height h = 2, using Half-and-Half, a function set of size 4 with

maximum number of inputs r = 2, and a terminal set of size 6 (no ERCs are used). Each

tree contains exactly 7 nodes. We index node locations with pre-order tree traversal, i.e.,

1 is the root, 2 its �rst child, 5 its second child, 3, 4 are (leaves) children of 2, and 6, 7
are (leaves) children of 5. Nodes at locations 2 and 5 can be functions only if a function

is sampled at node 1. It can be seen that the mutual information matrix of location pairs

(correctly) captures the non-uniformity in the initial distribution (i.e., larger mutual infor-

mation values are present between non-leaf nodes). Using mutual information directly as

a proxy for linkage may be undesirable.

3.5.1. Biasing mutual information to represent linkage

We propose to overcome the aforementioned problem by measuring linkage with a mod-

i�ed version of the mutual information, such that no linkage is measured at initialization.
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MI, npop = 106

Figure 3.3: Mutual information matrix between pairs of locations in the genotype (x and

y labels). Darker blue represents higher values. The matrix is computed for an initial-

ized population of size 106
. The values suggest the existence of linkage even though no

evolution has taken place yet.

Our hypothesis is that, if we apply such a correction so that no patterns are identi�ed

at initialization, the truly salient patterns will have a bigger chance of emerging during

evolution, and better results will be achieved.

Let us consider the scenario where, at initialization, symbols are uniformly distributed.

For example, this typically happens in binary genetic algorithms. The mutual information

between pairs of genotype locations that is expected at initialization, i.e., at generation g =
1 before variation and selection, will then correspond to the identity matrix: MI

g|g=1 = I
(assuming binary symbols and mutual information in bits as well as a su�ciently large

population size). This mutual information matrix is suitable to represent linkage as no

linkage should be present at initialization.

We propose to adopt a biased mutual information matrix MIb(i, j) to represent the

linkage between a pair of genotype locations (i, j), that has the property:

MI
g
b(i, j)|g=1 = I, (3.4)

no matter the actual distribution of the initial population.

To this end, we use Equation 3.2, i.e., we manipulate the entropy terms, to represent

maximal randomness to be present at initialization for each genotype location. In particu-

lar, we propose to use biased entropy metrics such that H
g
b(i)|g=1 = 1 and H

g
b(i, j)|g=1 =

2 (for i 6= j) , since

MI
g
b(i, j)|g=1 = (H

g
b(i) + H

g
b(j)− H

g
b(i, j)) |g=1

= 1 + 1− 2 = 0 (for i 6= j, else 1).
(3.5)

We propose to use linear biasing coe�cients βi (βi,j ) to have the general biased entropy for

any generation g as H
g
b(i) = βiH(i) and H

g
b(i, j) = βi,jH(i, j), with βi = (H

g
b(i)|g=1)−1

and βi,j = 2 (H
g(i, j)|g=1)−1

to enforce maximal randomness at initialization.
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To determine the beta coe�cients exactly means to know the true distribution inferred

by the sampling process used to sample the initial population, and thus the true initial

entropy for each genotype location. However, this is generally not trivial to determine for

GP, since a number of factors need to be considered. For example, if the Ramped Half-and-

Half initialization method is used, what symbol is sampled at a location depends on the

chance to use Full or Grow, the chance to pick the function or the terminal set based on

the depth, the size of these sets, and possibly other problem-speci�c factors. Hence, we

propose to simply approximate the β coe�cients by using the H
g(i)|g=1 measured on the

initial population, assuming the population to be large enough.

Summing up, the pairwise linkage estimation we propose to use at generation g, for a

pair of locations (i, j), will be:

MI
g

b̃
(i, j) = βiH

g(i) + βjH
g(j)− βi,jHg(i, j). (3.6)

The tilde in b̃ is to remark that this is an approximation.

MI
2
b̃
, npop = 101

MI
2
b̃
, npop = 106

Figure 3.4: Mutual information matrices at the second generation using our biasing

method to better represent linkage, with population size of 10 (left), and of 106
(right)

for a particular run of GP-GOMEA. The rightmost matrix is closest to the identity I . A

di�erent color scaling is used in the two images.

3.5.2. Estimation of linkage by MIb̃
As a preliminary step, we observe what linkage values are obtained between pairs of geno-

type locations by using MIb̃. For conciseness, in the following we denote MI
g

b̃
(i, j)|g=Γ

with MI
Γ
b̃
(i, j). We show the MI matrix computed at the second generation of a GP-

GOMEA run on the dataset Yac (MI
1
b̃

= I by construction). We do this for two population

sizes, npop = 10 and npop = 106
. We expect that, the bigger npop

is, the closer MI
2
b̃

is to I .

We use the parameters of Table 3.1, a terminal set of size 6 (the features of Yac, no ERC)

andh = 2, i.e. ` = 7 nodes per tree. Figure 3.4 shows the biased mutual information matrix

between location pairs, for the two population sizes. It can be seen that the values can be

lower than 0 or bigger than 1. However, while this is particularly marked for npop = 10,

with minimum of -0.787 and maximum of 1.032, it becomes less evident for npop = 106
,

with minimum of -0.018 and maximum of 0.989. The fact that MI
2
b̃
≈ I for npop = 106
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is because, with such a large population size, considerable diversity is still present in the

second generation.

3.5.3. Experiment: LT–MIb̃ vs. LT–MI vs. RT

We now test the use of MIb̃ over the standard MI for GP-GOMEA with the LT. We denote

the two con�gurations with LT–MIb̃ and LT–MI. We also consider the RT to see if mutual

information drives variation better than random information.

We set the population size to 2000 as a compromise between having enough samples

for linkage to be learned, and meeting typical literature values, which range from hundreds

to a few thousands. We use the function set of Table 3.1, and a tree height h = 4 (thus

` = 31). We set a limit of 20 generations, which corresponds to approximately 1200

generations of traditional GP, as each solution is evaluated up to 2`− 2 times (size of the

LT minus its root and non-meaningful changes, see Sec. 3.3.2 and 3.3.3).

The training and test NMSE performances are reported in Table 3.3. The Friedman test

results in signi�cant di�erences along training and test performance. GP-GOMEA with

LT–MIb̃ is clearly the best performing algorithm, with signi�cantly lower NMSE compared

to LT–MI on 8/10 datasets when training, and 7/10 at test time. It is always better than

using the RT when training, and in 9/10 cases when testing. The LT–MI is comparable

with the RT for these problems.

The result of this experiment is that the use of the new MIb̃ to build the LT simply

enables GP-GOMEA to perform a more competent variation than the use of MI. Also,

using the LT this way leads to better results than when making random changes with the

RT. Figure 3.5 shows the evolution of the training NMSE for the dataset Yac. It can be seen

that the LT–MIb̃ allows to quickly reach smaller errors than the other two FOS types. We

observed similar training patterns for the other datasets (not shown here).

In the remainder, when we write “LT”, we refer to LT–MIb̃.

Table 3.3: Median NMSE of 30 runs for GP-GOMEA with LT–MIb̃, LT–MI, and RT.

Training N N Test

Dataset LT–MIb̃ LT–MI RT LT–MIb̃ LT–MI RT

Air N29.9 NNN31.2

NNN32.7

NN N31.8 NNN34.8

NNN34.0

NN
Bos N15.4 NNN15.4

NNN17.5

NN N24.0

NNN23.0 NNN22.5 NN
Con N17.5 NNN18.5

NNN19.0

NN N18.7 NNN19.6

NNN20.1

NN

Dow N20.9

NNN20.3 NNN24.0

NN N22.6

NNN21.1 NNN26.0

NN

EnC N8.42 NNN9.68

NNN9.09

NN N9.18 NNN10.7

NNN10.3

NN
EnH N6.24 NNN6.44

NNN6.40

NN N6.50 NNN7.10

NNN6.70

NN
Tow N12.5

NNN12.5 NNN13.1

NN N13.0 NNN12.8 NNN13.2

NN

WiR N60.3 NNN60.9

NNN61.2

NN N62.5 NNN63.0

NNN63.1

NN
WiW N68.1 NNN68.4

NNN68.7

NN N69.1 NNN69.7

NNN69.5

NN
Yac N0.34 NNN0.37

NNN0.36

NN N0.58 NNN0.62

NNN0.62

NN
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Figure 3.5: Median �tness of the best solution of 30 runs on Yac, for LT–MIb̃, LT–MI, and

RT (10th
and 90th

percentiles in shaded area).

3.5.4. Experiment: assessing propagation of node patterns

The previous experiment showed that using linkage-driven variation (LT) can be favorable

compared to random variation (RT). This seems to con�rm the hypothesis that, in certain

SR problems, salient underlying patterns of nodes exist in the genotype that can be ex-

ploited. Another aspect that can be considered with respect to such hypothesis is how

�nal solutions look: if linkage learning leads to the propagation of salient node patterns,

di�erent runs might result in similar solutions.

Therefore, we now want to assess whether the use of the LT has a bigger chance to lead

to the discovery of a particular best-of-run solution, compared to the use of the RT. We

use the same parameter setting as described in Section 3.5.3, but perform 100 repetitions.

While each run uses a di�erent random seed (e.g., for population initialization), we �x

the dataset split, as changing the training set results in changing the �tness function. We

repeat the 100 runs on 5 random dataset splits, on the smallest dataset Yac. Together with

npop = 2000 as in the previous experiment, we also consider a doubled npop = 4000.

Table 3.4 reports the number of best found solutions that have at least one duplicate,

i.e. their genotype is semantically equivalent (e.g., x1 + x2 = x2 + x1), along di�erent

runs for 5 random splits of Yac (semantic equivalence was determined by automatic tests
4

followed by manual inspection). It can be seen that the LT �nds more duplicate solutions

than the RT, by a margin of around 30% (di�erence between averages). Figure 3.6 shows

the distribution of solutions found for the second dataset split with npop = 4000, i.e. where

both the LT and the RT found a large number of duplicates. The LT has a marked chance

of leading to the discovery of a particular solution, up to one-fourth of the times. When

the RT is used, a same solution is found only up to 6 times out of 100.

This con�rms the hypothesis that linkage-based variation can propagate salient node

patterns more than random variation should such patterns exist, enhancing the likelihood

of discovering particular solutions.

4
Including the use of symbolic simpli�cation with https://andrewclausen.net/computing/deriv.
html

https://andrewclausen.net/computing/deriv.html
https://andrewclausen.net/computing/deriv.html


3.6. Ephemeral random constants & linkage

3

59

Table 3.4: Percentage of best solutions with duplicates found by GP-GOMEA with LT and

RT for di�erent splits of Yac.

npop = 2000 N npop = 4000
Split LT RT LT RT

1 36 18 44 15

2 42 12 49 21

3 40 7 43 8

4 43 8 45 25

5 36 16 49 16

Avg. 39 12 46 17

#
D

u
p

l
i
c
a
t
e
s

Solutions Solutions

Figure 3.6: Distribution of best found solutions for 100 runs by using the LT (left) and the

RT (right) with npop = 4000 on the second dataset split of Yac.

3.6. Ephemeral random constants & linkage

In many GP problems, and in particular in SR, the use of ERCs can be very bene�cial [17].

An ERC is a terminal which is set to a constant only when instantiated in a solution. In

SR, this constant is commonly sampled uniformly at random from a user-de�ned interval.

Because every node instance of ERC is a di�erent constant, linkage learning needs to

deal with a large number of di�erent symbols. This can lead to two shortcomings. First,

a very large population size may be needed for salient node patterns to emerge. Second,

data structures used to store the frequencies of symbols grow really big and become slow

(e.g., hash maps). We explore three strategies to deal with this:

• all-const: Ignore the shortcomings, and consider all di�erent constants as di�erent

symbols during linkage learning;

• no-const: Skip all constants during linkage learning, i.e. set their frequency to zero.

This approximation is reasonable since all constants are unique at initialization, and

the respective frequency is almost zero. However, during evolution some constants

will be propagated while others will be discarded, making this approximation less

and less accurate over time;

• bin-const: Perform on-line binning. We set a maximum number γ of constants to

consider. After γ di�erent constants have been encountered in frequency counting,

any further constant is considered to fall into the same bin as the closest constant

among the �rst γ. The closest constant can be determined with binary search in
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log2(γ) steps. Contrary to strategy no-const, we expect the error of this approxi-

mation to lower over time, because selection lowers diversity, meaning that the total

number of di�erent constants will be reduced as generations pass.

3.6.1. Experiment: linkage learning with ERCs

We use the same parameter setup of the experiment in Section 3.5.3, this time adding an

ERC terminal to the terminal set. We compare the three strategies to handle ERCs when

learning the LT. For this experiment and in the rest of the chapter, we use γ = 100 in

bin-const. We observed that for problems with a small number of features (e.g., Air and

Yac), i.e., where ERC sampling is more likely and thus more constants are produced, this

choice reduces the number of constant symbols to be considered by linkage learning in

the �rst generations by a factor of ∼ 50. We also report the results obtained with the RT

as a baseline, under the hypothesis that using ERCs compromises linkage learning to the

point that random variation becomes equally good or better.

The results of this experiment are shown in Table 3.5 (training and test NMSE) and

Table 3.6 (running time). The Friedman test reveals signi�cant di�erences among the

con�gurations for train, test, and time performance. Note that the use of ERCs leads to

lower errors compared to not using them (compare with Table 3.3).

In terms of training error, the RT is always outperformed by the use of the LT, no matter

the strategy. The all-const strategy is signi�cantly better than no-const in half of the

problems, and never worse. Overall, bin-const performs best, with 6 out of 10 signi�cantly

better results than all-const. The fact that all-const can be outperformed by bin-const

supports the hypothesis that linkage learning can be compromised by the presence of too

many constants to consider, which hide the true salient patterns. Test results are overall

similar to the training ones, but less comparisons are signi�cant.

In terms of time, all-const is almost always signi�cantly worse than the other methods,

and often by a consistent margin. This is particularly marked for problems with a small

number of features (i.e., Air, Yac). There, more random constants are present in the initial

population, since the probability of sampling the ERC from the terminal set is inversely

proportional to the number of features.

Table 3.5: Median training NMSE and median test NMSE of 30 runs for GP-GOMEA with

the LT using the three strategies all-const, no-const, bin-const, and with the RT.

Training NMSE N N Test NMSE

Dataset all-const no-const bin-const RT all-const no-const bin-const RT

Air N 27.7 N NNN 28.0 N NNN 27.5 NNNN 31.4

NNN N 28.7 N NNN 29.6

NNNN 27.8 NNNN 32.5

NNN

Bos N 15.2 N NNN 15.3 NNNN 15.0 NNNN 17.6

NNN N 24.2 N NNN 23.2 N NNN 21.8 NNNN 24.2 NN N

Con N 17.2 N NNN 17.2

NNNN 17.0 NNNN 18.5

NNN N 18.5 NNNN 18.7 NNNN 18.8 NNNN 19.8

NNN

Dow N 21.4 N NNN 21.1 NNNN 20.7 NNNN 24.5

NNN N 22.8

NNNN 21.9 NNNN 22.5 N NNN 25.5

NNN

EnC N 5.51 NNNN 5.72

NNNN 5.76

NNNN 6.44

NNN N 6.18 NNNN 6.34

NNNN 6.00 NNNN 6.77

NNN

EnH N 3.00 N NNN 3.14

NNNN 2.80 NNNN 4.10

NNN N 3.28 N NNN 3.33

NNNN 3.11 NNNN 4.67

NNN

Tow N 12.3 N NNN 12.2 NNNN 12.3 NNNN 13.2

NNN N 12.9 NNNN 12.8 NNNN 12.8 NNNN 13.5

NNN

WiR N 60.3 NNNN 60.2 NNNN 60.2

NNNN 61.2

NNN N 63.6 NNNN 62.9 NNNN 62.9 NNNN 63.2

NN N

WiW N 67.6 NNNN 68.1

NNNN 68.0

NNNN 68.5

NNN N 68.9 NNNN 69.0 NNNN 69.4 NNNN 69.9

NNN

Yac N 0.32 NNNN 0.35

NNNN 0.34

NNNN 0.38

NNN N 0.55 NNNN 0.61 N NNN 0.52 NNNN 0.63

NNN
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Table 3.6: Median time of 30 runs for GP-GOMEA with the LT using the three strategies

all-const, no-const, bin-const, and with the RT.

Time (s)

Dataset all-const no-const bin-const RT

Air N 355.4

NNNN 71.4 NNN N 80.0 N NN N 80.1 N NN

Bos N 63.4

NNNN 29.4 NN NN 30.9 N NNN 24.5 NNN
Con N 154.9

NNNN 56.7 NNN N 59.8 N NN N 58.4 NNN
Dow N 53.8

NN NN 51.7 NN NN 54.9

NNNN 37.7 NNN
EnC N 147.2

NNNN 40.5 NNN N 43.5 N NN N 45.6 N NN

EnH N 145.0

NNNN 45.8 NNN N 49.4 N NNN 45.7 NNN
Tow N 255.9

NNNN 246.6 NN NN 245.6 NN NN 233.9 NNN
WiR N 126.1

NNNN 67.7 NNN N 80.2 N NNN 70.1 NNN
WiW N 285.0

NNNN 213.3 NNNN 237.2 N NNN 224.1 N NN
Yac N 236.5

NNNN 23.9 NN NN 24.8 N NNN 22.8 NNN

Interestingly, despite the lack of a linkage-learning overhead, using the RT is not al-

ways the fastest option. This is because random variation leads to a slower convergence

of the population compared to the linkage-based one, where salient patterns are quickly

propagated, and less variation attempts result in changes of the genotype that require a

�tness evaluation (see Sec. 3.3.3). The slower convergence caused by the RT can also be

seen in Figure 3.5 (for the previous experiment), and was also observed in other work, in

terms of diversity preservation [52].

Between the LT-based strategies, the fastest is no-const, at the cost of a bigger training

error. Although consistently slower than no-const, bin-const is still quite fast, and achieves

the lowest training errors. We found bin-const to be preferable in test NMSE as well. In

the following, we always use bin-const, with γ = 100.

3.7. Interleaved multistart scheme

The Interleaved Multistart Scheme (IMS) is a wrapper for evolutionary runs largely in-

spired by [43]. It works by interleaving the execution of several runs of increasing re-

sources (e.g., population size). The main motivation for using the IMS is to make an EA

much more robust to parameter settings, and alleviate the need for practitioners to tinker

with them. In fact, the whole design of GP-GOMEA attempts to promote ease-of-use and

robustness: the EA has no need for parameters that specify how to conduct variation (e.g.,

crossover or mutation rates), nor how to conduct selection (e.g., tournament size). The

IMS or similar schemes are often used with MBEAs [41, 53], where population size plays a

crucial role in determining the quality of model building. Note that although the IMS has

potential to be parallelized, here it is used in a sequential manner.

An IMS for GP-GOMEA was �rst proposed in Chapter 2, and its outline is as follows.

A collection of parameter settings σbase is given as input, which will be used in the �rst run

R1. The IMS runs until a termination criterion is met (e.g., number of generations, time

budget). The runRi performs one generation if no run that precedes it exists (e.g., because

it is the �rst run or because all previous runs have been terminated), or if the previous run

Ri−1 has executed g generations. The �rst time Ri is about to execute a generation, it

is initialized using the parameter settings σbase scaled by the index i. For example, the
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population size can be set to 2i−1n
pop

base
(i.e., doubling the population size of the previous

run). Finally, when a run completes a generation, a check is done to determine if the run

should be terminated (explained below).

3.7.1. An IMS for supervised learning tasks

The �rst implementation of the IMS for GP-GOMEA was designed to deal with GP bench-

mark problems of pure optimization (Chapter 2). That implementation therefore scaled

both the population size and the height of trees in an attempt to �nd the optimal solu-

tion (of unknown size). In this work, we use the IMS as follows. (i) Scaling of parame-

ter settings: We scale only the population size. For run Ri, the population size is set to

n
pop

i = 2i−1n
pop

base
. (ii) Run termination: A run Ri is terminated if the �tness of its best so-

lution is worse than the one of a run Rj initialized later, i.e., with j > i, or if it converges

to all identical solutions. Di�erently from Chapter 2, we no longer scale the tree height h
because in SR, and in supervised learning tasks in general, no optimum is known before-

hand, and it is rather desired to �nd a solution that generalizes well to unseen examples.

Moreover, h bounds the maximum solution size, which in�uences interpretability. Hence

h is left as a parameter for the user to set, and we recommend h ≤ 4 to increase the chance

that solutions will be interpretable (see Sec. 3.9).

We set the run termination criteria to be based upon the �tness of best solutions instead

of mean population �tness as done by [43] and in Chapter 2, because in SR it can happen

that the error of a few solutions becomes so large that it compromises the mean population

�tness. This can trigger the termination criteria even if solutions exist that are competitive

with the ones of other runs. Also di�erent from the other versions of the IMS, when

terminating a run, we do not automatically terminate all previous runs. Indeed, some runs

with smaller parameter settings may still be very competitive (e.g., due to the fortunate

sampling of particular constants when using ERCs).

We lastly propose to exploit the fact that many runs are performed within the IMS to

tackle a central problem of learning tasks: generalization. Instead of discarding the best

solutions of terminating runs, we store them in an archive. When the IMS terminates, we

re-compute the �tness of each solution in the archive using a set of examples di�erent

from the training set, i.e. the validation set, and return the new best performing, i.e., the

solution that generalized best. The �nal test performance is measured on a third, separate

set of examples (test set).

3.8. Benchmarking GP-GOMEA

We compare GP-GOMEA (using the new LT) with tree-based GP with traditional sub-

tree crossover and subtree mutation (GP-Trad), tree-based GP using the state-of-the-art,

semantic-aware operator Random Desired Operator (GP-RDO) [9], and Decision Tree for

Regression (DTR) [24].

We consider RDO because, as mentioned in the introduction, semantic-aware opera-

tors have been studied with interest in the last years. Several works either built upon RDO,

or used RDO as a baseline for comparison (see, e.g., [10, 54, 55]). Yet, consistently large

solutions were found. It is interesting to assess how RDO fares when rather strict solution

size limits are enforced. Because of such limits, we remark we cannot consider another
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popular set of semantic-aware operators, i.e., the operators used by Geometric Semantic

Genetic Programming (GSGP) [11]. These operators work by stacking entire solutions to-

gether, necessarily causing extremely large solution growth (even if smart simpli�cations

are attempted [12]).

We consider DTR because it is considered among the state-of-the-art algorithms to

learn interpretable models [14, 56]. We remark that DTR ensembles (e.g., [16, 57]) are

typically markedly more accurate than single DTRs, but are considered not interpretable.

3.8.1. Experimental setup

For the EAs, we use a �xed time limit of 1, 000 seconds
5
. We choose a time-based com-

parison because GP-GOMEA performs more evaluations per generation than other GP

algorithms (up to 2`−2 evaluations per generation with the LT), and so that the overhead

of learning the LT (which does not involve evaluations) is taken into account.

We consider maximum solution sizes ` = 15, 31, 63 (tree nodes), i.e. corresponding to

h = 3, 4, 5 respectively, for full r-ary trees. The EAs are run with a typical �xed popula-

tion size npop = 1000 and also with the IMS, considering three values for the number of

generations in between runs g: 4, 6, and 8. For the �xed population size, if the population

of GP-GOMEA converges before the time limit, since there is no mutation, it is randomly

re-started. Choices of g between 4 and 8 are standards from literature [20, 22].

Our implementation of GP-Trad and GP-RDO mostly follows the one of [9]. The pop-

ulation is initialized with the Ramped Half-and-Half method, with tree height between 2

and h. Selection is performed with tournament of size 7. GP-Trad uses a rate of 0.9 for

subtree crossover, and of 0.1 for subtree mutation. GP-RDO uses the population-based

library of subtrees, a rate of 0.9 for RDO, and of 0.1 for subtree mutation. Subtree roots

to be variated are chosen with the uniform depth mutation method, which makes nodes of

all depths equally likely to be selected [9]. Elitism is ensured by cloning the best solution

into the next generation. All EAs are implemented in C++, and the code is available at:

https://goo.gl/15tMV7.

For GP-Trad we consider two versions, to account for di�erent types of solution size

limitation. In the �rst version, called GP-Trad
h

, we force trees to be constrained within a

maximum height (h = 3, 4), as done for GP-GOMEA. This way, we can see which algo-

rithm searches better in the same representation space. In the second version, GP-Trad
`
,

we allow more freedom in tree shape, by only bounding the number of tree nodes. This

limit is set to the maximum number of nodes obtainable in a full r-ary tree of height h
(` = 15 for h = 3, ` = 31 for h = 4). As indicated by previous literature [58, 59], and

as will be shown later in the results, GP-Trad
`

outperforms GP-Trad
h

. We found that the

same holds also for GP-RDO, and present here only its best con�guration, i.e., a version

where the number of tree nodes is limited like for GP-Trad
`
.

We use the Python Scikit-learn implementation of DTR [60], with 5-fold cross-validation

grid-search over the training set to tune the following hyper-parameters:

splitter ∈ {‘best’,‘random’}; max_features ∈ {
1
2 ,

3
4 , 1}; max_depth ∈ {3,4,5,6} (documentation

available at http://goo.gl/hbyFq2). We do not allow larger depth values because, like for

GP solutions, excessively large decision trees are uninterpretable. The best generalizing

model found by cross-validation is then used on the test set.

5
Experiments were run on an Intel

®
Xeon

®
Processor E5-2650 v2.

https://goo.gl/15tMV7
http://goo.gl/hbyFq2
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Table 3.7: Median validation and test NMSE of 30 runs with ` = 15 for GP-GOMEA (G),

GP-Trad
h

(T
`
), GP-Trad

h
(T
`
), GP-RDO (R) with npop = 1000 and IMS with g ∈ {4, 6, 8},

and DTR. Signi�cance is assessed within each population scheme w.r.t. GP-GOMEA. The

last row reports the number of times the EA performs signi�cantly better (B) and worse

(W) than GP-GOMEA.

Validation ` = 15
npop = 1000 NN IMS g = 4 NN IMS g = 6 NN IMS g = 8

N G T
h

T
`

R G T
h

T
`

R G T
h

T
`

R G T
h

T
`

R D

Air N39.2NN40.6

NN35.0NN44.0

N N34.7NN38.3

NN31.4NN42.5

N N34.9NN39.7

NN33.6NN42.0

N N34.4NN39.4

NN32.0NN42.3

NN31.1N
Bos N21.1NN23.4NN25.3

NN25.7

N N18.2NN21.2

NN19.0

NN20.8

N N19.2NN21.2

NN20.4NN20.9

N N19.4NN21.6

NN19.9

NN22.5

NN22.9

N

Con N23.2NN25.3

NN23.4NN27.0

N N20.3NN23.1

NN19.4NN26.4

N N20.2NN23.3

NN19.9NN26.2

N N19.4NN23.2

NN19.3NN26.9

NN22.7

N

Dow N26.7NN28.5

NN27.5NN30.6

N N24.2NN26.8

NN24.2NN32.3

N N24.6NN26.4

NN24.8

NN31.0

N N24.5NN26.3

NN25.2

NN31.0

NN30.6

N

EnC N8.72NN10.6

NN7.34NN11.0

N N5.86NN10.2

NN6.49

NN10.7

N N6.01NN10.3

NN6.24NN10.5

N N5.87NN10.2

NN6.10

NN10.8

NN4.23N
EnH N4.95NN7.45

NN3.83NN7.65

N N3.33NN7.19

NN3.74

NN7.34

N N3.28NN7.30

NN3.76

NN7.42

N N3.23NN7.24

NN3.72

NN7.54

NN0.43N
Tow N12.9NN14.4

NN13.9

NN20.1

N N12.8NN13.6

NN13.6

NN20.5

N N12.7NN14.0

NN13.5

NN20.4

N N13.0NN14.0

NN13.4

NN20.1

NN11.2N
WiR N65.3NN64.8NN64.9NN66.5

N N63.9NN64.7

NN64.4NN65.1

N N63.6NN63.9

NN64.4

NN64.9

N N63.9NN63.9

NN64.2NN65.7

NN71.7

N

WiWN71.4NN71.3NN70.9NN72.6

N N70.8NN71.2

NN70.7

NN72.3

N N70.7NN71.5

NN70.8

NN72.6

N N71.2NN71.4

NN71.2

NN72.6

NN72.2

N

Yac N1.25NN1.22NN0.70NN0.96N N0.89NN1.04

NN0.61NN0.67N N0.92NN1.01

NN0.61NN0.73N N0.95NN1.03

NN0.62NN0.76NN0.88N
B/W — 0/6 3/2 1/9 — 0/10 3/5 1/9 — 0/10 3/5 1/9 — 0/10 2/6 1/9 5/5

Test ` = 15
npop = 1000 NN IMS g = 4 NN IMS g = 6 NN IMS g = 8

N G T
h

T
`

R G T
h

T
`

R G T
h

T
`

R G T
h

T
`

R D

Air N38.5NN40.7

NN35.3NN44.1

N N35.8NN39.5

NN32.5NN43.3

N N35.2NN39.3

NN33.2NN42.4

N N35.4NN39.7

NN32.8NN42.8

NN30.8N
Bos N22.7NN23.3

NN24.3

NN26.7

N N22.5NN23.1NN23.3

NN22.9

N N21.7NN23.6

NN22.6

NN25.0

N N22.1NN22.5

NN23.6

NN23.3

NN26.1

N

Con N23.1NN26.1

NN23.9NN27.0

N N20.8NN23.9

NN19.3NN27.7

N N21.2NN23.9

NN19.9NN26.4

N N20.4NN24.3

NN19.3NN27.8

NN21.3

N

Dow N26.3NN27.5

NN26.4NN31.0

N N24.8NN26.1

NN24.7NN30.7

N N24.5NN26.6

NN24.5NN30.1

N N24.3NN26.8

NN25.1NN31.6

NN28.0

N

EnC N9.72NN11.2

NN7.86NN11.8

N N6.36NN10.6

NN6.80

NN11.5

N N6.37NN10.5

NN6.18NN10.9

N N6.02NN10.5

NN6.33

NN11.7

NN4.47N
EnH N5.03NN7.19

NN4.04NN7.85

N N3.45NN7.57

NN3.88

NN7.62

N N3.28NN7.64

NN3.88

NN7.59

N N3.51NN7.56

NN3.86

NN7.65

NN0.33N
Tow N13.4NN14.4

NN13.9

NN20.3

N N13.0NN14.1

NN14.0

NN20.8

N N12.9NN14.1

NN13.7

NN20.7

N N13.0NN14.3

NN13.3

NN20.5

NN11.2N
WiR N63.1NN63.7

NN62.4NN64.6

N N63.3NN63.4NN63.2NN64.4

N N63.6NN63.5NN63.2NN64.3

N N63.4NN63.8NN63.3NN63.7

NN72.6

N

WiWN70.5NN70.5NN70.1NN71.3

N N70.4NN70.0

NN70.3

NN71.6

N N69.7NN70.5

NN70.1

NN71.0

N N70.2NN70.5

NN70.3

NN71.8

NN72.2

N

Yac N1.23NN1.23NN0.78NN0.95N N1.16NN1.24

NN0.73NN0.77N N1.17NN1.24NN0.73NN0.77N N1.17NN1.23

NN0.71NN0.86NN0.91N
B/W — 0/8 4/2 1/9 — 0/8 4/5 1/9 — 0/8 4/4 1/9 — 0/9 3/5 1/9 5/5

Table 3.8: Median validation and test NMSE of 30 runs with ` = 31. Details as in Table 3.7.

Validation ` = 31
npop = 1000 NN IMS g = 4 NN IMS g = 6 NN IMS g = 8

N G T
h

T
`

R G T
h

T
`

R G T
h

T
`

R G T
h

T
`

R D

Air N26.4NN33.8

NN32.1

NN36.0

N N24.9NN25.9

NN23.2NN37.0

N N25.0NN27.1

NN24.9NN37.6

N N24.8NN28.4

NN24.8NN37.1

NN31.1

N

Bos N22.3NN21.1NN19.2NN24.8

N N16.7NN18.8

NN16.2

NN20.4

N N17.4NN18.3

NN17.3

NN20.6

N N17.3NN18.4

NN17.6

NN20.4

NN22.9

N

Con N17.3NN18.6

NN17.9

NN20.8

N N16.0NN17.6

NN16.7

NN20.5

N N16.6NN18.1

NN16.4

NN20.1

N N16.1NN18.3

NN17.2

NN20.2

NN22.7

N

Dow N21.3NN22.6

NN22.6NN24.3

N N19.4NN21.6

NN19.2NN25.6

N N19.4NN21.2

NN19.4

NN25.4

N N19.2NN21.9

NN20.1

NN25.8

NN30.6

N

EnC N5.14NN5.60

NN4.99NN7.62

N N4.62NN5.51

NN4.82

NN8.04

N N4.35NN6.04

NN4.56

NN8.48

N N4.37NN5.65

NN4.73

NN7.81

NN4.23N
EnH N2.29NN2.54

NN1.75NN6.21

N N1.95NN3.05

NN1.72NN4.97

N N2.00NN2.84

NN1.65NN5.93

N N1.88NN3.10

NN1.62NN6.11

NN0.43N
Tow N12.0NN13.0

NN12.6

NN17.5

N N11.8NN12.3

NN11.9NN17.8

N N11.7NN12.2

NN12.2

NN16.6

N N12.0NN12.4

NN11.8NN17.6

NN11.2N
WiR N64.2NN64.7

NN64.7

NN65.9

N N62.8NN62.4

NN62.6NN64.5

N N62.3NN63.6

NN62.1NN64.1

N N62.6NN62.9

NN61.8NN64.6

NN71.7

N

WiWN70.2NN70.4

NN70.9NN71.4

N N69.6NN69.7NN69.7NN71.1

N N70.0NN70.2

NN70.0NN71.0

N N70.0NN70.1

NN69.6NN71.2

NN72.2

N

Yac N0.46NN0.59

NN0.42NN0.57

N N0.37NN0.51

NN0.40

NN0.59

N N0.38NN0.56

NN0.38NN0.54

N N0.40NN0.54

NN0.42

NN0.52

NN0.88

N

B/W — 0/9 3/4 0/10 — 0/9 2/4 0/10 — 0/10 1/5 0/10 — 0/10 0/5 0/10 3/7

Test ` = 31
npop = 1000 NN IMS g = 4 NN IMS g = 6 NN IMS g = 8

N G T
h

T
`

R G T
h

T
`

R G T
h

T
`

R G T
h

T
`

R D

Air N26.4NN33.5

NN30.8

NN37.1

N N25.9NN26.5

NN23.3NN37.6

N N24.9NN27.1

NN24.7NN39.2

N N24.9NN28.8

NN26.1NN38.2

NN30.8

N

Bos N21.4NN22.8NN21.6

NN26.2

N N20.1NN21.3NN21.8

NN23.4

N N20.9NN21.2

NN22.2

NN23.2

N N20.2NN22.3

NN22.6

NN26.0

NN26.1

N

Con N17.6NN18.7

NN17.8

NN21.5

N N16.9NN18.1

NN17.1

NN21.2

N N16.7NN18.8

NN16.9NN21.1

N N17.2NN18.3

NN17.0NN21.5

NN21.3

N

Dow N20.3NN21.9

NN22.2

NN24.4

N N19.2NN20.7

NN19.1NN24.4

N N18.9NN21.4

NN18.6NN24.4

N N18.7NN22.2

NN20.2

NN25.5

NN28.0

N

EnC N5.28NN5.91

NN4.76NN7.00

N N4.43NN5.76

NN4.79

NN7.69

N N4.44NN6.05

NN4.71NN8.73

N N4.60NN5.62

NN4.77

NN7.94

NN4.47N
EnH N2.29NN2.49

NN1.83NN5.98

N N2.05NN3.20

NN1.58NN5.12

N N2.10NN3.07

NN1.75NN5.77

N N2.00NN2.91

NN1.55NN6.51

NN0.33N
Tow N12.2NN13.2

NN13.1

NN18.7

N N12.1NN12.6

NN12.0NN18.2

N N12.1NN12.4

NN12.3NN16.8

N N12.2NN12.7

NN12.0NN17.2

NN11.2N
WiR N62.1NN63.1NN62.1NN63.5

N N62.7NN63.1

NN61.9NN63.9

N N62.4NN62.9

NN63.3

NN64.2

N N61.9NN63.0

NN62.9

NN63.4

NN72.6

N

WiWN69.0NN69.7

NN69.8

NN70.2

N N69.4NN69.3NN69.2NN70.6

N N69.1NN69.4

NN69.2

NN70.7

N N69.1NN69.6

NN69.3NN70.5

NN72.2

N

Yac N0.52NN0.66

NN0.49NN0.66

N N0.50NN0.58

NN0.47NN0.67

N N0.50NN0.64

NN0.48NN0.63

N N0.53NN0.63

NN0.48NN0.70

NN0.91

N

B/W — 0/8 3/6 0/10 — 0/8 3/3 0/10 — 0/10 2/3 0/10 — 0/10 2/4 0/10 3/7
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3.8.2. Results: benchmarking GP-GOMEA

We consider validation and test NMSE. We now show validation rather than training error

because the IMS returns the solution which better generalizes to the validation set among

the ones found by di�erent runs (same for DTR due to cross-validation). Tables 3.7, 3.8,

and 3.9 show the results for maximum sizes ` = 15, 31, 63 (h = 3, 4, 5) respectively.

On each set of results, the Friedman test reveals signi�cant di�erences among the algo-

rithms. As we are only interested in benchmarking GP-GOMEA, we test whether signif-

icant performance di�erences exist only between GP-GOMEA and the other algorithms

(with Bonferroni-corrected Wilcoxon signed-rank test).

We begin with some general results. Overall, error magnitudes are lower for larger

values of `. This is not surprising: limiting solution size limits the complexity of relation-

ships that can be modeled. Another general result is that errors on validation and test set

are generally close. Likely, the validation data is a su�ciently accurate surrogate of the

test data in these datasets, and solution size limitations make over-�tting unlikely. Finally,

note that the results for DTR are the same in all tables.

We now compare GP-GOMEA with GP-Trad
h

, focusing on statistical signi�cance tests

(see rows “B/W” of the tables), over all size limit con�gurations. Recall that these two al-

gorithms work with the same type of limitation, i.e., based on maximum tree height. No

matter the population sizing method, GP-GOMEA is almost always signi�cantly better

than GP-Trad
h

. GP-GOMEA relies on the LT with improved linkage learning, which we

showed to be superior to using the RT, i.e., blind variation, in the previous series of ex-

periments (Sec. 3.5.3, 3.6.1). Subtree crossover and subtree mutation are blind as well, and

can only swap subtrees, which may be a limitation.

GP-GOMEA and GP-Trad
`

are compared next. Recall that GP-Trad
`

is allowed to

evolve any tree shape, as long as the limit in number of nodes is respected. Having

this extra freedom, GP-Trad
`

performs better than GP-Trad
h

(not explicitly reported in

the tables), which con�rms previous literature results [58, 59]. No marked di�erence ex-

ists between GP-GOMEA and GP-Trad
`

along di�erent con�gurations. By counting the

number of times one EA is found to be signi�cantly better than the other along all 240

comparisons, GP-GOMEA beats GP-Trad
`

by a small margin: 87 signi�cantly lower error

distributions vs. 65 (88 draws).

For the traditional use of a single population (npop = 1000), GP-Trad
`

is slightly better

than GP-GOMEA for ` = 15 (Table 3.7), slightly worse for ` = 31 (Table 3.8), and similar

for ` = 63 (Table 3.9), on both validation and test errors. The performance of the two

(and also of the other EAs) improves when using the IMS. Although not explicitly shown

in the tables, using the IMS is typically signi�cantly better than not using it. When using

a single �xed population size and a single run, only a single best-found solution is found.

Depending on the con�guration of that run, in particular the size of the population, that

�nal solution may be under�tted or over�tted. When using a scheme such as the IMS,

multiple solutions are marked best in the di�erent interleaved runs. These solutions can

subsequently be compared more in terms of generalization merits, i.e., by observing the

associated performance on the validation set. The best performing solution can then ul-

timately be returned. Essentially, this thus provides a means to mitigate to some extent

the problem of under�tting or over�tting. It should be noted, however, that the extent to

which the setup of the IMS, particularly in terms of growing population sizes, contributes
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Figure 3.7: Maximum population size reached (vertical axis) in time (seconds, horizontal

axis) with the IMS for GP-GOMEA (h = 4 limit) and GP-Trad
`

(` = 31 limit), for g ∈
{4, 6, 8}. The median among problems and repetitions is shown.

to this is not immediately clear. This could be studied by comparing with a scheme in

which multiple runs are also performed, but all with a single population size. The �nal

results of these runs can then also �rst be tested against the validation set. Likely, the use

of a scheme like the IMS has an advantage because multiple population sizes will be tried.

Therefore, likely a larger variety of results will be produced to test against the validation

set, but a closer examination of this impact is left for future work.

The comparisons between GP-Trad
`

and GP-GOMEA tend to shift in favor of the latter

when using the IMS, particularly for larger values of g. For g = 4, outcomes are still overall

mixed along di�erent ` limits. For g = 8, GP-GOMEA is preferable, with moderately more

signi�cant wins for ` = 15, several more wins for ` = 31, and slightly more wins for

` = 63.

To investigate further the comparison between GP-GOMEA and GP-Trad
`
, we con-

sider the e�ect of g of the IMS for ` = 31 (similar results are found for the other size

limits). Figure 3.7 shows the median maximum population size reached by the IMS for

di�erent values of g in GP-GOMEA and GP-Trad
`
. As can be expected, the bigger g, the

less runs and the smaller populations at play. GP-Trad
`

reaches much bigger population

sizes than GP-GOMEA when g = 4 (on average 3 times bigger). This is because GP-Trad
`

executes generations much faster than GP-GOMEA: it does not learn a linkage model,

and performs npop
evaluations per generation. GP-GOMEA performs (2`− 2)npop

varia-

tion steps (size of LT excluding its root times the population size) and up to (2`− 2)npop

evaluations per generation (only meaningful variation steps are evaluated).

GP-Trad
`

performs well for small values of g due to huge populations being instanti-

ated with trees of various shape, i.e., expensive random search. Note that this behavior

may be problematic when limited memory is available, especially if caching mechanisms

are desirable to reduce the number of expensive evaluations (e.g., caching the output of

each node as in [9, 22]). On the other hand, GP-GOMEA works fairly well with much

smaller populations, as long as they are big enough to enable e�ective linkage learning
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Table 3.9: Median validation and test NMSE of 30 runs with ` = 63. Details as in Table 3.7.

Validation ` = 63
npop = 1000 NN IMS g = 4 NN IMS g = 6 NN IMS g = 8

N G T
h

T
`

R G T
h

T
`

R G T
h

T
`

R G T
h

T
`

R D

Air N22.6NN25.3

NN25.0

NN33.0

N N20.6NN22.4

NN20.8NN35.1

N N20.7NN23.3

NN21.3

NN34.3

N N20.8NN24.5

NN20.1NN34.2

NN31.1

N

Bos N21.1NN19.5NN21.9NN22.1N N16.5NN16.8

NN15.7NN19.7

N N16.3NN17.6

NN15.4NN18.9

N N16.2NN18.5

NN16.7

NN21.2

NN22.9

N

Con N16.6NN17.4

NN16.6NN18.5

N N15.2NN16.1

NN15.7

NN18.5

N N15.5NN16.5

NN15.6

NN19.6

N N15.3NN16.3

NN15.9

NN19.0

NN22.7

N

Dow N18.6NN19.0NN18.8

NN21.7

N N17.4NN17.8

NN16.7NN24.1

N N17.7NN18.2

NN17.0NN24.3

N N17.8NN19.8NN17.6NN22.4

NN30.6

N

EnC N4.66NN5.15

NN4.26NN5.55

N N3.67NN4.37

NN4.14

NN6.92

N N3.85NN4.50

NN4.02

NN7.08

N N3.76NN4.88

NN3.99

NN6.78

NN4.23

N

EnH N1.65NN1.52

NN1.13NN2.63

N N0.69NN1.54

NN0.84

NN4.02

N N0.92NN1.78

NN1.02

NN3.81

N N0.87NN1.78

NN0.80NN3.68

NN0.43N
Tow N11.5NN11.7

NN11.7

NN15.7

N N11.3NN10.9NN11.1NN16.1

N N11.4NN11.3NN10.9NN17.0

N N11.3NN11.9

NN11.2NN16.6

NN11.2N
WiR N64.4NN64.6NN65.2

NN64.3N N63.0NN62.4NN62.5NN63.8

N N62.3NN62.9NN62.8NN64.6

N N62.7NN62.9

NN62.5

NN64.5

NN71.7

N

WiWN70.1NN70.1NN68.8NN70.9

N N69.2NN69.2NN68.7NN71.1

N N68.9NN69.3

NN69.4NN71.6

N N69.1NN69.7

NN69.6NN71.4

NN72.2

N

Yac N0.46NN0.45NN0.37NN0.46N N0.32NN0.38

NN0.33NN0.40

N N0.32NN0.39

NN0.33NN0.44

N N0.33NN0.40

NN0.33NN0.48

NN0.88

N

B/W — 1/5 4/4 1/7 — 0/7 2/3 0/10 — 0/8 3/4 0/10 — 0/9 3/4 0/10 2/8

Test ` = 63
npop = 1000 NN IMS g = 4 NN IMS g = 6 NN IMS g = 8

N G T
h

T
`

R G T
h

T
`

R G T
h

T
`

R G T
h

T
`

R D

Air N23.0NN25.5

NN25.9

NN31.5

N N21.1NN22.5

NN19.6NN34.9

N N21.7NN22.4

NN21.9

NN33.8

N N21.2NN23.4

NN21.6NN34.1

NN30.8

N

Bos N22.0NN20.0NN21.2NN21.9N N19.2NN20.7

NN20.4

NN24.1

N N21.5NN20.3NN20.3NN25.0

N N19.8NN19.7

NN21.4

NN25.8

NN26.1

N

Con N15.9NN17.1

NN16.5

NN18.3

N N15.3NN16.2

NN15.5NN19.1

N N15.3NN16.3

NN15.8

NN19.9

N N15.3NN16.6

NN16.1

NN18.9

NN21.3

N

Dow N18.3NN18.6

NN17.4NN22.3

N N17.5NN17.9NN17.0NN23.7

N N17.6NN18.2

NN17.2NN24.6

N N17.7NN18.2NN17.9NN22.6

NN28.0

N

EnC N4.49NN4.70

NN4.24NN5.63

N N3.77NN4.37

NN3.99

NN6.94

N N3.93NN4.42

NN3.95

NN7.42

N N3.95NN4.85

NN4.20

NN7.37

NN4.47

N

EnH N1.60NN1.59

NN1.12NN2.74

N N0.80NN1.52

NN0.89

NN3.73

N N0.88NN1.67

NN0.94NN4.12

N N0.89NN1.92

NN0.93

NN3.71

NN0.33N
Tow N11.6NN12.2

NN12.1

NN15.9

N N11.5NN11.4NN11.4NN16.8

N N11.6NN11.5NN11.2NN16.7

N N11.4NN12.2

NN11.4NN17.1

NN11.2N
WiR N63.1NN63.0NN64.4

NN62.9N N62.9NN62.5

NN61.7NN62.5

N N62.5NN63.0NN62.3NN63.6

N N62.7NN63.0NN61.8NN63.2

NN72.6

N

WiWN68.7NN69.0NN68.0NN69.9

N N68.3NN68.6NN68.3NN70.2

N N69.1NN69.4NN68.2NN70.6

N N68.2NN69.3

NN69.0NN70.3

NN72.2

N

Yac N0.44NN0.46NN0.40NN0.46N N0.41NN0.49

NN0.40NN0.45

N N0.41NN0.45

NN0.42NN0.52

N N0.46NN0.46NN0.44NN0.50

NN0.91

N

B/W — 0/6 5/4 0/7 — 0/7 3/3 0/10 — 0/6 4/3 0/10 — 0/7 2/4 0/10 2/8

(the �xed npop = 1000 is smaller than the population sizes reached with the IMS). Despite

the disadvantage of adhering to a speci�c tree shape, GP-GOMEA is typically preferable

than GP-Trad
`

for larger values of g. Furthermore, Figure 3.7 shows that GP-GOMEA pop-

ulation scaling behaves sensibly with respect to g, i.e., it does not grow abruptly when g
becomes small, nor shrink excessively when g becomes larger. This latter aspect is because

in GP-GOMEA populations ultimately converge to a same solution, and are terminated,

allowing for bigger runs to start. In GP-Trad
`

this is unlikely to happen, because of the use

of mutation and stochastic (tournament) selection, stalling the IMS. For the larger g = 8,

GP-GOMEA reaches on average 1.6 times bigger populations than GP-Trad
`
.

GP-RDO, although allowed to evolve trees of di�erent shape like GP-Trad
`
, performs

poorly on all problems, with all settings. It performs signi�cantly worse than GP-GOMEA

almost everywhere. GP-RDO is known to evolve big solutions, and it is reasonable to

expect that GP-RDO actually bene�ts from solutions growing big, as these provide more

subtree diversity for its library. The strict size limitation basically breaks GP-RDO. How-

ever, we remark that this EA was never designed to work under these circumstances, and

when solution size is not strictly limited, GP-RDO is known to work well [9].

DTR is compared with GP-GOMEA using the IMS with g = 8. Although GP-GOMEA

is not optimized (e.g., by tuning the function set), it performs on par with tuned DTR for

` = 15, and better for ` = 31, 63, on both validation and test sets. Where one algorithm

outperforms the other, the magnitude of di�erence in errors are relatively large compared

to the ones between EAs. This is because GP and DTR synthesize models of completely

di�erent nature (decision trees only use if-then-else statements).
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Tower:
4668.49− 3.56((662.77 + x21)x12 ÷AQ x16 − x1 − x15 + x5 + 4x12 − x23(x6 ÷AQ x1 + 1))
Yacht:

0.73 + 33004.40
(
((x2

6 ÷AQ (x5x2))÷AQ (x3x2 ÷AQ (x2 ÷AQ x1)))(x6 + 0.30)x5
6x5
)

Figure 3.8: Examples of best solution found by GP-GOMEA (` = 31, IMS g = 8).

3.9. Discussion & conclusion

We built upon previous work on model-based GP, in particular on GP-GOMEA, to �nd

accurate solutions when a strict limitation on their size is imposed, in the domain of SR. We

focused on small solutions, in particular much smaller solutions than typically reported

in literature, to prevent solutions becoming too large to be (easily) interpretable, a key

reason to justify the use of GP in many practical applications.

A �rst limitation of this work is that to truly achieve interpretability may well require

di�erent measures. Interpretation is mostly subjective, and many other factors besides

solution size are important, including the intuitiveness of the subfunctions composing the

solution, potential decompositions into understandable repeating sub-modules, the num-

ber of features considered, and the meaning of these features [13, 56]. Nonetheless, much

current research on GP for SR is far from delivering any interpretable results precisely

because the size of solutions is far too large (see, e.g., the work of [12]).

We considered solution sizes up to ` = 63 (corresponding to h = 5 for GP-GOMEA

with subfunctions of arity ≤ 2). In our opinion, the limit of ` = 31 (h = 4) is particularly

interesting, as interpreting some solutions at this level can already be non-trivial at times.

For example, we show the (manually simpli�ed) best test solution found by GP-GOMEA

(IMS g = 8) for Tower and Yacht, i.e. the biggest and smallest dataset respectively, in

Figure 3.8. The solution for Tower is arguably easier to understand than the one for Yacht.

We found solutions with ` = 63 (h = 5) to be overly long to attempt interpreting, and

solutions with ` = 15 (h = 3) to be mostly readable and understandable. We report other

example solutions at: http://bit.ly/2IrUFyQ.

We believe future work should address the aforementioned limitation: e�ort should be

put towards reaching some form of interpretability notions, that go beyond solution size

or other custom metrics (e.g., [61]). User studies involving the end users of the model (e.g.,

medical doctors for a diagnosis model) could guide the design of notions of interpretability.

If an objective that represents interpretability can be de�ned, the design of multi-objective

(model-based) GP algorithms may lead to very interesting results.

Another limitation of this work lies in the fact that we did not study how linkage

learning behaves in GP for SR in depth. In fact, it would be interesting to assess when

linkage learning is bene�cial, and when it is super�uous or harmful. To this end, a regime

of experiments where linkage-related outcomes are prede�ned, such as emergence of spe-

ci�c patterns, needs to be designed. Simple problems where the true function to regress

is known may need to be considered. Studies of this kind could provide more insights

on how to improve linkage learning in GP for SR (and other learning tasks), and are an

interesting direction for future work.

http://bit.ly/2IrUFyQ
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Another crucial point to base future research upon is enabling linkage learning and

linkage-based mixing in GP with trees of arbitrary shape. In fact, GP-GOMEA was not

found to be markedly better than GP-Trad
`
, and a large performance gap was found be-

tween GP-Trad
`

and GP-Trad
h

. This is indicative that there is added value to perform

evolution directly on non-templated trees, which, from this perspective, may be consid-

ered a limitation of GP-GOMEA. Going beyond the use of a �xed tree template, while

still enabling linkage identi�cation and exploitation, is a challenging open problem that

could bring very rewarding results. On the other hand, we believe it is interesting to see

that when GP-GOMEA and GP-Trad are set to work on the same search space, i.e., when

GP-Trad
h

is used, then GP-GOMEA performs markedly better.

In summary and conclusion, we have identi�ed limits and presented ways to improve

a key component of a state-of-the-art model-based EA, i.e. GP-GOMEA, to competently

deal with realistic SR datasets, when small solutions are desired. This key component is

linkage learning. We showed that solely and directly relying on mutual information to

identify linkage may be undesirable, because the genotype is not uniformly distributed

in GP populations, and we provided an approximate biasing method to tackle this prob-

lem. We furthermore explored how to incorporate ERCs into linkage learning, and found

that on-line binning of constants is an e�cient and e�ective strategy. Lastly, we intro-

duced a new form of the IMS, to relieve practitioners from setting a population size, and

from �nding a good generalizing solution. Ultimately, our contributions proved success-

ful in improving the performance of GP-GOMEA, leading to the best overall performance

against competing EAs, as well as tuned decision trees. We believe our �ndings set an im-

portant �rst step for the design of better model-based GP algorithms capable of learning

interpretable solutions in real-world data.
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4
Linear Scaling in Semantic

Backpropagation-based Genetic
Programming

Semantic Backpropagation (SB) is a recent technique that promotes e�ective variation in tree-

based genetic programming. The basic idea of SB is to provide information on what output

is desirable for a speci�ed tree node, by propagating the desired root-node output back to the

speci�ed node using inversions of functions encountered along the way. Variation operators

then replace the subtree located at the speci�ed node with a tree for which the output is closest

to the desired output, by searching in a pre-computed library. In this chapter, we propose two

contributions to enhance SB speci�cally for symbolic regression, by incorporating the princi-

ples of Keijzer’s Linear Scaling (LS). In particular, we show how SB can be used in synergy

with the scaledmean squared error, and we show how LS can be adopted within library search.

We test our adaptations using the well-known variation operator Random Desired Operator

(RDO), comparing to its baseline implementation, and to traditional crossover and mutation.

Our experimental results on real-world datasets show that SB enhanced with LS substantially

improves the performance of RDO, resulting in overall the best performance among all tested

GP algorithms.

The contents of this chapter are based on the following publication: M. Virgolin, T. Alderliesten, and P.A.N. Bosman. Linear

scaling with and within semantic backpropagation-based genetic programming for symbolic regression. In Proceedings of the

Genetic and Evolutionary Computation Conference (GECCO ‘19), pp. 1084-1092, ACM (2019).
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4.1. Introduction

Semantic Backpropagation (SB) is a recent technique in tree-based Genetic Programming

(GP) [1, 2] which enables the design of novel variation operators [3, 4]. For any tree

node, given a target output for the tree, SB determines what the desired output for that

node is. If the node were to be replaced with a subtree that delivers the desired output,

then the outputs of the ancestor nodes would also change, ultimately making the root

deliver the target output. The application of SB-based GP algorithms has been shown to be

particularly e�ective in supervised learning applications such as Boolean circuit synthesis

and symbolic regression [4–6].

SB-based variation operators modify trees by replacing nodes with subtrees that match

desired outputs as closely as possible. The Random Desired Operator (RDO) is perhaps the

most known among them, as it has been shown to perform best on a variety of problems [3,

4]. Key components of RDO are the use of a library of trees with pre-computed outputs,

and a library search procedure to retrieve the tree which most closely matches the desired

output.

As to the library, two traditional ways exist to build it [4]. The �rst way is to generate

all possible trees within a maximum tree height, and to retain one tree for each unique

output (the tree with less nodes is kept). Clearly, this method cannot scale with the num-

ber of dimensions, nor with the sampling of real-valued constants. In [4], for problems

with a single feature, a maximum height of 3 already results in hundreds of thousands of

trees. The second way is to dynamically refresh the library every generation, by includ-

ing all subtrees with unique output as observed in the population. The downside of this

approach is that the expressiveness of the library may be limited, as it is biased by how

the population evolves.

Linear Scaling (LS) is an interesting existing technique to minimize the mean squared

error of a GP tree by applying an optimal linear transformation to the output of the

tree [7, 8]. While typically used to improve the �tness, LS can more generally be applied

to scenarios where a (monotonic transformation of the Euclidean) distance between two

outputs needs to be minimized. As SB-based GP operates by matching desired outputs, it

stands to reason that some form of LS can be integrated to bene�t the algorithm. This is

precisely the topic of this chapter: we study how to best integrate and how to best observe

the impact of LS on SB-based GP.

We propose, for the �rst time, the use of LS as (i) A separate, but synergistic mech-

anism, to work with SB; and (ii) A joint mechanism, to use within SB-based GP, namely

during library search. Much previous work solely considered synthetic benchmark func-

tions with few variables, and generational computation budgets (see Sec. 4.3). The latter

choice arguably favors SB-based GP when compared to other forms of GP (e.g., traditional

GP that swaps and mutates subtrees randomly [1]), in that the computational time taken

by SB itself, library construction, and library search, is not considered [4]. For this reason,

in our experiments, we assess the e�ectiveness of the proposed LS-enhanced, SB-based

GP in terms of both number of generations and time. Moreover, we test the algorithms

on realistic small- to medium-sized regression problems, using ten established real-world

benchmark datasets.
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×

Where:

d× s = t, thus d = t/s
d− s = t, thus d = t + s

9 | 0 | 10 | 16 6 | 18 | 2 | 20

−
3 | 0 | 5 | 4 2 | 2 | 1 | 5

x1
3 | 9 | 2 | 4

5
5 | 5 | 5 | 5 4 | 7 | 1 | 6

x2
2 | 5 | 0 | 1

Figure 4.1: Example of SB for the yellow leaf. The current outputs of each node are in pink.

The desired outputs are in blue. The desired output of the root is the (given) target output,

and the others are computed by recursive inversion on the path down to the yellow leaf.

The operations in the top right describe the inversions used in this example.

4.2. Semantic backpropagation

Given a target output t for the tree (i.e., for its root), SB computes a desired output dN

for one speci�c node N . This information can then be used to replace N with a subtree

that has output as close as possible to dN . It is expected that, the closer the output of the

subtree is to dN , the closer the output of the root will be to t.

Let D be the depth of N . Then N has D ancestors. Let Ak be the ancestor of N at

depth k. Similarly, let Sk = {S1
k, S

2
k, . . . } be the (possibly empty) set of sibling nodes of

Ak . For the sake of brevity, we now use the same notation used to refer to a node to also

identify the function implemented by that node. For example, Ak (x, Sk+1) represents

the application of the function of node Ak on x, and on (the outputs of) the nodes Sk+1.

Therefore, we can say that SB computes:

dAk+1 = A−1
k

(
dAk , Sk+1

)
, (4.1)

where A−1
k represents the inversion of the function Ak . SB starts from the root by setting

its desired output to the target, i.e. dA0 := t. The recursive computation of the desired

output for N (at depth D) then follows: dN = A−1
D−1

(
dAD−1 , SD

)
. Figure 4.1 shows an

example.

Note that, if non-injective functions (e.g., abs(·)) are included in the function set, each

desired output vector will grow to represent di�erent possible outcomes, i.e., d ∈ Rγ×n
and di = {d1

i , . . . , d
γ
i }, with i = 1, . . . , n the indices of training examples (from now

on, for brevity, we drop the superscript N from dN ). Note that γ can be ∞, e.g., for

sin. Similarly, any value may satisfy some inversions: e.g., for x = ×−1(0, 0), 0 × x =
0,∀x ∈ R. In such cases, we will indicate that any value is good with ∗. We describe

how di with multiple and/or ∗ values is handled during library search in the following

Section 4.2.1. Conversely, some functions are not invertible (in R) in some points (e.g.,

(·2)−1(−1) =
√
−1), thus some dji may not exist. If SB is unfeasible, i.e., ∃i : di = ∅, we

abort SB (as in [4]).



4

78 4. Linear Scaling in Semantic Backpropagation-based Genetic Programming

4.2.1. Library and library search

Given the desired output d, a subtree with similar output is sought. For this purpose,

typical SB-based variation operators rely on a searchable library of pre-computed trees

with unique outputs. As aforementioned in the introduction, a way to build the library is

to pre-compute all possible trees up to a maximum height, but this becomes intractable

with already few features (terminals) [4]. The other typical method is to collect all subtrees

as observed in the population (updated every generation) [9, 10].

In the so-called “population-based” library, if multiple subtrees with the same output

exist in the population, the one smallest in terms of the number of nodes is retained.

Furthermore, subtrees with constant output are not considered (library search handles

constants separately, see below).

The library search procedure parses the library to �nd the tree of which its output o
minimizes the distance from d, e.g., in terms of modi�cations of the L1 or L2 distance (or

any Minkowski distance). By modi�ed version of the distances we mean that the multi-

valued nature of di must be accounted for. The distance can be computed by �nding the

one dji that minimizes |dji − oi|w,∀w ∈ {1, 2, . . . } [4]. Furthermore, if ∃j : dji = ∗, then

the values of di do not matter, and it is de�ned to have | ∗ −oi|w = 0. By pre-sorting the

dji in j, a linearly addressable library L can be parsed in O(|L |n log γ) [4].

With trees with a constant output being typically excluded from the library, library

search further considers the distance between a constant value and the desired output in a

separate fashion. In [4], the values of d are considered to be candidate constant values, and

the best one is picked. The best tree found in the library, or a single-node implementing

the best constant, is �nally returned by the library search procedure, depending on which

is closest to d.

4.2.2. Random desired operator

RDO works by generating an o�spring tree that di�ers from the parent in one subtree.

The pseudocode of RDO is shown in Algorithm 4.1. First, the o�spring (O) is created as a

clone of the parent (P ), and one of its nodesN is selected. In [4], it is proposed to selectN
with the equal depth probability criterion, which �rst samples the depthD to consider, and

then samples N among the nodes with depth D, both uniformly at random. Second, SB is

executed for N , by setting the target for the root to the dependent variable to regress, i.e.

t := y. Note that, in general, t can be di�erent (e.g., a crossover operator is proposed in [6]

that sets the target output for one parent to the output of another parent). If SB is aborted

because an unfeasible d is computed, RDO returns the clone of the parent. Otherwise,

library search is performed, resulting in a tree T that has output with minimum distance

from d. Finally, RDO returns the o�spring, adapted by replacing its subtree at N with T .

4.2.3. Intermediate output caching

SB-based GP is particularly e�cient if the output of subtrees are cached. In particular, each

recursive iteration of SB requires to know the output of the sibling nodes, and library

search requires the output of the library trees. Therefore, in [4] it is proposed to cache

intermediate tree outputs, i.e., the outputs of all nodes.

Intermediate output caching not only speeds up SB-related methods, but also the tra-

ditional evaluation of trees. In fact, if a node is changed, it is su�cient to recompute the
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Algorithm 4.1 Pseudocode of RDO.

1 function RDO(y, P, L )

2 O ← Clone(P )

3 N ← EqualDepthProbability(O)

4 d← SemanticBackpropagation(N, y)

5 if ∃i : di = ∅ then return O

6 T ← LibrarySearch(d, L )

7 O ← ReplaceSubtree(N, T )

8 return O

outputs only along the chain of ancestors, i.e., from the parent of that node upwards, to

get the output of the root. While these partial evaluations can be very e�ective, especially

for high-dimensional outputs, they take a toll in terms of memory (see, e.g., the discussion

on scalability in Chapter 2).

4.3. Related work

Two research lines are mostly related to this chapter, namely the one on LS, and the one

on SB. As to LS, the most cited work to date is [7], which shows how LS can dramatically

improve the performance of GP, for synthetic functions with up to three variables. In [8],

theoretical motivations for the added value of LS are given. LS was successfully used for

practical applications in, e.g., [11–13].

To the best of our knowledge, no contribution has been made that proposes modi-

�cations of LS itself. This is not surprising, as LS is quick (i.e., O(n)), and the scaling

and translation coe�cients are optimal with respect to the dependent variable y (see the

description of LS in Sec. 4.4.1). Perhaps more interestingly, we also could not �nd any

work where LS is combined with another method in a truly synergistic way, i.e., having

LS and/or the other method sharing information with each other. For example, in [14],

LS is used together with a particular mating scheme, but the two methods co-exist inde-

pendently from each other. Here, we consider for the �rst time a use of LS that is deeply

intertwined with another method, i.e., SB.

As to SB, it was �rst introduced together with RDO in [3], and much research work

has followed. Perhaps one of the most comprehensive contributions is [4], which com-

pares several variation operators, two of which are SB-based (RDO, and approximately

geometric crossover [6]). RDO is shown to outperform most of the other operators, on

both Boolean and regression problems.

While RDO uses SB to replace a subtree, the Forward Propagation Mutation (FPM)

operator proposed in [9] does the opposite: it preserves the subtree, and replaces the

remaining part of the tree, called the context. A new context is built by determining a new

root, and another subtree to append to the root, which is a sibling to the preserved one.

This new subtree is retrieved by library search using cosine similarity, and is rescaled by

an optimal constant (determined in O(n)). The authors claim that an alternative could be

to use LS to also determine a translation coe�cient during library search for FPM. This is

indeed investigated in our work, for RDO.
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Very recently, a variant of FPM has been proposed in [15] where the target is set to

a random point in the segment between y and the output of the parent, and where LS is

applied after library search. While this improves the �tting of the subtree to the context, it

is less e�ective (but faster) compared to considering optimal translation coe�cients during

library search (as recognized by [9]).

Notwithstanding the novelty and advantages of the aforementioned and of other work

on SB-based GP (e.g., [5, 16]), as we mentioned in the introduction, mostly synthetic func-

tions have been considered so far, in the domain of regression. These functions have up to

three variables only. Moreover, comparisons have only been framed in terms of number

of generations, thus ignoring much of the computational expensiveness of SB-based GP.

To the best of our knowledge, only in [15] and [10] four and two real-world bench-

marks are respectively considered, for GP using RDO (and a variant) and the aforemen-

tioned variant of FPM. Yet again, only generational budgets are considered, except for

the supplementary material of [15], where experiments using a time limit are reported.

Although those results undeniably bring additional insight, we believe it remains hard

to assess what the impact of using SB-based operators is on computation time, because

of two reasons. Firstly, a relatively small population size of 100 is used, meaning that

population-based libraries will also be small and quick to parse. Secondly, the considered

GP algorithms have several di�erences (e.g., selection schemes), and always employ other

variation operators together with the SB-based ones.

In this chapter, not only do we consider how LS can be combined with SB-based GP, but

we also attempt to address the main limitations of the related work. We adopt ten real-

world benchmark datasets for regression with dozens of features, as they are arguably

more representative of practical problems, and we attempt to frame algorithmic compar-

isons in terms of both generations and time limits to also observe the potential overhead

of adopting SB-based GP.

O
u

t
p

u
t

Input Input

Figure 4.2: Example of the e�ect of LS. Blue circles represent the output of the function

to approximate, while orange diamonds and green crosses are the output of two trees.

Left: The orange diamonds are closest to the blue circles. Right: The application of LS

substantially improves the green crosses, making them become the best match.
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4.4. Linear scaling with SB-based GP

We now describe the �rst contribution of this chapter, i.e., how SB can work together with

LS, in synergy. The main concept behind LS is to allow GP to focus on the “shape” of the

function to approximate, by providing translation and scaling coe�cients that minimize

the training Mean Squared Error (MSE) [7] (see, e.g., Fig. 4.2).

In principle, LS and SB can work independently, without making changes to the two

methods. In RDO, SB works by setting the target output t (i.e., the desired output for the

root) to y. To back-propagate this information means to directly try to optimize the tree

towards delivering exactly y, without exploiting the fact that LS helps scaling the output

of the root. In other words, in this setting, LS acts solely as a “patch” on top of SB-based

GP, as it attempts to correct for the residual error that the algorithm normally makes.

We argue that it is reasonable to attempt to make LS and SB work in synergy to reduce

the error, in particular by informing SB on what the e�ect of LS is. Indeed, we hypothesize

that if the transformation applied by LS is also backpropagated to determine the desired

output, the subsequent variation will be more e�ective, as it will attempt to correct the

error that remains after LS is applied.

4.4.1. Linear scaling

LS works as follows. Let the MSE between the dependent variable y and the tree output o
be the �tness function for regression:

MSE(y, o) = 1
n

n∑
i=1

(yi − oi)2
.

LS introduces a scaled version of the MSE, where respectively a translation coe�cient

a and a scaling coe�cient b are used within the computation of the MSE, in order to

minimize it:

MSE
a,b(y, o) = 1

n

n∑
i=1

(yi − (a+ boi))2
.

The optimal a and b that minimize the error are (see [7]):

a = ȳ − bō,

b =
n∑
i=1

(yi − ȳ)(oi − ō)
(oi − ō)2 = cov(y, o)

var(o) .
(4.2)

The implementation of Equation 4.2 takes O(n).

4.4.2. Linear scaling in synergy with semantic backpropagation

We now describe how LS and SB can work in synergy. To begin, we point out that using

the MSE
a,b

is equivalent to using the traditional MSE on a tree where the addition of a
and multiplication by b are encoded within the tree itself, with suitable nodes placed on

top of the root. For example, consider the rightmost tree of Figure 4.3: ignore the nodes in

white, and imagine the plus node to be the actual root. That tree is essentially one where

the e�ect of LS is incorporated in its structure (with pink nodes). For such a tree, it is
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straightforward to compute SB (as described in Sec. 4.2). In particular, we immediately see

that for a target output t, the desired output for the original root (top green node) will be:

di = ti − a
b

,∀i. (4.3)

Therefore, whenever SB needs to be performed, we can calculate a and b based on t and

the current tree output o (or, if t = y like in RDO, a and b can be cached after they are

computed for MSE
a,b(y, o)). Then we can compute d for the root using Equation 4.3 as

starting point for SB, and then we can proceed with Equation 4.1 as usual.

We remark that the computation overhead for including LS in SB this way can be

considered negligible. IfD is the depth of the node chosen for replacement, then SB needs

to compute D inversions. If only injective functions are considered, this leads to O(Dn)
(it is O(DγDn) if non-injective functions are present). In typical symbolic regression

settings, D is bounded by a small constant and n is large, i.e. D � n, meaning that the

bound is O(n). Since to include LS in synergy with SB means to compute Equation 4.2

and to compute Equation 4.3, and since these computations bring only additional O(n)
contributions, the bound remains O(n).

4.5. Linear scaling within SB-based GP

When performing library search, a tree T that has output o close to a desired output d is

sought for. This situation is similar to the symbolic regression problem itself, where the

output of the root node is expected to match y. Because LS is known to help in the latter

scenario [7, 8], it is reasonable to expect that LS can improve the e�ectiveness of library

search as well, as optimally scaled tree outputs will be considered.

4.5.1. Linear scaling during library search

Let L2 be the distance metric adopted by the library search procedure. Since L2 is a mono-

tonic transformation of the MSE, the optimal coe�cients a and b can be computed with

Equation 4.2 (replacing y with d) to decrease the distance between d and o.

In practice, d needs to be in Rn (instead of in Rγ×n) to have a unique, well-de�ned

way to compute a and b. For example, what is d̄ if there exists some di with multiple

values? Some criterion should be used to choose one of the values for di (e.g., the value

closest to the mean given by considering the other dj that have unique values). Restrict-

ing the multi-dimensionality of the desired output by choosing a single value for each di
means that possibly better matching outputs present in the library will not be searched for.

Alternatively, multiple scalings could be computed and the best one could be taken, but

exponential possibilities could exist. In this chapter, we include a non-injective function

in the function set of GP that is symmetric around zero. For its inversion, we choose to

return only the positive value (see Sec. 4.6). Regarding ∗ values, we make the assumption

that, if present, they are few, and can be ignored when computing a and b.
We thus assess the e�ect of using LS within library search. Whenever library search

is performed, for each tree in the library, we compute optimal a and b coe�cients that

minimize the distance between the output of the tree and the desired output. Library

search then returns the best matching tree, along with its a, b coe�cients. When this tree

needs to be appended by the variation operator, four nodes are added on top of its root,
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apply LS to each tree

while parsing L
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Figure 4.3: Illustration of SB-based GP variation using LS within library search. From left

to right: the desired output d is computed for a node (in yellow). Library search retrieves

the tree (in green) with output that, scaled by a, b, best matches d. The yellow node is

replaced, and a structure is incorporated to account for the scaling (in pink).

namely two constants with value a and b respectively, an addition and a multiplication

node, to e�ectively incorporate the scaling in the structure of the tree. Figure 4.3 illustrates

this procedure.

The computation time taken by LS is O(n), and it is additive with respect to the time

taken to compute the distance between the output of a tree in the library and d. Therefore,

the library search bound remainsO(|L |n). In practice, some adjustments can be made to

reduce computations. Once the library is created, the mean of each tree output ō can be

cached, as well as the terms (oi − ō) (see Eq. 4.2). Furthermore, the mean of the desired

output d̄, and the terms (di − d̄) can be computed only once, before starting the library

search. This way, the only operation with cost linear in n that is left to do when searching

is the computation of the numerator of b in Equation 4.2.

Lastly, when using LS within library search, we also change the way a competing

constant is computed: we set the constant to the optimal value, i.e., d̄.

4.6. Experimental setup

The parameter settings for GP are reported in Table 4.1, and are typical settings used in

literature ([2], related work of Sec. 4.3). The function ÷AQ is the analytic quotient [17],

which allows for smooth division with no discontinuities (the denominator can never be-

come 0). The inversions for the functions considered are reported in Table 4.2. Note that

in the inversion of ÷AQ for aj , we return only the positive value. The terminal set in-

cludes an Ephemeral Random Constant (ERC) [2], that has the e�ect of generating nodes

with randomized constant output. These constant outputs are sampled uniformly in the

interval de�ned by the minimum and maximum value (available at training time) of the

features.

Together with SB-based GP using RDO, we consider as a baseline GP with standard

subtree crossover and subtree mutation operators (SGP) [1, 2], respectively applying them

on 90% and 10% of the population every generation. Like for RDO, the nodes to swap/mutate

are chosen with equal depth probability, as in [4].

The operators of SGP take much less computation time compared to RDO (essentially

O(1)), in particular because the latter requires to build the library of trees, and performs

SB and library search. Therefore, we consider both a limit of 100 generations and a time-

dependent limit of 1000 seconds. As time-based comparisons can very much depend on
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Table 4.1: Parameter settings of GP.

Parameter Setting

# Generations / time limit 100 / 1000 s

Population size 500
Function set {+,−,×,÷AQ}
Terminal set Features ∪ ERC

ERC sample method U[min(Features), max(Features)]
Initialization Ramped Half-Half 2–6

Maximum tree height 12

Maximum number of nodes 500

Selection Tournament 4 & Elitism 1

Variation RDO with rate 1.0

Intermediate output caching Active

implementation details, we attempt to boost their �delity by developing all algorithms in

the same C++ code base, which can be found at: https://goo.gl/UbFFSU.

We consider ten real-world benchmark regression datasets, with variable numbers of

examples and features, as reported in Table 4.3. The datasets Dow chemical and Tower

are recommended as benchmarks in [18]. The others are often used in GP literature and

come from the UCI machine learning repository
1
. These datasets can be considered “well-

behaved”, in that over�tting to the training typically happens only if very complicated

models are learned, or functions with discontinuities are used (e.g., protected division [1]).

We adopt a typical 75%-25% random splitting of the examples into training and test set for

a given run.

Each experiment consists of 30 independent runs. To assess if the results of one experi-

ment are signi�cantly better or worse than the ones of another, we use the non-parametric

Wilcoxon signed-rank test [19], pairing runs by random seed. The random seed deter-

mines the train-test split and the sampling of the initial population. We say a result is

signi�cant if the p-value of the statistical test is below a threshold τ . We use τ = 0.05,

and further apply the Bonferroni correction method, to prevent false positive claims [19].

We run the experiments on a machine with two Intel
®

Xeon
®

CPU E5-2699 v4 @

2.20GHz, and 630 GB of RAM. Big amounts of memory are needed to use the intermediate

output caching, as single runs can already employ a few GB of memory.

Table 4.2: Functions considered and their inversions.

Function Direct Inversion(s)

+ ai + aj = o ai = o− aj

− ai − aj = o ai = o + aj , aj = ai − o
× ai × aj = o ai = o/aj if o, aj 6= 0

∗ if o, aj = 0
impossible if o 6= 0, aj = 0

÷AQ ai/
√

1 + a2
j = o ai = o×

√
1 + a2

j

aj = +
√

(ai/o)2 − 1 if o 6= 0, (ai/o)2 ≥ 1
impossible if o = 0 or (ai/o)2 < 1

1https://archive.ics.uci.edu/ml/index.php

https://goo.gl/UbFFSU
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Table 4.3: Real-world benchmark datasets.

(Abbreviation) Name Examples (n) Features Variance of y Link

(A) Airfoil 1503 5 4.756 · 10 goo.gl/uNMLv3

(B) Boston housing 506 13 8.442 · 10 goo.gl/KxCnq1

(C) Concrete strength 1030 8 2.788 · 102
goo.gl/Gjq9oN

(D) Dow chemical 1066 57 1.228 · 10−1
goo.gl/9D2z3b

(Ec) Energy cooling 768 8 9.039 · 10 goo.gl/ANV6dW

(Eh) Energy heating 768 8 1.017 · 102
goo.gl/ANV6dW

(T) Tower 4999 26 6.518 · 10−1
goo.gl/9D2z3b

(Wr) Wine red 1599 11 7.842 · 10−1
goo.gl/inDsCE

(Ww) Wine white 4899 11 7.702 · 103
goo.gl/inDsCE

(Y) Yacht hydrodynamics 308 6 2.291 · 102
goo.gl/cmkRor

4.7. Results

We proceed by showing the results of the following experiments. Firstly we consider

whether using LS in synergy with SB is bene�cial compared to using it independently.

Secondly, we compare all con�gurations of SB-based GP with SGP, by �xing the maximum

number of generations, and observing the time taken. Thirdly, we repeat the previous

experiment, but this time using a �xed time budget, to take into account computational

expensiveness.

4.7.1. Independent vs. synergistic linear scaling with semantic back-

propagation

Table 4.4 shows the median error obtained by end-of-run best trees found using SB-based

GP without LS (noLS), with LS but independently from SB (iLS), and with LS in syn-

ergy with SB (sLS), after 100 generations. The results are reported in terms of variance-

Normalized MSE (NMSE), given by dividing the MSE by the variance of the dependent

variable y, to have results of similar order of magnitude, and multiplying by 100.

Evidently, iLS has much better training and test performance compared to noLS. This is

always signi�cant with respect to training NMSE, and is also signi�cant on all datasets but

for Boston at test time. However, to use LS in synergy with SB is even better, signi�cantly

outperforming both noLS (all cases) and iLS on 8/10 datasets both at training and test time.

Our hypothesis that using LS in synergy with SB is bene�cial is therefore experimentally

con�rmed.

4.7.2. SB-based GP vs. standard GP

The next results regard the comparison between SB-based GP and SGP, with and without

using LS to scale the error and within library search.

Budget of 100 generations

Figure 4.4 shows, for each dataset, the evolution of the best training �tness for SGP, SGP

with LS (SGP+LS), SB-based GP with traditional RDO (RDO), RDO using LS in synergy

during backpropagation (RDO+LS), RDO using LS within library search (RDO
xLS

), and RDO

using both LS in synergy with backpropagation and within library search (RDO
xLS

+LS
).
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Table 4.4: Training and test median NMSEs for SB-based GP without LS (noLS), with LS

used independently (iLS), and with LS used in synergy with SB (sLS). Underlined results

are best in that no other is signi�cantly better.

Train NMSE Test NMSE

noLS iLS sLS noLS iLS sLS

A 41 29 22 43 32 29

B 27 17 14 27 21 16

C 34 19 15 37 21 18

D 71 29 20 69 28 21

Ec 9.9 6.9 4.9 8.7 7.1 5.4

Eh 6.8 4.0 5.4 8.7 6.2 7.1

T 16 14 13 17 14 14

Wr 69 63 60 65 63 62

Ww 75 69 67 78 71 70

Y .62 .44 .40 .94 .62 .61

# Best 0 2 10 0 2 10

RDO and SGP are complementary: one is better than the other on half cases. However,

on Tower and Yacht, SGP has much larger errors. In some cases (Airfoil, Boston, Concrete,

Wine white, Yacht), it is noticeable that the error of SGP levels o� less markedly than the

one of RDO, thus a larger generational budget may favor SGP. RDO+LS is better than SGP+LS

on all datasets but Yacht.

RDO
xLS

and RDO
xLS

+LS
are consistently the best performing, with the second reaching

slightly smaller errors than the �rst. Moreover, both algorithms have smaller variances

than RDO(+LS). This is because the use of LS within library search (xLS) dynamically adapts

the library to the desired output that is searched. Without xLS, the expressiveness of the

library is more aleatory as it completely depends on the subtrees from the population.

Table 4.5 shows training and test NMSEs of end-of-run best trees. The training errors

re�ect what already seen in Figure 4.4. Test errors are typically similar to training ones,

for all the algorithms. RDO
xLS

+LS
is the best performing, while RDO

xLS

is the second best.

On Wine red at test time, SGP+LS is preferable over RDO
xLS

+LS
, which indicates that the latter

over�ts (slightly).

Time taken by 100 generations

Figure 4.5 show the time taken to perform 100 generations for the algorithms. The di�er-

ence between the times taken by SGP and SGP+LS and the various con�gurations of RDO

is very large. For Yacht, that has 308 examples, RDO takes around 20 times longer than

SGP(+LS); For Tower, that has 4999 examples, RDO takes around 100 times longer than

SGP(+LS). This result strongly motivates the need for a time-based comparison between

SGP and RDO con�gurations, for fairness.

The use of LS in addition to RDO, or within library search, does, on average, increase

running times. However, these running times are not too dissimilar if put in perspective

to the times taken by SGP(+LS). This is expected because +LS and xLS do not a�ect com-

putational time bounds. RDO and RDO+LS have larger variations (some of the extreme

time points of RDO are considered outliers). These variations in time are linked to the

variations already seen in terms of �tness (e.g., see the Energy datasets in Fig. 4.4).
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Figure 4.4: Median best training NMSE (25th and 75th percentiles within shaded area) in

100 generations.

Table 4.5: Training and test median NMSEs, for the experiments with a budget of 100

generations. Underlined results are best in that no other is signi�cantly better.

Train NMSE Test NMSE
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A 59 30 41 22 16 15 60 32 43 29 20 19

B 25 17 27 14 10 9.4 23 17 27 16 16 14

C 29 17 34 15 13 12 30 20 37 18 15 15

D 69 23 71 20 15 13 65 23 69 21 16 15

Ec 12 10 9.9 4.9 2.9 2.8 11 9.0 8.7 5.4 3.4 3.2

Eh 8.0 5.7 6.8 5.4 .35 .32 10 7.6 8.7 7.1 .50 .40

T 36 15 16 13 8.6 7.5 36 15 17 14 10 9.5

Wr 67 61 69 60 57 57 65 62 65 62 62 65

Ww 73 68 75 67 64 63 75 70 78 70 69 68

Y 1.5 .31 .62 .40 .14 .13 1.9 .40 .90 .60 .30 .30

# Best 0 0 0 0 1 10 0 1 0 1 4 8
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All datasets

Tower (T)

Yacht (Y)

Figure 4.5: Time (seconds) to complete 100 generations. Left: Mean time over all datasets;

Right: Time by the 30 runs on Tower (top), and Yacht (bottom); Boxes extend from the

25th to the 75th percentiles (inner bar is the 50th), whiskers from the 10th to the 90th.

Diamonds are outliers.
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Budget of 1000 seconds

The evolution of the best training �tness in time is reported in Figure 4.6, for each dataset

and algorithm. The conclusions that can be drawn from these results are di�erent from the

ones based on a generational limit. For SGP, the use of a time limit of 1000 seconds seems

more appropriate than the limit of 100 generations, since the �tness tends to plateau more

in this case (this is particularly evident for the smallest dataset Yacht).

Now, RDO performs markedly worse than SGP, and RDO+LS is also worse than SGP+LS ,

with the latter typically achieving close performance to RDO
xLS

. While in a time-based

comparison RDO performs quite poorly, it is interesting to see that, instead, RDO
xLS

and

RDO
xLS

+LS
still perform very well. Indeed, the inclusion of LS within library search makes

variation so e�ective that, even if library search itself becomes slower, �tter trees are

discovered sooner. While it is perhaps not surprising that xLS makes variation improve,

it is interesting to see the extent of this improvement.

Table 4.6 summarizes both training and test NMSEs of end-of-run best trees. The tests

for statistical signi�cance con�rm what already seen in the training �tness convergence

plots of Figure 4.6: RDO
xLS

+LS
is the top performing algorithm, followed by RDO

xLS

. In terms

of error magnitudes, SGP+LS is relatively close to RDO
xLS

and RDO
xLS

+LS
(yet often signi�-

cantly worse), compared to SGP and RDO w/o LS.

When it comes to generalization, RDO
xLS

+LS
is still preferable, as it is signi�cantly worse

than another algorithm only on 2 datasets, by relatively small magnitudes. SGP+LS leads

to very good generalization on 3 out of 10 datasets, indicating that RDO
xLS

+LS
, which was

better at training time, delivered slightly over�tted trees.

All in all, our results show that scaling the trees during library search is extremely

valuable for RDO. In addition, to consider LS when backpropagating, i.e., RDO
xLS

+LS
, gives a

further edge.

4.8. Discussion

We showed that a comparison between RDO and SGP on real-world datasets strongly de-

pends on how this comparison is framed. With a typical budget of 100 generations, the

algorithms perform complementarily. Instead, when the comparison is framed in terms of

time, RDO performs worse than SGP. Our proposal of incorporating LS within the mech-

anisms of RDO makes the algorithm much more e�ective even if extra computations take

place, and makes it capable of outperforming all the other algorithms.

We now discuss some limitations of this chapter. To begin, we used typical parameter

settings. One may wonder whether our �ndings do generalize to other con�gurations.

Population sizing is perhaps the most interesting aspect to consider [20], especially when

using a population-based library (as it uses all subtrees with unique output from the popu-

lation). If a library is large enough, i.e., if it has enough representative power, the adoption

of LS may become redundant. However, because LS applies a linear transformation that

is optimal, we argue that populations and libraries will likely need to grow too big to be

practically usable to compete with LS. As to other parameters, we believe that the magni-

tude of our results, as well as the small variances found along the runs, strongly indicate

that the use of LS within library search will remain bene�cial for many other parameter

settings.
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Figure 4.6: Median best training NMSE (25th and 75th percentiles within shaded area) in

1000 seconds.

Table 4.6: Training and test median NMSEs, for the experiments with a budget of 1000

seconds. Underlined results are best in that no other is signi�cantly better.

Train NMSE Test NMSE
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A 27 19 41 23 17 16 32 22 44 30 20 20

B 13 9.0 25 13 10 8.7 17 14 26 15 16 14

C 16 13 30 15 12 12 18 16 37 19 15 15

D 38 14 71 20 15 13 43 16 68 22 16 15

Ec 3.8 3.3 8.5 4.7 2.8 2.6 4.8 3.8 7.4 5.6 3.4 3.2

Eh 1.2 .77 6.5 4.1 .33 .28 1.5 .91 8.4 5.4 .45 .35

T 22 11 23 18 10 9.0 22 12 23 19 12 11

Wr 60 58 69 60 57 57 63 62 65 62 62 63

Ww 68 66 76 68 66 66 70 69 79 70 69 69

Y .27 .16 .50 .35 .12 .10 .49 .33 .80 .55 .35 .33

# Best 0 0 0 0 2 10 0 3 0 2 4 8
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Another limit of our approach, in particular of using LS within library search, is the

growth of tree size. Any time a tree is retrieved from the library, four nodes are added to

incorporate the e�ect of LS. Larger trees are slower to evaluate (and require more memory

to cache intermediate outputs), and are also less likely to lead to interpretable expressions.

Interpretability of machine learning models can be a relevant aspect for practical applica-

tions, e.g., in healthcare [13, 21]. By including LS within library search, we did �nd trees

to grow bigger, with the best trees found by RDO
xLS

+LS
being on average 1.1 times larger

than the the ones found by SGP+LS in the time-based comparison. We claim that this dif-

ference in size is largely unimportant. Both algorithms deliver quite big trees anyway,

with approximately 325 nodes for SGP+LS and 360 nodes for RDO
xLS

+LS
, on average. From

a performance perspective, the increment in time taken to evaluate a larger tree is lim-

ited, but may become noticeable for much larger datasets than the ones we considered.

As to interpretability, the algorithms deliver trees that are equivalently too large to result

in interpretable expressions. Future work may therefore focus on reducing tree size, e.g.,

by exploring the inclusion of bloat control methods [22], or by expressing preference for

smaller trees as a secondary objective [23]. However, if having trees with only a few dozen

nodes is truly desired, we believe substantially di�erent approaches to GP may need to be

taken, such as modern model-based GP (Chapters 2 and 3).

Another aspect worth investigating is the use of more e�cient data structures to im-

plement the library. In [6], k-d trees are used [24, 25]. We did experiments with this data

structure, and although searching k-d trees may not be quick for datasets with many ex-

amples [25], we did observe speed ups for the datasets we considered. Unfortunately, LS

cannot be used within k-d tree search. This is because a k-d tree is built exploiting the

�xed distribution of tree outputs, to cut exploration branches when searching. To apply

LS means to dynamically change such a distribution.

We did experiments with adopting k-d trees jointly with the computation of only the

optimal translation coe�cient a. This can be achieved by (i) Subtracting the mean of the

output o of each library tree prior to building the k-d tree; (ii) Subtracting the mean of the

desired output d prior to k-d tree search; (iii) Incorporating the addition of a = d̄− ō to the

tree returned by the search. This achieves the optimal translation (see Eq 4.2). However,

we found this to be less e�ective than using LS (which also computes b) within traditional

library search. To �nd an e�cient data structure that enables the use of LS or of a similarly

powerful method, as well as investigating code parallelization, may allow to use SB-based

GP for large scale symbolic regression.

4.9. Conclusion

We presented the use of Linear Scaling (LS) in synergy with Semantic Backpropagation

(SB), and within library search, in Genetic Programming (GP) for symbolic regression.

We validated the proposed adaptations on ten real-world datasets, comparing various GP

con�gurations using a generational and a time budget. We found that incorporating LS

within SB-based GP leads to much lower errors in both cases, and outperforms the use of

traditional variation operators. Lastly, the cost incurred by our adaptations is limited, as

the asymptotic time bounds of SB-based GP remain unchanged.
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5
Explainable Machine Learning by

Evolving Crucial and Compact
Features

Feature construction can substantially improve the accuracy of Machine Learning (ML) al-

gorithms. Genetic Programming (GP) has been proven to be e�ective at this task by evolving

non-linear combinations of input features. GP additionally has the potential to improve ML

explainability since explicit expressions are evolved. Yet, in most GP works the complexity

of evolved features is not explicitly bound or minimized though this is arguably key for ex-

plainability. In this chapter, we assess to what extent GP still performs favorably at feature

construction when constructing features that are (1) Of small-enough number, to enable visu-

alization of the behavior of the ML model; (2) Of small-enough size, to enable interpretability

of the features themselves; (3) Of su�cient informative power, to retain or even improve the

performance of the ML algorithm. We consider a simple feature construction scheme using

three di�erent GP algorithms, as well as random search, to evolve features for �ve ML al-

gorithms, including support vector machines and random forest. Our results on 21 datasets

pertaining to classi�cation and regression problems show that constructing only two compact

features can be su�cient to rival the use of the entire original feature set. We further �nd

that a modern GP algorithm, GP-GOMEA, performs best overall. These results, combined

with examples that we provide of readable constructed features and of 2D visualizations of

ML behavior, lead us to positively conclude that GP-based feature construction still works well

when explicitly searching for compact features, making it extremely helpful to explain ML

models.

The contents of this chapter are based on the following publication: M. Virgolin, T. Alderliesten, and P.A.N. Bosman. On

explaining machine learning models by evolving crucial and compact features. Swarm and Evolutionary Computation 53, pp.

100640, Elsevier (2020).
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Figure 5.1: Regression surface learned by SVM for the Yacht dataset (in blue), expressed as

a 2D function of the two features (on the bottom axes) constructed by our approach. Circles

are training samples, diamonds are test samples. The dataset has six features (x(i)
). Our

approach constructs two new features (using GP-GOMEA, see Sec. 5.4.1), which are non-

linear transformations of the prismatic coe�cient (x(2)
) and the Froude number (x(6)

).

With only two features the SVM prediction surface can be visualized. Moreover, these

new features are understandable. Finally, the modeling quality is actually improved over

employing SVM directly on all six features. The coe�cient of determination of SVM in-

creased from 85% using the original features to 98% using the two new features.

5.1. Introduction

Feature selection and feature construction are two important steps to improve the per-

formance of any Machine Learning (ML) algorithm [1, 2]. Feature selection is the task

of excluding features that are redundant or misleading. Feature construction is the task

of transforming (parts of) the original feature space into one that the ML algorithm can

better exploit.

A very interesting method to perform feature construction automatically is Genetic

Programming (GP) [3, 4]. GP can synthesize functions without many prior assumptions on

their form, di�erently from, e.g., logistic regression or regression splines [5, 6]. Moreover,

feature construction not only depends on the data at hand, but also on the way a speci�c

ML algorithm can model that data. Evolutionary methods in general are highly �exible in

their use due to the way they perform search (i.e., derivative free). This makes it possible,

for example, to evaluate the quality of a feature for a speci�c ML algorithm by directly

measuring what its impact is on the performance of the ML algorithm (i.e., by training

and validating the ML algorithm when using that feature).
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Explaining what constructed features mean can shed light on the behavior of ML-

inferred models that use such features. Reducing the number of features is also important

to improve interpretability. If the original feature space is reduced to few constructed

features (e.g., up to two for regression and up to three for classi�cation), the function

learned by the ML model can be straightforwardly visualized with respect to the new

features. In fact, how to make ML models more understandable is a key topic of modern

ML research, as many practical, sensitive applications exist, where explaining (part of) the

behavior of ML models is essential to trust their use (e.g., in medical applications) [7–10].

Typically, GP for feature construction searches in a subspace of mathematical expressions.

Adding to the appeal and potential of GP, these expressions can be human-interpretable

if simple enough [8, 11].

Figure 5.1 presents an example of the potential held by such an approach: a multi-

dimensional dataset transformed into a 2D one, where both the behavior of the ML al-

gorithm and the meaning of the new features is clear, while the performance of the ML

algorithm is not compromised with respect to the use of the original feature set (it is ac-

tually improved).

In this chapter we study whether GP can be useful to construct a low number of small

features, to increase the chance of obtaining interpretable ML models, without compro-

mising their accuracy (compared to using the original feature set). To this end, we design

a simple, iterative feature construction scheme, and perform a wide set of experiments:

we consider four types of feature construction methods (three GP algorithms and random

search), �ve types of machine learning algorithms. We apply their combinations on 21

datasets between classi�cation and regression to determine to what extent they are ca-

pable of e�ectively and e�ciently �nding crucial and compact features for speci�c ML

algorithms.

The main original scienti�c contribution of this work is an investigation of whether

GP can be used to construct features that are:

• Of small-enough number, to enable visualization of the behavior of the ML model;

• Of small-enough size, to enable interpretability of the features themselves;

• Of su�cient informative power, to retain or even improve the performance of the

ML, compared to using the original feature set;

These aspects are assessed under di�erent circumstances:

• We test di�erent search algorithms, including modern model-based GP and random

search;

• We test di�erent ML algorithms.

The remainder of this chapter is organized as follows. Related work is reported in

Section 5.2. The proposed feature construction scheme is presented in Section 5.3. The

search algorithms to construct features, as well as the considered ML algorithms, are pre-

sented in Section 5.4. The experimental setup is described in Section 5.5. Results related to

performance are reported in Section 5.6 and 5.7, while results concerning interpretability

are reported in Section 5.8. Considerations on running time are presented in Section 5.9.

Section 5.10 discusses our �ndings, and Section 5.11 concludes this chapter.
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5.2. Related work

In this chapter, we consider GP for feature construction to achieve better explainable ML

models. Di�erent forms of GP to obtain explainable ML have been explored in literature,

but they do not necessarily leverage feature construction. For example, [12] introduced a

form of GP for the automatic synthesis of interpretable classi�ers, generated from scratch

as self-contained ML models, made of IF-THEN rules. A very di�erent paradigm for ex-

plainable ML by GP is considered in [13], where the authors explore the use of GP to

recover the behavior of a given unintelligible classi�er by evolving interpretable approxi-

mation models. Other GP-based approaches and paradigms to synthesize interpretable ML

models from scratch, or to approximate the behavior of pre-existing ML models by inter-

pretable expressions, are reported in recent surveys on explainable arti�cial intelligence

such as [8, 9].

Since in this chapter we particularly study what the potential of GP for feature con-

struction is in terms of added value for explaining complex, not directly explainable mod-

els learned by various popular ML algorithms, the related work that follows describes GP

approaches for feature construction. For readers interested in feature selection, we refer

to a recent survey [14].

One of the �rst approaches of GP for feature construction is presented in [15]. There,

each GP solution is a set of K features. The �tness of a set is the cross-validation perfor-

mance of a decision tree [16] using that set. The results on six classi�cation datasets show

that the approach is able to synthesize a feature set that is competitive with the original

one, and can also be added to the original set for further improvements. No attention is

however given to the interpretability of evolved features.

The work in [17] generates one feature with Standard, tree-based GP (SGP) [3], to be

added to the original set. Feature importance metrics of decision trees such as information

gain, Gini index and Chi2 are used as �tness measure. An advantage of using such �tness

measures over ML performance is that they can be computed very quickly. However,

they are decision tree-speci�c. Results show that the approach can improve prediction

accuracy, and, for a few problems, it is shown that decision trees that are simple enough

to be reasonably interpretable, can be found.

Feature construction for high-dimensional datasets is considered in [18], for eight bio-

medical binary classi�cation problems, with 2,000 to 24,188 features. This approach is

di�erent from the typical ones, as the authors propose to use SGP to evolve classi�ers

rather than features, and extract features from the components (subtrees) of such clas-

si�ers. These are then used as new features for an ML algorithm. Results on K-Nearest

Neighbors [19], Naive Bayes classi�er [20, 21], and decision tree show that a so-found fea-

ture set can be competitive or outperform the original one. The authors show an example

where a single interpretable feature is constructed that enables linear separation of the

classi�cation examples.

Di�erent from the aforementioned works, [22] explores feature construction for re-

gression. A SGP-based approach is designed to tackle regression problems with a large

number of features, and is tested on six datasets. Instead of using the constructed features

for a di�erent ML algorithm, SGP dynamically incorporates them within an ongoing run,

to enrich the terminal set. Every α generations of SGP, the subtrees composing the best

solutions become new features by encapsulation into new terminal nodes. The approach
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is found to improve the ability of SGP to �nd accurate solutions. However, the features

found by encapsulating subtrees are not interpretable because allowing subsequent en-

capsulations leads to an exponential growth of solution size.

A recent work that focuses on evolutionary dimensionality reduction and consequent

visualization is [23], where a multi-objective, grammar-based SGP approach is employed.

K feature transformations are evolved in synergy to enable, at the same time, good clas-

si�cation accuracy, and visualization through dimensionality reduction. The system is

thoroughly tested on 42 classi�cation tasks, showing that the algorithm performs well

compared to state-of-the-art dimensionality reduction methods, and it enables visualiza-

tion of the learned space. However, as trees are free to grow up to a height of 50, the

constructed features themselves cannot be interpreted.

The most similar works to ours that we found are [24] and [25]. In [24], which is

our previous work, the possibility of using a modern model-based GP algorithm (which

we also use in our comparisons) for feature construction is explored on four regression

datasets. There, focus is put on keeping feature size small, to actively attempt to obtain

readable features. These features are iteratively constructed to be added to the original

feature set to improve the performance of the ML algorithm, and three ML algorithms are

compared (linear regression, support vector machines [26], random forest [27]). Reducing

the feature space to enable a better understanding of inferred ML models is not considered.

In [25], di�erent feature construction approaches are compared on gene-expression

datasets that have a large number of features (thousands to tens of thousands) to study

if evolving class-dependent features, i.e., features that are each targeted at aiding the ML

algorithm detect one speci�c class, can be bene�cial. Similarly to us, the authors show

visualizations of feature space reduced to up to three constructed features, and an example

of three features that are encoded as very small, easy-to-interpret trees. However, such

small features are a rare outcome as the trees used to encode features typically had more

than 75 nodes. These trees are therefore arguably extremely hard to read and interpret.

Our work is di�erent from previous research in two major aspects. First, none of the

previous work principally addresses the con�icting objectives of retaining good perfor-

mance of an ML algorithm while attempting to explain both its behavior (by dimension-

ality reduction to allow visualization), and the meaning of the features themselves (by

constraining feature complexity). Second, multiple GP algorithms within a same feature

construction scheme, on multiple ML algorithms, are not compared in previous work.

Most of the times, it is a di�erent feature construction scheme that is tested, using ar-

guably small variations of SGP. Here, we consider random search, two versions of SGP, as

well as another modern GP algorithm. Furthermore, we adopt both “weak” ML algorithms

such as ordinary least squares linear regression and the naive Bayes classi�er, as well as

“strong”, state-of-the-art ones, which are rarely used in literature for feature construction,

such as support vector machine and random forest; on both classi�cation and regression

tasks.

5.3. Iterative evolutionary feature construction

We use a remarkably simple scheme to construct features. Our approach constructs K ∈
N+

features by iterating K GP runs. The evolution of the k-th feature (k ∈ {1, . . . ,K})
uses the previously constructed k − 1 features.
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Tr iteration k − 1
x(1)

. . . x(k−1) y
22.49 . . . -3.10 10.4

12.98 . . . -7.41 7.49

. . . . . . . . . . . .

GP

Tr iteration k
. . . x(k−1) x(k) y
. . . -3.10 7.12 10.4

. . . -7.41 9.41 7.49

. . . . . . . . . . . .

Te iteration k
. . . x(k−1) x(k) y
. . . 9.87 1.11 5.55

. . . 6.45 4.78 12.01

. . . . . . . . . . . .

Best New Feature x(k)

ML alg.

Trained Model

Test Error k

Figure 5.2: Construction of the k-th feature and computation of the k-th test error. Evolved

features use the features of the original dataset (not shown) and random constants as

terminal nodes. Dashed arrows represent inputs, solid arrows represent outputs.

5.3.1. Feature construction scheme

The dataset D de�ning the problem at hand is split into two parts: the training Tr and

the test Te set. This partition is kept �xed through the whole procedure. Only Tr is used

to construct features, while Te is exclusively used for �nal evaluation to avoid positive

bias in the results [28]. We use the notation x
(i)
j to refer to the i-th feature value of the

j-th example, and yj for the desired outcome (label for classi�cation or target value for

regression) of the j-th example.

The k-th GP run evolves the k-th feature. An example is shown in Figure 5.2. Each

solution in the population competes to become the new feature x(k)
, that represents a

transformation of the original feature set. In every run, the population is initialized at

random.

We evaluate the �tness of a feature of the k-th run by measuring the performance of

the ML algorithm on a dataset that contains that feature and the previously evolved k− 1
features.

We only use original features (and random constants) as terminals. In particular, the

features constructed by previous iterations are not used as terminal nodes in the k-th run.

This prevents the generation of nested features, which could harm interpretability.

At the end of the k-th run, the best feature is stored and its values x
(k)
j are added to

Tr and Te for the next iterations.

5.3.2. Feature fitness

The �tness of a feature is computed by measuring the performance (i.e., error) of the ML

algorithm when the new feature is added to Tr. We consider the C-fold cross-validation

error rather than the training error to promote generalization and prevent over�tting. The

pseudo code of the evaluation function is shown in Algorithm 5.1.

Speci�cally, the C-fold cross-validation error is computed by partitioning Tr into C
splits. For each c = 1, . . . , C iteration, a di�erent split is used for validation (set V c), and

the remaining C − 1 splits are used for training (set Trc). The mean validation error is

the �nal result.
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For classi�cation tasks, in order to take into account both multiple and possibly imbal-

anced class distributions, the prediction error is computed as 1 minus the macro F1 score,

i.e., 1 minus the mean of the class-speci�c F1 scores:

1− F1 = 1− 1
#classes

∑
γ∈classes

F1γ

= 1− 2
#classes

∑
γ∈classes

TPγ
TPγ+FPγ

TPγ
TPγ+FNγ

TPγ
TPγ+FPγ + TPγ

TPγ+FNγ

,

(5.1)

where TPγ , FNγ , FPγ are the true positive, false negative, and false positive classi�ca-

tions for the class γ, respectively. If the computation of F1γ results in
0
0 , we set F1γ = 0.

For regression, the prediction error is computed with the Mean Squared Error (MSE).

Algorithm 5.1 Computation of the �tness of a feature s

1 function ComputeFeatureFitness(s)
2 Tr′ ←AddFeatureToCurrentTrainingSet(s)
3 error ← 0
4 for c = 1, . . . , C do
5 T c, V c ←SplitSet(c, C, Tr′)
6 M ←TrainMLModel(T c)
7 error ← error+ComputeError(M,V c)

8 Return

(
error
C

)

5.3.3. Preventing unnecessary fitness computations

Computing the �tness of a feature is particularly expensive, as it consists of a C-fold

cross-validation of the ML algorithm. This limits the feasibility of, e.g., adopting large

population sizes and large numbers of evaluations for the GP algorithms.

We therefore attempt to prevent unnecessary cross-validation calls, by assessing if

features meet four criteria. Let n be the number of examples in Tr. The criteria are the

following:

1. The feature is not a constant. We avoid evaluating constant features as they are

likely to be useless for many ML algorithms, which internally already compute an

intercept.

2. The feature does not contain extreme values that may cause numerical errors, i.e., with

absolute value above a lower-bound β` or above an upper-bound βu. Here, we set

β` = 10−10
, and βu = 1010

(none of the datasets considered here have values

exceeding these bounds).

3. The feature is not equivalent to one constructed in the previous k−1 iterations. Equiv-

alence is determined by checking the values available in Tr, i.e., equivalence holds

if:

∀j ∈ Tr,∃i ∈ {1, . . . , k − 1} : x(k)
j = x

(i)
j . (5.2)
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Note that a constructed feature that is equivalent to a feature of the original fea-

ture set can be valid, as long as no other previously constructed feature exists that

is already equivalent. Thus, our approach can in principle perform pure feature

selection.

4. The values of the feature in consideration have changed since the last time the feature

was evaluated. GP variation can change the syntax of a feature without necessar-

ily a�ecting its behavior (e.g., inserting a multiplication by 1 will not change the

�nal values a feature computes). If the values do not change, then the �tness of

the feature will not change either (see Sec. 5.3.2). We therefore avoid unnecessary

re-computations of feature �tnesses, by caching the feature values prior to GP vari-

ation, and checking whether they have changed after variation.

The computational e�ort for each criterion is O(n) (it is O((k − 1)n) for criterion 3,

however in our experiments k � n). The �tness of a feature failing criterion 1, 2, or 3 is

set to the maximum possible error value. If criterion 4 fails, the �tness remains the same

(although performing cross-validation may lead to slightly di�erent results when using

stochastic ML algorithms like random forest).

5.4. Considered search algorithms and machine learn-

ing algorithms

We consider SGP, Random Search (RS), and the GP instance of the Gene-pool Optimal

Mixing Evolutionary Algorithm (GP-GOMEA) as competing search algorithms to con-

struct features. SGP is widely used in feature construction (see related work in Sec. 5.2).

RS is not typically considered, yet we believe it is important to assess whether evolution

does bring any bene�t over random enumeration within the con�nes of our study, i.e.,

when forcing to �nd small features. GP-GOMEA is a recently introduced GP algorithm

that has proven to be particularly pro�cient in evolving accurate solutions of limited size

(Chapters 2 and 3, and [24]).

As ML algorithms, we consider the Naive Bayes classi�er (NB), ordinary least-squares

Linear Regression (LR), Support Vector Machines (SVM), Random Forest (RF), and eXtreme

Gradient Boosting (XGB). NB is used only for classi�cation tasks, LR only for regression

tasks, SVM, RF, and XGB for both tasks. We provide more details in the following sections.

5.4.1. Details on the search algorithms

All search algorithms use the �tness evaluation function. A feature s is evaluated by �rst

checking whether the four criteria of Section 5.3.3 are met, and then, if the outcome is

positive, by running the ML algorithm over the feature-extended dataset.

For SGP, we use subtree crossover and subtree mutation, picking the depth of subtree

roots uniformly randomly as proposed in [29]. The candidate parents for variation are

chosen with tournament selection. Since we are interested in constructing small features

so as to increase the chances they will be interpretable, we consider two versions of SGP.

The �rst is the classic one where solutions are free to grow to tree heights typically much

larger than the one used for tree initialization. In the following, the notation SGP refers to



5.4. Considered search algorithms and machine learning algorithms

5

103

this �rst version. The second one uses trees that are not allowed to grow past the initial

maximum tree height. We call this version bounded SGP, and use the notation SGPb.

RS is realized by continuously sampling and evaluating new trees, keeping the best [3].

Like for SGPb, a maximum tree height is �xed during the whole run. If evolution is hy-

pothetically no better than RS, then we expect that SGPb and GP-GOMEA will construct

features that are no better than the ones constructed by RS.

GP-GOMEA is a recently introduced GP algorithm that has been found to deliver ac-

curate solutions of small size on benchmark problems (Chapter 2), and to work well when

a small size is enforced in symbolic regression (Chapter 3 and [24]). GP-GOMEA uses a

tree template �xed by a maximum tree height (which can include intron nodes to allow

for unbalanced tree shapes) and performs homologous variation, i.e., mixed tree nodes

come from the same positions in the tree. Each generation prior to mixing, a hierarchi-

cal model that captures interdependencies (linkage) between nodes is built (using mutual

information). This model, called Linkage Tree (LT), drives variation by indicating what

nodes should be changed en block during mixing, to avoid the disruption of patterns with

large linkage.

The LT has been shown to enable GP-GOMEA to outperform subtree crossover and

subtree mutation of SGP, as well as the use of a randomly-build LT, i.e., the Random Tree

(RT), on problems of di�erent nature (Chapters 2 and 3). However, the LT requires su�-

ciently large population sizes to be accurate and bene�cial (e.g., several thousand solutions

in GP for symbolic regression), as discussed in Chapter 3. Because in the framework of

this chapter �tness evaluations use the cross-validation of a ML algorithm, we cannot af-

ford to use large population sizes. Accordingly, we found the adoption of the LT to not be

superior to the adoption of the RT under these circumstances in preliminary experiments.

Therefore, for the most part, we adopt GP-GOMEA with the RT (GP-GOMEART). This

means we e�ectively compare random hierarchical homologous variation with subtree-

based variation. An example of adopting the LT and large population sizes for feature

construction is provided in Section 5.10.

5.4.2. Details on the ML algorithms

We now brie�y describe the ML algorithms used in this work: NB, LR, SVM, RF, and

XGB. NB and LR are less computationally expensive compared to SVM, RF, and XGB.

Details on the computational time complexity of these algorithms are reported at: https:

//bit.ly/2PG0xse.

NB is a classi�er which assumes independence between features [20, 21]. NB is often

used as a baseline, as it is simple and fast to train. We use the mlpack implementation of

NB [30] and assume the data to be normally distributed (default setting).

Similarly to NB, LR is often used as a baseline as it is simple and fast, for regression

tasks. LR assumes that the target variable can be explained by a linear combination of the

features [20]. We use the mlpack implementation of LR [30].

SVM is a powerful ML algorithm that can be used for non-linear classi�cation and

regression [26, 31]. We use the libsvm C++ implementation [31]. We consider the Radial

Basis Function (RBF) kernel, which works well in practice for many problems, with C-SVM

for classi�cation, and E-SVM for regression.

RF is an ensemble ML algorithm which, like SVM, can be used for both classi�cation

https://bit.ly/2PG0xse
https://bit.ly/2PG0xse
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Table 5.1: Parameter settings of the GP algorithms.

SGP(b) GP-GOMEART

Population size 100 100
Initialization method Ramped Half and Half Half and Half

Initialization max tree height 2–6 (2 or 4) 2 or 4
Max tree height 17 (2 or 4) 2 or 4
Variation SX 0.9, SM 0.1 Parameter-less

Selection Tournament 7, Elitism 1 Parameter-less

Function set {+,×,−,÷, ·2,
√
·, logp, exp} for all

Terminal set {x(i), ERC} for all

and regression and can infer non-linear patterns [27]. RF builds an ensemble of (typically

deep) decision trees, each trained on a sample of the training set (bagging). At prediction

time, the mean (or maximum agreement) prediction of the decision trees is returned. We

use the ranger C++ implementation [32].

XGB is, like RF, an ensemble ML algorithm, typically based on decision trees, and

capable of learning non-linear models [33]. XGB works by boosting, i.e., stacking together

multiple weak estimators (small decision tress) that �t the data in an incremental fashion.

We use the dmlc C++ implementation (https://bit.ly/34fBNeA).

5.5. Experiments

We perform 30 runs of our Feature Construction Scheme (FCS), with SGP, SGPb, RS, and

GP-GOMEART, in combination with each ML algorithm (NB only for classi�cation and

LR only for regression), on each problem. Each run of the FCS uses a random train-test

split of 80%-20%, and considers up to K = 5 features construction rounds. We use a

population size of 100 for the search algorithms, and assign a maximum budget of 10, 000
function evaluations to each FCS iteration. This results in relatively large running times

for complex ML algorithms (see Sec. 5.9). An experiment including larger evolutionary

budgets and the use of the LT in GP-GOMEA is presented in the discussion (Sec. 5.10). We

use a limit on the total number of evaluations instead of a a limit on the total number of

generations because GP-GOMEART performs more evaluations than SGP per generation

(see, e.g., Sec. 3.8.1).

For GP-GOMEART, SGPb, and RS, we consider two levels of maximum tree height h: 2

and 4. This choice yields a maximum solution size of 7 and 31 respectively (using function

nodes with a maximum arity r = 2). We choose these two height levels because we found

features with h = 2 to be arguably easy to read and interpret, whereas features with h = 4
can already be very hard to understand. This indication is also reported in Chapter 3 for

the evolution of symbolic regression formulas. Note that using a tree height limit over

a solution size limit prevents �nding deep trees containing the nesting of the arguably

more complicated to understand non-linear functions ·2,
√
·, logp, exp. We do not consider

bigger tree heights as resulting features may likely be impossible to interpret, defying a

key focus of this work.

https://bit.ly/34fBNeA
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Other parameter settings used for the GP algorithms are shown in Table 5.1. SGPb

uses the same settings as SGP, except for the maximum tree height (at initialization and

along the whole run), which is set to the same of GP-GOMEART. In GP-GOMEART we

use the Half and Half (HH) tree initialization method instead of the Ramped Half and Half

(RHH) [3] commonly used for SGP. This proved to be bene�cial since GOM varies nodes

instead of subtrees [11, 24]. For both HH and RHH, syntactical uniqueness of solutions

is enforced for up to 100 tries [3]. In GP-GOMEART we additionally avoid sampling trees

having a terminal node as root by setting the minimum tree height of the grow method

to 1. This is not done for SGP and SGPb, because di�erently from GP-GOMEART where

homologous nodes are varied, subtree root nodes for subtree crossover (SX) and subtree

mutation (SM) are chosen uniformly randomly. RS samples new trees using the same

initialization method as SGPb, i.e., RHH.

The division operator ÷ used in the function set is the analytic quotient operator

(a÷ b = a/
√

1 + b2), which was shown to lead to better generalization performance than

protected division [34]. The logarithm is protected logp(·) = log(|·|) and logp(0) = 0, and

so is the square root operator. The terminal set contains the original feature set, and an

Ephemeral Random Constant (ERC) [4] with values uniformly sampled between the mini-

mum and maximum values of the features in the original training set, i.e.,

[min x(i)
j ,max x(i)

j ],∀i, j ∈ Tr.

The hyperparameter settings for the SVM, RF and XGB are shown in Table 5.2, and are

mostly default [27, 31, 32] (for XGB, we referred to https://bit.ly/2JCM9x4). NB and LR

implementations do not have hyperparameters.

We consider 10 classi�cation and 10 regression benchmark datasets
1

that can be con-

sidered traditional, i.e, they have small to moderate dimensionality (number of features).

We mostly study this type of dataset because we seek to �nd small constructed features

that can be interpreted. Hence, they can represent a transformation of only a limited

number of original features. Details on the datasets are reported in Table 5.3. Rows with

missing values are omitted. Most datasets are taken from the UCI Machine Learning

repository
2
, with exception for Dow Chemical and Tower, which come from GP litera-

ture [35, 36].

We further consider a very high-dimensional dataset from UCI
3

to assess whether GP

can still be useful to construct features in this type of scenario. The dataset in question

concerns the classi�cation of cancer type, given RNA-Seq gene expression levels as fea-

tures. Five cancer class types are present, and class proportions in the data presents some

unbalance: the class frequencies are 0.37, 0.18, 0.18, 0.17, 0.10. A total of 20,531 features

are considered, in 801 examples. Since large computational resources are needed to handle

this dataset, we consider only NB as ML algorithm for feature construction upon this data.

1
The datasets are available at http://goo.gl/9D2z3b

2http://archive.ics.uci.edu/ml
3https://bit.ly/334KbgW

https://bit.ly/2JCM9x4
http://goo.gl/9D2z3b
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Table 5.2: Salient hyper-parameter settings of SVM, RF, and XGB.

SVM

Kernel RBF

Cost 1

Epsilon 0.1

Tolerance 0.001

Gamma
1
k

Shrinking Active

RF

Number of trees 100

Bagging sampling with replacement

Classi�cation mtry

√
#features

Regression mtry min(1, #features

3 )
Min node size 1 classi�cation, 5 regression

Split rule Gini classi�cation, Variance regression

XGB

Number of trees 100

Booster gbtree

Max depth 6

Objective multiclass softmax, MSE regression

Learning rate 0.3

5.6. Results on traditional datasets

The results of this section aim at assessing whether it is possible to construct few and small

features that lead to an equal or better performance than the original set, and whether

some search algorithms construct better features than others, for the traditional datasets.

5.6.1. General performance of feature construction

We begin by observing the dataset-wise aggregated performance of FCS for the di�erent

GP algorithms and the di�erent ML algorithms, separately for classi�cation and regres-

sion.

Classification

Figure 5.3 shows dataset-wise aggregated results obtained for NB, SVM, RF, and XGB, for

the 10 traditional classi�cation tasks. Each data point is the mean among the dataset-

speci�c medians of macro F1 from the 30 runs.

In general, the use of only one constructed feature does not perform as good as the

use of the original feature set. Constructing more features improves the performance, but

with diminishing returns.

Speci�cally for NB, the use of two constructed features is already preferable to the

use of the original feature set. This is likely due to the fact that NB assumes complete

independence between the provided features, and this can be implicitly tackled by FCS.

SGP (unbounded) is the best performing algorithm as it can evolve arbitrarily complex
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Figure 5.3: Aggregated results on the classi�cation datasets. Horizontal axis: Number of

features. Vertical axis: Average of median F1 score obtained on 30 runs for each dataset.
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LR SVM
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Figure 5.4: Aggregated results on the regression datasets. Horizontal axis: Number of

features. Vertical axis: Average of median R2
score obtained on 30 runs for each dataset.
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Table 5.3: Traditional classi�cation and regression datasets.

Dataset # Features # Examples # Classes

C
l
a
s
s
i
�

c
a
t
i
o

n

Cylinder Bands 39 277 2

Breast Cancer Wisc. 29 569 2

Ecoli 7 336 8

Ionosphere 34 351 2

Iris 4 150 3

Madelon 500 2600 2

Image Segmentation 19 2310 7

Sonar 60 208 2

Vowel 9 990 11

Yeast 8 1484 10

R
e
g

r
e
s
s
i
o

n

Airfoil 6 1503 –

Boston Housing 13 506 –

Concrete 9 1030 –

Dow Chemical 57 1066 –

Energy Cooling 9 768 –

Energy Heating 9 768 –

Tower 26 4999 –

Wine Red 12 1599 –

Wine White 12 4898 –

Yacht 7 308 –

features, however, the magnitude of improvement of the macro F1 score with respect to

GP-GOMEART and SGPb is limited. For h = 4 and K = 5, GP-GOMEART reaches the per-

formance of SGP. GP-GOMEART is typically slightly better than SGPb, and RS has worse

performance. Training and test F1 scores do not di�er much for any feature construction

algorithm, meaning that over�tting is not an issue for NB. Rather, compared to the other

ML algorithms, NB under�ts.

The performance of FCS for SVM has an almost identical pattern to the one observed

for NB, except for the fact that the performance is found to be consistently better. However,

for SVM it is preferable to use the original feature set rather than few constructed features.

This is evident in terms of training performance, but less at test time. In fact, using only 5

constructed features leads to similar test performance compared to using the original set.

The GP algorithms compare to each other similarly to when using NB. Compared to NB,

it can be seen that SVM exhibits larger gaps between training and test results, suggesting

that some over�tting takes place, especially when the original feature set is used.

The way performance improves for RF by constructing features is similar to the one

observed for NB and SVM. However, for RF the di�erences between the search algorithms

is particularly small: notice that using RS leads to close performance to the ones obtained

by using the other GP algorithms, compared to the SVM case. Moreover, virtually no

di�erence can be seen between GP-GOMEART and SGPb. This suggests that RF already

works well with less re�ned features. Now, the features constructed by SGP are no longer

the best performing at test time. This is likely because SGP evolves larger, more complex

features than the other algorithms (see Sec. 5.6.1), making RF over�t. In fact, RF exhibits



5

110 5. Explainable Machine Learning by Evolving Crucial and Compact Features

the largest di�erence between training and test results compared to NB and SVM, for any

feature construction algorithm and h limit. Still, the test results of RF are slightly better

than the ones of SVM and markedly better than the ones of NB, meaning that the latter

two are under�tting.

The training and test performance obtained when using XGB is similar to the one

obtained when using RF, but the di�erences the between di�erent search algorithms are

even less marked than for RF. Some di�erences can be seen for K = 1 on the training

set (SGP better than GP-GOMEART, and GP-GOMEART better than SGPb and RS), but

this di�erence is much less marked on the test set. When more features are constructed,

essentially all search algorithms deliver the same performance. XGB seems to be able

to construct non-linear relationships even better than RF. As to potential over�tting, the

trend of di�erences between training and test performance that can be observed for XGB

mirrors the one visible for RF.

As to maximum tree height, allowing the constructed features to be bigger (h = 4 vs

h = 2) moderately improves the performance. Interestingly, GP-GOMEART with h = 4
reaches competitive performance with SGP on all ML algorithms, despite the latter having

no strict limitation on feature size.

Regression

Results on the regression tasks are shown in Figure 5.4, dataset-wise aggregated for LR,

SVM, RF, and XGB. We report the results in terms of coe�cient of determination, i.e.,

R2(y, ŷ) = 1 −MSE(y, ŷ)/var(y). For the four ML algorithms, results overall follow

the same pattern. SGP is typically better, especially for LR and SVM, although constructing

more features reduces the performance gap with the other GP algorithms. GP-GOMEART

is slightly, yet consistently, the best performing within the maximum tree height limitation

of 2, while SGPb is visibly preferable only when a single feature is constructed for LR and

SVM, for h = 4. Di�erently from the classi�cation case, two features are typically enough

to reach the performance of the original feature set for all ML algorithms except for XGB.

Moreover, for LR, SVM, and RF, the performance between training and test is similar,

meaning no considerable over�tting is taking place, no matter the feature construction

algorithm used nor the limit of h. This however is not the case for XGB, where a large

performance gap is encountered. Still, the test performance obtained when using XGB is

ultimately slightly better than the obtained for RF.

As for classi�cation, allowing for larger trees results in better performance overall,

and reduces the gap between SGP and the other GP algorithms. With XGB, all search

algorithms perform similarly.

Feature size

Figure 5.5 shows the aggregated feature size for the di�erent GP algorithms and RS. The

aggregated solution size is computed by taking the median solution size per run, then av-

eraging over datasets, and �nally averaging over ML algorithms (classi�cation and regres-

sion are considered together). The picture shows how, overall, the known SGP tendency

to bloat di�ers compared to the algorithms working with a strict tree height limitation.

SGP features are so large that it is nearly impossible to interpret them (see Sec. 5.8.1).

RS �nds the smallest features for both height limits h = 2 and h = 4. Considering

that GP-GOMEART and SGPb generate trees within the same height bounds of RS, we
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Figure 5.5: Aggregated feature size for k = 1, . . . , 5. Solid (dotted) lines represent solution

size for maximum tree height h = 2 (h = 4). Shaded areas represent standard deviation.

SGP is free to grow solutions up to h = 17.

conclude that it is the variation operators that allow �nding larger trees with improved

�tness within the height limit. GP-GOMEART seems to construct slightly, yet consistently,

larger trees than SGPb.

For SGP, it can be seen that subsequently constructed features are smaller (this is barely

visible for GP-GOMEART and SGPb as well). This is interesting because we do not use any

mechanism to promote smaller trees. This result is likely linked to the diminishing returns

in performance observed in Figure 5.3 and 5.4: constructing new complex and informative

features becomes harder with the number of FCS iterations.

5.6.2. Statistical significance: comparing GP algorithms

The aggregated results of Section 5.6.1 show moderate di�erences between GP-GOMEART

and SGPb. These are arguably the most interesting algorithms to compare in-depth, as they

are able to construct small features that lead to good performance (RS typically constructs

less informative features, while SGP constructs very large ones).

We perform statistical signi�cance tests to compare GP-GOMEART and SGPb. We con-

sider their median performance on the test set Te, obtained by the FCS, and also compare

it with the use of the original feature set, for each ML algorithm and each dataset. In

our case, the treatments of our signi�cance tests are the two search algorithms (i.e., GP-

GOMEART and SGPb) and the original feature set, while the subjects are the con�gurations

given by pairing ML algorithms and datasets [37].

We �rst perform a Friedman test to assess whether di�erences exists among the use of

di�erent treatments (GP algorithms and original feature set) upon multiple subjects (ML

algorithm-dataset combinations). As post-hoc analysis, we use the pairwise Wilcoxon

signed rank tests, paired by subject (ML algorithm-dataset combination), to see how the
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treatments compare to each other [37]. We adopt the Holm correction method to pre-

vent reporting false positive results that might have happened due to pure chance [38].

We consider both h = 2 and h = 4, and focus on K = 2, since consideration of only

two constructed features makes interpretation easier, and allows human visualization (see

Sec. 5.8.1).

Classification

For both h = 2, 4, the Friedman test strongly indicates di�erences between GP-GOMEART,

SGPb, and the use of the original feature set (p-value� 0.05).

Figure 5.6 (top) shows the Holm-corrected p-values obtained by the pairwise Wilcoxon

tests for classi�cation, where the alternative hypothesis is that the row allows for larger

macro F1 scores than the column. No signi�cant di�erences between GP-GOMEART and

SGPb are found for both h = 2, 4. Both the GP algorithms can deliver constructed features

that are competitive with the use of the original feature set. The original feature set is

not signi�cantly better than using feature construction. Moreover, for GP-GOMEART and

h = 4, the hypothesis that feature construction is not better than the original feature

set can be rejected with a corrected p-value below 0.1. The latter result appears to be in

contrast with the results from Figure 5.3 for SVM, RF and XGB, where it can be seen that

the construction of only two features does, on average, lead to slightly worse test results

than using the original feature set. Nonetheless, the opposite is true for NB, and with

rather large magnitude. A more in-depth analysis on this is provided in Section 5.6.3.

Regression

As for classi�cation datasets, the Friedman test indicates that di�erences are presents be-

tween the treatments. Figure 5.6 (bottom) shows the Holm-corrected p-values obtained

by the pairwise Wilcoxon tests for regression.

The statistical tests con�rm the hypothesis that the algorithms are capable of providing

constructed features that are more informative than the original feature set, as observed

in Figure 5.4 for the regression datasets. Now, GP-GOMEART is signi�cantly better than

SGPb when h = 2. For h = 4, instead, GP-GOMEART is not found to be signi�cantly

better than SGPb.

5.6.3. Statistical significance: two constructed features vs. the

original feature set per ML algorithm

Results presented in Section 5.6.1 indicate that our FCS brings most bene�t if used with

the weak ML algorithms. We now report, for each ML algorithm, on how many datasets

2 features constructed using GP-GOMEA (with h = 2 and h = 4) lead to statistically

signi�cantly (using Holm-corrected pairwise Wilcoxon test, p-value < 0.05) better, equal,

or worse results compared to using the original feature set on the test set. This is shown

in Table 5.4.

These results con�rm what seen in Figures 5.3 and 5.4. Using FCS typically outper-

forms the use of the original feature set for the weak ML algorithms. For the strong ML

algorithms, in most cases, using the original feature set is preferable. However, for some

datasets reducing the space to two compact features without compromising performance

is still possible.
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Figure 5.6: Holm-corrected p-values of pairwise Wilcoxon tests on test performance. Rows

are tested to be signi�cantly better than columns. Orig stands for the original feature set.

The use of the original feature set is generally hardest to beat when adopting RF or

XGB. For RF, in the regression case with h = 4, FCS brings bene�ts on the datasets Airfoil,

Energy Cooling, Energy Heating, and Yacht; and performs on par with the use of the

original feature set on the datasets Boston Housing and Concrete. These datasets are the

ones with the smallest number of original features. We �nd similar results for SVM and

for XGB. In the latter case, FCS is, in terms of statistical signi�cance, equal to the original

feature set only on Energy Cooling, Energy Heating, and Yacht. It is reasonable to expect

that FCS works well when few features can be combined.

In the classi�cation case, �ndings are di�erent. For RF and h = 4, the datasets where

using two constructed features bring similar or better results than using the original fea-

ture set are Breast Cancer Wisconsin and Iris. The latter does have a small number of

original features (4), but the former has more than several other datasets (29). Further-

more, the datasets where FCS helps are di�erent for SVM: FCS performs equally good to

the original feature set on Iris and Cylinder Bands (39 features), and better on Madelon

(500 features) and Image Segmentation (19 features). Regarding XGB, there is no dataset

where FCS is superior to the original feature set, but it is also not worse on almost half of

the datasets. For classi�cation datasets, we cannot conclude that a small cardinality of the

original feature set is a good indication feature construction will work well. Furthermore,

feature construction in�uences di�erent ML algorithms in di�erent ways.
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Table 5.4: Number of datasets where using two features constructed with GP-GOMEA

results in signi�cantly better/equal/worse test performance compared to using the original

feature set.

h NB SVM RF XGB

C
l
a
s
. 2 8/1/1 2/2/6 1/1/8 0/4/6

4 8/1/1 2/2/6 1/1/8 0/4/6

h LR SVM RF XGB

R
e
g

r
. 2 5/3/2 5/2/3 4/0/6 0/2/8

4 7/1/2 5/2/3 4/2/4 0/3/7

5.7. Results on a highly-dimensional dataset

We further consider the RNA-Seq cancer gene expression dataset, comparing FCS by GP-

GOMEART with h = 4 against the use of the original feature set, when using NB. Figure 5.7

shows that NB with the original feature set over�ts: the training performance is maximal,

while the test performance reaches an F1 of approximately 0.65. Even though NB is typi-

cally considered a weak estimator, the system described by the data is so severely under-

determined (over 20, 000 features vs less than 1, 000 examples) that actual patterns cannot

be retrieved. The use of FCS forces NB to use only a small number of constructed features,

which, in turn, can contain only a small number of the original features. Essentially, FCS

provides both the advantages of feature construction and feature selection. This leads to

large F1 scores already when solely two features are constructed.

5.8. Results on interpretability

The results presented in Section 5.6 and 5.7 showed that the original feature set can be

already outperformed by two small constructed features in many cases. We now aim at

assessing whether constraining features size can enable interpretability of the features

themselves, as well as if extra insight can be achieved by plotting and visualizing the

behavior of a trained ML model in the new two-dimensional space.

5.8.1. Interpretability of small features

Table 5.5 shows some examples of features constructed by GP-GOMEART, for h = 2 and

h = 4. We report the �rst feature constructed for the K = 2 case, with median test

performance. We show the �rst feature as it is typically not smaller than the second (see

Fig. 5.5). Analytic quotients and protected logarithms are replaced by their respective

de�nitions. We remark that we do not check whether the meaning of the features is sound

(e.g., ensuring a certain unit of measure is returned). Constraining feature meaning is

problem-dependent, and outside the scope of this work.

For classi�cation, we choose NB as it is the method which bene�ts most from feature

construction. The dataset considered is Ecoli, where NB achieves the largest median test

improvement whenK = 2: from F1 = 0.51 with the original set, to F1 = 0.63 for h = 2,

and to F1 = 0.66 for h = 4.
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RT
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Figure 5.7: Comparison between the use of the original feature set and FCS with GP-

GOMEART (h = 4) on high-dimensional gene expression data. The vertical axis reports

the median F1 score, the horizontal axis reports the number of features constructed by

FCS. Stars indicate statistical signi�cant superiority (p-value < 0.05) of one method with

respect to the other.

For regression, we consider LR on the Concrete dataset, for the same aforementioned

reasons. The test R2
obtained with the original feature set is 0.59, the one with two

features constructed by GP-GOMEART is 0.76 (0.78) for h = 2 (h = 4).

For h = 2, we argue that constructed features are mostly easy to interpret. For exam-

ple, the feature shown for LR on Concrete tells us that aging (x(8)
) has a negative impact

on concrete compressive strength, whereas using more water (x(4)
) than cement (x(1)

)

has a positive e�ect (both features are in kg/cm
3
). The impact of other features is less

important (within the data variability of the dataset). For h = 4, some features can be

harder to read and understand, however many are still accessible. This is mostly because,

even though the total solution size reachable with h = 4 is 31, constructed features are

typically half the size (see Fig. 5.5).

The features constructed for the RNA-Seq gene-expression dataset by GP-GOMEART

in Section 5.7 are also not excessively complex to be understood. For example, the �rst

two features for the median run are:

1st :
√

(x(18382))2 + x(8014) + x(3885) + x(17316)

2nd :
(

x(7491) +
√

x(7296) + x(19333)
)
×(

x(5524) + x(18053)√
1 + (x(5579) − x(4417))2

+ x(14153) + x(19751) − x(13744)√
1 + (x(16581))2

)
.

(5.3)

Even though the second feature is somewhat involved, it is arguably still possible to care-

fully analyze it and obtain a picture of how gene expression levels interact.

Overall, we cannot draw a strict conclusion on whether the features found by our

approach are interpretable, as interpretability is a subjective matter and, to date, no clear-
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Table 5.5: Examples of features constructed by GP-GOMEART with h ∈ {2, 4}, K = 2, for

NB on Ecoli, and for LR on Concrete.

h 1st Feature

N
B

2 x(3) + x(6) + x(1)/
√

1 + (x(6))2

4 x(6) (x(7))2
x(3) + 0.144/

√
1 + (exp(x(2)))2 − x(1)x(2)x(5)

L
R

2 x(4) − x(1) + 932.204/
√

1 + (x(8))2

4

√
19.764 log |x(8)|+ x(2) + 2x(1)/

√
1 + (x(4))2

(
logp(((((((x(4) + x(2))÷ x(4))× (x(1) ÷ x(4) ÷ x(4) × (x(1) ÷ x(4)x(8) × 1065.162×

logp((((x(4)x(1) + x(1) ÷ x(8) ÷ x(8))× (x(4) − (x(1) + ((x(2) ÷ x(4) + logp(x(1))))2)))+

− (x(5)x(1) + x(2) ÷ x(8) + (((x(8) + x(6) + x(2))÷ ((x(1) ÷ x(4)) +
√
x(4) ÷ x(2)))+

exp((((x(8) + x(2))÷ x(8) + (x(4) + x(2))÷ x(4))÷ x(5) + x(6) ÷ x(4))))))))))÷ x(7))×

(x(8) − (441.237 + x(2))))− x(1)))
) 1

2

Figure 5.8: Example of a relatively “small” feature constructed by SGP, derived from a tree

with 96 nodes. Note that the analytic quotient operator (÷) and the protected logarithm

(logp) are not expanded to their respective de�nitions to keep the feature contained. This

feature is arguably very hard to interpret.

cut metric exists [7, 8] (more on this in Sec. 5.10). Yet, it appears evident that enforcing a

restriction on their size is a necessary condition. We generally �nd that features using 15

or more nodes start to be hard to interpret with respect to our experimental settings, i.e.,

using our function set. Lastly, features constructed without a strict size limitation (by SGP)

are generally very large, and thus extremely hard to understand. For example, Figure 5.8

shows the �rst of the two features with median test performance constructed by SGP for

LR on Concrete (this is smaller than the �rst feature found by SGP for NB on Ecoli).

5.8.2. Visualizing what the ML algorithm learns

The construction of a small number of interpretable features can enable a better under-

standing of the problem and of the learned ML models. The case where up to two features

are constructed is particularly interesting, since it allows visualization.

We provide one example of classi�cation boundaries and one of a regressed surface,

inferred by SVM on a two dimensional feature space obtained with our approach using

GP-GOMEART. The classi�cation dataset on which we �nd the best test improvement

for h = 4 is Image Segmentation, where the F1 score of SVM reaches 0.88, against 0.65

using the original feature set (median run). Figure 5.9 shows the classi�cation boundaries

learned by SVM. The analytic quotient operator÷ and the protected log logp are replaced

by their de�nition for readability. The constructed features are rather complex here, yet
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Figure 5.9: Classi�cation boundaries learned by SVM with two features constructed by

GP-GOMEART (h = 4) on the Image Segmentation dataset. The run with median test

performance is shown. Circles are training samples, diamonds are test samples.

readable. At the same time, it can be clearly seen how the training and test examples are

distributed in the 2D space, and what classi�cation boundaries SVM learned.

For regression, Figure 5.1 shows the surface learned by SVM on Yacht (median run),

where GP-GOMEART with h = 2 constructs two features that lead to anR2
of 0.98, against

0.85 obtained using the original feature set. The features are arguably easy to interpret,

while it can be seen that the learned surface accurately models most of the data points.

5.9. Running time

Our results are made possible by evaluating the �tness of constructed features with cross-

validation, a procedure which is particularly expensive. Table 5.6 shows the (mean over 30

runs) serial running time to construct �ve features on the smallest and largest classi�cation

and regression datasets, using GP-GOMEART with h = 4 and the parameter settings of

Section 5.5, on the relatively old AMD Opteron™ Processor 6386 SE
4
. Running time has

a large variability, from seconds to dozens of hours, depending on dataset size and ML

algorithm. For the traditional datasets and ML algorithms we considered, it can be argued

that our approach can be used in practice. However, for very high-dimensional datasets,

only fast ML algorithms can be used. The construction of 5 features for the RNA-Seq

gene expression dataset took 25 minutes even though NB was used. To use slower ML

algorithms would easily require dozens to hundreds of hours.

4http://cpuboss.com/cpu/AMD-Opteron-6386-SE
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As to memory occupation, it basically mostly depends on the way the chosen ML algo-

rithm handles the dataset. Our runs required at most few hundreds of MBs when dealing

with the larger traditional datasets, for SVM and RF. Handling the parallel execution of

FCS experiments upon the gene expression dataset required a few GBs.

Table 5.6: Mean serial running time to construct �ve features using GP-GOMEART (h = 4)

on the smallest and largest traditional datasets.

Dataset Size NB/LR SVM RF XGB

C
l
a
s
.

Iris 150× 4 7 s 2 m 25 m 42 m

Madelon 2600× 500 4 m 14 h 8 h 10 h

R
e
g

r
.

Yacht 308× 7 8 s 4 m 1 h 1 h

Tower 4999× 26 2 m 34 h 34 h 13 h

5.10. Discussion

We believe this is one of the few works on evolutionary feature construction where the

focus is put on both improving the performance of an ML algorithm, and on human inter-

pretability at the same time. The interpretability we aimed for is twofold: understanding

the meaning of the features themselves, as well as reducing their number. GP algorithms

are key, as they can provide constructed features as interpretable expressions given basic

functional components, and a complexity limit (e.g., tree height).

We have run a large set of experiments, totaling more than 150,000 cpu-hours. Our re-

sults strongly support the hypothesis that the original feature set can be replaced by few

(even solely K = 2) features built with our FCS without compromising performance in

many cases. In some cases, performance even improved. GP-GOMEART and SGPb achieve

this result while keeping the constructed feature size extremely limited (h = 2, 4). SGP

leads to slightly better performance than GP-GOMEART and SGPb, but at the cost of con-

structing �ve to ten times larger features. RS proved to be less e�ective than the GP

algorithms.

Our FCS is arguably most sensible to use for simpler ML algorithms, such as NB and

LR. Constructed features change the space upon which the ML algorithm operates. SVM

already includes the kernel trick to change the feature space. Similarly, the trees of RF and

XGB e�ectively embody complex non-linear feature combinations to explain the variance

in the data. NB and LR, instead, do not include such mechanisms. Rather, they have

particular assumptions on how the features should be combined (NB assumes normality,

LR linearity). The features constructed by GP can transform the input the ML algorithm

operates upon, to better �t its assumptions.

We found that performance was almost always signi�cantly better than compared to

using the original feature set for NB and LR. As running times for these ML algorithms can

be in the order of seconds or minutes (Sec. 5.9), feature construction has the potential to

be routinely used in data analysis and machine learning practice. Furthermore, FCS (or a

modi�cation where the constructed features are added to the original set) can be used as an

alternative way to tune simple ML algorithms which have limited or no hyper-parameters.
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We have shown that our approach can also be helpful when dealing with high-

dimensional data (on the RNA-Seq gene expression dataset), where system underdeter-

mination can cause even simpler ML algorithms to over�t. This is because FCS essentially

embodies feature selection, as we only construct a small number of small-sized features.

We remark that we did not adopt high-dimensional datasets concerning image recog-

nition such as MNIST [39], CIFAR [40], or ImageNet [41]. In these datasets, features rep-

resent pixels, which have no particular meaning. Constructing features as readable pixel

transformations will likely provide no insights on the behavior of a ML model.

Regarding the comparison between the search algorithms, GP-GOMEART was found to

be slightly preferable to SGPb (especially for h = 2,K = 2). We believe that signi�cantly

better results can be achieved if bigger population sizes and larger evaluations budgets can

be employed (we kept the population size limited due to the computational expensiveness

of SVM and RF).

Particularly for GP-GOMEA, in Chapter 3 we discussed that having su�ciently large

population sizes enables the possibility to exploit linkage estimation and perform better-

than-random mixing. To validate this also within the framework of our proposed FCS,

we scaled the population size and the budget of �tness evaluations, and compared the

use of the LT with the use of the RT, on two traditional classi�cation dataset: Image Seg-

mentation (19 features) and Madelon (500 features), using NB. The outcome is shown in

Figure 5.10: the employment of big-enough population sizes (and of su�cient numbers of

�tness evaluation) can lead to better performance, if statistical metrics can be measured re-

liably. For Image Segmentation, the number of terminals to be considered in the genotype

is relatively small due to the use of 19 features. This allows the LT to estimate node in-

terdependencies reliably, and deliver better-than-random performance. For Madelon, the

large number of terminals (500 features) makes it hard for the LT to outperform the RT

within a limited computational budget. All in all, we recommend the use of GP-GOMEA

as feature constructor since it was not worse on classi�cation and was statistically better

for regression. Furthermore, we advice to use the LT if the population size can be of the

order of thousands or more (or even better, if exponential population sizing schemes are

used as in Chapters 2 and 3). Otherwise, the RT should be preferred.

To assess if small constructed features are interpretable and if it is possible to visual-

ize what the behavior of learned ML models, we showed some examples, providing evi-

dence that both requirements can be reasonably satis�ed. However, we did not perform a

thorough study on interpretability of the constructed features. Several metrics have been

recently proposed to measure some form of interpretability for ML models, that could

be used to measure the interpretability of features as well. For example, in [7] two met-

rics called simulatability and decomposability are proposed. Simulatability represents the

capability of humans to predict the output of a model given an input. Decomposability

represents the capacity to intuitively understand the components of a model. Crucially,

to measure this type of metrics, user studies need to be conducted. For example, experts

of a �eld should be asked to provide feedback, on features constructed for datasets they

are knowledgeable about (e.g., biochemists for data on gene expression, civil engineers for

data on concrete strength). Nonetheless, we believe that enforcing features (and GP pro-

grams in general) to be small still remains a necessary condition to allow interpretability,

although it is often ignored in GP literature (see Sec. 3.9).
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Figure 5.10: Comparison between the use of the RT and of the LT in GP-GOMEA. Vertical

axis: median F1 score of 30 runs, obtained by NB on Image Segmentation (left) and on

Madelon (right) using the �rst constructed feature, with h = 4 (note the di�erent scale).

Horizontal axis: population size / �tness evaluations budget. Stars indicate signi�cant

superiority (p-value < 0.05) of one method with respect to the other.

Considering the visualization examples proposed in Section 5.8, it is natural to com-

pare our approach with well-known dimensionality reduction techniques, such as Prin-

cipal Component Analysis (PCA) [42] or t-Distributed Stochastic Neighbor Embedding

(t-SNE) [43]. We remark that those techniques and our FCS have very di�erent objectives.

In general, the sole aim of such techniques is to reduce the data dimensionality. PCA does

so by detecting components that capture maximal variance. However, it does not attempt

to optimize the transformation of the original feature set to improve an ML algorithm’s

performance. Also, PCA does not focus on the interpretability of the feature transforma-

tions. FCS takes the performance of the ML algorithm and interpretability of the features

into account, while dimensionality reduction comes from forcing the construction of few

features. We compared using 2 features constructed with RS (the worst search algorithm)

with maximum h = 2, with using the �rst 2 PCs found by PCA. The use of constructed

features over PCs resulted in signi�cantly superior or equal test performance for all ML

algorithms and for all problems. We remark, however, that PCA is extremely fast and

independent from the ML algorithm.

Our FCS has several limitations. A �rst limitation regards the performance obtainable

by the ML algorithm when the constructed features are used. FCS is iterative, and this

can lead to suboptimal performance for a chosen K , compared to attempting to �nd K
features at once. This is because the contributions of multiple features to an ML algorithm

are not necessarily perpendicular to each other [25]. FCS could be changed to �nd, at any

given iteration, a synergistic set ofK features that is independent from previous iterations.

To this end, the search algorithms need to be modi�ed so that they can evolve sets of

constructed features (a similar proposal for SGP was done in [15]). Yet, it is reasonable to

expect that if K features need to be learned at the same time, larger population sizes may

be needed compared to learning the K features iteratively.
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Another limitation of this work is that hyper-parameter tuning was not considered. To

include hyper-parameter tuning within FCS could bring even higher performance scores,

or help prevent over�tting. A possibility could be, for example, to evolve pairs of fea-

tures and hyper-parameter settings, where every time a feature is evaluated, the optimal

hyper-parameters are also searched for. Such a procedure may likely require strong par-

allelization e�orts, as C-fold cross-validation should be carried out for each combination

of hyper-parameter values.

Lastly, it would be interesting to extend our approach to other classi�cation and re-

gression settings, e.g., problems with missing data; or to unsupervised tasks, as simple

features may lead to better clustering of the examples.

5.11. Conclusion

With a simple evolutionary feature construction framework we have studied the feasibility

of constructing few crucial and compact features with Genetic Programming (GP), towards

improving the explainability of Machine Learning (ML) models without losing prediction

accuracy. Within the proposed framework, we compared standard GP, random search,

and the GP adaptation of the Gene-pool Optimal Mixing Evolutionary Algorithm (GP-

GOMEA) as feature constructors, and found that GP-GOMEA is overall preferable when

strict limitations on feature size are enforced. Despite limitations on feature size, and

despite the reduction of problem dimensionality that we imposed by constructing only two

features, we obtained equal or better ML prediction performance compared to using the

original feature set for more than half the combinations of datasets and ML algorithms. In

many cases, humans can understand what the feature means, and it is possible to visualize

how trained ML models will behave. All in all, we conclude that feature construction is

most useful and sensible for simpler ML algorithms, where more resources can be used

for evolution (e.g., larger population sizes), which, in turn, unlock the added bene�ts of

more advanced evolutionary mechanisms (e.g., using linkage learning in GP-GOMEA).
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Purpose: The aim of this study is to establish the �rst step towards a novel and highly individ-

ualized 3D dose distribution reconstruction method, based on CT scans and organ delineations

of recently treated patients. Speci�cally, the feasibility of automatically selecting the CT scan

of a recently treated childhood cancer patient who is similar to a given historically treated

child who su�ered from Wilms’ tumor is assessed.

Methods: A cohort of 37 recently treated children between 2 and 6 years old is considered. Five

potential notions of ground-truth similarity are proposed, each focusing on di�erent anatom-

ical aspects. These notions are automatically computed from CT scans of the abdomen and

3D organ delineations (liver, spleen, spinal cord, external body contour). The �rst is based

on deformable image registration, the second on the Dice Sørensen coe�cient, the third on

the Hausdor� distance, the fourth on pairwise organ distances, and the last is computed by

means of the overlap volume histogram. The relationship between typically available features

of historically treated patients and the proposed ground-truth notions of similarity is stud-

ied by adopting state-of-the-art machine learning techniques, including random forest. Also,

the feasibility of automatically selecting the most similar patient is assessed by comparing

ground-truth rankings of similarity with predicted rankings.

Results: Similarities (mainly) based on the external abdomen shape and on the pairwise or-

gan distances are highly correlated (Pearson rp ≥ 0.70) and are successfully modeled with

random forests based on historically recorded features (pseudo-R2 ≥ 0.69). In contrast, sim-

ilarities based on the shape of internal organs cannot be modeled. For the similarities that

random forest can reliably model, an estimation of feature relevance indicates that abdom-

inal diameters and weight are the most important. Experiments on automatically selecting

similar patients lead to coarse, yet quite robust results: the most similar patient is retrieved

only 22% of the times, however the error in worst-case scenarios is limited, with the fourth

most similar patient being retrieved.

Conclusions: Results demonstrate that automatically selecting similar patients is feasible

when focusing on the shape of the external abdomen and on the position of internal organs.

Moreover, whereas the common practice in phantom-based dose reconstruction is to select a

representative phantom using age, height, and weight as discriminant factors for any treat-

ment scenario, our analysis on abdominal tumor treatment for children shows that the most

relevant features are weight, the anterior-posterior and left-right abdominal diameters.
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6.1. Introduction

Every day, radiation oncologists working on the treatment of childhood cancer patients

are faced with the challenge of designing individualized treatment plans which ensure that

a su�ciently high dose is delivered to the tumor while the surrounding healthy organs are

spared. An excessive exposure of sensitive tissues to radiation may compromise crucial

physiological functions and lead to severe health complications. Although the absolute

number of young patients undergoing radiation treatment is moderate [1], the presence

of malignancy in their developing bodies is likely to impact their entire life both physi-

cally and psychologically [2–7]. Moreover, children arguably are the most susceptible to

adverse e�ects of radiation treatment and thus stand to bene�t most from improvements in

planning under the desired hypothesis of long-term survival, which is currently achieved

for the treatment of Wilms’ tumor, or nephroblastoma, the most common childhood ab-

dominal malignancy [8, 9].

For adult patients, many follow-up studies exist where the relationship between ra-

diation treatment with speci�c dose (fractions), and onset of adverse e�ects is analyzed

(see, e.g., the work of QUANTEC [10]). Furthermore, detailed work has been done to

understand which speci�c organ subvolumes are most sensitive to ionizing radiation, by

observing �ne-grained 3D dose distributions [11–13]. For children, however, the evidence

collected so far is limited [14, 15]. Incorporating detailed knowledge on the relationship

between 3D dose distributions and late adverse e�ects may greatly improve the design of

treatment plans, ultimately reducing post-treatment complications and improving pedi-

atric cancer survivors’ quality of life.

Currently, researchers willing to study possible relationships between detailed 3D dose

distributions and the onset of late adverse e�ects in long-term pediatric cancer survivors

face a major obstacle: the lack of 3D treatment data. In fact, 3D information about the

anatomy of historically treated patients could not be acquired before the advent of com-

puted tomography (CT) and 3D treatment planning. The available information consists

of patient characteristics recorded in historical patient records, notes on the treatment,

and, in some cases, 2D simulator �lms used for planning at the time. The available data

on late adverse e�ects collected from long-term follow-ups cannot be exploited to its full

potential, as it can not be related to �ne-grained 3D dose information. Therefore, to enable

accurate dose-risk modeling in retrospective studies, a method to accurately reconstruct

3D dose distributions is needed.

The current state-of-the-art method to bridge this gap is the so-called phantom-based

dose reconstruction [16, 17]. Phantoms are 3D representations of human bodies, con-

structed according to reference guidelines (e.g., ICRP 89 [18]), stored in libraries in a gen-

der, age, height, and weight dependent fashion. The doses delivered to the organs of a

historically treated patient are estimated by simulating the original treatment on a phan-

tom. The dose reconstruction procedure can be summarized in four fundamental steps:

1. Selection — a phantom from the library is chosen, which most closely resembles a pa-

tient’s available features (this is typically done using gender, age, height, and weight);

2. Adaptation — the phantom is adapted (i.e., shrunken, stretched) according to other spe-

ci�c features, such as measurements from a 2D simulator �lm; 3. Treatment simulation —

the original treatment is simulated, using the phantom’s virtual anatomy as a surrogate

for the original body; and 4. Measurement — parameters about the dose are measured.
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Clearly, the accuracy of the estimated dose relies on the completeness of the historical

patient record considered, on the representativeness of the phantom library and on the

quality of each one of the four aforementioned steps. A poor selection based on irrele-

vant features, as well as an ine�ective adaptation, may compromise the accuracy of dose

estimation. For children, growth and development do not follow a standard age-related

pattern, thus selecting a representative phantom is especially di�cult. Although rich li-

braries exist with reference phantoms for many height-weight combinations [17], and

more and more possibilities to adapt mesh-based models to improve patient individual-

ization are under investigation [19], an inherent limitation of phantom-based dose recon-

struction is that it relies on average organ shapes and dimensions. Studies have however

shown that there can be a great variability of internal organ shape among individuals with

a similar body-mass index and that it is practically impossible to establish reference organ

anatomy[17, 20].

Recently, an alternative to phantom-based dose reconstruction has been proposed,

based on the reconstruction of 3D organs for historically treated patients, using navi-

gator channels and �nite element modeling deformable image registration [21–23]. The

feasibility of the method has been tested on 3D dose reconstruction for lungs, heart, and

breasts of adult Hodgkin lymphoma patients. Relying on CT scans of recently treated

patients, a deformation model was built which uses information from 2D simulator �lms

(or digitally reconstructed radiographs) to synthesize the organs of a historically treated

patient by deforming the organs of a recently treated patient. A primitive selection step

is performed to match the historically treated patient to a recent representative patient.

This selection is based on 2D thorax measurements and gender, but it is advised that tak-

ing a smarter approach, possibly relying on more or di�erent features, may improve the

overall outcome. Still, the resulting dose reconstruction method was found to be clinically

acceptable (median mean dose di�erence ≤ 1 Gy and median V 5Gy and V 20Gy di�erences

≤ 2%) [23] and has recently been adopted in practice [24].

In this study, we present a novel approach to select a recently treated patient for whom

a CT scan is available to match a historically treated patient, and apply it to the scenario in

which the 3D dose distribution of historically treated children with Wilms’ tumor needs to

be reconstructed. In order to �nd the features that are important to select a recently treated

patient that resembles the 3D anatomy of a historically treated patient, a ground-truth

notion of similarity among patients is needed. To this end, we propose and analyze �ve

di�erent notions of similarity, each focused on speci�c anatomical aspects. We choose to

focus on anatomical similarity, rather than directly on similarity in 3D dose distributions,

because the latter needs a speci�c treatment to be de�ned beforehand, whereas the former

enables the reconstruction of virtually any treatment on a region of interest. The notions

here proposed can be computed in an automatic and reproducible way, starting from CT

scans and 3D organ delineations. We compute the �ve similarities on a cohort of pediatric

patients and study correlations among them. We then assess which of the features that

are typically available from historical patients’ records are the most relevant to explain

the similarities. Consequently, a state-of-the-art machine learning model, random forest,

is trained using the most relevant features and its performance is measured in terms of

correctly predicting rankings of similar patients, which ultimately is the goal. Finally,

we provide a case of comparison between dose reconstruction based on the most similar
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patient according to one of the proposed similarities, and based on the most similar patient

according to age, height, and weight.

6.2. Materials & methods

6.2.1. Patient data

The records and CT data of 37 children were included (17 males, 20 females) in the age

range of 2 to 6 years. Most of the patients su�ered from Wilms’ tumor (22); many under-

went (partial) nephrectomy (21). All patients received chemotherapy prior to radiation

treatment. The patients have been treated at the Academic Medical Center / Emma Chil-

dren’s Hospital in Amsterdam (34) or at the University Medical Center Utrecht / Princess

Máxima Center for Pediatric Oncology in Utrecht (3), all after January 2000. A CT scan

in supine position of the abdomen, from the top of the 10th thoracic vertebra (T10) to the

bottom of 1st sacral vertebra (S1) is available for each patient. The median voxel size is

0.977 mm along left-right (LR) and anterior-posterior (AP) directions, and 2.5 mm along

the superior-inferior (SI) direction (slice thickness). Also included are delineations of the

liver and the spleen, and of the spinal cord and the outer body contour in the common re-

gion of interest from T10 to S1. Delineations of kidneys are not considered due to (partial)

nephrectomy (see Sec. 6.2.2), with exception for the right kidney of three patients, used

for an example of dose reconstruction (see Sec. 6.2.5).

Features that are typically reported in historical treatment records have been gathered

for our cohort, together with measurements from digitally reconstructed radiographs gen-

erated from the CT scans, under the reasonable assumption that the old 2D simulator �lms

have been preserved. These features are reported in Table 6.1 and Table 6.2. Details are as

follows. Age was recorded at CT acquisition; height, weight, and body-mass index were

recorded at intake in the radiotherapy department, which happened up to 3 months before

CT acquisition. The distance between iliac crest and spinal cord is de�ned as the distance

between the top point of the left iliac crest and the center of the spinal cord, along the

line passing through both iliac crest top points. The LR diameter has been measured at

the center of lumbar 2nd. Historically, the AP diameter was measured at the isocenter.

Because of the high conformity of the treatment for renal fossa irradiation, such isocenter

would typically be located in an SI section within the top of lumbar 1st and the bottom of

lumbar 2nd. After inspection of historical treatments, an average isocenter has been set at

the intersection of an SI line crossing the renal fossa with an LR line crossing the inter-

vertebral disc between lumbar 1st and lumbar 2nd. For our (recently treated) patients, we

measured the AP diameter at isocenter on their CT scans. Assuming symmetry of the ab-

domen, the average isocenter is set either in the left or right renal fossa, according to ease

in carrying out the measurement for each patient. We observed on a random sample of 10

patients that the di�erence between the AP diameter measured on the average isocenter

in the left renal fossa and the one in the right renal fossa is below 1 cm. For one patient the

height was missing from clinical records, so an age- and gender-matched estimate from

the Dutch children growth chart of 2010 has been used.
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Table 6.1: Numerical patient features.

Numerical feature (abbreviation) Unit of measure Min Max Median Mean St. Dev.

Age years 2.21 5.84 3.87 3.94 1.08

Height cm 89.00 123.00 103.50 104.28 9.58

Weight kg 10.00 28.00 16.55 16.88 3.75

Body-Mass Index (BMI) kg/m
2

10.90 18.50 15.36 15.40 1.81

Length Spinal Cord T12-L4 (T12-L4) cm 7.00 10.90 9.30 9.33 0.89

Distance Iliac Crest-Spinal Cord (IC-SC) cm 4.30 6.80 5.70 5.58 0.54

LR Diameter at L2 (diam. LR) cm 16.30 23.50 19.30 19.48 1.28

AP Diameter at Isocenter (diam. AP) cm 11.30 16.00 13.20 13.37 1.53

Table 6.2: Categorical patient features.

Categorical feature (abbreviation) Categories (# patients)

Gender Female (20), Male (17)

Diagnosis Ependyoma (1), Medulloblastoma (2),

Neuroblastoma (9), Rhabdomyosarcoma (3), Wilms’ tumor (22)

Tumor Site Ductus choledochus (1), Fourth ventricle (3), Left kidney (12),

Left suprarenal gland (6), Pelvic region (1), Retroperitoneum (1),

Right kidney (10), Right lower abdomen (1), Right suprarenal gland (2)

Partial Nephrectomy (part. nephr.) Left (2), Right (1), None (34)

Radical Nephrectomy (rad. nephr.) Left (11), Right (10), None (16)

6.2.2. Similarity notions

In the following, we present �ve di�erent notions of anatomical similarity and how they

can be computed from CT scans and organ delineations. We further describe how corre-

lation among similarities is measured.

Deformation-based similarity

This �rst notion of similarity is based on the amount of deformation that is needed to

register one CT to another, via intensity-based deformable image registration. This metric

is inspired by previous applications [25].

To compute this similarity, �rst scans are manually aligned on bony anatomy, using

S1, the 5th lumbar vertebra and the iliac crests as reference. Second, for each possible pair

of children, deformable image registration is performed to deform the �rst patient’s CT to

match the CT of the second patient and vice versa. This two-way registration is performed

because of the asymmetry of most practical deformable image registration software. The

software elastix [26, 27] has been adopted, with mostly standard parameters settings (adap-

tive stochastic gradient descent optimization, Mattes’ mutual information metric, multi-

resolution B-spline transformation). For the �nest resolution step, a coarse grid size of 28

mm has been chosen following the guidelines for the deformation of large structures as

found in the manual of elastix, combined with visual inspection of registration outcomes

for several grid sizes. This choice limits the amount of unrealistic deformation on internal

anatomy when registering the whole abdominal area (from T10 to S1) at once.

After computing the two registrations, a measure of deformation magnitude can be

computed based on the deformations. A deformation is described using a meshed cube

C , where each cell is the 3D o�set to apply to a speci�c B-spline control point in order to
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register the �rst image to the second. The deformation magnitude we compute from C is

independent from translational components and is normalized on image volume. Speci�-

cally, for each cell c ∈ C , the “stretching” or “shrinking” component is computed by sum-

ming the absolute di�erences between the o�set of c with the ones of its adjacent cubes,

normalized by the number of adjacent cubes. The contribution of all cells is then summed

and normalized by the total volume of the image. Formally, the deformation magnitude is

thus:

D =
∑
c∈C

1
|Ac|

∑
a∈Ac

||~oc − ~oa|| , (6.1)

whereAc is the sub-cube of cells centered at cell c and ~oc is the 3D vector of o�sets stored

in cell c.

The two deformation magnitudesD1 andD2 computed from the two registrations are

then averaged. Finally, to obtain a measure of similarity, the average magnitude needs to

be inverted. We denote this similarity with Sdeform:

Sdeform =
(
D1 +D2

2

)−1
. (6.2)

Organ overlap-based similarity

This similarity notion focuses on internal organ overlap, and is based on the well-known

Dice Sørensen coe�cient [28, 29] (DSC) that indicates the overlap of two volumes V1 and

V2.

We denote this measure for a speci�c organ delineation o by So
DSC

, which is computed

after aligning the images on their centers of mass. Thus, So
DSC

= 100 2|V o1 ∩V
o

2 |
|V o1 |+|V o2 |

. A measure

of similarity SDSC is then computed by combining So
DSC

for the various organs of interest.

This is done by taking the Euclidean norm of the vector of all So
DSC

components:

SDSC =
√∑
o∈O

(So
DSC

)2. (6.3)

For the set of organ delineations O, the liver, the spleen, the part of the spinal cord from

T10 to S1, and the section of the external body contour within the �eld T10-S1 (arms ex-

cluded) are considered. Kidneys are not taken into consideration because 21 out of 37

patients of our cohort have been subject to (partial and/or radical) nephrectomy. If a sim-

ilar patient needs to be found for a treatment that includes a kidney either as target (ispi-

lateral) or as organ at risk (contralateral), then patients who (partially) miss this kidney

should be considered completely dissimilar. If the kidney is not interesting for the recon-

struction, a patient without (part of) the kidney may still be a good candidate. Therefore,

for practical use, the outcome of a matching based on this similarity should be twofold:

a similar patient who necessarily shares the kidney con�guration with the historical one,

and a similar patient who does not. To be able to use the whole cohort in the analysis, we

consider the scenario where kidneys are not relevant for the reconstruction.
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Organ shape-based similarity

Di�erent from DSC, the Hausdor� distance is another recognized metric used to compare

organ shapes which is focused on outlier points [30, 31]. Given two meshed surfaces A
and B, the directed Hausdor� distance from A to B is de�ned as the maximum of the

minimal Euclidean distances from A to B’s vertices, i.e.,

h(A,B) = max
a∈A

min
b∈B
||a− b||. (6.4)

The Hausdor� distance between A and B is H(A,B) = max{h(A,B), h(B,A)}.
Similar to So

DSC
, the notation So

Hausdor�
is used to indicate the organ-speci�c Hausdor�

similarity:

So
Hausdor�

= (Ho)−1 × 10p, (6.5)

with p such that all So
Hausdor�

≥ 1 (this ensures that (So
Hausdor�

)2 ≥ So
Hausdor�

). The ag-

gregated SHausdor� is then computed as the Euclidean norm of the vector of all So
Hausdor�

components, where the delineations of liver, spleen, spinal cord (T10-S1), and external

body (T10-S1) are considered:

SHausdor� =
√∑
o∈O

(So
Hausdor�

)2. (6.6)

Organ constellation-based similarity

This similarity is proposed for the �rst time here. It is speci�cally aimed at capturing the

variation in organ positions. Speci�cally, given a patient p, two organ delineations oi, oj ,
and the respective centers of mass coi(p), coj (p), let doi,oj (p) = ||coi(p)− coj (p)|| be the

center-of-mass distance. Again, oi ∈ O = {liver, spleen, spinal cord (T10-S1), external

body (T10-S1)}. Let Eoi be the set of 4 points that are the projections of oi’s center of

mass on the external body along anterior, posterior, left, and right directions. Then the

organ constellation-based similarity Sconst for patients p1 and p2 is computed as follows. A

�rst component D
org-org

const
(p1, p2) is calculated which represents the di�erence in pairwise

organ distances, as:

D
org-org

const
(p1, p2) =

∑
oi,oj∈O,i6=j

(doi,oj (p1)− doi,oj (p2))2. (6.7)

A second component represents the di�erence in distances between organs and the delin-

eation of the external body:

D
org-ext

const
(p1, p2) =

∑
oi∈O

∑
e∈Eoi

(doi,e(p1)− doi,e(p2))2. (6.8)

Finally, Sconst(p1, p2) is:

Sconst(p1, p2) = 1/
√
D

org-org

const
(p1, p2) +D

org-ext

const
(p1, p2). (6.9)
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Overlap Volume Histogram-based similarity

The recently introduced Overlap Volume Histogram (OVH) [32, 33] was speci�cally de-

signed to describe the position and shape of organs at risk near the tumor. In its original

formulation, the OVH of an organ is computed by measuring the tumor-organ overlap at

each step of a discrete expansion (or shrinkage) of the 3D tumor delineation, centered at

the tumor.

Here the OVH is used to describe the shape and displacement of all organs at the same

time. To this end, an arti�cial OVH is adopted, built using a sphere with a starting radius

of 1.0 mm that expands from the center of mass of the body contour section within the

T10-S1 region of interest. At each iteration, the sphere radius is expanded by 2.5 mm and

the overlap with the organ delineation o of interest is computed. We denote with So
OVH

the

scaled inverse of the Manhattan distance of two patients’ OVH for the organ delineation

o. The Manhattan distance of two OVHs is the sum of absolute di�erences between each

pair of histogram bins. A scaling is adopted similarly to what is done for So
Hausdor�

, to

ensure that (So
OVH

)2 ≥ So
OVH

. Furthermore, we denote with SOVH the aggregated measure

considering all organs at once, computed similarly to how it was originally used in the

work introducing the OVH [32]:

SOVH =
√∑
o∈O

(So
OVH

)2. (6.10)

Correlations of similarity notions

The correlation between the similarity measurements is assessed with Pearson rp and

Spearman rs coe�cients. The �rst assumes a linear relationship between the two variables

and is sensitive to outliers, whereas the second focuses on monotonic relationships, by

considering only ranks (i.e., from sorting) rather than actual data values.

6.2.3. Regression and feature relevance

The goal now is to reproduce the measurements of similarity among patients using a func-

tion of only the features described in Section 6.2.1. However, because a similarity is de�ned

over pairs of patients, individual features cannot be used directly. Instead, pairwise ver-

sions of the features are considered. For a numerical feature, the absolute di�erence of

the two individual feature values is taken. Pairwise versions of categorical features are

Boolean values, indicating whether the two categories are either the same (1) or di�erent

(0). In other words, for the i-th feature fi of patients 1 and 2, the corresponding pairwise

feature is g1,2
i = |f1

i − f2
i | if fi is numeric (e.g., weight), and it is

g1,2
i =

{
1 if f1

i = f2
i

0 if f1
i 6= f2

i

(6.11)

if fi is categorical (e.g., gender).

A random forest algorithm is used to learn how features can explain similarities, i.e.,

to learn a function representing similarity, given the features, and to compute feature rel-

evance. Random forest is a widely-adopted machine learning technique which is capable

of performing non-linear regression, and is robust in assessing feature relevance thanks
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to its intrinsic feature sampling [34, 35]. In particular, the recent cforest implementation

in R [36] is adopted in this work. Such technique uses conditional inference trees [37] to

constitute the forest, providing an unbiased estimation of feature importance in scenarios

where features have di�erent scale of measurement or number of categories [38] (e.g., this

study).

To understand which features are important for each similarity notion, a separate ran-

dom forest is trained for each similarity. A split of data into separate training and testing

sets is not necessary, since random forest inherently performs bagging, i.e., each regression

tree in the forest is trained on a random subset of the data, and tested on the remaining.

Given the stochastic nature of the method, 10 independent runs (i.e., training a random

forest) are performed. The number of trees for the cforest is set to 100, and the number

of random features to consider in the splits during tree construction is set to one-third

of the total number of features (i.e., mtry = 1/3, guideline for regression). Feature rel-

evance is investigated only if a forest out-of-bag pseudo-R2
(i.e., the �t on the inherent

test set, computed as 1 −mean squared error/variance of the ground-truth data) is high,

since conclusions drawn from models with a low �t are generally false. Feature relevance

is computed using the conditional variable importance method of cforest, which adjusts

for correlations between predictor variables [39]. Successful forests are further re�ned by

iteratively removing the least important feature, until a statistically signi�cant increase in

the out-of-bag mean squared error of the regression is observed. Signi�cance is assessed

using the Mann-Whitney-Wilcoxon test with increasing Bonferroni correction at each it-

eration i, with p-value of 0.05× i. At the end of the procedure, a trained model is obtained

for each similarity which is explainable using a subset of salient features.

6.2.4. Prediction and automatic selection of similar patients

For each similarity notion, we investigate the capability of learned random forests to cor-

rectly predict rankings of patients, which is the ultimate goal.

For this purpose, recent patients are used instead of historically treated patients. This

way, the prediction capability can be tested against the ground-truth similarities. This

complete process is performed in a leave-one-out cross validation fashion. Speci�cally,

�rst, a test patient is removed from the cohort and a random forest is trained over the

remaining patients using only the most relevant features. Second, the similarity between

the test patient and each of the other patients is predicted by the random forest. This

prediction is then sorted to obtain a ranking which is subsequently assigned a performance

score. The overall prediction quality is the average of the scores obtained when repeating

the steps above for each patient in the cohort. Moreover, runs for individual patients are

repeated 10 times to reduce stochastic noise in the forest training phases. The pseudo-code

of this procedure is illustrated in Algorithm 6.1.

To score the performance in ranking prediction, the following four indicators are pro-

posed: head presence: number of patients in the top k of the predicted ranking who are

also in the top k of the ground-truth ranking, i.e., the capability of correctly predicting

the most similar patients; tail presence: analogous to head presence, but on the bottom k
patients of the rankings, i.e., the capability of correctly predicting the most dissimilar pa-

tients; average displacement: calculated for the patients who are wrongly predicted to be in

the top k, the average displacement in positions between the k-th position and the actual
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Algorithm 6.1 Function assessing the quality of the automatic selection of similar pa-

tients.

1 function scoreAutomaticSelection(cohort, similarityNotion, bestFeatures)

2 score← 0
3 for i ∈ {1, . . . , 10} do
4 for p ∈ cohort do
5 others← cohort \ {p}

6 f← trainForest(others, bestFeatures)

7 s← f.predictSimilarity (p, others)
8 s∗ ← getSimilarity(p, similarityNotion)
9 r← makeRanking(s)
10 r∗ ← makeRanking(s∗)
11 score← score + computeScore(r, r∗)

12 score← score/(10|cohort|)
13 return score

position in the ground-truth ranking; and worst displacement: similar to average displace-

ment, but calculated only for the worst case, i.e., for the patient who is most dissimilar

yet wrongly predicted to be in the top k. Note that for k = 1 the average displacement

is the same as the worst displacement. All the indicators are reported as percentages. A

good prediction is one that reaches high head presence and tail presence, and minimizes

average displacement and worst displacement. In the experiments, the parameter k varies

in {1, 3, 5}, where k = 1 means that the prediction is assessed only on the most similar

patient (dissimilar for tail presence). This corresponds to evaluating an automatic selec-

tion which retrieves only one patient. By increasing k, it is possible to see if the prediction

is generally good, noisy or consistently poor. An example of the indicators is depicted in

Figure 6.1. With k = 5, three patients out of �ve are correctly predicted as similar, i.e., the

head presence is 60%, while four are correctly predicted as very dissimilar (tail presence

is 80%). Patients 5 and 9 are incorrectly predicted to be within the 5 most similar, whereas

in the ground-truth ranking they are respectively 3 and 5 positions away from the head,

out of a total of 12 (= 17 − 5) dissimilar patients. Thus, the average displacement is 33%

and the worst displacement is 42%.

6.2.5. Reconstruction case

Two illustrative dose reconstructions are performed for one patient p: one using a repre-

sentative who is correctly predicted to be most similar by our model according to Sdeform,

and one using a representative who is the most similar according to age, height, and

weight. Speci�cally, the latter match is performed by taking the patient q with lowest

rooted sum of squared age, height, and weight di�erences (after normalizing all di�er-

ences to the interval [0, 1]):√
(age

p − age
q)2 + (height

p − height
q)2 + (weight

p −weight
q)2
. (6.12)

The reconstruction is performed by applying the treatment plan of patient p to the other

two patients, using the treatment planning system Oncentra (version 4.3, Elekta, Stock-
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Figure 6.1: Example to illustrate the computation of the four indicators of prediction per-

formance. The prediction and ground-truth rankings contain the IDs of 17 patients instead

of 37 for ease of representation. In both rankings, the leftmost IDs are the most similar pa-

tients, the rightmost the most dissimilar. Patients correctly predicted in the head (tail) are

depicted in green (blue). Patients 5 and 9 are wrongly predicted to be in the head, and de-

termine the average displacement. Patient 9 is the worst to be predicted in the head, being

the most dissimilar in the ground-truth ranking, and determines the worst displacement.

holm, Sweden). The treatment plan is a real, clinical plan for left renal fossa irradiation

(Wilms’ tumor), using an Elekta Linac with a multi-leaf collimator beam limiting device,

energy: 6 MV. Under the hypothesis that p is a historically treated patient, a digitally recon-

structed radiograph of p is generated displaying the borders of the treatment �eld. Con-

sequently, radiographs are also generated for the two matched patients, and are used to

adjust the �eld border of the plan to correct for evident discrepancies in the bony anatomy.

The monitor units of the original plan are also scaled to keep the dose point in the mid-

dle of the �eld (isocenter) as close as possible to its value before adjustment. This work

has been assessed by an experienced pediatric radiation oncologist. Lastly, the treatment

is simulated and the following metrics are recorded: mean dose Dmean, max dose D2cc,

and the dose volume histograms (DVHs), for right kidney, liver, spleen, and spinal cord

(T10-S1).

6.3. Results

6.3.1. Correlations of similarity notions

Pairwise Pearson and Spearman correlation coe�cients between the similarity measures

Sdeform, SDSC, SHausdor�, Sconst, and SOVH are reported in Table III. The two coe�cients rp
and rs show good agreement in general. Whereas Sdeform and Sconst are moderately corre-

lated (rp of 0.64, rs of 0.55), SDSC, SHausdor�, and SOVH are more independent. It is crucial to

recall that these latter similarities are highly dependent on organ shape. The correlation

coe�cients of Sdeform and Sconst with So
DSC

, So
Hausdor�

, So
OVH

, i.e., the latter similarities sep-

arately computed for each organ o, are represented in Figure 6.2 (only Pearson correlation

is reported, since Spearman leads to very similar results). These results show that moder-

ate to substantial correlations are present among Sdeform, Sconst, S
body

DSC
, S

body

Hausdor�
, and S

body

OVH
.

Moreover, S liver

DSC
is highly correlated with S liver

Hausdor�
, and S

spleen

DSC
is highly correlated with

S
spleen

Hausdor�
. However, these latter similarities are weakly correlated with the former ones,

based on deformable image registration, disposition of the internal organs and shape of

the abdomen. The fact that S
spinal cord

DSC
and S

spinal cord

Hausdor�
are not clearly correlated is likely due

to the elongated shape and di�erent bending of this organ (see, e.g., Fig. 6.3).
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Table 6.3: Pearson rp and Spearman rs correlation coe�cients for the �ve (aggregated)

similarity notions.

Pearson rp Spearman rs
Sdeform SDSC SHausdor� Sconst SOVH Sdeform SDSC SHausdor� Sconst SOVH

Sdeform 1.00 0.24 0.32 0.64 0.22 1.00 0.18 0.35 0.55 0.16

SDSC 0.24 1.00 0.39 0.49 0.34 0.18 1.00 0.46 0.50 0.31

SHausdor� 0.32 0.39 1.00 0.37 0.14 0.35 0.46 1.00 0.48 0.14

Sconst 0.64 0.49 0.37 1.00 0.52 0.55 0.50 0.48 1.00 0.42

SOVH 0.22 0.34 0.14 0.52 1.00 0.16 0.31 0.14 0.42 1.00

Figure 6.2: Heatmap and hierarchical-clustering dendrogram based on absolute values

of Pearson correlation coe�cients between Sdeform, Sconst and the organ-speci�c So
DSC

,

So
Hausdor�

, and So
OVH

, with o ∈ { liver, spleen, spinal cord (T10-S1), body (T10-S1) }.
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(aaa)  (b)

Figure 6.3: Two spinal cords aligned on the center of mass for DSC and Hausdor� distance

computation, from AP (a) and LR (b) perspective.

6.3.2. Regression and feature relevance

The magnitude of Pearson correlation coe�cients between all pairs of features is depicted

in Figure 6.4. The largest correlation coe�cients were found for combinations of age and

height, LR diameter and weight, and tumor site and radical nephrectomy.

Figure 6.5 shows the pseudo-R2
of the random forest method (averaged over 10 runs),

for each similarity notion. Although with random forest it is possible to learn non-linear

interactions among features, only few similarities are modeled with a high pseudo-R2
:

Sdeform, Sconst, S
body

DSC
, and S

body

OVH
(see Figs. 6.5(a) and 6.5(b)); with, respectively, pseudo-R2

of 0.70, 0.69, 0.87, and 0.85. In particular, the variation of measurements for the notions

aggregating (in a, SDSC, SHausdor�, SOVH) or speci�cally focused on internal organ shapes

(all similarities in Figs. 6.5(c), 6.5(d), 6.5(e)) can not be modeled well (i.e., low pseudo-R2
).

This result clearly shows that the features at hand do not provide enough information to

grasp the large variability in the internal anatomy of our young cohort. On the other hand,

it is the similarities mainly or speci�cally focusing on the overall abdomen (Sdeform, Sconst,

S
body

DSC
, S

body

OVH
) that are decently modeled. Not surprisingly, these similarities are found to

be correlated among themselves (Sec. 6.3.1).

The feature relevance of the best modeled similarities Sdeform, Sconst, S
body

DSC
and S

body

OVH

is reported in Figure 6.6. The abdominal AP and LR diameters clearly stand out as com-

mon relevant features for the four similarities. Although not salient in three out of four

cases, weight is always among the predictors with a statistically signi�cant relevance. It is

also worth noticing how nephrectomy has a slight, yet relevant in�uence on the organs’

constellation, which may be linked to a possible shift of organs after kidney resection.

6.3.3. Prediction and automatic selection of similar patients

The capability of the models trained using the most important features (obtained in Sec. 6.3.2)

to perform automatic selection is now assessed. Table 6.4 shows the quality of the pre-
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Figure 6.4: Heatmap and hierarchical-clustering dendrogram representing (absolute) Pear-

son correlation among pairwise features (abbreviations as introduced in Table 6.1 and Ta-

ble 6.2).
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Figure 6.5: Pseudo-R2
of trained random forests for all the similarities, both aggregated

(a), and for individual organs: body (b), liver (c), spinal cord (d), spleen (e).

diction in terms of the four proposed indicators head presence, tail presence, average dis-

placement, and worst displacement, for the similarity notions that could be reliably mod-

eled: Sdeform, Sconst, S
body

DSC
, and S

body

OVH
. The results are averages over 10 repetitions. When

considering only the most similar patient (k = 1), the best choice is predicted correctly

22.37% of the times (averaged over all similarity measures, where the worst is Sdeform with

only 16.22%, and the best is Sconst with 30.00%). When such prediction is wrong, the pa-

tient misclassi�ed as most similar is approximately the �fth most similar, i.e., the patient is

displaced within the top 11% of the ground-truth ranking (the worst is Sconst with 13.73%,

the best is S
body

DSC
with 7.71%). Now, by increasing k to 3 and 5 it can be seen that the

head presence increases to roughly 50%, that is, half of the most similar patients become

correctly predicted to be in the head of the ranking. A similar behavior can be observed

on the tail presence indicator, i.e., the accuracy in predicting the most dissimilar patients.

While the head and the tail presence increase considerably with k, the average displace-

ment oscillates slightly. For the best modeled S
body

DSC
(pseudo-R2

of 0.87 with the random

forest trained using only the most important features), the worst displacement increase

is also particularly limited when increasing k. This trend shows that the models are reli-

ably able to �nd a coarse notion of similarity, with a quite good capability of identifying

which patients constitute a cluster of most similar, and which constitute a cluster of most

dissimilar, but with limitations in terms of accurately ordering the most similar patients.

6.3.4. Reconstruction case

Patients with ID 6, 18, and 34 are the ones used to perform an illustrative reconstruction.

The right kidney is intact in all three patients. Patient 6 (age: 2.51 y, gender: female,

height: 93.0 cm, weight: 14.0 kg) is hypothesized to be a historical patient for whom a
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Figure 6.6: Feature relevance from random forest for the similarities that could be modeled

with high pseudo-R2
. The relevance represents the beta coe�cients in regression models.

Dots in red represent the minimal subset of features with which it is possible to obtain a

random forest with no signi�cant loss in mean squared error. Note: di�erent scales are

used on the x-axes.

Table 6.4: Predicted ranking scores for the explainable similarities, for k ∈ {1, 3, 5}. Re-

sults in bold are the best scores among similarities for a �xed k.

head pres. tail pres. avg. disp. worst disp.

k 1 3 5 1 3 5 1 3 5 1 3 5

Sdeform 16.22 34.14 44.54 49.73 82.52 76.70 13.44 12.60 10.73 13.44 23.78 28.20

S
body

DSC
25.95 52.07 65.35 65.14 75.50 86.00 7.71 5.61 5.07 7.71 12.94 18.08

Sconst 30.00 44.23 50.81 27.57 65.95 78.86 13.73 10.85 11.35 13.73 22.38 32.91

S
body

OVH
17.30 41.44 56.43 83.24 79.64 86.92 10.73 8.11 7.14 10.73 16.91 21.55

mean 22.37 42.79 54.28 56.42 75.90 82.12 11.40 9.29 8.57 11.40 18.75 25.19
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Table 6.5: The upper part of the table shows Dmean and D2cc in cGy for right kidney, liver,

spleen, and spinal cord (T10-S1) for patients 6, 18, and 34. The lower part reports the

relative error of the reconstruction, with lowest errors in bold.

Right kidney Liver Spleen Spinal cord

Patient ID Dmean D2cc Dmean D2cc Dmean D2cc Dmean D2cc

6 1.80 12.29 4.83 13.84 13.96 14.86 11.36 13.80

18 2.95 11.19 4.19 13.63 13.83 14.24 10.52 13.99

34 2.03 11.53 4.44 13.89 13.76 14.14 10.03 13.63

% relative error from patient 6

18 63.89 8.95 13.25 1.52 0.93 4.17 7.39 1.38

34 12.78 6.18 8.07 0.36 1.43 4.84 11.71 1.23

dose reconstruction is needed. Random forest correctly predicts patient 34 (age: 2.21 y,

gender: male, height: 90.0 cm, weight: 15.0 kg) to be the closest match to 6, according to

Sdeform. Patient 18 (age: 2.58 y, gender: female, height: 92.0 cm, weight: 13.0 kg) is the

most similar to 6 according to age, height, and weight. However, patient 18 is ranked as

16th in terms of Sdeform similarity to patient 6.

The outcome of the dose reconstruction is presented in terms of Dmean and D2cc in

Table 6.5, and qualitatively in terms of DVHs in Figure 6.7. Recurring to patient 34 as

reference leads to markedly better dose reconstruction for right kidney and liver, while

patient 18 is slightly preferable for spleen and spinal cord (with exception of D2cc for

the latter). In particular, patient 34 excels against patient 18 when comparing Dmean of

the right kidney, with a relative error of 12.78% for the former, and 63.89% for the latter

(51.11% di�erence). Instead, the case where 18 is mostly preferable is the relative error

on Dmean of spinal cord, with 7.39% for patient 18 and 11.71% for patient 34 (only 4.32%

di�erence). A qualitative inspection of the DVHs points at a similar conclusion: while

patient 18 may seem to be preferable for the reconstruction of spleen and spinal cord

(Fig. 6.7(c) and 6.7(d)), patient 34 is markedly better for right kidney and liver (Fig. 6.7(a)

and 6.7(b)) reconstruction.

6.4. Discussion

To the best of our knowledge, this study represents a �rst attempt to understand what

are the key anatomical characteristics to represent similarity among childhood cancer pa-

tients, and to assess the feasibility of performing an automatic selection of a representative

patient for a highly individualized CT-based 3D dose reconstruction method.

To establish a ground-truth notion of similarity between patients, we have proposed

and studied �ve possible measures of similarity. It has been found that the DSC and

Hausdor�-based similarities of the same organ are highly correlated for liver and spleen,

but not for the spinal cord (likely due to its elongated shape). Furthermore, the two new

measures we proposed, Sdeform andSconst, are correlated with the similarities that are based

on established shape descriptors (DSC, Hausdor�, and OVH) when using the contour of

the external abdomen as shape.
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Figure 6.7: DVHs of right kidney (a), liver (b), spleen (c), and spinal cord (T10-S1) (d) of

patients 6, 18, and 34. Using patient 34 as reference for the dose reconstruction of patient

6 leads to highly similar DVHs for the right kidney (a) and the liver (b).
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Random forest has been adopted to relate (pairwise) historically available features with

the ground-truth notions of similarity. This allowed for the modeling of complex, non-

linear interactions and the assessment of feature relevance. We found that aggregated

similarities focusing on general aspects of the whole abdomen (Sdeform, Sconst), as well as

the ones focusing speci�cally on the shape of the external abdomen (S
body

DSC
, S

body

OVH
) were

decently modeled. However, a relationship between the features at hand and internal

organ-speci�c shape-based similarities could not be learned. Such result is not surprising,

given previous literature studies on organ variability (e.g., correlating organ volumes with

BMI in adults [20]). Internal organ variability is possibly even further increased by the

disease these children su�er from, together with prior drug treatments (resulting in, e.g.,

possible hepatosplenomegaly). This means that more features are needed to predict the

internal anatomy. To this end, we plan to harvest more information from images, i.e., by

means of 2D/3D registrations [40], and the usage of navigator channels on 2D (digitally

reconstructed) radiographs, which have been proven capable of enabling decent organ

shape reconsruction [21, 22] in the adaptation step. Furthermore, the models learned by

random forest are complex to interpret. Adopting other machine learning methods may

generate equally powerful models of easier interpretation, and hopefully provide more

insight on the problem (e.g., genetic programming [41]).

For the well-modeled similarities, results show that the most salient features are the

abdominal diameters. This is in contrast with the common practice in phantom-based

dose reconstruction of using age, height, and weight (gender is typically not considered

for young children) to select a representative phantom for any treatment scenario. We hy-

pothesize that it may be necessary to de�ne a di�erent set of relevant features depending

on the speci�c treatment to perform a very accurate selection. The model-based predic-

tion of similarity rankings are noisy, but roughly coincide with the ground truth. If the

�rst retrieved patient would be taken as the singular best match (k = 1), the choice would

often be wrong (e.g., three out of four times for S
body

DSC
), yet the error would be limited (e.g.,

within the three most similar for S
body

DSC
). Thus, although sub-optimal, the resulting learned

models can be considered robust. When k is increased, the head presence increases much

more than the average displacement. Therefore, it may be interesting to assess whether

computing the 3D dose distributions for a small number of k patients, and then take the

average as the �nal result, may lead to more accurate reconstructions.

It will be important to understand if and how these similarities can be combined into

a single ground-truth. Between highly correlated notions, it would be natural to look for

an aggregated compromise that expresses all of them at once. Contrary, highly uncor-

related ones should probably be kept separated. This would mean that actually a multi-

objective selection approach is sought after, that is able to retrieve a limited set of di�erent

patients who are similar to the historically treated one according to di�erent notions of

similarity. Eventually, a physician could decide which CT to use for reconstruction, or,

as mentioned above, multiple reconstructions could be performed and the average dose

distribution could be taken as �nal result.

Besides a new perspective on the selection of a reference patient, this work presents

some limitations. A �rst limitation is that we chose to consider the scenario of Wilms’

tumor treatment in children, and focused on anatomical similarity of the abdomen. Thus,

the results presented in this work are valid within the domain of the chosen region of
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interest (abdomen) and the characteristics of the cohort (Caucasian children between ap-

proximately 2 to 6 years old). However, the approach presented here is general, and can

be applied to other regions of interests and cohorts. Furthermore, note that the choice of

trying to machine-learn similar anatomy rather than directly machine-learn similar dose

distributions overcomes the limitations of the latter: a speci�c treatment does not need to

be de�ned and (manually) simulated beforehand on each available CT scan. In fact, our

results can be used for any abdominal treatment (e.g., neuroblastoma), within the cohort

characteristics (Caucasian children between approximately 2 to 6 years old). Nonethe-

less, it is well possible to de�ne a similarity based on 3D dose distributions for a speci�c

treatment and learn a model capable of retrieving similar patients in that sense.

A second limitation is the lack of an analysis of the relationship between similarity

notions and dose outcomes (e.g., Dmean, D2cc, and DVHs). This work showed one exem-

plary reconstruction, but a validation study involving a statistically relevant number of

patients should be performed. Such work may be realized as shown in our illustrative

reconstruction, using a number of recently treated patients instead of historically treated

ones, as follows. 1. A treatment plan should be simulated on the patient and measure-

ments from the 3D dose distribution should be recorded; 2. Using (historically plausible)

features of the patient, a representative patient from a cohort of candidates should be

selected according to a similarity notion; 3. Dose measurements should be taken on the

representative patient and compared with the ones taken in the �rst step. The outcome of

such a study may tell which similarity notion(s) is preferable, i.e., leads to more accurate

dose reconstruction. However, it is important to remark that the selection phase discussed

here is but the �rst step in a dose reconstruction pipeline. In order to comprehensively

validate the contribution of this work in dose reconstruction, the reference anatomy re-

trieved by our method should undergo an adaptation step, to increase its resemblance

with the historically-treated patient, and the original treatment should be simulated as

close as possible. Consequently, a fair comparison with state-of-the-art phantom-based

dose reconstruction methods will be possible. This is however outside the scope of this

chapter.

A third limitation is the relatively small size of the cohort examined in this study, and,

in general, the availability of data to speci�c institutes. As generally true with machine

learning approaches, we expect that including more data will result in improved models

and prediction capabilities. We plan to expand our cohort by including anonymized patient

data provided by radiotherapy departments of other institutes.

6.5. Conclusion

This study presents a novel, machine learning-based approach to an important part in the

process of 3D dose reconstruction for historically treated patients using recent real patient

data rather than phantoms: selecting a good representative recently treated patient.

Similarity measures that consider the overall abdomen and the position of internal

organs can be decently modeled (pseudo-R2 ≥ 0.7), and automatic selection based on

such models reaches a coarse but robust performance. However, it was not possible to

�nd a relationship between features available for historically treated patients and speci�c

organ shapes. All in all, our novel approach shows potential in using CT scans of actual,

recent patients directly to perform dose reconstruction, and a number of future research
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steps are possible to gain substantial improvements, e.g., extending the data with more

patients, exploiting available 2D image data such as simulator �lms to extend the feature

set, and exploring combinations of similarity notions.
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7
Machine Learning for Automatic

Phantom Construction

Machine Learning (ML) is proving extremely bene�cial in many healthcare applications. In

pediatric oncology, retrospective studies that investigate the relationship between treatment

and late adverse e�ects still rely on simple heuristics. To assess the e�ects of radiation ther-

apy, treatment plans are typically simulated on phantoms, i.e., virtual surrogates of patient

anatomy. Currently, phantoms are built according to reasonable, yet simple, human-designed

criteria. This often results in a lack of individualization. We present a novel approach that

combines imaging and ML to build individualized phantoms automatically. Given the fea-

tures of a patient treated historically (only 2D radiographs available), and a database of 3D

Computed Tomography (CT) imaging with organ segmentations and relative patient features,

our approach uses ML to predict how to assemble a patient-speci�c phantom automatically.

Experiments on 60 abdominal CTs of pediatric patients show that our approach constructs

signi�cantly more representative phantoms than using current phantom building criteria, in

terms of location and shape of the abdomen and of two considered organs, the liver and the

spleen. Among several ML algorithms considered, the Gene-pool Optimal Mixing Evolution-

ary Algorithm for Genetic Programming (GP-GOMEA) is found to deliver the best performing

models, which are, moreover, transparent and interpretable mathematical expressions.

The contents of this chapter are based on the following preprint: M. Virgolin, Z. Wang, T. Alderliesten, and P.A.N.

Bosman. Machine learning for automatic construction of pseudo-realistic pediatric abdominal phantoms. Submitted. Preprint

arXiv:1909.03723, arXiv (2019). The preprint extends the publication: M. Virgolin, Z. Wang, T. Alderliesten, and P.A.N. Bosman.

Machine learning for automatic construction of pediatric abdominal phantoms. In Proceedings of SPIE Medical Imaging 2020:

Imaging Informatics for Healthcare, Research, and Applications, International Society for Optics and Photonics (2020) (to appear).
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7.1. Introduction

Virtual anthropomorphic phantoms are 3D representations of the human body that are

used as surrogates for the anatomy of humans, to estimate the quantity and geometric dis-

tribution of radiation dose when having been exposed to radiation, e.g., in radiation treat-

ment for cancer patients [1, 2]. Because anatomy resemblance is one of the key sources

of uncertainty in dose estimation [3], the phantom needs to represent the anatomy of the

patient for whom estimates are needed with high precision.

Current methods for phantom building have two major limitations. Firstly, tradition-

ally, building phantoms is a manual and time-consuming task. Approximations of human

anatomies are produced using simple geometrical shapes [4, 5], or by considering actual

organ segmentations from Computed Tomography (CT) scans [6–8]. These anatomies are

shaped and/or adapted according to population-based statistics and/or reasonable human-

designed criteria [4, 6, 7, 9, 10]. Because the procedure is laborious, a limited number of

phantoms is made, each meant to represent a category of patients. The second and per-

haps more fundamental limitation is that it is unknown how to best de�ne categorization

criteria that best capture resemblance in individual patient anatomy. So far, only simple

criteria such as partitioning by combinations of age, gender, percentiles height and weight,

have been explored [4, 6–8]. Nevertheless, several studies, including Chapter 6, have in-

dicated that such simple criteria are incapable of capturing the high variance in human

internal anatomy [2, 6, 11], and this can ultimately lead to coarse dose estimations [12].

Machine Learning (ML) is becoming more and more a reliable approach to tackle hard

and heterogeneous problems in healthcare [13]. This is because ML can infer patterns

from data that are hard to spot, and to model for humans. In the context of phantom con-

struction, the use of ML could improve upon the rough categorization methods that are

currently being employed. In this chapter, we present a new take on phantom construc-

tion that shows that it is possible to use ML to obtain better phantoms. In particular, we

propose an automatic phantom-construction pipeline that can be used to generate pseudo-

realistic phantoms that are patient-speci�c. To overcome the need for laborious manual

intervention, we propose to re-use 3D patient imaging (CT scans and organ segmenta-

tions) collected in a database, to assemble new anatomy combinations. To estimate how

to best perform this assembling, i.e., to move beyond the use of too simplistic criteria,

we rely on ML. Speci�cally, we train ML models to learn relationships between patient

features and 3D metrics based on their internal anatomy.

We consider a relatively hard scenario where phantoms are needed and patient features

are limited: dose reconstruction for historical patients, i.e., patients treated in the pre-3D

planning era, when radiation treatment plans were designed using 2D radiographs. As

no 3D imaging is available for historical patients to simulate the treatment and estimate

the radiation dose distribution, phantoms are necessary to act as surrogate anatomies in

order to reconstruct 3D dose distributions [12, 14]. We focus on children between 2 to

6 years, and on dose reconstruction for abdominal radiation treatment, for the following

reasons. Firstly, children are typically under-represented in existing phantom libraries,

i.e., phantoms are available for few categories [4, 6]. Secondly, the inclusion of radiation

treatment has led to high survival rates for several types of pediatric abdominal cancer

(e.g., Wilms’ tumor, the most common type of kidney cancer), but it is known to cause

late adverse e�ects [15, 16]. Thirdly, it has recently been shown that when CT scans are
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selected based on age and gender to serve as a surrogate for pediatric abdominal patients,

there is a high risk of obtaining inaccurate dose reconstructions [12]. The ultimate goal

is to realize su�ciently accurate dose reconstruction by use of more representative phan-

toms, which can then be used to better understand how radiation dose contributes to the

onset of late adverse e�ects. Providing this information can support radiation oncologists

in the design of better treatment plans with smaller chances of adverse e�ects for today’s

abdominal radiation treatment.

7.2. Materials & methods

7.2.1. Data

We built a database using data of 60 pediatric cancer patients, in the age range of 2 to

6 years. The patients were treated after 2002 at the radiation oncology department of

the Amsterdam UMC, location AMC, in Amsterdam, or at the University Medical Center

Utrecht/Princess Màxima Center for Pediatric Oncology in Utrecht. For each patient, a

CT is available that fully includes the lower part of the thorax to the lower part of the

abdomen, speci�cally from the top of the Thoracic 10th vertebra (T10) to the bottom of

the Sacral 1st vertebra (S1). The median axial thickness of the CT scan is 2.5 mm, and the

median in-plane resolution is 1.0 mm× 1.0 mm.

To simulate the scenario of dose reconstruction for patients treated in the pre-3D plan-

ning era, we only consider patient features that were typically recorded at the time. We

base our choices on the availability of features for the Emma Children’s Hospital/Academic

Medical Center (EKZ/AMC) childhood cancer survivor cohort, treated between 1966 and

1996 [16]. One important source of information for the EKZ/AMC cohort is 2D coronal

radiographs, which were acquired to plan radiation treatment. The coronal radiographs

enable us to perform measurements, along Left-Right (LR) and Inferior-Superior (IS) di-

rections, based on visible anatomical landmarks, i.e., the bony anatomy (see Fig. 7.1). For

our cohort of recently treated patients, we simulate historical radiographs using Digitally

Reconstructed Radiographs (DRRs), derived from the CTs using in-house developed soft-

ware. Figure 7.1 (left, middle) shows an example of a historical radiograph and of a DRR.

Table 7.1 lists the features considered in this work. Features involving measurements

from DRRs were collected after manual placement of landmarks (using 3D Slicer [17]), ex-

empli�ed in Figure 7.1 (right). The only source of information on the Anterior-Posterior

(AP) direction is the abdominal diameter, that was historically measured using rulers and

calipers, at the center of the radiation treatment �eld (which corresponded with the isocen-

ter for the EKZ/AMC cohort). For our cohort, we measured the abdominal diameter along

AP from the CTs, using a typical isocenter position for abdominal �ank irradiation, as de-

scribed in Section 6.2.1. Figure 7.2 shows the Pearson correlation coe�cients between the

considered features. Most features are moderately correlated, and few are strongly corre-

lated, e.g., height with age and weight. The distance along IS between the top of the right

diaphragm and T12 (RDIS) stands out as it is associated with the lowest correlations with

any other feature. We measured this feature in an attempt to capture information on the

breathing state of the patient, which is known to be correlated with organ position [18, 19].

The low correlation is likely because the particular breathing state of the patient can be

reasonably expected to be not correlated with the other features we considered.
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Figure 7.1: Left: An example of a 2D coronal radiograph, taken by a radiation treatment

simulator used in the pre-3D planning era, including annotations by medical personnel

(sensitive information censored). Middle: A digitally reconstructed radiograph built from

a CT. Images are acquired in anterior-posterior setting. Liver and spleen are not clearly

visible. Right: Example of manually-placed landmarks used to measure features from ra-

diographs. The length of the left and the right diaphragm along the LR direction is derived

by �tting a cubic spline to the respective dashes.

We consider two Organs At Risk (OARs), i.e., organs for which exposure to radiation

is known to lead to adverse e�ects: the liver and the spleen. These OARs are particularly

interesting because their shape and position is known to vary substantially per individual,

and are very hard to predict (Chapter 6). In general, the liver and spleen are not (clearly)

visible in historical radiographs (see Fig. 7.1). For each patient in the cohort, 3D segmenta-

tions of the OARs and of the external body (delimited along IS between T10 and S1) were

�rstly automatically generated (with ADMIRE research software, 2.3.0, Elekta AB, Stock-

holm, Sweden), then manually checked and corrected by experienced radiation treatment

technologists (with Velocity software, version 3.2.0, Varian Medical Systems, Inc. Palo

Alto, CA, US), and �nally approved by a pediatric radiation oncologist.

Table 7.1: Features of our cohort, typically available for patients treated in the pre-3D

planning era. Note: gender is categorical, other features are numerical.

Feature name Abbreviation Unit Source Min Max Mean St.Dev.

Age AGE years records 2.0 6.0 3.8 1.2

Abdominal diameter in AP at typical isocenter ADAP mm records 11.1 16.0 13.3 1.2

Abdominal diameter in LR at middle of L2 ADLR mm radiograph 16.3 23.5 19.4 1.4

Distance from top of iliac crest to spinal cord along LR ICSC mm radiograph 4.3 6.8 5.5 0.6

Gender GEND – records 33 females, 27 males

Heart size along LR HESZ mm radiograph 6.8 9.9 8.5 0.7

Height HEIG cm records 86.0 123.0 103.0 10.7

Left diaphragm length along LR LDLR mm radiograph 6.5 10.7 8.4 0.9

Right diaphragm length along LR RDLR mm radiograph 6.2 10.5 8.3 0.8

Right diaphragm top to T12 distance along IS RDIS mm radiograph 4.0 7.8 5.9 1.0

Spinal cord length along IS from T12 to L4 SPIS mm radiograph 7.0 10.9 9.3 0.8

Weight WEIG kg records 10.0 28.0 16.4 3.7
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Figure 7.2: Pearson correlation coe�cients (number and color-coded) between the consid-

ered features. See Table 7.1 for the meaning of abbreviations.

7.2.2. Pipeline for automatic phantom construction

The outcome of our pipeline is a CT-based phantom, built using recent patient imaging

data. The goal is to resemble the anatomy of the historical patient as closely as possible.

The pipeline is summarized in Figure 7.3. Given the patient features as input, �rst

an ML modelMBody

S
is used to predict which CT is most resembling in terms of overall

body shape (for the abdominal region). We call this CT the “receiver”. Then, the OARs

of the receiver are “resected”. Resection of an OAR is performed by setting the voxels of

the receiver that belong to the OAR to Houns�eld Unit (HU) values that represent generic

soft abdominal tissues (this is a parameter, we used 78, as done in the phantoms of the

University of Florida/National Cancer Institute[6]). Subsequently, for each OAR, its center

of mass position is predicted using dedicated models, i.e., one for the LR (MOAR

LR
), one for

the AP (MOAR

AP
), and one for the IS position (MOAR

IS
). A �fth model (MOAR

S
) is used to

predict which OAR segmentation to retrieve among the ones available based on a shape-

focused metric (described in Sec. 7.2.3). We choose to adopt separate models because the

features related to one metric may be independent from the ones related to another metric,

e.g., we expect features related to the LR direction to be important for the LR coordinate

of the center of mass of an OAR, but not (or substantially less) for its AP or IS coordinates

and for determining what segmentation has the most promising shape.

We refer to the CT that is chosen by MOAR

S
to provide the OAR segmentation as a

“donor”. Next, the segmentation is “transplanted” into the receiver, using the predicted

position. Transplantation is achieved similarly to resection: we add the OAR segmentation

to the set of segmentations of the receiver, placed in the predicted position, and we set
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phantom 
(with possible

inconsistencies)

phantom

patient treated
pre-3D planning era

receiver
database

OAR of donor

receiver
after resection

coord.

coord.

coord.

(CTs + segmentations + features)

Figure 7.3: Pipeline for automatic phantom building. Pre-trained ML models are used to

predict 3D OAR positions as well as what OAR donor segmentation and what receiver CT

to retrieve from the database to construct a patient-speci�c phantom CT (only the liver is

considered as OAR in this example). The resected and transplanted OAR is highlighted in

red and green, respectively.

the HU values of the voxels in the receiver that belong to the OAR segmentation to the

respective HU values from the donor scan.

A �nal step consists of correcting the phantom for possible anatomical inconsistencies

with an Anatomical Inconsistencies Correction (AIC) procedure. This is because the ML

models can in principle predict to place segmentations in positions that result in non-

realistic anatomy (e.g, OARs overlapping with each other). An optimizer is therefore used

to subsequently resize and re-position the OARs to correct for anatomical inconsistencies,

with minimal corrections so as to compromise the quality of the ML model predictions as

little as possible (more details are given later, in Sec. 7.2.4).

To store CTs and segmentations sets, we relied on the Digital Imaging and Com-

munications in Medicine standard (DICOM). Segmentation sets were stored in DICOM

RT-Structure sets. To handle this data format, we used the pydicom package for Python

(https://pydicom.github.io). We do not provide full details on the implementation here

(e.g., which �elds of the DICOM �les are changed and how), but our source code is avail-

able at: http://github.com/marcovirgolin/APhA.

7.2.3. Machine learning

This section describes how the ML models in the pipeline are trained. Firstly, we present

how datasets for supervised learning are built. Secondly, we present the ML algorithms

that we selected, and their hyper-parameters. Finally, we describe the learning strategy,

i.e., how we train, tune, and validate the models.

https://pydicom.github.io
http://github.com/marcovirgolin/APhA
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Datasets for training

To train the ML models we prepare separate datasets to learn each ML model indepen-

dently. As aforementioned, we learn separate models under the assumption that 3D met-

rics are (largely) independent from each other. Hence, 1+4×#OARs datasets are needed:

one to learn how to pick the receiver CT, three for each OAR to predict the OAR position,

and one more for each OAR to predict which segmentation to retrieve.

We perform numerical feature normalization by z-scoring [20], i.e., each feature is nor-

malized by subtraction of the mean and division by the standard deviation. Since patient

gender is categorical, we set it to a binary value: 0 for females and 1 for males. As no cor-

relation coe�cient above 0.9 was found between the features (Fig. 7.2), we do not exclude

any feature. Z-scoring is also applied to the target variable y.

We construct two types of datasets. One type is used for OAR position modeling along

three orthogonal directions (i.e., LR, AP, IS). The other type is for donor and receiver re-

trieval. The preparation of the datasets for OAR position modeling is straightforward. We

de�ne the OAR position relative to a common landmark: the center of the L2 vertebra. In

other words, the OAR position in LR, AP, or IS direction is a signed, one-dimensional dis-

tance from the center of the L2 vertebra to the center of mass of the OAR’s segmentation,

measured in mm.

For the datasets concerning the retrieval of a representative OAR segmentation, a mea-

sure of segmentation similarity needs to be de�ned as target variable. Because a measure

of similarity is de�ned between pairs of segmentations, each example needs to be de�ned

over a pair of patients, leading to a total of #patients(#patients−1)/2 training examples.

For the features, we use a pairwise version of the features de�ned as the absolute di�er-

ence of the features of patients p and q: xp,q = |xp − xq|, with xp being the feature x of

patient p. For the target variable, several possibilities to address segmentation similarity

have been proposed in literature. For example, a possibility is to consider similarity in

OAR weight[8]. We do not rely on OAR weight nor volume because they do not account

for similarity of shape. Another commonly adopted option to assess OAR similarity is the

use of the volumetric Dice-Sørensen Coe�cient (DSC) [14, 21, 22]. However, the DSC still

has limitations, because it is segmentation-volume dependent. We therefore rely on the

recently introduced surface Dice-Sørensen Coe�cient (sDSC) [23], which considers only

signi�cant millimetric deviations between the surfaces of the segmentations to evaluate

similarity. In particular, the sDSC uses a threshold parameter τ that expresses what devi-

ations are acceptable (e.g., as part of inter-observer variability). To choose τ , we consider

that the median CT slice thickness in our database is 2.5 mm. Since we deal with inter-

patient OAR segmentations, we doubled this value, and adopted τ = 5.0 mm. Because we

predict OAR positions separately for each OAR, the sDSC is computed after aligning the

segmentations on their center of mass, i.e., to maximally focus on the shape. Furthermore,

we consider sDSC values as percentages (0 to 100).
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Loss function for learning

As loss function to train and validate the ML algorithms we consider the Mean Absolute

Error (MAE), i.e.,

MAE(y, ŷ) =
n∑
i=1
|yi − ŷi|, (7.1)

where y and ŷ are n-dimensional vectors of ground-truth values and ML predictions

respectively. Clearly, the MAE needs to be minimized. We choose to use the MAE because

it is relatively simple to interpret, as it preserves the unit of measurement of the metric

at hand (mm for OAR positions, % for sDSC between OAR segmentations), and weighs all

errors equally.

For OAR positions, computing the MAE is straightforward both at training and at test

time. Given n cases, it su�ces to measure the absolute di�erence between each ground-

truth position and its prediction, and take the average upon all examples.

The sDSC is de�ned between pairs of patient OAR segmentations. Here, ML algo-

rithms predictions correspond to estimations of sDSC between OAR segmentation pairs,

and MAE minimization means to correctly predict the sDSC. At training time, the MAE

between predictions and ground-truth sDSC is measured. The measurement of validation

MAE is more involved. In particular, when validation is needed for a patient who was not

included in the training data, i.e., to obtain a segmentation for a test patient, we �rstly

create pairwise features (Table 7.1) between that patient and each other patient in the

database (as absolute feature di�erences as described in 7.2.3). Subsequently, the model

uses the pairwise features as input, and produces predictions of sDSC between the OAR

segmentation of the test patient and the one of each other patient (see the input ofMOAR

S

andMBody

S
in Fig. 7.3). Now, we do not compute the MAE between these predictions and

the ground-truth sDSCs as test error, because the predictions do not correspond to any

particular segmentation in the database. Rather, they give an indication of how the OAR

segmentation of each patient will fare against the OAR segmentation of the test patient in

terms of sDSC. Therefore, we proceed by retrieving the segmentation from the database

that has the largest predicted sDSC with the test patient. Finally, we evaluate the actual

sDSC between these two segmentations, and report that.

Note that the maximum score of OAR shape similarity achievable is not necessarily

100%, rather, it is the maximum sDSC that can be obtained with the OAR segmentations

available in the database. To frame the future comparisons that involve di�erent metrics,

i.e., OAR positions and OAR shape, we de�ne εsDSC = 100− sDSC, which is minimal (0%)

when the sDSC is maximal (100%), and is maximal (100%) when the sDSC is minimal (0%).

This way, both errors in OAR positioning and in OAR shape retrieval can be considered

as a metric to be minimized.

Algorithms

We compare a total of �ve regression ML algorithms: Least-Angle RegreSsion (LARS)

[24], LARS using the Least Absolute Shrinkage and Selection Operator (LASSO) [25], Ran-

dom Forest (RF) [26], traditional Genetic Programming (GP-Trad) [27, 28], and the Ge-

netic Programming instance of the Gene-pool Optimal Mixing Evolutionary Algorithm
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(GP-GOMEA) [29, 30]. These algorithms are interesting because they include hyper-

parameters that can be used to prevent over�tting, which is a likely scenario when the

data is limited as in many medical applications, including ours.

LARS and LASSO are widely used approaches that work based on the assumption that

the features can be combined linearly, and include penalization metrics to avoid over�t-

ting. LASSO also performs feature selection. Both algorithms build models that can be

read as mathematical expressions consisting of a linear combination of the features, and

are therefore considered interpretable [31]. We optimize the hyper-parameter λ, i.e., the

penalization factor, as described in Section 7.2.3. We use the implementation of the pack-

age glmnet, in R [32, 33].

RF is also widely used, but it is di�erent from the previous two as it allows non-linear

modeling. RF builds a model as an ensemble of decision trees to reduce variance in esti-

mation and thus over�tting. Because the model is an ensemble, it is considered not inter-

pretable [31]. We optimize how many features are randomly chosen when building the

nodes that compose each decision tree (mtry), and the minimum number of data samples a

node should represent (min. node size), the same way we optimize λ for LARS and LASSO

(see Sec. 7.2.3). We use the R implementation known as ranger [34].

The Genetic Programming algorithms are interesting because, like LARS and LASSO,

they deliver models in the form of mathematical expressions, but they can include non-

linear feature combinations. These algorithms work by loosely mimicking the concept

of Darwinian evolution, i.e., by iterative recombination of candidate mathematical ex-

pressions made of atomic functions, and selection of the �ttest. Recombination in GP-

Trad is highly stochastic, whereas the one of GP-GOMEA includes information theory-

based mechanisms to estimate what patterns of atomic functions should be preserved

during recombination attempts. We found GP-GOMEA to work particularly well when

small, yet accurate expressions are needed (Chapter 3). To reduce the number of hyper-

parameters, we use these algorithms within a scheme of interleaved runs of increasing ca-

pacity (described in sec 7.2.3). We use the C++ implementation of GP-Trad and GP-GOMEA

(https://github.com/marcovirgolin/GP-GOMEA).

Hyper-parameter settings

Table 7.2 shows the hyper-parameters used by the ML algorithms. LARS and LASSO use

λ to penalize complex models. For RF, we use the default relatively large number of trees

(given the datasets at hand) of 500 [35].

For GP-Trad and GP-GOMEA, the function set F de�nes which functions to use as

model components (tree nodes). The division operator ÷A is the analytic quotient [36],

which not only guarantees that the divider can never be null, but also ensures smooth-

ness (in contrast with the protected division operator [28], which can harm generaliza-

tion [36]). The logarithm operator is protected to avoid infeasible computations [27]. The

Ephemeral Random Constants (ERC) are constants for which the value is set by uniform

sampling from a de�ned interval [28]. Mathematical expressions are encoded as parse

trees in GP-Trad and GP-GOMEA. We set a small tree height to keep the resulting math-

ematical expressions short and readable (we found that larger three heights can result in

hard to read expressions), and to prevent over�tting.

The number of candidate expressions to evolve, i.e., the population size, is a sensitive

parameter for GP algorithms. We run GP-Trad and GP-GOMEA using the Interleaved Mul-

https://github.com/marcovirgolin/GP-GOMEA


7

160 7. Machine Learning for Automatic Phantom Construction

Table 7.2: Hyper-parameters of the ML algorithms. The subscript “tune” means that the

hyper-parameter setting is subject to optimization with 5-fold cross-validation grid-search

among the listed values.

Algorithm Hyper-parameter Settings

LARS and LASSO λtune 10−10, 10−9, . . . , 1010

RF nr. trees 500

min. node sizetune 5, 10, . . . , 20, 25
mtrytune 1, 2, . . . , # features

2
GP-Trad and

GP-GOMEA

F {+,−,×,÷A, exp, log
P
}

ERC U[−10, 10]
tree height 2

gIMS 4

time limit 60s

tistart Scheme (IMS), a method that interleaves multiple runs with increasing population

size. We set the number of sub-iterations between runs, gIMS, to 4 as has been reported to

work well on benchmark problems (Chapters 2 and 3). Since the IMS can in principle run

forever, we set a time limit of 60 seconds. We found this limit to be reasonable because the

datasets are small and evaluations are fast, and because the other ML algorithms take only

a few seconds to execute. We also preliminarily observed that increasing the time limit

(e.g., to 5 or 10 minutes) does not alter the results in a signi�cant way. For further details

on GP-Trad, GP-GOMEA, the IMS, and other hyper-parameters, the reader is referred to

Chapter 3.

Learning strategy

With a limited number of 60 patients available, we perform leave-one-out cross-validation

to compute the overall test performance. The leave-one-out cross-validation is performed

“patient-wise”, i.e., all the examples relative to a particular patient p are removed from the

training set, and solely used for testing. This is obvious for the datasets on OAR position,

as each row corresponds to exactly one patient. For the datasets on OAR segmentation

retrieval, however, each row represents a pair of patients (see Sec. 7.2.3). Therefore, all

#patients− 1 (59) rows where p is considered are removed from the training set and put

in the test set. This is necessary to avoid a positive bias in the test results.

Within each iteration of leave-one-out cross-validation, for LARS, LASSO, and RF, we

perform grid-search hyper-parameter tuning with 5-fold cross-validation upon the train-

ing data, to determine the best hyper-parameter values. We use the R package caret for

this purpose[37]. Once the best hyper-parameter settings are found, we train the ML al-

gorithm on the training set using those settings, and test it on the test set. For GP-Trad

and GP-GOMEA, we take the best expression found by the interleaved runs started by the

IMS.

Since RF, GP-Trad, and GP-GOMEA are stochastic algorithms, we repeat their execu-

tion 10 times, and report the mean result.
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7.2.4. Anatomical inconsistency correction

The last step of our pipeline repairs possible anatomical inconsistencies present in the

assembled phantoms. We automatically compute possible overlaps between the trans-

planted OARs (liver and spleen), and between the OARs and the spinal cord segmentation

of the receiver, which is available for these patients. To have an additional margin, we en-

large the spinal cord segmentation by 10% uniformly in all dimensions. Furthermore, we

assess if the transplanted OARs stick out of the segmentation of the body of the receiver.

If a larger segmentation of the body exists than the common region of interest between

T10 and S1 (used to assess body shape similarity to train ML models), that segmentation is

used here. Again, for robustness, the body segmentation is shrunk uniformly in all dimen-

sions, by 2.5%. The values chosen for spinal cord segmentation expansion (10%) and body

segmentation shrinking (2.5%) were found to deliver pleasing results by visual inspection.

We use a general purpose, derivative-free real-valued optimization algorithm to mod-

ify the transplanted OAR segmentations to eliminate the anatomical inconsistencies, with

default parameter settings [38, 39]. The algorithm is con�gured to act on both liver and

spleen at the same time, with modi�cations (i.e., optimization variables) that can expand

or shrink the segmentations (up to 1.25 and 0.25 of the original volume respectively), as

well as reposition their center of mass along LR, AP, IS (up to 10 mm for each direction).

We set anatomical inconsistencies as hard constraints to satisfy. Modifying the OARs to

satisfy the constraints deviates from the predictions of the ML models, and can therefore

result in less accurate phantoms. Therefore, we use an objective that con�icts with the

constraints, in that it attempts to minimize the e�ect of OAR modi�cations: for each OAR

being corrected, we use the same objective of the ML algorithms to capture the shape of

OARs, i.e., the sDSC (again with threshold of 5 mm), this time compared to its originally-

predicted shape and position. The �nal objective is given by summing the sDSC of both

liver and spleen, to be maximized.

7.2.5. Comparing to phantom selection approaches

As we mentioned in the introduction, it is common practice in phantom-based dose re-

construction to select a phantom from a library according to some criteria. As CTs of

actual patients can act as phantoms, we consider several approaches to compare with our

pipeline: two methods that simulate state of the art human-designed criteria used to build

and select from phantom libraries, random selection, and one method to select a single CT

from our database based on ML predictions.

Human-designed criteria for phantom selection

The �rst methods we consider are the criterion used by the University of Texas MD Ander-

son Cancer Center [4, 5], which we refer to as Human Criterion 1 (HC1), and the criterion

used by the University of Florida/National Cancer Institute [6], which we refer to as Hu-

man Criterion 2 (HC2). We further consider random selection, to see if the other methods

are better than random.

The phantoms on which HC1 has previously been used are virtual cuboid shapes with

OARs represented as point clouds [4, 5]. Only the age of the patient is considered as a

feature to manipulate the phantom’s representativeness by scaling the cuboids according

to guidelines on population data. Furthermore, gender is used to exclude/include gender-
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speci�c OARs. To simulate HC1, i.e., age binning, we cluster our database into age bins,

by rounding the age to years. This results in 5 bins, with the following distribution: 10

patients of age 2, 18 of age 3, 11 of age 4, 15 of age 5, and 6 of age 6.

For a test patient p, we consider the other patients from the database that share the

same age bin with p. Then, for each metric of interest, we report the average error given

by comparing the metric value for p with the one for each other patient that has the same

age as p. For example, for the assessment of liver segmentation similarity of a patient p
that is 3 years old, we compute the sDSC between p and each other patient that is 3 years

old, and return the mean. By doing this, we simulate the fact that an average anatomy has

been built using the anatomical information of all patients (di�erent from p) that have the

same age. We do this because phantoms are built to represent average anatomies.

The phantom library where HC2 is adopted comprises phantoms made by scaling seg-

mentations acquired from actual patient CT scans, thus they are quite realistic [6]. For

these phantoms, the features considered to build the library were gender, height, and

weight (age was not used). HC2 uses these features to select a representative phan-

tom. We simulate HC2 by clustering our database by gender, and by height and weight,

using 5 bins for each of the latter two. We use the bin method of the R package binr

(http://jabiru.github.io/binr) for this purpose, with default settings, which results in

5 bins of 12 patients each. Like for HC1, the error for a metric is given by comparing the

metric value for the test patient p with the metric values of each patient that shares the

same bin of p, and taking the average.

To assess whether there is any merit in using the human-design criteria, we also con-

sider a control method where the OAR positions and segmentations are retrieved uni-

formly at random from the set of patients, excluding the test patient p. Because of the

stochastic nature of this approach, each iteration is repeated 10 times, and mean results

are computed. In the following, we refer to this method as RAND.

As we propose a pipeline to build a phantom, it is interesting to assess how it fares

against a simpler approach, e.g., to use ML predictions to select a single, overall most

representative CT scan. This approach can be related to literature, where new ways to

identify which phantom to pick are studied [14, 40, 41].

While our phantom construction pipeline can predict the di�erent 3D metrics inde-

pendently (position for each direction, sDSC for each OAR), for a single CT approach, an

overall score needs to be de�ned that expresses how representative a CT scan is. As dis-

cussed in Chapter 6, the design of such a score is not trivial. For example, a choice needs

to be made on whether 5 mm along the LR direction is more important or less important

than an sDSC loss of 5%. For the sake of simplicity, we propose a score measure that con-

siders only OAR positions, with equal importance. We choose to focus on OAR position

because we recently found it to be the metric that is most correlated with dose accuracy

for pediatric abdominal radiation treatment [42]. In detail, we take as best CT the one that

is closest to the predictions of the ML models in terms of squared position di�erences, i.e.,

Best CT = argminCT

∑
O∈OARs

∑
D∈ {LR,AP,IS}

(
DO

ML
−DO

CT

)2
, (7.2)

where DO
ML

and DO
CT

are respectively the ML-predicted position and the actually available

position in the CT, of the OAR O, along direction D. We denote this approach with sCT.

http://jabiru.github.io/binr
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Table 7.3: Mean training and test MAEs for the ML algorithms on the di�erent OAR-

speci�c regression tasks. Standard deviation is reported in subscript. The MAE for OAR

segmentation retrieval is a percentage, the MAE for OAR position estimation is in mm.

Results in bold are best in that no other method delivers signi�cantly better ones. The

letter “S” stands for segmentation retrieval.

Body Liver Spleen #Best

S LR AP IS S LR AP IS S

T
r
a
i
n

i
n

g

LARS 16.63 0.08 7.89 0.24 4.27 0.14 7.10 0.33 17.02 0.07 3.99 0.21 7.21 0.13 7.71 0.19 15.39 0.10 1

LASSO 16.64 0.08 7.87 0.36 4.24 0.10 7.28 0.19 17.02 0.07 4.03 0.10 7.24 0.13 7.60 0.13 15.38 0.09 0

RF 6.74 0.33 8.36 0.14 4.87 0.08 8.74 0.09 12.37 1.08 5.44 0.07 7.25 0.14 9.33 0.14 7.21 0.83 3

GP-Trad 19.55 0.06 6.97 0.11 3.93 0.07 6.42 0.10 15.97 0.03 4.01 0.05 6.56 0.13 7.06 0.15 14.08 0.04 2

GP-GOMEA 19.55 0.06 6.97 0.11 3.93 0.07 6.38 0.09 15.96 0.03 3.95 0.05 6.47 0.12 7.05 0.15 14.07 0.04 6

T
e
s
t

LARS 23.70 15.31 8.54 6.83 4.82 4.57 9.10 5.33 38.90 17.84 5.18 3.33 7.42 8.06 8.52 7.48 35.12 14.51 3

LASSO 22.78 15.34 8.87 6.91 4.86 4.49 8.98 5.37 38.98 19.11 5.02 3.21 7.37 8.10 8.68 7.47 36.82 13.59 3

RF 21.38 14.59 8.36 6.55 4.77 4.62 7.94 5.73 41.12 16.72 4.98 3.48 7.83 8.00 8.80 7.74 33.98 15.47 3

GP-Trad 27.08 16.67 7.27 6.48 4.68 4.30 7.23 5.89 40.61 14.25 5.23 3.40 8.35 8.22 8.43 9.73 35.70 10.57 4

GP-GOMEA 26.77 16.75 7.26 6.48 4.78 4.36 7.89 6.03 39.00 19.31 4.56 3.49 7.33 8.32 8.21 9.78 35.62 11.43 6

Note that sCT is essentially a hybrid between a human-designed criterion, represented

by Equation 7.2, and the use of ML, of which the predictions are used in the equation.

Lastly, since we found GP-GOMEA to be the overall best performing ML algorithm (shown

later in Sec. 7.3.1), we used the models found by GP-GOMEA to provide the predictions

for sCT.

7.2.6. Experimental setup

We divide experiments into two parts. In the �rst part, we compare the predictions of

the ML algorithms, in terms of MAE. In the second part, we compare the prediction of

the overall best performing ML algorithm with the phantom selection approaches, in a

similar way. In this second comparison, we include the e�ect of anatomical inconsistency

correction, to assess how much it compromises the accuracy of the predictions of the ML

models.

We run the ML algorithms on a machine with two Intel
®

Xeon
®

CPU E5-2699 v4 @

2.20 GHz. We assess statistical signi�cance of the results with the Wilcoxon signed-rank

test, paired by train-test split (i.e., held-out patient) [43], and using the Bonferroni correc-

tion method to prevent type I errors [44]. In particular, since we perform pairwise tests

between the algorithms for each metric, we assess whether the test p-value is below a

con�dence level of 0.05, further reduced by a Bonferroni correction coe�cient, to contrast

false positive outcomes due to chance.

7.3. Results

7.3.1. Comparison of the machine learning algorithms

The mean (and standard deviation) training and test MAE obtained by the leave-one-out

cross-validation of the ML algorithms are reported in Table 7.3. If multiple results are not

found to be statistically signi�cantly worse than the best result, they are considered to

be equally good. Note that for consistent use of the MAE, to be minimized, the task of

segmentation retrieval uses εsDSC.
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In terms of training performance, GP-GOMEA is overall the best algorithm, as it is

not signi�cantly worse than any other for 6 metrics, i.e., OAR position for all directions.

RF follows with 3 top performances, in particular for the segmentation retrieval task (S)

of all OARs, where it achieves markedly lower errors than all other algorithms. LASSO

performs worst, with at least one algorithm signi�cantly outperforming it in each metric.

Regarding the test performance on the patient excluded by the leave-one-out cross-

validation, similar to the observed training performance, GP-GOMEA obtains the most

signi�cantly best results. GP-GOMEA also generalizes well on predicting which segmen-

tation to select for the liver, but it is inferior to RF when it comes to selecting the segmen-

tations for the body and the spleen. Indeed, for those two segmentations, RF performs

better than any other ML algorithm, although the errors at test time are much larger than

the ones found at training time. Note that this mismatch between training and test per-

formance can be explained by possible over�tting, as well as by the fact that, at test time,

error propagation can happen, since the model prediction is used to retrieve a candidate

segmentation from the ones available in the database (this holds for all ML algorithms, see

Sec. 7.2.3). GP-Trad scores an extra point compared to RF in terms of number of metrics

where it is not outperformed signi�cantly. LARS and LASSO generalize quite well at test

time, as they are not inferior to the other ML algorithms on (the same) 3 metrics.

7.3.2. Machine learning vs. phantom selection approaches

Table 7.4 shows results of the ML algorithm found to perform overall best, GP-GOMEA,

and of the use of phantom selection approaches. The use of anatomical inconsistency

correction upon GP-GOMEA’s predictions is also included (named GP-GAIC), to make the

pipeline construct pseudo-realistic phantoms. Note that since the use of automatic incon-

sistency correction does not adapt the body segmentation, there is no di�erence between

GP-GOMEA and GP-GAIC in terms of error for body segmentation retrieval.

Out of the nine metrics, the correction-less predictions obtained with GP-GOMEA are

generally best, with the only exceptions being the IS position and segmentation retrieval

for the spleen (by relatively small errors on average). The use of anatomical inconsistency

correction upon GP-GOMEA’s predictions, GP-GAIC, can change shape and position of

the OARs in both considerable (e.g., liver AP and liver S) and minor (e.g., liver LR, spleen

IS) magnitude. Figure 7.4 shows box plots of the corrections on all phantoms. For our

database, the anatomical inconsistency correction was triggered for 31/60 phantoms. The

liver is subject to more corrections than the spleen: it is typically shrunk more than the

spleen, and its position in AP is subject to large variations. This is not surprising, because

the liver is a considerably larger organ than the spleen, and it is more likely to violate the

anatomical consistency constraints we imposed.

Overall, correcting for inconsistencies comes at the cost of worsening the accuracy of

the ML predictions. GP-GAIC has signi�cantly best performance only on 3 metrics (body S,

spleen AP, and spleen S). For spleen AP and spleen S, performing inconsistency correction

leads to better test results compared to not applying corrections. However, the correction

algorithm solely optimizes for resolving the inconsistencies while attempting to retain

maximum prediction �delity. Moreover, as sCT also obtains good results on spleen AP

and S, it can be argued that these metrics are not modeled well by GP-GOMEA to begin

with, and thus are more likely to be improved upon by chance.



7.3. Results

7

165

Table 7.4: Mean test MAEs of the overall best performing ML algorithm GP-GOMEA, also

including anatomical inconsistency correction (GP-GAIC), and of the phantom selection

approaches. Standard deviation is reported in subscript. The MAE for OAR segmentation

retrieval is a percentage, the MAE for OAR position estimation is in mm. Results in bold are

best in that no other method delivers signi�cantly better ones. Results underlined are best

if GP-GOMEA is excluded from the comparison. The letter “S” stands for segmentation

retrieval.

Body Liver Spleen #Best

S LR AP IS S LR AP IS S (Underlined)

T
e
s
t

GP-GOMEA 26.77 16.75 7.26 6.48 4.78 4.36 7.89 6.03 39.00 19.31 4.56 3.49 7.33 8.32 8.21 9.78 35.62 11.43 7 (–)

GP-GAIC 26.77 16.75 7.91 6.27 6.21 5.42 8.07 6.06 42.20 20.29 5.18 4.04 7.35 8.30 8.54 9.67 34.10 16.97 4 (7)

HC1 37.54 10.82 8.88 6.90 4.83 4.70 9.10 6.13 43.19 8.35 5.65 3.68 7.96 7.75 9.78 8.20 37.58 8.53 2 (2)

HC2 36.83 18.97 9.84 6.26 5.18 4.74 9.20 6.48 49.67 8.2 5.54 4.21 8.02 7.69 13.91 11.09 34.76 10.37 0 (0)

RAND 45.10 13.14 11.57 6.19 7.11 4.01 12.38 4.48 44.01 8.96 7.70 3.29 11.14 7.22 13.52 7.05 35.89 8.11 0 (0)

sCT 37.13 22.00 15.29 10.02 7.44 5.91 11.45 9.2 42.72 18.30 4.85 3.43 7.40 8.32 7.84 9.37 32.08 12.28 3 (5)

Although the use of anatomical inconsistency correction after ML prediction typically

leads to larger errors, it remains a valuable approach compared to the other methods.

GP-GAIC is overall best when the correction-less GP-GOMEA predictions are excluded

from the comparison. The human-designed criteria HC1 and HC2 perform overall worse

than GP-GAIC. Despite its simplicity, HC1 performs well for AP and S of the liver. This

may be because metrics related to the liver are harder to model by the ML algorithms,

and because the use of anatomical inconsistency correction compromises GP-GOMEA’s

prediction (particularly notable for liver AP). Despite the fact that HC2 is a somewhat

more involved criterion compared to HC1 (HC2 considers gender, height, and weight,

while HC1 considers only gender and age), it is never found to be competitive on any

metric. This could mean that weight and height are not good features when accounting

for similarity of internal anatomy in children. This result is in agreement with previous

work [42] where lack of correlations between dose reconstruction outcomes were found

with respect to height and weight.

Importantly, in some cases, HC1 and HC2 perform particularly bad. HC1 is particu-

larly inaccurate for spleen S compared to the other approaches, and HC2 leads to notably

large errors for spleen IS. In the latter case, HC2 is not found to be better than RAND.

Furthermore, both criteria perform poorly on body S (as well as sCT). Figure 7.5 shows

the reliability function of the considered approaches for body S. This function shows the

likelihood of committing errors of a certain magnitude (for segmentation retrieval, in per-

centage). A curve is better than the others if it is more on the left and if it decreases more

rapidly, since this means that the probability of any error magnitude is lower than the

ones of the other methods. The �gure illustrates that the model learned by GP-GOMEA

achieves this behavior. For example, the probability of a GP-GOMEA’s model to predict

a body segmentation that has an εsDSC > 20% (sDSC < 80%) with the actual body of

the patient is 60%. For HC2 and sCT, that magnitude of error happens more frequently,

i.e., in almost 80% of the cases. HC1 performs worse, since errors above 20% are almost

certain. On the other hand, rarely, (probabilities around 5%), HC2 and sCT can retrieve

body segmentations that have errors above 80%.
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Figure 7.4: Distribution of the e�ect of the anatomical inconsistency correction on all

phantoms (29/60 are not corrected). OAR shape (S) is corrected by volume enlargement

(if > 0%) or shrinking (if < 0%) uniformly along the three dimensions. Change of center

of mass for AP, LR, and IS is in mm. Phantoms where correction is not needed, contribute

to OAR shape modi�cation with 0% (no enlargement nor shrinking), and to OAR position

change with 0 mm (no re-positioning). Boxes extend from the 25th to the 75th percentiles,

inner bar is the median, and whiskers extend from the 10th to the 90th percentiles.

Regarding sCT, the results indicate that this approach is generally worse than GP-GAIC,

but better than the human-designed criteria to predict metrics related to the spleen. sCT

performs particularly bad with respect to metrics regarding the liver (note in particular

liver LR). This is an interesting result because the CT selected by sCT weighs OAR posi-

tions equally for liver and spleen (see Eq. 7.2). We remark that sCT uses the ML models

(found by GP-GOMEA) to predict which single CT scan (and accompanying segmenta-

tions) to select by means of a hand-designed metric. Essentially, the results con�rm our

hypothesis that designing a good score to select one CT is not trivial, and that there is

added value in constructing a new anatomy by assembling di�erent components into one.

7.3.3. Model interpretability

As we mentioned before, the added value of utilizing the linear ML algorithms (LARS

and LASSO), and the GP algorithms (GP-Trad and GP-GOMEA) is that their models are

mathematical expressions which, if simple enough, can be interpreted. Interpretability can

play a crucial role in determining whether ML can be applied in some clinical settings. For

RF, the interpretation of the model is essentially impossible, as it returns an ensemble of

(500) decision trees. Similarly, this would not be possible with other popular techniques

like deep learning [45], and boosting algorithms [46].

We report all the best-at-test-time models found by GP-GOMEA at http://bit.ly/

2Za4ESy. Here, we report two of those models, that are remarkably simple. For the pre-

diction of which body segmentation to retrieve, the model found most frequently in 10

repetitions is (assuming the target variable and the features are normalized):

0.420× (ADAP + ADLR + SCIS) . (7.3)

http://bit.ly/2Za4ESy
http://bit.ly/2Za4ESy
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Figure 7.5: Reliability functions for prediction of segmentation retrieval (S) of the external

body segmentations. The y value is the probability of committing an error equal or greater

than the x value. The test MAE is in εsDSC. Note that the anatomical inconsistency correc-

tion does not alter the body segmentation. GP-GOMEA leads to much better performance

compared to the other approaches.

Notably, this model is just a scaled sum of the abdominal diameters (ADAP and ADLR)

and of the spinal cord length (SCIS). Essentially, the model uses an equal contribution

(features are normalized) of features capturing information of size relative to the three

dimensions LR, AP, and IS, to predict which body segmentation to retrieve. This seems a

reliable, simple, and reasonable method to select a representative body segmentation.

A second model we showcase here is the one for the prediction of what spleen seg-

mentation to retrieve:

2.718AGE × 0.057× SCIS. (7.4)

It is interesting to see that spleen shape is found to be related to age by an exponenti-

ation. This can be considered reasonable for our cohort, because the age of our patients is

between 2 to 6 years, where anatomical development is rapid. The length of the spinal cord

in IS further weighs the prediction. This feature seems also reasonable to consider, because

it captures information relative to the size of the abdomen in IS, and because the spleen is

located nearby the spinal cord. Albeit understandable, reasonable, and well-performing,

it is arguably unlikely for humans to invent models like these.

7.3.4. Examples of automatically constructed phantoms

Following the quantitative results presented in the previous sections, we present some

qualitative ones: examples of constructed phantoms. These qualitative results comple-

ment the quantitative ones, as the positioning of OARs and their shapes can be visually

evaluated in the context of the receiver CT.

Figure 7.6 shows 5 phantoms generated with our pipeline, where GP-GOMEA was
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used to train all models. The images are created by using 3D Slicer [17] with module

SlicerRT [47]. These phantoms have been generated for a test patient that was excluded

from the ML training process. The predicted liver and spleen segmentations are high-

lighted in the receiver CT. Note that the segmentations of the external body and of the

spinal cord shown in the �gure can extend beyond the commonly available region of in-

terest used for training (from T10 to S1). The receiver CT’s original liver and spleen can

also be identi�ed (in part), as their not-overridden voxels are uniformly set to a speci�c

value (78 HUs as done for the phantoms of the University of Florida/National Cancer In-

stitute [6]) in the resection step. Overlaps of the transplanted OAR can still happen with

respect to other organs which are not considered in the training and correction process

(e.g., spleen overlapping with the kidneys). Note also the presence of some further remain-

ing limited anatomical inconsistencies, which are not detected by our algorithm (e.g., small

overlaps with bony anatomy).

Our current Python implementation takes about 5 minutes to generate a phantom if no

anatomical inconsistencies are found, with resection and transplant taking the most time

(we expect that parallelizing voxels’ HU value overwrites will markedly reduce running

time). If anatomical inconsistency correction needs to be performed, the whole pipeline

can take from a few minutes to a few hours, depending on how complex the correction is

for the optimizer, and on the hardware (the optimizer is highly parallelizable). As men-

tioned in Section 7.3.2, for our database the anatomical inconsistency correction triggered

on half the phantoms. However, in our opinion only roughly half of those cases (so 1/4 of

the total number of phantoms) had really noticeable anatomical inconsistencies, e.g., large

OAR overlaps, or OARs exceeding the body boundaries, that required corrections of large

magnitude. In the other cases, inconsistencies were more subtle (e.g., small OAR overlap),

and caused corrections of small magnitude.

Figure 7.7 shows two examples of anatomical inconsistency correction for cases where

inconsistency can be considered large, displaying phantoms pre- and post anatomical in-

consistency correction, one to correct the liver, and one to correct the spleen.

7.4. Discussion

We have presented a new take on phantom construction: a fully-automatic ML-based

pipeline that assembles a patient-speci�c phantom using a database of delineated 3D CT

scans, given the features of a patient. We performed experiments upon data of 60 pedi-

atric patients including imaging of the abdomen, and focused on tailoring the position

and shape of the liver and the spleen. Our experimental results strongly suggest that our

approach leads to much more representative phantoms than using established human-

designed criteria, and than using ML to predict a single best CT scan (according to a rea-

sonable notion of overall anatomical similarity). We compared several ML algorithms to

provide accurate models for the pipeline, and found GP-GOMEA to deliver overall best

performance and models that can also be interpreted, which may be helpful for researchers

and clinicians alike to trust their use in a clinical setting.

One clear limitation of our work is that we could only employ a small database of

60 patients. It can be reasonably expected that, by increasing the database size, both the

errors of the ML models, and the onset of large anatomical inconsistencies, will be reduced.

To this end, we are currently working on expanding the number of institutes contributing
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Figure 7.6: Examples of phantoms constructed with our pipeline. CT snapshots are chosen

to attempt to display both liver (in ocher) and spleen (in crimson red). Axial views are in

IS, coronal views and 3D views are in AP, sagittal views are in LR.
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Figure 7.7: Examples of anatomical inconsistency correction tackling OARs being partly

positioned outside of the body segmentation. Pre-correction liver is in ocher, post-

correction in orange; pre-correction spleen is in crimson red, post-correction is in salmon

pink. in Top: Axial (left) and 3D (right) view of large anatomical inconsistency involv-

ing the liver. Bottom: Axial (left) and 3D (right) view of large anatomical inconsistency

involving the spleen. Note that this axial view is di�erent from the ones in other �gures

as it is taken in superior-inferior direction (spleen displayed on the left), to be consistent

with the 3D visualization. The 3D view shows the back of the patient from head to toes.
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Figure 7.8: Example of the limitations of anatomical inconsistency correction when ap-

plied to a coarse prediction of the body segmentation. Colors as in Fig. 7.7. Left: Actual

anatomy of the patient. Right: Proposed phantom, including corrections. The receiver CT

is quite smaller than the actual CT in IS dimension. The anatomical inconsistency correc-

tion shrunk and relocated the liver that was exceeding the body boundaries, and moved

the spleen away from the spinal cord. However, liver and spleen are placed too high with

respect to the underlying anatomy for it to be realistic.

to the database. Furthermore, we are working on extending the number of OARs to build

the phantom (e.g., heart, kidneys) and on extending the region of interest (e.g., abdomen

and thorax), for a cohort including older children (2 to 8 years).

The automatic anatomical inconsistency correction method may still warrant further

improvement. Although we could always resolve the constraint, often without excessively

compromising the predictions of the ML models, anatomical inconsistencies can still be

present. This is because the constraints are not comprehensive enough. For example,

Figure 7.8 shows a phantom for which our correction does not violate any of the speci�ed

constraints (liver and spleen do not overlap with each other nor with the spinal cord, and

the organs do not exceed the body contour) yet the anatomy remains unrealistic because

the organs are placed too high with respect to the receiver CT. In fact, this is because it

is the prediction of the receiver CT that does not work well for this patient, as it retrieves

a body which is quite shorter (14 cm smaller SCIS, sDSC of 60%) compared to the actual

body of the patient. Fortunately, this is the only phantom out of 60 where such an evident

inconsistency was found and likely the probability of this happening only reduces with

a growing database size. Still, we intend to study how to further improve our correction

method by attempting to craft more constraints, as well as by including more OARs (e.g.,

the lungs), which then will need to not overlap with each other.

We remark that, in general, phantoms do not need to be anatomically realistic for

the purpose of dose reconstruction, especially when doing large dose reconstructions of

populations. For example, as aforementioned, the University of Texas/MD Anderson Can-

cer Center uses virtual cuboid phantoms uniformly made of water-equivalent material,

where internal organs are represented by point clouds [4, 5]. However, realistic surrogate

anatomies have arguably a larger chance of being considered familiar and trustworthy by
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clinicians, whenever e.g., an expert opinion is needed to go beyond simple statistical mea-

surements, and really visualize how the radiation dose distribution may impact healthy

tissues.

Another limitation of this study is that we used HC1 and HC2 to simulate the process

of phantom selection in state of the art phantom libraries on our own database of CT scans

and organ segmentations, rather than using phantom libraries. Indeed, the phantoms in

those libraries are built to follow statistics relative to large populations. We did investigate

the use of the library of the University of Florida/National Cancer Institute, which is of

public access, instead of our database, for HC2. We however found that selecting those

phantoms leads to no better results than using our database (the body segmentation was

not considered because a region of interest between T10 and S1 is not readily available

for those phantoms). In particular, it was found to be signi�cantly better for half of the

3D metrics (LR and S for the liver, LR and IS for the spleen), but worse for the other half.

We also found the use of the actual library to be always signi�cantly worse than using

GP-GOMEA, with exception for LR of the spleen, where it was equivalent. This may be

because the statistics on which those phantoms are based, which come from the United

States, are not accurately representing the patients of our cohort, who are Dutch.

In future work we will consider porting our approach to di�erent types of regions of

interest (e.g., head for brain tumors) and cohorts (e.g., older patients). Ultimately, we are

interested in generating an entire body anatomy for any patient. We believe our approach

is very promising because once appropriate features are de�ned, no modi�cations in how

to train ML algorithms, nor in how the pipeline works, are needed to obtain new phantoms.

Moreover, since the availability of di�erent OAR segmentations is currently limited to

what is available in the database, and since delineating new OARs requires specialization,

experience, and time, ways to use ML to deform an existing OAR template into a patient-

speci�c segmentation could be worth investigating [48].

Finally, for the aim of obtaining 3D dose distributions to relate to the onset of ad-

verse e�ects, it will be important to validate our pipeline in terms of dose reconstruction

accuracy, i.e., by �rst crafting a highly individualized phantom, and then simulating the

radiation treatment plan using such a phantom. This could be performed similarly to our

validation analysis, i.e., with cross-validation on recent patients. Dose metrics should be

computed on the actual CT, and then compared with the dose metrics computed on the

phantom.

7.5. Conclusion

We have presented a new take on phantom construction that leverages machine learning

to assemble existing 3D patient imaging into a new anatomy. Contrary to existing ap-

proaches, the pipeline we propose requires no manual intervention except for the initial

e�ort of assembling a database of 3D patient imaging (CTs, segmentations, and patient fea-

tures), and the measurement of few features of the historical patients on their radiographs.

With our approach the problem of �nding a globally good metric to represent anatomical

categorization, typically faced by phantom libraries, is shifted to train machine learning

models for parts of phantoms based on speci�c 3D metrics. Our experimental results on

a database of 60 pediatric cancer patients, focused on liver and spleen, showed that this

approach can lead to signi�cantly better anatomical resemblance compared to the use of
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phantom building criteria that are currently common practice. Positive results were still

found after correcting the phantoms for possible anatomical inconsistencies through op-

timization. Regarding the machine learning algorithm used in the pipeline, we found that

GP-GOMEA, a state of the art genetic programming approach, can deliver models that are

both accurate and readable. This aspect can be of added value as such models increase the

chances of clinicians understanding them better and trusting their use.
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8
Surrogate-free Machine

Learning-based Organ Dose
Reconstruction

To study radiotherapy-related adverse e�ects, detailed dose information (3D distribution) is

needed for accurate dose-e�ect modeling. For childhood cancer survivors who underwent ra-

diotherapy in the pre-CT era, only 2D radiographs were acquired, thus 3D dose distributions

must be reconstructed from limited information. State-of-the-art methods achieve this by

using 3D surrogate anatomies. These can however lack personalization and lead to coarse re-

constructions. We present and validate a surrogate-free dose reconstruction method based on

Machine Learning (ML). Abdominal planning CTs (n = 142) of recently-treated childhood

cancer patients were gathered, their organs at risk were segmented, and 300 arti�cial Wilms’

tumor plans were sampled automatically. Each arti�cial plan was automatically emulated

on the 142 CTs, resulting in 42,600 3D dose distributions from which dose-volume metrics

were derived. Anatomical features were extracted from digitally reconstructed radiographs

simulated from the CTs to resemble historical radiographs. Further, patient and radiotherapy

plan features typically available from historical treatment records were collected. An evolu-

tionary ML algorithm was then used to link features to dose-volume metrics. Besides 5-fold

cross validation, a further evaluation was done on an independent dataset of �ve CTs each

associated with two clinical plans. Cross-validation resulted in mean absolute errors≤0.6 Gy
for organs completely inside or outside the �eld. For organs positioned at the edge of the �eld,

mean absolute errors≤1.7 Gy for Dmean,≤2.9 Gy for D2cc, and≤13% for V5Gy and V10Gy, were

obtained, without systematic bias. Similar results were found for the independent dataset.

To conclude, we proposed a novel organ dose reconstruction method that uses ML models to

predict dose-volume metric values given patient and plan features. Our approach is not only

accurate, but also e�cient, as the setup of a surrogate is no longer needed.

The contents of this chapter are based on the following preprint: M. Virgolin, Z. Wang (shared �rst co-author), B.V. Balgobind,

I.W.E.M. van Dijk, J. Wiersma, P.S. Kroon, G.O. Janssens, M. van Herk, D.C. Hodgson, L. Zadravec Zaletel, C.R.N. Rasch, A. Bel,

P.A.N. Bosman, and T. Alderliesten. Surrogate-free machine learning-based organ dose reconstruction for pediatric abdominal

radiotherapy. Submitted. Preprint arXiv:2002.07161, arXiv (2020).
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8.1. Introduction

Patients undergoing radiotherapy (RT) are prone to develop radiation-related Adverse Ef-

fects (AEs) [1–3]. To improve the design of future multi-modality treatments, clinicians

are interested in better understanding the relationship between radiation dose and onset

of AEs. Modern research e�orts in this direction delve into dosimetric details, employ-

ing dose distribution metrics to a speci�c organ (or sub-volume) as explanatory variables.

Such rich information is obtained by simulating the RT plan on 3D imaging of the patient

(i.e., CT scans) with organ segmentations in a Treatment Planning System (TPS) [4–6].

Unfortunately, when so-called late AEs (onset can be decades after RT) need to be

studied, it is not always possible to straightforwardly obtain detailed information on dose

distributions [1]. For patients who underwent RT before the use of planning CTs became

commonplace (in the following, historical patients), 2D radiographs were used for treat-

ment planning (e.g., this was the case until the 1990s in the Netherlands [2]), meaning no

3D anatomical imaging is available. Consequently, no simulations can be performed in a

TPS to estimate 3D dose distributions for these patients [7–9]. The information available

for historical patients normally consists of what was reported in treatment records, e.g.,

features of the patient such as age and gender, and features of the plan such as prescribed

dose, geometry of the plan, and the use of blocks. Additionally, 2D radiographs can be

available, from which information can be gathered on the internal anatomy (mainly bony

anatomy, as internal organs are normally not clearly distinguishable), and on the plan

con�guration with respect to the patient’s anatomy [2, 10].

To improve the understanding of late AEs, recent research is striving to develop in-

creasingly accurate dose reconstruction methods, i.e., methods to estimate the 3D dose dis-

tribution received by historical patients [7, 9, 11, 12]. State-of-the-art approaches employ

phantoms, i.e., 3D surrogates of the human anatomy upon which the RT plan can be sim-

ulated, to compute the dose distribution. Phantoms exist in di�erent forms: physical or

virtual, made by simple geometrical shapes or by adopting and morphing actual CT scans

and organ segmentations [7, 11, 12]. Generally, phantoms are built to represent average

anatomies, for categories of patients (e.g., for a certain age range), and are collected into

so-called phantom libraries [13–15]. Whenever dose reconstruction for a historical patient

is needed, the phantom that represents the category that the patient belongs to is retrieved

from the library and used as surrogate for simulation of the RT plan.

As the largest source of error related to phantom-based dose reconstruction comes

from the mismatch between the anatomy of the phantom and the true anatomy of the

patient [16], it is important to de�ne the best way to match phantoms to patients. This

issue is still under research, and di�erent approaches employ di�erent heuristic matching

criteria that are normally hand-crafted and based upon statistics and guidelines drawn

from large population studies (e.g., ICRP89, NANTHES) [13–15, 17]. However, the use of

heuristic matching criteria has been hypothesized to be too simplistic to capture the high

variability of internal human anatomy [11, 15, 18–20]. For example, a popular phantom-

based dose reconstruction approach uses solely age and gender for surrogate matching

[21]. Our group’s recent work focusing on Wilms’ tumor (the most common type of kid-

ney cancer for childhood cancer patients) irradiation for pediatric patients showed that

utilizing surrogate CTs using age- and gender-based matching can lead to poor dose re-

construction quality in individual cases [22].
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To improve the resemblance of a surrogate phantom, there have been e�orts to replace

the normally hand-crafted heuristic matching criteria with data-driven decisions. For ex-

ample, statistical models inferred from CTs and 3D organ segmentations of adult patients

have been used to drive a deformable image registration procedure that adapted 3D or-

gan segmentations to the 2D anatomy of a speci�c patient, given features of the latter as

measurable from 2D radiographs [9, 23]. Using a state-of-the-art Machine Learning (ML)

algorithm, it has been shown that features typically available for historical patients treated

for Wilms’ tumor can be linked to di�erent 3D anatomy similarity metrics based on organ

segmentations and CTs (Chapter 6). Our group recently proposed an automatic pipeline

that uses ML to steer the assembling of a new original anatomy based on 3D CTs and organ

segmentations of multiple patients using the features of a historical patient (Chapter 7).

However, it is important to realize that maximizing some form of overall anatomical re-

semblance is di�cult. Moreover, from the standpoint of optimizing dose reconstruction

accuracy, it can be considered sub-optimal for RT dosimetry purposes. This is because in

RT dosimetry, what part of anatomy is most meaningful largely depends on the particular

RT plan [20].

To the best of our knowledge, although both patient anatomy and plan geometry play

a key role in determining dose-volume metrics for Organs At Risk (OARs), existing dose

reconstruction approaches focused solely on patient anatomy information, to obtain a

representative surrogate. Plan information is used only later, to calculate the dose on the

surrogate. The purpose of this chapter is to develop and validate an ML approach to predict

dose-volume metrics for OARs based on patient anatomy and plan geometry information.

Speci�cally, we propose to use ML to directly learn what dose-volume metrics for an OAR

are likely given information on the patient and on the plan, without the need to select

or craft any surrogate anatomy. We argue that this is a sensible choice because ML can

directly be trained upon what ultimately matters, i.e., dose reconstruction accuracy. In this

chapter we present our ML-based organ dose reconstruction approach and its validation,

that was performed on a relatively large dataset of arti�cial plans, as well as on a smaller

dataset of clinical plans.

8.2. Materials & methods

We considered pediatric �ank RT, and in particular RT for Wilms’ tumor, as an application

for our dose reconstruction method, in continuity with our previous work. The choice to

focus on pediatrics is because children are the most prone to develop late AEs [3], and are

typically underrepresented in existing phantom libraries [11]. Moreover, more than 85%

of pediatric patients survives Wilms’ tumor �ve years or longer, but considerable chances

of the onset of late AEs remain [2].

8.2.1. Patient data

To be able to create a ground-truth to learn dose-volume metrics from, CT scans were

needed. Hence, a total of 142 pediatric planning CTs were collected by involving the

following institutes (number of CTs in brackets): Amsterdam University Medical Centers /

Emma Children’s Hospital (n = 38), University Medical Center Utrecht / Princess Máxima

Center for Pediatric Oncology (n = 42), The Christie NHS Foundation Trust (n = 33),
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Princess Margaret Cancer Centre (n = 18), and Institute of Oncology Ljubljana (n = 11).

Five further CTs were collected from the Amsterdam University Medical Centers and kept

aside to be used exclusively for an additional validation step (Sec. 8.2.5).

The inclusion criteria were: patient age at scan acquisition between 1 to 8 years; the CT

�eld of view including a common abdominal region from the tenth thoracic (T10) vertebral

body to the �rst sacral (S1) vertebral body; presence of �ve lumbar vertebrae (rare cases

of patients with six exist); patient scanned in supine position; quality of CT su�cient to

perform organ segmentations. The patients underwent RT between 2002 and 2018, mostly

but not exclusively for abdominal cancers. The median CT slice resolution was 0.94×0.94
mm, the median slice thickness was 3 mm.

As we focused on Wilms’ tumor treatment, four OARs were considered: the liver, the

spleen, the contralateral kidney (left or right, depending on the side of the tumor), and the

spinal cord (between T10 and S1). To provide accurate and consistent OAR segmentations,

we carefully prepared the OAR segmentations in all CTs (n = 142 + 5): for 60 CTs, pre-

existing clinical segmentations of OARs were manually improved and approved (I.W.E.M.

van Dijk, checked by B.V. Balgobind only for di�cult cases). To aid the manual segmen-

tation of the OARs for the remaining CTs (n=87), the software ADMIRE (research version

2.3.0) from Elekta (Elekta AB, Stockholm, Sweden) was used to generate multi-atlas based

automatic segmentations using the previous 60 CTs as atlas. These segmentations were

further manually checked slice-by-slice and possibly adapted (Z. Wang, I.W.E.M. van Dijk),

and �nally checked and approved (I.W.E.M. van Dijk, checked by B.V. Balgobind only for

di�cult cases). Some patients did not have both kidneys intact, due to nephrectomy prior

to RT. The number of CTs that had only a complete right kidney, only a complete left

kidney, and two complete kidneys were 36, 40, and 71, respectively.

8.2.2. Automatic generation of artificial Wilms’ tumor plans

A method to automatically generate historical-like abdominal �ank irradiation plans (i.e.,

arti�cial plans) for Wilms’ tumor treatment based on information visible on 2D radio-

graphs was created, in order to obtain large plan variations.

Figures 8.1(a) and 8.1(c) illustrate examples of actual historical plans on respective

historical radiographs. As can be observed from the examples, a typical historical �ank

irradiation �eld is a rectangular area, with possible shielding blocks, that is located on the

right or on the left �ank. Flank irradiation is done by beams from anterior-posterior (AP)

and posterior-anterior (PA) direction. Along right-left (RL), one �eld border is located

at the edge of the patient’s body contour, while the other is located as to include the

vertebral column [24]. In some cases, blocks were placed to protect OARs from irradiation

(Fig. 8.1(c)). In historical plans the isocenter was positioned in the center of the treatment

�eld that is projected on the coronal plane (Fig. 8.1) and at the middle of the patient’s AP

abdominal diameter.

To generate arti�cial plans, two reference digitally reconstructed radiographs (DRRs)

were considered, randomly selected from the data. One DRR was derived from a CT of a

5-year old female patient without nephrectomy (ref 1 in Fig. 8.2), and the other was de-

rived from a CT of a 4-year old female patient with nephrectomy of the left kidney (ref 2

in Fig. 8.2). Upon these two DRRs, boundaries de�ning plan variability were identi�ed by

an experienced pediatric radiation oncologist (B. V. Balgobind), to ensure that generated
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plans would appear to be reasonable according to historical clinical guidelines. Note that

historical clinical guidelines are slightly di�erent from current ones (e.g., currently the

iliac crests should be safeguarded, unlike in Fig. 8.1(c)). Figure 8.2 shows two examples

of landmark locations identifying possible plan variations, on the two reference DRRs.

Speci�cally, given the boundaries of possible isocenter positions and �eld borders, plans

with a rectangular �eld were generated by sampling uniformly within those boundaries.

For each plan generated, an additional version of that plan including one block was gen-

erated as well. A block was simulated as the area in the upper lateral corner enclosed by

the border of the rectangular �eld and a line crossing two randomly sampled endpoints.

The endpoints were sampled from two regions roughly covering the start and end points

of rib 9 and rib 12 on the DRRs (regions indicated by the green boxes in Fig. 8.2). This

way, a sampled block covered part of the liver (in right-sided plans) or part of the spleen

(in left-sided plans). All plans consist of two opposing and symmetrical beams in AP-PA

directions irradiating one side of the abdominal �ank. Figures 8.1(b) and 8.1(d) illustrate

two examples of sampled arti�cial plans (without or with a block) on respective DRRs.

A total of 300 arti�cial plans were generated automatically, of which 150 without a

block, and 150 with a block. The random sampling of the plan side led to 142 left-sided

plans and 158 right-sided plans (roughly half-half). The same set of plan features used

in our previous work was considered to generate plans in DICOM RTPLAN format (e.g.,

gantry and collimator angles, isocenter location, �eld sizes) [25].

8.2.3. Generation of the dataset for ML

Figure 8.3 summarizes the pipeline used to generate the dataset for ML. Firstly, we em-

ulated each of the 300 arti�cial plans on each of the 142 CT scans by the automatic plan

emulation method proposed in our previous work [25], leading to a total of 42,600 em-

ulations. The method automatically transfers a plan prepared on one CT to another CT

(with quality comparable to human experts), using landmark detection upon the respective

DRRs. Secondly, for each of the 42,600 plan emulations, dose-volume metrics of interest

(see Sec. 8.2.3) were collected for the di�erent OARs by use of our automatic dose com-

putation pipeline [25]. The pipeline used the collapsed cone dose calculation algorithm

of Oncentra TPS (version 4.3, Elekta AB, Stockhom, Sweden). Thirdly, features that are

plausible to be available for typical historical cases were collected from the anatomy of

the included CTs as visible in the respective DRRs, from the arti�cial plans, and from the

relationship between anatomy and plan geometry.

Response variables: dose-volume metrics

To select dose-volume metrics to use as response variables for ML, we considered met-

rics typically used to validate state-of-the-art dose reconstruction approaches [9, 12], and

typically found to be of clinical relevance in studies of AEs in adults (e.g., QUANTEC)

[6, 10, 26]. Studies on dose-volume response relationships for pediatric patients (so-called

PENTEC studies [27]) are currently limited.

This reasoning led us to consider mean organ dose (Dmean), two levels of percentage

of OAR volume receiving at least X Gy (V XGy), and the minimum dose received by the

maximally exposed 2 cubic centimeters of an OAR (D2cc), the latter being similar but more

robust than the maximum dose to a single point. Typically, V 5Gy and V 20Gy are considered.
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Figure 8.1: (a) An actual hand-drawn plan on a historical radiograph with a rectangular

�eld (indicated by white corners). (b) An arti�cial plan with a rectangular �eld (in white

lines) plotted on the DRR of a recent patient. (c) An actual hand-drawn plan on a historical

radiograph with a rectangular �eld (in white bars) and an additional block (outlined by

dashed yellow lines) to spare part of the liver. (d) An arti�cial plan plotted on the DRR of

a recent patient with a rectangular �eld (in white bars) and an additional block (obtained

by multi-leaf collimators, outlined by yellow lines) to spare part of the liver. For each plot,

the isocenter is indicated by a red dot in the middle of the �eld.
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Figure 8.2: Examples of landmark locations to specify geometry variability of two types of

arti�cial plans (left-sided plans in the left �gure and right-sided plans in the right �gure).

Ref 1 is the DRR derived from the reference CT of a 5-year-old female patient and ref 2

is the DRR derived from the reference CT of a 4-year-old female patient. The box around

the isocenter (IC) speci�es the range of possible isocenter positions. The vertical position

of T1/T2 and of B1/B2 specify the lowest/highest position of the upper and lower border

of the �eld, respectively. The horizontal positions of R1/R2 and L1/L2 specify the right-

most/leftmost position of the right and left border of the �eld, respectively. The isocenter

and arti�cial �eld border positions were sampled uniformly at random within the speci�ed

ranges. The green boxes indicate the regions where two endpoints of a line representing a

block border can be sampled. This line, together with the upper and left/right �eld borders,

encloses the block.
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Figure 8.3: Pipeline for data generation. Arti�cial plans are sampled automatically. The

explanatory and response variables are used as input to train the ML model. The ex-

planatory variables include features of the plan (e.g., isocenter location, �eld size), patient

features (e.g., age, nephrectomy), and features on the relationship between the anatomy

of the patient and the geometry of the plan (e.g., signed distance between the 2
nd

lumbar

vertebra and the plan isocenter). The response variables are dose-volume metrics for each

OAR.



8.2. Materials & methods

8

187

However, instead of V 20Gy, we decided to use V 10Gy in this work since our plans have a

prescribed dose of 14.4 Gy (thus V 20Gy was always 0 for the OARs). Regarding D2cc, we

decided to include this metric because peak dose values to a small OAR portion may be

relevant to explain late AEs related to OARs that work in a serial fashion (e.g., the spinal

cord).

Explanatory variables: features of patients and plans

To assess what information can be available for historical patients, we considered the

Dutch records of the Emma Children’s Hospital/Academic Medical Center childhood can-

cer survivor cohort, who underwent RT between 1966 and 1996 [2]. For this cohort, along

with historical patient records and treatment plan details, 2D coronal radiographs were

consistently taken, hence providing partial information on the anatomy.

The complete set of features considered in this work is reported in Table 8.1. Note the

absence of height and weight (which are used by some phantom-based methods [15]). For

12% of the patients, height and/or weight data were missing and preliminary experiments

using automatic imputation methods showed no bene�t in including them.

For the features related to anatomical geometry, anatomical landmarks from DRRs

were detected automatically using the landmark detection method in our previous work

[25]. Note that the landmarks concerned only bony anatomy because other internal anatomy

tissues are not reliably visible in historical radiographs. Importantly, we normalized fea-

tures related to measurements of anatomy and anatomy-plan geometry con�guration (e.g.,

rib-cage width, �eld sizes, distances between landmarks and the isocenter) by the width

and height of the respective DRR they were measured from (after the DRRs were cropped

to a same region of interest between T10 and S1). This was done because when plans

are emulated, they are scaled based on proportions derived from the landmarks [22, 25].

Since di�erences in anatomy solely due to overall anatomy scaling do not result in dif-

ferent dose-volume metric values, these di�erences should not be accounted for by the

explanatory variables (con�rmed in preliminary experiments).

The abdominal diameter in AP (Diam
IC

AP
) is the only anatomical feature not measurable

from DRRs generated along AP/PA direction. In historical RT, it was measured using a

ruler to determine the isocenter position along the AP axis, and was subsequently reported

in the records. For our cohort, Diam
IC

AP
was not reported in the records because a CT scan

was used for RT planning. We therefore measured Diam
IC

AP
automatically on the CT scans,

by using a pre-determined isocenter position of typical abdominal �ank irradiation plans.

In particular, the intervertebral disk between the 1
st

and the 2
nd

lumbar vertebra (L1 and

L2) was used to determine the isocenter position along the inferior-superior (IS) axis, and

the center of mass of the kidney was used to determine the isocenter position along the RL

axis (as the aim of Wilms’ tumor plans is to irradiate the renal fossa). For CTs including

both kidneys, two Diam
IC

AP
were measured, and the average was taken. Conversely, only

one Diam
IC

AP
was measured for CTs including a single kidney.

In our simulations we used for all arti�cial plans the same fractionation scheme (8 ×
1.8 Gy), beam energy (6 MV), and prescribed dose (14.4 Gy at isocenter). These settings

are the most common in historical records, and are still valid in the current Wilms’ tumor

RT protocol [24]. Moreover, choosing a speci�c prescribed dose (e.g., 14.4 Gy) does not

limit generalizability, since the dose distribution over the entire anatomy depends linearly



8

188 8. Surrogate-free Machine Learning-based Organ Dose Reconstruction

Figure 8.4: An example of the beam’s eye view of a plan plotted on a DRR with the land-

mark locations used to compute the features concerning plan �eld con�guration on top of

the patient’s anatomy. The plot next to the DRR illustrates how the block is simulated by

aligning the center of the leaves with the boundary of the block and how the slope of an

MLC-simulated block is calculated.

on the prescribed dose. Thus, if dose reconstruction for a historical case using a di�erent

prescription is needed, the dose-volume metrics predicted by the models trained on plans

with a 14.4 Gy prescribed dose can be re-scaled.

For both �elds with and without a block, the features representing �eld sizes in RL

and IS directions (WField and LField) were set by simply considering the full rectangular

area (i.e., irrespective of blocking). For �elds with a block, the slope of the block (note that

the block is formed by Multi-Leaf Collimators (MLCs)) and the ratio between the blocked

region and non-blocked region of the �eld (RatioBlock) was computed. In addition, we con-

sidered features that relate to how the plan was con�gured with respect to the patient’s

anatomy, based on the position of the isocenter and of the bony landmarks. For instance,

∆IC

RL
(T10B) links the bottom of the T10 vertebra to the position of the isocenter in RL

direction. Figure 8.4 shows an example of the anatomical landmarks and plan geomet-

rical borders used to calculate features describing plan con�guration with respect to the

patient’s anatomy.

Dataset for supervised learning

Features and dose-volume metrics were �nally collected in a dataset. The dataset cor-

responded to a 2D matrix, where the rows represented patient-plan combinations, i.e.,

examples (n = 42, 600), and the columns represented features (33) and response variables

(4 for each OAR).

8.2.4. Machine learning

In the following sections we describe how ML was performed in terms of training and

validation on the arti�cial plans. We further introduce the ML algorithm adopted, and

describe an independent validation on clinical cases.
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Table 8.1: Description of the 33 features considered as explanatory variables for ML.

Feature name Origin Unit Description

Age Records years patient age at CT scanning

ArmsUp DRR yes/no whether the patient had arms in a raised position during scanning

Diam
IC

AP
Records cm patient AP diameter measured at isocenter

Nephrectomy Records yes/no whether the patient underwent nephrectomy

W
Rib
R DRR cm width (in RL) of right-part of the rib cage (from vertebral column to location of right-most rib)

W
Rib
L DRR cm width (in RL) of left-part of the rib cage (from vertebral column to location of left-most rib)

WVC DRR cm average vertebral column width

LVC DRR cm length (in IS) of the vertebral column from T11 to L4

WField Plan cm �eld width (in RL)

LField Plan cm �eld length (in IS)

FieldSide Plan right/left whether the plan concerns left-sided or right-sided �ank irradiation

Intercept
Block

Plan cm distance (in RL) between isocenter and block endpoint of the top �eld border

Ratio
Block

Plan % Area(Block)/Area(Rectangular �eld), 0 for block-free plans

Slope
Block

Plan - ∆L/∆W of the block (see Fig. 8.4); 0 for block-free plans

θC Plan ◦ angle of collimator system with respect to gantry system

∆IC

RL
(T10B) Plan + DRR cm RL distance between bottom of T10 and isocenter

∆IC

IS
(T10B) Plan + DRR cm IS distance between bottom of T10 and isocenter

∆IC

RL
(T12R) plan + DRR cm RL distance between right border of T12 and isocenter

∆IC

IS
(T12R) Plan + DRR cm IS distance between right border of T12 and isocenter

∆IC

RL
(T12L) Plan + DRR cm RL distance between left border of T12 and isocenter

∆IC

IS
(T12L) Plan + DRR cm IS distance between left border of T12 and isocenter

∆IC

RL
(L1B) Plan + DRR cm RL distance between bottom of L1 and isocenter

∆IC

IS
(L1B) Plan + DRR cm IS distance between bottom of L1 and isocenter

∆IC

RL
(L2R) Plan + DRR cm RL distance between right border of L2 and isocenter

∆IC

IS
(L2R) Plan + DRR cm IS distance between right border of L2 and isocenter

∆IC

RL
(L2L) Plan + DRR cm RL distance between left border of L2 and isocenter

∆IC

IS
(L2L) Plan + DRR cm IS distance between left border of L2 and isocenter

∆IC

RL
(L4B) Plan + DRR cm RL distance between bottom of L4 and isocenter

∆IC

IS
(L4B) Plan + DRR cm IS distance between bottom of L4 and isocenter

∆IC

RL
(RibR) Plan + DRR cm RL distance between location of right-most rib and isocenter

∆IC

IS
(RibR) Plan + DRR cm IS distance between location of right-most rib and isocenter

∆IC

RL
(RibL) Plan + DRR cm RL distance between location of left-most rib and isocenter

∆IC

IS
(RibL) Plan + DRR cm IS distance between location of left-most rib and isocenter

Abbreviations: R (in superscript): right, L (in superscript): left, RL: right-left, AP: anterior-posterior, IS: inferior-superior, IC:

isocenter, VC: vertebral column, W: width, L in LVC and LField : length.
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Training and evaluation of ML models

Since dose metrics are scalars, we treated the learning problem as a regression problem.

We trained a separate ML model for each combination of dose-volume metric and OAR.

Preliminary analysis showed that right-sided plans and left-sided plans led to markedly

di�erent distributions of possible dose-volume metric values for all OARs except for the

spinal cord. Thus, ML models were set to be composed of two sub-models, each to be

trained independently on a particular sub-set of the data based on plan side (right or left).

The quality of the models was estimated with a 5-fold cross-validation. This means

that a random partition of 1/5th of the total number of patients and plans was held out

(test set), and training was performed on the remaining data. Then, the prediction error

was measured on the test set. This process was repeated �ve times, each time considering

a di�erent data partition for the test set. No patient nor plan that was in the test set was

included in the data at training time.

Each training step included hyper-parameter tuning by grid-search with internal 5-

fold cross-validation (upon the training set), as well as feature selection (which resulted in

eight features being systematically discarded, see Sec. 8.2.4). For each dose-volume metric

k ∈ {D
mean

, D
2cc
, V

5Gy
, V

10Gy
}, the Root Mean Square Error (RMSE) loss was used, i.e.,

RMSE(Y k, Ŷ k) =

√√√√1
ν

ν∑
i=1

(
Y ki − Ŷ ki

)2
, (8.1)

where Y k are the ground truth values and Ŷ k are the model predictions for the dose-

volume metric k, and ν is the total number of rows in the training set. The RMSE was

chosen to regularize ML, i.e., to penalize larger errors more [28].

To account for the stochastic nature of the ML algorithm employed (see Sec. 8.2.4) and

for the random partitioning of the data, the 5-fold cross-validation was repeated ten times.

The averages and standard deviations over the 5×10 validation results (�ve folds repeated

ten times) were considered.

To put the results of ML into perspective, for each cross-validation, a baseline pre-

diction was considered that simply used the average dose-volume metric observed in the

training data. The Wilcoxon signed-rank test was used to assess whether the results ob-

tained by ML and by this baseline are signi�cantly di�erent (p-value < 0.05).

Feature selection

An automatic feature selection step was performed before training the ML models, as

follows.

1. Compute the absolute Pearson correlation coe�cient |ρ| between all pairs of fea-

tures based on the values of the training set.

2. If |ρ| > 0.95 (highly positive or negative correlation) between two features, discard

the second feature.

3. Repeat (2) until no two features that have |ρ| > 0.95 remain.
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Note that, at (2), one could discard a feature at random. We systematically discarded the

second feature to obtain a deterministic outcome.

As aforementioned, a model for the prediction of the dose-volume metric of an organ

was composed of two sub-models, trained independently based on the side of the plan.

We found that partitioning the dataset by plan side does not in�uence feature selection

signi�cantly, i.e., the pairs of features that have |ρ| > 0.95 remain the same. Figure 8.5

shows the value |ρ| between features across the entire dataset (averaged between left-

and right-sided plans). The following eight features were systematically discarded in our

experiments:

∆IC
RL(T12R) – highly correlated with ∆IC

RL(T10B) (and others);
∆IC
IS (T12R) – highly correlated with ∆IC

IS (T10B) (and others);
∆IC
RL(L2R) – highly correlated with ∆IC

RL(L1B) (and others);
∆IC
IS (L2R) – highly correlated with ∆IC

IS (L1B) (and others);
∆IC
RL(L2L) – highly correlated with ∆IC

RL(L1B) (and others);
∆IC
IS (L2L) – highly correlated with ∆IC

IS (L1B) (and others);
∆IC
RL(RibL) – highly correlated with ∆IC

RL(L1B) (and others);
∆IC
IS (RibL) – highly correlated with ∆IC

IS (L1B) (and others).

Machine learning algorithm

The recently introduced Genetic Programming version of the Gene-pool Optimal Mixing

Evolutionary Algorithm (GP-GOMEA) was considered as ML algorithm, as it was found

to achieve competitive performance on a variety of benchmark problems (Chapters 2 and

3), as well as in previous work concerning radiotherapy (Chapter 7 and [29]).

In addition, GP-GOMEA can perform symbolic regression, i.e., it can generate a re-

gression ML model in the form of a (symbolic) mathematical expression. GP-GOMEA

incorporates information theory methods that enable it to synthesize fairly accurate ex-

pressions of particularly compact size, an aspect that makes these expressions lightweight

and fast to execute, and that can aid human-interpretability.

The salient hyper-parameters of GP-GOMEA are reported in Table 8.2. Other hyper-

parameter settings that are not reported in the table were set to the ones used for bench-

marking GP-GOMEA in Chapter 3 (Sec. 3.8). A short description of the hyper-parameters

in Table 8.2 follows.

Tree height. GP-GOMEA encodes machine learning models with symbolic trees. In

our case, trees were binary. The maximal tree height of a tree limits how complex the

encoded machine learning model can be. For instance, a tree with height 2 can contain

up to 7 nodes, a tree with height 4 can contain up to 31 nodes. Larger trees can encode

relatively complex models (but risk over�tting), smaller trees can encode relatively simple

formulas (but risk under�tting).

Evaluations limit. The evaluations limit is used to terminate GP-GOMEA. An evalu-

ation is the computation of the loss function of a model. Terminating early/late can be

useful to prevent over�tting/under�tting.
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Figure 8.5: Absolute Pearson correlation coe�cient (|ρ|) between features (average be-

tween left- and right-sided plans). Cells marked by a cross have |ρ| > 0.95 (excluding

cells in the diagonal).



8.2. Materials & methods

8

193

Hyper-parameter Setting(s)

Tree height
? {2, 3, 4}

Evaluations limit
? {104, 105, 106}

Function set
? {[+,−,×,÷p], [+,−,×,÷p, ·2,

√
| · |, sin, cos, exp]}

Interleaving generations g 6
Starting population size 500

Table 8.2: Salient hyper-parameters of GP-GOMEA and their settings. Starred hyper-

parameters are subject to grid-search tuning, using the settings reported within curly

braces.

Function set. The atomic components that can be instantiated as nodes can be fea-

tures (of Table 8.1), random constants, or functions from a pre-de�ned function set. Ran-

dom constants are sampled uniformly at random between {−ρ,+ρ}, where ρ := 5 ×
max(x), and x is the 2D matrix containing all numerical feature values for all patients

and plans (in the training set). We considered a simpler function set of algebraic func-

tions ([+,−,×,÷p]), and a more complex one including trigonometric and transcenden-

tal functions ([+,−,×,÷p, ·2,
√
| · |, sin, cos, exp]}). More complex functions can help �t

the data better, at the risk of over�tting.

Interleaving generations & starting population size. Whereas typical GP algorithms per-

form a single evolutionary run, GP-GOMEA uses a scheme of multiple runs of increasing

evolutionary budget. Larger-budget runs are started later in the scheme, and executed in

an interleaved fashion such that smaller-budget runs perform more iterations (called gen-

erations) than larger-budget runs. The �rst run r1 uses the starting population size and

executes g generations before the next run r2 is started. The run r2 has a population size

that is double of that of r1 (1000), and performs 1 generation every g generations of r1.

The �rst time r2 has executed g generations, r3 is started, with double the population of

r2 (2000). Subsequently, r3 will execute 1 generation every time r2 has executed g gener-

ations. If a run converges to all identical machine learning models, then it is terminated.

A run is also terminated if a larger-budget run exists that has found a better machine

learning model.

As shown in Table 8.2, we used a starting population size of 500 and a number of gen-

erations for interleaving g = 6. These choices are based on what is reported in Chapter 3,

except for the starting population size (set to 50 in the chapter), as the chapter shows that

runs with population sizes above a thousand are typically started anyway within the �rst

couple of minutes (Fig. 3.7). Hence, computations performed by runs with smaller pop-

ulation sizes are essentially wasted. We set g = 6 because it is the intermediate value

(between 4 and 8) considered in Chapter 3, and because GP-GOMEA is fairly robust to the

choice of g, i.e., the results for g = 4 are similar to the ones of g = 6 and g = 8.

8.2.5. Independent evaluation on clinical plans

As aforementioned, the 300 plans used to cross-validate our approach were generated with

an automatic sampling procedure (Sec. 8.2.2). To assess whether our results on arti�cial
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plans can be valid for clinically-used plans, we further evaluated our approach on an in-

dependent dataset for which clinical plans were crafted manually.

For this validation, we trained ML models (as a reminder, one model per OAR - dose-

volume metric combination) on the dataset using the 142 CTs and the 300 arti�cial plans,

and evaluated their prediction accuracy on a separate set of �ve CTs each associated with

two clinical plans. We gathered �ve clinical plans (three right-sided, two left-sided) for

these �ve CTs. Under the supervision of an experienced pediatric radiation oncologist

(B.V. Balgobind), two adapted versions of each plan were manually created that both had

the isocenter in the middle of the �elds. In one plan no block was used and in the other

plan a block was introduced to protect part of the liver or spleen, depending on the plan

side. Training (including 5-fold cross-validation to determine the best hyper-parameter

settings) and validation were repeated ten times to account for the stochastic nature of

GP-GOMEA. Averages and standard deviations were computed over these ten repetitions.

8.3. Results

8.3.1. Dose-volume metric data distribution

Among the 300 arti�cial plans, plan side and OAR type was found to in�uence the dis-

tribution of a dose-volume metric considerably. To illustrate the e�ect of OAR type and

plan side on the dose, Figure 8.6 shows the distributions found for Dmean and D2cc for

the liver and the spleen, in case of left- and right-sided plans. For Dmean for the liver,

distributions approximately resembling the normal distribution were obtained (in case of

right-sided plans with particular high variance and long left tail). The distribution in case

of right-sided plans had a mean of 9.5 Gy (typically a major part of the liver was in-�eld),

the distribution in case of left-sided plans had a mean of 3.4 Gy (typically a minor part

of the liver was in-�eld). In terms of D2cc, for the liver we observed values close to the

prescribed dose (14.4 Gy) both in case of left- and right-sided plans. The distributions of

Dmean and D2cc for the spleen associated with the di�erent plan sides had more marked

di�erences than the ones for the liver. In case of right-sided plans, values close to 0 Gy

were obtained for both metrics (typically the spleen was outside the �eld). For left-sided

plans, large values of Dmean were found to be much more frequent than low values. The

distribution of D2cc exhibited a peak around the prescribed dose. For the contralateral

kidney and for the spinal cord the distributions are similar for both plan sides, as the con-

tralateral kidney should be outside the �eld and the spinal cord should be included within

the �eld (according to protocol).

For all OARs, distributions obtained for V
5Gy

and V
10Gy

largely resembled the ones

obtained for Dmean. In fact, Pearson correlation coe�cients above 98% were found when

comparing Dmean with V
5Gy

and V
10Gy

for almost all OARs. Smaller (yet still large) corre-

lation coe�cients were found between Dmean and V
10Gy

for the left and right kidney, with

values of 96% and 91% respectively.

8.3.2. Validation on artificial plans

For each considered OAR, the Mean Absolute Errors (MAEs) (and standard deviation) at

validation time for Dmean, D2cc, V 5Gy, and V 10Gy from the ten repetitions of the 5-fold

cross-validation procedure using the arti�cial plans are reported in Table 8.3. We further
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Figure 8.6: Distributions for the liver and the spleen of Dmean and D2cc obtained by the

automatic plan sampling procedure used to generate arti�cial plans and by applying the

plans to the CT scans.
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present the average decrease in MAE when using ML compared to when using the base-

line (i.e., the e�ect size), as well as the outcome of statistical signi�cance tests (Wilcoxon

signed-rank) comparing ML to the baseline.

The errors for Dmean and D2cc were generally below 2 Gy, which corresponds to ap-

proximately 14% of the prescribed dose of 14.4 Gy. For all OARs but for the spinal cord,

the plan side had considerable impact on the magnitude of the errors. As the spinal cord

in RL direction was in-�eld no matter the plan side, the MAEs of dose-volume metrics

predictions were found to be small: < 1 Gy forDmean andD2cc,< 4% for V 5Gy and V 10Gy.

For OARs that were almost out-of-�eld, e.g., the spleen in case of right-sided plans, small

MAEs ofDmean were found (< 0.1 Gy), as very low values were obtained across all patient-

plan combinations (see Fig. 8.6). Note that in this case (and also for the D2cc for the liver

in both left- and right-sided plans), ML performs signi�cantly but not substantially better

than the baseline.

For the liver in case of right-sided plans, and for the spleen in case of left-sided plans,

larger MAEs were found (liver: 1.7 Gy for Dmean, 12.1% for V 5Gy, 12.6% for V 10Gy; spleen:

1.5 Gy for Dmean, 9.3% for V 5Gy, 10.7% for V 10Gy). These errors can be attributed to the

particular con�guration of the position of these OARs and the �eld of the plans.

Among the dose-volume metrics,D2cc for the (partly) in-�eld OARs had low variability,

with aD2cc close to the prescribed dose (14.4 Gy). For example, small errors were obtained

for the D2cc for the liver (< 0.4 Gy), as we consistently obtained a large D2cc value for

both left- and right-sided plans (see Fig. 8.6). In contrast, D2cc was harder to predict when

the OAR was contralateral to the plan side. The MAEs obtained for D2cc for the spleen in

case of right-sided plans was 1.6 Gy. This was 2.9 Gy for the left kidney, and 1.4 Gy for

the right kidney.

The largest average error was found for D2cc for the left kidney, amounting to 20% of

the prescribed dose. For all dose-volume metrics for the right kidney, and for D2cc for the

spleen, we found that ML predictions were slightly worse compared to using the base-

line (note the negative e�ect sizes), but not signi�cantly so. Lastly regarding the kidneys,

although errors in D2cc were relatively large, errors in V 10Gy were relatively small (com-

pared with V 10Gy for the other OARs). In fact, only a small percentage of the contralateral

kidney, from 0 to less than 3% typically received at least 10 Gy.

Although not reported in Table 8.3, we remark that the errors were found to be unbi-

ased: no systematic over- nor under-estimations of dose-volume metrics were found on

average, with the mean (non-absolute) error being close to zero for all metrics.

8.3.3. Independent validation on clinical plans

Figure 8.7 and Figure 8.8 show, for each clinical case, the ground truth dose-volume metric

values and the predictions obtained by the ML models (trained on the arti�cial plans).

Results for Dmean and D2cc are presented in Figure 8.7, and results for V 5Gy and V 10Gy are

presented in Figure 8.8.

The errors in Dmean between predictions and ground truth values were generally low,

totaling an average of 1.0 Gy (with a range of 0.0-4.9 Gy) across all OARs. Compared to the

results obtained in the cross-validation using the arti�cial plans (Table 8.3), for the liver in

case of right-sided plans, the average error on the clinical plans was found to be smaller

(1.2 Gy vs. 1.7 Gy). Similar average errors in Dmean were found for the kidneys (0.8 Gy vs.
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Table 8.3: Mean test MAE ± standard deviation and e�ect size (in small font) against the

baseline (MAE of baseline - MAE of ML), of ten repetitions of 5-fold cross-validation for

each OAR and dose-volume metric on the arti�cial plans. Bold results are signi�cantly

better than the baseline (the opposite is never found).

Side OAR Dmean [Gy] D2cc [Gy] V 5Gy [%] V 10Gy [%]

R
i
g

h
t

(
22

43
6

p
l
a
n

s
)

Liver 1.7± 0.2 0.7 0.2± 0.0 0.0 12.1± 1.5 5.1 12.6± 1.8 5.1
Spleen 0.1± 0.0 0.0 1.6± 0.5 −0.1 0.9± 0.2 0.0 0.4± 0.1 0.0
Left kidney 0.6± 0.5 0.1 2.9± 0.2 0.5 4.4± 0.5 0.1 2.5± 0.4 0.0
Spinal cord 0.4± 0.1 0.7 0.2± 0.0 0.0 3.2± 0.4 5.6 3.3± 0.4 5.8

L
e
f
t

(
20

16
4

p
l
a
n

s
)

Liver 0.8± 0.0 0.2 0.4± 0.1 0.0 5.8± 0.4 1.1 5.5± 0.3 1.4
Spleen 1.5± 0.2 0.7 0.3± 0.0 0.0 9.3± 1.1 5.2 10.7± 1.4 6.0
Right kidney 0.6± 1.0 −0.3 1.4± 0.4 −0.1 2.3± 1.4 −0.4 0.8± 0.7 −0.1
Spinal cord 0.4± 0.0 0.9 0.2± 0.0 0.0 3.1± 0.3 7.5 2.9± 0.3 7.4

0.6 Gy for the left kidney and 0.5 Gy vs. 0.6 Gy for the right kidney), the liver in case of

right-sided plans (1.0 Gy vs. 1.7 Gy), and the spinal cord (0.4 Gy vs. 0.4 Gy). Larger average

errors inDmean were found for the spleen (0.5 Gy vs. 0.1 Gy in case of the right-sided plans

and 3.6 Gy vs. 1.5 Gy in case of left-sided plans). The largest error of 4.9 Gy was found for

the spleen of case PL2B (1.9 Gy error found for the spleen of case PL2), indicating that the

impact of the block on the plan was not well modeled. Furthermore, the error in spleen

Dmean of PL1 and PL1B was large (2.8 Gy and 4.7 Gy, respectively), indicating both �eld

types (without and with a block, respectively) were not well modeled for this case (see the

discussion in Sec. 8.4).

Regarding D2cc, similar results to the ones obtained on arti�cial plans were found for

the spinal cord, where an average error of 0.1 Gy was obtained in D2cc (with a range of

0.0-0.4 Gy). For the spleen of cases PR1 and PR1B , large errors in D2cc were found (12.3

Gy on average), as ML predictions essentially wrongly represented the spleen to be out-of-

�eld. Whereas this was the case for PR2 and PR2B , and for PR3 and PR3B , where small

errors were obtained (1.1 Gy on average). Similarly, large errors in D2cc were found in

some cases for the contralateral kidneys (e.g., the left kidney: 5.1 Gy on average, with a

range of 0.5-7.6 Gy).

Results for V 5Gy (average error 8% with a range of 0-35%) and V 10Gy (average error 7%

with a range of 0-49%) mostly followed the trend of the errors for Dmean, as these metrics

were found to be correlated for most OARs.

8.4. Discussion

In this chapter we presented a new and di�erent paradigm in organ dose reconstruction.

By leveraging the modeling power of ML, we showed how patient and plan features can

be used to predict organ dose-volume metrics directly, without the need of adopting a

surrogate anatomy. Once the ML models are trained, they can readily be used to com-

pute dose-volume metric predictions for a new historical patient and plan, by using their

features as input.
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Figure 8.7: Mean and standard deviation of predictions across ten repetitions for the dose-

volume metrics Dmean and D2cc of the ten clinical plans. A plan-patient combination is

encoded by color, and presence or absence of blocking is encoded by marker shape. Note

that di�erent plots have di�erent scales of the vertical axis. For each case, the ground-

truth dose-volume metric is indicated by a red square. In each plot, the �rst six cases

(white background, plan subscripts starting with ‘R’) are right-sided plans, the last four

cases (gray background, plan subscripts starting with ‘L’) are left-sided plans.
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Figure 8.8: Mean and standard deviation of predictions across ten repetitions for the dose-

volume metrics V 5Gy and V 10Gy of the ten clinical plans. A plan-patient combination is

encoded by color, and presence or absence of blocking is encoded by marker shape. Note

that di�erent plots have di�erent scales of the vertical axis. For each case, the ground-

truth dose-volume metric is indicated by a red square. In each plot, the �rst six cases

(white background, plan subscripts starting with ‘R’) are right-sided plans, the last four

cases (gray background, plan subscripts starting with ‘L’) are left-sided plans.
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Key to obtaining a decent amount of data to perform ML were the collaboration of �ve

international institutes to gather pediatric patient CTs (147), the development of a new

automatic sampling procedure yielding arti�cial Wilms’ tumor RT plans, and the creation

of an automatic dose reconstruction pipeline to calculate the dose for all patient and plan

combinations. We validated our approach on 300 automatically generated arti�cial plans,

and on ten manually created clinical plans, to assess whether the results of the validation

on the arti�cial plans generalize well in practice. Our approach showed promising levels

of accuracy in dose reconstruction in both settings.

Errors were found to be overall similar between the validation on the ten clinical plans

and the validation on the arti�cial plans. However, for some metrics, errors were larger

for the ten clinical plans. This may be due to chance, because ten is a small number to

validate upon. Another possibility is that the arti�cial plan generation method needs to

be improved. Arti�cial plans were generated by sampling geometry properties uniformly

within prede�ned boundaries on two reference DRRs. Uniform sampling might not be

representative of the distribution clinical plans have. Moreover, we consulted a single

radiation oncologist to de�ne clinically acceptable boundaries to use in the sampling of

arti�cial plans. Consulting multiple experts and allowing for a larger variation might

better help covering the extent of variation that is present in historical plans (Sec. 8.2.2).

For example, the isocenter locations of arti�cial left-sided plans were never sampled below

the 1st lumbar vertebra (see Fig. 8.2) and approximately half of the Dmean values for the

spleen in case of the arti�cial left-sided plans were close to the prescribed dose (14.4 Gy,

see Fig. 8.6), which means that the spleen was often almost completely in-�eld in our

arti�cially generated set of left-sided plans. When a block was applied, only a small part

of the spleen was spared. However, in clinical practice, isocenter locations can be lower,

and a larger part of the spleen might actually be outside the �eld (see Fig. 8.9). This might

explain the relatively large errors observed in Figure 8.7 for PL1B and PL2B where the

isocenter location is lower than the sampled range. Ultimately, e�ort should be done to

improve the sampling of arti�cial plans.

In the validation performed upon arti�cial plans as well as in the one performed upon

clinical plans, a main result that emerges is that dose-volume metrics for an organ are

hard to predict when, due to the �eld setup, it is unclear whether the OAR is (partially)

included in the �eld or not. For example, consider the D2cc as opposed to the Dmean for

the spleen for PR1 and PR1B in Figure 8.7 a tiny part of the spleen being inside the �eld

causes a large D2cc (wrongly predicted to be small), and small Dmean (correctly predicted

to be small). As experimentally observed in Chapters 6 and 7, 2D bony anatomy provides

only coarse information on OAR shape and position even for ML algorithms (e.g., an MAE

of 6.4 mm for the prediction of the liver position along the IS axis was reported in Chap-

ter 7). Yet, because bony anatomy is the only structure that is reliably visible in historical

radiographs, most of the anatomical features rely on it. Patients with similar anatomical

features derived from bony anatomy may have di�erent OAR shape and position, and thus

di�erent dose-volume metrics. Furthermore, impreciseness in feature values due to e.g.,

uncertainties in landmark detection and plan emulation, aggravate the situation.

Compared to conventional dose reconstruction methods (that use surrogate anatomies

and heuristics to decide what surrogate to use), we considered a relatively large number of

features: 33. Phantom-based methods consider, e.g., only age and gender [7, 21], or gender
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Figure 8.9: E�ective �eld shape of plans PL1 (on the upper left), PL1B (on the upper right),

PL2 (on the lower left) and PL2B (on the lower right) plotted on top of the associated DRR.

The �elds are placed lower than most of the sampled arti�cial plans (see Fig. 8.2) and

consequently a (large) part of the spleen (indicated by the light blue contours) is outside

the �eld (for PL1B and PL2B an even larger part of the spleen was blocked).
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together with height and weight percentiles [15]. However, if a 2D radiograph is available,

the added value of this information should be exploited. In our work, the majority of the

features we considered, i.e., 23 out of 33 (minus eight due to automatic feature selection),

regarded patient anatomy as visible on a 2D radiograph, which we simulated with DRRs.

Our DRRs were generated in a conformal fashion, e.g., the abdomen was always fully

included in RL direction. The automatic landmark detection that was used to generate

features expects this conformity to achieve precise detection [25]. When dealing with

actual historical radiographs, however, several challenges need to be taken into account.

For example, our automatic landmark detection method requires further development to

account for noise in the radiograph (e.g., the presence of hand-writing on the radiograph).

Moreover, educated guesses of landmark locations may be needed in some cases, as some

historical radiographs do not include the entire abdomen (see Fig. 8.1(c)). Nevertheless, as

long as the features are somehow collected (e.g., manually), they can be used as input for

the ML models to get respective dose-volume metric predictions.

There are disadvantages of our approach compared to conventional dose reconstruc-

tion methods that use surrogate anatomies beyond the need for patient radiographs, which

are not always available in retrospective data. In particular, a key limitation is that ML

models do not predict the entire 3D dose distribution an organ receives, but only the met-

rics they were trained for. Potentially useful information to link to AEs may be contained

in 3D dose distributions. To predict 3D dose distributions, the ML models would need to

be trained to predict a 3D output. Surrogate-based methods do allow to obtain the entire

3D dose distribution to an organ, since the distribution can be visualized on the organ of

the surrogate anatomy, after plan simulation. However, considering the magnitude and

variations of the errors of organ mean dose obtained by conventional approaches [22], it is

questionable whether the full 3D distribution will be su�ciently reliable. Our approach, as

currently proposed, can straightforwardly be extended to predict any (scalar) dose-volume

metric that is suspected to be useful to study AEs (it su�ces to train ML on that metric).

Another limitation of our approach is that it does not take into consideration uncer-

tainties related to OAR motion. For validation, we aimed at reconstructing the dose based

on the particular snapshot of anatomy at the moment the CT (ground-truth) / respective

DRR (to simulate historical radiographs) was taken. Yet, OAR motion plays a key role in

the uncertainty of organ positioning at the edge of the �eld, which can lead to a discrep-

ancy between the planned dose and the actual delivered dose. In RT practice, radiation

delivery is performed over a number of days, with fractionation schemes. The OAR po-

sition can therefore vary (i.e., inter-fractional position variation). Intra-fractional organ

motion due to, e.g., respiration variation, contributes to the di�erence between planned

dose and delivered dose as well [30].

Lastly, a main limitation of our approach is that the ML models we generated are

speci�c to pediatric patients (1 to 8 years of age) and Wilms’ tumor RT plans: they can

only predict reliable dose-volume metrics of speci�c OARs they were explicitly trained for.

The RT plans we have sampled were also restricted to a standard AP-PA setup without

considering wedges, boost �elds, or other radiation sources such as Cobalt-60. Moreover,

the predictions of the ML models (as well as the validation performed in this study) are

based on the dose calculation algorithm we adopted when preparing training data, which

has inaccuracies. Speci�cally, we used a collapsed cone algorithm available in Oncentra



8.5. Conclusion

8

203

TPS. Though good accuracy was reported in the in-�eld and near-�eld region (< 5 cm from

the �eld borders, achieves an error of 1-2% of the prescribed dose), in low dose regions

(10-15 cm from the �eld border) an underestimation of 10% of the dose in the region was

reported [31]. We remark that the OARs we considered in this study were mostly within

5 cm near the �eld border (except for the spleen in case of the right-sided plans). To make

the method more general for OARs far from �eld borders, more advanced Monte Carlo

dose calculation algorithms should be applied in future implementations. However, we

believe that the core ideas of our work can be replicated for other cohorts and other types

of plans. Essentially, as long as a su�cient number of anatomies and plans are collected

or generated, and a large number of dose reconstructions are performed to be used as

examples, new ML models can be trained to predict how the dose-volume metrics are

linked to anatomy-plan con�gurations. As was the case in our study, the collection and

preparation of su�cient data for ML is likely to be the largest required e�ort.

Our proposed approach presents several advantages compared to traditional dose re-

construction methods. First of all, we found our validation results to compare favorably

with respect to our recent work considering dose reconstruction for a similar childhood

cancer cohort [22]. The work considered 31 patients aged 2 to 6, 12 Wilms’ tumor clini-

cal plans, and a total of 50 dose reconstruction combinations, which were performed by

matching a surrogate CT based on age and gender. The work reported an MAE for the

Dmean for the liver of 1.6 Gy (average across both left- and right-sided plans), and an MAE

for the Dmean for the spleen of 2.6 Gy. For the liver, we obtained an MAE of 1.3 Gy when

validating on arti�cial plans, and of 1.1 Gy when validating on ten clinical plans. For the

spleen, we obtained an MAE of 0.8 Gy on arti�cial plans, and of 1.7 Gy for the clinical

plans. Furthermore, our ML-based predictions resulted in much smaller variations. The

inter-quantile range (25th to 75th percentile) of the (non-absolute) prediction error of our

previous work was 3.6 Gy for the liver, and 4.7 Gy for the spleen [22]. On the arti�cial

plans, we obtained a range of 2.0 Gy for the liver, and of 1.2 Gy for the spleen. On the

clinical plans, the range for the liver was 1.9 Gy, and the one for the spleen was 2.2 Gy. We

remark that since the dose reconstruction accuracy is largely in�uenced by the particular

plans considered, these values may not be a fair comparison. We are currently working on

a multi-institute study to compare our approach with two state-of-the-art, phantom-based

dose reconstruction approaches [12, 21]. In that study, a same set of patients and plans

will be used for validation.

Finally, a bene�t of having ML models is that, once features are collected, they can be

used as inputs for the model to obtain the prediction of a dose-volume metric immediately.

Running a model on a computer simply means to follow the steps encoded by the formula

the model represents, which takes a few milliseconds. Conversely, in a surrogate-based

approach, the features are used to craft or select a surrogate anatomy. Then, e�ort and

time must be put to emulate the plan on the surrogate anatomy, calculate the dose, and

obtain the dose-volume metrics [12, 21, 25].

8.5. Conclusion

We presented the �rst surrogate-free organ dose reconstruction method based on ML.

Our method was enabled by the collection of large amounts of patient and CT data, and

the automatic generation of arti�cial plans and of dose distribution data. We assembled
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a dataset of dose-volume metrics corresponding to features of patient anatomy and plan

geometry, and subsequently trained ML models to predict how features of patient anatomy

and of treatment plans in�uence dose-volume metrics. The predictions were validated

upon both arti�cial and clinical RT plans, and achieved good accuracy in both cases.
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9
Concluding Discussion

With our society increasingly leveraging big data and machine learning to drive informed

decisions, it is imperative to design scalable machine learning algorithms, preferably such

that the outcomes of these algorithms can be understood by humans. The work in this thesis

provides steps to improve Genetic Programming (GP) in this direction, and presents practical

applications of the resulting algorithms. Ideas from modern Optimal Mixing Evolutionary

Algorithms (OMEAs) for discrete optimization have been harnessed, ported to GP, and im-

proved, to perform better-than-random variation, leading to GP-GOMEA. The �ndings show

that not only can GP-GOMEA solve a variety of synthetic benchmark problems in a scalable

fashion, it can also deal competitively with the real-world machine learning task of symbolic

regression when small expressions are desired. Moreover, GP-GOMEA has been found to be

particularly useful for real-world applications in the health domain. In this �nal chapter, mer-

its and limitations of the �ndings, possibilities for future work, and also potential implications

for society are discussed with respect to the research questions posed in the introduction.

209
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Structure of the discussion

The discussion of this thesis is structured by �rst providing answers to the research ques-

tions posed in Section 1.5. These answers will highlight the merits obtained and the major

limitations encountered. The discussion proceeds by presenting general rami�cations of

the results of this thesis with respect to its main goal, i.e., improving GP to be more e�cient

and e�ective in synthesizing programs/machine learning models, with the focus of obtaining

relatively small models, to increase the chances of them being interpretable. These rami�ca-

tions will include limitations and future work directions for the scienti�c community, as

well as implications for society.

9.1. Answers to the research qestions

Research qestion 1. How can an OMEA be designed for GP, and how does it

fare against state-of-the-art GP algorithms?

In Chapter 2 we showed that the concepts behind OMEAs can indeed be extended to GP.

We created GP-GOMEA, a GP version of the GOMEA family of algorithms. To realize

GP-GOMEA, we enforced program structure to adhere to a �xed, maximal template, so

that linkage learning could be performed. The use of a �xed template was not found to

necessarily be a strict limitation, because it can be expanded over time when runs are

started by the Interleaved Multistart Scheme (IMS).

Experimental results on well-known benchmark problems showed that GP-GOMEA

can achieve at least competitive scalability when compared with state-of-the-art GP al-

gorithms. In particular, GP-GOMEA scaled better than other algorithms when the prob-

lem had an inherent structure that could be exploited if identi�ed. Moreover, optimally-

performing programs obtained with GP-GOMEA were found to normally be one order of

magnitude smaller (in number of tree nodes that encode the program) than the optimal

programs obtained with the other tested GP algorithms. GP-GOMEA can thus be seen

as a promising approach with respect to the goal of this thesis, i.e., improving the e�-

ciency and e�ectiveness of GP, with a focus on synthesizing relatively small programs (to

increase interpretability chances).

While the work presented in Chapter 2 provides evidence that answers positively to

the research question, a gap still exists with respect to reaching the main goal of the thesis.

This is due to two major limitations:

• The benchmark problems that were considered in Chapter 2 require an optimal pro-

gram to be found (see Sec. 2.4.1). In this context, a program is optimal if it embodies a

particular structure (for the so-called arti�cial benchmark problems), or if it provides

the correct output to all possible input cases (for the so-called Boolean benchmark

problems). For supervised learning problems such as symbolic regression on real-

world data, no conditions for program optimality (or, equivalently in this context,

for machine learning models) are known. More speci�cally, no particular program

structure is required, nor are all conceivable input/output pairs available (the data

is limited) to test whether the program (or model) perfectly captures the intrinsic

relationships in the data. Moreover, for realistic data, there are no guarantees that

the optimal problem structure exists in the program encoding. Hence, a main lim-

itation of our answer to this research question is that validating the performance
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of GP-GOMEA on the considered benchmark problems may not be su�ciently rep-

resentative of GP-GOMEA’s performance on real-world symbolic regression (and

supervised learning in general). However, since GP-GOMEA was shown to be able

to solve benchmark problems e�ciently and to �nd smaller programs than the other

GP algorithms, it can be expected that GP-GOMEA will have a better performance

when searching for a small program that represents a model that �ts some real world

data (investigated in the next research question).

• The programs found by GP-GOMEA were typically one order of magnitude smaller

than the programs found by the other algorithms, but they still contained a rela-

tively large number of instructions, i.e., over one hundred for the largest problem

instances. For a Boolean problem, reading a program containing one hundred AND,

OR, NAND, and NOR instructions can be considered unreasonable, and will likely not

help in obtaining a full understanding of its workings (to prevent, e.g., unexpected

outcomes). Still, it is reasonable to hypothesize that GP-GOMEA’s capability of con-

sistently �nding relatively small optimal programs will help the algorithm deal pro-

�ciently with scenarios where the programs are forced to be small, and in particular

small enough to make readability and interpretability much more likely.

Researchqestion 2. Does GP-GOMEA work well on realistic cases of symbolic

regression?

An answer to this research question is provided in Chapter 3. GP-GOMEA was used to syn-

thesize programs that represent machine learning models for realistic symbolic regression

datasets (of moderate dimensionality), in the form of mathematical formulas composed of

arithmetic operations. To consider realistic datasets means to overcome the �rst of the

two major limitations identi�ed for the answer to the �rst research question, i.e., that

benchmark problems might not well represent real-world supervised learning tasks.

To overcome the second major limitation of our answer to the �rst research question,

we enforced relatively strict limits on the maximum number of instructions allowed in a

program. We performed experiments with limits of 15, 31, and 63 instructions (perfect

binary trees of height 3, 4, and 5). This was done to increase the chances of interpretabil-

ity. In our opinion, symbolic regression programs with around 15 to 25 instructions (as

arithmetic functions) can already be found to be borderline interpretable when re-written

as mathematical formulas, depending on what instructions are used and how they are

combined. Larger programs are arguably very hard to impossible to interpret.

We provided methodological improvements to GP-GOMEA to make it better suited

to deal with supervised learning tasks. Subsequent experimental results on ten realistic

datasets showed that GP-GOMEA was overall preferable to the algorithms it was com-

pared with in terms of model accuracy. This leads us to give a positive answer to re-

search question 2, and to substantially strengthen the hypothesis that, indeed, e�ciency

and e�ectiveness of GP can be improved for applications of real-world interest, by using

concepts of OMEAs within GP.

The major limitations of our answers and results that can be identi�ed are:

• GP-GOMEA uses a maximal tree template. A template was con�gured to be a perfect

binary tree capable of containing at most a prede�ned maximum number of nodes
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(e.g., for a limit of 31 nodes a template tree with height of 4 was used). In comparison

to classic GP, with the latter forced to use the same maximal program structure en-

forced by the template used by GP-GOMEA, GP-GOMEA was found to be markedly

better than classic GP. This could be expected because using a same maximal tem-

plate means to set same search space conditions for the two algorithms, and dif-

ferences in performance must be attributed to competence in searching. However,

when classic GP was set to evolve tree structures freely (e.g., unbalanced maximum-

sized trees), then GP-GOMEA was found to be only moderately better than classic

GP. This means that being able to evolve other maximal tree shapes than a speci�c

one (i.e., a perfect binary tree) can bring an advantage to �t the data even if variation

is ine�cient. Therefore, it can be concluded that the need to use a speci�c maximal

template in GP-GOMEA (to be able to perform linkage learning and optimal mixing)

is an important limitation.

• In our experimental evaluation, we also considered regression decision trees [1], as

an alternative approach to obtain interpretable machine learning models [2]. Albeit

e�cient compared to other GP algorithms, GP-GOMEA still remains a relatively ex-

pensive approach. Since a pre-established termination condition based on quality is

typically unknown in realistic problems (no optimum is de�ned), GP-GOMEA re-

quires a di�erent type of termination criterion. In Chapter 3, we used a time limit of

ten minutes, which can be considered a reasonable investment of time. Conversely,

building a decision tree takes a well de�ned amount of computations (time complex-

ity of O(m logn) for m features and n samples), which amounted to a few seconds

for the datasets considered (including hyper-parameter tuning by grid search). We

remark, however, that GP-GOMEA (with base parameter settings) was found to be

better than (tuned) decision trees in terms of the accuracy of the models.

Researchqestion 3. Does geometric semantic variation work well on realis-

tic cases of symbolic regression?

In Chapter 4, the Random Desired Operator (RDO), one of the most famous approximate

geometric semantic variation operators, was found not to be capable of dealing with sym-

bolic regression for real-world data. Consequently, we provided enhancements to RDO

that actually made it become markedly more e�cient and e�ective, and capable of dealing

with realistic cases of symbolic regression in a competitive manner.

Still, we did not address one of the main limitations of (approximate) geometric seman-

tic variation, which is that this type of variation induces programs to grow large in the

number of instructions. Actually, in Chapter 3 we showed that RDO does not work well

when forced to evolve small programs. This limitation provides a further motivation to

explore and use algorithms like GP-GOMEA, that can be considered to be complementary

in that they are better suited to deal with scenarios where particularly compact programs

are desired, e.g., to enhance the chances of interpretability.
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Research qestion 4. Can the capability of GP-GOMEA to find small and ac-

curate programs be used to make a machine learning algorithm generate trans-

parent models?

We showed in Chapter 5 that GP-GOMEA can be used to perform feature construction in

such a way that: (i) Constructed features can be particularly small, to allow interpretation

of their meaning; (ii) Constructed features can be small in number, to allow the behavior

(input-output mapping) of a model learned by a machine learning algorithm to be visu-

alized in terms of these features; and (iii) The performance of a machine learning model

that is trained on such constructed features can be on par with the performance of a model

that is trained on the original feature set (actually, it can even be better). These aspects

can help explaining how the model learned by a machine learning algorithm behaves and

why it behaves that way.

The use of feature construction was experimentally found to be particularly bene�cial

for “weak” machine learning algorithms, such as the naive Bayes classi�er and ordinary

linear regression, which are relatively fast to train but make particular assumptions on

properties of the features (e.g., linear contribution to the target). The feature construction

process can forge features that themselves can overcome the limitations of the assump-

tions made so as to enable better performance. GP-GOMEA was found to be moderately

preferable in performing feature construction when compared to other search algorithms.

The major limitations encountered in Chapter 5 are reported below.

• We could only use a limited population size (100) and a small budget of allowed eval-

uations (10,000) for the feature construction algorithms, due to the expensiveness

of carrying out the evaluation of feature construction quality, and the large number

of experiments considered in the study. These settings were found insu�cient to

allow a pro�cient use of linkage learning by GP-GOMEA. In fact, we found that us-

ing linkage learning (by means of the linkage tree) with such limited resources was

not helpful, or even harmful, compared to using random variation (by means of the

random tree). In the discussion of Chapter 5, however, we provided experimental

evidence of our expectation that, if the dataset under consideration has moderate di-

mensionality, and larger population sizes and number of evaluations are used, then

linkage learning can be advantageous.

• Similarly to Chapter 3, we enforced the constructed features to be small to enhance

the chances of them being interpretable. Still, we had no means to guarantee inter-

pretability. We provided examples of constructed features encoded as mathematical

formulas that are arguably easy to read and understand (corresponding to programs

with at most 7 instructions), and of some that are borderline interpretable (corre-

sponding to programs with at most 31 instructions).

Researchqestion 5. Can GP-GOMEA find models that are accurate and likely

to be interpretable for a clinical problem in pediatric radiation oncology?

The answer to this research question spans Chapter 7 and Chapter 8. Chapter 6 is part

of the application being considered in that it introduces the problem of radiation dose

reconstruction for childhood cancer survivors, and in that it shows the feasibility of using

machine learning to reconstruct 3D anatomical information from patient features available
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in historical records. However, Chapter 6 does not involve GP-GOMEA, hence it is not

discussed further here.

For Chapter 7 and 8, actually, it can be argued that the particular choice of using GP-

GOMEA is not instrumental to the application. We believe it is fair to say that the major

scienti�c contribution that we provided for this application consisted in showing that the

dose reconstruction problem (or a part of it, such as the phantom construction step) can

be cast as a supervised learning task (regression), which can be tackled using machine

learning. Still, particularly for Chapter 7 where comparisons with other machine learning

algorithms were made, we did show that GP-GOMEA �nds more accurate models than the

other methods. For Chapters 7 and 8, moreover, we provided examples showcasing that

we safeguarded the possibility of these models being interpretable. Enabling clinicians to

understand how a model operates and why it operates that way can be important for them

to trust its use.

The largest limitation of this application is that the available data was very limited.

For Chapter 7, only 60 pediatric CT scans where available. For Chapter 8, we managed to

increase the number of pediatric CT scans to 147, by involving �ve hospitals world-wide.

These numbers are relatively small in the �eld of machine learning, because over�tting

becomes easier the smaller the number of samples available [3]. Yet, GP-GOMEA was

found to be particularly pro�cient in this application. To avoid over�tting one essen-

tially expects (among other aspects) that programs will need to be small-sized, as that

prevents convoluted function compositions to take place. GP-GOMEA works particularly

well when programs (and their corresponding genotypes) are small, as linkage learning

needs to deal with a limited number of possibilities (genotype symbols). Accurate linkage

estimation leads to e�ciency and e�ectiveness, as was shown in benchmark problems and

datasets. Moreover, forcing programs to be small means that the corresponding mathe-

matical formulas will be small as well, which, in turn, increases interpretability chances.

9.2. Ramifications, limitations, future work, and soci-

etal impact

9.2.1. General ramifications

The research presented in this thesis shows that, by harnessing the statistical information

on interdependency within program structure that emerges during the search process, it

is in fact possible to improve the e�ciency and e�ectiveness of GP. Compared to other

recent and de-randomized variation methods, the improvements brought by GP-GOMEA

in terms of e�ciency and e�ectiveness need not come at the cost of large increases in

program size (limitation of geometric semantic variation), and can scale up to practically

interesting problems such as symbolic regression for real-world data (limitation of Esti-

mation of Distribution Algorithms (EDAs) for GP). Very interesting results in GP research

may be enabled by designing new methods inspired by the idea that statistical information

should be harnessed and exploited during the search.

Still, it is important to realize that certain conditions need to hold for such methods to

be pro�cient. The crucial issue at the core of attempting to leverage any statistical infor-

mation is that this information needs to be modeled with su�cient accuracy to be helpful.

In Chapters 3 and 4, experimental evidence led us to argue that the number of samples (in
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GP, the population size) needs to be large with respect to the number of random variables

(the maximum number of instructions allowed) and their sample space (the number of

possible instructions) for linkage learning to be advantageous.

For discrete optimization, the problem of optimal population sizing has been studied

for traditional genetic algorithms as well as for OMEAs [4–7], typically using assump-

tions on the degree of interdependencies occurring within and among building blocks.

For GP, these studies are yet to be done, and can be considered particularly complicated

to be performed because the search in GP is de�ned by several hyper-parameters such

as, e.g., how large programs can grow, what primitives are used, what task the programs

must do (which can be data-dependent), and, perhaps most importantly, what the opti-

mal dependency structure is. Hence, optimal population sizing remains an open problem

in GP. Nonetheless, we showed that a simple incremental population sizing-scheme (i.e.,

the IMS) can su�ce for GP-GOMEA to be e�ectively capable of achieving good results

within reasonable computational resources even for real-world problems (of moderate di-

mensionality). We remark that, to the best of our knowledge, this has not been shown for

other model-based GP approaches (i.e., essentially for EDA-based GP). This might be be-

cause of what is already known for binary optimization: EDAs typically need much larger

population sizes than OMEAs to work well.

All in all, for practical applications, it is important to estimate the resources at hand,

to have a coarse assessment of whether GP-GOMEA can achieve its full potential. As of

now, it is still unknown what speci�c properties a problem needs to have for methods like

GP-GOMEA to work particularly well on that problem.

In an attempt to make the discovered programs/machine learning models more trans-

parent and interpretable, constraints on program compactness were enforced in this thesis,

particularly in terms of a maximum number of allowed instructions. However, forcing pro-

grams to be small is only a necessary condition to allow a human to read and understand

what a program means. The �eld of GP can, in general, be very useful to obtain machine

learning models with a good chance of being interpretable for many people. Surveys on

explainable arti�cial intelligence include GP among the methods to explain other mod-

els or directly generate explainable models [2, 8]. To improve upon the state-of-the-art,

GP experts need to communicate with experts on explainable arti�cial intelligence to de-

sign algorithms that can have better chances at providing interpretable outcomes. Under

the assumption that mechanisms to steer the search towards more interpretable programs

can work alongside the methods to de-randomize the search proposed in this thesis, GP-

GOMEA represents a good candidate to build upon, because it works particularly well

when programs need to be small to begin with.

A last important general point is that although GP-GOMEA can be more e�cient com-

pared to other GP algorithms, GP-GOMEA remains a GP algorithm, and is therefore com-

putationally expensive when compared to several other types of machine learning algo-

rithms. Moreover, if a large model is needed anyway to capture patterns among a large

number of dimensions, e.g., as in image recognition, GP-GOMEA (and GP in general) is

probably not a good choice compared to, e.g., convolutional neural networks [9].
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9.2.2. Main limitations and future work directions

In the following, major technical limitations are presented alongside future work direc-

tions. The �rst two points are in regard to how to improve e�ciency and e�ectiveness

in GP, beyond the results achieved in this thesis. The last point concerns interpretable

machine learning, and the role of GP within it.

Beyond syntactic linkage learning
Given a program synthesis task, for a target performance metric, GP-GOMEA normally

�nds a much smaller program than other GP algorithms (Chapter 2). Given the same

search space enforced by a relatively strict program size limitation, GP-GOMEA normally

outperforms other GP algorithms (Chapter 3). Key to enable the discovery of very small

yet very pro�cient programs (as trees), is the fact that the Gene-pool Optimal Mixing

(GOM) variation operator can modify, in one go, nodes that are unconnected (di�erently

from, e.g., subtree crossover). A very large number of possibilities exists if any number of

unconnected nodes can be changed. The number of possible changes has factorial growth

with respect to the number of nodes. From this perspective, the use of a family of subsets

such as the linkage tree can be considered a necessary factor, to guide GOM to attempt

a limited number of variation steps (linear with respect to program size) that are most

promising. In particular, the variation steps based on linkage estimation are promising

under the sensible hypothesis that hidden interdependencies between program instruc-

tions inherently exist and should be exploited. Still, the linkage tree is but one possible

way of driving the variation GOM performs, and is not necessarily the optimal one. Dif-

ferent methods for the construction of a family of subsets have been (and are currently)

studied for discrete optimization [10]. Research on OMEAs for GP might bene�t from the

exploration of the ideas from discrete optimization. Vice versa, new ideas developed in

GP might be bene�cial for the development of OMEAs in discrete optimization.

With a large branch of modern variation approaches showing the promise of harness-

ing program semantics, i.e., the (intermediate) outputs of (sub-)programs, it is natural to

wonder whether the concepts of OMEAs can be applied to program semantics as well.

Building (probabilistic) models (that drive variation, intended as in Sec. 1.4) in the seman-

tic space instead of in the syntax space could reduce the population size needed for su�-

ciently accurate model building, and thus improve e�ciency. This is because the mapping

between semantic space and �tness space is typically less redundant than the mapping be-

tween syntax space and semantic space. Consequently, variation could be set to compose

di�erent semantics based on their interdependencies. These semantics might be realized

by sub-programs which are collected in a library (as typically done with RDO and other

approximately semantic variation operators [11]).

In practice, however, the number of possible semantics that programs can have for a

certain problem is generally large. The lower bound for the number of possible seman-

tics depends on the instructions and on their properties (e.g., commutativity, existence

of neutral operands). Given a �xed template that programs can have, the upper bound is

the total number of possible (syntactically valid) instruction permutations with repetitions

within that template. Yet, if the �tness function is such that neighborhoods in the semantic

space lead to neighborhoods in �tness space (e.g., the mean squared error), then similarity

in semantics means similarity in �tness values. Therefore, semantic-based model build-

ing methods could be set to work upon a tractable number of clusters that group similar
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semantics together, rather than on the total number of possible semantics. This could

drastically reduce the quantity of possibilities that a model needs to capture. Such clus-

ters could be de�ned by means of locality sensitive hashing techniques [12], and could be

dynamically updated during the search, as to re�ne the granularity of the clustering the

more the search converges.

Another interesting research direction is the design of variation methods that take into

account the �ow of computations within program architectures. A famous example is the

automatic search for neural network architectures [13]. For the sake of simplicity, consider

the need to design a feed-forward neural network such as a multilayer perceptron, where

a permutation of some hidden layers should be chosen to create a best neural network

architecture. A �nite set of possible hidden layers can be conceived, where hidden layers

are considered to be di�erent based on what activation functions they use, and/or based

on how many neurons they contain (layer size). Now, it can be reasonably assumed that

some layers will work better than others for a certain problem, and that what layer works

best in some position depends on the con�guration of the other layers. In particular, one

may expect that the possible outcomes of an intermediate layer l is conditional on what

computations are possible in the layers that precede it, l − 1, l − 2, . . . , 1.

In genetic algorithms literature, the leading ones benchmark problem can be considered

an example representative of (a very simpli�ed version of) the aforementioned situation:

arg max
x∈{0,1}l

 l∑
i=1

i∏
j=1

xj

 .

Essentially, given a binary string, the number of consecutive 1s appearing from left to

right should be maximized. The 1s that appear after a 0 are not considered. This problem

can be thought of as an extremely simplistic neural architecture search for multilayer per-

ceptrons where only two layer types are employed: 1s represent performant layers, and 0s

represent faulty layers. The presence of a “0-layer” undermines the performance of subse-

quent “1-layers”. For example, a 0-layer may be one that uses too few neurons to propagate

su�cient information to improve the network performance. For a multi-objective version

of the leading ones problem (leading ones-trailing zeros), it has been showed that OMEAs

using linkage learning (in particular, the LT) are not capable of solving this problem e�-

ciently. The key reason is that current linkage learning methods do not account for the

order in which variation should be performed [14].

Studying how mixing order impacts search e�ciency might be crucial to enable meta-

heuristic approaches such as GP to search more competently in the space of highly-complex

machine learning model architectures (e.g., neural architectures). A mixing order can be

hard-coded based on prior-knowledge on how computations �ow within the possible ar-

chitectures that a machine learning model can have. Alternatively, methods could be in-

vestigated to automatically detect best mixing orders based on information that emerges

during the search. This kind of new variation operators might lead to more scalable auto-

mated discovery of machine learning model architectures.

Dealing with fixed-size representations
An important limitation we encountered when comparing GP-GOMEA to other GP algo-

rithms is that GP-GOMEA currently needs a maximal tree template to represent programs.
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For some problems, classic GP can still outperform GP-GOMEA when using a same limit

on the maximal number of instructions allowed, simply because it has the freedom to craft

program-encoding trees of arbitrary shape.

The use of a �xed-sized maximal template is not, in itself, a problem. The problem is

to identify what a best template shape should be, when a maximum program size is �xed.

For some problems, setting a particular shape for the maximal template can allow the dis-

covery of particularly e�ective programs. For example, for programs encoded by a perfect

binary tree, only so many functions can be nested in compositions. An unbalanced binary

tree allows deep nesting of function compositions, an aspect which might be desirable for

certain problems.

In Chapter 2, the IMS was used to increase the height of the maximal tree template

(perfect binary) every other run. Nonetheless, simply scaling the maximal height can be

ine�cient, because increasing the tree height has an exponential e�ect on the increase

of tree nodes (program instructions). Future work might focus on ways to automatically

determine promising shapes for a maximal tree template (or for an equivalent representa-

tion), without necessarily increasing the total number of nodes.

A di�erent way to overcome limitations caused by the use of a maximal template con-

sists of augmenting the expressiveness that primitives can have. For instance, this can be

done by encapsulating sub-routines into new node types. In Chapter 2, we proposed to en-

capsulate sub-routines that exhibited certain regularities in their output into new function

and terminal nodes (with the input-space entropy-based building-block learning method).

This proved to be very bene�cial to solve a highly-modular Boolean problem (even par-

ity) and, notably, required no changes to be made to the workings of GP-GOMEA. Other

similar methods have explored similar ideas to dynamically augment the expressiveness

of GP for di�erent applications [15, 16]. To date, however, a general method to discover

and re-use salient sub-routines that is problem-agnostic, still needs to be discovered.

Lastly, indirect representations can be leveraged to obtain, from �xed-length encod-

ings in general (not only maximal templates), programs/trees of any length and shape. As

mentioned in Section 1.4, EDAs have been set to work on grammar-based GP, where often

the encoding is binary, and represents the chain of rules that will be used to sample pro-

gram instructions. As mentioned in Section 1.4.2 and Section 3.2, we are not aware of any

EDA for (grammar-based) GP capable of delivering state-of-the-art results on supervised

learning problems with at least dozens of features. Moreover, it is unclear whether the use

of indirect representations can actually hinder (probabilistic) model building approaches,

because to use an indirect representation means to introduce further redundancy between

syntax (encoding) and �tness [17, 18].

Recently, an adaptation of GOMEA has been proposed to be used for GP using indirect

representations as in grammatical evolution, called GOMGE [19]. The results indicated

that GOMGE can work particularly well when a pre-speci�ed linkage model is used (called

the natural family of subsets), that is designed to account for how the mapping operates on

the encoding. At the same time, the results indicated that automatic linkage learning (as

done in this thesis, i.e., by means of the linkage tree family of subsets) was not performing

particularly better than the use of a pre-speci�ed linkage model, nor than using random

noise as linkage. This result might be attributed to possible redundancy introduced by

the use of the indirect representation. However, another important reason why linkage
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learning did not excel might be attributed to the use of a relatively small population size

(500). Future research should be carried out to assess whether OMEAs can work better

than EDAs on GP with indirect representations.

On interpretability
In this thesis, GP programs were constrained in size in an attempt to improve the chances

of interpretability of the corresponding mathematical formulas. Clearly, this approach

has its limitations, especially considering that interpretability is a subjective matter. Users

may be more, or less, familiar with encountering certain types of functions/program in-

structions, and certain types of function/instruction compositions.

In modern practical applications of GP, end-users for whom a model is needed are typ-

ically consulted beforehand, and heuristics are crafted to penalize programs that contain

functions that are less intuitive (see, e.g., [20]). Penalization terms are then incorporated

in the �tness function, or used as secondary objective in multi-objective GP search [21].

In the latter case, fronts of programs that range from more accurate but opaque, to less ac-

curate but more transparent, can be obtained. Yet, crafting penalization terms and metrics

is often highly arbitrary, and might not be su�ciently personalized.

In the �eld of explainable arti�cial intelligence in general, much research work has

been put in proposing objective metrics to be used as surrogate for interpretability [22, 23].

However, the limitations of attempting to establish an objective metric is that subjectivity

cannot be captured. Therefore, research directions to improve on this should perhaps take

inspiration from the personalized strategies adopted in modern content recommendation

systems. Every day, systems like YouTube, Net�ix, and Amazon tailor their suggestions

to the user by employing machine learning algorithms that attempt to automatically learn

“what the user wants”. In GP, since search is an iterative process, it may well be possible

to conceive of a mechanism to allow users to steer the ongoing search, by providing on-

line feedback on the programs evolved so far regarding their level of understanding. This

feedback could itself be modeled, based on features of the programs (e.g., number of di-

mensions considered, type of function compositions). A model of program interpretability

could therefore be re�ned during the search, to provide guidance on what the user prefers,

and to steer the search in that direction by penalizing programs that do not meet the user’s

preferences.

An important direction to explore to make GP programs both capable to handle high-

dimensional problems and relatively easy to understand, is modularity. One of the most

famous contributions to GP in enforcing program modularity is represented by the auto-

matically de�ned functions, which essentially are modules (or sub-programs) that can be

instantiated multiple times within the overall program, and are evolved along with how

they should be used in a GP solution [24]. In this thesis, a way to identify modules (called

building blocks) was proposed to tackle high-dimensional Boolean problems (Sec. 2.3).

Methods for the identi�cation of modules have been shown to be greatly helpful to en-

hance the e�ectiveness of GP whenever the problem at hand is highly-dimensional, but

decomposable. Modularity can enable understanding by decomposability, i.e., the ability

to understand how a program (or machine learning model) works by understanding how

its modules work, and how these modules are combined [23]. Future work in making GP

programs more interpretable could focus on promoting the evolution of programs com-
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posed of repeating modules. Attempts should be made to make these modules, and their

composition, as transparent as possible.

A last important problem that needs to be addressed for the use of GP to obtain explain-

able models rises from the stochastic nature of GP. In particular, if multiple runs deliver

di�erent (explainable) models, it is not clear what model represents the best explanation

of the patterns in the data. Picking a model that best generalizes to a validation set is

not guaranteed to be the best explanation to the ground-truth phenomenon of which the

data was collected. For example, this might be due to having small a validation set which

results in small generalization error by chance. Regarding GP-GOMEA, we observed that

the use of the linkage tree instead of the random tree as family of subsets reduces the

variance in what model is found (almost one fourth of 100 runs found equivalent models

for the experiment of Sec. 3.5.4). Our expectation is that the larger the population size is

set, the less variance can be expected in the best found models.

This said, a possibility to choose one model among many is to take the mode of multiple

repetitions as the �nal answer, potentially including corrections for small di�erences in

constants (e.g., the mean can be taken) if all other model components are equal; or to

observe if di�erent models are actually using highly-correlated features interchangeably.

Another possibility is for experts to inspect the models, and recommend what models

seem most trustworthy (e.g., considering the features at play).

Even though the stochastic nature of GP can be considered unappealing with respect

to the search for explainable models, we remark that GP is not the only source of random-

ness that is involved in practice. In fact, when using machine learning in practice, further

stochastic processes are often employed that can ultimately in�uence what model is gen-

erated, even if the machine learning algorithm is deterministic. For example, it is common

to improve model �tting by hyper-parameter tuning methods that repeatedly use di�erent

random data partitions. Di�erent data partitions can lead to di�erent hyper-parameter set-

tings being selected by the tuning process. In turn, di�erent hyper-parameter settings can

in�uence the way a machine learning algorithm synthesizes a model. Therefore, research

should be done to assess to what extent stochastic processes involved in machine learn-

ing practice in�uence explainability. Principled ways should be explored to reliably �nd a

unique interpretable model when the data samples (from a same underlying distribution)

change.

9.2.3. Implications for society

Parts of this thesis presented pragmatic uses of GP-GOMEA: symbolic regression on real-

istic datasets (Chapter 3), feature construction to obtain more transparent machine learn-

ing models (Chapter 5), and symbolic regression synthesis of likely readable models for

healthcare data (Chapters 7 and 8). In its current state, GP-GOMEA can be used to dis-

cover small and fairly accurate models that have the potential to be interpretable, for a

variety of supervised learning applications, as long as structured data is available. If train-

ing a black-box machine learning model is preferable to the direct use of GP-GOMEA, e.g.,

because the former is capable of providing better accuracy, then GP-GOMEA can still be

used to construct small and few features that can enable to train the black-box model in a

feature space where its predictions can be visualized.
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Society can greatly bene�t from algorithms that deliver machine learning models which

workings can be understood. By using GP-GOMEA for radiation dose reconstruction for

childhood cancer survivors, we have provided examples of accurate machine learning

models that are intelligible. Currently, we are exploring the use of GP-GOMEA to dis-

cover prediction models that, on the one hand, discriminate between cancer cell lines that

are sensitive to drugs, and, on the other hand, are su�ciently compact to enable the infer-

ence of what the reasons may be for some cancer cell lines to be more or less drug sensitive

than others.

Still, GP-GOMEA can also be used on problems of a very di�erent nature. Our algo-

rithms could therefore be very useful for the e�cient discovery of e�ective and transparent

solutions for, e.g., design problems of di�erent engineering disciplines. In Chapter 2, the

algorithms developed in this thesis were used to discover solutions for several benchmark

problems. Solutions need not even necessarily be programs, e.g., for the arti�cial prob-

lems of Chapter 2, trees with particular inner structures are sought. Rather, once a �tness

function is designed and suitable primitives are chosen, GP-GOMEA can be used. Ulti-

mately, in comparison to other GP approaches, GP-GOMEA has the potential to discover

a compact (hopefully interpretable) solution within limited computational e�ort.
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