<]
TUDelft

Delft University of Technology

Design and Application of Gene-pool Optimal Mixing Evolutionary Algorithms for Genetic
Programming

Virgolin, Marco

DOI
10.4233/uuid:03641b5f-f8f6-4{f9-be7f-11948f6d3cc7

Publication date
2020

Document Version
Final published version

Citation (APA)

Virgolin, M. (2020). Design and Application of Gene-pool Optimal Mixing Evolutionary Algorithms for
Genetic Programming. [Dissertation (TU Delft), Delft University of Technology].
https://doi.org/10.4233/uuid:0364 1b5f-f8f6-4ff9-be7f-11948f6d3cc7

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.4233/uuid:03641b5f-f8f6-4ff9-be7f-11948f6d3cc7
https://doi.org/10.4233/uuid:03641b5f-f8f6-4ff9-be7f-11948f6d3cc7

DESIGN AND APPLICATION OF GENE-POOL
OrTiIMAL MIXING EVOLUTIONARY ALGORITHMS
FOR GENETIC PROGRAMMING

DESIGN AND APPLICATION OF GENE-POOL
OrTiIMAL MIXING EVOLUTIONARY ALGORITHMS
FOR GENETIC PROGRAMMING

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology
by the authority of the Rector Magnificus prof.dr.ir. T.H.J.J. van der Hagen
chair of the Board for Doctorates
to be defended publicly on
Monday 8 June 2020 at 12:30 o’clock

by

Marco VIRGOLIN

Master of Science in Computer Engineering, University of Trieste, Italy,
born in Monfalcone, Italy.

This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, chairperson
Prof. dr. P.A.N. Bosman, Delft University of Technology, promotor
Prof. dr. C. Witteveen, Delft University of Technology, promotor
Dr. T. Alderliesten, Leiden University Medical Center /

Delft University of Technology, copromotor

Independent members:

Prof. dr. R. Babuska Delft University of Technology
Prof. dr. K. Krawiec Poznan University of Technology, Poland
Dr. U.-M. O'Reilly Massachusetts Institute of Technology, USA

Prof. dr. L.J.A. Stalpers Amsterdam University Medical Centers,
University of Amsterdam

Delft
e t University of
Centrum Wiskunde & Informatica Technology

’

sTiks E=E

The research reported in this dissertation was funded by Stichting Kinderen Kankervrij
(KiKa), with project No. 187.

SIKS Dissertation Series No. 2020-13.
The research reported in this dissertation has been carried out under the auspices of SIKS,
the Dutch Research School for Information and Knowledge Systems.

Keywords: evolutionary algorithms, genetic programming, machine learning, pe-
diatric cancer, radiotherapy

Printed by: Ipskamp Printing

Front & Back: ~ Cover art by Macs Gallo (https://artstation.com/macs-gallo).

Copyright © 2020 by M. Virgolin
ISBN 978-94-6384-138-2

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

We have a hunger of the mind which asks for knowledge of all around us, and the more we
gain, the more is our desire; the more we see, the more we are capable of seeing.

Maria Mitchell

CONTENTS

Summary xi
Samenvatting XV
1 Introduction 1
1.1 Machine learning and the need for explanations 2
1.2 Symbolicregression Lo 4
1.2.1 Traditional regression 4
1.2.2 From traditional to symbolic regression 5
1.3 Classic genetic programming.o 5
1.3.1 An example of a GP run to recover Newton’slaw 9

1.4 From classic to modern genetic programming and beyond by de-randomizing
variationo Lo o 9

1.4.1 Early studies on biasing variation and more recent ones on geo-

metric semantic variation 11
1.4.2 Between syntax and semantics: model-based variation. 13
1.43 Optimal mixing evolutionary algorithms. 15
1.5 Researchquestions. 0oL 16
References. L 20
2 Scalable Genetic Programming by Gene-pool Optimal Mixing 27
2.1 Imtroduction L Lo 28
22 GP-GOMEA 28
221 Genotype 29
222 Linkagemodels Lo 29
2.23 Gene-pooloptimal mixing 30
2.24 Partialevaluationso 31
2.2.5 Interleaved multistart scheme 31
23 IEBL o 32
23.1 Identificationof BBs L. 33
2.3.2 Encapsulation of BBs — terminalnodes 33
2.3.3 Encapsulation of BBs — functionnodes 34
2.3.4 Implementation of IEBL in GP-GOMEA 34
2.4 Experimental setup. 35
241 Benchmark problems. L. 35
2.4.2 Standard GP and state-of-the-art 36
25 Results&discussions. 37
26 Conclusions 41
References. L 43
3 Improving Model-based Genetic Programming for Symbolic Regression 45
3.1 Introduction 46
32 Relatedwork. 47
3.3 Gene-pool optimal mixing evolutionary algorithm for GP 48
3.3.1 Solution representation in GP-GOMEA. 49
3.3.2 Linkagelearning.o 49
3.3.3 Gene-pool optimal mixing 51

vii

viil

CONTENTS

3.4 General experimental settings L.
3.5 Improving linkage learning forGP
3.5.1 Biasing mutual information to represent linkage
3.5.2 Estimation of linkageby MI;
3.5.3 Experiment: LT-MI; vs. LT-MIvs. RT
3.5.4 Experiment: assessing propagation of node patterns
3.6 Ephemeral random constants & linkage
3.6.1 Experiment: linkage learning withERCs
3.7 Interleaved multistart scheme
3.7.1 AnIMS for supervised learning tasks.
3.8 Benchmarking GP-GOMEA
3.8.1 Experimentalsetup. L.
3.8.2 Results: benchmarking GP-GOMEA
3.9 Discussion & conclusion L
References

Linear Scaling in Semantic Backpropagation-based Genetic Programming

4.1 Introduction L Lo

4.2 Semantic backpropagation Lo
4.2.1 Library and library search
4.2.2 Random desired operator.
4.2.3 Intermediate output caching

43 Relatedwork. Lo

4.4 Linear scaling with SB-based GP
441 Linearscaling L.
442 Linear scaling in synergy with semantic backpropagation

4.5 Linear scaling within SB-based GP
451 Linear scaling during library search

4.6 Experimental setup. L L Lo
47 Results.

4.7.1 Independent vs. synergistic linear scaling with semantic backprop-
agation.

4.7.2 SB-based GPvs.standard GP.
4.8 Discussion e e
49 Conclusion. e
References. e

Explainable Machine Learning by Evolving Crucial and Compact Features
51 Introduction L
52 Relatedwork. L
5.3 Iterative evolutionary feature construction.
5.3.1 Feature constructionscheme
5.3.2 Featurefitness Lo
5.3.3 Preventing unnecessary fitness computations
5.4 Considered search algorithms and machine learning algorithms
5.4.1 Details on the search algorithms
5.4.2 Details on the ML algorithms.
55 Experimentso
5.6 Results on traditional datasets
5.6.1 General performance of feature construction.
5.6.2 Statistical significance: comparing GP algorithms
5.6.3 Statistical significance: two constructed features vs. the original
feature set per ML algorithm

CONTENTS ix

7

5.7 Results on a highly-dimensional dataset 114
5.8 Results oninterpretability Lo L. 114
5.8.1 Interpretability of small features 114
5.8.2 Visualizing what the ML algorithm learns 116
59 Runningtime Lo 117
510 Discussiono 118
511 Conclusion. 121
References. L 122
On Automatically Selecting Similar Patients in Highly Individualized Radiother-
apy Dose Reconstruction for Pediatric Cancer Survivors 125
6.1 Introduction 127
6.2 Materials & methods 129
6.2.1 Patientdata L L oo 129
6.2.2 Similarity notions oL Lo 130
6.2.3 Regression and feature relevance. 133
6.2.4 Prediction and automatic selection of similar patients 134
6.2.5 Reconstructioncase 135
63 Results. L 136
6.3.1 Correlations of similarity notions 136
6.3.2 Regression and feature relevance. 138
6.3.3 Prediction and automatic selection of similar patients 138
6.3.4 Reconstructioncase L. 140
6.4 Discussiono a e e e e 142
6.5 Conclusion. Lo 145
References. L 147
Machine Learning for Automatic Phantom Construction 151
7.1 Introductiono 152
7.2 Materials & methods. oL L 153
721 Data. 153
7.2.2 Pipeline for automatic phantom construction. 155
7.23 Machinelearning.o oo 156
7.24 Anatomical inconsistency correction. L. 161
7.2.5 Comparing to phantom selection approaches. 161
7.2.6 Experimentalsetup. 163
73 Results. oL 163
7.3.1 Comparison of the machine learning algorithms 163
7.3.2 Machine learning vs. phantom selection approaches 164
7.3.3 Model interpretability oL 166
7.3.4 Examples of automatically constructed phantoms 167
7.4 Discussiono 168
75 Conclusion. 172
References L 174
Surrogate-free Machine Learning-based Organ Dose Reconstruction 179
81 Introduction 180
8.2 Materials & methods 181
8.2.1 Patientdata o 181
8.2.2 Automatic generation of artificial Wilms’ tumor plans 182
8.23 Generation of the datasetfor ML. 183
8.24 Machinelearning. L L oo 188

8.2.5 Independent evaluation on clinical plans. 193

X CONTENTS

83 Results. 194
83.1 Dose-volume metric data distribution 194

8.3.2 Validation on artificial planso 0oL 194

8.3.3 Independent validation on clinical plans 196

8.4 Discussion e e e e 197

85 Conclusion. 203
References. o 205

9 Concluding Discussion 209
9.1 Answers to the research questions 210
9.2 Ramifications, limitations, future work, and societal impact 214
9.2.1 General ramifications 214

9.2.2 Main limitations and future work directions 216

9.2.3 Implications for society 220
References. o 221
Acknowledgements 225
Curriculum Vitae 227
List of Publications 229

SIKS Dissertation Series 231

SUMMARY

Machine learning is impacting modern society at large, thanks to its increasing potential
to efficiently and effectively model complex and heterogeneous phenomena. While ma-
chine learning models can achieve very accurate predictions in many applications, they
are not infallible. In some cases, machine learning models can deliver unreasonable out-
comes. For example, deep neural networks for self-driving cars have been found to pro-
vide wrong steering directions based on the lighting conditions of street lanes (e.g., due
to cloudy weather). In other cases, models can capture and reflect unwanted biases that
were concealed in the training data. For example, deep neural networks used to predict
likely jobs and social status of people based on their pictures, were found to consistently
discriminate based on gender and ethnicity—-this was later attributed to human bias in the
labels of the training data.

The aforementioned issues typically concerned so-called black-box models, i.e., ma-
chine learning models which are too complex to be explained, such as, in fact, deep neural
networks. Consequently, scientists and policy makers have increasingly started to agree
that, for a responsible use of machine learning and Artificial Intelligence (Al), it is impor-
tant to be able to explain why a model behaves the way it does: to have explanations about
the reasoning of a model enables to track potential issues, and solve them. Therefore, al-
gorithms are needed that can help explain why a model behaves in a certain why, or that
can directly generate models that are human-interpretable.

Genetic Programming (GP) is a meta-heuristic that can be used to generate machine
learning models in the form of human-readable computer programs, i.e., sequences of
program instructions. GP algorithms work by stochastic search inspired by natural evo-
lution. A population of random programs is iteratively evolved by recombining instruc-
tions into new programs, and by survival of the fittest, i.e., discarding the worst perform-
ing programs in the population. The program instructions are typically human-written
and human-interpretable. This fact enables the possibility that the entire program is
human-interpretable as well. In an attempt to increase the chances of obtaining human-
interpretable programs, the work presented in this thesis is mostly focused on scenarios
where programs need to contain a limited number of instructions.

While there is promise in using GP to obtain interpretable machine learning models,
GP algorithms typically fall short in terms of efficiency when compared to many other
machine learning algorithms. A major cause of inefficiency can be attributed to how the
search steps are performed, i.e., the way program instructions are recombined, and what
mechanisms are in place to keep good programs and discard bad programs. In particu-
lar, the recombination of instructions into new programs is typically done randomly and
without any adaptive method to improve the effectiveness of recombination over time.

Recent research in GP has attempted to improve the speed and quality of the search.
Most successful methods to date, however, achieve improvements by (repeatedly) stacking
relatively large blocks of instructions. This leads to obtaining programs so large that any

Xi

Xii SUMMARY

chance of human-interpretability is ultimately lost. So, currently, a gap still exists: design-
ing competent search mechanisms for GP that focus on obtaining programs of restricted
size. This then immediately leads to the main goal of this thesis: improving GP by the
design and application of algorithms that perform more efficient and effective
search, particularly when the total number of instructions needs to be limited.

To reach our main goal, concepts of modern model-based evolutionary algorithms
called Optimal Mixing Evolutionary Algorithms (OMEAs) from discrete optimization are
brought to GP, and tested on benchmark and real-world problems. OMEAs are a type of
EAs that are of particular interest because in these EAs recombination is configured to
dynamically adapt based on information that emerges during the search, so as to improve
efficiency and effectiveness. More specifically, OMEAs attempt to learn, on-line, what
building blocks of solution components (in the case of programs: what instructions) belong
together and should be preserved during recombination. By identifying and recombining
building blocks, OMEAs can obtain knock-on effects in performance. This has already
enabled OMEAs in other domains than GP to quickly solve high-dimensional problems
that other EAs cannot solve in a reasonable time.

This thesis advances the state of knowledge about GP by presenting the following
major contributions:

1. A new GP algorithm is introduced called GP-GOMEA, which builds upon the Gene-
pool Optimal Mixing Evolutionary Algorithm (GOMEA) that was originally intro-
duced for discrete optimization. The search procedure in GP-GOMEA is dynam-
ically adapted by identifying what program instructions are interdependent and
potentially constitute building blocks, and by subsequently recombining building
blocks (Chapter 2).

2. Limitations of GP-GOMEA for supervised learning problems of non-trivial dimen-
sionality (specifically for symbolic regression) are presented and tackled by propos-
ing improvements that enable GP-GOMEA to also work well in these scenarios
(Chapter 3). We further show that another type of GP algorithm (using so-called
semantic backpropagation-based approximately geometric variation) does not scale to
realistic symbolic regression problems, and propose improvements that overcome
this (Chapter 4).

3. Beyond the use of GP-GOMEA to directly synthesize interpretable machine learn-
ing models, we consider the possibility to combine GP-GOMEA (and other GP algo-
rithms) with another machine learning algorithm. We study whether models that
different machine learning algorithms can generate can be made to have a higher
chance of being explainable without incurring a significant performance loss by
changing the feature space that the models are trained upon. In particular, we use
GP-GOMEA and other search algorithms to automatically construct few salient and
small features. We show that for several classification and regression problems and
machine learning algorithms, it is in fact possible to construct features that enable
achieving similar performance with the same machine learning algorithms. In some
cases, performance can even improve. Furthermore, because discovered features are
particularly small, they are themselves likely to be interpretable (we provide exam-
ples). Moreover, because we focus on finding particularly few (i.e., two) features,

SUMMARY xiii

it becomes possible to plot and visualize the predictions of the machine learning
model, and hence obtain a comprehensive and intuitive representation of its behav-
ior (Chapter 5).

4. We finally use GP-GOMEA to synthesize regression models in the form of readable
mathematical expressions for a problem of real-world interest. In particular, we
consider the estimation of radiation dose delivered to long-term childhood cancer
survivors who were subject to radiation therapy when no 3D anatomy imaging was
yet introduced in clinical practice. Obtaining 3D estimations (or related metrics) of
the dose to (subvolumes of) organs is important to be able to study how radiation
relates to adverse effects that appear decades after the treatment. Unfortunately,
3D dose estimations cannot be obtained in a straightforward manner because of the
lack of 3D anatomy imaging.

First, we study the feasibility of applying machine learning for the goal of estimat-
ing 3D anatomical metrics using scarce information available from patient records
and 2D radiographs (Chapter 6). Second, we develop a method capable of gener-
ating a surrogate 3D anatomy for a patient, given again scarce information. This
pipeline internally employs machine learning models to predict, using a database
of 3D organ segmentations and CT scans, how to assemble a personalized 3D sur-
rogate anatomy. GP-GOMEA is compared with other GP algorithms and machine
learning algorithms of a different nature, as well as with state-of-the-art heuris-
tics for surrogate anatomy construction. GP-GOMEA is found to deliver overall the
most accurate models, which are arguably likely to be interpretable for many peo-
ple (Chapter 7). Finally, alongside information on the patient, we propose to also
include information about the treatment plan to be used as input features. By doing
so, we show that it is possible to use GP-GOMEA to find models capable of directly
predicting 3D dose-volume metrics useful for the study of adverse effects, without
the need of using a surrogate anatomy (Chapter 8).

Essentially, this thesis shows that leveraging key principles of OMEAs can lead to more
efficient and effective discovery of GP programs. Moreover, OMEAs can find programs that
perform well while being particularly compact in terms of number of instructions. We
show that this is generally not the case for other state-of-the-art GP algorithms, and we
provide concrete results on real-world symbolic regression problems, including a clinical
application.

We conclude that OMEAs for GP can be considered to be an important method for the
automatic synthesis of small, and thus likely to be interpretable, machine learning mod-
els. Therefore, these algorithms have the potential to bring explainable machine learning
models into practice in many sensitive applications of societal interest.

SAMENVATTING

Machine learning heeft invloed op de moderne samenleving als geheel, dankzij de toene-
mende potentie om complexe en heterogene fenomenen efficiént en effectief te model-
leren. Hoewel machine learning-modellen in veel toepassingen zeer nauwkeurige voor-
spellingen kunnen doen, zijn ze niet onfeilbaar. In sommige gevallen kunnen machine
learning-modellen onwenselijke resultaten opleveren. Er is bijvoorbeeld vastgesteld dat
diepe neurale netwerken voor zelfrijdende auto’s tot verkeerde stuuracties kunnen lei-
den, afhankelijk van de lichtomstandigheden op de rijbaan (bijvoorbeeld vanwege bewolkt
weer). In andere gevallen kunnen modellen ongewenste vooroordelen vastleggen en weer-
spiegelen die in de trainingsgegevens waren verborgen. Bijvoorbeeld, diepe neurale net-
werken die werden gebruikt om te voorspellen wat waarschijnlijk de baan en sociale status
van mensen zijn op basis van hun foto’s, bleken consistent te discrimineren op basis van
geslacht en etniciteit - dit werd later toegeschreven aan menselijke vooringenomenheid
in de labels van de trainingsgegevens.

De bovengenoemde kwesties betroffen typisch zogenaamde black-box-modellen, die
te complex zijn om te worden verklaard, zoals in feite diepe neurale netwerken. Hierdoor
zijn wetenschappers en beleidsmakers het er in toenemende mate over eens geworden
dat het voor een verantwoord gebruik van machine learning en Artificial Intelligence (Al)
belangrijk is om te kunnen verklaren waarom een model zich op een bepaalde manier ge-
draagt: het kunnen geven van een verklaring van de redenering van een model maakt het
mogelijk potentiéle problemen op te sporen en op te lossen. Daarom zijn algoritmen nodig
die kunnen helpen verklaren waarom een model zich op een bepaalde manier gedraagt, of
die direct modellen kunnen genereren die door mensen kunnen worden geinterpreteerd.

Genetic Programming (GP) is een meta-heuristiek die kan worden gebruikt om ma-
chine learning-modellen te genereren in de vorm van door mensen leesbare computer-
programma’s, ofwel reeksen programma-instructies. GP-algoritmen werken door middel
van stochastisch zoeken, geinspireerd op natuurlijke evolutie. Een populatie van wille-
keurige programma’s wordt iteratief geévolueerd door instructies te combineren om zo
tot nieuwe programma’s te komen, en door het toepassen van het paradigma dat de sterk-
sen overleven, dat wil zeggen, het verwijderen van de slechtst presterende programma’s
in de populatie. De programma-instructies zijn meestal door mensen geschreven en door
mensen interpreteerbaar. Dit feit maakt het mogelijk dat het hele programma ook door
mensen interpreteerbaar is. In een poging tot het vergroten van de kansen op het ver-
krijgen van door mensen interpreteerbare programma’s, is het werk dat in dit proefschrift
wordt gepresenteerd voornamelijk gericht op scenario’s waarin programma’s een beperkt
aantal instructies moeten bevatten.

Hoewel het veelbelovend is om GP te gebruiken voor het verkrijgen van interpreteer-
bare modellen voor machine learning, schieten GP-algoritmen doorgaans tekort in termen
van efficiéntie in vergelijking met veel andere algoritmen voor machine learning. Een be-
langrijke oorzaak van die inefficiéntie kan worden toegeschreven aan de manier waarop

XV

Xvi SAMENVATTING

zoekstappen worden uitgevoerd, dat wil zeggen, de manier waarop programma-instructies
worden gecombineerd en welke mechanismen er zijn om goede programma’s te behouden
en slechte programma’s te verwijderen. In het bijzonder wordt de constructie van nieuwe
programma’s middels recombinatie van instructies in bestaande programma’s typisch wil-
lekeurig gedaan en zonder enige adaptieve methode om de effectiviteit van recombinatie
te verbeteren.

In recent onderzoek op het gebied van GP is geprobeerd de snelheid en kwaliteit van
het zoekprocess te verbeteren. In de meest succesvolle methoden tot nu toe wordt dit be-
reikt door (herhaaldelijk) relatief grote instructies aan elkaar te knopen. Dit leidt tot pro-
gramma’s die zo groot zijn dat elke kans op menselijke interpreteerbaarheid uiteindelijk
verloren gaat. Momenteel bestaat er dus nog steeds een kloof: het ontwerpen van compe-
tente zoekmechanismen voor GP die gericht zijn op het verkrijgen van programma’s van
beperkte omvang. Dit leidt meteen tot het hoofddoel van dit proefschrift: GP verbeteren
door het ontwerp en de toepassing van algoritmen die efficiénter en effectiever
zoeken, met name wanneer het totale aantal instructies moet worden beperkt.

Om ons hoofddoel te bereiken, worden concepten van moderne modelgebaseerde evo-
lutionaire algoritmen genaamd Optimal Mixing Evolutionary Algorithms (OMEA’s) uit dis-
crete optimalisatie naar GP gebracht en getest op benchmark- en praktijkproblemen.
OMEA’s zijn een type EA’s die in het bijzonder van belang zijn omdat in deze EA’s re-
combinatie is geconfigureerd om zich dynamisch aan te passen op basis van informatie
die tijdens het zoeken naar voren komt, gericht op het verbeteren van de efficiéntie en ef-
fectiviteit. Meer specifiek proberen OMEA’s tijdens het zoekprocess te leren welke bouw-
stenen in de vorm van meendere oplossingscomponenten (in het geval van programma’s:
welke instructies) bij elkaar horen en bewaard moeten blijven tijdens recombinatie. Het
identificeren en combineren van bouwstenen vindt zijn doorslag in OMEA’s in de vorm
van verhoodge efficiéntie. Dit heeft OMEA’s voor andere domeinen dan GP reeds in staat
gesteld om hoog-dimensionale problemen snel op te lossen die andere EA’s niet binnen
een redelijke tijd kunnen oplossen.

Dit proefschrift bevordert de kennis op het gebied van GP door de volgende belangrijke
bijdragen te presenteren:

1. Er wordt een nieuw GP-algoritme geintroduceerd met de naam GP-GOMEA, dat
voortbouwt op het Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) dat
oorspronkelijk werd geintroduceerd voor discrete optimalisatie. De zoekprocedure
in GP-GOMEA wordt dynamisch aangepast door te identificeren welke programma-
instructies van elkaar afhankelijk zijn en mogelijk bouwstenen vormen, en door
vervolgens bouwstenen te combineren (Hoofdstuk 2).

2. Beperkingen van GP-GOMEA voor gesuperviseerde leerproblemen van niet-triviale
dimensionaliteit (specifiek voor symbolische regressie) worden gepresenteerd en
aangepakt door verbeteringen voor te stellen waardoor GP-GOMEA ook goed kan
werken in deze scenario’s (Hoofdstuk 3). We laten verder zien dat een ander type
GP-algoritme (met behulp van zogenaamde semantic backpropagation-based approxi-
mately geometric variation) niet schaalt naar realistische symbolische regressiepro-
blemen en stellen verbeteringen voor die dit oplossen (Hoofdstuk 4).

SAMENVATTING xvii

3. Naast het gebruik van GP-GOMEA om interpreteerbare machine learning-modellen
rechtstreeks te synthetiseren, bekijken we de mogelijkheid om GP-GOMEA (en an-
dere GP-algoritmen) te combineren met een ander machine learning-algoritme. We
onderzoeken of modellen die door verschillende machine learning-algoritmen kun-
nen worden gegenereerd, een grotere kans hebben om verklaard te worden zonder
een aanzienlijk prestatieverlies op te lopen door de kenmerkenruimte (feature space)
waarop de modellen zijn getraind te wijzigen. In het bijzonder gebruiken we GP-
GOMEA en andere zoekalgoritmen om automatisch enkele opvallende en kleine
kenmerken te bouwen. We laten zien dat het voor verschillende classificatie- en
regressieproblemen en machine learning-algoritmen in feite mogelijk is om kenmer-
ken te bouwen die vergelijkbare prestaties met dezelfde machine learning-algoritmen
mogelijk maken. In sommige gevallen kunnen de prestaties zelfs verbeteren. Omdat
ontdekte kenmerken bijzonder klein zijn, zijn ze zelf waarschijnlijk interpreteerbaar
(we geven voorbeelden). Omdat we ons richten op het vinden van bijzonder weinig
(bijvoorbeeld twee) kenmerken, maken ze het bovendien mogelijk om de voorspel-
lingen van het machine learning-model in kaart te brengen en te visualiseren, en dus
een uitgebreide en intuitieve weergave van zijn gedrag te verkrijgen (Hoofdstuk 5).

4. Tenslotte gebruiken we GP-GOMEA om regressiemodellen te synthetiseren in de
vorm van leesbare wiskundige uitdrukkingen voor een probleem van maatschap-
pelijk belang. In het bijzonder beschouwen we de schatting van de stralingsdosis
langdurig overlevenden van kinder kanker werden bloot gesteld vanwege een be-
handeling met radiotherapie toen er nog geen 3D-anatomische beeldvorming was
geintroduceerd in de klinische praktijk. Het verkrijgen van 3D-schattingen (of ge-
relateerde meetwaarden) van de dosis aan (subvolumes) van organen is belangrijk
om te kunnen bestuderen hoe straling verband houdt met nadelige effecten die tien-
tallen jaren na de behandeling optreden. Helaas kunnen schattingen van 3D-doses
niet op een eenvoudige manier worden verkregen vanwege het ontbreken van 3D-
beeldvorming van de anatomie.

Eerst bestuderen we de haalbaarheid van het toepassen van machine learning met
als doel het schatten van 3D-anatomische metrieken met behulp van schaarse in-
formatie die beschikbaar is uit patiéntendossiers en 2D-rontgenfoto’s (Hoofdstuk 6).
Dan ontwikkelen we een methode die in staat is om een surrogaat 3D-anatomie voor
een patiént te genereren, opnieuw gegeven schaarse informatie. De bijkehorende
pijplijn maakt intern gebruik van machine learning-modellen om met behulp van
een database van 3D-orgaansegmentaties en CT-scans te voorspellen hoe een geper-
sonaliseerde 3D-surrogaatanatomie wordt samengesteld. GP-GOMEA wordt verge-
leken met andere GP-algoritmen en machine learning-algoritmen van een andere
aard, evenals met state-of-the-art heuristieken voor surrogaatanatomieconstructie.
GP-GOMEA blijkt over het algemeen de meest nauwkeurige modellen te leveren,
die waarschijnlijk voor veel mensen interpreteerbaar zijn (Hoofdstuk 7). Ten slotte
stellen we voor om naast informatie over de patiént ook informatie over het behan-
delplan op te nemen ter gebruik als kenmerken. Door dit te doen, laten we zien dat
het mogelijk is om GP-GOMEA te gebruiken om modellen te vinden die in staat zijn
om 3D-dosisvolumemetingen, die nuttig zijn voor de studie van nodelige effecten,

xviii SAMENVATTING

zonder de noodzaak om een surrogaatanatomie te gebruiken, direct te voorspellen
(Hoofdstuk 8).

Dit proefschrift laat in essentie zien dat het gebruik van sleutelprincipes onderliggend
aan OMEA’s kan leiden tot een efficiéntere en effectievere ontdekking van GP-programma’s.
Bovendien kunnen OMEA’s programma’s vinden die goed presteren en toch bijzonder
compact zijn in termen van aantal instructies. We laten zien dat dit over het algemeen
niet het geval is voor andere state-of-the-art GP-algoritmen, en we bieden concrete re-
sultaten voor symbolische regressieproblemen uit de praktijk, waaronder een klinische
toepassing.

We concluderen dat OMEA’s voor GP kunnen worden beschouwd als een belangrijke
methode voor de automatische synthese van kleine, en dus waarschijnlijk interpreteer-
bare, machine learning-modellen. Daarom hebben deze algoritmen de potentie om ver-
klaarbare modellen voor machine learning in de praktijk te brengen in gevoelige toepas-
singen die van maatschappelijk belang zijn.

INTRODUCTION

Machine learning is changing the world. Its applications range from commodities to improve
one’s comfort and entertainment, to crucial decision support for healthcare and finance. This
thesis regards a particular form of machine learning: Genetic Programming (GP). GP is in-
teresting because it has the possibility to create human-understandable machine learning
models. Enabling human understanding is important to gain new knowledge as well as to
prevent undesirable consequences. However, GP is computationally expensive. This chapter
introduces the main goal of this thesis: improving the efficiency and effectiveness of GP. Firstly,
an introduction to the need for explanations in machine learning, and for more efficient and
effective GP algorithms, is presented (Sec. 1.1). Next, a learning task that mostly recurs in this
thesis is provided, i.e., symbolic regression (Sec. 1.2). The workings of classic GP are then de-
scribed, together with an example of its application for a simple symbolic regression problem
(Sec. 1.3). Reasons are given as to why GP can be considered computationally expensive, and
a key aspect of GP that could be improved to overcome this limitation is presented: variation,
i.e., the way GP takes search steps in the space of programs (Sec. 1.4). In the same section a
small review on the state-of-the-art with respect to variation in GP is given, along with re-
spective limitations, which motivate the research described in this thesis. Finally, the research
questions that constitute the stepping stones of this thesis are presented (Sec. 1.5). Of these,
the first half concerns the design of a new GP algorithm, and its tailorization to deal with
symbolic regression problems; the second half concerns the application of such algorithms, to
shed light on otherwise unintelligible machine learning models, as well as to find transparent
machine learning models for a clinical application.

2 1. INTRODUCTION

1.1. MACHINE LEARNING AND THE NEED FOR EXPLANATIONS

ACHINE learning is a broad term that stands for the study and application of algo-
M rithms that can infer, or “learn”, how to perform a task automatically, in contrast to
be explicitly programmed for it [1]. As such, machine learning has revolutionized the way
humans can tackle the modeling of complex phenomena. Until a few decades ago, people
interested in modeling a phenomenon could only rely on their ingenuity, and would first
need to understand the phenomenon in depth. Now, in many situations, this is no longer
necessary: powerful algorithms can automatically detect subtle, non-linear patterns from
data, and infer accurate models for us [2].

Modern machine learning has been found to be competitive with, or even superior
to, human performance in many applications. Examples range from medical applications
(detection of skin cancer [3], detection of Parkinson’s dyskinesia [4]) to natural language
processing (text generation [5], synthesis of regular expressions [6]), from software and
electrical engineering (Android apps crash correction [7], large circuit synthesis [8]) to
gaming (mastering the game of Go [9], playing Atari games [10]).

Due to its appeal and practical usefulness, machine learning is pervading society rapidly
and vastly, and affects the daily life of virtually everyone in the civilized world. Popular
hand held devices such as smartphones and smartwatches are coming with all sort of ma-
chine learning-based enhancements, such as vocal assistants, face recognition, and camera
super resolution'. What content and what advertisements are proposed on social media
are tailored automatically by machine learning-based profiling [11]. The transportation
industry is investing in machine learning to shape what the transportation of goods and
people will look like in the future [12, 13]. Machine learning models are also becoming
more popular in finance, health care, and even criminal justice, to suggest, respectively,
what people are reliable for loan granting, what particular treatment should be adminis-
tered to whom, and who is likely to have committed a crime [14-16].

Modeling enabled by machine learning is thus having considerable societal impact.
However, not all of this impact is necessarily positive. In recent years, scientists, prac-
titioners, and policy makers alike, are becoming increasingly concerned about possible
misuses of this powerful technology [14, 17-19]. For example, in social profiling, models
trained upon biased data that discriminate against particular groups of people may reflect
these discriminations in their predictions, and accentuate the problem [20, 21]. Similarly,
in health care, models that are not sufficiently comprehensive because they were trained
on a small sample, or on outdated information, may provide suggestions that could end
up being harmful for patients [22]. Because of these sorts of concerns, there is a wide
agreement that it is important that automatic decision support systems, many of which
increasingly adopt machine learning models, provide explanations of how and why they
reach particular outcomes. In other words, there is a growing need to enable human-
interpretability when dealing with processes that rely upon machine learning [23].

Ideally, one could acquire explanations of the predictions of a machine learning model
by inspecting the model itself, and by following the logic wired into it [24]. However, ma-
chine learning models can be very complex, to the point of becoming unintelligible, and
receiving the appellation “black boxes” [15, 24]. Very popular machine learning models

'https://www.techradar.com/news/what-does-ai-in-a-phone-really-mean

1.1. MACHINE LEARNING AND THE NEED FOR EXPLANATIONS 3

such as ensembles of decisions trees [25, 26] and neural networks [27] are typically con-
sidered to be such black boxes [15, 22]. The former typically builds (at least) hundreds of
decision trees which, if taken singularly, could in principle be interpreted. Yet, due to the
sheer number of these trees, it is essentially impossible to understand the joint effect of the
ensemble. Classic neural networks such as multi-layer perceptrons as well as modern con-
volutional networks for image recognition normally use a very small number of non-linear
function types, or even a single one (e.g., the rectified linear unit [28]). These functions
are instanced in multiple network nodes, which in turn are arranged into layers that are
densely connected to each other by weighted edges. The number of weighted edges can
range from thousands to billions, making it impossible for a human to understand how
the computations that are performed, relate to outcomes.

While the flexibility of neural networks comes from using a massive number of weights
in conjunction with a few types of non-linear functions, it can be imagined that the num-
ber of weights can be reduced if more types of functions are adopted (linear and non-
linear). In other words, model flexibility might arise from being able to instantiate a wide
range of function compositions. For example, if summation, multiplication, division, and
constant scalars are provided, an outcome of such a procedure could be a Taylor approxi-
mation [29]. Such models can be very interesting with respect to the need for explainable
machine learning. In fact, if the functions to be composed are human-interpretable, and
the compositions are not excessively involved, then the entire model may well be inter-
pretable. In this light, Genetic Programming (GP) represents an interesting class of algo-
rithms, because it precisely operates by automating the composition of human-provided
functions [30, 31].

Since its popularization in the early ’90s, GP has been proven to be a competitive ap-
proach to other machine learning algorithms [32], and has led to several creative, and
sometimes unexpected, outcomes: many human-competitive results have been obtained
by GP so far? [33]. Moreover, GP has been found to be capable of delivering human-
interpretable programs [29, 34], and contemporary surveys on explainable machine learn-
ing list GP among the types of algorithm that can shed light on machine learning processes,
by either inferring understandable models directly, or by approximating and explaining
black box models [15, 24].

The potential of GP to search and discover understandable machine learning mod-
els comes, however, with a notable drawback: finding the best instruction (or function)
composition is a non-convex optimization problem with many symmetries and a priori
unspecified dimensionality, which often requires a large amount of computation effort to
achieve results on par with other popular machine learning algorithms (see Sec. 1.4). For
this reason, the main goal of this thesis is to explore the design of GP algorithms that
search for programs (or machine learning models) in a more efficient and effective man-
ner. Since having a small number of instructions can be considered a necessary condition
to improve the chance of human-interpretability, focus is put on restraining the number
of instructions to compose GP programs with. Furthermore, in this thesis the application
of the designed GP algorithms is explored in two ways. First, the capability of GP to work
in synergy with other machine learning algorithms is studied, in an attempt to obtain
more explainable models from those machine learning algorithms. Second, the designed

2http://www.human-competitive.org

4 1. INTRODUCTION

GP algorithms are used for a real-world clinical problem concerning radiation dose recon-
struction for childhood cancer survivors. The aim is to obtain machine learning models
that perform well and that, if desired, can be inspected to understand more about their
behavior.

1.2. SYMBOLIC REGRESSION

YMBOLIC regression is a fundamental machine learning problem that recurs in this the-
S sis. Symbolic regression benchmark problems are considered in contributions related
to the design of a new GP algorithm, and tasks concerning the clinical application will
be cast to symbolic regression problems. Before delving into what symbolic means in this
context, a short introduction to traditional regression follows.

1.2.1. TRADITIONAL REGRESSION

Regression is the problem of identifying relationships between variables, i.e., how one (or
more) variable can be expressed as a function of one (or more) other variable. We consider
the case where one variable can be expressed in terms of several other variables. Let y
be a variable that is believed to depend on some other m variables W 2@ glm),
Each 1) (j = 1,...,m) is called an independent variable, or feature, and y is called the
dependent variable, or target. In regression, data is available in the form of n samples of

features and of the target: {(x;,y;)}}_;, where x; = {xz(-l), e ,x,gm)} € R™, andy; € R.

Let f be a function form that is desired to be used to capture the underlying relation-
ship between x and y (e.g., linear, quadratic, logarithmic). The function f is defined in
terms of a collection of k free parameters § € R*. Regression concerns finding the op-
timal collection of parameter values 6*, such that the approximation y ~ f(x,0*) is as
good as possible.

To evaluate the quality of candidate parameter values 6, a loss function (or cost func-
tion) £ is employed that measures the distance between y and f(x, 0), e.g.:

LO) = -3 i fxi) 1
=1

Typical values of p are 1 and 2, with the latter choice penalizing larger errors more than
the former. Formally, £ depends on the data x;, y;, and the chosen f as well as on . Here
we consider only 6 to be an argument of £ to highlight the fact that only 6 is subject to
optimization (while the other variables are fixed).

Since the number of observations n can be relatively small with respect to the com-
plexity of the chosen f, finding the true minimum of a loss function may not be the best
choice. A particular phenomenon to be aware of is overfitting, i.e., the possibility that the
inferred f(x, 6) nicely fits the original n observations, but will not fit well new observa-
tions, that come from the same source distribution of the first n. To detect and combat
overfitting, appropriate validation (e.g., assessing the loss on data that was held-out dur-
ing optimization) and regularization (e.g., using the L1 norm of the weights and/or using
early stopping) may be needed [1].

1.3. CLASSIC GENETIC PROGRAMMING 5

1.2.2. FROM TRADITIONAL TO SYMBOLIC REGRESSION
Hypotheses regarding the appropriate form of f to use for a particular application can
be hard to make. For example, prior knowledge on the relationship between features and
the target may not be available, or hard to infer due to, e.g., having too many features
(i.e., dimensions) to allow direct plotting and visualization of the data [30, 35]. Symbolic
regression aims at tackling this issue, by attempting to recover the entirety of f at once
(and not only a collection of some real-valued parameters 6) [30]. In other words, symbolic
regression entails finding the optimal f* in a (sub)space of functions §. A loss function
for symbolic regression can be formulated as:
1 n
L= > lyi —). (1.2)
i=1

In this formulation, f is subject to optimization in its entirety. A collection of parameters
0 is not explicitly stated because these parameters are part of f, i.e., we consider two
functions that differ in some scalar coefficients to be different functions from §.

Symbolic regression algorithms attempt to discover the entire formula from scratch,
starting from pre-defined functions (including constant functions, potentially initialized
at random) called primitives, that are provided by the user. These algorithms combine the
primitives and optimize 6 to form candidate functions f, which are evaluated according
to a loss similar to Equation 1.2. It is clear that the search space of symbolic regression is
necessarily larger than the one of traditional regression. Similar to traditional regression,
ways to detect and prevent overfitting need to be applied as well.

Although different types of symbolic regression algorithms exist (e.g., [29, 36, 37]), the
most common algorithms are forms of GP [32]. In the following section, the main charac-
teristics of classic GP are described, in particular to tackle symbolic regression problems.

1.3. CLASSIC GENETIC PROGRAMMING

P is a popular metaheuristic for the automatic synthesis of programs (or, equivalently,
G computable functions), typically from examples of desired behavior [30, 31]. Once the
set of primitives and a loss function, in GP called the fitness function, have been defined,
GP synthesizes programs by loosely mimicking the concept of Darwinian evolution, i.e.,
by iterative selection and variation of a population of programs [31]. Selection represents
survival of the fittest, to promote the proliferation of promising programs. Next, in the
variation phase, offspring programs are created by changing the order, position, and type
of parent programs’ instructions. These iterations of selection and variation are called
generations. Figure 1.1 shows a typical evolution scheme for GP.

Different types of GP algorithms exist, where the way programs are represented is spe-
cific to that algorithm. In this thesis, the classic and most popular type of representation is
considered: the tree-based encoding [31]. To illustrate how this representation works, let
us assume to need a program that encodes Newton’s well-known law of gravitation [38]:
myima

rz ’

F=G (1.3)

where F' is the force of gravity, G is the gravitational constant, m, and my are the masses
of two bodies, and r is the distance between them. An example of a possible tree-based

6 1. INTRODUCTION

Generation

Variation

Evaluation & selection

Offspring

Evaluation & selection

’ Initial population

Figure 1.1: High-level illustration of typical workings of GP. First, an initial population of
programs is sampled at random. The fitness of each program is evaluated, and the pro-
grams that are currently most successful are selected with larger probability to enter the
pool of parent programs. An offspring population is created by variation (i.e., recombi-
nation and mutation of the parent pool). A generation is composed of fitness evaluation,
selection, and variation. Generations are repeated until a termination criterion is met, and
the best program found is ultimately returned.

Figure 1.2: Example of a tree encoding a program that computes the law of gravitation.

encoding that represents a program that computes Equation 1.3 is shown in Figure 1.2. In
the example, primitive instructions used to compose the tree are multiplication (x) and
division (=), as are the interacting variables (G, m1, ma,).

To ground the explanation on the workings of classic GP to a familiar example, the
recovery of the aforementioned law of gravitation from data of F),my,my and r is con-
sidered (the constant value of G needs to be found in R), which is a symbolic regression
problem. In this setting, for GP to find a program that explains how F is related to the
other variables, means to find a function f : R? — R (three features are considered: m,
mo, and T).

To run a GP algorithm, firstly a set of primitives needs to be defined. The primitives will
be composed to form programs. In tree-based GP, programs are represented with trees,
and the nodes of the trees implement the primitives. In general, to facilitate the discovery
of a well-performing program, any instruction (function) that is suspected to be part of
the phenomenon should be included among the primitives. For example, consider the
case where measurements of a complex and unintelligible circuit are taken and collected
as data, and a model is sought that approximates the behavior of the original circuit. If sub-

1.3. CLASSIC GENETIC PROGRAMMING 7

circuits are known to be part of the total circuit, and these sub-circuits are known, then
instructions that model such sub-circuits should be included as primitives. However, even
in scenarios where no such information is available, GP can still perform competitively to
black-box machine learning algorithms by adopting rather generic primitives [32].

For a typical symbolic regression task, two types of primitives can be identified in GP:
primitives that require inputs, and primitives that do not. Commonly, the set containing
the first type of primitives is called function set, while the set containing the second type
of primitives is called terminal set. The function set F for a symbolic regression problem
typically comprises linear and non-linear functions, e.g., ¥ = {+(-,-), —(-,*), x(-,-),
+(+,-), exp(-)}. The terminal set 7 typically contains identity functions for each feature
() as well as constants, eg, T = {:c(l), o xm 1.0, 1.0, 7}. Primitives from the
function set constitute non-leaf nodes of the trees, while primitives from the terminal set
constitute leaf nodes (see Fig. 1.2).

Once the primitives have been chosen, the initial population of candidate programs
must be sampled (see Fig. 1.1). This population is typically initialized randomly, i.e., by
generating random trees. Several methods exists to achieve this [31]. For example, the
Grow method is illustrated in Algorithm 1.1, that returns a random tree of a height that is
limited by a user-specified parameter, given the function set and the terminal set.

Algorithm 1.1 Pseudo-code for the creation of a random GP tree.
Input: H: max. height; h: current height (initially 0); F: function set; 7 terminal set.
Output: Root node N.

1 function SAMPLERANDOMTREE(H, h, F, T)

2 if h = H then

3 N < SampleNodeFrom(7)

4 else

5 N <+ SampleNodeFrom(F U T)

6 for i € GetNumberOfExpectedInputs(N') do
7

8

9

C' + SampleRandomTree(H,h + 1, F,T)
AppendChildToParentNode(C, N)

return N

Once the initial population is sampled, the fitness of each program will be evaluated.
In symbolic regression, the fitness is typically computed using Equation 1.2, with p = 1
(mean absolute error) or p = 2 (mean squared error). To obtain f(x;), i.e., the scalar
output of the program for the i-th data sample, the program must be executed with respect
to the input x;. The execution of the program in tree-based encoding works as follows.
The output is initially requested at the level of the root of the tree. Now, if the root is a
terminal node, i.e., it has no inputs, it can immediately return. If the terminal represents
the j-th feature, then the output is the scalar acl(-J). If the terminal represents a constant,
then the output is that constant. Instead, if the root represents a function (e.g., +), then
the root will request the output of its child nodes, and apply the function it represents on
those outputs (e.g., will sum them). The same procedure holds for the child nodes, in a
recursive fashion. Eventually, since leaves are terminal nodes, this recursion terminates,
and the output of intermediate nodes flows from the bottom to the top of the tree.

8 1. INTRODUCTION

After the fitness of each program has been computed, more fit programs are selected
with larger probability, to become the parents that will breed the offspring population
(see Fig. 1.1). Selection is normally performed based on fitness ranks, and the most popu-
lar method is called tournament selection [31]. Tournament selection works by randomly
picking s (a parameter called tournament size) programs from the population (with re-
placement), and selecting the most fit one. This is typically repeated until the size of the
selection is the same as the size of the population.

Next is the creation of offspring programs using the pool of parents. This is achieved
by the use of variation operators. Two classic and still very popular variation operators
in tree-based GP are subtree crossover and subtree mutation [31]. The hypothesis mo-
tivating subtree crossover is that fit parent programs (trees) contain important program
subroutines (subtrees), therefore it is reasonable to attempt to obtain better offspring by
recombination of these subroutines. Subtree crossover works as follows (see Fig. 1.3): two
nodes in the parent trees are picked (uniformly at random or using some heuristic [30, 39]),
after which two offspring programs are created by swapping the subtree rooted in those
nodes. Subtree mutation works similarly to subtree crossover, with the difference that a
random change is enforced, e.g., to perform an explorative step in the search space. A
mutated offspring is made by replacing a randomly picked subtree with a new subtree,
that is generated entirely at random (e.g., using Alg. 1.1).

Normally, a number of offspring programs equal to the population size is generated,
and the offspring population is then used as a basis for the next generation. Generations
are repeated until a satisfactory result is obtained (e.g., by imposing a fitness to reach), or

a budget is exhausted (e.g., generation limit, time limit).

Parent 1 Parent 2

Subtree crossover

Child 1 Child 2

Cos

Figure 1.3: Illustration of subtree crossover. Fx and Tl represent generic function and
terminal nodes. Highlighted nodes are the roots of the subtrees that are swapped.

1.4. FROM CLASSIC TO MODERN GENETIC PROGRAMMING AND BEYOND BY DE-RANDOMIZING
VARIATION 9

1.3.1. AN EXAMPLE OF A GP RUN TO RECOVER NEWTON’S LAW

As an illustrative example, we consider the task of regressing the right-hand side of the
gravitation law, i.e., how F' is determined in Equation 1.3. A dataset is generated by sam-
pling n = 1000 observations, with a fictitious gravitational constant G = 6.674 (the
scaling by 10~ ! is ignored to avoid numerical instability problems), and masses and radii
sampled between 1 and 102 by 102** with u uniformly distributed between 0 and 1. To
simulate the presence of noise in the measurements, a normal error ¢ ~ A (0,1) term is
added to the right-hand side of the equation when generating the observations.

A GP using the scheme of Figure 1.1 is considered, with rather standard parameters.
The population size is set to 500, and the trees are generated using Algorithm 1.1. The
fitness is computed using the mean squared error (Eq. 1.2 with p = 2), and selection is
performed with tournaments of size 4. The function set contains {+, —, x, +, exp, lag}.
Tilde operators include protections against numerical errors: +(a, b) := sign(b) x \blﬁ;
log(a) := log(|a| + k). Here, s = 1072 is used. The terminal set contains the three
variables at play, i.e., m1, ma,r, as well as an Ephemeral Random Constant (ERC) [31].
ERC terminals have no specific value until a respective node is instantiated (e.g., sampled
from the terminal set to be part of a tree in Alg. 1.1). The value is set to a scalar sampled
randomly from a certain distribution. Here, the value is sampled uniformly at random
between 0 and 10 with up to one decimal. Evolution is performed for a total of 25 genera-
tions. Trees with more than 15 nodes are discarded to avoid producing overly long, hard
to read, programs. Assuming that the nature of the gravitational force F' is unknown,
consistency of operations with respect to units of measurements is not enforced.

Figure 1.4 shows, for a particular run, the fitness of the best program found at each
generation, along with the number of nodes composing its tree, and some examples of the
mathematical expression it represents. Over time, very different programs are found, of
different size and involving different functions. In the last generation, a well-performing
program is found of which its expression closely resembles the true law of gravitation
(Eq. 1.3), apart from the constant G being imprecise. Notably, the program expression fits
the data decently, it is extremely easy to read, and it is possible to interpret the program.

1.4. FROM CLASSIC TO MODERN GENETIC PROGRAMMING AND BE-

YOND BY DE-RANDOMIZING VARIATION

OMPARED to other machine learning algorithms, perhaps the main disadvantage of GP
C is its computational expensiveness. For example in regression, to apply ordinary least
squares to determine the coefficient of a linear model, the cost is O(m?n) with m being
the number of features/variables, and n the number of observations. To build a decision
tree, O(mnlogn) operations are required [25]. Further computation times for popular
supervised machine learning algorithms are reported at: https://bit.1ly/2PGoxse.

In GP, it is not straightforward to define an overall computation cost. How difficult
it is to obtain programs with satisfactory performance largely depends on the problem to
be solved, on the choice of primitives, and on the quality of the variation and selection
methods. If it is assumed that a population size P and a number of generations G can lead
to satisfactory results (for a given problem, set of primitives, and variation and selection
methods), then the cost of GP will be O(PG'mn). The mn term is a crude estimation of

https://bit.ly/2PG0xse

10 1. INTRODUCTION

(exp(my —my) X (Mg + (my X my))) =7

A

3000000 1) L 12
my X ((mQ%I.S) ;log(r))
2500000 1 "
2000000 ((4.7x mg) x mq) +r .
i g
£ 1500000 ;:
ic I 3
1000000 | (7.1 x ((mq x ma) 1)) +r
500000 U -8
° L7

12345678 910111213141516171819202122232425
Generation
Figure 1.4: Fitness, number of nodes, and mathematical expression associated with the
best program found by GP along 25 generations.

the cost of evaluating the fitness of programs with some sort of decent performance. To
be more specific, to get the output of a program and calculate its fitness, each instruction
needs to be evaluated on the n observations, and it is reasonable to expect fit programs
to have a number of instructions that depends on the number of features m. Because the
mn term in O(PGmn) is essentially fixed by the task, it is PG that should be minimized
to improve the efficiency of GP. In other words, we want to achieve more (quality of final
programs) with less (evolutionary budget). The problem at hand is given, and the choice
of primitives is usually dictated by knowledge of the problem. To minimize PG, one can
thus attempt to improve the effectiveness of variation and selection.

Key to the success and efficiency of an evolutionary algorithm in general is the use
of competent variation. It has long been known that evolutionary algorithms perform
well when variation is capable of combining the right solution components sufficiently
fast, i.e., before the population is taken over by more fit, yet sub-optimal, solutions made
of sub-optimal components [40, 41]. As for any other evolutionary algorithm, this very
much holds for GP as well, and how to improve variation is one of the most important
open questions in the field.

Classic variation operators do not attempt to harness any sort of information to en-
hance their chances of leading to better programs. Rather, they typically act completely
at random. For this reason, they are oftentimes referred to as “blind”. The vast majority of
variation operators employed in different forms of GP is blind. In classic tree-based GP, as
explained before, subtree crossover swaps two random subtrees between two respective
solutions (Fig. 1.3). Subtree mutation swaps a random subtree with a random new subtree.
One-point mutation modifies random nodes with other random nodes [31]. Cartesian GP
represents programs with directed graphs, and mutates node connections [42], at random.
Push GP is often used to handle strongly-typed programs [43], and grammatical evolu-
tion can enforce very particular constraints on the interactions of program instructions,

1.4. FROM CLASSIC TO MODERN GENETIC PROGRAMMING AND BEYOND BY DE-RANDOMIZING
VARIATION 11

by encoding programs with fixed-length binary solutions that are interpreted according
to a grammar [44]. In both cases, the typical variation operators applied remain highly
stochastic, and do not attempt to harness and exploit information that depends on the
problem, or that may emerge while the search progresses.

The goal of this thesis is therefore to design (and apply) a novel GP algorithm which pro-
vides a more principled way of performing variation to reduce the amount of computational
effort required to obtain accurate programs. Furthermore, as will be described below, for
learning tasks such as symbolic regression, the research panorama of GP lacks suitable
methods to efficiently evolve programs in scenarios where a small number of program
instructions is desired, to enhance the chance of obtaining human-interpretable models.
Clearly, obtaining small programs is not a sufficient condition for interpretability, but it
can often be considered a necessary one. The positive aspects as well as the limitations of
state-of-the-art contributions to variation in GP are described in more detail next.

1.4.1. EARLY STUDIES ON BIASING VARIATION AND MORE RECENT ONES ON
GEOMETRIC SEMANTIC VARIATION

The first works on improving variation in GP mostly focused on studying the effect of
different biases in the recombination and mutation of subtrees. To name a few examples,
in one of the seminal works in GP [30], it is recommended to select nodes for subtree
crossover and subtree mutation with larger probability if they are functions rather than
terminals (90% and 10% respectively) to limit bloat, i.e., excessive growth of the number of
program instructions with limited effect on the fitness. For subtree crossover, the intro-
duction of biases related to the positions of the subtrees to swap as well as on the size of
the subtrees have also been explored [45, 46]. Essentially, early works on variation in GP
focused on biasing variation at the level of program syntax, i.e., how the programs look,
e.g., in terms of node types, subtree position, and subtree size for tree-based GP.

The last decade has seen the rise of studies on so-called geometric semantic variation
operators. At the Genetic and Evolutionary Computation COnference (GECCO), the pre-
miere conference on evolutionary computation, papers on geometric semantic variation
in GP were nominated for, or won the best paper award, in 2013 [47], 2015 [48], 2016 [49],
2017 [50], and 2018 [51]. Thanks to works such as [52], many researchers came to the real-
ization that looking beyond syntax is crucial to improve variation in GP. In fact, program
modifications that can be considered small in terms of program syntax are not guaranteed
to lead to changes that can be considered small in terms of program output [53]. For ex-
ample, picture an arbitrary tree of which the nodes implement Boolean logic gates such
as AND, OR, and NOT, and ID (the identity function). From a syntactic perspective, changing
the value of a few nodes can be considered a “small” modification. Yet, if the node to be
changed is the root, and the change swaps ID with NOT, then, for any set of inputs, the
output of the program will be the opposite of the one before the change.

For the aforementioned reason, geometric semantic variation focuses on the effect
variation will produce at the level of the program semantic, i.e., what the programs do
in terms of the outputs they produce when executed [54-56]. For a task such as sym-
bolic regression, where n samples are given, the program output (or semantic) is the
n-dimensional vector of transformations the program performs upon the input samples
{x;}1_,. The term geometric comes from the fact that geometric semantic variation at-

12 1. INTRODUCTION

tempts to ensure that the output of an offspring program is geometrically close to the
output of its parent programs, according to a metric defined in the space of the outputs.
For example, this may mean that the output of an offspring program will be placed on the
hyper-plane that passes through the points represented by the outputs of the parent pro-
grams, or within the hyper-cube that has the outputs of the parent programs as opposing
vertices [52]. Generally, any variation operator that establishes (or attempts to establish)
some sort of geometric relationship between a parent output and any other set of outputs
(e.g., the target variable y can be considered [57]), is called a geometric semantic variation
operator [39, 58].

Geometric semantic variation is a meaningful approach in terms of effective and ef-
ficient search because to control how search is directed in the space of program outputs
means to directly control the program quality, since in many tasks the output of a program
directly determines its fitness. In machine learning problems such as symbolic regression,
this property is especially interesting because the loss (fitness) function is often convex
(e.g., Eq. 1.2 for p = 2) and therefore relatively easy to minimize if the right type of vari-
ation is used [52]. For example, consider the well-studied exact geometric semantic vari-
ation operators that were introduced in [52]: the Geometric Semantic Crossover (GSX),
and the Geometric Semantic Mutation (GSM). GSX and GSM are called exact because they
guarantee that the output of an offspring program will be close to the output of its par-
ent programs. More specifically, GSX enforces the output of an offspring program to be
bounded within a hyper-cube defined by the output of the two parent programs. Let f;
and f> be the functions represented by the first and second parent program respectively.
Then, for, e.g., a symbolic regression data set of n observations and m features, recall that
the output of a program is {f(x;)}?; € R™. GSX produces an offspring by combining
program instructions (e.g., tree nodes) that perform the following operation:

GSX(f1,f2) =g x fi+(1—g) X fa, (1.4)

where g is the function represented by a randomly sampled program, with codomain in
[0,1]™, and 1 is a vector of ones in R™. For example, g can be generated by sampling a
random tree with Algorithm 1.1, and appending a softmax node on top of the root of that
tree. The aforementioned version of GSX is called the Manhattan version. Another version
of GSX exists, the Euclidean one, where a linear combination of the parent programs is
produced (g is then an n-dimensional vector with constant values in [0, 1]).

GSM works similarly to GSX: it produces an offspring from one parent with output
that is bounded to be within a hyper-cube with side length 7 centered on the output of the
parent. If f is the function represented by the parent program, then GSM is defined as:

GSM(f):=[f+r(g—h), (1.5)

where g and h are functions represented by two respectively randomly sampled programs,
with codomain in [0, 1]™. The value of r is a hyper-parameter to be chosen by the user.

GP equipped with exact geometric semantic variation operators has been shown to be
competitive with other machine learning methods in terms of final prediction errors on
several real-world supervised learning problems, including, e.g., street construction [59],
energy forecasting [60], health care [61], and pharmacokinetics [62].

1.4. FROM CLASSIC TO MODERN GENETIC PROGRAMMING AND BEYOND BY DE-RANDOMIZING
VARIATION 13

Unfortunately, along with its advantages in terms of search properties, the aforemen-
tioned exact geometric semantic variation operators come with a burdening limitation:
their use generally results in programs growing to be very large in the number of instruc-
tions. In fact, note that both GSX and GSM re-use the entire function as represented by
the parent program(s) (see Eq. 1.4 and Eq. 1.5). This can only be achieved by preserving
the entire structure (tree) that represents the programs. Because of this, the repeated ap-
plication of GSX results in exponentially larger offspring, while GSM introduces a linear
growth factor [51, 52].

Ways to reduce program size have been explored for exact geometric semantic varia-
tion. Arithmetic simplification of programs is NP-hard, and heuristics have shown limited
effect [52]. Because GSX and GSM essentially perform linear combinations [63], recent
work assessed the possibility to keep track of what unique non-linear function compo-
sitions emerge when using these operators, to then re-arrange them in a compact linear
sum [51]. Still, the program size then does not reduce below thousands of instructions in
practical applications, even on moderately sized datasets. So far, techniques to stop the
search early, i.e., as soon as programs with satisfactory performance are found, seem to
work best to contain the issue [64].

Approximate geometric semantic variation operators differ from exact variation oper-
ators (like GSX and GSM) in that they lose the guarantee on the position that the offspring
program’s output will have, but, importantly, they can modify parent programs internally
(e.g., at the level of subtrees) [39, 58, 65]. This means that, in principle, they have a chance
to produce substantially shorter programs than exact geometric variation operators. Lit-
erature confirms this hypothesis: approximate geometric variation operators typically in-
duce programs much smaller than their exact counterpart. However, the typical number
of instructions can still be of the order of hundreds or thousands [39]. This means that the
programs are still too large to allow interpretability.

In summary, geometric semantic variation operators have been found to make GP
search more efficient and effective, but at the cost of program size. When programs have
a very large number of instructions, any chance of interpreting them is lost. This means
that GP is essentially producing black box models. In such scenarios, the very use of GP
itself becomes questionable, because competitive models can be acquired by other machine
learning algorithms in a fraction of the time taken by GP [32]. Therefore, there is a need
for new variation paradigms that find small, accurate programs, in an efficient manner.

1.4.2. BETWEEN SYNTAX AND SEMANTICS: MODEL-BASED VARIATION
Another type of variation for GP that has been studied in the last twenty years, is model-
based variation [66-68]. In this context, the term model should not be confused with
the end-product of a machine learning algorithm or GP. Rather, it refers to a statistical
model that contains information on what program instructions, at what positions, and
with which inter-dependencies, are associated with well-performing programs.

14 1. INTRODUCTION

GP using model-based variation is called model-based GP (or probabilistic model build-
ing GP). In model-based GP, a statistical model is inferred, typically every generation, to
capture the type, location, and inter-dependency of instructions for instance in the form
of a fitting probability distribution (e.g., using a minimum descriptor length metric) [68].
This is normally done using a portion of fit programs that is chosen, e.g., by tournament
selection. At variation time then, the variation operator queries the statistical model to
gain information on how to modify the programs.

The hypothesis behind a model-based approach is that, if salient instruction patterns
can be detected from above-average fit programs, and the information they carry can be
exploited during variation, progress will be more efficient than by making new combi-
nations blindly. Model-based variation can therefore be considered to be somewhat in
between the purely syntactic and purely semantic variation approaches: the statistical
model captures information at the level of the syntax of programs, yet, this is done on
well-performing programs, which possess favorable subroutines that contribute positively
to their semantic.

The most widely studied form of model-based GP inherits and extends concepts of
Estimation-of-Distribution Algorithms (EDAs) from binary optimization [66—68]. In EDA-
GP, the variation operator samples instructions depending on their position in the encod-
ing used for program representation, based on the information captured by the statistical
model. To use EDAs in GP, firstly an issue must be solved involving the representation
of programs: normally, GP adopts non-fixed length representations. For example, in tree-
based GP, trees can grow to any shape. Consequently, it is not trivial to establish what
information should be measured in what positions of the trees, so that this information
shares a consistent meaning for any tree in the population.

One of the earliest approaches, the Probabilistic Incremental Program Evolution (PIPE)
[69], tackled the problem of having meaningful representations that can be used in EDAs
for GP by adopting a so-called prototype tree, i.e., a template tree in which the nodes con-
tain probabilities that drive the sampling of possible instructions. To generate a new pro-
gram tree, the prototype tree is parsed top-down, and instructions (i.e., the nodes for the
program tree) are sampled according to the probabilities specified at the nodes of the pro-
totype tree. Hence, the prototype tree embodies a statistical model, in which nodes are
random variables that are associated with a specific and semantically consistent node po-
sition for the whole population. The sample space of each random variable composing the
statistical model is the set of possible node types (functions and terminals). In PIPE, the
statistical model employed is the simplest possible: a univariate factorization of the node
types appearing at each position. This means that each random variable is independent,
and no interactions between nodes is modeled.

Following PIPE, different approaches have been proposed, considering more complex
statistical models. For example, the use of marginal product models was considered, es-
timating these models every generation by greedily optimizing the minimum description
length [70]. To model even more complex relationships, the use of Bayesian networks was
explored as well [71]. One work considered the possibility to sample n-grams of nodes
connected by parenthood relationships, after having discovered that these types of rela-
tionships were among the most recurrent patterns emerging from multiple runs of classic
GP [72]. Many other EDA-GP algorithms generate stochastic models that capture infor-

1.4. FROM CLASSIC TO MODERN GENETIC PROGRAMMING AND BEYOND BY DE-RANDOMIZING
VARIATION 15

mation on so-called indirect representations, such as a set of rules (typically, a context-free
grammar) that specifies how a tree can be constructed [68]. Then, these rules are sampled,
and subsequently queried to generate new trees of different shape and size [73-76]. This
latter type of works belongs to the sub-field called grammar-based GP.

Many experimental results from the mentioned literature suggest that model-based
variation is a promising approach to efficiently find programs that are smaller than the
ones found by blind and geometric semantic variation, and that can be very accurate [72].
Even though model-based variation does not exert the same level of control that geomet-
ric semantic variation has in terms of program semantic, it increases the probability of
performing changes that can be, at the same time, syntactically smaller and semantically
more impactful than by using traditional blind variation operators. This has been shown
for a number of synthetic problems (e.g., in [77]), and for symbolic regression of small
known functions (e.g., in [72]).

All in all, model-based variation may seem a promising approach to efficient and ef-
fective variation without a compromise in program size. However, experimental results
on model-based variation mostly focused on benchmark problems, and considered only
small-dimensional problems [68]. A reasonable explanation for this is that EDA-GP algo-
rithms seem not to scale well to high-dimensional problems. For symbolic regression, none
of the cited works considered a realistic dataset where the true underlying phenomenon
is unknown, and (at least) dozens of features are present. Rather, only small dimensional
synthetic functions are typically investigated (e.g., up to 5 features in [76]). One realistic
task concerning the symbolic regression of a known physics law was considered, yet this
law consists of only 5 features [78]. The fact that EDA-GP algorithms do not work well
on large dimensional problems may not be surprising: the larger the number of primitives
(functions and terminals), the larger the sample space of the random variables compos-
ing the stochastic model. This means that the population size must also be large, before
accurate and helpful estimations can be obtained for variation [72].

Summarizing, work on EDA-GP algorithms has indicated that model-based evolu-
tion holds potential to evolve programs in a principled, more effective and efficient man-
ner. Moreover, the programs found can be rather compact with respect to their perfor-
mance [72]. However, EDA-GP algorithms estimate entire (joint) probability distributions,
and, to work well, they need very large population sizes to tackle high-dimensional prob-
lems. This hinders their ability to scale. Originating from EDA research, the last decade
has seen the rise of a new type of model-based evolutionary algorithm: optimal mixing
evolutionary algorithms. These algorithms were first introduced for binary optimization,
and were consistently found to outperform EDAs while requiring smaller population sizes
[79-83]. It is therefore natural to wonder whether bringing this type of algorithms to GP
may improve upon the state-of-the-art.

1.4.3. OPTIMAL MIXING EVOLUTIONARY ALGORITHMS
Optimal Mixing Evolutionary Algorithms (OMEAs) have been first introduced in genetic
algorithms for binary optimization [79]. OMEAs are a subclass of model-based evolution-
ary algorithms, that attempt to provide a better alternative to EDAs [80].

Given a generic evolutionary algorithm with fixed-length solution representation, EDAs
attempt to estimate both inter-dependencies between positions, i.e., what the (conditional)

16 1. INTRODUCTION

dependencies between random variables are, and the values that should be assumed in
those positions. Consequently, large population sizes are required to capture information
with a sufficient level of accuracy to bring benefit. This is a potential source of ineffi-
ciency. Furthermore, an EDA samples an entire solution at once, and only then the fitness
of the solution is computed. If several sub-solutions exist in a whole solution that have
different impact on the fitness, it is hard to separate these contributions, and exploit their
individual contributions. From now on, these sub-solutions, if they have an above-average
contribution to a solution’s quality, will be generally referred to as building blocks®.

OMEAs can already work well with smaller population sizes compared to EDAs for two
key reasons. First, the models employed by OMEAs, called linkage models, only attempt
to establish which positions are inter-dependent, i.e., exhibit strong linkage, and do not
attempt to model which values should be assumed in what positions. The idea is to identify
salient patterns of solution components (i.e., building blocks) that need to be propagated
together when performing variation, so as to avoid the disruption of their positive joint
effect. Linkage models often consist of multiple linkage sets that are often arranged in
hierarchical levels. Second, the variation operator of OMEAs, called optimal mixing, mixes
solutions by explicitly attempting to preserve the candidate building blocks as indicated
by the interdependencies captured by the linkage model, and immediately tests for the
impact of each mixing event.

The name optimal mixing comes from the theory of genetic algorithms, where it is
known that the best-possible recombination operator is the one that mixes en block com-
ponents that constitute building blocks [41]. In more detail, optimal mixing works by it-
eratively performing recombination according to blocks of highly dependent components
indicated by the linkage model, and, after each modification, by immediately calculating
the contribution of that modification in terms of fitness. If the fitness becomes worse, then
the change is reverted. Otherwise, the change is kept. This behavior explicitly enforces
selection pressure to focus on the contribution of potential building blocks, something
that is not considered by EDAs, where solutions are modified entirely, and only then eval-
uated [79, 80]. This also causes improvements to be accepted based on whether individual
solutions improve directly, rather than requiring a population-wide selection step. The
latter causes also partial non-improving changes to be selected, which, from a mixing
viewpoint, is not optimal (leading to the name optimal mixing).

The literature on binary optimization shows that OMEAs consistently outperform
EDAs on difficult optimization problems [79, 81, 83]. Interestingly, however, no OMEA
has ever been proposed for GP. Therefore, an investigation into the design of an OMEA
for GP may well provide new insights and methods to obtaining small and accurate pro-
grams efficiently. The research questions that lead to the design of an OMEA for GP, as
well as its application, are presented in the next section.

1.5. RESEARCH QUESTIONS

T HIS thesis comprises five research questions, the answers to which are aimed at sup-
porting the achievement of the main goal of this thesis: improving the efficiency and

3 An informal and generic definition is used here because several, and more or less formal, definitions of building
blocks exist, typically varying depending on the type of evolutionary algorithm considered.

1.5. RESEARCH QUESTIONS 17

effectiveness of GP, in particular in the scenario where programs are of limited size, to
increase the chances they are interpretable. Two of the research questions concern the
design of an OMEA for GP, and two concern its application to two particular problems,
in an effort to provide tangible successful outcomes. One more question is formulated
regarding efficiency and effectiveness of approximate geometric semantic variation for
symbolic regression. In the following, these research questions are listed and described.

RESEARCH QUESTION 1. How caN AN OMEA BE DESIGNED FOR GP, AND HOW DOES IT
FARE AGAINST STATE-OF-THE-ART GP ALGORITHMS?

The possibility of designing a competent OMEA for GP, and an evaluation on how such
an algorithm fares against the state-of-the-art, is addressed by this question. The goal
is to assess whether OMEAs for GP can, in fact, make GP more efficient and effective.
Benchmark problems where an optimal program is sought are considered for this purpose.

In Chapter 2, for the first time, an OMEA for GP is presented. In particular, an adap-
tation of the binary Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) is pre-
sented, called GP-GOMEA [79].

The contents of this chapter are based on the following publication: M. Virgolin, T.
Alderliesten, C. Witteveen, and P.A.N. Bosman. Scalable genetic programming by gene-
pool optimal mixing and input-space entropy-based building-block learning. In Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO ‘17), pp. 1041-1048,
ACM (2017).

RESEARCH QUESTION 2. DOES GP-GOMEA WORK WELL ON REALISTIC CASES OF SYMBOLIC
REGRESSION?

EDAs for GP do not scale well on realistic problems such as symbolic regression for real-
world data. Following the promising results on benchmark problems in Chapter 2, we
more closely investigate whether OMEAs for GP (GP-GOMEA in particular), can perform
better in these scenarios that are of high interest from a practical viewpoint.

In Chapter 3 possible limitations of some of GP-GOMEA’s core mechanisms (the link-
age learning in particular) that arise when dealing with realistic symbolic regression, and
that hold in general for supervised learning tasks (e.g., classification) are identified. Fol-
lowing the identification of these limitations, methods to improve GP-GOMEA are pro-
posed and tested in the scenario where symbolic expressions are sought that are suffi-
ciently small to have a large chance of being interpretable.

The contents of this chapter are based on the following preprint: M. Virgolin, T.
Alderliesten, C. Witteveen, and P.A.N. Bosman. Improving model-based genetic program-
ming for symbolic regression of small expressions. Accepted for publication in Evolutionary
Computation. Preprint arXiv:1904.02050, arXiv (2019).

RESEARCH QUESTION 3. DOES GEOMETRIC SEMANTIC VARIATION WORK WELL ON REALIS-
TIC CASES OF SYMBOLIC REGRESSION?

After having shown that GP-GOMEA is a promising approach to deal with realistic sym-
bolic regression problems, it is natural to wonder how approximate geometric semantic
variation performs on similar tasks. In other words, with this research question it is as-
sessed whether approximate geometric semantic variation is capable of improving the ef-

https://doi.org/10.1145/3071178.3071287
https://doi.org/10.1145/3071178.3071287
https://doi.org/10.1145/3071178.3071287
https://arxiv.org/abs/1904.02050
https://arxiv.org/abs/1904.02050

18 1. INTRODUCTION

ficiency and effectiveness of GP in scenarios that are of interest from a practical viewpoint
(symbolic regression on real-world data).

In Chapter 4 it is shown that, similar to the literature on EDA-GP algorithms, al-
most every work in approximate geometric semantic variation only considered small-
dimensional problems. Subsequent experiments suggest that this method does not actually
work well for symbolic regression of realistic datasets. Consequently, improvements are
proposed to enable approximate geometric semantic variation to work competitively on
realistic datasets.

The contents of this chapter are based on the following publication: M. Virgolin, T.
Alderliesten, and P.A.N. Bosman. Linear scaling with and within semantic backpropagation-
based genetic programming for symbolic regression. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO ‘19), pp. 1084-1092, ACM (2019).

RESEARCH QUESTION 4. CAN THE CAPABILITY OF GP-GOMEA TO FIND SMALL AND AC-
CURATE PROGRAMS BE USED TO MAKE A MACHINE LEARNING ALGORITHM GENERATE TRANS-
PARENT MODELS?

With this question a first important application of GP-GOMEA is addressed. Under the
assumption that GP-GOMEA can in fact be efficient and effective in finding small and
accurate programs, it is interesting to assess whether this property can be exploited to
enable the discovery of more transparent machine learning models trained by a chosen
machine learning algorithm.

This question is addressed in Chapter 5, in which a synergistic combination of GP-
GOMEA with a second machine learning algorithm is explored, where the first is used to
evolve small and salient constructed features, and the second trains a small-dimensional
model upon those features. The goal is to reduce the dimensionality of an original set of
features down to only two small and readable constructed features (i.e., symbolic trans-
formations of the original features) so that the behavior (i.e., the predictions for a large
set of inputs) of the final machine learning model can be visualized. Moreover, we assess
whether the accuracy of the model obtained this way is better or worse than the accuracy
obtained by using the original (high-dimensional) set of features. This approach is tested
on classification and regression real-world datasets.

The contents of this chapter are based on the publication: M. Virgolin, T. Alderliesten,
and P.AN. Bosman. On explaining machine learning models by evolving crucial and com-
pact features. Swarm and Evolutionary Computation 53, pp. 100640, Elsevier (2020).

RESEARCH QUESTION 5. CAN GP-GOMEA FIND MODELS THAT ARE ACCURATE AND LIKELY
TO BE INTERPRETABLE FOR A CLINICAL PROBLEM IN PEDIATRIC RADIATION ONCOLOGY?

To investigate the practical usefulness of GP-GOMEA in a societally-impactful problem, an
application of GP-GOMEA to pediatric oncology is investigated at large. A medical appli-
cation represents a suitable fit for the use of a machine learning algorithm that may deliver
models that doctors can understand and trust. In particular, the application we study is
radiation treatment dose reconstruction for pediatric cancer patients. Children with cancer
that undergo multi-modality treatment including irradiation of the tumor tend to develop
adverse effects. To improve pediatric radiation treatment, it is imperative to study how
the radiation dose to sensitive organs is linked to adverse effects. Recent studies consider
3D dose distributions. However, this type of fine-grained information can oftentimes be

https://doi.org/10.1145/3321707.3321758
https://doi.org/10.1145/3321707.3321758
https://doi.org/10.1016/j.swevo.2019.100640

1.5. RESEARCH QUESTIONS 19

absent when late adverse effects are considered. This is because some late adverse effects
can occur decades after the treatment, which might have happened before the advent of 3D
imaging became common practice (e.g., prior to the 1990s in the Netherlands). Therefore,
for children treated decades ago, 3D dose distributions need to be reconstructed (estimated
as accurately as possible). We explored the use of machine learning, and GP-GOMEA in
particular, to improve upon the limitations of existing methods employed in dose recon-
struction. This application is tackled in three chapters.

Chapter 6 introduces the aforementioned problem, and explores the feasibility of using
machine learning (specifically random forest [25]) to use the information that is typically
available for patients treated in the past (i.e., without 3D imaging) to predict 3D anatomical
information. This 3D information can then be used to craft (or select) a phantom, i.e., a 3D
surrogate of the true patient anatomy, which can be used to simulate the delivery of the
radiation treatment, to obtain estimations of the 3D dose distribution.

The contents of this chapter are based on the following publication: M. Virgolin,
LW.E.M. van Dijk, J. Wiersma, C.M. Ronckers, C. Witteveen, A. Bel, T. Alderliesten, and
P.AN.Bosman. On the feasibility of automatically selecting similar patients in highly indi-
vidualized radiotherapy dose reconstruction for historic data of pediatric cancer survivors.
Medical Physics 45 (4), pp. 1504-1517, Wiley (2018).

In Chapter 7 the concepts of the previous chapter are taken to the next level by pre-
senting an automatic pipeline that can generate patient-specific 3D pediatric phantoms of
the abdomen. A comparison is included between GP-GOMEA and other machine learning
algorithms, which are used to provide models that predict, given the (non-3D) informa-
tion available for the patient as an input, how 3D anatomical imaging of other patients
should be assembled into a personalized phantom. The contents of this chapter are based
on the following preprint: M. Virgolin, Z. Wang, T. Alderliesten, and P.A.N. Bosman. Ma-
chine learning for automatic construction of pseudo-realistic pediatric abdominal phan-
toms. Submitted. Preprint arXiv:1909.03723, arXiv (2019). The preprint extends the publi-
cation: M. Virgolin, Z. Wang, T. Alderliesten, and P.A.N. Bosman. Machine learning for
automatic construction of pediatric abdominal phantoms. In Proceedings of SPIE Medical
Imaging 2020: Imaging Informatics for Healthcare, Research, and Applications, International
Society for Optics and Photonics (2020) (to appear).

Lastly, Chapter 8 presents the use of GP-GOMEA to perform dose reconstruction in
a novel way. Instead of attempting to craft a phantom for a patient, machine learning
models are trained to directly estimate key dose-volume metrics that are typically con-
sidered when studying the link between radiation treatment and adverse effects. To this
end, the information available for the patient is used as input for the machine learning
models jointly with the information available for the radiation treatment plan. The con-
tents of this chapter are based on the following preprint: M. Virgolin, Z. Wang (shared
first co-author), B.V. Balgobind, IW.E.M. van Dijk, J. Wiersma, P.S. Kroon, G.O. Janssens,
M. van Herk, D.C. Hodgson, L. Zadravec Zaletel, CR.N. Rasch, A. Bel, P.A.N. Bosman,
and T. Alderliesten. Surrogate-free machine learning-based organ dose reconstruction for
pediatric abdominal radiotherapy. Submitted. Preprint arXiv:2002.07161, arXiv (2020).

https://doi.org/10.1002/mp.12802
https://arxiv.org/abs/1909.03723
https://arxiv.org/abs/2002.07161

20

REFERENCES

REFERENCES
[1] C. M. Bishop, Pattern recognition and machine learning (Springer, 2006).

(2]

(3]

(4]

(5]

(6]

(7]

[10]

[11]

[12]

[13]

[14]

V. Mayer-Schonberger and K. Cukier, Big data: A revolution that will transform how
we live, work, and think (Houghton Mifflin Harcourt, 2013).

A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun,
Dermatologist-level classification of skin cancer with deep neural networks, Nature 542,
115 (2017).

M. A. Lones, J. E. Alty, J. Cosgrove, P. Duggan-Carter, S. Jamieson, R. F. Naylor, A. J.
Turner, and S. L. Smith, A new evolutionary algorithm-based home monitoring device
for Parkinson’s Dyskinesia, Journal of Medical Systems 41, 176 (2017).

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, Language models
are unsupervised multitask learners, OpenAl Blog 1 (2019).

A. Bartoli, A. De Lorenzo, E. Medvet, and F. Tarlao, Inference of regular expressions
for text extraction from examples, IEEE Transactions on Knowledge and Data Engi-
neering 28, 1217 (2016).

S. H. Tan, Z. Dong, X. Gao, and A. Roychoudhury, Repairing crashes in android apps,
in International Conference on Software Engineering (ACM, 2018) pp. 187-198.

M. Ceska, J. Matyas, V. Mrazek, L. Sekanina, Z. Vasicek, and T. Vojnar, Approximat-
ing complex arithmetic circuits with formal error guarantees: 32-bit multipliers accom-
plished, in International Conference on Computer-Aided Design (IEEE Press, 2017) pp.
416-423.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., Mastering the game of
Go with deep neural networks and tree search, Nature 529, 484 (2016).

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, Playing Atari with deep reinforcement learning, (2013), arXiv preprint
arXiv:1312.5602.

Y. Koren, The bellkor solution to the Netflix grand prize, Netflix prize documentation
81, 1 (2009).

J. Talamini, G. Scaini, E. Medvet, and A. Bartoli, Selfish vs. global behavior promotion
in car controller evolution, in Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO) Companion (ACM, 2018) pp. 1722-1727.

E. Brynjolfsson, D. Rock, and C. Syverson, Artificial intelligence and the modern pro-
ductivity paradox: A clash of expectations and statistics, Tech. Rep. (National Bureau
of Economic Research, 2017).

Z. C. Lipton, The mythos of model interpretability, Queue 16, 30:31 (2018).

http://dx.doi.org/10.1145/3236386.3241340

REFERENCES 21

[15]

[22]

[29]

R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi, A
survey of methods for explaining black box models, ACM Computing Surveys (CSUR)
51, 93:1 (2018).

A. W. Flores, K. Bechtel, and C. T. Lowenkamp, False positives, false negatives, and
false analyses: A rejoinder to machine bias: There’s software used across the country to
predict future criminals. And it’s biased against blacks, Federal Probation 80, 38 (2016).

D. Doran, S. Schulz, and T. R. Besold, What does explainable Al really mean? A new
conceptualization of perspectives, (2017), arXiv preprint arXiv:1710.00794.

B. Goodman and S. Flaxman, European union regulations on algorithmic decision-
making and a “right to explanation”, Al Magazine 38, 50 (2017).

F. Pasquale, The black box society (Harvard University Press, 2015).

S. Corbett-Davies, E. Pierson, A. Feller, S. Goel, and A. Huq, Algorithmic decision
making and the cost of fairness, in ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (ACM, 2017) pp. 797-806.

D. Pedreshi, S. Ruggieri, and F. Turini, Discrimination-aware data mining, in ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM,
New York, NY, USA, 2008) pp. 560-568.

R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, and N. Elhadad, Intelligible models
for healthcare: Predicting pneumonia risk and hospital 30-day readmission, in ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM,
2015) pp. 1721-1730.

Z. C. Lipton, The doctor just won’t accept that! (2017), arXiv preprint
arXiv:1711.08037.

A. Adadi and M. Berrada, Peeking inside the black-box: A survey on explainable artifi-
cial intelligence (XAI), IEEE Access 6, 52138 (2018).

L. Breiman, Random forests, Machine Learning 45, 5 (2001).

T. Chen and C. Guestrin, Xgboost: A scalable tree boosting system, in ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (ACM, 2016) pp.
785-794.

L. Goodfellow, Y. Bengio, and A. Courville, Deep learning (MIT press, 2016).

V. Nair and G. E. Hinton, Rectified linear units improve restricted Boltzmann machines,
in International Conference on Machine Learning (ICML 10) (2010) pp. 807-814.

M. Schmidt and H. Lipson, Distilling free-form natural laws from experimental data,
Science 324, 81 (2009).

[30] J.R.Koza, Genetic Programming: on the programming of computers by means of natural

selection (MIT Press, 1992).

22 REFERENCES

[31] R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza, A Field Guide to Genetic Pro-
gramming (Lulu Enterprises, UK Ltd, 2008).

[32] P.Orzechowski, W.La Cava, and J. H. Moore, Where are we now?: A large benchmark
study of recent symbolic regression methods, in Genetic and Evolutionary Computation
Conference (GECCO) 2018 (ACM, 2018) pp. 1183-1190.

[33] J. R. Koza, Human-competitive results produced by genetic programming, Genetic Pro-
gramming and Evolvable Machines 11, 251 (2010).

[34] P. G. Espejo, S. Ventura, and F. Herrera, A survey on the application of genetic pro-
gramming to classification, IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews) 40, 121 (2009).

[35] H.]J. Bierens, Kernel estimators of regression functions, in Advances in Econometrics:
Fifth World Congress, Vol. 1 (1987) pp. 99-144.

[36] T. McConaghy, FFX: Fast, scalable, deterministic symbolic regression technology, in Ge-
netic Programming Theory and Practice IX (Springer, 2011) pp. 235-260.

[37] F. O. de Franca, A greedy search tree heuristic for symbolic regression, Information
Sciences 442, 18 (20138).

[38] 1. Newton, The Principia: mathematical principles of natural philosophy (Univ of Cal-
ifornia Press, 1999).

[39] T. P. Pawlak, B. Wieloch, and K. Krawiec, Semantic backpropagation for designing
search operators in genetic programming, IEEE Transactions on Evolutionary Com-
putation 19, 326 (2015).

[40] C.L.BridgesandD.E. Goldberg, An analysis of reproduction and crossover in a binary-
coded genetic algorithm, in International Conference on Genetic Algorithms and Their
Application (L. Erlbaum Associates Inc., Hillsdale, NJ, USA, 1987) pp. 9-13.

[41] D. Thierens and D. E. Goldberg, Mixing in genetic algorithms, in International Con-
ference on Genetic Algorithms (Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1993) pp. 38-47.

[42] J. F. Miller and S. L. Harding, Cartesian genetic programming, in Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO) (ACM, 2008) pp. 2701-
2726.

[43] L. Spector and A. Robinson, Genetic programming and autoconstructive evolution with
the push programming language, Genetic Programming and Evolvable Machines 3, 7
(2002).

[44] M. O’Neill and C. Ryan, Grammatical evolution, IEEE Transactions on Evolutionary
Computation 5, 349 (2001).

[45] P. D’Haeseleer, Context preserving crossover in genetic programming, in IEEE Confer-
ence on Evolutionary Computation (CEC) 1994 (IEEE, 1994) pp. 256-261.

REFERENCES 23

[46]

(47]

[49]

(50]

[51]

(52]

(53]

[54]

[55]

[56]

W. B. Langdon, Size fair and homologous tree genetic programming crossovers, in Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO) (Morgan
Kaufmann Publishers Inc., 1999) pp. 1092-1097.

A. Moraglio and A. Mambrini, Runtime analysis of mutation-based geometric semantic
genetic programming for basis functions regression, in Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO) (ACM, 2013) pp. 989-996.

R. Ffrancon and M. Schoenauer, Memetic semantic genetic programming, in Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO) (ACM, 2015)
pp. 1023-1030.

L. O. V. B. Oliveira, F. E. Otero, and G. L. Pappa, A dispersion operator for geometric
semantic genetic programming, in Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO) (ACM, 2016) pp. 773-780.

L. F. Miranda, L. O. V. B. Oliveira, J. F. B. S. Martins, and G. L. Pappa, How noisy
data affects geometric semantic genetic programming, in Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO) (ACM, 2017) pp. 985-992.

J. F.B. S. Martins, L. O. V. B. Oliveira, L. F. Miranda, F. Casadei, and G. L. Pappa, Solv-
ing the exponential growth of symbolic regression trees in geometric semantic genetic
programming, in Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO) (ACM, 2018) pp. 1151-1158.

A.Moraglio, K. Krawiec, and C. G. Johnson, Geometric semantic genetic programming,
in International Conference on Parallel Problem Solving from Nature (PPSN) (Springer,
2012) pp. 21-31.

J. McDermott, E. Galvan-Lopéz, and M. O’Neill, A fine-grained view of phenotypes
and locality in genetic programming, in Genetic Programming Theory and Practice IX
(Springer, 2011) pp. 57-76.

L. Vanneschi, M. Castelli, and S. Silva, A survey of semantic methods in genetic pro-
gramming, Genetic Programming and Evolvable Machines 15, 195 (2014).

K. Krawiec and U.-M. O’Reilly, Behavioral programming: a broader and more detailed
take on semantic GP, in Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO) (ACM, 2014) pp. 935-942.

J. Albinati, G. L. Pappa, F. E. Otero, and L. O. V. B. Oliveira, The effect of distinct
geometric semantic crossover operators in regression problems, in European Conference
on Genetic Programming (Springer, 2015) pp. 3-15.

B. Wieloch and K. Krawiec, Running programs backwards: instruction inversion for ef-
fective search in semantic spaces, in Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO) (ACM, 2013) pp. 1013-1020.

24

REFERENCES

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[68]

[69]

[70]

[71]

Q. Chen, B. Xue, and M. Zhang, Improving generalisation of genetic programming for
symbolic regression with angle-driven geometric semantic operators, IEEE Transactions
on Evolutionary Computation 23, 488 (2019).

M. Castelli, L. Vanneschi, and SS. Silva, Prediction of high performance concrete strength
using genetic programming with geometric semantic genetic operators, Expert Systems
with Applications 40, 6856 (2013).

M. Castelli, L. Vanneschi, and M. De Felice, Forecasting short-term electricity con-
sumption using a semantics-based genetic programming framework: the south Italy
case, Energy Economics 47, 37 (2015).

M. Castelli, L. Vanneschi, and S. Silva, Prediction of the unified Parkinson’s disease
rating scale assessment using a genetic programming system with geometric semantic
genetic operators, Expert Systems with Applications 41, 4608 (2014).

L. Vanneschi, S. Silva, M. Castelli, and L. Manzoni, Geometric semantic genetic pro-
gramming for real life applications, in Genetic Programming Theory and Practice XI
(Springer, 2014) pp. 191-209.

T. P. Pawlak, Geometric semantic genetic programming is overkill, in European Confer-
ence on Genetic Programming (Springer, 2016) pp. 246-260.

I. Gongalves, S. Silva, C. M. Fonseca, and M. Castelli, Unsure when to stop?: ask
your semantic neighbors, in Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO) (ACM, 2017) pp. 929-936.

K. Krawiec and T. Pawlak, Approximating geometric crossover by semantic back-
propagation, in Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO) (ACM, 2013) pp. 941-948.

M. Hauschild and M. Pelikan, An introduction and survey of estimation of distribution
algorithms, Swarm and Evolutionary Computation 1, 111 (2011).

Y. Shan, R. I. McKay, D. Essam, and H. A. Abbass, A survey of probabilistic model
building genetic programming, in Scalable Optimization via Probabilistic Modeling
(Springer, 2006) pp. 121-160.

K.Kim, Y. Shan, X. H. Nguyen, and R. 1. McKay, Probabilistic model building in genetic
programming: a critical review, Genetic Programming and Evolvable Machines 15,
115 (2014).

R. Salustowicz and J. Schmidhuber, Probabilistic incremental program evolution, Evo-
lutionary Computation 5, 123 (1997).

K. Sastry and D. E. Goldberg, Probabilistic model building and competent genetic pro-
gramming, in Genetic Programming Theory and Practice (Springer, 2003) pp. 205-220.

Y. Hasegawa and H. Iba, A Bayesian network approach to program generation, IEEE
Transactions on Evolutionary Computation 12, 750 (2008).

REFERENCES 25

[72] E. Hemberg, K. Veeramachaneni, J. McDermott, C. Berzan, and U.-M. O’Reilly, An
investigation of local patterns for estimation of distribution genetic programming, in
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) (ACM,
2012) pp. 767-774.

[73] Y. Shan, R. I. McKay, R. Baxter, H. Abbass, D. Essam, and H. Nguyen, Grammar
model-based program evolution, in IEEE Congress on Evolutionary Computation (CEC),
Vol. 1 (IEEE, 2004) pp. 478-485.

74] P.A.N.Bosman andE.D. de Jong, Learning probabilistic tree grammars for genetic pro-
g oy g 8 p
gramming, in International Conference on Parallel Problem Solving from Nature (PPSN)
(Springer, 2004) pp. 192-201.

[75] P.-K. Wong, L.-Y. Lo, M.-L. Wong, and K.-S. Leung, Grammar-based genetic program-
ming with Bayesian network, in IEEE Congress on Evolutionary Computation (CEC)
(IEEE, 2014) pp. 739-746.

[76] L. F. D. P. Sotto and V. V. de Melo, A probabilistic linear genetic programming with
stochastic context-free grammar for solving symbolic regression problems, in Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO) (ACM, 2017)
pp. 1017-1024.

[77] Y. Hasegawa and H. Iba, Latent variable model for estimation of distribution algo-
rithm based on a probabilistic context-free grammar, IEEE Transactions on Evolution-
ary Computation 13, 858 (2009).

[78] A. Ratle and M. Sebag, Avoiding the bloat with stochastic grammar-based genetic pro-
gramming, in International Conference on Artificial Evolution (Evolution Artificielle)
(Springer, 2001) pp. 255-266.

[79] D.Thierens and P. A. N. Bosman, Optimal mixing evolutionary algorithms, in Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO) (ACM, 2011)
pp- 617-624.

[80] P. A. N. Bosman and D. Thierens, Linkage neighbors, optimal mixing and forced im-
provements in genetic algorithms, in Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO) (ACM, 2012) pp. 585-592.

[81] D. Thierens and P. A. N. Bosman, Hierarchical problem solving with the linkage tree
genetic algorithm, in Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO) (ACM, 2013) pp. 877-884.

[82] B. W. Goldman and W. F. Punch, Parameter-less population pyramid, in Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO) (ACM, 2014) pp.
785-792.

[83] S.-H.Hsu and T.-L. Yu, Optimization by pairwise linkage detection, incremental linkage
set, and restricted/back mixing: DSMGA-IL, in Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO) (ACM, 2015) pp. 519-526.

ScALABLE GENETIC PROGRAMMING BY
GENE-POOL OPTIMAL MIXING

The Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) is a recently introduced
model-based EA that has been shown to be capable of outperforming state-of-the-art alter-
native EAs in terms of scalability when solving discrete optimization problems. One of the
key aspects of GOMEA’s success is a variation operator that is designed to extensively ex-
ploit linkage models by effectively combining partial solutions. Here, we bring the strengths
of GOMEA to Genetic Programming (GP), introducing GP-GOMEA. Under the hypothesis
of having little problem-specific knowledge, and in an effort to design easy-to-use EAs, GP-
GOMEA requires no parameter specification. On a set of well-known benchmark problems we
find that GP-GOMEA outperforms standard GP while being on par with more recently intro-
duced, state-of-the-art EAs. We furthermore introduce Input-space Entropy-based Building-
block Learning (IEBL), a novel approach to identifying and encapsulating relevant building
blocks (subroutines) into new terminals and functions. On problems with an inherent degree
of modularity, IEBL can contribute to compact solution representations, providing a large po-
tential for knock-on effects in performance. On the difficult, but highly modular Even Parity
problem, GP-GOMEA+IEBL obtains excellent scalability, solving the 14-bit instance in less
than 1 hour.

The contents of this chapter are based on the following publication: M. Virgolin, T. Alderliesten, C. Witteveen, and P.A.N.
Bosman. Scalable genetic programming by gene-pool optimal mixing and input-space entropy-based building-block learning.
In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO ‘17), pp. 1041-1048, ACM (2017).

27

https://doi.org/10.1145/3071178.3071287

28 2. ScALABLE GENETIC PROGRAMMING BY GENE-POOL OPTIMAL MIXING

2.1. INTRODUCTION

When a problem’s structure has some inherent degree of modularity, being able to effi-
ciently and effectively exploit this modularity in an Evolutionary Algorithm (EA), e.g., by
recombining partial solutions, can lead to better solutions much faster than when using
only blind variation operators [1]. The term schemata is often used in Genetic Algorithms
(GAs) to refer to such partial solutions, which can be moderately to completely indepen-
dent from each other.

In Black-Box Optimization (BBO), it is unknown how schemata are encoded, hence it is
not possible to design any specific recombination operator beforehand that prevents their
disruption when mixing solutions. In an attempt to learn and exploit problem structure,
model-based EAs use a model to capture such structure [2]. In the case of BBO, model
instances are inferred from the genotype (i.e., the encoding) of promising solutions.

In Genetic Programming (GP), the term Building Blocks (BBs) typically refers to con-
nected parts of the genotype (i.e., connected nodes in tree-based GP) that represent useful
subroutines. Whereas solutions in GAs have a fixed size and the main focus is to avoid
the disruption of schemata, solutions in GP are typically free to grow. Therefore, many
studies have explored steps to re-use BBs by encapsulating them into compact represen-
tations. With one of the first attempts, the Automatically Defined Functions (ADFs) [3], it
has been shown that the re-use of BBs can be extremely beneficial, making GP capable of
tackling very difficult, yet highly modular problems such as Even Parity. Many different
approaches have been proposed in the last 25 years (see Sec. 5.2 of [4] for an overview).
However, none of them has shown clear superiority in systematically identifying salient
BBs [5]. Some works even synthesize BBs from randomly chosen subtrees [6, 7]. Other
proposals relax the BBO hypothesis substantially to synthesize BBs from successful runs
on smaller problem instances [8, 9].

Our purpose is to introduce novel, general, and principled ways to identify and exploit
problem structure in tree-based GP. As a first contribution, we bring key strengths of the
Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) to tree-based GP, result-
ing in GP-GOMEA. GOMEA is a model-based EA which performs a memetic variation
of solutions by extensively exploiting linkage information, i.e., strong interdependencies
between parts of the genotype [10]. Our second contribution is a novel method to iden-
tify and encapsulate BBs into new terminals and functions in Boolean problems, thereby
enhancing the search space with atomic representations of partial solutions. We call this
method Input-space Entropy-based Building-block Learning (IEBL). IEBL is inspired by
information theory and construction heuristics for classification trees [11], and can po-
tentially be applied to a number of GP algorithms. To the best of our knowledge, no
similar approach to identify salient BBs in GP has ever been proposed. Finally, under the
hypothesis of no knowledge on the problem and for the sake of usability, we set out to
design this algorithm to require no parameter specification.

2.2. GP-GOMEA

The current closest GOMEA implementation on which this GP version is based on is de-
scribed in [10]. The general GOMEA outline is depicted in Algorithm 2.1. At the top
level, GOMEA has the characteristics of any EA with population initialization and the

2.2. GP-GOMEA 29

Figure 2.1: GP tree encoded by the fixed-length string of size 15 “&+&bbadc—bab+cd”. Gray
nodes are introns.

generational loop that continues until a termination criterion is met (e.g., population con-
vergence, evaluations limit, time limit). A generation consists of the learning of a linkage
model F' (which may be provided beforehand if the problem structure is known a priori)
and the applying of the variation operator GOM to each solution in the population, which
extensively exploits F' to improve a solution.

Algorithm 2.1 GOMEA general outline

1 procedure RUNGOMEA(n)
P <initializePopulation(n)
while —shouldTerminate() do
F < buildLinkageModel(P)
for P, € P do
O; + GOM(PZ‘, F, 7))
P+ 0O= {01,...,On}

N O g AW N

2.2.1. GENOTYPE

Although the original implementation of GOMEA works on fixed-length strings of binary
variables, handling variables of higher cardinality is straightforward. This representation
is the first step in using GOMEA for GP, as we use it to map discrete values to program
functions and program inputs. Like in Standard GP (SGP), solutions in GP-GOMEA are
trees of variable size composed of terminal and function nodes. Trees can be encoded as
fixed-length strings using preorder tree traversal (Figure 2.1). All nodes but the ones at
maximum depth always have r child nodes, with r the maximum arity (i.e., number of
expected inputs) of the function nodes. We make it possible for GOMEA to work with
variable-size trees even though they are encoded with fixed-length strings. Trees always
have a maximum height. Syntactically, trees are always full, but semantically they are not.
If a terminal appears in an internal node, the subtrees below it are disregarded. Moreover,
for function nodes with arity lower than r, only the leftmost child nodes are evaluated.
Hence, some nodes are introns, i.e., they will be ignored during the evaluation of the tree.

2.2.2. LINKAGE MODELS
As in the original GOMEA, GP-GOMEA uses the Family Of Subsets (FOS) as linkage model.
The FOS is a set of sets which contain loci, i.e., indices representing positions in the geno-

30 2. ScALABLE GENETIC PROGRAMMING BY GENE-POOL OPTIMAL MIXING

type. Each one of these sets specifies which parts of the genotype should be replaced en
bloc during variation. Note that a FOS containing all and only singletons of each locus,
ie, FF = {{0},{1},...,{l — 1}}, with [the length of the genotype, models complete
independence among loci. We call this FOS that allows only the variation of one locus at
a time Univariate (U). In this chapter, we analyze the contribution of three different FOSs:
U, Linkage Tree (LT) and Random Tree (RT).

We consider LT as it has so far been found to lead to the best performance on a number
of different BBO problems [10]. A key strength of this model is that it can capture at the
same time multiple levels of dependency (linkage) among loci. An LT can be seen as a tree
where the leaves are singletons (i.e., U) while its internal nodes are built by merging sets in
an iterative fashion, up to reaching the root, i.e., the set that contains all loci. An LT may
be fixed a priori, but especially in a BBO setting, it is learned from the population at each
generation (line 4 of Algorithm 2.1). Specifically, a measure of linkage between pairs of loci
is measured using mutual information, i.e., the measure of mutual dependence between
two variables in information theory. New sets are iteratively built by merging sets with
the highest mutual information. Using only combinations of mutual information between
pairs of variables, the hierarchical structure of dependencies expressed by an LT can be
efficiently learned in O(|P|I?), with |P| the population size [12].

Lastly, RT is built like LT, but using random information instead of measured link-
age. This FOS enables the variation of multiple parts of the genotype like LT, but does
not assume that specific parts of the genotype should be kept intact. RT is thus a model
that enables blind variation that differs from the classic GP subtree crossover in that any
configuration of nodes can be swapped.

2.2.3. GENE-POOL OPTIMAL MIXING
The variation operator GOM, that also incorporates selection, always generates an off-
spring that is at least as fit as the parent. Different from standard crossover in GP where
entire subtrees are swapped, GOM mixes potentially unconnected parts (i.e., tree nodes)
of the fixed-size genotype. Moreover, instead of generating two new solutions from two
parents, it creates an offspring by iteratively mixing a parent solution with multiple other
solutions.

The procedure is shown in Algorithm 2.2. Given a solution s, an identical offspring o
is made, and each set F; of the FOS F' is used to try to improve o. Given Fj, a donor d
is randomly picked from the population, and the symbols of o at the loci specified by F;
are replaced with the symbols of d at the same loci (the j-th symbol of 0 can be replaced
only with the j-th symbol of d). Replacement is not done if F; contains all loci, since that
would mean to fully replace o with d, nor if all loci in F; identify introns of o, because the
semantic of o0 would not change. If the mixing results in a syntactical change of o, then this
new solution is evaluated. The changes are kept only if the fitness of o does not worsen.

If 0 never changes during this first phase or no new best fitness has been found in the
last 1 4 log;,(|P|) generations, then the forced improvement phase starts. In this phase
Optimal Mixing is performed by mixing o only with st the best solution ever found.
Here, changes to o are accepted only in case of strict fitness improvement. Moreover, upon
an accepted change, the procedure stops. If even this does not lead to a change of o, then
0 becomes a copy of s°litist,

2.2. GP-GOMEA 31

Because root nodes can only be exchanged with root nodes, in the classic ramped
half-and-half generation of the initial population the first symbol is always initialized to
represent a function.

Algorithm 2.2 Gene-pool Optimal Mixing
1 function GOM(s, F, P)

2 0 <+ s; fitness[o] « fitness[s]

3 b < o; fitness[b] « fitness[o]

4 I +inactiveNodes(0)

5 R <+randomPermutation({0, 1,...,|F —1[})
6 c+0

7 fori € {0,1,...,|F — 1|} do

8 F; + F[R][i]]

9 if |Fi| #lo| & F; € I then

10 d +—randomDonorSolution(P)

11 OF;, < dF1

12 if 0 # d then

13 evaluateFitness(0)

14 if fitness[o] > fitness[b] then
15 bp, < op,; fitness[b] < fitness[o]
16 I +inactiveNodes(0)

17 c+1

18 else

19 oF, < br,; fitness[o] < fitness[b]
20 if ¢ = 0 | nolmprovementsStretch() then

21 forcedImprovementOM(o, F')

22 return(o)

2.2.4. PARTIAL EVALUATIONS

To enhance the speed of evaluating solutions a simple mechanism can be used in tree-
based GP to perform partial evaluations. We use this also for GP-GOMEA. This is done by
maintaining the output of all tree nodes (i.e., string symbols) in memory. Note that introns
do not have any output. During GOM, track is kept of which nodes are changed. Conse-
quently, only subtrees where at least one (active) node changed, need to be re-evaluated,
whereas the roots of unchanged subtrees can immediately return their cached output.

2.2.5. INTERLEAVED MULTISTART SCHEME

The task of sizing a problem-specific population and genotype (string length or, equiva-
lently, tree height) is crucial in many EAs. Tuning such parameters is often tedious and
time-consuming but also necessary to ensure efficiency and to guarantee the successful
discovery of (near-)optimal solutions. Setting these parameters wrong can give a vastly
wrong impression of an algorithm’s capabilities. For this reason, we designed GP-GOMEA
so that it does not require the user to specify any parameter. A similar scheme as the one

32 2. ScALABLE GENETIC PROGRAMMING BY GENE-POOL OPTIMAL MIXING

Table 2.1: BB identification in IEBL. Columns are the fitness cases, O* is the desired output,
O the observed output for the tree depicted in Figure 2.1. Entropy is measured on red cells.

el k=X == =]
OO OO
OO = oo
el el =)
[el elo) =
[l N o N
—olo~—~o
OO (R m=kO
[=Ne) NN RNy
—OolRro o R
=1 =1
OO R PR O
= =N =N
OO RO
OO | O ==
—_Q ==

QQ o0 oTw

*

proposed in [13] is adopted, where multiple runs of the algorithm with different parameter
settings are interleaved. We call this scheme Interleaved Multistart Scheme (IMS).

Specifically, every g generations of a GP-GOMEA run, another run with double the
population size performs 1 generation. This is repeated recursively. Similarly, the maxi-
mum tree height (and thus the encoding string length) increases by 1 every 2 runs.

The first run is initialized with a population size of 2 in ramped half-and-half, and with
amaximum tree height such that full trees have a number of nodes at maximal depth equal
or bigger than the number of inputs of the problem (i.e., for a problem with n inputs and
functions of maximum arity r, it is [log,.(n)]).

A copy of st the best solution ever found by any run so far, is stored and used
by all runs in the forced improvement phase of GOM (Algorithm 2.2, line 21). If a new
best solution s¢18t is found the size of which (i.e., maximum tree height or, equivalently,
string length) is smaller than the size of solutions evolved by a run R, then a copy of s°litist
is made for R that has the same size of the solutions of R and in which empty loci are
filled with random introns. If the new best solution ¢ has a larger size than the one of
solutions evolved by R, then R is immediately terminated.

Other criteria for the termination of a run R are the following: (i) the population of R
converged to all identical solutions; (ii) a run R’ with larger population achieved a better
average fitness than R or than a run R” with bigger population size than R. Finally,
the whole multi-run scheme can be terminated at a specific threshold by specifying a
maximum number of evaluations or seconds.

2.3. IEBL

We here describe a novel method to identify and encapsulate useful, small trees into
new terminals and functions, called Input-space Entropy-based Building-block Learning
(IEBL). In this context, we use the term BBs to refer to such small trees. IEBL is aimed at
improving the search process on Boolean problems which exhibit a degree of decompos-
ability, i.e., for which meaningful BBs exist.

The identification of salient BBs is based on fitness cases (pairs of input and desired
output values) and is inspired by information theory and heuristics to build classification
trees. To the best of our knowledge, no similar approach exists in GP. While the identifica-
tion method attempts to find those BBs that represent partial solutions to the problem, the
encapsulation of BBs changes the search space by providing the EA with compact repre-
sentations of higher-level functionalities that can be used in the search process. Moreover,
IEBL can be applied iteratively, using encapsulated BBs to generate higher-order BBs.

2.3.IEBL 33

Here, we show how IEBL can be used in GP-GOMEA, but its salient concepts can
straightforwardly be used in a number of other GP paradigms. The following sections
explain the method in detail.

2.3.1. IDENTIFICATION OF BBs

A dedicated population of small trees is used. This is due to some early experiments, con-
firming literature [5], where we observed that the frequency of known good subtructures
in the population (i.e., the XOR and XNOR functions for the Even Parity problem) does not
necessarily increase during optimization. To generate the dedicated population, we use a
slight variation of the ramped half-and-half method. Specifically, roots are always func-
tions and for each tree a subset of the set of all terminal nodes T is used, with cardinality
between 2 and | 7. This increases the redundancy of terminals contained in candidate BBs,
increasing the probability of generating complex interactions between few terminals.

Let 7 be the set of input variables. Given a BB b, we say that b embodies an input
variable i if there exists at least one non-intron terminal node that represents ¢ in b. Let
J C T be the set of input variables not embodied by b. We only consider BBs for which
J # 0, as they represent partial solutions using part of the inputs. Let £ be the set of
fitness cases for which the execution of b returns a wrong Boolean output. If £ = (), b
is a solution to the problem and the EA is terminated. A quality-score is assigned to b
by looking at the values taken by the input variables of J in £. Specifically, the joint
entropy of the values assumed by the inputs of J in £ is measured. Lower entropy is
considered to be better because this means that the fitness cases that are still wrong have
more regularities and thus represent a less complex problem to be solved.

For example, consider the task of regressing a circuit that, given 4 bits, returns 1 when
an even number of bits are set to 1 (4-bits Even Parity). The BB consisting of the tree in
Figure 2.1 outputs 1 only when the input variables a and b are 0. Also, 7 = {c,d}. £
contains 8 cases. Table 2.1 shows the configurations of the input values of ¢ and d over
which the entropy is computed in red. Since “01” and “10” appear each in 3 out of 8
cases, while “00” and “11” appear each 1 out of 8 cases, the entropy is E = — > plogp =
—23log(2) — 24 log(3).

Some BBs are discarded during this procedure, namely those (i) that have the same
output of another BB, but higher or equal entropy; (ii) for which J = @; (iii) whose
output is always-false or always-true; (iv) for which 7 — 7 = {i}, since the only realizable
functions of i are always-false, always-true, identity and negation.

2.3.2. ENCAPSULATION OF BBS — TERMINAL NODES
After the identification method has computed the entropy of BBs, we encapsulate into
new terminals the best (i.e., with lowest entropy) |Z| BBs, thus doubling the number of
terminals. Expanding the terminal set effectively changes the search space. We limit the
number of new terminals to avoid an excessive complication of the search space. If more
than |Z| BBs are found with minimal entropy, then random |Z| ones are kept and the others
are discarded.

To enable running IEBL when earlier executions already identified and encapsulated
new BBs, we keep track of which input variables are embodied. This allows to always
define the set J needed to compute the entropy.

34 2. ScALABLE GENETIC PROGRAMMING BY GENE-POOL OPTIMAL MIXING

2.3.3. ENCAPSULATION OF BBS — FUNCTION NODES
The best |Z| BBs are also used for encapsulation into new function nodes. Let r be the
arity of a BB, i.e., the number of different (non-intron) terminal nodes in it. The functional
encapsulation of this BB is achieved by generating a function node that accepts r children
and, given one of the 2" possible binary configurations of the inputs, returns the output
of the BB for that configuration. We discard BBs leading to duplicate function nodes, i.e.,
those whose arity and output are identical to an already-encapsulated one or to a function
from the starting set F. Further, we discard BBs which realize always-false, always-true
and functions of arity 1.

Similarly to what is done for terminal nodes, we impose a fixed limit of | F| new func-
tion nodes to expand F. If more than |F| BBs have minimal entropy, then |F| at random
are kept.

2.3.4. IMPLEMENTATION OF IEBL IN GP-GOMEA

To alleviate users from having to choose the dedicated population size and tree height for
IEBL, we propose a scheme to include IEBL in GP-GOMEA that requires no parameter
specification.

IEBL is applied at the start of each new GP-GOMEA run to expand the terminal and
function sets. In particular, for the ¢-th run, IEBL is iterated ¢ times consecutively to dis-
cover higher-order BBs. This means that the nodes created by the j-th iteration of IEBL
are used (together with the starting functions and terminals) for the generation of the
dedicated population of the j 4 1-th iteration of IEBL. For the first GP-GOMEA run, the
dedicated population size for IEBL is set to | F|(|F|+t)", which corresponds to the number
of possibilities for the first two levels of an r-ary tree with any function as root, and with
any function or terminal, among ¢ different ones, as children of the root. For the function
set of the Boolean benchmark problems it is r = 2, and we fixed ¢ = 4 to ensure start-
ing from a moderate dedicated population size (i.e., 256 trees). The dedicated population
size is doubled for each new GP-GOMEA run, and the height of the trees constituting the
candidate BBs is initially set to 2 and is incremented by 1 every 4 runs. In other words,
IEBL is applied once before the first run of GP-GOMEA, using a dedicated population size
of 256 with trees of height 2; IEBL is applied 7 times before the i-th run, using a dedicated
population size of 256 x 2¢~1 in each iteration, with trees of height 2 + [i/4]. If the i-th
IEBL finds a BB with an entropy of 0, then the number of iterations for all next IEBLs is
frozen to i. Because IEBL provides nodes that inherently embody trees of a certain height,
we lower by 1 the starting tree height of the IMS of GP-GOMEA. To avoid an unbounded
growth of the genotype, we limit the learning of new node functions to BBs with arity 2
only. Finally, unless a BB entropy of 0 is reached, if no lower entropy is found after four
consecutive uses of IEBL (i.e., four new runs of GP-GOMEA), then IEBL is disabled: all cur-
rent GP-GOMEA runs are terminated (the elite solution is also forgotten), and subsequent
runs will no longer use IEBL to learn and use BBs.

2.4. EXPERIMENTAL SETUP 35

2.4. EXPERIMENTAL SETUP

The performance of GP-GOMEA! is tested in terms of scalability on well-known GP bench-
mark problems. This enables us to compare our algorithm with SGP, but also with state-
of-the-art work. All experiments were executed on a machine mounting 2 Intel® Xeon®
CPU E5-2699 v4 @ 2.20GHz and 630 GB of RAM. Each experiment consists of 30 indepen-
dent runs and only successful experiments are considered. Runs exceeding a time limit of
24 hours or a memory limit of 500 GB are aborted.

2.4.1. BENCHMARK PROBLEMS

We consider two sets of benchmark problems. The first set is composed of artificial prob-
lems often used to assess the performance of model-based EAs, because of their focus on
obtaining specific substructures in the genotype. The second set considers well-known
regression problems of Boolean circuits, which differ from the problems in the first set in
that the solution encoding is much more redundant, so that very different solutions have
the same output. In all problems, maximization of the fitness is sought.

ARTIFICIAL PROBLEMS

Order is a GP version of the well-known OneMax problem in GA research and is known to
be easy to solve for SGP [14]. Given a problem size n, the terminal set consists of 2n node
variables X; and their complement X;. The function set contains only one node which
is a placeholder for a function of arity 2 with no semantic meaning. The output O of a
tree is a list of its inputs derived from the inorder traversal of its nodes, such that there
are no duplicates and only one of the two complementary inputs is present, depending
on which is encountered first in the traversal. For example, if { X5, Xo, X1, X1, Xo, X2}
are the inputs appearing in the inorder traversal, the tree outputs O = {Xo, X1, X2, X3}.
The fitness is 2., = |O\ {Xo,X1,..., Xn_1}|. In other words, the optimal solution is a
tree where, for each i, X; is present and Xj; is not, or the latter appears after X; according
to inorder traversal.

The problem Trap employs the same terminal and function sets of Order, but is consid-
ered a hard problem for SGP [14]. This is because of its deceptive fitness function defined
for blocks of k variables, which is inspired by the well-known deceptive trap functions
in GA research. The deceptive attractor corresponds to the number of X; in the output,
while the needle in the haystack is the optimum of Order. Specifically, for a block of &k

variables,
1 if fe. =k
k order
= 2.1
fTrap {075 (1 _ igi_d?> If (ﬁder < k ()

We denote with Trap-3 and Trap-4 the problem with trap length k of 3 and 4 respectively.
The problem size n is the number of traps.

Like Order and Trap, the tunable benchmark problem introduced in [15], here denoted
with KU (from the authors’ surnames), uses binary trees, but with a predefined maximum
height. The aim is to synthesize a tree in which function nodes are arranged according to
positional constraints. The size of the problem n corresponds to the maximum tree height.

IThe code is available at https://bit.ly/3ajDUBY

https://bit.ly/3ajDUBY

36 2. ScALABLE GENETIC PROGRAMMING BY GENE-POOL OPTIMAL MIXING

The terminal set contains only one node, while the function set contains functions of arity
2,ie, F = {Fo, F1,... }. F can be changed together with n to tune problem difficulty. In
this work, we always consider F = {Fy, ..., Fan—1}. The output of a tree is the output of
its root. A function node outputs the weighted sum of its 2 children’s outputs, determined
according to the constraints: (i) the index of the parent function must be lower than that of
its children; (ii) the index of child 1 must be smaller than the index of child 2. The terminal
has no index and does not violate constraints. If child 1 violates the first constraint, then
its output is penalized with a weight of 77, and similarly for child 2. If the second constraint
is violated, then the output of both children is penalized with 7 (we use n = 0.25). Since
the maximum tree height is the problem size n, for this problem the maximum tree height
in the IMS is fixed to n.

BOOLEAN PROBLEMS

These problems are defined with fitness cases, i.e., pairs of input and desired output values.
Different from the artificial problems, inputs are now binary. In all these problems the aim
is to synthesize a tree that realizes a Boolean circuit which satisfies all fitness cases, giving
the correct output for any input configuration. The fitness of a solution is the number
of correct fitness outputs. Boolean circuits we consider are: Comparator, Even Parity,
Majority and Multiplexer. The terminal set contains a terminal for each input, and the
function set contains the logic functions AND, OR, NAND, and NOR.

A circuit realizes the n-inputs Comparator if it outputs true only if the first [n/2] bits
represent a number that is lower than the one encoded by the second |n/2] bits. The Even
Parity problem of n inputs expects the output true when the number of input bits set to 1
is even and false otherwise. In Majority, the solution must return true only when at least
[n/2] out of a total of n input bits are set to 1. Finally, a Multiplexer has n = m + 2™
input bits: the first m bits encode the address, the second 2™ bits encode the data. A circuit
satisfies the Multiplexer problem if it always outputs the value of the data bit encoded by
the address.

2.4.2. STANDARD GP AND STATE-OF-THE-ART

We compare the scalability of GP-GOMEA with SGP and two state-of-the-art algorithms.
For Order and Trap, the model-based algorithm extended Compact Genetic Programming
(eCGP) is considered [14]. For the Boolean benchmark problems, we consider recent algo-
rithms based on Semantic Backpropagation (SB): the Iterated Local Tree Improvement
(ILTI) [16] and GP using the Random Desired Operator (RDO) [17]. These two algo-
rithms inherently embody the partial evaluations method with which GP-GOMEA is also
equipped, since they require the memorization of each node output. Differently from GP-
GOMEA and SGP, these former 2 algorithms always require the definition of fitness cases.

For eCGP, we consider the scalability reported in [14]. The performance is obtained
with an empirically pre-computed good population size and on a predefined maximum
tree height.

Both ILTI and (GP with) RDO rely on SB, a recent technique in which improvements
at the level of single fitness cases are sought. SB is applied top-down (from the root to the
leaves) and computes, for each node, a desired output O*. For the root, O* is the vector
that satisfies all fitness cases of the problem. The desired output of a child of the root

2.5. RESULTS & DISCUSSIONS 37

is computed by inverting the root function, using O* and the current output of its other
children as arguments. The design of inverted functions is not always straightforward, as
sometimes a solution does not exist (e.g., looking for an input for AND with desired output
1 when the other input is 0) or can assume any value (e.g., looking for an input for OR with
desired output 1 when the other input is 1). Among several differences, ILTT is an (1,1)-EA,
while RDO is population based. Here ILTI is used in the best performing configuration,
that is with a (maximum, when more are possible) library size of 450 full trees of height
2. Similarly, for RDO we adopt the best-performing configuration on Boolean problems
(named RDO,, in [17]), which uses a dynamic library of semantically-unique trees taken
from the subtrees in the population instead of a fixed-size library.

We propose two configurations for SGP: SGP y4r4m, With hand-picked population size
and initial tree height as typically done in literature, and SGPjs, enclosed in a scheme
similar to the IMS of GP-GOMEA. For the former, we set the initial tree height to 6 and
the maximum allowed one to 12. The population size for Order is set to 2”2 (easy prob-
lem), for Trap-3 and KU to 27 (difficult problem), and for Trap-4 to 2"+ (very difficult
problem), with n the problem size. As to the Boolean problems, the population size for
Comparator and Majority is set to 2> (medium difficulty). For Even Parity, known to
be difficult for SGP [3], the population size is 2" 7. For the 3, 6, and 11-bits Multiplexer
the population size is set to 256, 1024, and 4096, respectively. SGPjys works with no pa-
rameter specification, within a IMS scheme that differs from the one of GP-GOMEA in
the following aspects: (i) there is no common elitist solution among runs, nor a stopping
criteria related to it; (ii) a run performs 1 generation every 8 generations of the smaller
run; (iii) the initial tree height h is computed as the maximum tree height of GP-GOMEA
(Section 2.2.5), and the maximum height is h +4. We experimentally found that increasing
the intervals of the IMS is beneficial for SGPjys, since it performs much less evaluations
than GP-GOMEA (with any of the 3 linkage models) per generation. Furthermore, we set
a maximum tree height bigger than the initial tree height because the standard crossover
and mutation swap and generate subtrees of arbitrary height. For both SGP configura-
tions, we set tournament selection size to 4, probability of crossover to 0.9, probability
of mutation to 0.1, and reproduction of the best solution. Finally, we equip SGP with the
same caching method of node outputs used in GP-GOMEA, to perform partial evaluations.

2.5. RESULTS & DISCUSSIONS

Scalability graphs are provided in Figure 2.2 for the artificial problems, and Figure 2.3 for
the Boolean problems. GP-GOMEA, SGP, ILTI and RDO use partial evaluations. When
IEBL is applied, evaluations of BBs candidates are also counted, and the number of nodes
is obtained by recursively unwrapping encapsulated BBs.

ARTIFICIAL PROBLEMS

Results show that GP-GOMEA with LT as the linkage model (GP-GOMEA 1) is generally
the best performing algorithm in all metrics: number of evaluations, time, and size of the
final solution. On the easy Order problem, for which we run a limited number of instances,
no marked difference between both SGP configurations and GP-GOMEA with any link-
age model is observed. However, the more difficult the problem, the more GP-GOMEA 1
shows superior performance. On Trap-3, SGP 4rum markedly outperforms SGPpys, and

38 2. ScALABLE GENETIC PROGRAMMING BY GENE-POOL OPTIMAL MIXING

Evaluations Time [s] Nodes

Order
5?\)

4 6 8 10 12 14161820

4 6 8 10 12 14161820

P
Q
&
=
10°
6 12 24 48 72
108 — 168
107 ,',]
108 v 10* 1
10° 3 /IE
T 4 L 10 -
g 10° ; 10° S e T
e oo
10’ 10'
10°
107 10°
8 16 24 32 40 48 8 16 24 32 40 48 8 16 24 32 40 48
1010 10° 103
102 10*
137 ; 10° ’
10° 2 10 1) 10 3/
R 10° A 10" y a/E
2 10 10° L B /I/E
10 107! S 10!
i AR —
10 =
100 103
107 104 10°
3 5 7 9 N 3 5 709 1 3 5 79 M
Dimension Dimension Dimension
GP-GOMEA| | ———— GP-GOMEA| = = = = = SGPyys —H—
GP-GOMEAgy — — = eCGP ——— SGP,,,, — [l -

Figure 2.2: Average, maximum and minimum number of evaluations, time, and number
of nodes in the final solution for the artificial problems. The problem dimension for Or-
der, Trap-3, and Trap-4 is defined in terms of possible terminals. For KU, the problem
dimension is defined in terms of possible functions.

2.5. RESULTS & DISCUSSIONS 39

Evaluations Time [s] Nodes

Comparator

Even Parity

Majority

—
()
%
2
£
=
=
=
10° 10° 10°
10° 10’ 102 10° 10t 100 10 102 10° 10t 100 10 102 10° 10*
Dimension Dimension Dimension
GP-GOMEA | | = GP-GOMEA(j = = = = = SGPjys —f=— LTI —~A—— BDD —f—
GP-GOMEAgy — — = GP-GOMEA+IEBL —&— SGP,,,,, — [l] - RDO —A—

Figure 2.3: Average, maximum and minimum number of evaluations, time, and number of
nodes in the final solution for the Boolean problems. The problem dimension is defined
in terms of number of fitness cases.

40 2. ScALABLE GENETIC PROGRAMMING BY GENE-POOL OPTIMAL MIXING

performs slightly better than GP-GOMEA| . This result is possibly due to the immedi-
ate employment of a big population size in SGPp4ram and a good setting of the initial tree
height. On Trap-4 and KU, however, GP-GOMEA{ T scales better than any other algorithm,
showing an effective capability of learning and exploiting the problem structure. On the
evaluations of Order and Trap-3, the scalability of eCGP of O(n?-8¢) and O(n318) respec-
tively, as reported in [14], is shown. Although it may appear that GP-GOMEA; 1 performs
slightly worse than eCGP, it is important to remember that the performance of eCGP is
obtained on an empirically pre-computed good population size and on a predefined initial
tree height, whereas GP-GOMEA runs according to the IMS.

BOOLEAN PROBLEMS

On the Boolean problems, the difference between the linkage models LT and RT used for
GP-GOMEA is far less pronounced, suggesting that the LT is not capable of modeling key
linkage information to help increase efficiency substantially. This may well be because of
the high redundancy in the representation of solutions, and the consequential fact that
locus-based dependence is not the most important source of problem structure.

GP-GOMEA_ 1 and SGP s show similar scalability overall, with exception of Majority,
where SGPys performs best. Nonetheless, in all other cases GP-GOMEA[1 reaches the op-
timal solution faster and evolves much smaller solutions. This is also reflected when com-
paring scalability in terms of time: partial evaluations are much more beneficial for the
operators of SGP than for GOM (e.g., Figure 2.4 shows a comparison on how time scalabil-
ity is affected by partial evaluations in Majority). This is because GOM exchanges multiple
nodes at the same time which are not necessarily connected, requiring to re-compute the
output of the chain of parent nodes scattered in the solution. Different output caching
methods may thus be much more beneficial for GOM (e.g., storing hash-output of the
most recurrent subtrees). Moreover, GP-GOMEA typically needs much smaller popula-
tions than SGPps thanks to the extensive mixing trials performed by GOM, which is also
much less prone to bloat. These aspects are very beneficial in terms of memory usage:
on difficult problems like Trap-4 some runs of SGPjs need even 100 times more memory
than GP-GOMEA 1.

Another crucial observation from our results comes from the comparison of SGPys
with SGP 4ram. Whereas the former has inherent overhead due to multiple runs with in-
creasing population and tree size, the second sometimes fails to find the optimal solution
on complex problems. Although it is arguable that our parameter choice for SGP y4ram is
not optimal, some runs converge to a local minimum and are unable to escape it with the
sole aid of mutation. Instead, the employment of multiple runs, each starting on random
genetic material, dramatically increases the chances of finding the optimal solution. This
also explains the success of GP-GOMEA.

The state-of-the-art algorithms ILTI and RDO generally run faster and require less
evaluations than GP-GOMEA and SGP. It is worth noticing that these algorithms rely on
a fitness function which is de facto different: in the semantic fitness, improvements at the
level of single fitness cases are sought, whereas in its original specification the fitness is
defined as the sum of all correct fitness cases. Therefore, SB needs a decomposition of the
fitness to be defined, as well as the design of inverted functions, which compromises the
applicability of this powerful technique to general problems. Moreover, whereas SGP pqram

2.6. CONCLUSIONS 41

uses sub-optimal parameters, and GP-GOMEA and SGPjs run with the IMS, ILTTand RDO
use the best performing configurations reported. When comparing scalability, ILTI and
RDO are superior on Even Parity and Majority, but not on Comparator and Multiplexer.
In Comparator, the SB-based operators cause solutions to bloat even worse than the classic
operators of SGP, ultimately harming runtime. RDO has particularly poor performance on
Multiplexer, being unable to escape from a local minimum within 24 hours in some runs
of the 11-bits instance.

Lastly, we observe the effect of IEBL combined with the on average well-performing
GP-GOMEAL T, and see that it is either detrimental or very helpful. By encapsulating BBs
into new terminal and function nodes, the search space is increased consistently. If such
nodes represent partial solutions and can be readily combined into bigger partial solutions,
then the search improves. Otherwise, the search is harmed. In the Multiplexer problem, we
found that IEBL is not capable of learning any reasonably useful BBs, suggesting that the
entropy-based identification method cannot grasp the complex relationships between bits
present in this problem. In Comparator, IEBL does catch some relevant relationships: e.g.,
in the 6-bits instance, which outputs true when bgb1bs < bsbsbs, the BB which returns 1
only if b; = 0 and b; 3 = 1 is often identified. This BB represents the 2-bits Comparator
between equally significant bits. As another example, the BB returning 1 when b;bg are
set to 1 is learned, which is part of the solution for the case 011 < 100. However, the
expansion of the search space is so big that even learning seemingly-useful material ends
up being more detrimental than helpful. Similar considerations hold for the learning of
new function nodes. In Majority there is no specific pattern to learn, since no specific
relationships between bits are needed: the circuit outputs true as long as the majority
of bits is set to one. Finally, in Even Parity, IEBL really leads to excellent performance,
where in fact partial solutions can be combined to form bigger ones, e.g., two 2-bits Even
Parity solutions can be combined with XNOR, which is the function performing a 2-bits
Even Parity, to form the 4-bits one. Although the learning of BBs is noisy, resulting in a
big performance difference among best and worst runs, the scalability is the best among
all algorithms, with the number of evaluations increasing sublinearly with the number of
fitness cases.

A downside of IEBL is the size of solutions, which may be lowered by implementing
mechanisms to prefer shorter BBs. In the plot of the evaluations of Even Parity, we also
report the best performance we are aware of, obtained by the Binary Decision Diagrams
(BDD) [18]. BDD scales even better than GP-GOMEA| t+IEBL in evaluations. However,
this EA is specifically designed for Boolean problems, with a dedicated genotype (diagrams
assuming a fixed variable ordering of inputs) and particular parameter settings (population
size of 5, mutation-only), while GP-GOMEA|t+IEBL is a combination of a much more
general EA with a Boolean-dedicated mechanism for learning and exploiting BBs. For
future work, it would be interesting to attempt to automatically detect when the addition
of IEBL is useful so that highly negative effects in the performance of GP-GOMEA are
prevented.

2.6. CONCLUSIONS

In this chapter we presented GP-GOMEA, a novel, scalable, model-based approach to GP.
Our algorithm requires no parameter specification, which is important for making fair

42 2. ScALABLE GENETIC PROGRAMMING BY GENE-POOL OPTIMAL MIXING

10°
10*]
10°
5 GP 'GOMEALT, full evaluations =
— 10 -
©n
— 10t < GP-GOI\/IEALT, partial evaluations = = =
] 1
-
g 0 J“P 1 SGl:‘IMS, full evaluations -E_
= 10 e
101 / SGP IMS, partial evaluations 'E’
10
-3
10
10 10°

Number of fitness cases

Figure 2.4: Example of the contribution of partial evaluations in terms of time for the
Majority problem.

comparisons and for ease-of-use by practitioners. Even though GP-GOMEA is inherently
not-tuned, it shows competitive scalability when compared with the latest state-of-the-art
algorithms, based on semantic backpropagation. Moreover, while these algorithms need
fitness cases and inverted functions to be defined, GP-GOMEA does not have these re-
quirements, making it more generally applicable. Compared to SGP, GP-GOMEA exhibits
superior performance on structured problems, while, in general, it evolves much smaller
solutions and requires much less memory and time.

We further introduced a novel method to identify and encapsulate useful BBs into new
terminals and functions, termed IEBL. The novelty of this method is that it tries to harvest
information from the input-space on which fitness cases are defined. The combination of
IEBL with GP-GOMEA has been shown to be detrimental in non-modular problems, but
extremely efficient on a modular problem like Even Parity. In fact, IEBL helps tackling the
complexity of Even Parity to a point where the scalability of GP-GOMEA becomes less
than linear, which ultimately leads to solving the 14-bits instance in less than 1 hour.

ACKNOWLEDGMENTS

The authors acknowledge the Kinderen Kankervrij foundation for personnel financial sup-
port (project #187), and the Maurits and Anna de Kock foundation for financing a high
performance computing system. We thank prof. Tomasz P. Pawlak and prof. Krzysztof
Krawiec for assisting with reproducing experiments of RDO.

REFERENCES 43

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

[9]

(10]

(11]

[12]

(13]

(14]

R. A. Watson and T. Jansen, A building-block royal road where crossover is prov-
ably essential, in Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO) (ACM, 2007) pp. 1452-1459.

Y. Chen, T.-L. Yu, K. Sastry, and D. E. Goldberg, A survey of linkage learning tech-
niques in genetic and evolutionary algorithms, IIliGAL report 2007014 (2007).

J.R.Koza, Genetic Programming: on the programming of computers by means of natural
selection (MIT Press, 1992).

L. O. V. B. Oliveira, F. E. B. Otero, G. L. Pappa, and J. Albinati, Sequential symbolic
regression with genetic programming, in Genetic Programming Theory and Practice XII,
edited by R. Riolo, W. P. Worzel, and M. Kotanchek (Springer International Publish-
ing, Cham, 2015) pp. 73-90.

A. Dessi, A. Giani, and A. Starita, An analysis of automatic subroutine discovery in ge-
netic programming, in Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO) (Morgan Kaufmann Publishers Inc., 1999) pp. 996-1001.

P. J. Angeline and J. B. Pollack, Coevolving high-level representations, in Sante Fe In-
stitute Studies in the Sciences of Complexity, Vol. 17 (Addison-Wesley Publishing CO,
1994) pp. 55-55.

S. Roberts, D. Howard, and J. Koza, Evolving modules in genetic programming by
subtree encapsulation, in Genetic Programming (Springer, 2001) pp. 160—-175.

D. Jackson and A. P. Gibbons, Layered learning in Boolean GP problems, in European
Conference on Genetic Programming (Springer, 2007) pp. 148-159.

M. Keijzer, C. Ryan, and M. Cattolico, Run transferable libraries — learning functional
bias in problem domains, in Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO) (ACM, 2004) pp. 531-542.

D. Thierens and P. A. N. Bosman, Hierarchical problem solving with the linkage tree
genetic algorithm, in Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO) (ACM, 2013) pp. 877-884.

L. Breiman, J. H. Friedman, R. A. Olshen, and C.]. Stone, Classification and Regression
Trees (Wadsworth, 1984).

L. Gronau and S. Moran, Optimal implementations of UPGMA and other common clus-
tering algorithms, Information Processing Letters 104, 205 (2007).

J. C. Pereira and F. G. Lobo, Java implementation of a parameter-less evolutionary
portfolio, (2015), arXiv preprint arXiv:1506.08867.

K. Sastry and D. E. Goldberg, Probabilistic model building and competent genetic pro-
gramming, in Genetic Programming Theory and Practice (Springer, 2003) pp. 205-220.

44 REFERENCES

[15] E. E. Korkmaz and G. Ugoluk, Design and usage of a new benchmark problem for ge-
netic programming, in International Symposium on Computer and Information Sciences
(Springer, 2003) pp. 561-567.

[16] R. Ffrancon and M. Schoenauer, Memetic semantic genetic programming, in Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO) (ACM, 2015)
pp. 1023-1030.

[17] T. P. Pawlak, B. Wieloch, and K. Krawiec, Semantic backpropagation for designing
search operators in genetic programming, IEEE Transactions on Evolutionary Com-
putation 19, 326 (2015).

[18] R. M. Downing, Evolving binary decision diagrams using implicit neutrality, in IEEE
Congress on Evolutionary Computation (CEC), Vol. 3 (IEEE, 2005) pp. 2107-2113.

IMPROVING MODEL-BASED GENETIC
PROGRAMMING FOR SYMBOLIC
REGRESSION

The Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) is a model-based EA frame-
work that has been shown to perform well in several domains, including Genetic Programming
(GP). Differently from traditional EAs where variation acts blindly, GOMEA learns a model
of interdependencies within the genotype, i.e., the linkage, to estimate what patterns to prop-
agate. In this chapter, we study the role of Linkage Learning (LL) performed by GOMEA in
Symbolic Regression (SR). We show that the non-uniformity in the distribution of the geno-
type in GP populations negatively biases LL, and propose a method to correct for this. We also
propose approaches to improve LL when ephemeral random constants are used. Furthermore,
we adapt a scheme of interleaving runs to alleviate the burden of tuning the population size,
a crucial parameter for LL, to SR. We run experiments on 10 real-world datasets, enforcing a
strict limitation on solution size, to enable interpretability. We find that the new LL method
outperforms the standard one, and that GOMEA outperforms both traditional and seman-
tic GP. We also find that the small solutions evolved by GOMEA are competitive with tuned
decision trees, making GOMEA a promising new approach to SR.

The contents of this chapter are based on the following preprint: M. Virgolin, T. Alderliesten, C. Witteveen, and P.A.N. Bosman.
Improving model-based genetic programming for symbolic regression of small expressions. Accepted for publication in Evolu-
tionary Computation. Preprint arXiv:1904.02050, arXiv (2019).

45

https://arxiv.org/abs/1904.02050
https://arxiv.org/abs/1904.02050

46 3. IMPROVING MODEL-BASED GENETIC PROGRAMMING FOR SYMBOLIC REGRESSION

3.1. INTRODUCTION

Symbolic Regression (SR) is the task of finding a function that explains hidden relation-
ships in data, without prior knowledge on the form of such function. Genetic Program-
ming (GP) [1] is particularly suited for SR, as it can generate solutions of arbitrary form
using basic functional components.

Much work has been done in GP for SR, proposing novel algorithms [2-4], hybrids [5,
6], and other forms of enhancement [7, 8]. What is recently receiving a lot of attention
is the use of so-called semantic-aware operators, which enhance the variation process of
GP by considering intermediate solution outputs [9-11]. The use of semantic-aware op-
erators has proven to enable the discovery of very accurate solutions, but often at the cost
of complexity: solution size can range from hundreds to billions of components [9, 12].
These solutions are consequently impossible to interpret, a fact that complicates or even
prohibits the use of GP in many real-world applications because many practitioners de-
sire to understand what a solution means before trusting its use [13, 14]. The use of GP
to discover uninterpretable solutions can even be considered to be questionable in many
domains, as many alternative machine learning algorithms exist that can produce com-
petitive solutions much faster [15].

We therefore focus on SR when GP is explicitly constrained to generate small-sized
solutions, i.e. mathematical expressions consisting of a small number of basic functional
components, to increase the level of interpretability. With size limitation, finding accurate
solutions is particularly hard. It is not without reason that many effective algorithms work
instead by growing solution size, e.g., by iteratively stacking components [11, 16].

A recurring hypothesis in GP literature is that the evolutionary search can be made
effective if salient patterns, occurring in the representation of solutions (i.e., the genotype),
are identified and preserved during variation [17]. It is worth studying if this holds for SR,
to find accurate small solutions.

The hypothesis that salient patterns in the genotype can be found and exploited is
what motivates the design of Model-Based Evolutionary Algorithms (MBEAs). Among
them, the Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) is recent EA that
has proven to perform competitively in different domains: discrete optimization [18, 19],
real-valued optimization [20], but also grammatical evolution [21], and, the focus of this
chapter, GP [22, 23]. GOMEA embodies within each generation a model-learning phase,
where linkage, i.e. the inter-dependency within parts of the genotype, is modeled. During
variation, the linkage information is used to propagate genotype patterns and avoid their
disruption.

The aim of this chapter is to understand the role of linkage learning when tackling
SR, and consequently improve the GP variant of GOMEA (GP-GOMEA), to find small and
accurate SR solutions for realistic problems. We present three main contributions. First,
we propose an improved linkage learning approach, that, differently from the original one,
is unbiased with respect to the way the population is initialized. Second, we analyze how
linkage learning is influenced by the presence of many different constant values, sampled
by Ephemeral Random Constant (ERC) nodes [17], and explore strategies to handle them.
Third, we introduce improvements to GP-GOMEA’s Interleaved Multistart Scheme (IMS),
a scheme of multiple evolutionary runs of increasing evolutionary budget that executes
them in an interleaved fashion, to better deal with SR and learning tasks in general.

3.2. RELATED WORK 47

The structure of this chapter is as follows. In Section 3.2 we briefly discuss related
work on MBEAs for GP. In Section 3.3, we explain how GP-GOMEA and linkage learning
work. Before proceeding with the description of the new contributions and experiments,
Section 3.4 shows general parameter settings and datasets that will be used along the chap-
ter. Next, we proceed by interleaving our findings on current limitations of GP-GOMEA
followed by proposals to overcome such limitations, and respective experiments. In other
words, we describe how we improve linkage learning one step at a time. In particular,
Section 3.5 presents current limitations of linkage learning, and describes how we im-
prove linkage learning. Strategies to learn linkage efficiently and effectively when ERCs
are used are described in Section 3.6. We propose a new IMS for SR in Section 3.7, and use
it in Section 3.8 to benchmark GP-GOMEA with competing algorithms: traditional GP, GP
using a state-of-the-art semantic-aware operator, and the very popular decision tree for
regression [24]. Lastly, we discuss our findings and draw conclusions in Section 3.9.

3.2. RELATED WORK

We differentiate today’s MBEAs into two classes: Estimation-of-Distribution Algorithms
(EDAs), and Optimal Mixing EAs (OMEAs). EDAs work by iteratively updating a prob-
abilistic model of good solutions, and sampling new solutions from that model. OMEAs
attempt to capture linkage, i.e., inter-dependencies between parts of the genotype, and
proceed by variating solutions with mechanisms to avoid the disruption of patterns with
strong linkage.

Several EDAs for GP have been proposed so far. References [25] and [26] are rela-
tively recent surveys on the matter. Two categories of EDAs for GP have mostly emerged
in the years: one where the shape of solutions adheres to some template to be able to
estimate probabilities of what functions and terminals appear in what locations (called
prototype tree for tree-based GP) [27-30], and one where the probabilistic model is used to
sample grammars of rules which, in turn, determine how solutions are generated [31-34].
Research on EDAs for GP appears to be limited. The review of [26] says, quoting: “Unfor-
tunately, the latter research [EDAs for GP] has been sporadically carried out, and reported in
several different research streams, limiting substantial communication and discussion”.

Concerning symbolic regression, we crucially found no works where it is attempted
on realistic datasets (we searched among the work reported by the surveys and other
recent work cited here). Many contributions on EDAs for GP have been validated on hard
problems of artificial nature instead, such as Royal Tree and Deceptive Max [35]. Some real-
world problems have been explored, but concerning only a limited number of variables [36,
37]. When considering symbolic regression, at most synthetic functions or small physical
equations with only few (< 5) variables have been considered (e.g., by [34, 38]).

The study of OMEAs has emerged the first decade of the millennium in the field of
binary optimization, where it remains mostly explored to date [39-42]. As to GP, GOMEA
is the first OMEA ever brought to GP. GP-GOMEA was first introduced in [22] (Chapter 2),
to tackle classic yet artificial GP benchmark problems (including some of the ones men-
tioned before), where the optimum is known. The IMS, largely inspired on [43], was also
proposed, to relieve the user from the need of tuning the population size. Population sizing
is particularly crucial for MBEAs: the population needs to be big enough for probability
or linkage models to be reliable, yet small enough to allow efficient search [44].

48 3. IMPROVING MODEL-BASED GENETIC PROGRAMMING FOR SYMBOLIC REGRESSION

GP-GOMEA has also seen a first adaptation to SR, to find small and accurate solutions
for a clinical problem where interpretability is important [23]. There, GP-GOMEA was
engineered for the particular problem, and no analysis of what linkage learning brings to
SR was performed. Also, instead of using the IMS, a fixed population size was used. This
is because the IMS was originally designed to enable benchmark problems to be solved
to optimality (Chapter 2). No concern on generalization of solutions to unseen test cases
was incorporated.

As to combining OMEAs with grammatical evolution, [21] also employed GOMEA,
to attempt to learn and exploit linkage when dealing with different types of pre-defined
grammars. In that work, only one synthetic function was considered for symbolic regres-
sion, among other four benchmark problems.

There is a need of assessing whether MBEAs can bring an advantage to real-world
symbolic regression problems. This work attempts to do this, by exploring possible lim-
itations of GP-GOMEA and ways to overcome them, and validating experiments upon
realistic datasets with dozens of features and thousands of observations.

3.3. GENE-POOL OPTIMAL MIXING EVOLUTIONARY ALGORITHM
FOR GP

Three main concepts are at the base of (GP-)GOMEA: solution representation (genotype),
linkage learning, and linkage-based variation. These components are arranged in a com-
mon outline that encompasses all algorithms of the GOMEA family.

Algorithm 3.1 shows the outline of GOMEA. As most EAs, GOMEA starts by initial-
izing a population P, given the desired population size nP°P. The generational loop is
then started and continues until a termination criterion is met, e.g., a limit on the number
of generations or evaluations, or a maximum time. Lines 4 to 8 represent a generation.
First, the linkage model is learned, which is called Family of Subsets (FOS) (explained
in Sec. 3.3.2). Second, each solution P; is used to generate an offspring solution O; by
the variation operator Gene-pool Optimal Mixing (GOM). Last, the offspring replace the
parent population. Note the lack of a separate selection operator. This is because GOM
performs variation and selection at the same time (see Sec 3.3.3).

For GP-GOMEA, an extra parameter is needed, the tree height (or, equivalently, tree
depth) h. This is necessary to determine the representation of solutions, as described in
the following Section 3.3.1.

Algorithm 3.1 Outline of GOMEA

1 procedure runGOMEA(nP°P)
P +initializePopulation(nP®)
while terminationCriteriaNotMet() do
F <1learnFOS(P)
O« 0
fori e {1,...,nP°?} do
O; +GOM(P;, P, F)
P+ O

©® NN AW N

3.3. GENE-POOL OPTIMAL MIXING EVOLUTIONARY ALGORITHM FOR GP 49

Figure 3.1: Example of tree for GP-GOMEA with h = 3 and r = 2. While 15 nodes are
present, the nodes that influence the output are only 7: the gray nodes are introns.

3.3.1. SOLUTION REPRESENTATION IN GP-GOMEA

GP-GOMEA uses a modification of the tree-based representation [1] which is similar to
the one used by [27]. While typical GP trees can have any shape, GP-GOMEA uses a fixed
template, that allows linkage learning and linkage-based variation to be performed in a
similar fashion as for other, fixed string-length versions of GOMEA.

All solutions are generated as perfect r-ary trees of height £, i.e., such that all non-leaf
nodes have exactly r children, and leaves are all at maximum depth %, with r being the
maximum number of inputs accepted by the functions (arity) provided in the function set
(e.g., for {+,—, x}, r = 2), and h chosen by the user. Note that, for any node that is
not at maximum depth, 7 child nodes are appended anyway: no matter if the node is a
terminal, or if it is a function requiring less than r inputs (in this case, the leftmost nodes
are used as inputs). Some nodes are thus introns, i.e., they are not executed to compute
the output of the tree. It follows that while trees are syntactically redundant, they are
not necessarily semantically so. All trees of GP-GOMEA have the same number of nodes,

PhFl_q

equal to ¢ = Z?:o rt = . Figure 3.1 shows a tree used by GP-GOMEA.

r—1

3.3.2. LINKAGE LEARNING
The linkage model used by GOMEA algorithms is called the Family of Subsets (FOS), and
is a set of sets:

F={F,. . Fp}FC{l,.. I} (3.1)

Each F; (called FOS subset) contains indices representing locations in the genotype. For
GP-GOMEA, these indices represent node locations. It is sufficient to choose a parsing
order to identify the same node locations in all trees, since trees share the same shape.

In GOMEA, linkage learning corresponds to building a FOS. Different types of FOS
exist in literature, however, the one recommended as default is the Linkage Tree (LT),
by, e.g., [22, 40]. The LT captures linkage on hierarchical levels. An LT is learned every
generation, from the population. To assess whether linkage learning plays a key role,
i.e. whether it is better than randomly choosing linkage relations, we also consider the
Random Tree (RT) [22].

50 3. IMPROVING MODEL-BASED GENETIC PROGRAMMING FOR SYMBOLIC REGRESSION

LINKAGE TREE

The LT arranges the FOS subsets in a binary tree structure representing hierarchical levels
of linkage strength among genotype locations. The LT is built bottom-up, i.e., from the
leaves to the root. The bottom level of the LT, i.e., the leaves, assume that all genotype
locations are independent (no linkage), and is realized by instantiating FOS subsets to
singletons, each containing a genotype location ¢,Vi € {1,...,¢}.

To build the next levels, mutual information is used as a proxy for linkage strength.
Mutual information is a sensible choice to represent linkage strength because it expresses,
considering e.g. the pair (7, j) of genotype locations as random variables, the amount of
information gained on ¢ given observations on j (and vice versa). In this light, the popula-
tion can be considered as a set of realizations of the genotype. In particular, the realizations
of each genotype location ¢ are what symbols appear at location ¢ in the population. In a
binary genetic algorithm, symbols are either ‘0’ or ‘1’, while in GP, symbols correspond
to the types of function and terminal nodes, e.g., ‘+’, ="z’ z5’. In other words, random
variables can assume as many values as there are possible symbols in the instruction set’.

Now, the next step is to compute the mutual information between each and every pair
of locations in the genotype of the entire population. Mutual information between a pair
of locations can be computed after measuring entropy for single locations H(7), and the
joint entropy for locations pairs, H(i, 7) (this aspect will be used in Sec. 3.5):

MI(4, j) = H(i) + H(j) — H({, j), where

2
H(i) = — Y P;logP;, H(i,j)=—» PjlogP;, G2
and P; (P;;) is the (joint) probability distribution over the symbols at location(s) % (2, 7),
which can be estimated by counting occurrences of symbol types in the population geno-
type. This requires to loop over the entire population, and to use nested loops over location
pairsi € {1,...,¢} and j € {i,..., ¢}, leading to a time complexity of O(nP°®¢?). The
contribution to the entropy of null probability cases (—0 log 0) is set to 0.

Given mutual information between location pairs, we approximate linkage among
higher orders of locations using the Unweighted Pair Group Method with Arithmetic Mean
(UPGMA) [45]. To ease understanding, we now provide an explanation of how UPGMA
is used to build the rest of the LT that is primarily meant to be intuitive. In practice, we
do not use an implementation that strictly adheres to the following explanation, but we
use a more advanced algorithm that achieves the same result while having lower time
complexity, called the Reciprocal Nearest Neighbor algorithm (RNN). For details on RNN,
see [45].

UPGMA operates in a recursive, hierarchical fashion. Consider each singleton contain-
ing a different genotype location ¢ as a cluster C;, and the mutual information between
location pairs as a measure of similarity S between clusters, i.e., S(C;, C;) := MI(1, 7).
Let C be the collection of clusters to be parsed, initially containing all location singletons.
Every iteration, firstly a new cluster Cj« U C~ is formed by joining the clusters Cjx, Cj
that have maximal similarity. Secondly, C;» and C}j« are removed from C, and C;» U C
is inserted in C. When this happens, a FOS subset is added in the LT that corresponds to

More symbols can be possible than the number of instructions in case ERCs are used, since instantiating an
ERC in a solution results in a constant being randomly sampled.

3.3. GENE-POOL OPTIMAL MIXING EVOLUTIONARY ALGORITHM FOR GP 51

(contains the same locations of) C;« U Cj+, as parent of the subsets that represent Cj« and
Cj». Thirdly, the similarity between Cj+ U C» and every other cluster C}, is computed,
with:

I (O
|Cir| +1C;|

|Cj-|

i J

S(Ck,C;) + S(Cx, Cj). (3.3)

Iterations are repeated until no more merging is possible, i.e., C = (). This necessarily
happens in 2¢ — 1 iterations. Note that the last iterations sets the root of the LT, i.e., the
subset that contains all genotype locations: {1, ..., ¢}. Note also that the structure of the
LT is related to the structure of the tree-like genotype of GP solutions only in the sense
that the LT contains 2/ — 1 FOS subsets and the genotype has length ¢, but it is not a
one-to-one match to the structure of the genotype.

With the efficient implementation of UPGMA by RNN, the time complexity to build
the LT remains bounded by O(nP°P¢?).

RANDOM TREE

While linkage learning assumes an inherent structural inter-dependency to be present
within the genotype that can be captured in an LT, such hypothesis may not be true.
In such a scenario, using the LT might be not better than building a similar FOS in a
completely random fashion. The RT is therefore considered to test this. The RT shares
the same tree-like structure of the LT, but is built randomly rather than using mutual
information (taking O(¢)). We use the RT as an alternative FOS for GP-GOMEA.

Algorithm 3.2 Pseudocode of GOM

1 procedure GOM(P;, P, F)
Bi <~ Pi; fo, < fPi; Oz — P1
F' <—randomShuffle(F")
for F; € ' do
D <—pickRandomDonor (P)
O; <overrideNodes(0;, D, Fj)
if Oz #* Bz then
fo, <—computeFitness(O;)
if fo, < fp, then #Assumption: minimization of f
B; < Oi; [, < fo,
else
Oi < Bi; fo, < [s;

O 0 NN s W N

O —
N = O

else

—_ -
AW

3.3.3. GENE-POOL OPTIMAL MIXING

Once the FOS is learned, the variation operator GOM generates the offspring population.
GOM varies a given solution P; in iterative steps, by overriding the nodes at the locations
specified by each F}; in the FOS, with the nodes in the same locations taken from random

52 3. IMPROVING MODEL-BASED GENETIC PROGRAMMING FOR SYMBOLIC REGRESSION

FJ:{35}

Figure 3.2: Example of variation step performed by GOM for trees with h = 2. Squares
on top of each node indicate the node location according to pre-order traversal (depth-
first). GOM replaces the nodes of O; of which the location is specified by Fj, with the
homologous nodes of D (blue contour).

donors in the population. Selection is performed within GOM in a hill-climbing fashion,
i.e., variation attempts that result in worse fitness are undone.

The pseudo-code presented in Algorithm 3.2 describes GOM in detail. To begin, a
backup B; of the parent solution P; is made, including its fitness, and similarly an offspring
solution O; = P; is created. Next, the FOS F' is shuffled randomly: this is to provide
different combinations of variation steps along the run and prevent bias. For each set
of node locations F, a random donor D is then picked from the population, and O; is
changed by replacing the nodes specified by I; with the homologous ones from D. This
process is exemplified in Figure 3.2. It is then assessed whether at least one (syntactic) non-
intron node of the tree has been changed by variation (indicated by #* in line 7). When
that is not the case, O; will have the same behavior as B;, thus the fitness is necessarily
identical. Otherwise, the new fitness fo, is computed: if not worse than the previous one,
the change is kept, and the backup is updated, otherwise the change is reversed.

Note that if a change results in f», = fg,, the change is kept. This allows ran-
dom walks in the neutral fitness landscape [46, 47]. Note also that differently from tradi-
tional subtree crossover and subtree mutation [1], GOM can change unconnected nodes
at the same time, and keeps tree height limited to the initially specified parameter h. Fi-
nally, GOM does not consider any FOS subset that contains all node locations, i.e., F; =
{1, ..., ¢}, as using such subset would mean to entirely replace O; with D.

3.4. GENERAL EXPERIMENTAL SETTINGS

We now describe the general parameters that will be used in this chapter. Table 3.1 re-
ports the parameter settings which are typically used in the following experiments, unless
specified otherwise. The notation x represents the matrix of feature values. We use the
Analytic Quotient (AQ) [48] instead of protected division. This is because the AQ is con-
tinuous in 0 for the second operand: x1 +ag 22 1= 21//1 + x% Albeit continuity is not
needed by many GP variation operators (including GOM), it is useful at prediction time:
[48] show that using the AQ helps generalization (whereas using protected division does
not). However, the AQ may be considered relatively hard to interpret.

As mentioned in the introduction, we focus on the evolution of solutions that are
constrained to be small, to enable interpretability. We choose h = 4 because this results

3.4. GENERAL EXPERIMENTAL SETTINGS 53

Table 3.1: General parameter settings for the experiments.

Parameter Setting
Function set {+,—, X, +a0}
Terminal set x U {ERC}
ERC bounds [min x, max x|
Initialization for GP-GOMEA Half-and-Half as in [23]
Tree height h 4
Train-validation-test split 50%-25%-25%
Experiment repetitions 30
in relatively balanced trees with up to 31 nodes (since 7 = 2). We consider this size

limitation a critical value: for the given function set, we found solutions to be already
borderline interpretable for us (this is discussed further in Sec. 3.9). Larger values for h
would therefore play against the aim of this study. When benchmarking GP-GOMEA in
Section 3.8, we also consider h = 3 and h = 5 for completeness.

We consider 10 real-world benchmark datasets from literature [12] that can be found
on the UCI repository? [49] and other sources®. The characteristics of the datasets are
summarized in Table 3.2.

We use the linearly-scaled Mean Squared Error (MSE) to measure solution fitness [7],
as it can be particularly beneficial when evolving small solutions. This means a fast (cost
O(n) with n number of dataset examples) linear regression is applied between the target y
and the solution prediction g prior to computing the MSE. We present our results in terms

of variance-Normalized MSE (NMSE), i.e., ijsfr((yﬁ) , so that results from different datasets

are on a similar scale.

To assess statistical significance when comparing the results of multiple executions
of two algorithms (or configurations) on a certain dataset, we use the Wilcoxon signed-
rank test [50]. This test is set up to compare competing algorithms based on the same
prior conditions. In particular, we employ pairs of executions where the dataset is split
into identical training, validation, and test sets for both algorithms being tested. This is
because the particular split of data determines the fitness function (based on the training
set), and the achievable generalization error (for the validation and test sets). We consider a
difference to be significant if a smaller p-value than 0.05/4 is found, with 5 the Bonferroni
correction coefficient, used to prevent false positives. If more than two algorithms need to
be compared, we first perform a Friedman test on mean performance over all datasets [50].
We use the symbols A, ¥ to respectively indicate significant superiority, and inferiority
(absence of a symbol means no significant difference). The result next to the symbol A (V)
signifies a result being better (worse) than the result obtained by the algorithm that has
the same color of the symbol. Algorithms and/or configurations are color coded in each
table reporting results (colors are color-blind safe).

2https://archive.ics.uci.edu/ml/index.php
3https://goo.gl/tn6Zxv

54 3. IMPROVING MODEL-BASED GENETIC PROGRAMMING FOR SYMBOLIC REGRESSION

Table 3.2: Regression datasets used in this work.

Name Abbreviation # Features # Examples
Airfoil Air 5 1503
Boston housing Bos 13 506
Concrete compres. str. Con 8 1030
Dow chemical Dow 57 1066
Energy cooling EnC 8 768
Energy heating EnH 8 768
Tower Tow 25 4999
Wine red WiR 11 1599
Wine white Wiw 11 4898
Yacht hydrodynamics Yac 6 308

3.5. IMPROVING LINKAGE LEARNING FOR GP

In previous work on GP-GOMEA, learning the LT was performed the same way it is done
for any discrete GOMEA implementation, i.e. by computing the mutual information be-
tween pairs of locations (4, j) in the genotype (Eq. 3.2) [22]. However, the distribution
of node types is typically not uniform when a GP population is initialized (e.g., function
nodes never appear as leaves). In fact, this depends on the cardinality of the function and
terminal sets, on the arity of the functions, and on the population initialization method
(e.g., Full, Grow, Half-and-Half, Ramped Half-and-Half [51]). Note that it does not depend
on the particular dataset in consideration (except in that the number of features deter-
mines the size of the terminal set). The lack of uniformity in the distribution leads to the
emergence of mutual information between particular parts of the genotype. Crucially, this
mutual information is natural to the solution representation, the sets of symbols and the
initialization process.

If mutual information is used to represent linkage, then linkage will already be ob-
served at initialization. However, it is reasonable to expect no linkage to be present in an
initialized population, as evolution did not take place yet. Figure 3.3 shows the mutual
information matrix between pairs of node locations in an initial population of 1, 000, 000
solutions with maximum height & = 2, using Half-and-Half, a function set of size 4 with
maximum number of inputs » = 2, and a terminal set of size 6 (no ERCs are used). Each
tree contains exactly 7 nodes. We index node locations with pre-order tree traversal, i.e.,
1 is the root, 2 its first child, 5 its second child, 3,4 are (leaves) children of 2, and 6,7
are (leaves) children of 5. Nodes at locations 2 and 5 can be functions only if a function
is sampled at node 1. It can be seen that the mutual information matrix of location pairs
(correctly) captures the non-uniformity in the initial distribution (i.e., larger mutual infor-
mation values are present between non-leaf nodes). Using mutual information directly as
a proxy for linkage may be undesirable.

3.5.1. BIASING MUTUAL INFORMATION TO REPRESENT LINKAGE

We propose to overcome the aforementioned problem by measuring linkage with a mod-
ified version of the mutual information, such that no linkage is measured at initialization.

3.5. IMPROVING LINKAGE LEARNING FOR GP 55

MI, nP% = 106

=0.081

0.015 0.010 geNeyf§ 0.009 0.011
0.073

0.015 0.013 geNM«iN 0.012 0.007 0.065

0.057

0.015 0.015 0.008 0.011 0.004 0.008

—0.049

4 0.010 0.013

CJ 0.076 0.081 eNexNS

6 0.009 0.012 0.004 0.008

0.012

0.008 0.004 - 0.041

-0.032
0.007
-0.024
-0.016
7 0.011 0.007 0.008 0.004 —0.008

-0.000
1 2 3 4 5 6 7

Figure 3.3: Mutual information matrix between pairs of locations in the genotype (x and
y labels). Darker blue represents higher values. The matrix is computed for an initial-
ized population of size 10°. The values suggest the existence of linkage even though no
evolution has taken place yet.

Our hypothesis is that, if we apply such a correction so that no patterns are identified
at initialization, the truly salient patterns will have a bigger chance of emerging during
evolution, and better results will be achieved.

Let us consider the scenario where, at initialization, symbols are uniformly distributed.
For example, this typically happens in binary genetic algorithms. The mutual information
between pairs of genotype locations that is expected at initialization, i.e., at generation g =
1 before variation and selection, will then correspond to the identity matrix: MI?|,—1 = I
(assuming binary symbols and mutual information in bits as well as a sufficiently large
population size). This mutual information matrix is suitable to represent linkage as no
linkage should be present at initialization.

We propose to adopt a biased mutual information matrix MI, (i, j) to represent the
linkage between a pair of genotype locations (4, j), that has the property:

M) (3,) |g=1 = 1, (3.4)

no matter the actual distribution of the initial population.

To this end, we use Equation 3.2, i.e., we manipulate the entropy terms, to represent
maximal randomness to be present at initialization for each genotype location. In particu-
lar, we propose to use biased entropy metrics such that HY (¢)|g=1 = 1 and H (¢, j)|g=1 =
2 (for i # j), since

MIG (i,) lg=1 = (Hy (1) + Hy (7) — Hy (4, 5)) lg=1

L, (3.5)
=14+1-2=0 (for i # j, else 1).

We propose to use linear biasing coefficients 3; (8;, ;) to have the general biased entropy for
any generation g as Hj (1) = 8;H(¢) and H] (i, j) = 8, jH(i, j), with §; = (Hg(i)|g:1)71
and 3; ; = 2 (H?(4,) |g:1)_1 to enforce maximal randomness at initialization.

56 3. IMPROVING MODEL-BASED GENETIC PROGRAMMING FOR SYMBOLIC REGRESSION

To determine the beta coefficients exactly means to know the true distribution inferred
by the sampling process used to sample the initial population, and thus the true initial
entropy for each genotype location. However, this is generally not trivial to determine for
GP, since a number of factors need to be considered. For example, if the Ramped Half-and-
Half initialization method is used, what symbol is sampled at a location depends on the
chance to use Full or Grow, the chance to pick the function or the terminal set based on
the depth, the size of these sets, and possibly other problem-specific factors. Hence, we
propose to simply approximate the 3 coefficients by using the H(i)|,—1 measured on the
initial population, assuming the population to be large enough.

Summing up, the pairwise linkage estimation we propose to use at generation g, for a
pair of locations (4, j), will be:

MI (i, j) = BiH? (i) + B;H(§) — Bi ;H (i,). (3.6)
The tilde in b is to remark that this is an approximation.

ME, nPP = 10! ME, nPP = 10°
1.032

1 0.000 -0.382 -0.461 -0.787 -0.561 -0.669 -0.525 0.850 1

0.016 0.013 -0.008 0.016 0.011

2 -0.382 -0.291 -0.026 -0.028 -0.051 -0.023 0.668 5 . 0.013 0.019 -0.018 0.003 0.004

0.486

-0.121 3 0.016
0.304

3 -0.461 - -0.476 -0.207 -0.233 0.013 0.005 0.002 0.002 0.002

0.002

4 -0.787 [-0.026 0.002 0.002 -0.485

-0.476 JUEELN 0.065 -0.129 -0.123 4 0.013 0.019 0.005
—--0.059

0.067 5 -0.008 -0.018 0.002
--0.241

_ 0423 6 0.016 0.003 0.002 0.002

5 -0.561 -0.028 -0.207 0.011

6 -0.669 [=0:051% -0.233 Nuplil:§ -0.116

7 -0.525-0.023 -0.121 -0.129 0.067 -

0.065 EoyPLy -

“0605 ;0011 0.004 0002 0.002

--0.787
1 2 3 4 5 6 7 1 2 3 4 5 6 7

Figure 3.4: Mutual information matrices at the second generation using our biasing
method to better represent linkage, with population size of 10 (left), and of 10° (right)
for a particular run of GP-GOMEA. The rightmost matrix is closest to the identity I. A
different color scaling is used in the two images.

3.5.2. ESTIMATION OF LINKAGE BY MI;
As a preliminary step, we observe what linkage values are obtained between pairs of geno-
type locations by using MI;. For conciseness, in the following we denote MIg (4,3)|g=r
with Mlg(i, j). We show the MI matrix computed at the second generation of a GP-
GOMEA run on the dataset Yac (MI}) = I by construction). We do this for two population
sizes, nP°? = 10 and nP°? = 10°. We expect that, the bigger nP°P is, the closer MI% isto [.
We use the parameters of Table 3.1, a terminal set of size 6 (the features of Yac, no ERC)
and h = 2,1e. £ = 7nodes per tree. Figure 3.4 shows the biased mutual information matrix
between location pairs, for the two population sizes. It can be seen that the values can be
lower than 0 or bigger than 1. However, while this is particularly marked for nP°? = 10,
with minimum of -0.787 and maximum of 1.032, it becomes less evident for nP°? = 105,
with minimum of -0.018 and maximum of 0.989. The fact that MI% ~ I for nP°P = 10°

3.5. IMPROVING LINKAGE LEARNING FOR GP 57

is because, with such a large population size, considerable diversity is still present in the
second generation.

3.5.3. EXPERIMENT: LT-MI; vs. LT-MI vs. RT

We now test the use of MI; over the standard MI for GP-GOMEA with the LT. We denote
the two configurations with LT-MI; and LT-MI. We also consider the RT to see if mutual
information drives variation better than random information.

We set the population size to 2000 as a compromise between having enough samples
for linkage to be learned, and meeting typical literature values, which range from hundreds
to a few thousands. We use the function set of Table 3.1, and a tree height 2~ = 4 (thus
¢ = 31). We set a limit of 20 generations, which corresponds to approximately 1200
generations of traditional GP, as each solution is evaluated up to 2¢ — 2 times (size of the
LT minus its root and non-meaningful changes, see Sec. 3.3.2 and 3.3.3).

The training and test NMSE performances are reported in Table 3.3. The Friedman test
results in significant differences along training and test performance. GP-GOMEA with
LT-MIj is clearly the best performing algorithm, with significantly lower NMSE compared
to LT-MI on 8/10 datasets when training, and 7/10 at test time. It is always better than
using the RT when training, and in 9/10 cases when testing. The LT-MI is comparable
with the RT for these problems.

The result of this experiment is that the use of the new MI; to build the LT simply
enables GP-GOMEA to perform a more competent variation than the use of ML Also,
using the LT this way leads to better results than when making random changes with the
RT. Figure 3.5 shows the evolution of the training NMSE for the dataset Yac. It can be seen
that the LT-MI; allows to quickly reach smaller errors than the other two FOS types. We
observed similar training patterns for the other datasets (not shown here).

In the remainder, when we write “LT”, we refer to LT-MI;.

Table 3.3: Median NMSE of 30 runs for GP-GOMEA with LT-MI;, LT-MI, and RT.

Training Test

Dataset LT-MI; LT-MI RT LT-MI; LT-MI RT
Air 299 AA 312V 327V 31.8 AA 348V 340V
Bos 154AA 154VA 175VV 240VY 230A 22.5 A
Con 17.5AA 185VA 190VY 187 AA 196VA 201VY
Dow 209VA 203 AA 240VYV 226 VA 21.1AA 260VV
EnC 842 AA 9683VV 9.09VaA 918 AA 107VV 103VA
EnH 624 AA 644VV 640VA 650 AA 7.10VYV 670VA
Tow 125VA 125AA 131VY 13.0 A 128 A 132VYVY
WiR 603 AA 609VA 61.2VV 625 AA 630V 631V
Wiw 68.1AA 684V 68.7V 69.1 AA 69.7VV 695VA

Yac 034 AA 037V 036V 0.58 AA 0.62VVY 0.62VA

58 3. IMPROVING MODEL-BASED GENETIC PROGRAMMING FOR SYMBOLIC REGRESSION

4 8 12 16 20
Generations

Figure 3.5: Median fitness of the best solution of 30 runs on Yac, for LT-MI;, LT-MI, and
RT (10* and 90'" percentiles in shaded area).

3.5.4. EXPERIMENT: ASSESSING PROPAGATION OF NODE PATTERNS

The previous experiment showed that using linkage-driven variation (LT) can be favorable
compared to random variation (RT). This seems to confirm the hypothesis that, in certain
SR problems, salient underlying patterns of nodes exist in the genotype that can be ex-
ploited. Another aspect that can be considered with respect to such hypothesis is how
final solutions look: if linkage learning leads to the propagation of salient node patterns,
different runs might result in similar solutions.

Therefore, we now want to assess whether the use of the LT has a bigger chance to lead
to the discovery of a particular best-of-run solution, compared to the use of the RT. We
use the same parameter setting as described in Section 3.5.3, but perform 100 repetitions.
While each run uses a different random seed (e.g., for population initialization), we fix
the dataset split, as changing the training set results in changing the fitness function. We
repeat the 100 runs on 5 random dataset splits, on the smallest dataset Yac. Together with
nP° = 2000 as in the previous experiment, we also consider a doubled nP°? = 4000.

Table 3.4 reports the number of best found solutions that have at least one duplicate,
i.e. their genotype is semantically equivalent (e.g., x1 + x2 = 22 + x1), along different
runs for 5 random splits of Yac (semantic equivalence was determined by automatic tests*
followed by manual inspection). It can be seen that the LT finds more duplicate solutions
than the RT, by a margin of around 30% (difference between averages). Figure 3.6 shows
the distribution of solutions found for the second dataset split with nP°P = 4000, i.e. where
both the LT and the RT found a large number of duplicates. The LT has a marked chance
of leading to the discovery of a particular solution, up to one-fourth of the times. When
the RT is used, a same solution is found only up to 6 times out of 100.

This confirms the hypothesis that linkage-based variation can propagate salient node

patterns more than random variation should such patterns exist, enhancing the likelihood
of discovering particular solutions.

“Including the use of symbolic simplification with https://andrewclausen.net/computing/deriv.
html

https://andrewclausen.net/computing/deriv.html
https://andrewclausen.net/computing/deriv.html

3.6. EPHEMERAL RANDOM CONSTANTS & LINKAGE 59

Table 3.4: Percentage of best solutions with duplicates found by GP-GOMEA with LT and
RT for different splits of Yac.

nP°P = 2000 nP°P = 4000
Split LT RT LT RT
1 36 18 44 15
2 42 12 49 21
3 40 7 43 8
4 43 8 45 25
5 36 16 49 16
Avg. 39 12 46 17
25 25
20 20
w
£ 15 15
S
410 10
i L—“ﬂJ—————L M
#* 5 5
0 0
Solutions Solutions

Figure 3.6: Distribution of best found solutions for 100 runs by using the LT (left) and the
RT (right) with nP°? = 4000 on the second dataset split of Yac.

3.6. EPHEMERAL RANDOM CONSTANTS & LINKAGE
In many GP problems, and in particular in SR, the use of ERCs can be very beneficial [17].
An ERC is a terminal which is set to a constant only when instantiated in a solution. In
SR, this constant is commonly sampled uniformly at random from a user-defined interval.
Because every node instance of ERC is a different constant, linkage learning needs to
deal with a large number of different symbols. This can lead to two shortcomings. First,
a very large population size may be needed for salient node patterns to emerge. Second,
data structures used to store the frequencies of symbols grow really big and become slow
(e.g., hash maps). We explore three strategies to deal with this:

« all-const: Ignore the shortcomings, and consider all different constants as different
symbols during linkage learning;

« no-const: Skip all constants during linkage learning, i.e. set their frequency to zero.
This approximation is reasonable since all constants are unique at initialization, and
the respective frequency is almost zero. However, during evolution some constants
will be propagated while others will be discarded, making this approximation less
and less accurate over time;

+ bin-const: Perform on-line binning. We set a maximum number 7 of constants to
consider. After y different constants have been encountered in frequency counting,
any further constant is considered to fall into the same bin as the closest constant
among the first 7. The closest constant can be determined with binary search in

60 3. IMPROVING MODEL-BASED GENETIC PROGRAMMING FOR SYMBOLIC REGRESSION

log, () steps. Contrary to strategy no-const, we expect the error of this approxi-
mation to lower over time, because selection lowers diversity, meaning that the total
number of different constants will be reduced as generations pass.

3.6.1. EXPERIMENT: LINKAGE LEARNING WITH ERCs

We use the same parameter setup of the experiment in Section 3.5.3, this time adding an
ERC terminal to the terminal set. We compare the three strategies to handle ERCs when
learning the LT. For this experiment and in the rest of the chapter, we use v = 100 in
bin-const. We observed that for problems with a small number of features (e.g., Air and
Yac), i.e., where ERC sampling is more likely and thus more constants are produced, this
choice reduces the number of constant symbols to be considered by linkage learning in
the first generations by a factor of ~ 50. We also report the results obtained with the RT
as a baseline, under the hypothesis that using ERCs compromises linkage learning to the
point that random variation becomes equally good or better.

The results of this experiment are shown in Table 3.5 (training and test NMSE) and
Table 3.6 (running time). The Friedman test reveals significant differences among the
configurations for train, test, and time performance. Note that the use of ERCs leads to
lower errors compared to not using them (compare with Table 3.3).

In terms of training error, the RT is always outperformed by the use of the LT, no matter
the strategy. The all-const strategy is significantly better than no-const in half of the
problems, and never worse. Overall, bin-const performs best, with 6 out of 10 significantly
better results than all-const. The fact that all-const can be outperformed by bin-const
supports the hypothesis that linkage learning can be compromised by the presence of too
many constants to consider, which hide the true salient patterns. Test results are overall
similar to the training ones, but less comparisons are significant.

In terms of time, all-const is almost always significantly worse than the other methods,
and often by a consistent margin. This is particularly marked for problems with a small
number of features (i.e., Air, Yac). There, more random constants are present in the initial
population, since the probability of sampling the ERC from the terminal set is inversely
proportional to the number of features.

Table 3.5: Median training NMSE and median test NMSE of 30 runs for GP-GOMEA with
the LT using the three strategies all-const, no-const, bin-const, and with the RT.

Training NMSE Test NMSE

Dataset all-const no-const RT all-const no-const RT
Air 27.7 A 280 A 275AAA 314VYVY 287AVA 2906VVA 278 AAA 325VV
Bos 15.2 A 153 A 150A A 176VY 24.2 v 232 A 218AAA 242 AA
Con 172 AVA 172VVA 170AAA 185VYVY 18.5 A 187 A 188 A 198VYVY
Dow 21.4 A 211 A 207A A 245VYVY 228V A 219AAA 225 VA 255VV
EnC 551 AAA 572V A 576V A 0644VV 6.18A A 0634VVA 600 AA 0677VV
EnH 300 AVA 3.14VVA 280AAA 410VYV 328 AVA 333VVA 311AAA 4067VV
Tow 12.3 A 122 A 123A A 132VYVY 12.9 A 128 A 128 A 135VVY
WiR 60.3 A 602 A 602V A 0612VYVY 63.6 A 629 62.9 A 632V
Wiw 67.6 AAA 68.1VVA 680VAA 685VV 68.9 A 690 A 694 A 699VYVY
Yac 032AAA 035VVA 034VAA 038VYVY 0.55 A 061 A 052 AA 063VYVY

3.7. INTERLEAVED MULTISTART SCHEME 61

Table 3.6: Median time of 30 runs for GP-GOMEA with the LT using the three strategies
all-const, no-const, bin-const, and with the RT.

Time (s)

Dataset all-const no-const RT
Air 3554 VvV 714 AAA 80.0 AVA 80.1 AV
Bos 634 YVVY 29.4 AAVY 309 AVY 245 AA
Con 1549VvvyY 56.7 A 59.8 AV 584 A
Dow 53.8 YAV 51.7 Y 549 VVVY 377 AA
EnC 147.2VVV 40.5 AAA 435 AVA 45.6 AV
EnH 1450 VVY 458 A 494 AVVY 457 A
Tow 2559VVV 2466 A V 2456 A V 2339 AA
WiR 126.1VVY 677 A 80.2 AVY 70.1 A
Wiw 2850 VVVY 2133 AAA 2372 AVVY 2241 AV
Yac 2365VvVVY 239 AAYV 248 AVY 22.8 AA

Interestingly, despite the lack of a linkage-learning overhead, using the RT is not al-
ways the fastest option. This is because random variation leads to a slower convergence
of the population compared to the linkage-based one, where salient patterns are quickly
propagated, and less variation attempts result in changes of the genotype that require a
fitness evaluation (see Sec. 3.3.3). The slower convergence caused by the RT can also be
seen in Figure 3.5 (for the previous experiment), and was also observed in other work, in
terms of diversity preservation [52].

Between the LT-based strategies, the fastest is no-const, at the cost of a bigger training
error. Although consistently slower than no-const, bin-const is still quite fast, and achieves
the lowest training errors. We found bin-const to be preferable in test NMSE as well. In
the following, we always use bin-const, with v = 100.

3.7. INTERLEAVED MULTISTART SCHEME

The Interleaved Multistart Scheme (IMS) is a wrapper for evolutionary runs largely in-
spired by [43]. It works by interleaving the execution of several runs of increasing re-
sources (e.g., population size). The main motivation for using the IMS is to make an EA
much more robust to parameter settings, and alleviate the need for practitioners to tinker
with them. In fact, the whole design of GP-GOMEA attempts to promote ease-of-use and
robustness: the EA has no need for parameters that specify how to conduct variation (e.g.,
crossover or mutation rates), nor how to conduct selection (e.g., tournament size). The
IMS or similar schemes are often used with MBEAs [41, 53], where population size plays a
crucial role in determining the quality of model building. Note that although the IMS has
potential to be parallelized, here it is used in a sequential manner.

An IMS for GP-GOMEA was first proposed in Chapter 2, and its outline is as follows.
A collection of parameter settings gpase is given as input, which will be used in the first run
R;. The IMS runs until a termination criterion is met (e.g., number of generations, time
budget). The run R; performs one generation if no run that precedes it exists (e.g., because
it is the first run or because all previous runs have been terminated), or if the previous run
R;_1 has executed g generations. The first time R; is about to execute a generation, it
is initialized using the parameter settings op,se Scaled by the index i. For example, the

62 3. IMPROVING MODEL-BASED GENETIC PROGRAMMING FOR SYMBOLIC REGRESSION

population size can be set to 2°"'n} ", (i.e., doubling the population size of the previous

run). Finally, when a run completes a generation, a check is done to determine if the run
should be terminated (explained below).

3.7.1. AN IMS FOR SUPERVISED LEARNING TASKS

The first implementation of the IMS for GP-GOMEA was designed to deal with GP bench-
mark problems of pure optimization (Chapter 2). That implementation therefore scaled
both the population size and the height of trees in an attempt to find the optimal solu-
tion (of unknown size). In this work, we use the IMS as follows. (i) Scaling of parame-
ter settings: We scale only the population size. For run R;, the population size is set to
ntP = 2i_1nEZ§e. (ii) Run termination: A run R; is terminated if the fitness of its best so-
lution is worse than the one of a run R; initialized later, i.e., with j > 4, or if it converges
to all identical solutions. Differently from Chapter 2, we no longer scale the tree height i
because in SR, and in supervised learning tasks in general, no optimum is known before-
hand, and it is rather desired to find a solution that generalizes well to unseen examples.
Moreover, h bounds the maximum solution size, which influences interpretability. Hence
h is left as a parameter for the user to set, and we recommend i < 4 to increase the chance
that solutions will be interpretable (see Sec. 3.9).

We set the run termination criteria to be based upon the fitness of best solutions instead
of mean population fitness as done by [43] and in Chapter 2, because in SR it can happen
that the error of a few solutions becomes so large that it compromises the mean population
fitness. This can trigger the termination criteria even if solutions exist that are competitive
with the ones of other runs. Also different from the other versions of the IMS, when
terminating a run, we do not automatically terminate all previous runs. Indeed, some runs
with smaller parameter settings may still be very competitive (e.g., due to the fortunate
sampling of particular constants when using ERCs).

We lastly propose to exploit the fact that many runs are performed within the IMS to
tackle a central problem of learning tasks: generalization. Instead of discarding the best
solutions of terminating runs, we store them in an archive. When the IMS terminates, we
re-compute the fitness of each solution in the archive using a set of examples different
from the training set, i.e. the validation set, and return the new best performing, i.e., the
solution that generalized best. The final test performance is measured on a third, separate
set of examples (test set).

3.8. BENCHMARKING GP-GOMEA

We compare GP-GOMEA (using the new LT) with tree-based GP with traditional sub-
tree crossover and subtree mutation (GP-Trad), tree-based GP using the state-of-the-art,
semantic-aware operator Random Desired Operator (GP-RDO) [9], and Decision Tree for
Regression (DTR) [24].

We consider RDO because, as mentioned in the introduction, semantic-aware opera-
tors have been studied with interest in the last years. Several works either built upon RDO,
or used RDO as a baseline for comparison (see, e.g., [10, 54, 55]). Yet, consistently large
solutions were found. It is interesting to assess how RDO fares when rather strict solution
size limits are enforced. Because of such limits, we remark we cannot consider another

3.8. BENCHMARKING GP-GOMEA 63

popular set of semantic-aware operators, i.e., the operators used by Geometric Semantic
Genetic Programming (GSGP) [11]. These operators work by stacking entire solutions to-
gether, necessarily causing extremely large solution growth (even if smart simplifications
are attempted [12]).

We consider DTR because it is considered among the state-of-the-art algorithms to
learn interpretable models [14, 56]. We remark that DTR ensembles (e.g., [16, 57]) are
typically markedly more accurate than single DTRs, but are considered not interpretable.

3.8.1. EXPERIMENTAL SETUP

For the EAs, we use a fixed time limit of 1,000 seconds®. We choose a time-based com-
parison because GP-GOMEA performs more evaluations per generation than other GP
algorithms (up to 2¢ — 2 evaluations per generation with the LT), and so that the overhead
of learning the LT (which does not involve evaluations) is taken into account.

We consider maximum solution sizes ¢/ = 15, 31, 63 (tree nodes), i.e. corresponding to
h = 3,4, 5 respectively, for full r-ary trees. The EAs are run with a typical fixed popula-
tion size nP°P = 1000 and also with the IMS, considering three values for the number of
generations in between runs g: 4, 6, and 8. For the fixed population size, if the population
of GP-GOMEA converges before the time limit, since there is no mutation, it is randomly
re-started. Choices of g between 4 and 8 are standards from literature [20, 22].

Our implementation of GP-Trad and GP-RDO mostly follows the one of [9]. The pop-
ulation is initialized with the Ramped Half-and-Half method, with tree height between 2
and h. Selection is performed with tournament of size 7. GP-Trad uses a rate of 0.9 for
subtree crossover, and of 0.1 for subtree mutation. GP-RDO uses the population-based
library of subtrees, a rate of 0.9 for RDO, and of 0.1 for subtree mutation. Subtree roots
to be variated are chosen with the uniform depth mutation method, which makes nodes of
all depths equally likely to be selected [9]. Elitism is ensured by cloning the best solution
into the next generation. All EAs are implemented in C+, and the code is available at:
https://goo.gl/15tMV7.

For GP-Trad we consider two versions, to account for different types of solution size
limitation. In the first version, called GP-Trad”, we force trees to be constrained within a
maximum height (h = 3, 4), as done for GP-GOMEA. This way, we can see which algo-
rithm searches better in the same representation space. In the second version, GP-Trad’,
we allow more freedom in tree shape, by only bounding the number of tree nodes. This
limit is set to the maximum number of nodes obtainable in a full r-ary tree of height h
(¢ = 15for h = 3, ¢ = 31 for h = 4). As indicated by previous literature [58, 59], and
as will be shown later in the results, GP-Trad’ outperforms GP-Trad”. We found that the
same holds also for GP-RDO, and present here only its best configuration, i.e., a version
where the number of tree nodes is limited like for GP-Trad’.

We use the Python Scikit-learn implementation of DTR [60], with 5-fold cross-validation
grid-search over the training set to tune the following hyper-parameters:
splitter € {‘best’, random’}; max_features € {%, %, 1}; max_depth € {3,4,5,6} (documentation
available at http://goo.gl/hbyFq2). We do not allow larger depth values because, like for
GP solutions, excessively large decision trees are uninterpretable. The best generalizing
model found by cross-validation is then used on the test set.

SExperiments were run on an Intel® Xeon® Processor E5-2650 v2.

https://goo.gl/15tMV7
http://goo.gl/hbyFq2

64 3. IMPROVING MODEL-BASED GENETIC PROGRAMMING FOR SYMBOLIC REGRESSION

Table 3.7: Median validation and test NMSE of 30 runs with £ = 15 for GP-GOMEA (G),
GP-Trad” (T*), GP-Trad” (T*), GP-RDO (R) with nP°* = 1000 and IMS with g € {4, 6, 8},
and DTR. Significance is assessed within each population scheme w.r.t. GP-GOMEA. The
last row reports the number of times the EA performs significantly better (B) and worse
(W) than GP-GOMEA.

Validation / = 15
nPP = 1000 IMSg =4 IMSg=6 IMSg =8
G T T R ¢ T T R ¢ T Tt R G T T R D

Air 39.2 40.6Y 350A 440V 347 383V 314A 425V 349 397V 33.6A 420V 344 394V 320A 423V 31.1A
Bos 211 234 253V 257V 182 21.2V 19.0V 20.8V 192 21.2v 204 209V 194 216V 199V 225V 229V
Con 232 253V 234 27.0V 203 231V 19.4A 264V 20.2 233V 19.9A 262V 194 232V 193 269V 227V
Dow 26.7 285V 275 306V 24.2 268V 242 323V 24.6 264V 248V 31.0V 245 263V 252V 31.0V 30.6V
EnC 872 106V 734 110V 586 10.2V 6.49Y 10.7V 6.01 103V 6.24 105V 587 102V 6.10Y 10.8V 4.23A
EnH 495 745V 383A 7.65V 333 719V 374V 7.34V 3.28 7.30V 376V 7.42V 323 7.24V 372V 7.54V 043A

Tow 129 144V 139V 201V 128 136V 13.6V 205V 127 140V 135V 204V 130 140V 134V 201V 11.24
WiR 653 648 649 665V 63.9 647V 644 651V 636 639V 644V 649V 639 639V 642 657V 717V
WiW 714 713 709 726V 708 712V 707V 72.3V 707 715V 708V 72.6V 712 714V 712V 726V 722V
Yac 125 122 0.70A 0.96A 0.89 1.04V 0.61A 0.67A 092 101V 061A 0.73A 095 103V 0.62A 076A 0.88A
BW — o6 32 19 — 0/10 3/5 1/9 — 010 35 19 — 010 2/6 19 5/5
Testl =15
nP® = 1000 IMS g = IMSg = IMSg =38
G T T R ¢ T T R G T T R G T T R D
Air 385 407V 353A 441V 358 395V 325A 43.3V 352 393V 3324 424V 354 397V 328A 428V 30.8A

Bos 227 233V 243V 267V 225 231 233V 229V 21.7 23.6V 226V 25.0V 22.1 22,5V 23.6V 233V 26.1V
Con 23.1 26.1v 239 27.0V 20.8 239V 193A 277V 21.2 239V 19.9A 264V 204 243V 193A 278V 213V
Dow 263 275V 264 310V 248 261V 24.7A 307V 245 266V 245 301V 243 268V 25.1 316V 28.0V
EnC 972 11.2V 7.86A 11.8V 636 10.6V 6.80V 115V 6.37 105V 6.18 109V 6.02 105V 633V 11.7V 447A
EnH 503 7.19Y 4.04A 7.85V 3.45 757V 3.88V 7.62V 3.28 7.64V 3.88V 7.59V 3.51 7.56¥ 3.86V 7.65Y 0.33A
Tow 134 14.4v 139V 203V 13.0 141V 140V 208V 129 141V 13.7v 207V 13.0 143V 133V 20.5Y 11.2A
WiR 63.1 637V 624 646V 633 634 632 644V 63.6 635 63.2A 64.3V 634 638 633 637V 726V
Wiw 705 705 70.1 713V 704 70.0v 703V 716V 69.7 705V 70.1V 71.0V 70.2 705V 70.3V 718V 722V
Yac 1.23 123 0.78A 0.95A 1.16 1.24V 0.73A 0.77A 1.17 124 0.73A 0.77A 1.17 123V 0.71A 0.86A 0.91A
BW - 0/8 4/2 1/9 - 0/8 4/5 1/9 - 0/8 4/4 1/9 = 0/9 3/5 1/9 5/5

Table 3.8: Median validation and test NMSE of 30 runs with ¢ = 31. Details as in Table 3.7.

Validation ¢ = 31

nPP = 1000 IMSg =4 IMSg=6 IMSg =8
G T T R ¢ T T R ¢ T Tt R ¢ T T R D
Air 264 338V 321V 360V 249 259V 23.2A 37.0V 250 271V 249 376V 248 284V 248 371V 311V

Bos 223 211 19.2 248V 16.7 18.8V 16.2V 204V 17.4 18.3v 173V 20.6V 17.3 18.4V 17.6V¥ 20.4V 229V
Con 173 18.6V 17.9v 208V 16.0 17.6Y 16.7V 20.5V 16.6 181V 164V 20.1V 16.1 18.3V 17.2V 202V 227V
Dow 213 22,6V 226 243V 194 216V 192 25.6V 194 212V 194V 254V 192 219V 20.1V 258V 30.6V
EnC 514 560V 4994 7.62V 4.62 551V 482V 8.04V 435 6.04V 456V 8.48V 437 5.65V 473V 781V 4.23A
EnH 229 254V 1754 6.21V 195 3.05V 1.72A 497V 2.00 284V 1.65A 593V 188 3.10Y 1.62 6.11V 0.43A
Tow 12.0 13.0v 12.6V 175V 11.8 123v 119 17.8V 11.7 12.2V 122V 16.6V 12.0 124V 118 17.6V 11.2A
WiR 642 647V 647V 659V 62.8 624V 626 645V 623 63.6V 62.1 641V 62.6 629V 618 64.6V 717V
WiW 702 704V 709 714V 69.6 697 69.7 711V 70.0 702V 700 71.0V 70.0 701V 69.6 712V 722V

Yac 0.46 0.59Y 0.42A 057V 0.37 0.51v 040V 0.59v 0.38 0.56¥ 0.38 0.54V 0.40 0.54Y 0.42V 052V 0.88V
B/W — 0/9 3/4 0/10 — 0/9 2/4 0/10 — 0/10 1/5 0/10 — 0/10 0/5 0/10 3/7
Test £ = 31
nPP = 1000 IMSg =4 IMS g = IMSg =8
G 1™ T R ¢ T T R G T T R G T T R D

Air 26.4 335V 308V 37.1V 259 265V 23.3A 37.6V 249 271V 247 39.2V 249 288V 26.1 382V 308V
Bos 214 228 216V 262V 20.1 213 218V 234V 20.9 21.2V 222V 232V 20.2 223V 226V 260V 261V
Con 17.6 18.7v 17.8V 21.5V 169 181V 171V 212V 16.7 188V 169 211V 17.2 183V 17.0 21.5Y 213V
Dow 203 219V 222V 244V 192 207v 19.1 244V 189 214V 18.6 244V 18.7 222V 202V 255V 28.0V
EnC 528 591V 476A 7.00V 4.43 576V 479V 7.69V 444 6.05V 471 8.73V 4.60 5.62V 477V 7.94V 4.47A
EnH 229 249V 1.83A 598V 2.05 320V 1.58A 5.12V 2.10 3.07V 175A 5.77V 2.00 291V 155A 6.51V 0.33A
Tow 122 13.2v 13.1V 187V 12.1 126V 12.0A 182V 12.1 124V 123 168V 12.2 127V 120 17.2V 11.2A
WiR 621 631 621 63.5V 62.7 631V 619 639V 624 629V 633V 64.2V 61.9 63.0Y 629Y 634V 726V
WiW 69.0 69.7V 69.8V 70.2V 694 693 692 70.6V 69.1 694V 69.2V 70.7V 69.1 69.6V 69.3A 70.5V 72.2V
Yac 052 0.66Y 0.49A 0.66V 0.50 0.58V 047 0.67V 0.50 0.64V 0.48A 0.63V 0.53 0.63V 048 070V 091V
B/W — 0/8 3/6 0/10 - 0/8 3/3 0/10 - 0/10 2/3 0/10 - 0/10 2/4 0/10 3/7

3.8. BENCHMARKING GP-GOMEA 65

3.8.2. RESULTS: BENCHMARKING GP-GOMEA

We consider validation and test NMSE. We now show validation rather than training error
because the IMS returns the solution which better generalizes to the validation set among
the ones found by different runs (same for DTR due to cross-validation). Tables 3.7, 3.8,
and 3.9 show the results for maximum sizes { = 15,31,63 (h = 3,4, 5) respectively.
On each set of results, the Friedman test reveals significant differences among the algo-
rithms. As we are only interested in benchmarking GP-GOMEA, we test whether signif-
icant performance differences exist only between GP-GOMEA and the other algorithms
(with Bonferroni-corrected Wilcoxon signed-rank test).

We begin with some general results. Overall, error magnitudes are lower for larger
values of /. This is not surprising: limiting solution size limits the complexity of relation-
ships that can be modeled. Another general result is that errors on validation and test set
are generally close. Likely, the validation data is a sufficiently accurate surrogate of the
test data in these datasets, and solution size limitations make over-fitting unlikely. Finally,
note that the results for DTR are the same in all tables.

We now compare GP-GOMEA with GP-Trad", focusing on statistical significance tests
(see rows “B/W” of the tables), over all size limit configurations. Recall that these two al-
gorithms work with the same type of limitation, i.e., based on maximum tree height. No
matter the population sizing method, GP-GOMEA is almost always significantly better
than GP-Trad”. GP-GOMEA relies on the LT with improved linkage learning, which we
showed to be superior to using the RT, i.e., blind variation, in the previous series of ex-
periments (Sec. 3.5.3, 3.6.1). Subtree crossover and subtree mutation are blind as well, and
can only swap subtrees, which may be a limitation.

GP-GOMEA and GP-Trad’ are compared next. Recall that GP-Trad’ is allowed to
evolve any tree shape, as long as the limit in number of nodes is respected. Having
this extra freedom, GP-Trad’ performs better than GP-Trad” (not explicitly reported in
the tables), which confirms previous literature results [58, 59]. No marked difference ex-
ists between GP-GOMEA and GP-Trad’ along different configurations. By counting the
number of times one EA is found to be significantly better than the other along all 240
comparisons, GP-GOMEA beats GP-Trad’ by a small margin: 87 significantly lower error
distributions vs. 65 (88 draws).

For the traditional use of a single population (nP°® = 1000), GP-Trad’ is slightly better
than GP-GOMEA for ¢ = 15 (Table 3.7), slightly worse for £ = 31 (Table 3.8), and similar
for £ = 63 (Table 3.9), on both validation and test errors. The performance of the two
(and also of the other EAs) improves when using the IMS. Although not explicitly shown
in the tables, using the IMS is typically significantly better than not using it. When using
a single fixed population size and a single run, only a single best-found solution is found.
Depending on the configuration of that run, in particular the size of the population, that
final solution may be underfitted or overfitted. When using a scheme such as the IMS,
multiple solutions are marked best in the different interleaved runs. These solutions can
subsequently be compared more in terms of generalization merits, i.e., by observing the
associated performance on the validation set. The best performing solution can then ul-
timately be returned. Essentially, this thus provides a means to mitigate to some extent
the problem of underfitting or overfitting. It should be noted, however, that the extent to
which the setup of the IMS, particularly in terms of growing population sizes, contributes

!

66 3. IMPROVING MODEL-BASED GENETIC PROGRAMMING FOR SYMBOLIC REGRESSION

102400 | s GP-GOMEA, IMS g = 4
= = GP-GOMEA, IMS g =6
= GP-GOMEA, IMS g =8
m— GP-Trad!, IMS g =4
== GP-Trad!, IMS g =6
= GP-Trad(, IMS g=8

Max population size

51200 4
25600 -
12800 - = -=2
64001 S o 235 E i snsnsssnsnssnnnnanannnnnnnnn
50 4
0 200 400 600 800 1000

Time

Figure 3.7: Maximum population size reached (vertical axis) in time (seconds, horizontal
axis) with the IMS for GP-GOMEA (h = 4 limit) and GP-Trad’ (/ = 31 limit), for g €
{4, 6,8}. The median among problems and repetitions is shown.

to this is not immediately clear. This could be studied by comparing with a scheme in
which multiple runs are also performed, but all with a single population size. The final
results of these runs can then also first be tested against the validation set. Likely, the use
of a scheme like the IMS has an advantage because multiple population sizes will be tried.
Therefore, likely a larger variety of results will be produced to test against the validation
set, but a closer examination of this impact is left for future work.

The comparisons between GP-Trad’ and GP-GOMEA tend to shift in favor of the latter
when using the IMS, particularly for larger values of g. For g = 4, outcomes are still overall
mixed along different ¢ limits. For g = 8, GP-GOMEA is preferable, with moderately more
significant wins for ¢ = 15, several more wins for / = 31, and slightly more wins for
¢ =063.

To investigate further the comparison between GP-GOMEA and GP-Trad’, we con-
sider the effect of g of the IMS for ¢ = 31 (similar results are found for the other size
limits). Figure 3.7 shows the median maximum population size reached by the IMS for
different values of g in GP-GOMEA and GP-Trad’. As can be expected, the bigger g, the
less runs and the smaller populations at play. GP-Trad’ reaches much bigger population
sizes than GP-GOMEA when g = 4 (on average 3 times bigger). This is because GP-Trad’
executes generations much faster than GP-GOMEA: it does not learn a linkage model,
and performs nP° evaluations per generation. GP-GOMEA performs (2¢ — 2)nP°P varia-
tion steps (size of LT excluding its root times the population size) and up to (2¢ — 2)nPP
evaluations per generation (only meaningful variation steps are evaluated).

GP-Trad’ performs well for small values of g due to huge populations being instanti-
ated with trees of various shape, i.e., expensive random search. Note that this behavior
may be problematic when limited memory is available, especially if caching mechanisms
are desirable to reduce the number of expensive evaluations (e.g., caching the output of
each node as in [9, 22]). On the other hand, GP-GOMEA works fairly well with much
smaller populations, as long as they are big enough to enable effective linkage learning

3.8. BENCHMARKING GP-GOMEA 67

Table 3.9: Median validation and test NMSE of 30 runs with / = 63. Details as in Table 3.7.

Validation ¢ = 63

nPP = 1000 IMSg =4 IMSg =6 IMSg =8
G T T R G T T R G T T R G 1™ T R D
Air 226 253V 250V 330V 206 224V 208 351V 207 233V 213V 343V 208 245V 201 342V 3L1V
Bos 211 195 219 221 165 168V 157 197V 163 17.6Y 154A 189V 162 185V 167V 212V 229V
Con 166 174V 166 185V 152 161V 157V 185V 155 165V 156V 196V 153 163V 159V 19.0V 227V

Dow 18.6 19.0 18.8v 217V 174 17.8VY 16.7A 241V 17.7 18.2V 17.0A 243V 17.8 19.8 17.6A 224V 30.6V
EnC 4.66 515V 4.26A 5.55V 3.67 4.37V 414V 6.92V 3.85 450V 4.02V 7.08V 3.76 4.88V 399V 6.78V 4.23V
EnH 1.65 1.52V 1.13A 2.63V 0.69 1.54V 0.84V 4.02V 0.92 178V 1.02V 381V 0.87 178V 0.80 3.68V 0.43A
Tow 115 11.7v 11.7V 157V 113 109 111 16.1V 114 113 10.9A 17.0V 113 11.9Y 11.2A 16.6V 11.2A
WiR 644 64.6A 652V 64.3A 63.0 624 625 638V 623 629 628 64.6V 62.7 629V 625V 645V 717V
Wiw 70.1 70.1 68.8A 709V 69.2 692 68.7A 711V 68.9 693V 694 716V 69.1 69.7V 69.6 714V 722V

Yac 046 045 0.37A 046 032 038V 033 040V 032 039V 033 044V 033 040V 0.33A 048V 088V
BW — 15 44 17 — 07 23 0/10 — 08 3/4 0/10 — 0/9 3/4 0/10 28
Test £ = 63
nP®? = 1000 IMSg =4 IMSg=6 IMSg =38

¢ T T R ¢ T T R G T T R G T T R D
Air 230 255V 259V 315V 211 225V 196 349V 217 224V 219V 338V 212 234V 216 341V 308V
Bos 220 200 212 219 192 207V 204V 241V 215 203 203A 250V 198 197V 214V 258V 261V
Con 159 171V 165V 183V 153 162V 155 191V 153 163V 158V 199V 153 166V 161V 189V 213V
Dow 183 186V 17.4A 223V 175 179 17.0A 237V 176 182V 17.2A 246V 177 182 179 226V 280V
EnC 449 470V 4.24A 563V 377 437V 399V 694V 393 442V 395V 742V 395 485V 420V 737V 447V
EnH 160 159V 1124 274V 080 152V 0.89V 3.73V 0.88 167V 094 412V 089 1.92V 093V 371V 0.33A
Tow 116 122V 121V 159V 115 114 114 168V 116 115 1124 167V 114 122V 114 171V 1124
WiR 631 630 644V 629 629 625V 617 625V 625 630 623 63.6V 627 630 61.8A 632V 726V
WiW 687 69.0 68.0A 69.9¥ 683 686 68.3A 70.2V 691 694 6824 70.6V 68.2 693V 69.0 703V 722V
Yac 044 046 0.40A 046 041 049V 0.40A 045V 041 045V 042 052V 046 046 044A 050V 091V
BW — 06 514 07 — 0/7 33 0/10 — 0/6 4/3 0/10 — 0/7 24 0/10 28

(the fixed nP°? = 1000 is smaller than the population sizes reached with the IMS). Despite
the disadvantage of adhering to a specific tree shape, GP-GOMEA is typically preferable
than GP-Trad’ for larger values of g. Furthermore, Figure 3.7 shows that GP-GOMEA pop-
ulation scaling behaves sensibly with respect to g, i.e., it does not grow abruptly when g
becomes small, nor shrink excessively when g becomes larger. This latter aspect is because
in GP-GOMEA populations ultimately converge to a same solution, and are terminated,
allowing for bigger runs to start. In GP-Trad’ this is unlikely to happen, because of the use
of mutation and stochastic (tournament) selection, stalling the IMS. For the larger g = 8,
GP-GOMEA reaches on average 1.6 times bigger populations than GP-Trad’.

GP-RDO, although allowed to evolve trees of different shape like GP-Trad’, performs
poorly on all problems, with all settings. It performs significantly worse than GP-GOMEA
almost everywhere. GP-RDO is known to evolve big solutions, and it is reasonable to
expect that GP-RDO actually benefits from solutions growing big, as these provide more
subtree diversity for its library. The strict size limitation basically breaks GP-RDO. How-
ever, we remark that this EA was never designed to work under these circumstances, and
when solution size is not strictly limited, GP-RDO is known to work well [9].

DTR is compared with GP-GOMEA using the IMS with g = 8. Although GP-GOMEA
is not optimized (e.g., by tuning the function set), it performs on par with tuned DTR for
¢ = 15, and better for ¢ = 31, 63, on both validation and test sets. Where one algorithm
outperforms the other, the magnitude of difference in errors are relatively large compared
to the ones between EAs. This is because GP and DTR synthesize models of completely
different nature (decision trees only use if-then-else statements).

68 3. IMPROVING MODEL-BASED GENETIC PROGRAMMING FOR SYMBOLIC REGRESSION

Tower:

4668.49 — 3.56((662,77 + mgl)l‘lg +AQZ16 — %1 — T15 +T5 + 410 — 1'23(1‘6 +AQ 21+ 1))
Yacht:

0.73 + 33004.40 ((($(23 +AQ ($5$2)) +AQ (£U3I2 +AQ (.%‘2 +AQ $1)))(1’b + 030)$(53I5)

Figure 3.8: Examples of best solution found by GP-GOMEA (¢ = 31, IMS g = 8).

3.9. DISCUSSION & CONCLUSION

We built upon previous work on model-based GP, in particular on GP-GOMEA, to find
accurate solutions when a strict limitation on their size is imposed, in the domain of SR. We
focused on small solutions, in particular much smaller solutions than typically reported
in literature, to prevent solutions becoming too large to be (easily) interpretable, a key
reason to justify the use of GP in many practical applications.

A first limitation of this work is that to truly achieve interpretability may well require
different measures. Interpretation is mostly subjective, and many other factors besides
solution size are important, including the intuitiveness of the subfunctions composing the
solution, potential decompositions into understandable repeating sub-modules, the num-
ber of features considered, and the meaning of these features [13, 56]. Nonetheless, much
current research on GP for SR is far from delivering any interpretable results precisely
because the size of solutions is far too large (see, e.g., the work of [12]).

We considered solution sizes up to £ = 63 (corresponding to h = 5 for GP-GOMEA
with subfunctions of arity < 2). In our opinion, the limit of £ = 31 (h = 4) is particularly
interesting, as interpreting some solutions at this level can already be non-trivial at times.
For example, we show the (manually simplified) best test solution found by GP-GOMEA
(IMS g = 8) for Tower and Yacht, i.e. the biggest and smallest dataset respectively, in
Figure 3.8. The solution for Tower is arguably easier to understand than the one for Yacht.
We found solutions with £ = 63 (h = 5) to be overly long to attempt interpreting, and
solutions with £ = 15 (h = 3) to be mostly readable and understandable. We report other
example solutions at: http://bit.1ly/2IrUFyQ.

We believe future work should address the aforementioned limitation: effort should be
put towards reaching some form of interpretability notions, that go beyond solution size
or other custom metrics (e.g., [61]). User studies involving the end users of the model (e.g.,
medical doctors for a diagnosis model) could guide the design of notions of interpretability.
If an objective that represents interpretability can be defined, the design of multi-objective
(model-based) GP algorithms may lead to very interesting results.

Another limitation of this work lies in the fact that we did not study how linkage
learning behaves in GP for SR in depth. In fact, it would be interesting to assess when
linkage learning is beneficial, and when it is superfluous or harmful. To this end, a regime
of experiments where linkage-related outcomes are predefined, such as emergence of spe-
cific patterns, needs to be designed. Simple problems where the true function to regress
is known may need to be considered. Studies of this kind could provide more insights
on how to improve linkage learning in GP for SR (and other learning tasks), and are an
interesting direction for future work.

http://bit.ly/2IrUFyQ

3.9. DISCUSSION & CONCLUSION 69

Another crucial point to base future research upon is enabling linkage learning and
linkage-based mixing in GP with trees of arbitrary shape. In fact, GP-GOMEA was not
found to be markedly better than GP-Trad’, and a large performance gap was found be-
tween GP-Trad’ and GP-Trad”. This is indicative that there is added value to perform
evolution directly on non-templated trees, which, from this perspective, may be consid-
ered a limitation of GP-GOMEA. Going beyond the use of a fixed tree template, while
still enabling linkage identification and exploitation, is a challenging open problem that
could bring very rewarding results. On the other hand, we believe it is interesting to see
that when GP-GOMEA and GP-Trad are set to work on the same search space, i.e., when
GP-Trad"” is used, then GP-GOMEA performs markedly better.

In summary and conclusion, we have identified limits and presented ways to improve
a key component of a state-of-the-art model-based EA, i.e. GP-GOMEA, to competently
deal with realistic SR datasets, when small solutions are desired. This key component is
linkage learning. We showed that solely and directly relying on mutual information to
identify linkage may be undesirable, because the genotype is not uniformly distributed
in GP populations, and we provided an approximate biasing method to tackle this prob-
lem. We furthermore explored how to incorporate ERCs into linkage learning, and found
that on-line binning of constants is an efficient and effective strategy. Lastly, we intro-
duced a new form of the IMS, to relieve practitioners from setting a population size, and
from finding a good generalizing solution. Ultimately, our contributions proved success-
ful in improving the performance of GP-GOMEA, leading to the best overall performance
against competing EAs, as well as tuned decision trees. We believe our findings set an im-
portant first step for the design of better model-based GP algorithms capable of learning
interpretable solutions in real-world data.

ACKNOWLEDGMENTS
The authors thank the Foundation Kinderen Kankervrij for financial support (project no.
187), and SURFsara for granting access to the Lisa Compute Cluster.

70

REFERENCES

REFERENCES

(1]

(2]

(3]

[11]

[12]

[13]

[14]

J.R. Koza, Genetic Programming: on the programming of computers by means of natural
selection (MIT Press, 1992).

K. Krawiec, Behavioral Program Synthesis with Genetic Programming, 1st ed. (Springer
Publishing Company, Incorporated, 2015).

J. Zhong, L. Feng, W. Cai, and Y.-S. Ong, Multifactorial genetic programming for
symbolic regression problems, IEEE Transactions on Systems, Man, and Cybernetics:
Systems , 1 (2018).

V. V. De Melo, Kaizen programming, in Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO) (ACM, 2014) pp. 895-902.

J. Zegklitz and P. Posik, Symbolic regression algorithms with built-in linear regression,
(2017), arXiv preprint arXiv:1701.03641.

L. Icke and J. C. Bongard, Improving genetic programming based symbolic regression
using deterministic machine learning, in IEEE Congress on Evolutionary Computation
(CEC) (IEEE, 2013) pp. 1763-1770.

M. Keijzer, Improving symbolic regression with interval arithmetic and linear scaling,
in European Conference on Genetic Programming (Springer, 2003) pp. 70-82.

Q. Chen, B. Xue, and M. Zhang, Generalisation and domain adaptation in gp with
gradient descent for symbolic regression, in IEEE Congress on Evolutionary Computation
(CEC) (IEEE, 2015) pp. 1137-1144.

T. P. Pawlak, B. Wieloch, and K. Krawiec, Semantic backpropagation for designing
search operators in genetic programming, IEEE Transactions on Evolutionary Com-
putation 19, 326 (2015).

Q. Chen, B. Xue, and M. Zhang, Improving generalization of genetic programming for
symbolic regression with angle-driven geometric semantic operators, IEEE Transactions
on Evolutionary Computation 23, 488 (2018).

A.Moraglio, K. Krawiec, and C. G. Johnson, Geometric semantic genetic programming,
in International Conference on Parallel Problem Solving from Nature (PPSN) (Springer,
2012) pp. 21-31.

J. F.B.S. Martins, L. O. V. B. Oliveira, L. F. Miranda, F. Casadei, and G. L. Pappa, Solv-
ing the exponential growth of symbolic regression trees in geometric semantic genetic
programming, in Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO) (ACM, 2018) pp. 1151-1158.

Z. C. Lipton, The mythos of model interpretability, Queue 16, 30:31 (2018).

R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi, A
survey of methods for explaining black box models, ACM Computing Surveys (CSUR)
51, 93:1 (2018).

http://dx.doi.org/10.1145/3236386.3241340

REFERENCES 71

[15] P.Orzechowski, W. La Cava, and J. H. Moore, Where are we now?: A large benchmark
study of recent symbolic regression methods, in Genetic and Evolutionary Computation
Conference (GECCO) 2018 (ACM, 2018) pp. 1183-1190.

[16] T. Chen and C. Guestrin, Xgboost: A scalable tree boosting system, in ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (ACM, 2016) pp.
785-794.

[17] R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza, A Field Guide to Genetic Pro-
gramming (Lulu Enterprises, UK Ltd, 2008).

[18] D. Thierens and P. A. N. Bosman, Optimal mixing evolutionary algorithms, in Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO) (ACM, 2011)
pp. 617-624.

[19] N. H. Luong, H. La Poutré, and P. A. N. Bosman, Multi-objective gene-pool optimal
mixing evolutionary algorithms, in Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO) (ACM, 2014) pp. 357-364.

[20] A. Bouter, T. Alderliesten, C. Witteveen, and P. A. N. Bosman, Exploiting linkage
information in real-valued optimization with the real-valued gene-pool optimal mixing
evolutionary algorithm, in Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO) (ACM, 2017) pp. 705-712.

[21] E.Medvet, A. Bartoli, A. De Lorenzo, and F. Tarlao, GOMGE: Gene-pool optimal mix-
ing on grammatical evolution, in International Conference on Parallel Problem Solving
from Nature (PPSN) (Springer, 2018) pp. 223-235.

[22] M. Virgolin, T. Alderliesten, C. Witteveen, and P. A. N. Bosman, Scalable genetic
programming by gene-pool optimal mixing and input-space entropy-based building-
block learning, in Genetic and Evolutionary Computation Conference (GECCO) 2017
(ACM, New York, NY, USA, 2017) pp. 1041-1048.

[23] M. Virgolin, T. Alderliesten, A. Bel, C. Witteveen, and P. A. N. Bosman, Symbolic re-
gression and feature construction with GP-GOMEA applied to radiotherapy dose recon-
struction of childhood cancer survivors, in Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO) (ACM, 2018) pp. 1395-1402.

[24] L.Breiman, J. H. Friedman, R. A. Olshen, and C.]. Stone, Classification and Regression
Trees (Wadsworth, 1984).

[25] M. Hauschild and M. Pelikan, An introduction and survey of estimation of distribution
algorithms, Swarm and Evolutionary Computation 1, 111 (2011).

[26] K.Kim, Y. Shan, X. H. Nguyen, and R. I. McKay, Probabilistic model building in genetic
programming: a critical review, Genetic Programming and Evolvable Machines 15,
115 (2014).

[27] R. Salustowicz and J. Schmidhuber, Probabilistic incremental program evolution, Evo-
lutionary Computation 5, 123 (1997).

72

REFERENCES

(28]

[29]

[30]

[31]

[32]

[33]

[36]

[37]

(38]

[39]

[40]

K. Sastry and D. E. Goldberg, Probabilistic model building and competent genetic pro-
gramming, in Genetic Programming Theory and Practice (Springer, 2003) pp. 205-220.

K. Yanai and H. Iba, Estimation of distribution programming based on Bayesian net-
work, in IEEE Congress on Evolutionary Computation (CEC), Vol. 3 (IEEE, 2003) pp.
1618-1625.

E. Hemberg, K. Veeramachaneni, J. McDermott, C. Berzan, and U.-M. O’Reilly, An
investigation of local patterns for estimation of distribution genetic programming, in
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) (ACM,
2012) pp. 767-774.

Y. Shan, R. I. McKay, R. Baxter, H. Abbass, D. Essam, and H. Nguyen, Grammar
model-based program evolution, in IEEE Congress on Evolutionary Computation (CEC),
Vol. 1 (IEEE, 2004) pp. 478—485.

P. A.N.Bosman and E. D. de Jong, Learning probabilistic tree grammars for genetic pro-
gramming, in International Conference on Parallel Problem Solving from Nature (PPSN)
(Springer, 2004) pp. 192-201.

P.-K. Wong, L.-Y. Lo, M.-L. Wong, and K.-S. Leung, Grammar-based genetic program-
ming with Bayesian network, in IEEE Congress on Evolutionary Computation (CEC)
(IEEE, 2014) pp. 739-746.

L. F. D. P. Sotto and V. V. de Melo, A probabilistic linear genetic programming with
stochastic context-free grammar for solving symbolic regression problems, in Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO) (ACM, 2017)
pp. 1017-1024.

Y. Hasegawa and H. Iba, Latent variable model for estimation of distribution algo-
rithm based on a probabilistic context-free grammar, IEEE Transactions on Evolution-
ary Computation 13, 858 (2009).

I. Tanev, Genetic programming incorporating biased mutation for evolution and adap-
tation of snakebot, Genetic Programming and Evolvable Machines 8, 39 (2007).

X.Li, S. Mabu, H. Zhou, K. Shimada, and K. Hirasawa, Genetic network programming
with estimation of distribution algorithms for class association rule mining in traffic
prediction, in IEEE Congress on Evolutionary Computation (CEC) (IEEE, 2010) pp. 1-8.

A. Ratle and M. Sebag, Avoiding the bloat with stochastic grammar-based genetic pro-
gramming, in International Conference on Artificial Evolution (Evolution Artificielle)
(Springer, 2001) pp. 255-266.

Y. Chen, T.-L. Yu, K. Sastry, and D. E. Goldberg, A survey of linkage learning tech-
niques in genetic and evolutionary algorithms, IlliGAL report 2007014 (2007).

D. Thierens and P. A. N. Bosman, Hierarchical problem solving with the linkage tree
genetic algorithm, in Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO) (ACM, 2013) pp. 877-884.

REFERENCES 73

[41]

(44]

(45]

[46]

(47]

B. W. Goldman and W. F. Punch, Parameter-less population pyramid, in Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO) (ACM, 2014) pp.
785-792.

S.-H.Hsu and T.-L. Yu, Optimization by pairwise linkage detection, incremental linkage
set, and restricted/back mixing: DSMGA-IL in Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO) (ACM, 2015) pp. 519-526.

G. R. Harik and F. G. Lobo, A parameter-less genetic algorithm, in Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO) (Morgan Kaufmann Pub-
lishers Inc., 1999) pp. 258-265.

G. Harik, E. Canta-Paz, D. E. Goldberg, and B. L. Miller, The gambler’s ruin problem,
genetic algorithms, and the sizing of populations, Evolutionary Computation 7, 231
(1999).

I. Gronau and S. Moran, Optimal implementations of UPGMA and other common clus-
tering algorithms, Information Processing Letters 104, 205 (2007).

M. Ebner, M. Shackleton, and R. Shipman, How neutral networks influence evolvabil-
ity, Complexity 7, 19 (2001).

K.L.Sadowski, P. A.N. Bosman, and D. Thierens, On the usefulness of linkage process-
ing for solving MAX-SAT, in Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO) (ACM, 2013) pp. 853-860.

[48] J. Ni, R. H. Drieberg, and P. L. Rockett, The use of an analytic quotient operator in ge-

(49]

netic programming, IEEE Transactions on Evolutionary Computation 17, 146 (2013).

A. Asuncion and D. Newman, UCI machine learning repository, (2007), http://
archive.ics.uci.edu.

[50] J. Demsar, Statistical comparisons of classifiers over multiple data sets, Journal of Ma-

(51]

(52]

(53]

chine Learning Research 7, 1 (2006).

S. Luke and L. Panait, A survey and comparison of tree generation algorithms, in Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO) (Morgan
Kaufmann Publishers Inc., 2001) pp. 81-88.

E. Medvet, M. Virgolin, M. Castelli, P. A. N. Bosman, I. Gongalves, and T. Tusar,
Unveiling evolutionary algorithm representation with DU maps, Genetic Programming
and Evolvable Machines 19, 351 (2018).

Y.-J. Lin and T.-L. Yu, Investigation of the exponential population scheme for genetic
algorithms, in Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO) (ACM, 2018) pp. 975-982.

T. P. Pawlak and K. Krawiec, Competent geometric semantic genetic programming for
symbolic regression and boolean function synthesis, Evolutionary Computation 26, 177
(2018).

http://archive.ics.uci.edu
http://archive.ics.uci.edu

74

REFERENCES

[55]

[59]

[60]

[61]

M. Virgolin, T. Alderliesten, and P. A. N. Bosman, Linear scaling with and within
semantic backpropagation-based genetic programming for symbolic regression, in Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO) (ACM,
2019).

F. Doshi-Velez and B. Kim, Towards a rigorous science of interpretable machine learn-
ing, (2017), arXiv preprint arXiv:1702.08608.

L. Breiman, Random forests, Machine Learning 45, 5 (2001).

C. Gathercole and P. Ross, An adverse interaction between crossover and restricted tree
depth in genetic programming, in Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO) (MIT Press, 1996) pp. 291-296.

W. B. Langdon and R. Poli, An analysis of the MAX problem in genetic programming,
Genetic Programming 1, 222 (1997).

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn: Machine learning in Python,
Journal of Machine Learning Research 12, 2825 (2011).

E.J. Vladislavleva, G. F. Smits, and D. den Hertog, Order of nonlinearity as a complex-
ity measure for models generated by symbolic regression via Pareto genetic program-
ming, IEEE Transactions on Evolutionary Computation 13, 333 (2009).

LINEAR SCALING IN SEMANTIC
BACKPROPAGATION-BASED GENETIC
PROGRAMMING

Semantic Backpropagation (SB) is a recent technique that promotes effective variation in tree-
based genetic programming. The basic idea of SB is to provide information on what output
is desirable for a specified tree node, by propagating the desired root-node output back to the
specified node using inversions of functions encountered along the way. Variation operators
then replace the subtree located at the specified node with a tree for which the output is closest
to the desired output, by searching in a pre-computed library. In this chapter, we propose two
contributions to enhance SB specifically for symbolic regression, by incorporating the princi-
ples of Keijzer’s Linear Scaling (LS). In particular, we show how SB can be used in synergy
with the scaled mean squared error, and we show how LS can be adopted within library search.
We test our adaptations using the well-known variation operator Random Desired Operator
(RDO), comparing to its baseline implementation, and to traditional crossover and mutation.
Our experimental results on real-world datasets show that SB enhanced with LS substantially

improves the performance of RDO, resulting in overall the best performance among all tested
GP algorithms.

The contents of this chapter are based on the following publication: M. Virgolin, T. Alderliesten, and P.A.N. Bosman. Linear
scaling with and within semantic backpropagation-based genetic programming for symbolic regression. In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO ‘19), pp. 1084-1092, ACM (2019).

75

https://doi.org/10.1145/3321707.3321758
https://doi.org/10.1145/3321707.3321758

76 4. LINEAR SCALING IN SEMANTIC BACKPROPAGATION-BASED GENETIC PROGRAMMING

4.1. INTRODUCTION

Semantic Backpropagation (SB) is a recent technique in tree-based Genetic Programming
(GP) [1, 2] which enables the design of novel variation operators [3, 4]. For any tree
node, given a target output for the tree, SB determines what the desired output for that
node is. If the node were to be replaced with a subtree that delivers the desired output,
then the outputs of the ancestor nodes would also change, ultimately making the root
deliver the target output. The application of SB-based GP algorithms has been shown to be
particularly effective in supervised learning applications such as Boolean circuit synthesis
and symbolic regression [4-6].

SB-based variation operators modify trees by replacing nodes with subtrees that match
desired outputs as closely as possible. The Random Desired Operator (RDO) is perhaps the
most known among them, as it has been shown to perform best on a variety of problems [3,
4]. Key components of RDO are the use of a library of trees with pre-computed outputs,
and a library search procedure to retrieve the tree which most closely matches the desired
output.

As to the library, two traditional ways exist to build it [4]. The first way is to generate
all possible trees within a maximum tree height, and to retain one tree for each unique
output (the tree with less nodes is kept). Clearly, this method cannot scale with the num-
ber of dimensions, nor with the sampling of real-valued constants. In [4], for problems
with a single feature, a maximum height of 3 already results in hundreds of thousands of
trees. The second way is to dynamically refresh the library every generation, by includ-
ing all subtrees with unique output as observed in the population. The downside of this
approach is that the expressiveness of the library may be limited, as it is biased by how
the population evolves.

Linear Scaling (LS) is an interesting existing technique to minimize the mean squared
error of a GP tree by applying an optimal linear transformation to the output of the
tree [7, 8]. While typically used to improve the fitness, LS can more generally be applied
to scenarios where a (monotonic transformation of the Euclidean) distance between two
outputs needs to be minimized. As SB-based GP operates by matching desired outputs, it
stands to reason that some form of LS can be integrated to benefit the algorithm. This is
precisely the topic of this chapter: we study how to best integrate and how to best observe
the impact of LS on SB-based GP.

We propose, for the first time, the use of LS as (i) A separate, but synergistic mech-
anism, to work with SB; and (ii) A joint mechanism, to use within SB-based GP, namely
during library search. Much previous work solely considered synthetic benchmark func-
tions with few variables, and generational computation budgets (see Sec. 4.3). The latter
choice arguably favors SB-based GP when compared to other forms of GP (e.g., traditional
GP that swaps and mutates subtrees randomly [1]), in that the computational time taken
by SB itself, library construction, and library search, is not considered [4]. For this reason,
in our experiments, we assess the effectiveness of the proposed LS-enhanced, SB-based
GP in terms of both number of generations and time. Moreover, we test the algorithms
on realistic small- to medium-sized regression problems, using ten established real-world
benchmark datasets.

4.2. SEMANTIC BACKPROPAGATION 77

Where:
900|10]16 6|18 2|20 dxs=t, thisd =t/s
“ d—s=t, thusd=t+s

3|/0|5]4 2|2|1|5 3|9|2|4
5/5|5]5 4|7|1|6 2|5|o|1

Figure 4.1: Example of SB for the yellow leaf. The current outputs of each node are in pink.
The desired outputs are in blue. The desired output of the root is the (given) target output,
and the others are computed by recursive inversion on the path down to the yellow leaf.
The operations in the top right describe the inversions used in this example.

4.2. SEMANTIC BACKPROPAGATION

Given a target output ¢ for the tree (i.e., for its root), SB computes a desired output d”
for one specific node N. This information can then be used to replace N with a subtree
that has output as close as possible to d'V. It is expected that, the closer the output of the
subtree is to dV, the closer the output of the root will be to ¢.

Let D be the depth of N. Then N has D ancestors. Let Ay be the ancestor of NV at
depth k. Similarly, let S, = {Si,S%,...} be the (possibly empty) set of sibling nodes of
Ay For the sake of brevity, we now use the same notation used to refer to a node to also
identify the function implemented by that node. For example, Ay (z, Sk11) represents
the application of the function of node A, on z, and on (the outputs of) the nodes Sy 1.
Therefore, we can say that SB computes:

dhe = A (dM, Spqa) (4.1)

where A,:l represents the inversion of the function Ay. SB starts from the root by setting
its desired output to the target, i.e. d4° := t. The recursive computation of the desired
output for N (at depth D) then follows: dV = ABl_l (dAD—1 , SD). Figure 4.1 shows an
example.

Note that, if non-injective functions (e.g., abs(+)) are included in the function set, each
desired output vector will grow to represent different possible outcomes, i.e., d € RY*"™
and d; = {d},...,d]}, withi = 1,...,n the indices of training examples (from now
on, for brevity, we drop the superscript N from dV). Note that v can be oo, e.g., for
sin. Similarly, any value may satisfy some inversions: e.g., for v = x~1(0,0), 0 x x =
0,Vx € R. In such cases, we will indicate that any value is good with *. We describe
how d; with multiple and/or * values is handled during library search in the following
Section 4.2.1. Conversely, some functions are not invertible (in R) in some points (e.g.,
(-?)71(=1) = /=1), thus some ¢! may not exist. If SB is unfeasible, i.e., 3i : d; =), we
abort SB (as in [4]).

78 4. LINEAR SCALING IN SEMANTIC BACKPROPAGATION-BASED GENETIC PROGRAMMING

4.2.1. LIBRARY AND LIBRARY SEARCH

Given the desired output d, a subtree with similar output is sought. For this purpose,
typical SB-based variation operators rely on a searchable library of pre-computed trees
with unique outputs. As aforementioned in the introduction, a way to build the library is
to pre-compute all possible trees up to a maximum height, but this becomes intractable
with already few features (terminals) [4]. The other typical method is to collect all subtrees
as observed in the population (updated every generation) [9, 10].

In the so-called “population-based” library, if multiple subtrees with the same output
exist in the population, the one smallest in terms of the number of nodes is retained.
Furthermore, subtrees with constant output are not considered (library search handles
constants separately, see below).

The library search procedure parses the library to find the tree of which its output o
minimizes the distance from d, e.g., in terms of modifications of the L1 or L2 distance (or
any Minkowski distance). By modified version of the distances we mean that the multi-
valued nature of d; must be accounted for. The distance can be computed by finding the
one d? that minimizes |} — o;|",Yw € {1,2,...} [4]. Furthermore, if 3j : d] = *, then
the values of d; do not matter, and it is defined to have | x —o0;|* = 0. By pre-sorting the
d! in j, a linearly addressable library .# can be parsed in O(|.Z|nlog~) [4].

With trees with a constant output being typically excluded from the library, library
search further considers the distance between a constant value and the desired output in a
separate fashion. In [4], the values of d are considered to be candidate constant values, and
the best one is picked. The best tree found in the library, or a single-node implementing
the best constant, is finally returned by the library search procedure, depending on which
is closest to d.

4.2.2. RANDOM DESIRED OPERATOR

RDO works by generating an offspring tree that differs from the parent in one subtree.
The pseudocode of RDO is shown in Algorithm 4.1. First, the offspring (O) is created as a
clone of the parent (P), and one of its nodes NNV is selected. In [4], it is proposed to select N
with the equal depth probability criterion, which first samples the depth D to consider, and
then samples N among the nodes with depth D, both uniformly at random. Second, SB is
executed for NV, by setting the target for the root to the dependent variable to regress, i.e.
t := y. Note that, in general, ¢ can be different (e.g., a crossover operator is proposed in [6]
that sets the target output for one parent to the output of another parent). If SB is aborted
because an unfeasible d is computed, RDO returns the clone of the parent. Otherwise,
library search is performed, resulting in a tree 7" that has output with minimum distance
from d. Finally, RDO returns the offspring, adapted by replacing its subtree at N with 7.

4.2.3. INTERMEDIATE OUTPUT CACHING
SB-based GP is particularly efficient if the output of subtrees are cached. In particular, each
recursive iteration of SB requires to know the output of the sibling nodes, and library
search requires the output of the library trees. Therefore, in [4] it is proposed to cache
intermediate tree outputs, i.e., the outputs of all nodes.

Intermediate output caching not only speeds up SB-related methods, but also the tra-
ditional evaluation of trees. In fact, if a node is changed, it is sufficient to recompute the

4.3. RELATED WORK 79

Algorithm 4.1 Pseudocode of RDO.

1 function RDO(y, P, %)

O <+ Clone(P)

N < EqualDepthProbability(O)

d <+ SemanticBackpropagation(V, y)
if 3 : d; = () then return O

T « LibrarySearch(d, .¥)

O < ReplaceSubtree(N, T')

return O

® N N B W N

outputs only along the chain of ancestors, i.e., from the parent of that node upwards, to
get the output of the root. While these partial evaluations can be very effective, especially
for high-dimensional outputs, they take a toll in terms of memory (see, e.g., the discussion
on scalability in Chapter 2).

4.3. RELATED WORK

Two research lines are mostly related to this chapter, namely the one on LS, and the one
on SB. As to LS, the most cited work to date is [7], which shows how LS can dramatically
improve the performance of GP, for synthetic functions with up to three variables. In [8],
theoretical motivations for the added value of LS are given. LS was successfully used for
practical applications in, e.g., [11-13].

To the best of our knowledge, no contribution has been made that proposes modi-
fications of LS itself. This is not surprising, as LS is quick (i.e., O(n)), and the scaling
and translation coefficients are optimal with respect to the dependent variable y (see the
description of LS in Sec. 4.4.1). Perhaps more interestingly, we also could not find any
work where LS is combined with another method in a truly synergistic way, i.e., having
LS and/or the other method sharing information with each other. For example, in [14],
LS is used together with a particular mating scheme, but the two methods co-exist inde-
pendently from each other. Here, we consider for the first time a use of LS that is deeply
intertwined with another method, i.e., SB.

As to SB, it was first introduced together with RDO in [3], and much research work
has followed. Perhaps one of the most comprehensive contributions is [4], which com-
pares several variation operators, two of which are SB-based (RDO, and approximately
geometric crossover [6]). RDO is shown to outperform most of the other operators, on
both Boolean and regression problems.

While RDO uses SB to replace a subtree, the Forward Propagation Mutation (FPM)
operator proposed in [9] does the opposite: it preserves the subtree, and replaces the
remaining part of the tree, called the context. A new context is built by determining a new
root, and another subtree to append to the root, which is a sibling to the preserved one.
This new subtree is retrieved by library search using cosine similarity, and is rescaled by
an optimal constant (determined in O(n)). The authors claim that an alternative could be
to use LS to also determine a translation coefficient during library search for FPM. This is
indeed investigated in our work, for RDO.

80 4. LINEAR SCALING IN SEMANTIC BACKPROPAGATION-BASED GENETIC PROGRAMMING

Very recently, a variant of FPM has been proposed in [15] where the target is set to
a random point in the segment between y and the output of the parent, and where LS is
applied after library search. While this improves the fitting of the subtree to the context, it
is less effective (but faster) compared to considering optimal translation coefficients during
library search (as recognized by [9]).

Notwithstanding the novelty and advantages of the aforementioned and of other work
on SB-based GP (e.g., [5, 16]), as we mentioned in the introduction, mostly synthetic func-
tions have been considered so far, in the domain of regression. These functions have up to
three variables only. Moreover, comparisons have only been framed in terms of number
of generations, thus ignoring much of the computational expensiveness of SB-based GP.

To the best of our knowledge, only in [15] and [10] four and two real-world bench-
marks are respectively considered, for GP using RDO (and a variant) and the aforemen-
tioned variant of FPM. Yet again, only generational budgets are considered, except for
the supplementary material of [15], where experiments using a time limit are reported.
Although those results undeniably bring additional insight, we believe it remains hard
to assess what the impact of using SB-based operators is on computation time, because
of two reasons. Firstly, a relatively small population size of 100 is used, meaning that
population-based libraries will also be small and quick to parse. Secondly, the considered
GP algorithms have several differences (e.g., selection schemes), and always employ other
variation operators together with the SB-based ones.

In this chapter, not only do we consider how LS can be combined with SB-based GP, but
we also attempt to address the main limitations of the related work. We adopt ten real-
world benchmark datasets for regression with dozens of features, as they are arguably
more representative of practical problems, and we attempt to frame algorithmic compar-
isons in terms of both generations and time limits to also observe the potential overhead
of adopting SB-based GP.

250 o &
200 0 P
150 (V) s ¢
2100 O
g o &
) &
ooﬁV* +++++ oet?®

6 7 8 9 o 1 2 3 4 6 7 8 9

5
Input
Figure 4.2: Example of the effect of LS. Blue circles represent the output of the function
to approximate, while orange diamonds and green crosses are the output of two trees.
Left: The orange diamonds are closest to the blue circles. Right: The application of LS
substantially improves the green crosses, making them become the best match.

4.4. LINEAR SCALING WITH SB-BASED GP 81

4.4. LINEAR SCALING WITH SB-BASED GP

We now describe the first contribution of this chapter, i.e., how SB can work together with
LS, in synergy. The main concept behind LS is to allow GP to focus on the “shape” of the
function to approximate, by providing translation and scaling coefficients that minimize
the training Mean Squared Error (MSE) [7] (see, e.g., Fig. 4.2).

In principle, LS and SB can work independently, without making changes to the two
methods. In RDO, SB works by setting the target output ¢ (i.e., the desired output for the
root) to y. To back-propagate this information means to directly try to optimize the tree
towards delivering exactly y, without exploiting the fact that LS helps scaling the output
of the root. In other words, in this setting, LS acts solely as a “patch” on top of SB-based
GP, as it attempts to correct for the residual error that the algorithm normally makes.

We argue that it is reasonable to attempt to make LS and SB work in synergy to reduce
the error, in particular by informing SB on what the effect of LS is. Indeed, we hypothesize
that if the transformation applied by LS is also backpropagated to determine the desired
output, the subsequent variation will be more effective, as it will attempt to correct the
error that remains after LS is applied.

4.4.1. LINEAR SCALING
LS works as follows. Let the MSE between the dependent variable y and the tree output o
be the fitness function for regression:

n

MSE(y,0) = %Z (i — 0:).

i=1

LS introduces a scaled version of the MSE, where respectively a translation coefficient
a and a scaling coefficient b are used within the computation of the MSE, in order to

minimize it:
n

MSE®(5.0) =+ 3 (i — (0 +boy))".

i=1

The optimal a and b that minimize the error are (see [7]):

a =y — bo,
= (i —§)(0i —0) _ cov(y,o0) (4.2)
b= ; (0;—0)2 war(o)

The implementation of Equation 4.2 takes O(n).

4.4.2. LINEAR SCALING IN SYNERGY WITH SEMANTIC BACKPROPAGATION

We now describe how LS and SB can work in synergy. To begin, we point out that using
the MSE®" is equivalent to using the traditional MSE on a tree where the addition of a
and multiplication by b are encoded within the tree itself, with suitable nodes placed on
top of the root. For example, consider the rightmost tree of Figure 4.3: ignore the nodes in
white, and imagine the plus node to be the actual root. That tree is essentially one where
the effect of LS is incorporated in its structure (with pink nodes). For such a tree, it is

82 4. LINEAR SCALING IN SEMANTIC BACKPROPAGATION-BASED GENETIC PROGRAMMING

straightforward to compute SB (as described in Sec. 4.2). In particular, we immediately see
that for a target output ¢, the desired output for the original root (top green node) will be:

_ti—a
b

Therefore, whenever SB needs to be performed, we can calculate a and b based on ¢ and
the current tree output o (or, if ¢ = y like in RDO, a and b can be cached after they are
computed for MSE*®(y, 0)). Then we can compute d for the root using Equation 4.3 as
starting point for SB, and then we can proceed with Equation 4.1 as usual.

We remark that the computation overhead for including LS in SB this way can be
considered negligible. If D is the depth of the node chosen for replacement, then SB needs
to compute D inversions. If only injective functions are considered, this leads to O(Dn)
(it is O(D~Pn) if non-injective functions are present). In typical symbolic regression
settings, D is bounded by a small constant and n is large, i.e. D < n, meaning that the
bound is O(n). Since to include LS in synergy with SB means to compute Equation 4.2
and to compute Equation 4.3, and since these computations bring only additional O(n)
contributions, the bound remains O(n).

d; Vi 43)

4.5. LINEAR SCALING WITHIN SB-BASED GP

When performing library search, a tree T that has output o close to a desired output d is
sought for. This situation is similar to the symbolic regression problem itself, where the
output of the root node is expected to match y. Because LS is known to help in the latter
scenario [7, 8], it is reasonable to expect that LS can improve the effectiveness of library
search as well, as optimally scaled tree outputs will be considered.

4.5.1. LINEAR SCALING DURING LIBRARY SEARCH

Let L2 be the distance metric adopted by the library search procedure. Since L2 is a mono-
tonic transformation of the MSE, the optimal coefficients a and b can be computed with
Equation 4.2 (replacing y with d) to decrease the distance between d and o.

In practice, d needs to be in R" (instead of in R7*™) to have a unique, well-defined
way to compute a and b. For example, what is d if there exists some d; with multiple
values? Some criterion should be used to choose one of the values for d; (e.g., the value
closest to the mean given by considering the other d; that have unique values). Restrict-
ing the multi-dimensionality of the desired output by choosing a single value for each d;
means that possibly better matching outputs present in the library will not be searched for.
Alternatively, multiple scalings could be computed and the best one could be taken, but
exponential possibilities could exist. In this chapter, we include a non-injective function
in the function set of GP that is symmetric around zero. For its inversion, we choose to
return only the positive value (see Sec. 4.6). Regarding * values, we make the assumption
that, if present, they are few, and can be ignored when computing a and b.

We thus assess the effect of using LS within library search. Whenever library search
is performed, for each tree in the library, we compute optimal a and b coefficients that
minimize the distance between the output of the tree and the desired output. Library
search then returns the best matching tree, along with its a, b coefficients. When this tree
needs to be appended by the variation operator, four nodes are added on top of its root,

4.6. EXPERIMENTAL SETUP 83

Library Search
apply LS to each tree
while parsing £

Figure 4.3: [llustration of SB-based GP variation using LS within library search. From left
to right: the desired output d is computed for a node (in yellow). Library search retrieves
the tree (in green) with output that, scaled by a, b, best matches d. The yellow node is
replaced, and a structure is incorporated to account for the scaling (in pink).

namely two constants with value a and b respectively, an addition and a multiplication
node, to effectively incorporate the scaling in the structure of the tree. Figure 4.3 illustrates
this procedure.

The computation time taken by LS is O(n), and it is additive with respect to the time
taken to compute the distance between the output of a tree in the library and d. Therefore,
the library search bound remains O(|-Z|n). In practice, some adjustments can be made to
reduce computations. Once the library is created, the mean of each tree output o can be
cached, as well as the terms (0, — 0) (see Eq. 4.2). Furthermore, the mean of the desired
output d, and the terms (d; — d) can be computed only once, before starting the library
search. This way, the only operation with cost linear in n that is left to do when searching
is the computation of the numerator of b in Equation 4.2.

Lastly, when using LS within library search, we also change the way a competing
constant is computed: we set the constant to the optimal value, i.e., d.

4.6. EXPERIMENTAL SETUP

The parameter settings for GP are reported in Table 4.1, and are typical settings used in
literature ([2], related work of Sec. 4.3). The function +aq is the analytic quotient [17],
which allows for smooth division with no discontinuities (the denominator can never be-
come 0). The inversions for the functions considered are reported in Table 4.2. Note that
in the inversion of +4g for a;, we return only the positive value. The terminal set in-
cludes an Ephemeral Random Constant (ERC) [2], that has the effect of generating nodes
with randomized constant output. These constant outputs are sampled uniformly in the
interval defined by the minimum and maximum value (available at training time) of the
features.

Together with SB-based GP using RDO, we consider as a baseline GP with standard
subtree crossover and subtree mutation operators (SGP) [1, 2], respectively applying them
on 90% and 10% of the population every generation. Like for RDO, the nodes to swap/mutate
are chosen with equal depth probability, as in [4].

The operators of SGP take much less computation time compared to RDO (essentially
O(1)), in particular because the latter requires to build the library of trees, and performs
SB and library search. Therefore, we consider both a limit of 100 generations and a time-
dependent limit of 1000 seconds. As time-based comparisons can very much depend on

84 4. LINEAR SCALING IN SEMANTIC BACKPROPAGATION-BASED GENETIC PROGRAMMING

Table 4.1: Parameter settings of GP.

Parameter Setting

Generations / time limit 100 /1000 s
Population size 500

Function set {+,—, %, +a0}
Terminal set Features U ERC
ERC sample method U[min(Features), max(Features)]
Initialization Ramped Half-Half 2-6
Maximum tree height 12

Maximum number of nodes 500

Selection Tournament 4 & Elitism 1
Variation RDO with rate 1.0
Intermediate output caching Active

implementation details, we attempt to boost their fidelity by developing all algorithms in
the same C+ code base, which can be found at: https://goo.gl/UbFFSU.

We consider ten real-world benchmark regression datasets, with variable numbers of
examples and features, as reported in Table 4.3. The datasets Dow chemical and Tower
are recommended as benchmarks in [18]. The others are often used in GP literature and
come from the UCI machine learning repository!. These datasets can be considered “well-
behaved”, in that overfitting to the training typically happens only if very complicated
models are learned, or functions with discontinuities are used (e.g., protected division [1]).
We adopt a typical 75%-25% random splitting of the examples into training and test set for
a given run.

Each experiment consists of 30 independent runs. To assess if the results of one experi-
ment are significantly better or worse than the ones of another, we use the non-parametric
Wilcoxon signed-rank test [19], pairing runs by random seed. The random seed deter-
mines the train-test split and the sampling of the initial population. We say a result is
significant if the p-value of the statistical test is below a threshold 7. We use 7 = 0.05,
and further apply the Bonferroni correction method, to prevent false positive claims [19].

We run the experiments on a machine with two Intel® Xeon® CPU E5-2699 v4 @
2.20GHz, and 630 GB of RAM. Big amounts of memory are needed to use the intermediate
output caching, as single runs can already employ a few GB of memory.

Table 4.2: Functions considered and their inversions.

Function Direct Inversion(s)
+ a; +a; = o0 a; =0—aj
— a; — a; =0 ai =0+aj,a; =a; —0
X a; X a; =0 a; =ofajifo,a; #0

*if 0,a; =0

impossible if 0 # 0,a; =0

“AQ ai/\/lJra?:o ai:ox\/lJra?
aj = ++/(ai/0)* —1ifo# 0, (a;/0)* > 1

impossible if o = 0 or (a;/0)* < 1

!https://archive.ics.uci.edu/ml/index.php

https://goo.gl/UbFFSU

4.7. RESULTS

85

Table 4.3: Real-world benchmark datasets.

(Abbreviation) Name Examples (n) Features Variance of y Link

(A) Airfoil 1503 5 4.756 - 10 goo.gl/uNMLv3
(B) Boston housing 506 13 8.442 - 10 goo.gl/KxCnq1
(C) Concrete strength 1030 8 2.788 - 107 £00.gl/Gjq9oN
(D) Dow chemical 1066 57 1.228-1071 goo.gl/9D2z3b
(Ec) Energy cooling 768 8 9.039 - 10 goo.gl/ANV6dW
(Eh) Energy heating 768 8 1.017 - 102 g00.gl/ANV6dW
(T) Tower 4999 26 6.518-10"" goo.gl/9D2z3b
(Wr) Wine red 1599 11 7.842-107' goo.gl/inDsCE
(Ww) Wine white 4899 11 7.702 - 10° 200.gl/inDsCE
(Y) Yacht hydrodynamics 308 6 2.291 - 10? goo.gl/cmkRor

4.7. RESULTS

We proceed by showing the results of the following experiments. Firstly we consider

whether using LS in synergy with SB is beneficial compared to using it independently.

Secondly, we compare all configurations of SB-based GP with SGP, by fixing the maximum

number of generations, and observing the time taken. Thirdly, we repeat the previous

experiment, but this time using a fixed time budget, to take into account computational

expensiveness.

4.7.1. INDEPENDENT VS. SYNERGISTIC LINEAR SCALING WITH SEMANTIC BACK-

PROPAGATION

Table 4.4 shows the median error obtained by end-of-run best trees found using SB-based
GP without LS (noLS), with LS but independently from SB (iLS), and with LS in syn-
ergy with SB (sLS), after 100 generations. The results are reported in terms of variance-
Normalized MSE (NMSE), given by dividing the MSE by the variance of the dependent

variable y, to have results of similar order of magnitude, and multiplying by 100.

Evidently, iLS has much better training and test performance compared to noLS. This is
always significant with respect to training NMSE, and is also significant on all datasets but
for Boston at test time. However, to use LS in synergy with SB is even better, significantly

outperforming both noLS (all cases) and iLS on 8/10 datasets both at training and test time.

Our hypothesis that using LS in synergy with SB is beneficial is therefore experimentally

confirmed.

4.7.2. SB-BASED GP vs. STANDARD GP

The next results regard the comparison between SB-based GP and SGP, with and without
using LS to scale the error and within library search.

BUDGET OF 100 GENERATIONS

Figure 4.4 shows, for each dataset, the evolution of the best training fitness for SGP, SGP
with LS (SGP,1s), SB-based GP with traditional RDO (RDO), RDO using LS in synergy
during backpropagation (RDO.,s), RDO using LS within library search (RDO*), and RDO

xLS)

using both LS in synergy with backpropagation and within library search (RDO}[3

86 4. LINEAR SCALING IN SEMANTIC BACKPROPAGATION-BASED GENETIC PROGRAMMING

Table 4.4: Training and test median NMSEs for SB-based GP without LS (noLS), with LS
used independently (iLS), and with LS used in synergy with SB (sLS). Underlined results
are best in that no other is significantly better.

Train NMSE Test NMSE

noLS iLS sLS nolLS iLS sLS
A 41 29 22 43 32 29
B 27 17 14 27 21 16
C 34 19 15 37 21 18
D 71 29 20 69 28 21
Ec 99 69 49 87 71 54
Eh 68 40 54 87 62 711
T 16 14 13 17 14 14
Wr 69 63 60 65 63 62
Ww 75 69 67 78 71 70
Y 62 44 40 94 62 61
Best 0 2 10 0 2 10

RDO and SGP are complementary: one is better than the other on half cases. However,
on Tower and Yacht, SGP has much larger errors. In some cases (Airfoil, Boston, Concrete,
Wine white, Yacht), it is noticeable that the error of SGP levels off less markedly than the
one of RDO, thus a larger generational budget may favor SGP. RDO, s is better than SGP,
on all datasets but Yacht.

RDO™ and RDO*}: are consistently the best performing, with the second reaching
slightly smaller errors than the first. Moreover, both algorithms have smaller variances
than RDOy,ys). This is because the use of LS within library search (xLS) dynamically adapts
the library to the desired output that is searched. Without xLS, the expressiveness of the
library is more aleatory as it completely depends on the subtrees from the population.

Table 4.5 shows training and test NMSEs of end-of-run best trees. The training errors
reflect what already seen in Figure 4.4. Test errors are typically similar to training ones,
for all the algorithms. RDOL is the best performing, while RDO* is the second best.
On Wine red at test time, SGP, s is preferable over RDO*}%, which indicates that the latter
overfits (slightly).

TIME TAKEN BY 100 GENERATIONS

Figure 4.5 show the time taken to perform 100 generations for the algorithms. The differ-
ence between the times taken by SGP and SGP, ;s and the various configurations of RDO
is very large. For Yacht, that has 308 examples, RDO takes around 20 times longer than
SGP(.Ls); For Tower, that has 4999 examples, RDO takes around 100 times longer than
SGP(.Ls). This result strongly motivates the need for a time-based comparison between
SGP and RDO configurations, for fairness.

The use of LS in addition to RDO, or within library search, does, on average, increase
running times. However, these running times are not too dissimilar if put in perspective
to the times taken by SGP(.rs). This is expected because +LS and xLS do not affect com-
putational time bounds. RDO and RDO,;s have larger variations (some of the extreme
time points of RDO are considered outliers). These variations in time are linked to the
variations already seen in terms of fitness (e.g., see the Energy datasets in Fig. 4.4).

4.7. RESULTS 87

Airfoil (A) Boston housing (B) Concrete strength (C) Dow chemical (D)

e o l N - e, -
S T S Py, S . e
20 SRy, . 10 {"'4:!:&:1-.-_; ‘*“-;a—«:;..;.: 20) ~'Lul:-t--1;~q~;.v.:
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
m Energy cooling (Ec) Energy heating (Eh) Tower (T) Wine red (Wr)
%7 15.0 1013
wi
1) 4
Z, 1251, 8 ‘l 0
2 100/ [307
E . ‘ 6 LB S =5 e S \
. & i
I 1 20
Bosop R) g A L
25 e T — 10] TRy
) 50 100 0 25 5 75 100 0 25 50 75 100
Yacht hydrodynamics (Y)
| \
151 ¢
i
1.0
?
051
0 25 50 75 100 0
Generations
— SGP = SGPy|g - RDO —A RDO;s -¥- RDO*-> —#. RDOJ}2

Figure 4.4: Median best training NMSE (25th and 75th percentiles within shaded area) in
100 generations.

Table 4.5: Training and test median NMSEs, for the experiments with a budget of 100
generations. Underlined results are best in that no other is significantly better.

Train NMSE Test NMSE

o, A @) @) @) @) A, A, o o (@) @)

F 2 B B B B 2 2 2 2 B B8
A 59 30 41 22 16 15 60 32 43 29 20 19
B 25 17 27 14 10 94 23 17 27 16 16 14
C 29 17 34 15 13 12 30 20 37 18 15 15
D 69 23 71 20 15 13 65 23 69 21 16 15
Ec 12 10 99 49 29 28 11 90 87 54 34 32
Eh 80 57 68 54 35 .32 10 7.6 87 7.1 50 .40
T 36 15 16 13 8.6 7.5 36 15 17 14 10 95
Wr 67 61 69 60 57 57 65 62 65 62 62 65
Ww 73 68 75 67 64 63 75 70 78 70 69 68
Y 1.5 31 .62 40 14 .13 1.9 40 90 .60 30 30

Best 0 0 0 0 1

—_
o
o
[
=]
—_
™
oo

88 4. LINEAR SCALING IN SEMANTIC BACKPROPAGATION-BASED GENETIC PROGRAMMING

Tower (T)
10000

8000
¢

All datasets I
2000 6000 ;
==

1750
4000
1500
$ L
1250 == 2000
1000 ¢
0 b —e—
750 Yacht (Y)
.
500
1 500
250
400 '
0 b S— *
é;z o2 on 02 22 %
) Q (o) ()2\’]
‘9 < 9 O
&R
200
100 L}
0 = S

Figure 4.5: Time (seconds) to complete 100 generations. Left: Mean time over all datasets;
Right: Time by the 30 runs on Tower (top), and Yacht (bottom); Boxes extend from the
25th to the 75th percentiles (inner bar is the 50th), whiskers from the 10th to the 90th.
Diamonds are outliers.

4.8. DISCUSSION 89

BUDGET oF 1000 SECONDS

The evolution of the best training fitness in time is reported in Figure 4.6, for each dataset
and algorithm. The conclusions that can be drawn from these results are different from the
ones based on a generational limit. For SGP, the use of a time limit of 1000 seconds seems
more appropriate than the limit of 100 generations, since the fitness tends to plateau more
in this case (this is particularly evident for the smallest dataset Yacht).

Now, RDO performs markedly worse than SGP, and RDO, is also worse than SGP, s,
with the latter typically achieving close performance to RDO*, While in a time-based
comparison RDO performs quite poorly, it is interesting to see that, instead, RDO*™® and
RDO still perform very well. Indeed, the inclusion of LS within library search makes
variation so effective that, even if library search itself becomes slower, fitter trees are
discovered sooner. While it is perhaps not surprising that xLS makes variation improve,
it is interesting to see the extent of this improvement.

Table 4.6 summarizes both training and test NMSEs of end-of-run best trees. The tests
for statistical significance confirm what already seen in the training fitness convergence
plots of Figure 4.6: RDOS is the top performing algorithm, followed by RDO*. In terms
of error magnitudes, SGP,; is relatively close to RDO*™® and RDO*E; (yet often signifi-
cantly worse), compared to SGP and RDO w/o LS.

When it comes to generalization, RDO is still preferable, as it is significantly worse
than another algorithm only on 2 datasets, by relatively small magnitudes. SGP, ;s leads
to very good generalization on 3 out of 10 datasets, indicating that RDO*}3, which was
better at training time, delivered slightly overfitted trees.

All in all, our results show that scaling the trees during library search is extremely
valuable for RDO. In addition, to consider LS when backpropagating, i.e., RDO*S, gives a
further edge.

4.8. DISCUSSION

We showed that a comparison between RDO and SGP on real-world datasets strongly de-
pends on how this comparison is framed. With a typical budget of 100 generations, the
algorithms perform complementarily. Instead, when the comparison is framed in terms of
time, RDO performs worse than SGP. Our proposal of incorporating LS within the mech-
anisms of RDO makes the algorithm much more effective even if extra computations take
place, and makes it capable of outperforming all the other algorithms.

We now discuss some limitations of this chapter. To begin, we used typical parameter
settings. One may wonder whether our findings do generalize to other configurations.
Population sizing is perhaps the most interesting aspect to consider [20], especially when
using a population-based library (as it uses all subtrees with unique output from the popu-
lation). If a library is large enough, i.e., if it has enough representative power, the adoption
of LS may become redundant. However, because LS applies a linear transformation that
is optimal, we argue that populations and libraries will likely need to grow too big to be
practically usable to compete with LS. As to other parameters, we believe that the magni-
tude of our results, as well as the small variances found along the runs, strongly indicate
that the use of LS within library search will remain beneficial for many other parameter
settings.

90 4. LINEAR SCALING IN SEMANTIC BACKPROPAGATION-BASED GENETIC PROGRAMMING

Airfoil (A) Boston housing (B) Concrete strength (C) Dow chemical (D)

50}
401\

30

(XIS
)

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
m Energy cooling (Ec) Energy heating (Eh) Tower (T) Wine red (Wr)
2] I 817 ™ X 85
\ 1 2541k \ 80
Z o R 1 '
oD BN § - [H X, 75
g b SR N
S 6 41 B A faeany| 70
= i \
= £ 151 % 651 1
E e 21k _ \t-‘:“-‘-: --------- 60 S
| 10 e L STy
0 250 500 750 1000 O 250 500 750 1000 O 250 500 750 1000 O 250 500 750 1000
Wine white (Ww) Yacht hydrodynamics (Y)
0.6{13
0.5
0.4
0.3
027 Mg ==eeaii
R =
01 D o 2 2
0 250 500 750 1000 0 250 500 750 1000
Time
XxLS . XLS
- SGP == SGPy|g —i—- RDO =& RDO4 |5 -¥- RDO =#- RDO;y[2

Figure 4.6: Median best training NMSE (25th and 75th percentiles within shaded area) in
1000 seconds.

Table 4.6: Training and test median NMSEs, for the experiments with a budget of 1000
seconds. Underlined results are best in that no other is significantly better.

Train NMSE Test NMSE

W 1%] [920%] 1%] W [75%]
A 209 93 2 <

+ +
a, a, 8 o (@) @) A, a @) o 8 8
2 3 B B B B g % 2 2 B B
A 27 19 41 23 17 16 32 22 44 30 20 20
B 13 9.0 25 13 10 8.7 17 14 26 15 16 14
C 16 13 30 15 12 12 18 16 37 19 15 15
D 38 14 71 20 15 13 43 16 68 22 16 15
Ec 38 33 85 47 28 26 48 38 74 56 34 32
Eh 1.2 .77 65 4.1 33 .28 1.5 91 84 54 45 .35
22 11 23 18 10 9.0 22 12 23 19 12 11
Wr 60 58 69 60 57 57 63 62 65 62 62 63
Ww 68 66 76 68 66 66 70 69 79 70 69 69
Y 27 16 50 35 12 .10 49 33 80 55 35 .33

Best 0 0 0 0 2 1

o
=
w
o
)
'S

8

4.9. CONCLUSION 91

Another limit of our approach, in particular of using LS within library search, is the
growth of tree size. Any time a tree is retrieved from the library, four nodes are added to
incorporate the effect of LS. Larger trees are slower to evaluate (and require more memory
to cache intermediate outputs), and are also less likely to lead to interpretable expressions.
Interpretability of machine learning models can be a relevant aspect for practical applica-
tions, e.g., in healthcare [13, 21]. By including LS within library search, we did find trees
to grow bigger, with the best trees found by RDO: being on average 1.1 times larger
than the the ones found by SGP. s in the time-based comparison. We claim that this dif-
ference in size is largely unimportant. Both algorithms deliver quite big trees anyway,
with approximately 325 nodes for SGP,1s and 360 nodes for RDO*%:, on average. From
a performance perspective, the increment in time taken to evaluate a larger tree is lim-
ited, but may become noticeable for much larger datasets than the ones we considered.
As to interpretability, the algorithms deliver trees that are equivalently too large to result
in interpretable expressions. Future work may therefore focus on reducing tree size, e.g.,
by exploring the inclusion of bloat control methods [22], or by expressing preference for
smaller trees as a secondary objective [23]. However, if having trees with only a few dozen
nodes is truly desired, we believe substantially different approaches to GP may need to be
taken, such as modern model-based GP (Chapters 2 and 3).

Another aspect worth investigating is the use of more efficient data structures to im-
plement the library. In [6], k-d trees are used [24, 25]. We did experiments with this data
structure, and although searching k-d trees may not be quick for datasets with many ex-
amples [25], we did observe speed ups for the datasets we considered. Unfortunately, LS
cannot be used within k-d tree search. This is because a k-d tree is built exploiting the
fixed distribution of tree outputs, to cut exploration branches when searching. To apply
LS means to dynamically change such a distribution.

We did experiments with adopting k-d trees jointly with the computation of only the
optimal translation coefficient a. This can be achieved by (i) Subtracting the mean of the
output o of each library tree prior to building the k-d tree; (ii) Subtracting the mean of the
desired output d prior to k-d tree search; (iii) Incorporating the addition of a = d— 6 to the
tree returned by the search. This achieves the optimal translation (see Eq 4.2). However,
we found this to be less effective than using LS (which also computes b) within traditional
library search. To find an efficient data structure that enables the use of LS or of a similarly
powerful method, as well as investigating code parallelization, may allow to use SB-based
GP for large scale symbolic regression.

4.9. CONCLUSION

We presented the use of Linear Scaling (LS) in synergy with Semantic Backpropagation
(SB), and within library search, in Genetic Programming (GP) for symbolic regression.
We validated the proposed adaptations on ten real-world datasets, comparing various GP
configurations using a generational and a time budget. We found that incorporating LS
within SB-based GP leads to much lower errors in both cases, and outperforms the use of
traditional variation operators. Lastly, the cost incurred by our adaptations is limited, as
the asymptotic time bounds of SB-based GP remain unchanged.

92 4. LINEAR SCALING IN SEMANTIC BACKPROPAGATION-BASED GENETIC PROGRAMMING

ACKNOWLEDGMENTS

Financial support for this work was provided by Stichting Kinderen Kankervrij (Children
Cancer-free Foundation), project #187. We further thank the Maurits en Anna de Kock
Foundation for financing a high-performance computing system, and SURFsara for the
support in using the Lisa Compute Cluster. We also thank professor Krzysztof Krawiec
from the Poznan University of Technology, Poland, for the insightful exchanges on se-
mantic backpropagation-based genetic programming.

REFERENCES 93

REFERENCES

[1]

(2]

(3]

[4]

(6]

[9]

(10]

J.R.Koza, Genetic Programming: on the programming of computers by means of natural
selection (MIT Press, 1992).

R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza, A Field Guide to Genetic Pro-
gramming (Lulu Enterprises, UK Ltd, 2008).

B. Wieloch and K. Krawiec, Running programs backwards: instruction inversion for ef-
fective search in semantic spaces, in Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO) (ACM, 2013) pp. 1013-1020.

T. P. Pawlak, B. Wieloch, and K. Krawiec, Semantic backpropagation for designing
search operators in genetic programming, IEEE Transactions on Evolutionary Com-
putation 19, 326 (2015).

R. Ffrancon and M. Schoenauer, Memetic semantic genetic programming, in Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO) (ACM, 2015)
pp. 1023-1030.

K. Krawiec and T. Pawlak, Approximating geometric crossover by semantic back-
propagation, in Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO) (ACM, 2013) pp. 941-948.

M. Keijzer, Improving symbolic regression with interval arithmetic and linear scaling,
in European Conference on Genetic Programming (Springer, 2003) pp. 70-82.

M. Keijzer, Scaled symbolic regression, Genetic Programming and Evolvable Machines
5, 259 (2004).

M. Szubert, A. Kodali, S. Ganguly, K. Das, and J. C. Bongard, Semantic forward propa-
gation for symbolic regression, in International Conference on Parallel Problem Solving
from Nature (PPSN) (Springer, 2016) pp. 364-374.

Q. Chen, M. Zhang, and B. Xue, Geometric semantic genetic programming with perpen-
dicular crossover and random segment mutation for symbolic regression, in Asia-Pacific
Conference on Simulated Evolution and Learning (Springer, 2017) pp. 422-434.

A.Raja,R. M. A. Azad, C. Flanagan, and C. Ryan, Real-time, non-intrusive evaluation
of VoIP, in European Conference on Genetic Programming (Springer, 2007) pp. 217-228.

F. Archetti, I. Giordani, and L. Vanneschi, Genetic programming for anticancer thera-
peutic response prediction using the NCI-60 dataset, Computers & Operations Research
37, 1395 (2010).

M. Virgolin, T. Alderliesten, A. Bel, C. Witteveen, and P. A. N. Bosman, Symbolic re-
gression and feature construction with GP-GOMEA applied to radiotherapy dose recon-
struction of childhood cancer survivors, in Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO) (ACM, 2018) pp. 1395-1402.

94

REFERENCES

[14]

[15]

[16]

D. Costelloe and C. Ryan, On improving generalisation in genetic programming, in
European Conference on Genetic Programming (Springer, 2009) pp. 61-72.

Q. Chen, B. Xue, and M. Zhang, Improving generalization of genetic programming for
symbolic regression with angle-driven geometric semantic operators, IEEE Transactions
on Evolutionary Computation 23, 488 (2018).

Q. N. Huynh, S. Chand, H. K. Singh, and T. Ray, Genetic programming with mixed-
integer linear programming-based library search, IEEE Transactions on Evolutionary
Computation 22, 733 (2018).

[17] J. Ni, R. H. Drieberg, and P. I. Rockett, The use of an analytic quotient operator in ge-

[18]

netic programming, IEEE Transactions on Evolutionary Computation 17, 146 (2013).

D. R. White, J. Mcdermott, M. Castelli, L. Manzoni, B. W. Goldman, G. Kronberger,
W. Jaskowski, U.-M. O'Reilly, and S. Luke, Better GP benchmarks: community survey
results and proposals, Genetic Programming and Evolvable Machines 14, 3 (2013).

[19] J. Demsar, Statistical comparisons of classifiers over multiple data sets, Journal of Ma-

[20]

[21]

[22]

[23]

chine Learning Research 7, 1 (2006).

G. Harik, E. Canta-Paz, D. E. Goldberg, and B. L. Miller, The gambler’s ruin problem,
genetic algorithms, and the sizing of populations, Evolutionary Computation 7, 231
(1999).

Z. C. Lipton, The mythos of model interpretability, Queue 16, 30:31 (2018).

S. Luke and L. Panait, A comparison of bloat control methods for genetic programming,
Evolutionary Computation 14, 309 (2006).

A. Ekért and S. Z. Nemeth, Selection based on the Pareto nondomination criterion for
controlling code growth in genetic programming, Genetic Programming and Evolvable
Machines 2, 61 (2001).

[24] J. L. Bentley, Multidimensional binary search trees used for associative searching, Com-

munications of the ACM 18, 509 (1975).

[25] J. H. Friedman, J. L. Bentley, and R. A. Finkel, An algorithm for finding best matches

in logarithmic time, ACM Transactions on Mathematical Software 3, 209 (1976).

http://dx.doi.org/10.1145/3236386.3241340

EXPLAINABLE MACHINE LEARNING BY
EvoLvING CrRuciAL AND COMPACT
FEATURES

Feature construction can substantially improve the accuracy of Machine Learning (ML) al-
gorithms. Genetic Programming (GP) has been proven to be effective at this task by evolving
non-linear combinations of input features. GP additionally has the potential to improve ML
explainability since explicit expressions are evolved. Yet, in most GP works the complexity
of evolved features is not explicitly bound or minimized though this is arguably key for ex-
plainability. In this chapter, we assess to what extent GP still performs favorably at feature
construction when constructing features that are (1) Of small-enough number, to enable visu-
alization of the behavior of the ML model; (2) Of small-enough size, to enable interpretability
of the features themselves; (3) Of sufficient informative power, to retain or even improve the
performance of the ML algorithm. We consider a simple feature construction scheme using
three different GP algorithms, as well as random search, to evolve features for five ML al-
gorithms, including support vector machines and random forest. Our results on 21 datasets
pertaining to classification and regression problems show that constructing only two compact
features can be sufficient to rival the use of the entire original feature set. We further find
that a modern GP algorithm, GP-GOMEA, performs best overall. These results, combined
with examples that we provide of readable constructed features and of 2D visualizations of
ML behavior, lead us to positively conclude that GP-based feature construction still works well
when explicitly searching for compact features, making it extremely helpful to explain ML
models.

The contents of this chapter are based on the following publication: M. Virgolin, T. Alderliesten, and P.A.N. Bosman. On
explaining machine learning models by evolving crucial and compact features. Swarm and Evolutionary Computation 53, pp.
100640, Elsevier (2020).

95

https://doi.org/10.1016/j.swevo.2019.100640
https://doi.org/10.1016/j.swevo.2019.100640

96 5. EXPLAINABLE MACHINE LEARNING BY EVOLVING CRUCIAL AND COMPACT FEATURES

Figure 5.1: Regression surface learned by SVM for the Yacht dataset (in blue), expressed as
a 2D function of the two features (on the bottom axes) constructed by our approach. Circles
are training samples, diamonds are test samples. The dataset has six features (z(*)). Our
approach constructs two new features (using GP-GOMEA, see Sec. 5.4.1), which are non-
linear transformations of the prismatic coefficient (z®) and the Froude number (z(9)).
With only two features the SVM prediction surface can be visualized. Moreover, these
new features are understandable. Finally, the modeling quality is actually improved over
employing SVM directly on all six features. The coefficient of determination of SVM in-
creased from 85% using the original features to 98% using the two new features.

5.1. INTRODUCTION

Feature selection and feature construction are two important steps to improve the per-
formance of any Machine Learning (ML) algorithm [1, 2]. Feature selection is the task
of excluding features that are redundant or misleading. Feature construction is the task
of transforming (parts of) the original feature space into one that the ML algorithm can
better exploit.

A very interesting method to perform feature construction automatically is Genetic
Programming (GP) [3, 4]. GP can synthesize functions without many prior assumptions on
their form, differently from, e.g., logistic regression or regression splines [5, 6]. Moreover,
feature construction not only depends on the data at hand, but also on the way a specific
ML algorithm can model that data. Evolutionary methods in general are highly flexible in
their use due to the way they perform search (i.e., derivative free). This makes it possible,
for example, to evaluate the quality of a feature for a specific ML algorithm by directly
measuring what its impact is on the performance of the ML algorithm (i.e., by training
and validating the ML algorithm when using that feature).

5.1. INTRODUCTION 97

Explaining what constructed features mean can shed light on the behavior of ML-
inferred models that use such features. Reducing the number of features is also important
to improve interpretability. If the original feature space is reduced to few constructed
features (e.g., up to two for regression and up to three for classification), the function
learned by the ML model can be straightforwardly visualized with respect to the new
features. In fact, how to make ML models more understandable is a key topic of modern
ML research, as many practical, sensitive applications exist, where explaining (part of) the
behavior of ML models is essential to trust their use (e.g., in medical applications) [7-10].
Typically, GP for feature construction searches in a subspace of mathematical expressions.
Adding to the appeal and potential of GP, these expressions can be human-interpretable
if simple enough [8, 11].

Figure 5.1 presents an example of the potential held by such an approach: a multi-
dimensional dataset transformed into a 2D one, where both the behavior of the ML al-
gorithm and the meaning of the new features is clear, while the performance of the ML
algorithm is not compromised with respect to the use of the original feature set (it is ac-
tually improved).

In this chapter we study whether GP can be useful to construct a low number of small
features, to increase the chance of obtaining interpretable ML models, without compro-
mising their accuracy (compared to using the original feature set). To this end, we design
a simple, iterative feature construction scheme, and perform a wide set of experiments:
we consider four types of feature construction methods (three GP algorithms and random
search), five types of machine learning algorithms. We apply their combinations on 21
datasets between classification and regression to determine to what extent they are ca-
pable of effectively and efficiently finding crucial and compact features for specific ML
algorithms.

The main original scientific contribution of this work is an investigation of whether
GP can be used to construct features that are:

« Of small-enough number, to enable visualization of the behavior of the ML model;
« Of small-enough size, to enable interpretability of the features themselves;

« Of sufficient informative power, to retain or even improve the performance of the
ML, compared to using the original feature set;

These aspects are assessed under different circumstances:

« We test different search algorithms, including modern model-based GP and random
search;

+ We test different ML algorithms.

The remainder of this chapter is organized as follows. Related work is reported in
Section 5.2. The proposed feature construction scheme is presented in Section 5.3. The
search algorithms to construct features, as well as the considered ML algorithms, are pre-
sented in Section 5.4. The experimental setup is described in Section 5.5. Results related to
performance are reported in Section 5.6 and 5.7, while results concerning interpretability
are reported in Section 5.8. Considerations on running time are presented in Section 5.9.
Section 5.10 discusses our findings, and Section 5.11 concludes this chapter.

98 5. EXPLAINABLE MACHINE LEARNING BY EVOLVING CRUCIAL AND COMPACT FEATURES

5.2. RELATED WORK

In this chapter, we consider GP for feature construction to achieve better explainable ML
models. Different forms of GP to obtain explainable ML have been explored in literature,
but they do not necessarily leverage feature construction. For example, [12] introduced a
form of GP for the automatic synthesis of interpretable classifiers, generated from scratch
as self-contained ML models, made of IF-THEN rules. A very different paradigm for ex-
plainable ML by GP is considered in [13], where the authors explore the use of GP to
recover the behavior of a given unintelligible classifier by evolving interpretable approxi-
mation models. Other GP-based approaches and paradigms to synthesize interpretable ML
models from scratch, or to approximate the behavior of pre-existing ML models by inter-
pretable expressions, are reported in recent surveys on explainable artificial intelligence
such as [8, 9].

Since in this chapter we particularly study what the potential of GP for feature con-
struction is in terms of added value for explaining complex, not directly explainable mod-
els learned by various popular ML algorithms, the related work that follows describes GP
approaches for feature construction. For readers interested in feature selection, we refer
to a recent survey [14].

One of the first approaches of GP for feature construction is presented in [15]. There,
each GP solution is a set of K features. The fitness of a set is the cross-validation perfor-
mance of a decision tree [16] using that set. The results on six classification datasets show
that the approach is able to synthesize a feature set that is competitive with the original
one, and can also be added to the original set for further improvements. No attention is
however given to the interpretability of evolved features.

The work in [17] generates one feature with Standard, tree-based GP (SGP) [3], to be
added to the original set. Feature importance metrics of decision trees such as information
gain, Gini index and C'hi? are used as fitness measure. An advantage of using such fitness
measures over ML performance is that they can be computed very quickly. However,
they are decision tree-specific. Results show that the approach can improve prediction
accuracy, and, for a few problems, it is shown that decision trees that are simple enough
to be reasonably interpretable, can be found.

Feature construction for high-dimensional datasets is considered in [18], for eight bio-
medical binary classification problems, with 2,000 to 24,188 features. This approach is
different from the typical ones, as the authors propose to use SGP to evolve classifiers
rather than features, and extract features from the components (subtrees) of such clas-
sifiers. These are then used as new features for an ML algorithm. Results on K-Nearest
Neighbors [19], Naive Bayes classifier [20, 21], and decision tree show that a so-found fea-
ture set can be competitive or outperform the original one. The authors show an example
where a single interpretable feature is constructed that enables linear separation of the
classification examples.

Different from the aforementioned works, [22] explores feature construction for re-
gression. A SGP-based approach is designed to tackle regression problems with a large
number of features, and is tested on six datasets. Instead of using the constructed features
for a different ML algorithm, SGP dynamically incorporates them within an ongoing run,
to enrich the terminal set. Every « generations of SGP, the subtrees composing the best
solutions become new features by encapsulation into new terminal nodes. The approach

5.3. ITERATIVE EVOLUTIONARY FEATURE CONSTRUCTION 99

is found to improve the ability of SGP to find accurate solutions. However, the features
found by encapsulating subtrees are not interpretable because allowing subsequent en-
capsulations leads to an exponential growth of solution size.

A recent work that focuses on evolutionary dimensionality reduction and consequent
visualization is [23], where a multi-objective, grammar-based SGP approach is employed.
K feature transformations are evolved in synergy to enable, at the same time, good clas-
sification accuracy, and visualization through dimensionality reduction. The system is
thoroughly tested on 42 classification tasks, showing that the algorithm performs well
compared to state-of-the-art dimensionality reduction methods, and it enables visualiza-
tion of the learned space. However, as trees are free to grow up to a height of 50, the
constructed features themselves cannot be interpreted.

The most similar works to ours that we found are [24] and [25]. In [24], which is
our previous work, the possibility of using a modern model-based GP algorithm (which
we also use in our comparisons) for feature construction is explored on four regression
datasets. There, focus is put on keeping feature size small, to actively attempt to obtain
readable features. These features are iteratively constructed to be added to the original
feature set to improve the performance of the ML algorithm, and three ML algorithms are
compared (linear regression, support vector machines [26], random forest [27]). Reducing
the feature space to enable a better understanding of inferred ML models is not considered.

In [25], different feature construction approaches are compared on gene-expression
datasets that have a large number of features (thousands to tens of thousands) to study
if evolving class-dependent features, i.e., features that are each targeted at aiding the ML
algorithm detect one specific class, can be beneficial. Similarly to us, the authors show
visualizations of feature space reduced to up to three constructed features, and an example
of three features that are encoded as very small, easy-to-interpret trees. However, such
small features are a rare outcome as the trees used to encode features typically had more
than 75 nodes. These trees are therefore arguably extremely hard to read and interpret.

Our work is different from previous research in two major aspects. First, none of the
previous work principally addresses the conflicting objectives of retaining good perfor-
mance of an ML algorithm while attempting to explain both its behavior (by dimension-
ality reduction to allow visualization), and the meaning of the features themselves (by
constraining feature complexity). Second, multiple GP algorithms within a same feature
construction scheme, on multiple ML algorithms, are not compared in previous work.
Most of the times, it is a different feature construction scheme that is tested, using ar-
guably small variations of SGP. Here, we consider random search, two versions of SGP, as
well as another modern GP algorithm. Furthermore, we adopt both “weak” ML algorithms
such as ordinary least squares linear regression and the naive Bayes classifier, as well as
“strong”, state-of-the-art ones, which are rarely used in literature for feature construction,
such as support vector machine and random forest; on both classification and regression
tasks.

5.3. ITERATIVE EVOLUTIONARY FEATURE CONSTRUCTION

We use a remarkably simple scheme to construct features. Our approach constructs K €
N features by iterating K GP runs. The evolution of the k-th feature (k € {1,...,K})
uses the previously constructed k£ — 1 features.

100 5. EXPLAINABLE MACHINE LEARNING BY EvOLVING CruUcCIAL AND COMPACT FEATURES

T'r iteration k

2D g
-3.10 712 104 F-------- >
-7.41 9.41 7.49

T'r iteration k — 1

O gDy
2249 ... 310 104
1298 ... 741 749

Te iteration k
2D g®

9.87 111 5.55

6.45 4.78 12.01

Trained Model

k)

Best New Feature z(

Test Error k

Figure 5.2: Construction of the k-th feature and computation of the k-th test error. Evolved
features use the features of the original dataset (not shown) and random constants as
terminal nodes. Dashed arrows represent inputs, solid arrows represent outputs.

5.3.1. FEATURE CONSTRUCTION SCHEME

The dataset D defining the problem at hand is split into two parts: the training 7'r and
the test T'e set. This partition is kept fixed through the whole procedure. Only T'r is used
to construct features, while T'e is exclusively used for final evaluation to avoid positive
bias in the results [28]. We use the notation 29 to refer to the i-th feature value of the
Jj-th example, and y; for the desired outcome (label for classification or target value for
regression) of the j-th example.

The k-th GP run evolves the k-th feature. An example is shown in Figure 5.2. Each
solution in the population competes to become the new feature (%), that represents a
transformation of the original feature set. In every run, the population is initialized at
random.

We evaluate the fitness of a feature of the k-th run by measuring the performance of
the ML algorithm on a dataset that contains that feature and the previously evolved k — 1
features.

We only use original features (and random constants) as terminals. In particular, the
features constructed by previous iterations are not used as terminal nodes in the k-th run.
This prevents the generation of nested features, which could harm interpretability.

At the end of the k-th run, the best feature is stored and its values xg-k) are added to
T'r and T'e for the next iterations.

5.3.2. FEATURE FITNESS

The fitness of a feature is computed by measuring the performance (i.e., error) of the ML
algorithm when the new feature is added to 1'r. We consider the C-fold cross-validation
error rather than the training error to promote generalization and prevent overfitting. The
pseudo code of the evaluation function is shown in Algorithm 5.1.

Specifically, the C-fold cross-validation error is computed by partitioning T'r into C'
splits. For each ¢ = 1,.. ., C iteration, a different split is used for validation (set V¢), and
the remaining C' — 1 splits are used for training (set 7'r¢). The mean validation error is
the final result.

5.3. ITERATIVE EVOLUTIONARY FEATURE CONSTRUCTION 101

For classification tasks, in order to take into account both multiple and possibly imbal-
anced class distributions, the prediction error is computed as 1 minus the macro F'1 score,
i.e., 1 minus the mean of the class-specific F'1 scores:

1
1-Fl=1— ———— F1
#classes Z K
y€Eclasses
TP, TP, (5.1)
1 2 Z TP, ¥FP, TP,¥FN,
N #classes Try Try 7

YEclasses TP+ F P, TP,+FN,

where T'P,, FN,,, F'P, are the true positive, false negative, and false positive classifica-
tions for the class 7, respectively. If the computation of F'1, results in 3, we set F'1., = 0.
For regression, the prediction error is computed with the Mean Squared Error (MSE).

Algorithm 5.1 Computation of the fitness of a feature s

1 function COMPUTEFEATUREFITNESS(S)

2 Tr" +—AddFeatureToCurrentTrainingSet(s)
3 error < 0

4 forc=1,...,Cdo

5

6

7

T¢, Ve «SplitSet(c, C, Tr')
M <+ TrainMLModel(T°)
error < error+ComputeError(M, V°)

Return (%CO’")

o]

5.3.3. PREVENTING UNNECESSARY FITNESS COMPUTATIONS
Computing the fitness of a feature is particularly expensive, as it consists of a C-fold
cross-validation of the ML algorithm. This limits the feasibility of, e.g., adopting large
population sizes and large numbers of evaluations for the GP algorithms.

We therefore attempt to prevent unnecessary cross-validation calls, by assessing if
features meet four criteria. Let n be the number of examples in T'r. The criteria are the
following:

1. The feature is not a constant. We avoid evaluating constant features as they are
likely to be useless for many ML algorithms, which internally already compute an
intercept.

2. The feature does not contain extreme values that may cause numerical errors, i.e., with
absolute value above a lower-bound 3y or above an upper-bound 3,,. Here, we set
B = 10719 and B, = 10'° (none of the datasets considered here have values
exceeding these bounds).

3. The feature is not equivalent to one constructed in the previous k — 1 iterations. Equiv-
alence is determined by checking the values available in T'r, i.e., equivalence holds
if:

VjETr,EIZE{l,...,k:—l}:xS.):xy). (5.2)

102 5. EXPLAINABLE MACHINE LEARNING BY EvOLVING CruUcCIAL AND COMPACT FEATURES

Note that a constructed feature that is equivalent to a feature of the original fea-
ture set can be valid, as long as no other previously constructed feature exists that
is already equivalent. Thus, our approach can in principle perform pure feature
selection.

4. The values of the feature in consideration have changed since the last time the feature
was evaluated. GP variation can change the syntax of a feature without necessar-
ily affecting its behavior (e.g., inserting a multiplication by 1 will not change the
final values a feature computes). If the values do not change, then the fitness of
the feature will not change either (see Sec. 5.3.2). We therefore avoid unnecessary
re-computations of feature fitnesses, by caching the feature values prior to GP vari-
ation, and checking whether they have changed after variation.

The computational effort for each criterion is O(n) (it is O((k — 1)n) for criterion 3,
however in our experiments k < n). The fitness of a feature failing criterion 1, 2, or 3 is
set to the maximum possible error value. If criterion 4 fails, the fitness remains the same
(although performing cross-validation may lead to slightly different results when using
stochastic ML algorithms like random forest).

5.4. CONSIDERED SEARCH ALGORITHMS AND MACHINE LEARN-

ING ALGORITHMS

We consider SGP, Random Search (RS), and the GP instance of the Gene-pool Optimal
Mixing Evolutionary Algorithm (GP-GOMEA) as competing search algorithms to con-
struct features. SGP is widely used in feature construction (see related work in Sec. 5.2).
RS is not typically considered, yet we believe it is important to assess whether evolution
does bring any benefit over random enumeration within the confines of our study, i.e.,
when forcing to find small features. GP-GOMEA is a recently introduced GP algorithm
that has proven to be particularly proficient in evolving accurate solutions of limited size
(Chapters 2 and 3, and [24]).

As ML algorithms, we consider the Naive Bayes classifier (NB), ordinary least-squares
Linear Regression (LR), Support Vector Machines (SVM), Random Forest (RF), and eXtreme
Gradient Boosting (XGB). NB is used only for classification tasks, LR only for regression
tasks, SVM, RF, and XGB for both tasks. We provide more details in the following sections.

5.4.1. DETAILS ON THE SEARCH ALGORITHMS

All search algorithms use the fitness evaluation function. A feature s is evaluated by first
checking whether the four criteria of Section 5.3.3 are met, and then, if the outcome is
positive, by running the ML algorithm over the feature-extended dataset.

For SGP, we use subtree crossover and subtree mutation, picking the depth of subtree
roots uniformly randomly as proposed in [29]. The candidate parents for variation are
chosen with tournament selection. Since we are interested in constructing small features
so as to increase the chances they will be interpretable, we consider two versions of SGP.
The first is the classic one where solutions are free to grow to tree heights typically much
larger than the one used for tree initialization. In the following, the notation SGP refers to

5.4. CONSIDERED SEARCH ALGORITHMS AND MACHINE LEARNING ALGORITHMS 103

this first version. The second one uses trees that are not allowed to grow past the initial
maximum tree height. We call this version bounded SGP, and use the notation SGPy,.

RS is realized by continuously sampling and evaluating new trees, keeping the best [3].
Like for SGPy, a maximum tree height is fixed during the whole run. If evolution is hy-
pothetically no better than RS, then we expect that SGPb and GP-GOMEA will construct
features that are no better than the ones constructed by RS.

GP-GOMEA is a recently introduced GP algorithm that has been found to deliver ac-
curate solutions of small size on benchmark problems (Chapter 2), and to work well when
a small size is enforced in symbolic regression (Chapter 3 and [24]). GP-GOMEA uses a
tree template fixed by a maximum tree height (which can include intron nodes to allow
for unbalanced tree shapes) and performs homologous variation, i.e., mixed tree nodes
come from the same positions in the tree. Each generation prior to mixing, a hierarchi-
cal model that captures interdependencies (linkage) between nodes is built (using mutual
information). This model, called Linkage Tree (LT), drives variation by indicating what
nodes should be changed en block during mixing, to avoid the disruption of patterns with
large linkage.

The LT has been shown to enable GP-GOMEA to outperform subtree crossover and
subtree mutation of SGP, as well as the use of a randomly-build LT, i.e., the Random Tree
(RT), on problems of different nature (Chapters 2 and 3). However, the LT requires suffi-
ciently large population sizes to be accurate and beneficial (e.g., several thousand solutions
in GP for symbolic regression), as discussed in Chapter 3. Because in the framework of
this chapter fitness evaluations use the cross-validation of a ML algorithm, we cannot af-
ford to use large population sizes. Accordingly, we found the adoption of the LT to not be
superior to the adoption of the RT under these circumstances in preliminary experiments.
Therefore, for the most part, we adopt GP-GOMEA with the RT (GP-GOMEAgr). This
means we effectively compare random hierarchical homologous variation with subtree-
based variation. An example of adopting the LT and large population sizes for feature
construction is provided in Section 5.10.

5.4.2. DETAILS ON THE ML ALGORITHMS

We now briefly describe the ML algorithms used in this work: NB, LR, SVM, RF, and
XGB. NB and LR are less computationally expensive compared to SVM, RF, and XGB.
Details on the computational time complexity of these algorithms are reported at: https:
//bit.1ly/2PG@xse.

NB is a classifier which assumes independence between features [20, 21]. NB is often
used as a baseline, as it is simple and fast to train. We use the milpack implementation of
NB [30] and assume the data to be normally distributed (default setting).

Similarly to NB, LR is often used as a baseline as it is simple and fast, for regression
tasks. LR assumes that the target variable can be explained by a linear combination of the
features [20]. We use the milpack implementation of LR [30].

SVM is a powerful ML algorithm that can be used for non-linear classification and
regression [26, 31]. We use the libsvm C+ implementation [31]. We consider the Radial
Basis Function (RBF) kernel, which works well in practice for many problems, with C-SVM
for classification, and £-SVM for regression.

RF is an ensemble ML algorithm which, like SVM, can be used for both classification

https://bit.ly/2PG0xse
https://bit.ly/2PG0xse

104 5. EXPLAINABLE MACHINE LEARNING BY EvOLVING CruUcCIAL AND COMPACT FEATURES

Table 5.1: Parameter settings of the GP algorithms.

SGP(b) GP-GOMEAgt
Population size 100 100
Initialization method Ramped Half and Half =~ Half and Half
Initialization max tree height 2-6 (2 or 4) 20r4
Max tree height 17 (2 or 4) 2or4
Variation $X 0.9, SM 0.1 Parameter-less
Selection Tournament 7, Elitism 1 Parameter-less
Function set {+, %, =+, 2,/ log,, exp} for all
Terminal set {z®) ERC} for all

and regression and can infer non-linear patterns [27]. RF builds an ensemble of (typically
deep) decision trees, each trained on a sample of the training set (bagging). At prediction
time, the mean (or maximum agreement) prediction of the decision trees is returned. We
use the ranger C++ implementation [32].

XGB is, like RF, an ensemble ML algorithm, typically based on decision trees, and
capable of learning non-linear models [33]. XGB works by boosting, i.e., stacking together
multiple weak estimators (small decision tress) that fit the data in an incremental fashion.
We use the dmlc C+ implementation (https://bit.1ly/34fBNeA).

5.5. EXPERIMENTS

We perform 30 runs of our Feature Construction Scheme (FCS), with SGP, SGPy, RS, and
GP-GOMEARgr, in combination with each ML algorithm (NB only for classification and
LR only for regression), on each problem. Each run of the FCS uses a random train-test
split of 80%-20%, and considers up to K = 5 features construction rounds. We use a
population size of 100 for the search algorithms, and assign a maximum budget of 10, 000
function evaluations to each FCS iteration. This results in relatively large running times
for complex ML algorithms (see Sec. 5.9). An experiment including larger evolutionary
budgets and the use of the LT in GP-GOMEA is presented in the discussion (Sec. 5.10). We
use a limit on the total number of evaluations instead of a a limit on the total number of
generations because GP-GOMEAgt performs more evaluations than SGP per generation
(see, e.g., Sec. 3.8.1).

For GP-GOMEAgrT, SGPy, and RS, we consider two levels of maximum tree height A: 2
and 4. This choice yields a maximum solution size of 7 and 31 respectively (using function
nodes with a maximum arity » = 2). We choose these two height levels because we found
features with h = 2 to be arguably easy to read and interpret, whereas features with h = 4
can already be very hard to understand. This indication is also reported in Chapter 3 for
the evolution of symbolic regression formulas. Note that using a tree height limit over
a solution size limit prevents finding deep trees containing the nesting of the arguably
more complicated to understand non-linear functions -2, \/-, log,,, exp. We do not consider
bigger tree heights as resulting features may likely be impossible to interpret, defying a
key focus of this work.

https://bit.ly/34fBNeA

5.5. EXPERIMENTS 105

Other parameter settings used for the GP algorithms are shown in Table 5.1. SGP,
uses the same settings as SGP, except for the maximum tree height (at initialization and
along the whole run), which is set to the same of GP-GOMEAgr. In GP-GOMEAgr we
use the Half and Half (HH) tree initialization method instead of the Ramped Half and Half
(RHH) [3] commonly used for SGP. This proved to be beneficial since GOM varies nodes
instead of subtrees [11, 24]. For both HH and RHH, syntactical uniqueness of solutions
is enforced for up to 100 tries [3]. In GP-GOMEAgt we additionally avoid sampling trees
having a terminal node as root by setting the minimum tree height of the grow method
to 1. This is not done for SGP and SGP},, because differently from GP-GOMEAgr where
homologous nodes are varied, subtree root nodes for subtree crossover (SX) and subtree
mutation (SM) are chosen uniformly randomly. RS samples new trees using the same
initialization method as SGPy, i.e., RHH.

The division operator + used in the function set is the analytic quotient operator
(a+b=a/v1+ b?), which was shown to lead to better generalization performance than
protected division [34]. The logarithm is protected log, (-) = log(|-|) and log,(0) = 0, and
so is the square root operator. The terminal set contains the original feature set, and an
Ephemeral Random Constant (ERC) [4] with values uniformly sampled between the mini-
mum and maximum values of the features in the original training set, i.e.,
[min $§z)7 max x;l)], Vi, j € Tr.

The hyperparameter settings for the SVM, RF and XGB are shown in Table 5.2, and are
mostly default [27, 31, 32] (for XGB, we referred to https://bit.1ly/2JCM9x4). NB and LR
implementations do not have hyperparameters.

We consider 10 classification and 10 regression benchmark datasets' that can be con-
sidered traditional, i.e, they have small to moderate dimensionality (number of features).
We mostly study this type of dataset because we seek to find small constructed features
that can be interpreted. Hence, they can represent a transformation of only a limited
number of original features. Details on the datasets are reported in Table 5.3. Rows with
missing values are omitted. Most datasets are taken from the UCI Machine Learning
repository?, with exception for Dow Chemical and Tower, which come from GP litera-
ture [35, 36].

We further consider a very high-dimensional dataset from UCI® to assess whether GP
can still be useful to construct features in this type of scenario. The dataset in question
concerns the classification of cancer type, given RNA-Seq gene expression levels as fea-
tures. Five cancer class types are present, and class proportions in the data presents some
unbalance: the class frequencies are 0.37, 0.18, 0.18, 0.17, 0.10. A total of 20,531 features
are considered, in 801 examples. Since large computational resources are needed to handle
this dataset, we consider only NB as ML algorithm for feature construction upon this data.

IThe datasets are available at http://goo.gl/9D2z3b
2http://archive.ics.uci.edu/ml
3https://bit.1ly/334KbgW

https://bit.ly/2JCM9x4
http://goo.gl/9D2z3b

106 5. EXPLAINABLE MACHINE LEARNING BY EvOLVING CrRuUcCIAL AND COMPACT FEATURES

Table 5.2: Salient hyper-parameter settings of SVM, RF, and XGB.

SVM
Kernel RBF
Cost 1
Epsilon 0.1
Tolerance 0.001
Gamma %
Shrinking Active

RF

Number of trees 100
Bagging sampling with replacement
Classification mtry V#features
Regression mtry min (1, Heatures)

Min node size

1 classification, 5 regression

Split rule Gini classification, Variance regression
XGB

Number of trees 100

Booster gbtree

Max depth 6

Objective multiclass softmax, MSE regression

Learning rate 0.3

5.6. RESULTS ON TRADITIONAL DATASETS

The results of this section aim at assessing whether it is possible to construct few and small
features that lead to an equal or better performance than the original set, and whether
some search algorithms construct better features than others, for the traditional datasets.

5.6.1. GENERAL PERFORMANCE OF FEATURE CONSTRUCTION

We begin by observing the dataset-wise aggregated performance of FCS for the different
GP algorithms and the different ML algorithms, separately for classification and regres-
sion.

CLASSIFICATION

Figure 5.3 shows dataset-wise aggregated results obtained for NB, SVM, RF, and XGB, for
the 10 traditional classification tasks. Each data point is the mean among the dataset-
specific medians of macro F1 from the 30 runs.

In general, the use of only one constructed feature does not perform as good as the
use of the original feature set. Constructing more features improves the performance, but
with diminishing returns.

Specifically for NB, the use of two constructed features is already preferable to the
use of the original feature set. This is likely due to the fact that NB assumes complete
independence between the provided features, and this can be implicitly tackled by FCS.
SGP (unbounded) is the best performing algorithm as it can evolve arbitrarily complex

5.6. RESULTS ON TRADITIONAL DATASETS

107

NB SVM
Training Test Training Test
1.0
0 9 . L] L . .
Nog| == P R B
|| (¥ . . . ’-— p/
v@ 0.7 ’ . L] L] . / /
0.6
0.5
1.0
0.9 . . L4 . L4
0.8
<t V, 1 ! l . . .
Il 0.7 . . [.
=
0.6
05

.
N
w
IS
(6]
.
N
w

-
N
w
IS
w
=
N
w
IS
]

Training

1.0

W

0.9
< 0.8
Il 0.7

0.6

0.5

o
o

un
N
w
»
(6]
.
N
w

B GP-GOMEARy [SGP,

Bl sGp

.

2 3 4 5 1 2 3 4 5
BB RS @ Original

Figure 5.3: Aggregated results on the classification datasets. Horizontal axis: Number of
features. Vertical axis: Average of median F'1 score obtained on 30 runs for each dataset.

108 5. EXPLAINABLE MACHINE LEARNING BY EvOLVING CrRuUcCIAL AND COMPACT FEATURES

LR SVM
Training Test Training Test

1.0

0.9
™08 — —— ==

| = - HRIS— X

<07 7S

0.6

0.5

1.0

0.9

0. —
Tll“ 8”——'—_ ——_— w’/— . r3

0.7 " —_—
hﬁ . L] L]

0.6

05

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
RF XGB
Training Test Training Test
1.0

1.0

0.9

Il 0.7

0.6

0.5

. I" 0
- 0.8

R
ERE

.
N
w

4

B GP-GOMEAg [SGP,

5

1 2 3 4 5

BB sGp

i 2 3 4 5 1 2 3 4 5
BB RS @ Original

Figure 5.4: Aggregated results on the regression datasets. Horizontal axis: Number of
features. Vertical axis: Average of median R? score obtained on 30 runs for each dataset.

5.6. RESULTS ON TRADITIONAL DATASETS 109

Table 5.3: Traditional classification and regression datasets.

Dataset # Features # Examples # Classes
Cylinder Bands 39 277 2
Breast Cancer Wisc. 29 569 2
- Ecoli 7 336 8
.S Ionosphere 34 351 2
S Iris 4 150 3
% Madelon 500 2600 2
= Image Segmentation 19 2310 7
© Sonar 60 208 2
Vowel 9 990 11
Yeast 8 1484 10
Airfoil 6 1503 -
Boston Housing 13 506 -
Concrete 9 1030 -
g Dow Chemical 57 1066 -
‘%2 Energy Cooling 9 768 -
%o Energy Heating 9 768 -
~ Tower 26 4999 -
Wine Red 12 1599 -
Wine White 12 4898 -
Yacht 7 308 -

features, however, the magnitude of improvement of the macro F1 score with respect to
GP-GOMEARgT and SGPy, is limited. For h = 4 and K = 5, GP-GOMEAgt reaches the per-
formance of SGP. GP-GOMEAgr is typically slightly better than SGP},, and RS has worse
performance. Training and test F1 scores do not differ much for any feature construction
algorithm, meaning that overfitting is not an issue for NB. Rather, compared to the other
ML algorithms, NB underfits.

The performance of FCS for SVM has an almost identical pattern to the one observed
for NB, except for the fact that the performance is found to be consistently better. However,
for SVM it is preferable to use the original feature set rather than few constructed features.
This is evident in terms of training performance, but less at test time. In fact, using only 5
constructed features leads to similar test performance compared to using the original set.
The GP algorithms compare to each other similarly to when using NB. Compared to NB,
it can be seen that SVM exhibits larger gaps between training and test results, suggesting
that some overfitting takes place, especially when the original feature set is used.

The way performance improves for RF by constructing features is similar to the one
observed for NB and SVM. However, for RF the differences between the search algorithms
is particularly small: notice that using RS leads to close performance to the ones obtained
by using the other GP algorithms, compared to the SVM case. Moreover, virtually no
difference can be seen between GP-GOMEARgt and SGPy,. This suggests that RF already
works well with less refined features. Now, the features constructed by SGP are no longer
the best performing at test time. This is likely because SGP evolves larger, more complex
features than the other algorithms (see Sec. 5.6.1), making RF overfit. In fact, RF exhibits

110 5. EXPLAINABLE MACHINE LEARNING BY EvOLVING CruUcCIAL AND COMPACT FEATURES

the largest difference between training and test results compared to NB and SVM, for any
feature construction algorithm and h limit. Still, the test results of RF are slightly better
than the ones of SVM and markedly better than the ones of NB, meaning that the latter
two are underfitting.

The training and test performance obtained when using XGB is similar to the one
obtained when using RF, but the differences the between different search algorithms are
even less marked than for RF. Some differences can be seen for K = 1 on the training
set (SGP better than GP-GOMEARgt, and GP-GOMEARgt better than SGPb and RS), but
this difference is much less marked on the test set. When more features are constructed,
essentially all search algorithms deliver the same performance. XGB seems to be able
to construct non-linear relationships even better than RF. As to potential overfitting, the
trend of differences between training and test performance that can be observed for XGB
mirrors the one visible for RF.

As to maximum tree height, allowing the constructed features to be bigger (b = 4 vs
h = 2) moderately improves the performance. Interestingly, GP-GOMEAgt with h = 4
reaches competitive performance with SGP on all ML algorithms, despite the latter having
no strict limitation on feature size.

REGRESSION
Results on the regression tasks are shown in Figure 5.4, dataset-wise aggregated for LR,
SVM, RF, and XGB. We report the results in terms of coefficient of determination, i.e.,
R3(y,9) = 1 — MSE(y,9)/var(y). For the four ML algorithms, results overall follow
the same pattern. SGP is typically better, especially for LR and SVM, although constructing
more features reduces the performance gap with the other GP algorithms. GP-GOMEAgr
is slightly, yet consistently, the best performing within the maximum tree height limitation
of 2, while SGPy, is visibly preferable only when a single feature is constructed for LR and
SVM, for h = 4. Differently from the classification case, two features are typically enough
to reach the performance of the original feature set for all ML algorithms except for XGB.
Moreover, for LR, SVM, and RF, the performance between training and test is similar,
meaning no considerable overfitting is taking place, no matter the feature construction
algorithm used nor the limit of 4. This however is not the case for XGB, where a large
performance gap is encountered. Still, the test performance obtained when using XGB is
ultimately slightly better than the obtained for RF.

As for classification, allowing for larger trees results in better performance overall,
and reduces the gap between SGP and the other GP algorithms. With XGB, all search
algorithms perform similarly.

FEATURE SIZE
Figure 5.5 shows the aggregated feature size for the different GP algorithms and RS. The
aggregated solution size is computed by taking the median solution size per run, then av-
eraging over datasets, and finally averaging over ML algorithms (classification and regres-
sion are considered together). The picture shows how, overall, the known SGP tendency
to bloat differs compared to the algorithms working with a strict tree height limitation.
SGP features are so large that it is nearly impossible to interpret them (see Sec. 5.8.1).

RS finds the smallest features for both height limits » = 2 and h = 4. Considering
that GP-GOMEARgt and SGP}, generate trees within the same height bounds of RS, we

5.6. RESULTS ON TRADITIONAL DATASETS 111

100 A

\\
80 1
-~
~ -
~
—

)]
o
L

N
o
!

Feature size

0 T T T T T
1 2 3 4 5

B GP-GOMEART WM SGP, MEESGP [EMRS

Figure 5.5: Aggregated feature size for k = 1, ..., 5. Solid (dotted) lines represent solution
size for maximum tree height h = 2 (h = 4). Shaded areas represent standard deviation.
SGP is free to grow solutions up to h = 17.

conclude that it is the variation operators that allow finding larger trees with improved
fitness within the height limit. GP-GOMEAgT seems to construct slightly, yet consistently,
larger trees than SGP4,.

For SGP, it can be seen that subsequently constructed features are smaller (this is barely
visible for GP-GOMEAgt and SGPy, as well). This is interesting because we do not use any
mechanism to promote smaller trees. This result is likely linked to the diminishing returns
in performance observed in Figure 5.3 and 5.4: constructing new complex and informative
features becomes harder with the number of FCS iterations.

5.6.2. STATISTICAL SIGNIFICANCE: COMPARING GP ALGORITHMS

The aggregated results of Section 5.6.1 show moderate differences between GP-GOMEAgt
and SGPy,. These are arguably the most interesting algorithms to compare in-depth, as they
are able to construct small features that lead to good performance (RS typically constructs
less informative features, while SGP constructs very large ones).

We perform statistical significance tests to compare GP-GOMEAgt and SGP},. We con-
sider their median performance on the test set T'e, obtained by the FCS, and also compare
it with the use of the original feature set, for each ML algorithm and each dataset. In
our case, the treatments of our significance tests are the two search algorithms (i.e., GP-
GOMEAgt and SGPy) and the original feature set, while the subjects are the configurations
given by pairing ML algorithms and datasets [37].

We first perform a Friedman test to assess whether differences exists among the use of
different treatments (GP algorithms and original feature set) upon multiple subjects (ML
algorithm-dataset combinations). As post-hoc analysis, we use the pairwise Wilcoxon
signed rank tests, paired by subject (ML algorithm-dataset combination), to see how the

112 5. EXPLAINABLE MACHINE LEARNING BY EvOLVING CrRuUcCIAL AND COMPACT FEATURES

treatments compare to each other [37]. We adopt the Holm correction method to pre-
vent reporting false positive results that might have happened due to pure chance [38].
We consider both h = 2 and h = 4, and focus on K = 2, since consideration of only
two constructed features makes interpretation easier, and allows human visualization (see
Sec. 5.8.1).

CLASSIFICATION
For both h = 2, 4, the Friedman test strongly indicates differences between GP-GOMEAgr,
SGPy, and the use of the original feature set (p-value < 0.05).

Figure 5.6 (top) shows the Holm-corrected p-values obtained by the pairwise Wilcoxon
tests for classification, where the alternative hypothesis is that the row allows for larger
macro F1 scores than the column. No significant differences between GP-GOMEARgT and
SGPy, are found for both & = 2, 4. Both the GP algorithms can deliver constructed features
that are competitive with the use of the original feature set. The original feature set is
not significantly better than using feature construction. Moreover, for GP-GOMEAgr and
h = 4, the hypothesis that feature construction is not better than the original feature
set can be rejected with a corrected p-value below 0.1. The latter result appears to be in
contrast with the results from Figure 5.3 for SVM, RF and XGB, where it can be seen that
the construction of only two features does, on average, lead to slightly worse test results
than using the original feature set. Nonetheless, the opposite is true for NB, and with
rather large magnitude. A more in-depth analysis on this is provided in Section 5.6.3.

REGRESSION

As for classification datasets, the Friedman test indicates that differences are presents be-
tween the treatments. Figure 5.6 (bottom) shows the Holm-corrected p-values obtained
by the pairwise Wilcoxon tests for regression.

The statistical tests confirm the hypothesis that the algorithms are capable of providing
constructed features that are more informative than the original feature set, as observed
in Figure 5.4 for the regression datasets. Now, GP-GOMEAgr is significantly better than
SGP, when h = 2. For h = 4, instead, GP-GOMEAgr is not found to be significantly
better than SGPy,.

5.6.3. STATISTICAL SIGNIFICANCE: TWO CONSTRUCTED FEATURES VS. THE

ORIGINAL FEATURE SET PER ML ALGORITHM
Results presented in Section 5.6.1 indicate that our FCS brings most benefit if used with
the weak ML algorithms. We now report, for each ML algorithm, on how many datasets
2 features constructed using GP-GOMEA (with h = 2 and h = 4) lead to statistically
significantly (using Holm-corrected pairwise Wilcoxon test, p-value < 0.05) better, equal,
or worse results compared to using the original feature set on the test set. This is shown
in Table 5.4.

These results confirm what seen in Figures 5.3 and 5.4. Using FCS typically outper-
forms the use of the original feature set for the weak ML algorithms. For the strong ML
algorithms, in most cases, using the original feature set is preferable. However, for some
datasets reducing the space to two compact features without compromising performance
is still possible.

5.6. RESULTS ON TRADITIONAL DATASETS 113

20}
47@ Go, S
O,
5 s

GP- GP-
GOMEART'ZI'OOO 0.460 | 0.144 GOMEART'El'OOO 0.675 HXEH

SGP,- =1.000 =1.000 oMkt SGP,-=1.000 =1.000 omEeHE

Gy

Ot Go
Ly ™ S .
4‘?)‘ Q% O,./

b_

Classification

Orig- 0.954 =1.000 =1.000 Orig- 0.970 =1.000 =1.000

& G
e G0 e O

g S g S .
AN . TO8 Oy

GP-. GP-.
Gomenz, =1:000 UK IR | 7P =1.000 =1.000 [N

SGP,-=1.000 =1.000 [eNele]o] SGP,- =1.000 =1.000 jeNe[e]e]

Regression

Orig-=1.000 =1.000 =1.000 Orig- =1.000 =1.000 =1.000

h=2 h=4

Figure 5.6: Holm-corrected p-values of pairwise Wilcoxon tests on test performance. Rows
are tested to be significantly better than columns. Orig stands for the original feature set.

The use of the original feature set is generally hardest to beat when adopting RF or
XGB. For RF, in the regression case with h = 4, FCS brings benefits on the datasets Airfoil,
Energy Cooling, Energy Heating, and Yacht; and performs on par with the use of the
original feature set on the datasets Boston Housing and Concrete. These datasets are the
ones with the smallest number of original features. We find similar results for SVM and
for XGB. In the latter case, FCS is, in terms of statistical significance, equal to the original
feature set only on Energy Cooling, Energy Heating, and Yacht. It is reasonable to expect
that FCS works well when few features can be combined.

In the classification case, findings are different. For RF and h = 4, the datasets where
using two constructed features bring similar or better results than using the original fea-
ture set are Breast Cancer Wisconsin and Iris. The latter does have a small number of
original features (4), but the former has more than several other datasets (29). Further-
more, the datasets where FCS helps are different for SVM: FCS performs equally good to
the original feature set on Iris and Cylinder Bands (39 features), and better on Madelon
(500 features) and Image Segmentation (19 features). Regarding XGB, there is no dataset
where FCS is superior to the original feature set, but it is also not worse on almost half of
the datasets. For classification datasets, we cannot conclude that a small cardinality of the
original feature set is a good indication feature construction will work well. Furthermore,
feature construction influences different ML algorithms in different ways.

114 5. EXPLAINABLE MACHINE LEARNING BY EvOLVING CruUcCIAL AND COMPACT FEATURES

Table 5.4: Number of datasets where using two features constructed with GP-GOMEA
results in significantly better/equal/worse test performance compared to using the original
feature set.

h NB SVM RF XGB
4 2 8/1/1 2/2/6 1/1/8 0/4/6
O 4 8/1/1 2/2/6 1/1/8 0/4/6
h LR SVM RF XGB
g 2 5/3/2 5/2/3 4/0/6 0/2/8
e~ 4 7/12 5/2/3 4/2/4 0/3/7

5.7. RESULTS ON A HIGHLY-DIMENSIONAL DATASET

We further consider the RNA-Seq cancer gene expression dataset, comparing FCS by GP-
GOMEARgt with h = 4 against the use of the original feature set, when using NB. Figure 5.7
shows that NB with the original feature set overfits: the training performance is maximal,
while the test performance reaches an F1 of approximately 0.65. Even though NB is typi-
cally considered a weak estimator, the system described by the data is so severely under-
determined (over 20, 000 features vs less than 1, 000 examples) that actual patterns cannot
be retrieved. The use of FCS forces NB to use only a small number of constructed features,
which, in turn, can contain only a small number of the original features. Essentially, FCS
provides both the advantages of feature construction and feature selection. This leads to
large F1 scores already when solely two features are constructed.

5.8. RESULTS ON INTERPRETABILITY

The results presented in Section 5.6 and 5.7 showed that the original feature set can be
already outperformed by two small constructed features in many cases. We now aim at
assessing whether constraining features size can enable interpretability of the features
themselves, as well as if extra insight can be achieved by plotting and visualizing the
behavior of a trained ML model in the new two-dimensional space.

5.8.1. INTERPRETABILITY OF SMALL FEATURES

Table 5.5 shows some examples of features constructed by GP-GOMEAgr, for h = 2 and
h = 4. We report the first feature constructed for the K = 2 case, with median test
performance. We show the first feature as it is typically not smaller than the second (see
Fig. 5.5). Analytic quotients and protected logarithms are replaced by their respective
definitions. We remark that we do not check whether the meaning of the features is sound
(e.g., ensuring a certain unit of measure is returned). Constraining feature meaning is
problem-dependent, and outside the scope of this work.

For classification, we choose NB as it is the method which benefits most from feature
construction. The dataset considered is Ecoli, where NB achieves the largest median test
improvement when K = 2: from F'1 = 0.51 with the original set, to F'1 = 0.63 for h = 2,
and to F'1 = 0.66 for h = 4.

5.8. RESULTS ON INTERPRETABILITY 115

1.00 4
[‘*
0.95 - Y .
Tk
.
0.90 A
mmmm Original Train
0.85 4 = m Original Test
mmmm GP-GOMEART Train
0.80 - m m GP-GOMEART Test
0.75 A
0.70 A
A E E E EEE NN EEEEENGBETN

1 2 3 4 5

Figure 5.7: Comparison between the use of the original feature set and FCS with GP-
GOMEAgr (h = 4) on high-dimensional gene expression data. The vertical axis reports
the median F1 score, the horizontal axis reports the number of features constructed by
FCS. Stars indicate statistical significant superiority (p-value < 0.05) of one method with
respect to the other.

For regression, we consider LR on the Concrete dataset, for the same aforementioned
reasons. The test R? obtained with the original feature set is 0.59, the one with two
features constructed by GP-GOMEAgt is 0.76 (0.78) for h = 2 (h = 4).

For h = 2, we argue that constructed features are mostly easy to interpret. For exam-
ple, the feature shown for LR on Concrete tells us that aging ((®)) has a negative impact
on concrete compressive strength, whereas using more water (2(*)) than cement (z()
has a positive effect (both features are in kg/cm®). The impact of other features is less
important (within the data variability of the dataset). For h = 4, some features can be
harder to read and understand, however many are still accessible. This is mostly because,
even though the total solution size reachable with h = 4 is 31, constructed features are
typically half the size (see Fig. 5.5).

The features constructed for the RNA-Seq gene-expression dataset by GP-GOMEAgr
in Section 5.7 are also not excessively complex to be understood. For example, the first
two features for the median run are:

st : \/($(18382))2 4 (8014) 4 4:(3885) 4 4(17316)

ond : (x(7491) + \/W_i_x(l%ss)) y

2(5524) + £(18053) + £(14153) + 219751 _ Z(13744)
\/1 + (2(5579) — ;r(4417))2 14+ (x(16581))2

(5.3)

Even though the second feature is somewhat involved, it is arguably still possible to care-
fully analyze it and obtain a picture of how gene expression levels interact.

Overall, we cannot draw a strict conclusion on whether the features found by our
approach are interpretable, as interpretability is a subjective matter and, to date, no clear-

116 5. EXPLAINABLE MACHINE LEARNING BY EvOLVING CruUcCIAL AND COMPACT FEATURES

Table 5.5: Examples of features constructed by GP-GOMEAgy with h € {2,4}, K = 2, for
NB on Ecoli, and for LR on Concrete.

h 1st Feature
m 2 1’(3) + 1’(6) + 1’(1)/\/1 + (x(ﬁ))z
“ 4] 2® (x(7))2 2® +0.144/1/1 + (exp(z@))? — 2M 2@ 25
o | 2 @ — 2™ 1 932.204//1 + (z(®)2
=y V/19.76410g [¢® [+ 2@ + 22D/, /1 4 (2@®)2

(logp(((((((z(4) + @) £ 2@) 5 (2M = 2@ £ 2@ 5 (2M £ 2W2®) % 1065.162x

logp((((x<4)x(1) 4+ @) - x(S)) % (:v<4) _ (x(l) + ((x(2> =@y logp(x<1>)))2)))+
— (x(5):r(1> 422) (((x(S) + 20 4 m<2>) - ((x(l) - :1:(4>) + V@ = x(Z)))+
exp((((z® +2@) +2® 4 (2 4 23)) = 2W) = 20 4 2O = 2 ®W))))))))) = 2(M)x

2

(z®) — (441.237 + 2?))) — Jc<1))))

Figure 5.8: Example of a relatively “small” feature constructed by SGP, derived from a tree
with 96 nodes. Note that the analytic quotient operator (=-) and the protected logarithm
(log,,) are not expanded to their respective definitions to keep the feature contained. This
feature is arguably very hard to interpret.

cut metric exists [7, 8] (more on this in Sec. 5.10). Yet, it appears evident that enforcing a
restriction on their size is a necessary condition. We generally find that features using 15
or more nodes start to be hard to interpret with respect to our experimental settings, i.e.,
using our function set. Lastly, features constructed without a strict size limitation (by SGP)
are generally very large, and thus extremely hard to understand. For example, Figure 5.8
shows the first of the two features with median test performance constructed by SGP for
LR on Concrete (this is smaller than the first feature found by SGP for NB on Ecoli).

5.8.2. VISUALIZING WHAT THE ML ALGORITHM LEARNS

The construction of a small number of interpretable features can enable a better under-
standing of the problem and of the learned ML models. The case where up to two features
are constructed is particularly interesting, since it allows visualization.

We provide one example of classification boundaries and one of a regressed surface,
inferred by SVM on a two dimensional feature space obtained with our approach using
GP-GOMEAgt. The classification dataset on which we find the best test improvement
for h = 4 is Image Segmentation, where the F'1 score of SVM reaches 0.88, against 0.65
using the original feature set (median run). Figure 5.9 shows the classification boundaries
learned by SVM. The analytic quotient operator - and the protected log log,, are replaced
by their definition for readability. The constructed features are rather complex here, yet

5.9. RUNNING TIME 117

=
N
L

=
o
L

(x(19)2 4 x@ /1 4+ (xP)* +V/x12)

1:5 2i0 2i5 3.’0
log|log|x@| + xMO// 1 + (x15)2 + Vx12 4 exp(x19)]

Figure 5.9: Classification boundaries learned by SVM with two features constructed by
GP-GOMEAgt (h = 4) on the Image Segmentation dataset. The run with median test
performance is shown. Circles are training samples, diamonds are test samples.

readable. At the same time, it can be clearly seen how the training and test examples are
distributed in the 2D space, and what classification boundaries SVM learned.

For regression, Figure 5.1 shows the surface learned by SVM on Yacht (median run),
where GP-GOMEAgr with h = 2 constructs two features that lead to an R? of 0.98, against
0.85 obtained using the original feature set. The features are arguably easy to interpret,
while it can be seen that the learned surface accurately models most of the data points.

5.9. RUNNING TIME

Our results are made possible by evaluating the fitness of constructed features with cross-
validation, a procedure which is particularly expensive. Table 5.6 shows the (mean over 30
runs) serial running time to construct five features on the smallest and largest classification
and regression datasets, using GP-GOMEAgr with h = 4 and the parameter settings of
Section 5.5, on the relatively old AMD Opteron™ Processor 6386 SE*. Running time has
a large variability, from seconds to dozens of hours, depending on dataset size and ML
algorithm. For the traditional datasets and ML algorithms we considered, it can be argued
that our approach can be used in practice. However, for very high-dimensional datasets,
only fast ML algorithms can be used. The construction of 5 features for the RNA-Seq
gene expression dataset took 25 minutes even though NB was used. To use slower ML
algorithms would easily require dozens to hundreds of hours.

“http://cpuboss.com/cpu/AMD-Opteron-6386-SE

118 5. EXPLAINABLE MACHINE LEARNING BY EvOLVING CrRuUcCIAL AND COMPACT FEATURES

As to memory occupation, it basically mostly depends on the way the chosen ML algo-
rithm handles the dataset. Our runs required at most few hundreds of MBs when dealing
with the larger traditional datasets, for SVM and RF. Handling the parallel execution of
FCS experiments upon the gene expression dataset required a few GBs.

Table 5.6: Mean serial running time to construct five features using GP-GOMEAgt (h = 4)
on the smallest and largest traditional datasets.

Dataset Size NB/LR SVM RF XGB
4 Iris 150 x 4 7s 2m 25m 42m
O Madelon 2600 x 500 4m 14 h 8h 10h
& Yacht 308 x 7 8s 4m 1h 1h
~ Tower 4999 x 26 2m 34h 34h 13h

5.10. DiscussiON

We believe this is one of the few works on evolutionary feature construction where the
focus is put on both improving the performance of an ML algorithm, and on human inter-
pretability at the same time. The interpretability we aimed for is twofold: understanding
the meaning of the features themselves, as well as reducing their number. GP algorithms
are key, as they can provide constructed features as interpretable expressions given basic
functional components, and a complexity limit (e.g., tree height).

We have run a large set of experiments, totaling more than 150,000 cpu-hours. Our re-
sults strongly support the hypothesis that the original feature set can be replaced by few
(even solely K = 2) features built with our FCS without compromising performance in
many cases. In some cases, performance even improved. GP-GOMEAgt and SGP}, achieve
this result while keeping the constructed feature size extremely limited (h = 2,4). SGP
leads to slightly better performance than GP-GOMEAgt and SGPy, but at the cost of con-
structing five to ten times larger features. RS proved to be less effective than the GP
algorithms.

Our FCS is arguably most sensible to use for simpler ML algorithms, such as NB and
LR. Constructed features change the space upon which the ML algorithm operates. SVM
already includes the kernel trick to change the feature space. Similarly, the trees of RF and
XGB effectively embody complex non-linear feature combinations to explain the variance
in the data. NB and LR, instead, do not include such mechanisms. Rather, they have
particular assumptions on how the features should be combined (NB assumes normality,
LR linearity). The features constructed by GP can transform the input the ML algorithm
operates upon, to better fit its assumptions.

We found that performance was almost always significantly better than compared to
using the original feature set for NB and LR. As running times for these ML algorithms can
be in the order of seconds or minutes (Sec. 5.9), feature construction has the potential to
be routinely used in data analysis and machine learning practice. Furthermore, FCS (or a
modification where the constructed features are added to the original set) can be used as an
alternative way to tune simple ML algorithms which have limited or no hyper-parameters.

5.10. DiscussioN 119

We have shown that our approach can also be helpful when dealing with high-
dimensional data (on the RNA-Seq gene expression dataset), where system underdeter-
mination can cause even simpler ML algorithms to overfit. This is because FCS essentially
embodies feature selection, as we only construct a small number of small-sized features.

We remark that we did not adopt high-dimensional datasets concerning image recog-
nition such as MNIST [39], CIFAR [40], or ImageNet [41]. In these datasets, features rep-
resent pixels, which have no particular meaning. Constructing features as readable pixel
transformations will likely provide no insights on the behavior of a ML model.

Regarding the comparison between the search algorithms, GP-GOMEAgt was found to
be slightly preferable to SGP}, (especially for h = 2, K = 2). We believe that significantly
better results can be achieved if bigger population sizes and larger evaluations budgets can
be employed (we kept the population size limited due to the computational expensiveness
of SVM and RF).

Particularly for GP-GOMEA, in Chapter 3 we discussed that having sufficiently large
population sizes enables the possibility to exploit linkage estimation and perform better-
than-random mixing. To validate this also within the framework of our proposed FCS,
we scaled the population size and the budget of fitness evaluations, and compared the
use of the LT with the use of the RT, on two traditional classification dataset: Image Seg-
mentation (19 features) and Madelon (500 features), using NB. The outcome is shown in
Figure 5.10: the employment of big-enough population sizes (and of sufficient numbers of
fitness evaluation) can lead to better performance, if statistical metrics can be measured re-
liably. For Image Segmentation, the number of terminals to be considered in the genotype
is relatively small due to the use of 19 features. This allows the LT to estimate node in-
terdependencies reliably, and deliver better-than-random performance. For Madelon, the
large number of terminals (500 features) makes it hard for the LT to outperform the RT
within a limited computational budget. All in all, we recommend the use of GP-GOMEA
as feature constructor since it was not worse on classification and was statistically better
for regression. Furthermore, we advice to use the LT if the population size can be of the
order of thousands or more (or even better, if exponential population sizing schemes are
used as in Chapters 2 and 3). Otherwise, the RT should be preferred.

To assess if small constructed features are interpretable and if it is possible to visual-
ize what the behavior of learned ML models, we showed some examples, providing evi-
dence that both requirements can be reasonably satisfied. However, we did not perform a
thorough study on interpretability of the constructed features. Several metrics have been
recently proposed to measure some form of interpretability for ML models, that could
be used to measure the interpretability of features as well. For example, in [7] two met-
rics called simulatability and decomposability are proposed. Simulatability represents the
capability of humans to predict the output of a model given an input. Decomposability
represents the capacity to intuitively understand the components of a model. Crucially,
to measure this type of metrics, user studies need to be conducted. For example, experts
of a field should be asked to provide feedback, on features constructed for datasets they
are knowledgeable about (e.g., biochemists for data on gene expression, civil engineers for
data on concrete strength). Nonetheless, we believe that enforcing features (and GP pro-
grams in general) to be small still remains a necessary condition to allow interpretability,
although it is often ignored in GP literature (see Sec. 3.9).

120 5. EXPLAINABLE MACHINE LEARNING BY EVOLVING CRUCIAL AND COMPACT FEATURES

0.80 0.68

mmmm RT Train mmmm RT Train

= ® RT Test = m RT Test
0.70 | === T Train 0.67 | === LT Train

m m |TTest m m |TTest
0.78 A 0.66
0.77 A 0.65

.
. P .
. .
0.76 0.64 o%®
. b . L3 . b
S ant’ . “ *

o

0.75 *— T T 0.63 T T
500/50K 2500/250K 125K/1250K 500/50K 2500/250K 125K/1250K

Figure 5.10: Comparison between the use of the RT and of the LT in GP-GOMEA. Vertical
axis: median F1 score of 30 runs, obtained by NB on Image Segmentation (left) and on
Madelon (right) using the first constructed feature, with & = 4 (note the different scale).
Horizontal axis: population size / fitness evaluations budget. Stars indicate significant
superiority (p-value < 0.05) of one method with respect to the other.

Considering the visualization examples proposed in Section 5.8, it is natural to com-
pare our approach with well-known dimensionality reduction techniques, such as Prin-
cipal Component Analysis (PCA) [42] or t-Distributed Stochastic Neighbor Embedding
(t-SNE) [43]. We remark that those techniques and our FCS have very different objectives.
In general, the sole aim of such techniques is to reduce the data dimensionality. PCA does
so by detecting components that capture maximal variance. However, it does not attempt
to optimize the transformation of the original feature set to improve an ML algorithm’s
performance. Also, PCA does not focus on the interpretability of the feature transforma-
tions. FCS takes the performance of the ML algorithm and interpretability of the features
into account, while dimensionality reduction comes from forcing the construction of few
features. We compared using 2 features constructed with RS (the worst search algorithm)
with maximum h = 2, with using the first 2 PCs found by PCA. The use of constructed
features over PCs resulted in significantly superior or equal test performance for all ML
algorithms and for all problems. We remark, however, that PCA is extremely fast and
independent from the ML algorithm.

Our FCS has several limitations. A first limitation regards the performance obtainable
by the ML algorithm when the constructed features are used. FCS is iterative, and this
can lead to suboptimal performance for a chosen K, compared to attempting to find K
features at once. This is because the contributions of multiple features to an ML algorithm
are not necessarily perpendicular to each other [25]. FCS could be changed to find, at any
given iteration, a synergistic set of K features that is independent from previous iterations.
To this end, the search algorithms need to be modified so that they can evolve sets of
constructed features (a similar proposal for SGP was done in [15]). Yet, it is reasonable to
expect that if K features need to be learned at the same time, larger population sizes may
be needed compared to learning the K features iteratively.

5.11. CONCLUSION 121

Another limitation of this work is that hyper-parameter tuning was not considered. To
include hyper-parameter tuning within FCS could bring even higher performance scores,
or help prevent overfitting. A possibility could be, for example, to evolve pairs of fea-
tures and hyper-parameter settings, where every time a feature is evaluated, the optimal
hyper-parameters are also searched for. Such a procedure may likely require strong par-
allelization efforts, as C'-fold cross-validation should be carried out for each combination
of hyper-parameter values.

Lastly, it would be interesting to extend our approach to other classification and re-
gression settings, e.g., problems with missing data; or to unsupervised tasks, as simple
features may lead to better clustering of the examples.

5.11. CONCLUSION

With a simple evolutionary feature construction framework we have studied the feasibility
of constructing few crucial and compact features with Genetic Programming (GP), towards
improving the explainability of Machine Learning (ML) models without losing prediction
accuracy. Within the proposed framework, we compared standard GP, random search,
and the GP adaptation of the Gene-pool Optimal Mixing Evolutionary Algorithm (GP-
GOMEA) as feature constructors, and found that GP-GOMEA is overall preferable when
strict limitations on feature size are enforced. Despite limitations on feature size, and
despite the reduction of problem dimensionality that we imposed by constructing only two
features, we obtained equal or better ML prediction performance compared to using the
original feature set for more than half the combinations of datasets and ML algorithms. In
many cases, humans can understand what the feature means, and it is possible to visualize
how trained ML models will behave. All in all, we conclude that feature construction is
most useful and sensible for simpler ML algorithms, where more resources can be used
for evolution (e.g., larger population sizes), which, in turn, unlock the added benefits of
more advanced evolutionary mechanisms (e.g., using linkage learning in GP-GOMEA).

ACKNOWLEDGMENTS

The authors acknowledge the Kinderen Kankervrij foundation for financial support (project
#187). The majority of the computations for this work were performed on the Lisa Com-
pute Cluster with the support of SURFsara.

122

REFERENCES

REFERENCES

(1]

(2]

(3]

(4]

H. Liu and H. Motoda, Feature extraction, construction and selection: A data mining
perspective, Vol. 453 (Springer Science & Business Media, 1998).

T. Hastie, R. Tibshirani, and]J. Friedman, The elements of statistical learning: data
mining, inference, and prediction (Springer Science & Business Media, 2009).

J.R.Koza, Genetic Programming: on the programming of computers by means of natural
selection (MIT Press, 1992).

R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza, A Field Guide to Genetic Pro-
gramming (Lulu Enterprises, UK Ltd, 2008).

[5] J. H. Friedman, Multivariate adaptive regression splines, Annals of Statistics 19, 123

[10]

[11]

[12]

[13]

[14]

(1991).

D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied Logistic Regression, Vol.
398 (John Wiley & Sons, 2013).

Z. C. Lipton, The mythos of model interpretability, Queue 16, 30:31 (2018).

R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi, A
survey of methods for explaining black box models, ACM Computing Surveys (CSUR)
51, 93:1 (2018).

A. Adadi and M. Berrada, Peeking inside the black-box: A survey on explainable artifi-
cial intelligence (XAI), IEEE Access 6, 52138 (2018).

B. Goodman and S. Flaxman, European union regulations on algorithmic decision-
making and a “right to explanation”, Al Magazine 38, 50 (2017).

M. Virgolin, T. Alderliesten, C. Witteveen, and P. A. N. Bosman, Improv-
ing model-based genetic programming for symbolic regression of small expressions,
(2019), accepted for publication in Evolutionary Computation. ArXiv preprint
arXiv:1904.02050.

A. Cano, A. Zafra, and S. Ventura, An interpretable classification rule mining algo-
rithm, Information Sciences 240, 1 (2013).

B. P. Evans, B. Xue, and M. Zhang, What’s inside the black-box?: a genetic program-
ming method for interpreting complex machine learning models, in Genetic and Evolu-
tionary Computation Conference (GECCO) 2019 (ACM, 2019) pp. 1012-1020.

B. Xue, M. Zhang, W. N. Browne, and X. Yao, A survey on evolutionary computation
approaches to feature selection, IEEE Transactions on Evolutionary Computation 20,
606 (2016).

K. Krawiec, Genetic programming-based construction of features for machine learning
and knowledge discovery tasks, Genetic Programming and Evolvable Machines 3, 329
(2002).

http://dx.doi.org/10.1145/3236386.3241340

REFERENCES 123

[16]

(17]

(18]

(19]

(20]

(23]

[24]

L. Breiman, J. H. Friedman, R. A. Olshen, and C.]. Stone, Classification and Regression
Trees (Wadsworth, 1984).

M. Muharram and G. D. Smith, Evolutionary constructive induction, IEEE Transactions
on Knowledge and Data Engineering 17, 1518 (2005).

B. Tran, B. Xue, and M. Zhang, Genetic programming for feature construction and
selection in classification on high-dimensional data, Memetic Computing 8, 3 (2016).

N. S. Altman, An introduction to kernel and nearest-neighbor nonparametric regression,
The American Statistician 46, 175 (1992).

S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach (Pearson Edu-
cation, 2003).

K. P. Murphy, Naive Bayes classifiers, University of British Columbia 18 (2006).

Q. Chen, M. Zhang, and B. Xue, Genetic programming with embedded feature construc-
tion for high-dimensional symbolic regression, in Intelligent and Evolutionary Systems
(Springer, 2017) pp. 87-102.

A. Cano, S. Ventura, and K. J. Cios, Multi-objective genetic programming for feature
extraction and data visualization, Soft Computing 21, 2069 (2017).

M. Virgolin, T. Alderliesten, A. Bel, C. Witteveen, and P. A. N. Bosman, Symbolic re-
gression and feature construction with GP-GOMEA applied to radiotherapy dose recon-
struction of childhood cancer survivors, in Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO) (ACM, 2018) pp. 1395-1402.

B. Tran, B. Xue, and M. Zhang, Genetic programming for multiple-feature construction
on high-dimensional classification, Pattern Recognition 93, 404 (2019).

C. Cortes and V. Vapnik, Support-vector networks, Machine Learning 20, 273 (1995).
L. Breiman, Random forests, Machine Learning 45, 5 (2001).

R. Kohavi and G. H. John, Wrappers for feature subset selection, Artificial intelligence
97, 273 (1997).

T. P. Pawlak, B. Wieloch, and K. Krawiec, Semantic backpropagation for designing
search operators in genetic programming, IEEE Transactions on Evolutionary Com-
putation 19, 326 (2015).

R. R. Curtin, J. R. Cline, N. P. Slagle, W. B. March, P. Ram, N. A. Mehta, and A. G.
Gray, MLPACK: A scalable C++ machine learning library, Journal of Machine Learning
Research 14, 801 (2013).

C.-C. Chang and C.-]J. Lin, LIBSVM: A library for support vector machines, ACM Trans-
actions on Intelligent Systems and Technology 2, 27:1 (2011), software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

http://www.csie.ntu.edu.tw/~cjlin/libsvm

124

REFERENCES

[32]

[33]

M. N. Wright and A. Ziegler, Ranger: a fast implementation of random forests for high
dimensional data in C++ and R, (2015), arXiv preprint arXiv:1508.04409.

T. Chen and C. Guestrin, Xgboost: A scalable tree boosting system, in ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (ACM, 2016) pp.
785-794.

[34] J. Ni, R. H. Drieberg, and P. L. Rockett, The use of an analytic quotient operator in ge-

[35]

netic programming, IEEE Transactions on Evolutionary Computation 17, 146 (2013).

D. R. White, J. Mcdermott, M. Castelli, L. Manzoni, B. W. Goldman, G. Kronberger,
W. Jaskowski, U.-M. O’Reilly, and S. Luke, Better GP benchmarks: community survey
results and proposals, Genetic Programming and Evolvable Machines 14, 3 (2013).

[36] J. Albinati, G. L. Pappa, F. E. Otero, and L. O. V. B. Oliveira, The effect of distinct

geometric semantic crossover operators in regression problems, in European Conference
on Genetic Programming (Springer, 2015) pp. 3-15.

[37] J. Demsar, Statistical comparisons of classifiers over multiple data sets, Journal of Ma-

(38]

[39]

[40]

chine Learning Research 7, 1 (2006).

S. Holm, A simple sequentially rejective multiple test procedure, Scandinavian Journal
of Statistics 6, 65 (1979).

Y. LeCun, The MNIST database of handwritten digits, (1998), dataset available at http:
//yann.lecun.com/exdb/mnist.

A. Krizhevsky and G. Hinton, Learning multiple layers of features from tiny images,
(2009), technical Report. University of Toronto.

[41] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, Imagenet: A large-scale hi-

erarchical image database, in IEEE Conference on Computer Vision and Pattern Recog-
nition (IEEE, 2009) pp. 248-255.

S. Wold, K. Esbensen, and P. Geladi, Principal component analysis, Chemometrics and
Intelligent Laboratory Systems 2, 37 (1987).

L.v.d. Maaten and G. Hinton, Visualizing data using t-SNE, Journal of Machine Learn-
ing Research 9, 2579 (2008).

http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist

6

ON AUTOMATICALLY SELECTING
SIMILAR PATIENTS IN HIGHLY
INDIVIDUALIZED RADIOTHERAPY DOSE
RECONSTRUCTION FOR PEDIATRIC
CANCER SURVIVORS

The contents of this chapter are based on the following publication: M. Virgolin, IW.E.M. van Dijk, J. Wiersma, C.M. Ronckers,
C. Witteveen, A. Bel, T. Alderliesten, and P.A.N. Bosman. On the feasibility of automatically selecting similar patients in highly

individualized radiotherapy dose reconstruction for historic data of pediatric cancer survivors. Medical Physics 45 (4), pp. 1504-
1517, Wiley (2018).

125

https://doi.org/10.1002/mp.12802
https://doi.org/10.1002/mp.12802

6. ON AUTOMATICALLY SELECTING SIMILAR PATIENTS IN HIGHLY INDIVIDUALIZED
126 RADIOTHERAPY DOSE RECONSTRUCTION FOR PEDIATRIC CANCER SURVIVORS

Purpose: The aim of this study is to establish the first step towards a novel and highly individ-
ualized 3D dose distribution reconstruction method, based on CT scans and organ delineations
of recently treated patients. Specifically, the feasibility of automatically selecting the CT scan
of a recently treated childhood cancer patient who is similar to a given historically treated
child who suffered from Wilms’ tumor is assessed.

Methods: A cohort of 37 recently treated children between 2 and 6 years old is considered. Five
potential notions of ground-truth similarity are proposed, each focusing on different anatom-
ical aspects. These notions are automatically computed from CT scans of the abdomen and
3D organ delineations (liver, spleen, spinal cord, external body contour). The first is based
on deformable image registration, the second on the Dice Sgrensen coefficient, the third on
the Hausdorff distance, the fourth on pairwise organ distances, and the last is computed by
means of the overlap volume histogram. The relationship between typically available features
of historically treated patients and the proposed ground-truth notions of similarity is stud-
ied by adopting state-of-the-art machine learning techniques, including random forest. Also,
the feasibility of automatically selecting the most similar patient is assessed by comparing
ground-truth rankings of similarity with predicted rankings.

Results: Similarities (mainly) based on the external abdomen shape and on the pairwise or-
gan distances are highly correlated (Pearson r, > 0.70) and are successfully modeled with
random forests based on historically recorded features (pseudo-R? > 0.69). In contrast, sim-
ilarities based on the shape of internal organs cannot be modeled. For the similarities that
random forest can reliably model, an estimation of feature relevance indicates that abdom-
inal diameters and weight are the most important. Experiments on automatically selecting
similar patients lead to coarse, yet quite robust results: the most similar patient is retrieved
only 22% of the times, however the error in worst-case scenarios is limited, with the fourth
most similar patient being retrieved.

Conclusions: Results demonstrate that automatically selecting similar patients is feasible
when focusing on the shape of the external abdomen and on the position of internal organs.
Moreover, whereas the common practice in phantom-based dose reconstruction is to select a
representative phantom using age, height, and weight as discriminant factors for any treat-
ment scenario, our analysis on abdominal tumor treatment for children shows that the most
relevant features are weight, the anterior-posterior and left-right abdominal diameters.

6.1. INTRODUCTION 127

6.1. INTRODUCTION

Every day, radiation oncologists working on the treatment of childhood cancer patients
are faced with the challenge of designing individualized treatment plans which ensure that
a sufficiently high dose is delivered to the tumor while the surrounding healthy organs are
spared. An excessive exposure of sensitive tissues to radiation may compromise crucial
physiological functions and lead to severe health complications. Although the absolute
number of young patients undergoing radiation treatment is moderate [1], the presence
of malignancy in their developing bodies is likely to impact their entire life both physi-
cally and psychologically [2-7]. Moreover, children arguably are the most susceptible to
adverse effects of radiation treatment and thus stand to benefit most from improvements in
planning under the desired hypothesis of long-term survival, which is currently achieved
for the treatment of Wilms’ tumor, or nephroblastoma, the most common childhood ab-
dominal malignancy [8, 9].

For adult patients, many follow-up studies exist where the relationship between ra-
diation treatment with specific dose (fractions), and onset of adverse effects is analyzed
(see, e.g., the work of QUANTEC [10]). Furthermore, detailed work has been done to
understand which specific organ subvolumes are most sensitive to ionizing radiation, by
observing fine-grained 3D dose distributions [11-13]. For children, however, the evidence
collected so far is limited [14, 15]. Incorporating detailed knowledge on the relationship
between 3D dose distributions and late adverse effects may greatly improve the design of
treatment plans, ultimately reducing post-treatment complications and improving pedi-
atric cancer survivors’ quality of life.

Currently, researchers willing to study possible relationships between detailed 3D dose
distributions and the onset of late adverse effects in long-term pediatric cancer survivors
face a major obstacle: the lack of 3D treatment data. In fact, 3D information about the
anatomy of historically treated patients could not be acquired before the advent of com-
puted tomography (CT) and 3D treatment planning. The available information consists
of patient characteristics recorded in historical patient records, notes on the treatment,
and, in some cases, 2D simulator films used for planning at the time. The available data
on late adverse effects collected from long-term follow-ups cannot be exploited to its full
potential, as it can not be related to fine-grained 3D dose information. Therefore, to enable
accurate dose-risk modeling in retrospective studies, a method to accurately reconstruct
3D dose distributions is needed.

The current state-of-the-art method to bridge this gap is the so-called phantom-based
dose reconstruction [16, 17]. Phantoms are 3D representations of human bodies, con-
structed according to reference guidelines (e.g., ICRP 89 [18]), stored in libraries in a gen-
der, age, height, and weight dependent fashion. The doses delivered to the organs of a
historically treated patient are estimated by simulating the original treatment on a phan-
tom. The dose reconstruction procedure can be summarized in four fundamental steps:
1. Selection — a phantom from the library is chosen, which most closely resembles a pa-
tient’s available features (this is typically done using gender, age, height, and weight);
2. Adaptation — the phantom is adapted (i.e., shrunken, stretched) according to other spe-
cific features, such as measurements from a 2D simulator film; 3. Treatment simulation —
the original treatment is simulated, using the phantom’s virtual anatomy as a surrogate
for the original body; and 4. Measurement — parameters about the dose are measured.

6. ON AUTOMATICALLY SELECTING SIMILAR PATIENTS IN HIGHLY INDIVIDUALIZED
128 RADIOTHERAPY DOSE RECONSTRUCTION FOR PEDIATRIC CANCER SURVIVORS

Clearly, the accuracy of the estimated dose relies on the completeness of the historical
patient record considered, on the representativeness of the phantom library and on the
quality of each one of the four aforementioned steps. A poor selection based on irrele-
vant features, as well as an ineffective adaptation, may compromise the accuracy of dose
estimation. For children, growth and development do not follow a standard age-related
pattern, thus selecting a representative phantom is especially difficult. Although rich li-
braries exist with reference phantoms for many height-weight combinations [17], and
more and more possibilities to adapt mesh-based models to improve patient individual-
ization are under investigation [19], an inherent limitation of phantom-based dose recon-
struction is that it relies on average organ shapes and dimensions. Studies have however
shown that there can be a great variability of internal organ shape among individuals with
a similar body-mass index and that it is practically impossible to establish reference organ
anatomy[17, 20].

Recently, an alternative to phantom-based dose reconstruction has been proposed,
based on the reconstruction of 3D organs for historically treated patients, using navi-
gator channels and finite element modeling deformable image registration [21-23]. The
feasibility of the method has been tested on 3D dose reconstruction for lungs, heart, and
breasts of adult Hodgkin lymphoma patients. Relying on CT scans of recently treated
patients, a deformation model was built which uses information from 2D simulator films
(or digitally reconstructed radiographs) to synthesize the organs of a historically treated
patient by deforming the organs of a recently treated patient. A primitive selection step
is performed to match the historically treated patient to a recent representative patient.
This selection is based on 2D thorax measurements and gender, but it is advised that tak-
ing a smarter approach, possibly relying on more or different features, may improve the
overall outcome. Still, the resulting dose reconstruction method was found to be clinically
acceptable (median mean dose difference < 1 Gy and median V'sg, and V gy differences
< 2%) [23] and has recently been adopted in practice [24].

In this study, we present a novel approach to select a recently treated patient for whom
a CT scan is available to match a historically treated patient, and apply it to the scenario in
which the 3D dose distribution of historically treated children with Wilms’ tumor needs to
be reconstructed. In order to find the features that are important to select a recently treated
patient that resembles the 3D anatomy of a historically treated patient, a ground-truth
notion of similarity among patients is needed. To this end, we propose and analyze five
different notions of similarity, each focused on specific anatomical aspects. We choose to
focus on anatomical similarity, rather than directly on similarity in 3D dose distributions,
because the latter needs a specific treatment to be defined beforehand, whereas the former
enables the reconstruction of virtually any treatment on a region of interest. The notions
here proposed can be computed in an automatic and reproducible way, starting from CT
scans and 3D organ delineations. We compute the five similarities on a cohort of pediatric
patients and study correlations among them. We then assess which of the features that
are typically available from historical patients’ records are the most relevant to explain
the similarities. Consequently, a state-of-the-art machine learning model, random forest,
is trained using the most relevant features and its performance is measured in terms of
correctly predicting rankings of similar patients, which ultimately is the goal. Finally,
we provide a case of comparison between dose reconstruction based on the most similar

6.2. MATERIALS ¢ METHODS 129

patient according to one of the proposed similarities, and based on the most similar patient
according to age, height, and weight.

6.2. MATERIALS & METHODS

6.2.1. PATIENT DATA

The records and CT data of 37 children were included (17 males, 20 females) in the age
range of 2 to 6 years. Most of the patients suffered from Wilms’ tumor (22); many under-
went (partial) nephrectomy (21). All patients received chemotherapy prior to radiation
treatment. The patients have been treated at the Academic Medical Center / Emma Chil-
dren’s Hospital in Amsterdam (34) or at the University Medical Center Utrecht / Princess
Maxima Center for Pediatric Oncology in Utrecht (3), all after January 2000. A CT scan
in supine position of the abdomen, from the top of the 10th thoracic vertebra (T10) to the
bottom of 1st sacral vertebra (S1) is available for each patient. The median voxel size is
0.977 mm along left-right (LR) and anterior-posterior (AP) directions, and 2.5 mm along
the superior-inferior (SI) direction (slice thickness). Also included are delineations of the
liver and the spleen, and of the spinal cord and the outer body contour in the common re-
gion of interest from T10 to S1. Delineations of kidneys are not considered due to (partial)
nephrectomy (see Sec. 6.2.2), with exception for the right kidney of three patients, used
for an example of dose reconstruction (see Sec. 6.2.5).

Features that are typically reported in historical treatment records have been gathered
for our cohort, together with measurements from digitally reconstructed radiographs gen-
erated from the CT scans, under the reasonable assumption that the old 2D simulator films
have been preserved. These features are reported in Table 6.1 and Table 6.2. Details are as
follows. Age was recorded at CT acquisition; height, weight, and body-mass index were
recorded at intake in the radiotherapy department, which happened up to 3 months before
CT acquisition. The distance between iliac crest and spinal cord is defined as the distance
between the top point of the left iliac crest and the center of the spinal cord, along the
line passing through both iliac crest top points. The LR diameter has been measured at
the center of lumbar 2nd. Historically, the AP diameter was measured at the isocenter.
Because of the high conformity of the treatment for renal fossa irradiation, such isocenter
would typically be located in an SI section within the top of lumbar 1st and the bottom of
lumbar 2nd. After inspection of historical treatments, an average isocenter has been set at
the intersection of an SI line crossing the renal fossa with an LR line crossing the inter-
vertebral disc between lumbar 1st and lumbar 2nd. For our (recently treated) patients, we
measured the AP diameter at isocenter on their CT scans. Assuming symmetry of the ab-
domen, the average isocenter is set either in the left or right renal fossa, according to ease
in carrying out the measurement for each patient. We observed on a random sample of 10
patients that the difference between the AP diameter measured on the average isocenter
in the left renal fossa and the one in the right renal fossa is below 1 cm. For one patient the
height was missing from clinical records, so an age- and gender-matched estimate from
the Dutch children growth chart of 2010 has been used.

6. ON AUTOMATICALLY SELECTING SIMILAR PATIENTS IN HIGHLY INDIVIDUALIZED
130 RADIOTHERAPY DOSE RECONSTRUCTION FOR PEDIATRIC CANCER SURVIVORS

Table 6.1: Numerical patient features.

Numerical feature (abbreviation) Unit of measure Min Max Median Mean St. Dev.
Age years 2.21 5.84 3.87 3.94 1.08
Height cm 89.00 123.00 103.50 104.28 9.58
Weight kg 10.00 28.00 16.55 16.88 3.75
Body-Mass Index (BMI) kg/m? 1090 18.50 1536 1540 1.81
Length Spinal Cord T12-L4 (T12-L4) cm 7.00 10.90 9.30 9.33 0.89
Distance Iliac Crest-Spinal Cord (IC-SC) cm 430 680 570 558 054
LR Diameter at L2 (diam. LR) cm 16.30 23.50 1930 19.48 1.28
AP Diameter at Isocenter (diam. AP) cm 11.30 16.00 13.20 13.37 1.53

Table 6.2: Categorical patient features.

Categorical feature (abbreviation) Categories (# patients)

Gender Female (20), Male (17)

Diagnosis Ependyoma (1), Medulloblastoma (2),
Neuroblastoma (9), Rhabdomyosarcoma (3), Wilms’ tumor (22)

Tumor Site Ductus choledochus (1), Fourth ventricle (3), Left kidney (12),

Left suprarenal gland (6), Pelvic region (1), Retroperitoneum (1),
Right kidney (10), Right lower abdomen (1), Right suprarenal gland (2)
Partial Nephrectomy (part. nephr.) Left (2), Right (1), None (34)
Radical Nephrectomy (rad. nephr.) Left (11), Right (10), None (16)

6.2.2. SIMILARITY NOTIONS

In the following, we present five different notions of anatomical similarity and how they
can be computed from CT scans and organ delineations. We further describe how corre-
lation among similarities is measured.

DEFORMATION-BASED SIMILARITY
This first notion of similarity is based on the amount of deformation that is needed to
register one CT to another, via intensity-based deformable image registration. This metric
is inspired by previous applications [25].

To compute this similarity, first scans are manually aligned on bony anatomy, using
S1, the 5th lumbar vertebra and the iliac crests as reference. Second, for each possible pair
of children, deformable image registration is performed to deform the first patient’s CT to
match the CT of the second patient and vice versa. This two-way registration is performed
because of the asymmetry of most practical deformable image registration software. The
software elastix [26, 27] has been adopted, with mostly standard parameters settings (adap-
tive stochastic gradient descent optimization, Mattes’ mutual information metric, multi-
resolution B-spline transformation). For the finest resolution step, a coarse grid size of 28
mm has been chosen following the guidelines for the deformation of large structures as
found in the manual of elastix, combined with visual inspection of registration outcomes
for several grid sizes. This choice limits the amount of unrealistic deformation on internal
anatomy when registering the whole abdominal area (from T10 to S1) at once.

After computing the two registrations, a measure of deformation magnitude can be
computed based on the deformations. A deformation is described using a meshed cube
C, where each cell is the 3D offset to apply to a specific B-spline control point in order to

6.2. MATERIALS ¢ METHODS 131

register the first image to the second. The deformation magnitude we compute from C'is
independent from translational components and is normalized on image volume. Specifi-
cally, for each cell ¢ € C, the “stretching” or “shrinking” component is computed by sum-
ming the absolute differences between the offset of ¢ with the ones of its adjacent cubes,
normalized by the number of adjacent cubes. The contribution of all cells is then summed
and normalized by the total volume of the image. Formally, the deformation magnitude is

thus:
1 5 o
D:ZW Z HOC_OaHa (6.1)

ceC c| acA,

where A, is the sub-cube of cells centered at cell ¢ and &, is the 3D vector of offsets stored
in cell c.

The two deformation magnitudes D; and Dy computed from the two registrations are
then averaged. Finally, to obtain a measure of similarity, the average magnitude needs to
be inverted. We denote this similarity with Sgeform:

Dy + Do\ 7!
Sdeform = (122) . (62)

ORGAN OVERLAP-BASED SIMILARITY
This similarity notion focuses on internal organ overlap, and is based on the well-known
Dice Serensen coefficient [28, 29] (DSC) that indicates the overlap of two volumes V; and
Va.

We denote this measure for a specific organ delineation o by Sf¢., which is computed

2[vyPnvy| A

ST A measure
. IV] |+ ‘ V2 ‘ .

of similarity Spsc is then computed by combining S8 for the various organs of interest.

This is done by taking the Euclidean norm of the vector of all SSs- components:

after aligning the images on their centers of mass. Thus, S3¢. = 100

Spsc = [(S8sc)?. (6.3)

<10

For the set of organ delineations O, the liver, the spleen, the part of the spinal cord from
T10 to S1, and the section of the external body contour within the field T10-S1 (arms ex-
cluded) are considered. Kidneys are not taken into consideration because 21 out of 37
patients of our cohort have been subject to (partial and/or radical) nephrectomy. If a sim-
ilar patient needs to be found for a treatment that includes a kidney either as target (ispi-
lateral) or as organ at risk (contralateral), then patients who (partially) miss this kidney
should be considered completely dissimilar. If the kidney is not interesting for the recon-
struction, a patient without (part of) the kidney may still be a good candidate. Therefore,
for practical use, the outcome of a matching based on this similarity should be twofold:
a similar patient who necessarily shares the kidney configuration with the historical one,
and a similar patient who does not. To be able to use the whole cohort in the analysis, we
consider the scenario where kidneys are not relevant for the reconstruction.

6. ON AUTOMATICALLY SELECTING SIMILAR PATIENTS IN HIGHLY INDIVIDUALIZED
132 RADIOTHERAPY DOSE RECONSTRUCTION FOR PEDIATRIC CANCER SURVIVORS

ORGAN SHAPE-BASED SIMILARITY

Different from DSC, the Hausdorff distance is another recognized metric used to compare
organ shapes which is focused on outlier points [30, 31]. Given two meshed surfaces A
and B, the directed Hausdorff distance from A to B is defined as the maximum of the
minimal Euclidean distances from A to B’s vertices, i.e.,

h(A,B) = max min [la — b]|. (6.4)

The Hausdorff distance between A and B is H(A, B) = max{h(A4, B),h(B, A)}.

Similar to Sfg., the notation Sj
similarity:

ausdorfr 15 Used to indicate the organ-specific Hausdorff

I?Iausdorff = (HO)_l X 10;07 (65)

with p such that all S3,,.4.,¢ > 1 (this ensures that (;’Iausdorﬂ)Q > Sfausdor)- The ag-
gregated Shausdorsr 1S then computed as the Euclidean norm of the vector of all S7, jorsr
components, where the delineations of liver, spleen, spinal cord (T10-S1), and external
body (T10-S1) are considered:

SHausdorft = Z (Sﬁausdorff) 2. (6.6)

0€O

ORGAN CONSTELLATION-BASED SIMILARITY

This similarity is proposed for the first time here. It is specifically aimed at capturing the
variation in organ positions. Specifically, given a patient p, two organ delineations o;, 0,
and the respective centers of mass c% (p), ¢% (p), let d°>% (p) = ||c% (p) — ¢® (p)|| be the
center-of-mass distance. Again, o; € O = {liver, spleen, spinal cord (T10-S1), external
body (T10-S1)}. Let E°: be the set of 4 points that are the projections of 0;’s center of
mass on the external body along anterior, posterior, left, and right directions. Then the
organ constellation-based similarity S.qpns; for patients p; and ps is computed as follows. A
first component Dot "8 (p1, p2) is calculated which represents the difference in pairwise
organ distances, as:

Degna®(p1op2) = Y (@ (p1) — d* (p))*. (6.7)
0;,0;€0,i#]

A second component represents the difference in distances between organs and the delin-
eation of the external body:

DEM (prop2) = D D (dC(p1) — d°(p2)). (6.8)

0,€0 ecE°i

FinaHY, Seonst (pl) pQ) is

Sconst (P1,12) = 1/ \/ Digrat (p1,p2) + Dot (p1,p2).- (6.9)

6.2. MATERIALS ¢ METHODS 133

OVERLAP VOLUME HISTOGRAM-BASED SIMILARITY

The recently introduced Overlap Volume Histogram (OVH) [32, 33] was specifically de-
signed to describe the position and shape of organs at risk near the tumor. In its original
formulation, the OVH of an organ is computed by measuring the tumor-organ overlap at
each step of a discrete expansion (or shrinkage) of the 3D tumor delineation, centered at
the tumor.

Here the OVH is used to describe the shape and displacement of all organs at the same
time. To this end, an artificial OVH is adopted, built using a sphere with a starting radius
of 1.0 mm that expands from the center of mass of the body contour section within the
T10-S1 region of interest. At each iteration, the sphere radius is expanded by 2.5 mm and
the overlap with the organ delineation o of interest is computed. We denote with S§; the
scaled inverse of the Manhattan distance of two patients’ OVH for the organ delineation
o. The Manhattan distance of two OVHs is the sum of absolute differences between each
pair of histogram bins. A scaling is adopted similarly to what is done for S, o tO
ensure that (SVH)2 > S58yy- Furthermore, we denote with Soyy the aggregated measure
considering all organs at once, computed similarly to how it was originally used in the
work introducing the OVH [32]:

Sovit = | > (Sgyn)*. (6.10)

0€0

CORRELATIONS OF SIMILARITY NOTIONS

The correlation between the similarity measurements is assessed with Pearson 7, and
Spearman r coefficients. The first assumes a linear relationship between the two variables
and is sensitive to outliers, whereas the second focuses on monotonic relationships, by
considering only ranks (i.e., from sorting) rather than actual data values.

6.2.3. REGRESSION AND FEATURE RELEVANCE
The goal now is to reproduce the measurements of similarity among patients using a func-
tion of only the features described in Section 6.2.1. However, because a similarity is defined
over pairs of patients, individual features cannot be used directly. Instead, pairwise ver-
sions of the features are considered. For a numerical feature, the absolute difference of
the two individual feature values is taken. Pairwise versions of categorical features are
Boolean values, indicating whether the two categories are either the same (1) or different
(0). In other words, for the i-th feature f; of patients 1 and 2, the corresponding pairwise
feature is 91'1 2 = |f1 — f2|if f; is numeric (e.g., weight), and it is

oo AR '

if f; is categorical (e.g., gender).

A random forest algorithm is used to learn how features can explain similarities, i.e.,
to learn a function representing similarity, given the features, and to compute feature rel-
evance. Random forest is a widely-adopted machine learning technique which is capable
of performing non-linear regression, and is robust in assessing feature relevance thanks

6. ON AUTOMATICALLY SELECTING SIMILAR PATIENTS IN HIGHLY INDIVIDUALIZED
134 RADIOTHERAPY DOSE RECONSTRUCTION FOR PEDIATRIC CANCER SURVIVORS

to its intrinsic feature sampling [34, 35]. In particular, the recent cforest implementation
in R [36] is adopted in this work. Such technique uses conditional inference trees [37] to
constitute the forest, providing an unbiased estimation of feature importance in scenarios
where features have different scale of measurement or number of categories [38] (e.g., this
study).

To understand which features are important for each similarity notion, a separate ran-
dom forest is trained for each similarity. A split of data into separate training and testing
sets is not necessary, since random forest inherently performs bagging, i.e., each regression
tree in the forest is trained on a random subset of the data, and tested on the remaining.
Given the stochastic nature of the method, 10 independent runs (i.e., training a random
forest) are performed. The number of trees for the cforest is set to 100, and the number
of random features to consider in the splits during tree construction is set to one-third
of the total number of features (i.e, mtry = 1/3, guideline for regression). Feature rel-
evance is investigated only if a forest out-of-bag pseudo-R? (i.e., the fit on the inherent
test set, computed as 1 — mean squared error/variance of the ground-truth data) is high,
since conclusions drawn from models with a low fit are generally false. Feature relevance
is computed using the conditional variable importance method of cforest, which adjusts
for correlations between predictor variables [39]. Successful forests are further refined by
iteratively removing the least important feature, until a statistically significant increase in
the out-of-bag mean squared error of the regression is observed. Significance is assessed
using the Mann-Whitney-Wilcoxon test with increasing Bonferroni correction at each it-
eration ¢, with p-value of 0.05 x ¢. At the end of the procedure, a trained model is obtained
for each similarity which is explainable using a subset of salient features.

6.2.4. PREDICTION AND AUTOMATIC SELECTION OF SIMILAR PATIENTS
For each similarity notion, we investigate the capability of learned random forests to cor-
rectly predict rankings of patients, which is the ultimate goal.

For this purpose, recent patients are used instead of historically treated patients. This
way, the prediction capability can be tested against the ground-truth similarities. This
complete process is performed in a leave-one-out cross validation fashion. Specifically,
first, a test patient is removed from the cohort and a random forest is trained over the
remaining patients using only the most relevant features. Second, the similarity between
the test patient and each of the other patients is predicted by the random forest. This
prediction is then sorted to obtain a ranking which is subsequently assigned a performance
score. The overall prediction quality is the average of the scores obtained when repeating
the steps above for each patient in the cohort. Moreover, runs for individual patients are
repeated 10 times to reduce stochastic noise in the forest training phases. The pseudo-code
of this procedure is illustrated in Algorithm 6.1.

To score the performance in ranking prediction, the following four indicators are pro-
posed: head presence: number of patients in the top k of the predicted ranking who are
also in the top k of the ground-truth ranking, i.e., the capability of correctly predicting
the most similar patients; tail presence: analogous to head presence, but on the bottom &
patients of the rankings, i.e., the capability of correctly predicting the most dissimilar pa-
tients; average displacement: calculated for the patients who are wrongly predicted to be in
the top k, the average displacement in positions between the k-th position and the actual

6.2. MATERIALS ¢ METHODS 135

Algorithm 6.1 Function assessing the quality of the automatic selection of similar pa-
tients.
1 function SCOREAUTOMATICSELECTION(cohort, similarityNotion, bestFeatures)
2 score < 0
3 fori e {1,...,10} do
4 for p € cohort do
5 others « cohort \ {p}
6 f < trainForest(others, bestFeatures)
7
8
9

s < f.predictSimilarity (p, others)
s* « getSimilarity(p, similarityNotion)
r < makeRanking(s)

10 r* < makeRanking(s*)

11 score < score + computeScore(r, r*)
12 score < score/(10|cohort|)

13 return score

position in the ground-truth ranking; and worst displacement: similar to average displace-
ment, but calculated only for the worst case, i.e., for the patient who is most dissimilar
yet wrongly predicted to be in the top k. Note that for £ = 1 the average displacement
is the same as the worst displacement. All the indicators are reported as percentages. A
good prediction is one that reaches high head presence and tail presence, and minimizes
average displacement and worst displacement. In the experiments, the parameter k varies
in {1, 3,5}, where k = 1 means that the prediction is assessed only on the most similar
patient (dissimilar for tail presence). This corresponds to evaluating an automatic selec-
tion which retrieves only one patient. By increasing k, it is possible to see if the prediction
is generally good, noisy or consistently poor. An example of the indicators is depicted in
Figure 6.1. With k = 5, three patients out of five are correctly predicted as similar, i.e., the
head presence is 60%, while four are correctly predicted as very dissimilar (tail presence
is 80%). Patients 5 and 9 are incorrectly predicted to be within the 5 most similar, whereas
in the ground-truth ranking they are respectively 3 and 5 positions away from the head,
out of a total of 12 (= 17 — 5) dissimilar patients. Thus, the average displacement is 33%
and the worst displacement is 42%.

6.2.5. RECONSTRUCTION CASE

Two illustrative dose reconstructions are performed for one patient p: one using a repre-
sentative who is correctly predicted to be most similar by our model according to Saeform.
and one using a representative who is the most similar according to age, height, and
weight. Specifically, the latter match is performed by taking the patient ¢ with lowest
rooted sum of squared age, height, and weight differences (after normalizing all differ-
ences to the interval [0, 1]):

\/ (age? — age?)? + (height” — height?)” + (weight” — weight?)®. (6.12)

The reconstruction is performed by applying the treatment plan of patient p to the other
two patients, using the treatment planning system Oncentra (version 4.3, Elekta, Stock-

6. ON AUTOMATICALLY SELECTING SIMILAR PATIENTS IN HIGHLY INDIVIDUALIZED

136 RADIOTHERAPY DOSE RECONSTRUCTION FOR PEDIATRIC CANCER SURVIVORS
k=5
prediction 13‘ 5 ‘14‘15‘12‘ 2 ‘11‘4 ‘ 8 ‘ 1 ‘17‘ 7 ‘ 3 ‘16‘ 6 ‘
head presence tail presence

ground-truth‘10‘4 ‘14‘11‘13‘15‘12‘32 |E| 8 ‘ 7 ‘17‘ 6 ‘ 1 ‘16‘ 3 ‘
—worst displacement

Figure 6.1: Example to illustrate the computation of the four indicators of prediction per-
formance. The prediction and ground-truth rankings contain the IDs of 17 patients instead
of 37 for ease of representation. In both rankings, the leftmost IDs are the most similar pa-
tients, the rightmost the most dissimilar. Patients correctly predicted in the head (tail) are
depicted in green (blue). Patients 5 and 9 are wrongly predicted to be in the head, and de-
termine the average displacement. Patient 9 is the worst to be predicted in the head, being
the most dissimilar in the ground-truth ranking, and determines the worst displacement.

holm, Sweden). The treatment plan is a real, clinical plan for left renal fossa irradiation
(Wilms’ tumor), using an Elekta Linac with a multi-leaf collimator beam limiting device,
energy: 6 MV. Under the hypothesis that p is a historically treated patient, a digitally recon-
structed radiograph of p is generated displaying the borders of the treatment field. Con-
sequently, radiographs are also generated for the two matched patients, and are used to
adjust the field border of the plan to correct for evident discrepancies in the bony anatomy.
The monitor units of the original plan are also scaled to keep the dose point in the mid-
dle of the field (isocenter) as close as possible to its value before adjustment. This work
has been assessed by an experienced pediatric radiation oncologist. Lastly, the treatment
is simulated and the following metrics are recorded: mean dose Dpyean, max dose D,
and the dose volume histograms (DVHs), for right kidney, liver, spleen, and spinal cord
(T10-S1).

6.3. REsuLTsS

6.3.1. CORRELATIONS OF SIMILARITY NOTIONS

Pairwise Pearson and Spearman correlation coefficients between the similarity measures
Sdeform> SDSC> SHausdorft> Sconst> ad Soyp are reported in Table III. The two coefficients
and r; show good agreement in general. Whereas Sgeform and Sconst are moderately corre-
lated (1, of 0.64, 75 0f 0.55), Spsc, SHausdorff> and Soyu are more independent. It is crucial to
recall that these latter similarities are highly dependent on organ shape. The correlation
coefficients of Sgeform and Sconst With SZsc, Sfausdorts Oovi» 1-€- the latter similarities sep-
arately computed for each organ o, are represented in Figure 6.2 (only Pearson correlation
is reported, since Spearman leads to very similar results). These results show that moder-

body

. . bod bod
ate to substantial correlations are present among Seform> Sconst> Spsc » SHZu}s/dorff’ and SO?,HY.
ver

Moreover, SE¥¢ is highly correlated with Siver and S]SDPSIECH is highly correlated with

ausdorff®
1 . .
Sl?aizgorff. However, these latter similarities are weakly correlated with the former ones,

based on deformable image registration, disposition of the internal organs and shape of
the abdomen. The fact that Sls)pslgal ©rd and S;}:::égféd are not clearly correlated is likely due

to the elongated shape and different bending of this organ (see, e.g., Fig. 6.3).

6.3. RESULTS 137

Table 6.3: Pearson 7, and Spearman r, correlation coefficients for the five (aggregated)
similarity notions.

Pearson r, Spearman
Sdeform SDSC SHausdori'f Sconst SOVH Sdeform SDSC SHausdorff Sconst SOVH
Sdeform 1.00 0.24 032 0.64 0.22 1.00 0.18 035 0.55 0.16
Sbsc 0.24 1.00 039 049 0.34 0.18 1.00 046 0.50 0.31
SHausdorf 0-32 0.39 1.00 037 0.14 0.35 046 1.00 0.48 0.14
Sconst 0.64 0.49 0.37 1.00 0.52 0.55 0.50 048 1.00 0.42
Sova 022 034 0.14 0.52 1.00 0.16 031 0.14 0.42 1.00

-

body
S DsC

body
SOVH

S deform

body
S Hausdorff

S const

S liver

OVH

spinal cord
SOVH

liver
S DSC

liver
S Hausdorff

spleen
S DSC

spleen
S Hausdorff

spleen
S OVH

spinal cord
S DsC

spinal cord
S Hausdorff

spinal cord
Hausdorff
spinal cord
DSC
spleen
S OVH
spleen
Hausdorff
spleen
DSC
liver
Hausdorff
liver
S DSC
spinal cord
OVH
liver
S OVH
S const
body
Hausdorff
S deform
body
S OVH
body
S DSC

S
S
S
S
S
S
S

Figure 6.2: Heatmap and hierarchical-clustering dendrogram based on absolute values
of Pearson correlation coefficients between Sgeform, Sconst and the organ-specific Sfgc,
Sflausdor> AN Sy, with o € { liver, spleen, spinal cord (T10-S1), body (T10-S1) }.

6. ON AUTOMATICALLY SELECTING SIMILAR PATIENTS IN HIGHLY INDIVIDUALIZED
138 RADIOTHERAPY DOSE RECONSTRUCTION FOR PEDIATRIC CANCER SURVIVORS

(@) | (b) |

Figure 6.3: Two spinal cords aligned on the center of mass for DSC and Hausdorff distance
computation, from AP (a) and LR (b) perspective.

6.3.2. REGRESSION AND FEATURE RELEVANCE

The magnitude of Pearson correlation coefficients between all pairs of features is depicted
in Figure 6.4. The largest correlation coefficients were found for combinations of age and
height, LR diameter and weight, and tumor site and radical nephrectomy.

Figure 6.5 shows the pseudo- R? of the random forest method (averaged over 10 runs),
for each similarity notion. Although with random forest it is possible to learn non-linear
interactions among features, only few similarities are modeled with a high pseudo-R?:
Sieforms Seconsts Sggdcy, and Sg({% (see Figs. 6.5(a) and 6.5(b)); with, respectively, pseudo- R>
of 0.70, 0.69, 0.87, and 0.85. In particular, the variation of measurements for the notions
aggregating (in a, Spsc, SHausdorft; Sovi) or specifically focused on internal organ shapes
(all similarities in Figs. 6.5(c), 6.5(d), 6.5(e)) can not be modeled well (i.e., low pseudo-R?).
This result clearly shows that the features at hand do not provide enough information to
grasp the large variability in the internal anatomy of our young cohort. On the other hand,
it is the similarities mainly or specifically focusing on the overall abdomen (Sgeform, Sconsts
Sggcéy, SbOdy) that are decently modeled. Not surprisingly, these similarities are found to
be correlated among themselves (Sec. 6.3.1).

The feature relevance of the best modeled similarities Sgeform, Sconsts SDZC(":Y nd SbOdy
is reported in Figure 6.6. The abdominal AP and LR diameters clearly stand out as com-
mon relevant features for the four similarities. Although not salient in three out of four
cases, weight is always among the predictors with a statistically significant relevance. It is
also worth noticing how nephrectomy has a slight, yet relevant influence on the organs’
constellation, which may be linked to a possible shift of organs after kidney resection.

6.3.3. PREDICTION AND AUTOMATIC SELECTION OF SIMILAR PATIENTS

The capability of the models trained using the most important features (obtained in Sec. 6.3.2)
to perform automatic selection is now assessed. Table 6.4 shows the quality of the pre-

6.3. RESULTS 139

0.2 0.6 1.0

height

age

T12-14

IC-SC
weight

diam. LR

diam. AP

BMI

tumor site

| A
.

rad. nephr.

diagnosis

part. nephr.

gender

BMI
weight
IC-SC

age
height

—
(5]

i)
o
[
()

part. nephr.
diagnosis
rad. nephr.
tumor site
diam. AP
diam. LR
T12-L4

Figure 6.4: Heatmap and hierarchical-clustering dendrogram representing (absolute) Pear-

son correlation among pairwise features (abbreviations as introduced in Table 6.1 and Ta-
ble 6.2).

6. ON AUTOMATICALLY SELECTING SIMILAR PATIENTS IN HIGHLY INDIVIDUALIZED
140 RADIOTHERAPY DOSE RECONSTRUCTION FOR PEDIATRIC CANCER SURVIVORS

(a) aggregated

S geform i
Spsc [TV
SHausdonff77777777]
Seonst Y YY VYV YVVYVYVYYVYYYYYVYYYVYYYVYYYVYY]
S owH [[[1]

0.0 0.2 0.4 0.6 0.8 1.0
(b) body (c) liver
body liver
Spic I Sese [L00T])
S body liver
Hausdorff Hausdorff
body liver
Sowm | [/ [/ [[[[/] Som [[[
T T T T T 1 T T T T T 1
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
(d) spinal cord (e) spleen
spinal cord :l spleen I:l
SDSC 5DSC
spinal cord M spleen
S Hausdorff S Hausdorff
spinal cord [/ 7 7 spleen [7 7
SOVH SOVH
T T T T T 1 T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0

Figure 6.5: Pseudo-R? of trained random forests for all the similarities, both aggregated
(a), and for individual organs: body (b), liver (c), spinal cord (d), spleen (e).

diction in terms of the four proposed indicators head presence, tail presence, average dis-
placement, and worst displacement, for the similarity notions that could be reliably mod-
eled: Syeform, Sconsts Sgg‘éy, and Sgi;ié. The results are averages over 10 repetitions. When
considering only the most similar patient (¢ = 1), the best choice is predicted correctly
22.37% of the times (averaged over all similarity measures, where the worst is Sgeform With
only 16.22%, and the best is S¢onst With 30.00%). When such prediction is wrong, the pa-
tient misclassified as most similar is approximately the fifth most similar, i.e., the patient is
displaced within the top 11% of the ground-truth ranking (the worst is Sconst With 13.73%,
the best is Sgg(éy with 7.71%). Now, by increasing k to 3 and 5 it can be seen that the
head presence increases to roughly 50%, that is, half of the most similar patients become
correctly predicted to be in the head of the ranking. A similar behavior can be observed
on the tail presence indicator, i.e., the accuracy in predicting the most dissimilar patients.
While the head and the tail presence increase considerably with k, the average displace-
ment oscillates slightly. For the best modeled Sgg'éy (pseudo-R? of 0.87 with the random
forest trained using only the most important features), the worst displacement increase
is also particularly limited when increasing k. This trend shows that the models are reli-
ably able to find a coarse notion of similarity, with a quite good capability of identifying
which patients constitute a cluster of most similar, and which constitute a cluster of most
dissimilar, but with limitations in terms of accurately ordering the most similar patients.

6.3.4. RECONSTRUCTION CASE

Patients with ID 6, 18, and 34 are the ones used to perform an illustrative reconstruction.
The right kidney is intact in all three patients. Patient 6 (age: 2.51 y, gender: female,
height: 93.0 cm, weight: 14.0 kg) is hypothesized to be a historical patient for whom a

141

6.3. RESULTS
sdeform Sconst
I I I I I I I I I I I
diam. RL (] diam. RL [
diam. AP (] diam. AP L]
IC-SC ° IC-sC °
weight ° weight (]
BMI ° rad. nephr. °
T12-14 L] part. nephr. °
height | ® BMI| e
gender ° tumor site °
age | ® age| @
part. nephr. ° T12-L4 °
tumor site | ® diagnosis | @
rad. nephr. ° gender °
diagnosis | ® height | ®
T T T T T T T T T T T
0e+00 1e-11 2e-11 3e-11 4e-11 0 1 2 3 4 5
Sosd Sow
I I I I I I I I I I
diam. AP o diam. RL °
diam. RL (] weight (]
Ti2-L4 Y diam. AP L]
weight o T12-L4 °
age ° age o
IC-sC ° IC-sC °
BMI L] BMI L]
height ° height °
gender | ® part. nephr. °
part. nephr. ° gender °
tumor site | ® rad. nephr. °
diagnosis | @ diagnosis | ®
rad. nephr. [] tumor site L]
T T T T T T T T T T
0.0 0.2 0.4 0.6 0.000 0.005 0.010 0.015 0.020 0.025

Figure 6.6: Feature relevance from random forest for the similarities that could be modeled
with high pseudo-R?. The relevance represents the beta coefficients in regression models.
Dots in red represent the minimal subset of features with which it is possible to obtain a
random forest with no significant loss in mean squared error. Note: different scales are
used on the z-axes.

Table 6.4: Predicted ranking scores for the explainable similarities, for k¥ € {1,3,5}. Re-
sults in bold are the best scores among similarities for a fixed k.

head pres. tail pres. avg. disp. worst disp.
k 1 3 5 1 3 5 1 3 5 1 3 5
Sdeform 16.22 34.14 44.54 49.73 82.52 76.70 13.44 12.60 10.73 13.44 23.78 28.20

S]g;céy 25.95 52.07 65.35 65.14 75.50 86.00 7.71 5.61 5.07 7.71 12.94 18.08

Seconst 30.00 44.23 50.81 27.57 65.95 78.86 13.73 10.85 11.35 13.73 22.38 32.91

Sg(z;g 17.30 41.44 56.43 83.24 79.64 86.92 10.73 8.11 7.14 10.73 16.91 21.55

mean 22.37 42.79 54.28 56.42 75.90 82.12 11.40 9.29 8.57 11.40 18.75 25.19

6. ON AUTOMATICALLY SELECTING SIMILAR PATIENTS IN HIGHLY INDIVIDUALIZED
142 RADIOTHERAPY DOSE RECONSTRUCTION FOR PEDIATRIC CANCER SURVIVORS

Table 6.5: The upper part of the table shows Dyea, and Dy in ¢Gy for right kidney, liver,
spleen, and spinal cord (T10-S1) for patients 6, 18, and 34. The lower part reports the
relative error of the reconstruction, with lowest errors in bold.

Right kidney Liver Spleen Spinal cord
Patient ID Dmean Dch Dmean Dch Dmean Dch Dmean Dch
6 1.80 12.29 4.83 13.84 1396 14.86 1136 13.80
18 2.95 11.19 4.19 13.63 13.83 14.24 10.52 13.99
34 2.03 11.53 4.44 13.89 13.76 14.14 10.03 13.63
% relative error from patient 6
18 63.89 8.95 13.25 1.52 0.93 4.17 7.39 1.38
34 12.78 6.18 8.07 0.36 1.43 4.84 11.71 1.23

dose reconstruction is needed. Random forest correctly predicts patient 34 (age: 2.21y,
gender: male, height: 90.0 cm, weight: 15.0 kg) to be the closest match to 6, according to
Sdeform- Patient 18 (age: 2.58 y, gender: female, height: 92.0 cm, weight: 13.0 kg) is the
most similar to 6 according to age, height, and weight. However, patient 18 is ranked as
16th in terms of Sgeform similarity to patient 6.

The outcome of the dose reconstruction is presented in terms of Dpean and Dy in
Table 6.5, and qualitatively in terms of DVHs in Figure 6.7. Recurring to patient 34 as
reference leads to markedly better dose reconstruction for right kidney and liver, while
patient 18 is slightly preferable for spleen and spinal cord (with exception of D, for
the latter). In particular, patient 34 excels against patient 18 when comparing Dye,n of
the right kidney, with a relative error of 12.78% for the former, and 63.89% for the latter
(51.11% difference). Instead, the case where 18 is mostly preferable is the relative error
on Diyean of spinal cord, with 7.39% for patient 18 and 11.71% for patient 34 (only 4.32%
difference). A qualitative inspection of the DVHs points at a similar conclusion: while
patient 18 may seem to be preferable for the reconstruction of spleen and spinal cord
(Fig. 6.7(c) and 6.7(d)), patient 34 is markedly better for right kidney and liver (Fig. 6.7(a)
and 6.7(b)) reconstruction.

6.4. DI1SCUSSION

To the best of our knowledge, this study represents a first attempt to understand what
are the key anatomical characteristics to represent similarity among childhood cancer pa-
tients, and to assess the feasibility of performing an automatic selection of a representative
patient for a highly individualized CT-based 3D dose reconstruction method.

To establish a ground-truth notion of similarity between patients, we have proposed
and studied five possible measures of similarity. It has been found that the DSC and
Hausdorff-based similarities of the same organ are highly correlated for liver and spleen,
but not for the spinal cord (likely due to its elongated shape). Furthermore, the two new
measures we proposed, Seform and Sconst, are correlated with the similarities that are based
on established shape descriptors (DSC, Hausdorff, and OVH) when using the contour of
the external abdomen as shape.

6.4. DISCUSSION

143

(a) right kidney
100 .
5| — patient6
'.. - - patient 18
80 7 |, =+ patient 34
L 60
(o}
E
3
S 40
20
0 -
T T T T T T I
0 200 400 600 800 1000 1200
Dose (cGy)
(c) spleen

Volume (%)

0+ R ———

T T T T
1350 1400 1450 1500

Dose (cGy)

(b) liver
100
80
L 60
(o}
£
3
S 40
20
0 -
T T T T T T T I
0 200 400 600 800 1000 1200 1400
Dose (cGy)
(d) spinal cord

Volume (%)

T T T T T T T
200 400 600 800 1000 1200 1400

Dose (cGy)

Figure 6.7: DVHs of right kidney (a), liver (b), spleen (c), and spinal cord (T10-S1) (d) of
patients 6, 18, and 34. Using patient 34 as reference for the dose reconstruction of patient
6 leads to highly similar DVHs for the right kidney (a) and the liver (b).

6. ON AUTOMATICALLY SELECTING SIMILAR PATIENTS IN HIGHLY INDIVIDUALIZED
144 RADIOTHERAPY DOSE RECONSTRUCTION FOR PEDIATRIC CANCER SURVIVORS

Random forest has been adopted to relate (pairwise) historically available features with
the ground-truth notions of similarity. This allowed for the modeling of complex, non-
linear interactions and the assessment of feature relevance. We found that aggregated
similarities focusing on general aspects of the whole abdomen (Sgeforms Sconst)> as well as
the ones focusing specifically on the shape of the external abdomen (S’Bzcéy, Sg(ig) were
decently modeled. However, a relationship between the features at hand and internal
organ-specific shape-based similarities could not be learned. Such result is not surprising,
given previous literature studies on organ variability (e.g., correlating organ volumes with
BMI in adults [20]). Internal organ variability is possibly even further increased by the
disease these children suffer from, together with prior drug treatments (resulting in, e.g.,
possible hepatosplenomegaly). This means that more features are needed to predict the
internal anatomy. To this end, we plan to harvest more information from images, i.e., by
means of 2D/3D registrations [40], and the usage of navigator channels on 2D (digitally
reconstructed) radiographs, which have been proven capable of enabling decent organ
shape reconsruction [21, 22] in the adaptation step. Furthermore, the models learned by
random forest are complex to interpret. Adopting other machine learning methods may
generate equally powerful models of easier interpretation, and hopefully provide more
insight on the problem (e.g., genetic programming [41]).

For the well-modeled similarities, results show that the most salient features are the
abdominal diameters. This is in contrast with the common practice in phantom-based
dose reconstruction of using age, height, and weight (gender is typically not considered
for young children) to select a representative phantom for any treatment scenario. We hy-
pothesize that it may be necessary to define a different set of relevant features depending
on the specific treatment to perform a very accurate selection. The model-based predic-
tion of similarity rankings are noisy, but roughly coincide with the ground truth. If the
first retrieved patient would be taken as the singular best match (k = 1), the choice would

Sbody

often be wrong (e.g., three out of four times for S), yet the error would be limited (e.g.,

within the three most similar for Sg;céy). Thus, although sub-optimal, the resulting learned

models can be considered robust. When £ is increased, the head presence increases much
more than the average displacement. Therefore, it may be interesting to assess whether
computing the 3D dose distributions for a small number of k patients, and then take the
average as the final result, may lead to more accurate reconstructions.

It will be important to understand if and how these similarities can be combined into
a single ground-truth. Between highly correlated notions, it would be natural to look for
an aggregated compromise that expresses all of them at once. Contrary, highly uncor-
related ones should probably be kept separated. This would mean that actually a multi-
objective selection approach is sought after, that is able to retrieve a limited set of different
patients who are similar to the historically treated one according to different notions of
similarity. Eventually, a physician could decide which CT to use for reconstruction, or,
as mentioned above, multiple reconstructions could be performed and the average dose
distribution could be taken as final result.

Besides a new perspective on the selection of a reference patient, this work presents
some limitations. A first limitation is that we chose to consider the scenario of Wilms’
tumor treatment in children, and focused on anatomical similarity of the abdomen. Thus,
the results presented in this work are valid within the domain of the chosen region of

6.5. CONCLUSION 145

interest (abdomen) and the characteristics of the cohort (Caucasian children between ap-
proximately 2 to 6 years old). However, the approach presented here is general, and can
be applied to other regions of interests and cohorts. Furthermore, note that the choice of
trying to machine-learn similar anatomy rather than directly machine-learn similar dose
distributions overcomes the limitations of the latter: a specific treatment does not need to
be defined and (manually) simulated beforehand on each available CT scan. In fact, our
results can be used for any abdominal treatment (e.g., neuroblastoma), within the cohort
characteristics (Caucasian children between approximately 2 to 6 years old). Nonethe-
less, it is well possible to define a similarity based on 3D dose distributions for a specific
treatment and learn a model capable of retrieving similar patients in that sense.

A second limitation is the lack of an analysis of the relationship between similarity
notions and dose outcomes (e.g., Dmean, Dacc, and DVHs). This work showed one exem-
plary reconstruction, but a validation study involving a statistically relevant number of
patients should be performed. Such work may be realized as shown in our illustrative
reconstruction, using a number of recently treated patients instead of historically treated
ones, as follows. 1. A treatment plan should be simulated on the patient and measure-
ments from the 3D dose distribution should be recorded; 2. Using (historically plausible)
features of the patient, a representative patient from a cohort of candidates should be
selected according to a similarity notion; 3. Dose measurements should be taken on the
representative patient and compared with the ones taken in the first step. The outcome of
such a study may tell which similarity notion(s) is preferable, i.e., leads to more accurate
dose reconstruction. However, it is important to remark that the selection phase discussed
here is but the first step in a dose reconstruction pipeline. In order to comprehensively
validate the contribution of this work in dose reconstruction, the reference anatomy re-
trieved by our method should undergo an adaptation step, to increase its resemblance
with the historically-treated patient, and the original treatment should be simulated as
close as possible. Consequently, a fair comparison with state-of-the-art phantom-based
dose reconstruction methods will be possible. This is however outside the scope of this
chapter.

A third limitation is the relatively small size of the cohort examined in this study, and,
in general, the availability of data to specific institutes. As generally true with machine
learning approaches, we expect that including more data will result in improved models
and prediction capabilities. We plan to expand our cohort by including anonymized patient
data provided by radiotherapy departments of other institutes.

6.5. CONCLUSION

This study presents a novel, machine learning-based approach to an important part in the
process of 3D dose reconstruction for historically treated patients using recent real patient
data rather than phantoms: selecting a good representative recently treated patient.
Similarity measures that consider the overall abdomen and the position of internal
organs can be decently modeled (pseudo-R? > 0.7), and automatic selection based on
such models reaches a coarse but robust performance. However, it was not possible to
find a relationship between features available for historically treated patients and specific
organ shapes. All in all, our novel approach shows potential in using CT scans of actual,
recent patients directly to perform dose reconstruction, and a number of future research

6. ON AUTOMATICALLY SELECTING SIMILAR PATIENTS IN HIGHLY INDIVIDUALIZED
146 RADIOTHERAPY DOSE RECONSTRUCTION FOR PEDIATRIC CANCER SURVIVORS

steps are possible to gain substantial improvements, e.g., extending the data with more
patients, exploiting available 2D image data such as simulator films to extend the feature
set, and exploring combinations of similarity notions.

ACKNOWLEDGMENTS

The authors would like to thank Brian V. Balgobind, Koen F. Crama, Rianne M.A J. de Jong,
Jorrit Visser and Ziyuan Wang (department of Radiation Oncology, Academic Medical
Center, Amsterdam, the Netherlands) for their help with the retrieval and pre-processing
of data. We further thank Raquel Dévila Fajardo (department of Radiation Oncology, UMC
Utrecht Cancer Center, the Netherlands) for sharing the data of 3 patients treated at the
UMC Utrecht for inclusion in this study. This work is part of the research project 3D dose
reconstruction for children with long-term follow-up — Toward improved decision making in
radiation treatment for children with cancer with project number 187, which is financed
by Stichting Kinderen Kankervrij (KiKa). Dr. C. M. Ronckers is supported by the Dutch
Cancer Society (KWF), grant number UVA2012-5517.

REFERENCES 147

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(8]

V. Jairam, K. B. Roberts, and B. Y. James, Historical trends in the use of radiation
therapy for pediatric cancers: 1973-2008, International Journal of Radiation Oncology
- Biology - Physics 85, e151 (2013).

C. A. Sklar and L. S. Constine, Chronic neuroendocrinological sequelae of radiation
therapy, International Journal of Radiation Oncology - Biology - Physics 31, 1113
(1995).

R.K. Mulhern, T. E. Merchant, A. Gajjar, W. E. Reddick, and L. E. Kun, Late neurocog-
nitive sequelae in survivors of brain tumours in childhood, The Lancet Oncology 5, 399
(2004).

M. M. Geenen, M. C. Cardous-Ubbink, L. C. M. Kremer, C. van den Bos, H. J. H.
van der Pal, R. C. Heinen, M. W. M. Jaspers, C. C. E. Koning, F. Oldenburger, N. E.
Langeveld, et al., Medical assessment of adverse health outcomes in long-term survivors
of childhood cancer, JAMA 297, 2705 (2007).

Y.-L. Tsai, S.-C. Tsai, S.-H. Yen, K.-L. Huang, P.-F. Mu, H.-C. Liou, T.-T. Wong, I.-C. Lai,
P. Liu, H.-L. Lou, et al., Efficacy of therapeutic play for pediatric brain tumor patients
during external beam radiotherapy, Child’s Nervous System 29, 1123 (2013).

L. W. E. M. van Dijk, F. Oldenburger, M. C. Cardous-Ubbink, M. M. Geenen, R. C.
Heinen, J. de Kraker, F. E. van Leeuwen, H.]J. van der Pal, H. N. Caron, C. C. Koning,
et al., Evaluation of late adverse events in long-term Wilms’ tumor survivors, Interna-
tional Journal of Radiation Oncology - Biology - Physics 78, 370 (2010).

S. Thouvenin-Doulet, P. Fayoux, H. Broucqsault, and V. Bernier-Chastagner, Neu-
rosensory, aesthetic and dental late effects of childhood cancer therapy, Bulletin du Can-
cer 102, 642 (2015).

N. Breslow, A. Olshan, J. B. Beckwith, and D. M. Green, Epidemiology of Wilms tumor,
Medical and Pediatric Oncology 21, 172 (1993).

[9] J.S.Dome, N. Graf, J. L. Geller, C. V. Fernandez, E. A. Mullen, F. Spreafico, M. Van den

(10]

(11]

Heuvel-Eibrink, and K. Pritchard-Jones, Advances in Wilms tumor treatment and bi-
ology: progress through international collaboration, Journal of Clinical Oncology 33,
2999 (2015).

S. M. Bentzen, L. S. Constine, J. O. Deasy, A. Eisbruch, A. Jackson, L. B. Marks, R. K.
Ten Haken, and E. D. Yorke, Quantitative Analyses of Normal Tissue Effects in the
Clinic (QUANTEC): an introduction to the scientific issues, International Journal of
Radiation Oncology - Biology - Physics 76, S3 (2010).

L.J. Boersma, E. M. F. Damen, R. W. De Boer, S. H. Muller, C. M. Roos, R. A. V. Olmos,
N. van Zandwijk, and J. V. Lebesque, Dose-effect relations for local functional and
structural changes of the lung after irradiation for malignant lymphoma, Radiotherapy
and Oncology 32, 201 (1994).

148

REFERENCES

[12]

[13]

[16]

(18]

[19]

[21]

Y. Cao, C. Pan, J. M. Balter, J. F. Platt, I. R. Francis, J. A. Knol, D. Normolle, E. Ben-Josef,
R. K. Ten Haken, and T. S. Lawrence, Liver function after irradiation based on com-
puted tomographic portal vein perfusion imaging, International Journal of Radiation
Oncology - Biology - Physics 70, 154 (2008).

F. Buettner, S. L. Gulliford, S. Webb, M. R. Sydes, D. P. Dearnaley, and M. Partridge,
Assessing correlations between the spatial distribution of the dose to the rectal wall and
late rectal toxicity after prostate radiotherapy: an analysis of data from the MRC RT01
trial (ISRCIN 47772397), Physics in Medicine & Biology 54, 6535 (2009).

L. Constine, D. Hodgson, and S. Bentzen, MO-D-BRF-01: Pediatric treatment planning
II: The PENTEC report on normal tissue complications, Medical Physics 41, 419 (2014).

L. S. Constine, C. M. Ronckers, C.-H. Hua, A. Olch, L. C. M. Kremer, A. Jackson, and
S. M. Bentzen, Pediatric Normal Tissue Effects in the Clinic (PENTEC): an international
collaboration to analyse normal tissue radiation dose—volume response relationships for
paediatric cancer patients, Clinical Oncology 31, 199 (2019).

M. Stovall, R. Weathers, C. Kasper, S. A. Smith, L. Travis, E. Ron, and R. Kleinerman,
Dose reconstruction for therapeutic and diagnostic radiation exposures: use in epidemi-
ological studies, Radiation Research 166, 141 (2006).

A. M. Geyer, S. O'Reilly, C. Lee, D. J. Long, and W. E. Bolch, The UF/NCI family of
hybrid computational phantoms representing the current US population of male and fe-
male children, adolescents, and adults-application to CT dosimetry, Physics in Medicine
& Biology 59, 5225 (2014).

J. Valentin, Basic anatomical and physiological data for use in radiological protection:
reference values: ICRP publication 89, Annals of the ICRP 32, 1 (2002).

S. Lamart, R. Imran, S. L. Simon, K. Doi, L. M. Morton, R. E. Curtis, C. Lee, V. Droz-
dovitch, R. Maass-Moreno, C. C. Chen, et al., Prediction of the location and size of the
stomach using patient characteristics for retrospective radiation dose estimation follow-
ing radiotherapy, Physics in Medicine & Biology 58, 8739 (2013).

G. L. de la Grandmaison, I. Clairand, and M. Durigon, Organ weight in 684 adult
autopsies: new tables for a Caucasoid population, Forensic Science International 119,
149 (2001).

A. Ng, T. Nguyen, J. L. Moseley, D. C. Hodgson, M. B. Sharpe, and K. K. Brock, Re-
construction of 3D lung models from 2D planning data sets for Hodgkin’s lymphoma
patients using combined deformable image registration and navigator channels, Medi-
cal Physics 37, 1017 (2010).

A. Ng, T.-N. Nguyen, J. L. Moseley, D. C. Hodgson, M. B. Sharpe, and K. K. Brock,
Navigator channel adaptation to reconstruct three dimensional heart volumes from two
dimensional radiotherapy planning data, BMC Medical Physics 12, 1 (2012).

REFERENCES 149

(23]

(24]

[26]

(27]

(28]

[29]

(30]

(32]

A.Ng, K. K. Brock, M. B. Sharpe, J. L. Moseley, T. Craig, and D. C. Hodgson, Individ-
ualized 3D reconstruction of normal tissue dose for patients with long-term follow-up: a
step toward understanding dose risk for late toxicity, International Journal of Radiation
Oncology - Biology - Physics 84, €557 (2012).

R. Zhou, A. Ng, L. S. Constine, M. Stovall, G. T. Armstrong, J. P. Neglia, D. L. Fried-
man, K. Kelly, T. J. FitzGerald, and D. C. Hodgson, A comparative evaluation of nor-
mal tissue doses for patients receiving radiation therapy for Hodgkin lymphoma on the
Childhood Cancer Survivor Study and recent Children’s Oncology Group trials, Inter-
national Journal of Radiation Oncology - Biology - Physics 95, 707 (2016).

S.Klein, M. Loog, F. van der Lijn, T. den Heijer, A. Hammers, M. de Bruijne, A. van der
Lugt, R. P. W. Duin, M. M. B. Breteler, and W.]. Niessen, Early diagnosis of dementia
based on intersubject whole-brain dissimilarities, in 2010 IEEE International Symposium
on Biomedical Imaging: From Nano to Macro (IEEE, 2010) pp. 249-252.

S. Klein, M. Staring, K. Murphy, M. A. Viergever, and J. P. Pluim, Elastix: a toolbox
for intensity-based medical image registration, IEEE Transactions on Medical Imaging
29, 196 (2009).

D. P. Shamonin, E. E. Bron, B. P. F. Lelieveldt, M. Smits, S. Klein, and M. Staring, Fast
parallel image registration on CPU and GPU for diagnostic classification of Alzheimer’s
disease, Frontiers in Neuroinformatics 7, 50 (2014).

L. R. Dice, Measures of the amount of ecologic association between species, Ecology 26,
297 (1945).

K. H. Zou, S. K. Warfield, A. Bharatha, C. M. C. Tempany, M. R. Kaus, S. J. Haker,
W. M. Wells I, F. A. Jolesz, and R. Kikinis, Statistical validation of image segmentation
quality based on a spatial overlap index, Academic Radiology 11, 178 (2004).

D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge, Comparing images using
the Hausdorff distance, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 15, 850 (1993).

Z.Xu, S. A. Panjwani, C. P. Lee, R. P. Burke, R. B. Baucom, B. K. Poulose, R. G. Abram-
son, and B. A. Landman, Evaluation of body-wise and organ-wise registrations for ab-
dominal organs, in Medical Imaging 2016: Image Processing, Vol. 9784 (International
Society for Optics and Photonics, 2016) p. 978410.

M. Kazhdan, P. Simari, T. McNutt, B. Wu, R. Jacques, M. Chuang, and R. Taylor, A
shape relationship descriptor for radiation therapy planning, in International Confer-
ence on Medical Image Computing and Computer-Assisted Intervention (Springer, 2009)
pp. 100-108.

B. Wu, F. Ricchetti, G. Sanguineti, M. Kazhdan, P. Simari, M. Chuang, R. Taylor,
R. Jacques, and T. McNutt, Patient geometry-driven information retrieval for IMRT
treatment plan quality control, Medical Physics 36, 5497 (2009).

150 REFERENCES

[34] L. Breiman, Random forests, Machine Learning 45, 5 (2001).

[35] A. Cutler, D. R. Cutler, and J. R. Stevens, Tree-based methods, in High-Dimensional
Data Analysis in Cancer Research (Springer, 2009) pp. 1-19.

[36] R Core Team, R: A language and environment for statistical computing, R Foundation
for Statistical Computing (2013).

[37] T.Hothorn, K. Hornik, and A. Zeileis, Unbiased recursive partitioning: A conditional
inference framework, Journal of Computational and Graphical Statistics 15, 651 (2006).

[38] C. Strobl, A.-L. Boulesteix, A. Zeileis, and T. Hothorn, Bias in random forest variable
importance measures: Illustrations, sources and a solution, BMC Bioinformatics 8, 25
(2007).

[39] C. Strobl, A.-L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis, Conditional variable
importance for random forests, BMC Bioinformatics 9, 307 (2008).

[40] P. Markelj, D. Tomazevi¢, B. Likar, and F. Pernu$, A review of 3D/2D registration
methods for image-guided interventions, Medical Image Analysis 16, 642 (2012).

[41] J.R.Koza, Genetic Programming: on the programming of computers by means of natural
selection (MIT Press, 1992).

MACHINE LEARNING FOR AUTOMATIC
PHANTOM CONSTRUCTION

Machine Learning (ML) is proving extremely beneficial in many healthcare applications. In
pediatric oncology, retrospective studies that investigate the relationship between treatment
and late adverse effects still rely on simple heuristics. To assess the effects of radiation ther-
apy, treatment plans are typically simulated on phantoms, i.e., virtual surrogates of patient
anatomy. Currently, phantoms are built according to reasonable, yet simple, human-designed
criteria. This often results in a lack of individualization. We present a novel approach that
combines imaging and ML to build individualized phantoms automatically. Given the fea-
tures of a patient treated historically (only 2D radiographs available), and a database of 3D
Computed Tomography (CT) imaging with organ segmentations and relative patient features,
our approach uses ML to predict how to assemble a patient-specific phantom automatically.
Experiments on 60 abdominal CTs of pediatric patients show that our approach constructs
significantly more representative phantoms than using current phantom building criteria, in
terms of location and shape of the abdomen and of two considered organs, the liver and the
spleen. Among several ML algorithms considered, the Gene-pool Optimal Mixing Evolution-
ary Algorithm for Genetic Programming (GP-GOMEA) is found to deliver the best performing
models, which are, moreover, transparent and interpretable mathematical expressions.

The contents of this chapter are based on the following preprint: M. Virgolin, Z. Wang, T. Alderliesten, and P.AN.
Bosman. Machine learning for automatic construction of pseudo-realistic pediatric abdominal phantoms. Submitted. Preprint
arXiv:1909.03723, arXiv (2019). The preprint extends the publication: M. Virgolin, Z. Wang, T. Alderliesten, and P.A.N. Bosman.
Machine learning for automatic construction of pediatric abdominal phantoms. In Proceedings of SPIE Medical Imaging 2020:
Imaging Informatics for Healthcare, Research, and Applications, International Society for Optics and Photonics (2020) (to appear).

151

https://arxiv.org/abs/1909.03723
https://arxiv.org/abs/1909.03723

152 7. MACHINE LEARNING FOR AUTOMATIC PHANTOM CONSTRUCTION

7.1. INTRODUCTION

Virtual anthropomorphic phantoms are 3D representations of the human body that are
used as surrogates for the anatomy of humans, to estimate the quantity and geometric dis-
tribution of radiation dose when having been exposed to radiation, e.g., in radiation treat-
ment for cancer patients [1, 2]. Because anatomy resemblance is one of the key sources
of uncertainty in dose estimation [3], the phantom needs to represent the anatomy of the
patient for whom estimates are needed with high precision.

Current methods for phantom building have two major limitations. Firstly, tradition-
ally, building phantoms is a manual and time-consuming task. Approximations of human
anatomies are produced using simple geometrical shapes [4, 5], or by considering actual
organ segmentations from Computed Tomography (CT) scans [6-8]. These anatomies are
shaped and/or adapted according to population-based statistics and/or reasonable human-
designed criteria [4, 6, 7, 9, 10]. Because the procedure is laborious, a limited number of
phantoms is made, each meant to represent a category of patients. The second and per-
haps more fundamental limitation is that it is unknown how to best define categorization
criteria that best capture resemblance in individual patient anatomy. So far, only simple
criteria such as partitioning by combinations of age, gender, percentiles height and weight,
have been explored [4, 6-8]. Nevertheless, several studies, including Chapter 6, have in-
dicated that such simple criteria are incapable of capturing the high variance in human
internal anatomy [2, 6, 11], and this can ultimately lead to coarse dose estimations [12].

Machine Learning (ML) is becoming more and more a reliable approach to tackle hard
and heterogeneous problems in healthcare [13]. This is because ML can infer patterns
from data that are hard to spot, and to model for humans. In the context of phantom con-
struction, the use of ML could improve upon the rough categorization methods that are
currently being employed. In this chapter, we present a new take on phantom construc-
tion that shows that it is possible to use ML to obtain better phantoms. In particular, we
propose an automatic phantom-construction pipeline that can be used to generate pseudo-
realistic phantoms that are patient-specific. To overcome the need for laborious manual
intervention, we propose to re-use 3D patient imaging (CT scans and organ segmenta-
tions) collected in a database, to assemble new anatomy combinations. To estimate how
to best perform this assembling, i.e., to move beyond the use of too simplistic criteria,
we rely on ML. Specifically, we train ML models to learn relationships between patient
features and 3D metrics based on their internal anatomy.

We consider a relatively hard scenario where phantoms are needed and patient features
are limited: dose reconstruction for historical patients, i.e., patients treated in the pre-3D
planning era, when radiation treatment plans were designed using 2D radiographs. As
no 3D imaging is available for historical patients to simulate the treatment and estimate
the radiation dose distribution, phantoms are necessary to act as surrogate anatomies in
order to reconstruct 3D dose distributions [12, 14]. We focus on children between 2 to
6 years, and on dose reconstruction for abdominal radiation treatment, for the following
reasons. Firstly, children are typically under-represented in existing phantom libraries,
i.e., phantoms are available for few categories [4, 6]. Secondly, the inclusion of radiation
treatment has led to high survival rates for several types of pediatric abdominal cancer
(e.g., Wilms’ tumor, the most common type of kidney cancer), but it is known to cause
late adverse effects [15, 16]. Thirdly, it has recently been shown that when CT scans are

7.2. MATERIALS & METHODS 153

selected based on age and gender to serve as a surrogate for pediatric abdominal patients,
there is a high risk of obtaining inaccurate dose reconstructions [12]. The ultimate goal
is to realize sufficiently accurate dose reconstruction by use of more representative phan-
toms, which can then be used to better understand how radiation dose contributes to the
onset of late adverse effects. Providing this information can support radiation oncologists
in the design of better treatment plans with smaller chances of adverse effects for today’s
abdominal radiation treatment.

7.2. MATERIALS & METHODS

7.2.1. DATA

We built a database using data of 60 pediatric cancer patients, in the age range of 2 to
6 years. The patients were treated after 2002 at the radiation oncology department of
the Amsterdam UMC, location AMC, in Amsterdam, or at the University Medical Center
Utrecht/Princess Maxima Center for Pediatric Oncology in Utrecht. For each patient, a
CT is available that fully includes the lower part of the thorax to the lower part of the
abdomen, specifically from the top of the Thoracic 10th vertebra (T10) to the bottom of
the Sacral 1st vertebra (S1). The median axial thickness of the CT scan is 2.5 mm, and the
median in-plane resolution is 1.0 mm x 1.0 mm.

To simulate the scenario of dose reconstruction for patients treated in the pre-3D plan-
ning era, we only consider patient features that were typically recorded at the time. We
base our choices on the availability of features for the Emma Children’s Hospital/Academic
Medical Center (EKZ/AMC) childhood cancer survivor cohort, treated between 1966 and
1996 [16]. One important source of information for the EKZ/AMC cohort is 2D coronal
radiographs, which were acquired to plan radiation treatment. The coronal radiographs
enable us to perform measurements, along Left-Right (LR) and Inferior-Superior (IS) di-
rections, based on visible anatomical landmarks, i.e., the bony anatomy (see Fig. 7.1). For
our cohort of recently treated patients, we simulate historical radiographs using Digitally
Reconstructed Radiographs (DRRs), derived from the CTs using in-house developed soft-
ware. Figure 7.1 (left, middle) shows an example of a historical radiograph and of a DRR.

Table 7.1 lists the features considered in this work. Features involving measurements
from DRRs were collected after manual placement of landmarks (using 3D Slicer [17]), ex-
emplified in Figure 7.1 (right). The only source of information on the Anterior-Posterior
(AP) direction is the abdominal diameter, that was historically measured using rulers and
calipers, at the center of the radiation treatment field (which corresponded with the isocen-
ter for the EKZ/AMC cohort). For our cohort, we measured the abdominal diameter along
AP from the CTs, using a typical isocenter position for abdominal flank irradiation, as de-
scribed in Section 6.2.1. Figure 7.2 shows the Pearson correlation coefficients between the
considered features. Most features are moderately correlated, and few are strongly corre-
lated, e.g., height with age and weight. The distance along IS between the top of the right
diaphragm and T12 (RDIS) stands out as it is associated with the lowest correlations with
any other feature. We measured this feature in an attempt to capture information on the
breathing state of the patient, which is known to be correlated with organ position [18, 19].
The low correlation is likely because the particular breathing state of the patient can be
reasonably expected to be not correlated with the other features we considered.

154 7. MACHINE LEARNING FOR AUTOMATIC PHANTOM CONSTRUCTION

Figure 7.1: Left: An example of a 2D coronal radiograph, taken by a radiation treatment
simulator used in the pre-3D planning era, including annotations by medical personnel
(sensitive information censored). Middle: A digitally reconstructed radiograph built from
a CT. Images are acquired in anterior-posterior setting. Liver and spleen are not clearly
visible. Right: Example of manually-placed landmarks used to measure features from ra-
diographs. The length of the left and the right diaphragm along the LR direction is derived
by fitting a cubic spline to the respective dashes.

We consider two Organs At Risk (OARs), i.e., organs for which exposure to radiation
is known to lead to adverse effects: the liver and the spleen. These OARs are particularly
interesting because their shape and position is known to vary substantially per individual,
and are very hard to predict (Chapter 6). In general, the liver and spleen are not (clearly)
visible in historical radiographs (see Fig. 7.1). For each patient in the cohort, 3D segmenta-
tions of the OARs and of the external body (delimited along IS between T10 and S1) were
firstly automatically generated (with ADMIRE research software, 2.3.0, Elekta AB, Stock-
holm, Sweden), then manually checked and corrected by experienced radiation treatment
technologists (with Velocity software, version 3.2.0, Varian Medical Systems, Inc. Palo
Alto, CA, US), and finally approved by a pediatric radiation oncologist.

Table 7.1: Features of our cohort, typically available for patients treated in the pre-3D
planning era. Note: gender is categorical, other features are numerical.

Feature name Abbreviation ~ Unit Source Min Max Mean StDev.
Age AGE years records 2.0 6.0 3.8 1.2
Abdominal diameter in AP at typical isocenter ADAP mm records 1.1 16.0 133 1.2
Abdominal diameter in LR at middle of L2 ADLR mm radiograph 163 235 19.4 1.4
Distance from top of iliac crest to spinal cord along LR ICsC mm radiograph 4.3 6.8 5.5 0.6
Gender GEND - records 33 females, 27 males
Heart size along LR HESZ mm radiograph 6.8 9.9 8.5 0.7
Height HEIG cm records 86.0 123.0 103.0 10.7
Left diaphragm length along LR LDLR mm radiograph 6.5 10.7 8.4 0.9
Right diaphragm length along LR RDLR mm radiograph 6.2 10.5 83 0.8
Right diaphragm top to T12 distance along IS RDIS mm radiograph 4.0 7.8 5.9 1.0
Spinal cord length along IS from T12 to L4 SPIS mm radiograph 7.0 10.9 9.3 0.8

Weight WEIG kg records 10.0 28.0 16.4 3.7

7.2. MATERIALS ¢ METHODS 155

1.00
sce [046 04s [} 0.44 2 [

0.91
ADAP

0.82
ADLR B . . J B 2l 0.71 0.63
icsc o 52 1) . ! 76 0.64 0.64 0.74
HESZ 0.65
HEIG 0.56
LDLR - 0.47
RDLR 038
RDIS

-0.30
SPIS

-0.21
WEIG

-0.12

AGE ADAP ADLR ICSC HESZ HEIG LDLR RDLR RDIS SPIS WEIG

Figure 7.2: Pearson correlation coefficients (number and color-coded) between the consid-
ered features. See Table 7.1 for the meaning of abbreviations.

7.2.2. PIPELINE FOR AUTOMATIC PHANTOM CONSTRUCTION

The outcome of our pipeline is a CT-based phantom, built using recent patient imaging
data. The goal is to resemble the anatomy of the historical patient as closely as possible.

The pipeline is summarized in Figure 7.3. Given the patient features as input, first
an ML model MEOdy is used to predict which CT is most resembling in terms of overall
body shape (for the abdominal region). We call this CT the “receiver”. Then, the OARs
of the receiver are “resected”. Resection of an OAR is performed by setting the voxels of
the receiver that belong to the OAR to Hounsfield Unit (HU) values that represent generic
soft abdominal tissues (this is a parameter, we used 78, as done in the phantoms of the
University of Florida/National Cancer Institute[6]). Subsequently, for each OAR, its center
of mass position is predicted using dedicated models, i.e., one for the LR (MI%*R), one for
the AP (MS8R), and one for the IS position (M), A fifth model (M$AR) is used to
predict which OAR segmentation to retrieve among the ones available based on a shape-
focused metric (described in Sec. 7.2.3). We choose to adopt separate models because the
features related to one metric may be independent from the ones related to another metric,
e.g., we expect features related to the LR direction to be important for the LR coordinate
of the center of mass of an OAR, but not (or substantially less) for its AP or IS coordinates
and for determining what segmentation has the most promising shape.

We refer to the CT that is chosen by M$® to provide the OAR segmentation as a
“donor”. Next, the segmentation is “transplanted” into the receiver, using the predicted
position. Transplantation is achieved similarly to resection: we add the OAR segmentation
to the set of segmentations of the receiver, placed in the predicted position, and we set

156 7. MACHINE LEARNING FOR AUTOMATIC PHANTOM CONSTRUCTION

OAR
F MR LR oord. \‘
MQBR AP

coord.
L MPAR IS
AGE
|
AE] OAR
T me
HEIG

— WEIG OAR of donor

coord.

Features

phantom
(with possible
inconsistencies)

TRANSPLANT

patient treated
re-3D planning era

RESECTION

phantom

receiver
after resection

receiver

database
(CTs + segmentations + features)

Figure 7.3: Pipeline for automatic phantom building. Pre-trained ML models are used to
predict 3D OAR positions as well as what OAR donor segmentation and what receiver CT
to retrieve from the database to construct a patient-specific phantom CT (only the liver is
considered as OAR in this example). The resected and transplanted OAR is highlighted in
red and green, respectively.

the HU values of the voxels in the receiver that belong to the OAR segmentation to the
respective HU values from the donor scan.

A final step consists of correcting the phantom for possible anatomical inconsistencies
with an Anatomical Inconsistencies Correction (AIC) procedure. This is because the ML
models can in principle predict to place segmentations in positions that result in non-
realistic anatomy (e.g, OARs overlapping with each other). An optimizer is therefore used
to subsequently resize and re-position the OARSs to correct for anatomical inconsistencies,
with minimal corrections so as to compromise the quality of the ML model predictions as
little as possible (more details are given later, in Sec. 7.2.4).

To store CTs and segmentations sets, we relied on the Digital Imaging and Com-
munications in Medicine standard (DICOM). Segmentation sets were stored in DICOM
RT-Structure sets. To handle this data format, we used the pydicom package for Python
(https://pydicom.github.io). We do not provide full details on the implementation here
(e.g., which fields of the DICOM files are changed and how), but our source code is avail-
able at: http://github.com/marcovirgolin/APhA.

7.2.3. MACHINE LEARNING

This section describes how the ML models in the pipeline are trained. Firstly, we present
how datasets for supervised learning are built. Secondly, we present the ML algorithms
that we selected, and their hyper-parameters. Finally, we describe the learning strategy,
i.e., how we train, tune, and validate the models.

https://pydicom.github.io
http://github.com/marcovirgolin/APhA

7.2. MATERIALS & METHODS 157

DATASETS FOR TRAINING

To train the ML models we prepare separate datasets to learn each ML model indepen-
dently. As aforementioned, we learn separate models under the assumption that 3D met-
rics are (largely) independent from each other. Hence, 1+4 x #0ARs datasets are needed:
one to learn how to pick the receiver CT, three for each OAR to predict the OAR position,
and one more for each OAR to predict which segmentation to retrieve.

We perform numerical feature normalization by z-scoring [20], i.e., each feature is nor-
malized by subtraction of the mean and division by the standard deviation. Since patient
gender is categorical, we set it to a binary value: 0 for females and 1 for males. As no cor-
relation coefficient above 0.9 was found between the features (Fig. 7.2), we do not exclude
any feature. Z-scoring is also applied to the target variable y.

We construct two types of datasets. One type is used for OAR position modeling along
three orthogonal directions (i.e., LR, AP, IS). The other type is for donor and receiver re-
trieval. The preparation of the datasets for OAR position modeling is straightforward. We
define the OAR position relative to a common landmark: the center of the L2 vertebra. In
other words, the OAR position in LR, AP, or IS direction is a signed, one-dimensional dis-
tance from the center of the L2 vertebra to the center of mass of the OAR’s segmentation,
measured in mm.

For the datasets concerning the retrieval of a representative OAR segmentation, a mea-
sure of segmentation similarity needs to be defined as target variable. Because a measure
of similarity is defined between pairs of segmentations, each example needs to be defined
over a pair of patients, leading to a total of #patients(#patients — 1) /2 training examples.
For the features, we use a pairwise version of the features defined as the absolute differ-
ence of the features of patients p and ¢: 2, = |2, — 24|, with 2, being the feature x of
patient p. For the target variable, several possibilities to address segmentation similarity
have been proposed in literature. For example, a possibility is to consider similarity in
OAR weight[8]. We do not rely on OAR weight nor volume because they do not account
for similarity of shape. Another commonly adopted option to assess OAR similarity is the
use of the volumetric Dice-Serensen Coefficient (DSC) [14, 21, 22]. However, the DSC still
has limitations, because it is segmentation-volume dependent. We therefore rely on the
recently introduced surface Dice-Serensen Coefficient (sDSC) [23], which considers only
significant millimetric deviations between the surfaces of the segmentations to evaluate
similarity. In particular, the sDSC uses a threshold parameter 7 that expresses what devi-
ations are acceptable (e.g., as part of inter-observer variability). To choose 7, we consider
that the median CT slice thickness in our database is 2.5 mm. Since we deal with inter-
patient OAR segmentations, we doubled this value, and adopted 7 = 5.0 mm. Because we
predict OAR positions separately for each OAR, the sDSC is computed after aligning the
segmentations on their center of mass, i.e., to maximally focus on the shape. Furthermore,
we consider sDSC values as percentages (0 to 100).

158 7. MACHINE LEARNING FOR AUTOMATIC PHANTOM CONSTRUCTION

LOSs FUNCTION FOR LEARNING

As loss function to train and validate the ML algorithms we consider the Mean Absolute
Error (MAE), i.e.,

n
MAE(y,5) = Y |yi — i, (7.1)
=1

where y and ¢ are n-dimensional vectors of ground-truth values and ML predictions
respectively. Clearly, the MAE needs to be minimized. We choose to use the MAE because
it is relatively simple to interpret, as it preserves the unit of measurement of the metric
at hand (mm for OAR positions, % for sDSC between OAR segmentations), and weighs all
errors equally.

For OAR positions, computing the MAE is straightforward both at training and at test
time. Given n cases, it suffices to measure the absolute difference between each ground-
truth position and its prediction, and take the average upon all examples.

The sDSC is defined between pairs of patient OAR segmentations. Here, ML algo-
rithms predictions correspond to estimations of sDSC between OAR segmentation pairs,
and MAE minimization means to correctly predict the sDSC. At training time, the MAE
between predictions and ground-truth sDSC is measured. The measurement of validation
MAE is more involved. In particular, when validation is needed for a patient who was not
included in the training data, i.e., to obtain a segmentation for a test patient, we firstly
create pairwise features (Table 7.1) between that patient and each other patient in the
database (as absolute feature differences as described in 7.2.3). Subsequently, the model
uses the pairwise features as input, and produces predictions of sDSC between the OAR
segmentation of the test patient and the one of each other patient (see the input of MR
and MEOdY in Fig. 7.3). Now, we do not compute the MAE between these predictions and
the ground-truth sDSCs as test error, because the predictions do not correspond to any
particular segmentation in the database. Rather, they give an indication of how the OAR
segmentation of each patient will fare against the OAR segmentation of the test patient in
terms of sDSC. Therefore, we proceed by retrieving the segmentation from the database
that has the largest predicted sDSC with the test patient. Finally, we evaluate the actual
sDSC between these two segmentations, and report that.

Note that the maximum score of OAR shape similarity achievable is not necessarily
100%, rather, it is the maximum sDSC that can be obtained with the OAR segmentations
available in the database. To frame the future comparisons that involve different metrics,
i.e., OAR positions and OAR shape, we define e;psc = 100 — sDSC, which is minimal (0%)
when the sDSC is maximal (100%), and is maximal (100%) when the sDSC is minimal (0%).
This way, both errors in OAR positioning and in OAR shape retrieval can be considered
as a metric to be minimized.

ALGORITHMS

We compare a total of five regression ML algorithms: Least-Angle RegreSsion (LARS)
[24], LARS using the Least Absolute Shrinkage and Selection Operator (LASSO) [25], Ran-
dom Forest (RF) [26], traditional Genetic Programming (GP-Trad) [27, 28], and the Ge-
netic Programming instance of the Gene-pool Optimal Mixing Evolutionary Algorithm

7.2. MATERIALS & METHODS 159

(GP-GOMEA) [29, 30]. These algorithms are interesting because they include hyper-
parameters that can be used to prevent overfitting, which is a likely scenario when the
data is limited as in many medical applications, including ours.

LARS and LASSO are widely used approaches that work based on the assumption that
the features can be combined linearly, and include penalization metrics to avoid overfit-
ting. LASSO also performs feature selection. Both algorithms build models that can be
read as mathematical expressions consisting of a linear combination of the features, and
are therefore considered interpretable [31]. We optimize the hyper-parameter J, i.e., the
penalization factor, as described in Section 7.2.3. We use the implementation of the pack-
age glmnet, in R [32, 33].

RF is also widely used, but it is different from the previous two as it allows non-linear
modeling. RF builds a model as an ensemble of decision trees to reduce variance in esti-
mation and thus overfitting. Because the model is an ensemble, it is considered not inter-
pretable [31]. We optimize how many features are randomly chosen when building the
nodes that compose each decision tree (mtry), and the minimum number of data samples a
node should represent (min. node size), the same way we optimize A for LARS and LASSO
(see Sec. 7.2.3). We use the R implementation known as ranger [34].

The Genetic Programming algorithms are interesting because, like LARS and LASSO,
they deliver models in the form of mathematical expressions, but they can include non-
linear feature combinations. These algorithms work by loosely mimicking the concept
of Darwinian evolution, i.e., by iterative recombination of candidate mathematical ex-
pressions made of atomic functions, and selection of the fittest. Recombination in GP-
Trad is highly stochastic, whereas the one of GP-GOMEA includes information theory-
based mechanisms to estimate what patterns of atomic functions should be preserved
during recombination attempts. We found GP-GOMEA to work particularly well when
small, yet accurate expressions are needed (Chapter 3). To reduce the number of hyper-
parameters, we use these algorithms within a scheme of interleaved runs of increasing ca-
pacity (described in sec 7.2.3). We use the C++ implementation of GP-Trad and GP-GOMEA
(https://github.com/marcovirgolin/GP-GOMEA).

HYPER-PARAMETER SETTINGS

Table 7.2 shows the hyper-parameters used by the ML algorithms. LARS and LASSO use
A to penalize complex models. For RF, we use the default relatively large number of trees
(given the datasets at hand) of 500 [35].

For GP-Trad and GP-GOMEA, the function set F defines which functions to use as
model components (tree nodes). The division operator -4 is the analytic quotient [36],
which not only guarantees that the divider can never be null, but also ensures smooth-
ness (in contrast with the protected division operator [28], which can harm generaliza-
tion [36]). The logarithm operator is protected to avoid infeasible computations [27]. The
Ephemeral Random Constants (ERC) are constants for which the value is set by uniform
sampling from a defined interval [28]. Mathematical expressions are encoded as parse
trees in GP-Trad and GP-GOMEA. We set a small tree height to keep the resulting math-
ematical expressions short and readable (we found that larger three heights can result in
hard to read expressions), and to prevent overfitting.

The number of candidate expressions to evolve, i.e., the population size, is a sensitive
parameter for GP algorithms. We run GP-Trad and GP-GOMEA using the Interleaved Mul-

https://github.com/marcovirgolin/GP-GOMEA

160 7. MACHINE LEARNING FOR AUTOMATIC PHANTOM CONSTRUCTION

Table 7.2: Hyper-parameters of the ML algorithms. The subscript “tune” means that the
hyper-parameter setting is subject to optimization with 5-fold cross-validation grid-search
among the listed values.

Algorithm Hyper-parameter Settings
LARS and LASSO Atune 10710,1079,...,10™
RF nr. trees 500
min. node sizewye 5,10,...,20,25
mtrygne 1,2,..., %
GP-Trad and F {+, —, X, =a,exp, logp}
GP-GOMEA ERC U[-10, 10]
tree height 2
giMs 4
time limit 60s

tistart Scheme (IMS), a method that interleaves multiple runs with increasing population
size. We set the number of sub-iterations between runs, gnus, to 4 as has been reported to
work well on benchmark problems (Chapters 2 and 3). Since the IMS can in principle run
forever, we set a time limit of 60 seconds. We found this limit to be reasonable because the
datasets are small and evaluations are fast, and because the other ML algorithms take only
a few seconds to execute. We also preliminarily observed that increasing the time limit
(e.g., to 5 or 10 minutes) does not alter the results in a significant way. For further details
on GP-Trad, GP-GOMEA, the IMS, and other hyper-parameters, the reader is referred to
Chapter 3.

LEARNING STRATEGY

With a limited number of 60 patients available, we perform leave-one-out cross-validation
to compute the overall test performance. The leave-one-out cross-validation is performed
“patient-wise”, i.e., all the examples relative to a particular patient p are removed from the
training set, and solely used for testing. This is obvious for the datasets on OAR position,
as each row corresponds to exactly one patient. For the datasets on OAR segmentation
retrieval, however, each row represents a pair of patients (see Sec. 7.2.3). Therefore, all
#patients — 1 (59) rows where p is considered are removed from the training set and put
in the test set. This is necessary to avoid a positive bias in the test results.

Within each iteration of leave-one-out cross-validation, for LARS, LASSO, and RF, we
perform grid-search hyper-parameter tuning with 5-fold cross-validation upon the train-
ing data, to determine the best hyper-parameter values. We use the R package caret for
this purpose[37]. Once the best hyper-parameter settings are found, we train the ML al-
gorithm on the training set using those settings, and test it on the test set. For GP-Trad
and GP-GOMEA, we take the best expression found by the interleaved runs started by the
IMS.

Since RF, GP-Trad, and GP-GOMEA are stochastic algorithms, we repeat their execu-
tion 10 times, and report the mean result.

7.2. MATERIALS & METHODS 161

7.2.4. ANATOMICAL INCONSISTENCY CORRECTION
The last step of our pipeline repairs possible anatomical inconsistencies present in the
assembled phantoms. We automatically compute possible overlaps between the trans-
planted OARs (liver and spleen), and between the OARs and the spinal cord segmentation
of the receiver, which is available for these patients. To have an additional margin, we en-
large the spinal cord segmentation by 10% uniformly in all dimensions. Furthermore, we
assess if the transplanted OARs stick out of the segmentation of the body of the receiver.
If a larger segmentation of the body exists than the common region of interest between
T10 and S1 (used to assess body shape similarity to train ML models), that segmentation is
used here. Again, for robustness, the body segmentation is shrunk uniformly in all dimen-
sions, by 2.5%. The values chosen for spinal cord segmentation expansion (10%) and body
segmentation shrinking (2.5%) were found to deliver pleasing results by visual inspection.
We use a general purpose, derivative-free real-valued optimization algorithm to mod-
ify the transplanted OAR segmentations to eliminate the anatomical inconsistencies, with
default parameter settings [38, 39]. The algorithm is configured to act on both liver and
spleen at the same time, with modifications (i.e., optimization variables) that can expand
or shrink the segmentations (up to 1.25 and 0.25 of the original volume respectively), as
well as reposition their center of mass along LR, AP, IS (up to 10 mm for each direction).
We set anatomical inconsistencies as hard constraints to satisfy. Modifying the OARs to
satisfy the constraints deviates from the predictions of the ML models, and can therefore
result in less accurate phantoms. Therefore, we use an objective that conflicts with the
constraints, in that it attempts to minimize the effect of OAR modifications: for each OAR
being corrected, we use the same objective of the ML algorithms to capture the shape of
OARs, i.e., the sDSC (again with threshold of 5 mm), this time compared to its originally-
predicted shape and position. The final objective is given by summing the sDSC of both
liver and spleen, to be maximized.

7.2.5. COMPARING TO PHANTOM SELECTION APPROACHES

As we mentioned in the introduction, it is common practice in phantom-based dose re-
construction to select a phantom from a library according to some criteria. As CTs of
actual patients can act as phantoms, we consider several approaches to compare with our
pipeline: two methods that simulate state of the art human-designed criteria used to build
and select from phantom libraries, random selection, and one method to select a single CT
from our database based on ML predictions.

HUMAN-DESIGNED CRITERIA FOR PHANTOM SELECTION

The first methods we consider are the criterion used by the University of Texas MD Ander-
son Cancer Center [4, 5], which we refer to as Human Criterion 1 (HC1), and the criterion
used by the University of Florida/National Cancer Institute [6], which we refer to as Hu-
man Criterion 2 (HC2). We further consider random selection, to see if the other methods
are better than random.

The phantoms on which HC1 has previously been used are virtual cuboid shapes with
OARs represented as point clouds [4, 5]. Only the age of the patient is considered as a
feature to manipulate the phantom’s representativeness by scaling the cuboids according
to guidelines on population data. Furthermore, gender is used to exclude/include gender-

162 7. MACHINE LEARNING FOR AUTOMATIC PHANTOM CONSTRUCTION

specific OARs. To simulate HC1, i.e., age binning, we cluster our database into age bins,
by rounding the age to years. This results in 5 bins, with the following distribution: 10
patients of age 2, 18 of age 3, 11 of age 4, 15 of age 5, and 6 of age 6.

For a test patient p, we consider the other patients from the database that share the
same age bin with p. Then, for each metric of interest, we report the average error given
by comparing the metric value for p with the one for each other patient that has the same
age as p. For example, for the assessment of liver segmentation similarity of a patient p
that is 3 years old, we compute the sDSC between p and each other patient that is 3 years
old, and return the mean. By doing this, we simulate the fact that an average anatomy has
been built using the anatomical information of all patients (different from p) that have the
same age. We do this because phantoms are built to represent average anatomies.

The phantom library where HC2 is adopted comprises phantoms made by scaling seg-
mentations acquired from actual patient CT scans, thus they are quite realistic [6]. For
these phantoms, the features considered to build the library were gender, height, and
weight (age was not used). HC2 uses these features to select a representative phan-
tom. We simulate HC2 by clustering our database by gender, and by height and weight,
using 5 bins for each of the latter two. We use the bin method of the R package binr
(http://jabiru.github.io/binr) for this purpose, with default settings, which results in
5 bins of 12 patients each. Like for HC1, the error for a metric is given by comparing the
metric value for the test patient p with the metric values of each patient that shares the
same bin of p, and taking the average.

To assess whether there is any merit in using the human-design criteria, we also con-
sider a control method where the OAR positions and segmentations are retrieved uni-
formly at random from the set of patients, excluding the test patient p. Because of the
stochastic nature of this approach, each iteration is repeated 10 times, and mean results
are computed. In the following, we refer to this method as RAND.

As we propose a pipeline to build a phantom, it is interesting to assess how it fares
against a simpler approach, e.g., to use ML predictions to select a single, overall most
representative CT scan. This approach can be related to literature, where new ways to
identify which phantom to pick are studied [14, 40, 41].

While our phantom construction pipeline can predict the different 3D metrics inde-
pendently (position for each direction, sDSC for each OAR), for a single CT approach, an
overall score needs to be defined that expresses how representative a CT scan is. As dis-
cussed in Chapter 6, the design of such a score is not trivial. For example, a choice needs
to be made on whether 5 mm along the LR direction is more important or less important
than an sDSC loss of 5%. For the sake of simplicity, we propose a score measure that con-
siders only OAR positions, with equal importance. We choose to focus on OAR position
because we recently found it to be the metric that is most correlated with dose accuracy
for pediatric abdominal radiation treatment [42]. In detail, we take as best CT the one that
is closest to the predictions of the ML models in terms of squared position differences, i.e.,

Best CT = argmincr Z Z (Dl\% — DgT)Q , (7.2)
OEOARs DE {LR,AP]IS}

where D, and D&} are respectively the ML-predicted position and the actually available
position in the CT, of the OAR O, along direction D. We denote this approach with sCT.

http://jabiru.github.io/binr

7.3. RESULTS 163

Table 7.3: Mean training and test MAEs for the ML algorithms on the different OAR-
specific regression tasks. Standard deviation is reported in subscript. The MAE for OAR
segmentation retrieval is a percentage, the MAE for OAR position estimation is in mm.
Results in bold are best in that no other method delivers significantly better ones. The
letter “S” stands for segmentation retrieval.

Body Liver Spleen #Best
S} LR AP 1S S LR AP IS S|
LARS 16.63 008 7.89024 427014 7.10033 17.02007 3.99021 7.21013 7.71019 15.390.10 1
%D LASSO 16.64 0.08 7.87 036 4.24010 7.28019 17.02007 4.03010 7.24013 7.60013 15.380.09 0
5 RF 6.74033 836014 487008 874009 12.371.08 544007 7.25014 933014 7.210383 3
& GP-Trad 19.55006 6.97 0.11 3.93007 6.42010 1597003 4.01005 6.560.13 7.06015 14.08 0.04 2
GP-GOMEA 19.550.06 6.97 0.11 3.930.07 6.380.09 15.960.03 3.95005 6.47 012 7.050.15 14.07 0.04 6
LARS 23.70 1531 8.546.83 4.82457 9.10533 38.9017.84 5.18333 7.42806 8.52748 35.12 1451 3
.. LASSO 22.78 1534 8.87 691 4.86 449 8.98537 38.9819.11 5.02321 7.37810 8.687.47 36.8213.59 3
E RF 21.38 1459 8.366.55 4.77 462 794573 41121672 4.98348 7.838.00 8.807.74 33.98 1547 3
GP-Trad 27.08 16.67 7.27 648 4.68 430 7.23 58 40.611425 5.23340 8.35822 8.439.73 35.70 10.57 4
GP-GOMEA 26.77 16.75 7.26 6.48 4.78 436 7.89 6.03 39.00 1931 4.56 349 7.33 832 8.219.78 35.62 11.43 6

Note that sCT is essentially a hybrid between a human-designed criterion, represented
by Equation 7.2, and the use of ML, of which the predictions are used in the equation.
Lastly, since we found GP-GOMEA to be the overall best performing ML algorithm (shown
later in Sec. 7.3.1), we used the models found by GP-GOMEA to provide the predictions
for sCT.

7.2.6. EXPERIMENTAL SETUP

We divide experiments into two parts. In the first part, we compare the predictions of
the ML algorithms, in terms of MAE. In the second part, we compare the prediction of
the overall best performing ML algorithm with the phantom selection approaches, in a
similar way. In this second comparison, we include the effect of anatomical inconsistency
correction, to assess how much it compromises the accuracy of the predictions of the ML
models.

We run the ML algorithms on a machine with two Intel® Xeon® CPU E5-2699 v4 @
2.20 GHz. We assess statistical significance of the results with the Wilcoxon signed-rank
test, paired by train-test split (i.e., held-out patient) [43], and using the Bonferroni correc-
tion method to prevent type I errors [44]. In particular, since we perform pairwise tests
between the algorithms for each metric, we assess whether the test p-value is below a
confidence level of 0.05, further reduced by a Bonferroni correction coefficient, to contrast
false positive outcomes due to chance.

7.3. REsuLTs

7.3.1. COMPARISON OF THE MACHINE LEARNING ALGORITHMS

The mean (and standard deviation) training and test MAE obtained by the leave-one-out
cross-validation of the ML algorithms are reported in Table 7.3. If multiple results are not
found to be statistically significantly worse than the best result, they are considered to
be equally good. Note that for consistent use of the MAE, to be minimized, the task of
segmentation retrieval uses espsc.

164 7. MACHINE LEARNING FOR AUTOMATIC PHANTOM CONSTRUCTION

In terms of training performance, GP-GOMEA is overall the best algorithm, as it is
not significantly worse than any other for 6 metrics, i.e., OAR position for all directions.
RF follows with 3 top performances, in particular for the segmentation retrieval task (S)
of all OARs, where it achieves markedly lower errors than all other algorithms. LASSO
performs worst, with at least one algorithm significantly outperforming it in each metric.

Regarding the test performance on the patient excluded by the leave-one-out cross-
validation, similar to the observed training performance, GP-GOMEA obtains the most
significantly best results. GP-GOMEA also generalizes well on predicting which segmen-
tation to select for the liver, but it is inferior to RF when it comes to selecting the segmen-
tations for the body and the spleen. Indeed, for those two segmentations, RF performs
better than any other ML algorithm, although the errors at test time are much larger than
the ones found at training time. Note that this mismatch between training and test per-
formance can be explained by possible overfitting, as well as by the fact that, at test time,
error propagation can happen, since the model prediction is used to retrieve a candidate
segmentation from the ones available in the database (this holds for all ML algorithms, see
Sec. 7.2.3). GP-Trad scores an extra point compared to RF in terms of number of metrics
where it is not outperformed significantly. LARS and LASSO generalize quite well at test
time, as they are not inferior to the other ML algorithms on (the same) 3 metrics.

7.3.2. MACHINE LEARNING VS. PHANTOM SELECTION APPROACHES

Table 7.4 shows results of the ML algorithm found to perform overall best, GP-GOMEA,
and of the use of phantom selection approaches. The use of anatomical inconsistency
correction upon GP-GOMEA’s predictions is also included (named GP-Gaic), to make the
pipeline construct pseudo-realistic phantoms. Note that since the use of automatic incon-
sistency correction does not adapt the body segmentation, there is no difference between
GP-GOMEA and GP-Gpyc in terms of error for body segmentation retrieval.

Out of the nine metrics, the correction-less predictions obtained with GP-GOMEA are
generally best, with the only exceptions being the IS position and segmentation retrieval
for the spleen (by relatively small errors on average). The use of anatomical inconsistency
correction upon GP-GOMEA’s predictions, GP-Gayc, can change shape and position of
the OARs in both considerable (e.g., liver AP and liver S) and minor (e.g., liver LR, spleen
IS) magnitude. Figure 7.4 shows box plots of the corrections on all phantoms. For our
database, the anatomical inconsistency correction was triggered for 31/60 phantoms. The
liver is subject to more corrections than the spleen: it is typically shrunk more than the
spleen, and its position in AP is subject to large variations. This is not surprising, because
the liver is a considerably larger organ than the spleen, and it is more likely to violate the
anatomical consistency constraints we imposed.

Overall, correcting for inconsistencies comes at the cost of worsening the accuracy of
the ML predictions. GP-Gxyc has significantly best performance only on 3 metrics (body S,
spleen AP, and spleen S). For spleen AP and spleen S, performing inconsistency correction
leads to better test results compared to not applying corrections. However, the correction
algorithm solely optimizes for resolving the inconsistencies while attempting to retain
maximum prediction fidelity. Moreover, as sCT also obtains good results on spleen AP
and S, it can be argued that these metrics are not modeled well by GP-GOMEA to begin
with, and thus are more likely to be improved upon by chance.

7.3. RESULTS 165

Table 7.4: Mean test MAEs of the overall best performing ML algorithm GP-GOMEA, also
including anatomical inconsistency correction (GP-Guyc), and of the phantom selection
approaches. Standard deviation is reported in subscript. The MAE for OAR segmentation
retrieval is a percentage, the MAE for OAR position estimation is in mm. Results in bold are
best in that no other method delivers significantly better ones. Results underlined are best
if GP-GOMEA is excluded from the comparison. The letter “S” stands for segmentation
retrieval.

Body Liver Spleen #Best

S LR AP 1S S LR AP IS S} (Underlined)
GP-GOMEA 26.77 1675 7.26 648 4.78 436 7.896.03 39.00 1931 4.56349 7.33832 8.21978 35.62 11.43 7(-)
GP-Gaic 26.77 1675 7.91627 6.21542 8.07 6.06 42.202029 5.184.04 7.35830 8.549.67 34.10 16.97 4(7)

E HC1 37.541082 88869 4.83470 9.106.13 43.19835 5.65368 7.96775 9.78820 37.58 853 2(2)
E HC2 36.8318.97 9.84626 5.18474 9.20648 49.6782 554421 8.02769 13.9111.09 34.76 10.37 0(0)
RAND 45.10 13.14 11.57 619 7.114.01 12.38448 44.01896 7.70329 11.147.22 13.527.05 35.89 8.11 0(0)
sCT 37.13 2200 15.29 1002 7.44591 11.4592 42.721830 4.85343 7.40832 7.84937 32.0812.28 3(5)

Although the use of anatomical inconsistency correction after ML prediction typically
leads to larger errors, it remains a valuable approach compared to the other methods.
GP-Gyjc is overall best when the correction-less GP-GOMEA predictions are excluded
from the comparison. The human-designed criteria HC1 and HC2 perform overall worse
than GP-Gajc. Despite its simplicity, HC1 performs well for AP and S of the liver. This
may be because metrics related to the liver are harder to model by the ML algorithms,
and because the use of anatomical inconsistency correction compromises GP-GOMEA’s
prediction (particularly notable for liver AP). Despite the fact that HC2 is a somewhat
more involved criterion compared to HC1 (HC2 considers gender, height, and weight,
while HC1 considers only gender and age), it is never found to be competitive on any
metric. This could mean that weight and height are not good features when accounting
for similarity of internal anatomy in children. This result is in agreement with previous
work [42] where lack of correlations between dose reconstruction outcomes were found
with respect to height and weight.

Importantly, in some cases, HC1 and HC2 perform particularly bad. HC1 is particu-
larly inaccurate for spleen S compared to the other approaches, and HC2 leads to notably
large errors for spleen IS. In the latter case, HC2 is not found to be better than RAND.
Furthermore, both criteria perform poorly on body S (as well as sCT). Figure 7.5 shows
the reliability function of the considered approaches for body S. This function shows the
likelihood of committing errors of a certain magnitude (for segmentation retrieval, in per-
centage). A curve is better than the others if it is more on the left and if it decreases more
rapidly, since this means that the probability of any error magnitude is lower than the
ones of the other methods. The figure illustrates that the model learned by GP-GOMEA
achieves this behavior. For example, the probability of a GP-GOMEA’s model to predict
a body segmentation that has an g;psc > 20% (sDSC < 80%) with the actual body of
the patient is 60%. For HC2 and sCT, that magnitude of error happens more frequently,
i.e., in almost 80% of the cases. HC1 performs worse, since errors above 20% are almost
certain. On the other hand, rarely, (probabilities around 5%), HC2 and sCT can retrieve
body segmentations that have errors above 80%.

166 7. MACHINE LEARNING FOR AUTOMATIC PHANTOM CONSTRUCTION

10

PWNHORNWAMUON

-10

Change in volume (%)
&
Change in position (mm)

I
v

-15 1 o]

20 T : -8
& &
Q& ()
NS <°

3
o
/\S\
%

0
/\3\

>3
.\\\?’
WV

.\QQ'
Figure 7.4: Distribution of the effect of the anatomical inconsistency correction on all
phantoms (29/60 are not corrected). OAR shape (S) is corrected by volume enlargement
(if > 0%) or shrinking (if < 0%) uniformly along the three dimensions. Change of center
of mass for AP, LR, and IS is in mm. Phantoms where correction is not needed, contribute
to OAR shape modification with 0% (no enlargement nor shrinking), and to OAR position
change with 0 mm (no re-positioning). Boxes extend from the 25th to the 75th percentiles,
inner bar is the median, and whiskers extend from the 10th to the 90th percentiles.

Regarding sCT, the results indicate that this approach is generally worse than GP-Gayc,
but better than the human-designed criteria to predict metrics related to the spleen. sCT
performs particularly bad with respect to metrics regarding the liver (note in particular
liver LR). This is an interesting result because the CT selected by sCT weighs OAR posi-
tions equally for liver and spleen (see Eq. 7.2). We remark that sCT uses the ML models
(found by GP-GOMEA) to predict which single CT scan (and accompanying segmenta-
tions) to select by means of a hand-designed metric. Essentially, the results confirm our
hypothesis that designing a good score to select one CT is not trivial, and that there is
added value in constructing a new anatomy by assembling different components into one.

7.3.3. MODEL INTERPRETABILITY

As we mentioned before, the added value of utilizing the linear ML algorithms (LARS
and LASSO), and the GP algorithms (GP-Trad and GP-GOMEA) is that their models are
mathematical expressions which, if simple enough, can be interpreted. Interpretability can
play a crucial role in determining whether ML can be applied in some clinical settings. For
RF, the interpretation of the model is essentially impossible, as it returns an ensemble of
(500) decision trees. Similarly, this would not be possible with other popular techniques
like deep learning [45], and boosting algorithms [46].

We report all the best-at-test-time models found by GP-GOMEA at http://bit.1ly/
2Za4ESy. Here, we report two of those models, that are remarkably simple. For the pre-
diction of which body segmentation to retrieve, the model found most frequently in 10
repetitions is (assuming the target variable and the features are normalized):

0.420 x (ADAP + ADLR + SCIS) . (7.3)

http://bit.ly/2Za4ESy
http://bit.ly/2Za4ESy

7.3. RESULTS 167

1.0 GP-GOMEA (+ AIC)
HC1
08 HC2
: sCT
>
£
= 0.6
=
N
2
& 04

0.2

0.0

Test MAE

Figure 7.5: Reliability functions for prediction of segmentation retrieval (S) of the external
body segmentations. The y value is the probability of committing an error equal or greater
than the x value. The test MAE is in g5psc. Note that the anatomical inconsistency correc-
tion does not alter the body segmentation. GP-GOMEA leads to much better performance
compared to the other approaches.

Notably, this model is just a scaled sum of the abdominal diameters (ADAP and ADLR)
and of the spinal cord length (SCIS). Essentially, the model uses an equal contribution
(features are normalized) of features capturing information of size relative to the three
dimensions LR, AP, and IS, to predict which body segmentation to retrieve. This seems a
reliable, simple, and reasonable method to select a representative body segmentation.

A second model we showcase here is the one for the prediction of what spleen seg-
mentation to retrieve:

2.718%46E % 0.057 x SCIS. (7.4)

It is interesting to see that spleen shape is found to be related to age by an exponenti-
ation. This can be considered reasonable for our cohort, because the age of our patients is
between 2 to 6 years, where anatomical development is rapid. The length of the spinal cord
in IS further weighs the prediction. This feature seems also reasonable to consider, because
it captures information relative to the size of the abdomen in IS, and because the spleen is
located nearby the spinal cord. Albeit understandable, reasonable, and well-performing,
it is arguably unlikely for humans to invent models like these.

7.3.4. EXAMPLES OF AUTOMATICALLY CONSTRUCTED PHANTOMS
Following the quantitative results presented in the previous sections, we present some
qualitative ones: examples of constructed phantoms. These qualitative results comple-
ment the quantitative ones, as the positioning of OARs and their shapes can be visually
evaluated in the context of the receiver CT.

Figure 7.6 shows 5 phantoms generated with our pipeline, where GP-GOMEA was

168 7. MACHINE LEARNING FOR AUTOMATIC PHANTOM CONSTRUCTION

used to train all models. The images are created by using 3D Slicer [17] with module
SlicerRT [47]. These phantoms have been generated for a test patient that was excluded
from the ML training process. The predicted liver and spleen segmentations are high-
lighted in the receiver CT. Note that the segmentations of the external body and of the
spinal cord shown in the figure can extend beyond the commonly available region of in-
terest used for training (from T10 to S1). The receiver CT’s original liver and spleen can
also be identified (in part), as their not-overridden voxels are uniformly set to a specific
value (78 HUs as done for the phantoms of the University of Florida/National Cancer In-
stitute [6]) in the resection step. Overlaps of the transplanted OAR can still happen with
respect to other organs which are not considered in the training and correction process
(e.g., spleen overlapping with the kidneys). Note also the presence of some further remain-
ing limited anatomical inconsistencies, which are not detected by our algorithm (e.g., small
overlaps with bony anatomy).

Our current Python implementation takes about 5 minutes to generate a phantom if no
anatomical inconsistencies are found, with resection and transplant taking the most time
(we expect that parallelizing voxels’ HU value overwrites will markedly reduce running
time). If anatomical inconsistency correction needs to be performed, the whole pipeline
can take from a few minutes to a few hours, depending on how complex the correction is
for the optimizer, and on the hardware (the optimizer is highly parallelizable). As men-
tioned in Section 7.3.2, for our database the anatomical inconsistency correction triggered
on half the phantoms. However, in our opinion only roughly half of those cases (so 1/4 of
the total number of phantoms) had really noticeable anatomical inconsistencies, e.g., large
OAR overlaps, or OARs exceeding the body boundaries, that required corrections of large
magnitude. In the other cases, inconsistencies were more subtle (e.g., small OAR overlap),
and caused corrections of small magnitude.

Figure 7.7 shows two examples of anatomical inconsistency correction for cases where
inconsistency can be considered large, displaying phantoms pre- and post anatomical in-
consistency correction, one to correct the liver, and one to correct the spleen.

7.4. D1SCUSSION
We have presented a new take on phantom construction: a fully-automatic ML-based
pipeline that assembles a patient-specific phantom using a database of delineated 3D CT
scans, given the features of a patient. We performed experiments upon data of 60 pedi-
atric patients including imaging of the abdomen, and focused on tailoring the position
and shape of the liver and the spleen. Our experimental results strongly suggest that our
approach leads to much more representative phantoms than using established human-
designed criteria, and than using ML to predict a single best CT scan (according to a rea-
sonable notion of overall anatomical similarity). We compared several ML algorithms to
provide accurate models for the pipeline, and found GP-GOMEA to deliver overall best
performance and models that can also be interpreted, which may be helpful for researchers
and clinicians alike to trust their use in a clinical setting.

One clear limitation of our work is that we could only employ a small database of
60 patients. It can be reasonably expected that, by increasing the database size, both the
errors of the ML models, and the onset of large anatomical inconsistencies, will be reduced.
To this end, we are currently working on expanding the number of institutes contributing

7.4. DISCUSSION 169

Coronal Sagittal

Phantom 2 Phantom 1

Phantom 3

Phantom 4

Phantom 5

Figure 7.6: Examples of phantoms constructed with our pipeline. CT snapshots are chosen
to attempt to display both liver (in ocher) and spleen (in crimson red). Axial views are in
IS, coronal views and 3D views are in AP, sagittal views are in LR.

170 7. MACHINE LEARNING FOR AUTOMATIC PHANTOM CONSTRUCTION

Axial 3D

Liver correction

=)
o
o=
-
%]
[0
-
-
o
(9
=
()
[
—
=¥
w

Figure 7.7: Examples of anatomical inconsistency correction tackling OARs being partly
positioned outside of the body segmentation. Pre-correction liver is in ocher, post-
correction in orange; pre-correction spleen is in crimson red, post-correction is in salmon
pink. in Top: Axial (left) and 3D (right) view of large anatomical inconsistency involv-
ing the liver. Bottom: Axial (left) and 3D (right) view of large anatomical inconsistency
involving the spleen. Note that this axial view is different from the ones in other figures
as it is taken in superior-inferior direction (spleen displayed on the left), to be consistent
with the 3D visualization. The 3D view shows the back of the patient from head to toes.

7.4. DISCUSSION 171

Figure 7.8: Example of the limitations of anatomical inconsistency correction when ap-
plied to a coarse prediction of the body segmentation. Colors as in Fig. 7.7. Left: Actual
anatomy of the patient. Right: Proposed phantom, including corrections. The receiver CT
is quite smaller than the actual CT in IS dimension. The anatomical inconsistency correc-
tion shrunk and relocated the liver that was exceeding the body boundaries, and moved
the spleen away from the spinal cord. However, liver and spleen are placed too high with
respect to the underlying anatomy for it to be realistic.

to the database. Furthermore, we are working on extending the number of OARs to build
the phantom (e.g., heart, kidneys) and on extending the region of interest (e.g., abdomen
and thorax), for a cohort including older children (2 to 8 years).

The automatic anatomical inconsistency correction method may still warrant further
improvement. Although we could always resolve the constraint, often without excessively
compromising the predictions of the ML models, anatomical inconsistencies can still be
present. This is because the constraints are not comprehensive enough. For example,
Figure 7.8 shows a phantom for which our correction does not violate any of the specified
constraints (liver and spleen do not overlap with each other nor with the spinal cord, and
the organs do not exceed the body contour) yet the anatomy remains unrealistic because
the organs are placed too high with respect to the receiver CT. In fact, this is because it
is the prediction of the receiver CT that does not work well for this patient, as it retrieves
a body which is quite shorter (14 cm smaller SCIS, sDSC of 60%) compared to the actual
body of the patient. Fortunately, this is the only phantom out of 60 where such an evident
inconsistency was found and likely the probability of this happening only reduces with
a growing database size. Still, we intend to study how to further improve our correction
method by attempting to craft more constraints, as well as by including more OARs (e.g.,
the lungs), which then will need to not overlap with each other.

We remark that, in general, phantoms do not need to be anatomically realistic for
the purpose of dose reconstruction, especially when doing large dose reconstructions of
populations. For example, as aforementioned, the University of Texas/MD Anderson Can-
cer Center uses virtual cuboid phantoms uniformly made of water-equivalent material,
where internal organs are represented by point clouds [4, 5]. However, realistic surrogate
anatomies have arguably a larger chance of being considered familiar and trustworthy by

172 7. MACHINE LEARNING FOR AUTOMATIC PHANTOM CONSTRUCTION

clinicians, whenever e.g., an expert opinion is needed to go beyond simple statistical mea-
surements, and really visualize how the radiation dose distribution may impact healthy
tissues.

Another limitation of this study is that we used HC1 and HC2 to simulate the process
of phantom selection in state of the art phantom libraries on our own database of CT scans
and organ segmentations, rather than using phantom libraries. Indeed, the phantoms in
those libraries are built to follow statistics relative to large populations. We did investigate
the use of the library of the University of Florida/National Cancer Institute, which is of
public access, instead of our database, for HC2. We however found that selecting those
phantoms leads to no better results than using our database (the body segmentation was
not considered because a region of interest between T10 and S1 is not readily available
for those phantoms). In particular, it was found to be significantly better for half of the
3D metrics (LR and S for the liver, LR and IS for the spleen), but worse for the other half.
We also found the use of the actual library to be always significantly worse than using
GP-GOMEA, with exception for LR of the spleen, where it was equivalent. This may be
because the statistics on which those phantoms are based, which come from the United
States, are not accurately representing the patients of our cohort, who are Dutch.

In future work we will consider porting our approach to different types of regions of
interest (e.g., head for brain tumors) and cohorts (e.g., older patients). Ultimately, we are
interested in generating an entire body anatomy for any patient. We believe our approach
is very promising because once appropriate features are defined, no modifications in how
to train ML algorithms, nor in how the pipeline works, are needed to obtain new phantoms.
Moreover, since the availability of different OAR segmentations is currently limited to
what is available in the database, and since delineating new OARs requires specialization,
experience, and time, ways to use ML to deform an existing OAR template into a patient-
specific segmentation could be worth investigating [48].

Finally, for the aim of obtaining 3D dose distributions to relate to the onset of ad-
verse effects, it will be important to validate our pipeline in terms of dose reconstruction
accuracy, i.e., by first crafting a highly individualized phantom, and then simulating the
radiation treatment plan using such a phantom. This could be performed similarly to our
validation analysis, i.e., with cross-validation on recent patients. Dose metrics should be
computed on the actual CT, and then compared with the dose metrics computed on the
phantom.

7.5. CONCLUSION

We have presented a new take on phantom construction that leverages machine learning
to assemble existing 3D patient imaging into a new anatomy. Contrary to existing ap-
proaches, the pipeline we propose requires no manual intervention except for the initial
effort of assembling a database of 3D patient imaging (CTs, segmentations, and patient fea-
tures), and the measurement of few features of the historical patients on their radiographs.
With our approach the problem of finding a globally good metric to represent anatomical
categorization, typically faced by phantom libraries, is shifted to train machine learning
models for parts of phantoms based on specific 3D metrics. Our experimental results on
a database of 60 pediatric cancer patients, focused on liver and spleen, showed that this
approach can lead to significantly better anatomical resemblance compared to the use of

7.5. CONCLUSION 173

phantom building criteria that are currently common practice. Positive results were still
found after correcting the phantoms for possible anatomical inconsistencies through op-
timization. Regarding the machine learning algorithm used in the pipeline, we found that
GP-GOMEA, a state of the art genetic programming approach, can deliver models that are
both accurate and readable. This aspect can be of added value as such models increase the
chances of clinicians understanding them better and trusting their use.

ACKNOWLEDGMENTS

The authors acknowledge the Kinderen Kankervrij foundation for financial support (project
#187), and the Maurits and Anna de Kock foundation for financing a high-performance
computing system. We thank dr. Brian V. Balgobind, dr. Irma W.E.M. van Dijk, and dr. Jan
Wiersma from the department of radiation oncology of Amsterdam UMC, location AMC,
Amsterdam, the Netherlands, and dr. Geert O.R. Janssens and dr. Petra Kroon from the
department of radiation oncology of UMC Utrecht Cancer Center, Utrecht, the Nether-
lands, for providing help in the collection and/or in the assessment of the imaging data
used in this work. The authors are grateful to Elekta for providing ADMIRE research soft-
ware for automatic organ segmentation. We further acknowledge dr. Choonsik Lee from
the National Cancer Institute, Division of Cancer Epidemiology & Genetics, Rockville,
Maryland, U.S.A., for details on the phantom library of the University of Florida/National
Cancer Institute.

174 REFERENCES
REFERENCES
[1] C.Lee,J. W. Jung, C. Pelletier, A. Pyakuryal, S. Lamart, J. O. Kim, and C. Lee, Recon-

(2]

(3]

(4]

(8]

(9]

[10]

struction of organ dose for external radiotherapy patients in retrospective epidemiologic
studies, Physics in Medicine & Biology 60, 2309 (2015).

X. G.Xu, An exponential growth of computational phantom research in radiation protec-
tion, imaging, and radiotherapy: a review of the fifty-year history, Physics in Medicine
& Biology 59, R233 (2014).

J. V. Bezin, R. S. Allodji,].-P. Mége, G. Beldjoudi, F. Saunier, J. Chavaudra, E. Deutsch,
F. de Vathaire, V. Bernier, C. Carrie, et al., A review of uncertainties in radiotherapy dose
reconstruction and their impacts on dose—response relationships, Journal of Radiological
Protection 37, R1 (2017).

M. Stovall, S. S. Donaldson, R. E. Weathers, L. L. Robison, A. C. Mertens, J. F. Winther,
J. H. Olsen, and J. D. Boice Jr, Genetic effects of radiotherapy for childhood cancer:
Gonadal dose reconstruction, International Journal of Radiation Oncology - Biology -
Physics 60, 542 (2004).

R. M. Howell, S. A. Smith, R. E. Weathers, S. F. Kry, and M. Stovall, Adaptations to a
generalized radiation dose reconstruction methodology for use in epidemiologic studies:
An update from the MD Anderson late effect group, Radiation Research 192, 169 (2019).

A. M. Geyer, S. O'Relilly, C. Lee, D. J. Long, and W. E. Bolch, The UF/NCI family of
hybrid computational phantoms representing the current US population of male and fe-
male children, adolescents, and adults-application to CT dosimetry, Physics in Medicine
& Biology 59, 5225 (2014).

I. Alziar, G. Bonniaud, D. Couanet, J. B. Ruaud, C. Vicente, G. Giordana, O. Ben-
Harrath,]J. C. Diaz, P. Grandjean, H. Kafrouni, et al., Individual radiation therapy
patient whole-body phantoms for peripheral dose evaluations: method and specific soft-
ware, Physics in Medicine & Biology 54, N375 (2009).

T. Xie, N. Kuster, and H. Zaidi, Computational hybrid anthropometric paediatric phan-
tom library for internal radiation dosimetry, Physics in Medicine & Biology 62, 3263
(2017).

J. Valentin, Basic anatomical and physiological data for use in radiological protection:
reference values: ICRP Publication 89, Annals of the ICRP 32, 1 (2002).

R. J. Kuczmarski, K. M. Flegal, S. M. Campbell, and C. L. Johnson, Increasing preva-
lence of overweight among us adults: the national health and nutrition examination
surveys, 1960 to 1991, JAMA 272, 205 (1994).

G. L. de la Grandmaison, I. Clairand, and M. Durigon, Organ weight in 684 adult
autopsies: new tables for a Caucasoid population, Forensic Science International 119,
149 (2001).

REFERENCES 175

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(23]

[24]

Z. Wang, I. W. E. M. van Dijk, J. Wiersma, C. M. Ronckers, F. Oldenburger, B. V.
Balgobind, P. A. N. Bosman, A. Bel, and T. Alderliesten, Are age and gender suit-
able matching criteria in organ dose reconstruction using surrogate childhood cancer
patients’ CT scans? Medical Physics 45, 2628 (2018).

Z.0Obermeyer and E. J. Emanuel, Predicting the future—big data, machine learning, and
clinical medicine, New England Journal of Medicine 375, 1216 (2016).

M. Virgolin, I. W. E. M. van Dijk, J. Wiersma, C. M. Ronckers, C. Witteveen, A. Bel,
T. Alderliesten, and P. A. N. Bosman, On the feasibility of automatically selecting
similar patients in highly individualized radiotherapy dose reconstruction for historic
data of pediatric cancer survivors, Medical Physics 45, 1504 (2018).

N. Breslow, A. Olshan, J. B. Beckwith, and D. M. Green, Epidemiology of Wilms tumor,
Medical and Pediatric Oncology 21, 172 (1993).

I. W. E. M. van Dijk, F. Oldenburger, M. C. Cardous-Ubbink, M. M. Geenen, R. C.
Heinen, J. de Kraker, F. E. van Leeuwen, H.]J. van der Pal, H. N. Caron, C. C. Koning,
et al., Evaluation of late adverse events in long-term Wilms’ tumor survivors, Interna-
tional Journal of Radiation Oncology - Biology - Physics 78, 370 (2010).

A.Fedorov, R. Beichel, J. Kalpathy-Cramer, J. Finet, J. Fillion-Robin, S. Pujol, C. Bauer,
D. Jennings, F. Fennessy, M. Sonka, et al., 3D Slicer as an image computing platform
for the quantitative imaging network, Magnetic Resonance Imaging 30, 1323 (2012).

S. C. Huijskens, I. W. E. M. van Dijk, J. Visser, C. R. N. Rasch, T. Alderliesten, and
A. Bel, Magnitude and variability of respiratory-induced diaphragm motion in children
during image-guided radiotherapy, Radiotherapy and Oncology 123, 263 (2017).

M. Xi, M. Z. Liu, Q. Q. Li, L. Cai, L. Zhang, and Y. H. Hu, Analysis of abdominal organ
motion using four-dimensional CT, Chinese Journal of Cancer 28, 989 (2009).

A. Jain, K. Nandakumar, and A. Ross, Score normalization in multimodal biometric
systems, Pattern Recognition 38, 2270 (2005).

L. R. Dice, Measures of the amount of ecologic association between species, Ecology 26,
297 (1945).

K. H. Zou, S. K. Warfield, A. Bharatha, C. M. C. Tempany, M. R. Kaus, S. J. Haker,
W. M. WellsIII, F. A. Jolesz, and R. Kikinis, Statistical validation of image segmentation
quality based on a spatial overlap index, Academic Radiology 11, 178 (2004).

S. Nikolov, S. Blackwell, R. Mendes, J. De Fauw, C. Meyer, C. Hughes, H. Askham,
B. Romera-Paredes, A. Karthikesalingam, C. Chu, et al., Deep learning to achieve clin-
ically applicable segmentation of head and neck anatomy for radiotherapy, (2018),
arXiv preprint arXiv:1809.04430.

B. Efron, T. Hastie, L. Johnstone, and R. Tibshirani, Least angle regression, Annals of
Statistics 32, 407 (2004).

176

REFERENCES

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

R. Tibshirani, Regression shrinkage and selection via the Lasso, Journal of the Royal
Statistical Society: Series B (Methodological) 58, 267 (1996).

L. Breiman, Random forests, Machine Learning 45, 5 (2001).

J. R. Koza, Genetic programming II: automatic discovery of reusable subprograms, Cam-
bridge, MA, USA (1994).

R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza, A Field Guide to Genetic Pro-
gramming (Lulu Enterprises, UK Ltd, 2008).

M. Virgolin, T. Alderliesten, C. Witteveen, and P. A. N. Bosman, Scalable genetic
programming by gene-pool optimal mixing and input-space entropy-based building-
block learning, in Genetic and Evolutionary Computation Conference (GECCO) 2017
(ACM, New York, NY, USA, 2017) pp. 1041-1048.

M. Virgolin, T. Alderliesten, C. Witteveen, and P. A. N. Bosman, Improv-
ing model-based genetic programming for symbolic regression of small expressions,
(2019), accepted for publication in Evolutionary Computation. ArXiv preprint
arXiv:1904.02050.

R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi, A
survey of methods for explaining black box models, ACM Computing Surveys (CSUR)
51, 93:1 (2018).

R Core Team, R: A language and environment for statistical computing, R Foundation
for Statistical Computing (2013).

J. Friedman, T. Hastie, and R. Tibshirani, GLMNET: Lasso and elastic-net regularized
generalized linear models, R package version 1 (2009).

M. N. Wright and A. Ziegler, Ranger: a fast implementation of random forests for high
dimensional data in C++ and R, (2015), arXiv preprint arXiv:1508.04409.

P. Probst and A.-L. Boulesteix, To tune or not to tune the number of trees in random
forest, Journal of Machine Learning Research 18, 6673 (2017).

J.Ni, R. H. Drieberg, and P. I. Rockett, The use of an analytic quotient operator in ge-
netic programming, IEEE Transactions on Evolutionary Computation 17, 146 (2013).

M. Kuhn, The caret package, Journal of Statistical Software 28, 1 (2008).

P. A.N.Bosman, J. Grahl, and D. Thierens, Enhancing the performance of maximum-—
likelihood Gaussian EDAs using anticipated mean shift, in International Conference on
Parallel Problem Solving from Nature (PPSN) (Springer, 2008) pp. 133-143.

P. A.N. Bosman, J. Grahl, and D. Thierens, Benchmarking parameter-free AMaLGaM
on functions with and without noise, Evolutionary Computation 21, 445 (2013).

REFERENCES 177

[40]

[41]

[42]

[43]

(44]

[45]

[46]

(47]

(48]

A.N.I Badouna, C. Veres, N. Haddy, F. Bidault, D. Lefkopoulos, J. Chavaudra, A. Bri-
dier, F. de Vathaire, and I. Diallo, Total heart volume as a function of clinical and an-
thropometric parameters in a population of external beam radiation therapy patients,
Physics in Medicine & Biology 57, 473 (2012).

E. J. Stepusin, D. J. Long, E. L. Marshall, and W. E. Bolch, Assessment of different
patient-to-phantom matching criteria applied in Monte Carlo—based computed tomog-
raphy dosimetry, Medical Physics 44, 5498 (2017).

Z. Wang, B. V. Balgobind, M. Virgolin, I. W. E. M. van Djjk, J. Wiersma, C. M. Ron-
ckers, P. A. N. Bosman, A. Bel, and T. Alderliesten, How do patient characteristics
and anatomical features correlate to accuracy of organ dose reconstruction for Wilms’
tumor radiation treatment plans when using a surrogate patient’s CT scan? Journal of
Radiological Protection 39, 598 (2019).

J. Demsar, Statistical comparisons of classifiers over multiple data sets, Journal of Ma-
chine Learning Research 7, 1 (2006).

J. M. Bland and D. G. Altman, Multiple significance tests: the Bonferroni method, BMJ
310, 170 (1995).

Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature 521, 436 (2015).

J. H. Friedman, Greedy function approximation: a gradient boosting machine, Annals
of Statistics 29, 1189 (2001).

C. Pinter, A. Lasso, A. Wang, D. Jaffray, and G. Fichtinger, SlicerRT: radiation therapy
research toolkit for 3D Slicer, Medical Physics 39, 6332 (2012).

A. Ng, T. Nguyen, J. L. Moseley, D. C. Hodgson, M. B. Sharpe, and K. K. Brock, Re-
construction of 3D lung models from 2D planning data sets for Hodgkin’s lymphoma
patients using combined deformable image registration and navigator channels, Medi-
cal Physics 37, 1017 (2010).

SURROGATE-FREE MACHINE
LEARNING-BASED ORGAN DOSE
RECONSTRUCTION

To study radiotherapy-related adverse effects, detailed dose information (3D distribution) is
needed for accurate dose-effect modeling. For childhood cancer survivors who underwent ra-
diotherapy in the pre-CT era, only 2D radiographs were acquired, thus 3D dose distributions
must be reconstructed from limited information. State-of-the-art methods achieve this by
using 3D surrogate anatomies. These can however lack personalization and lead to coarse re-
constructions. We present and validate a surrogate-free dose reconstruction method based on
Machine Learning (ML). Abdominal planning CTs (n = 142) of recently-treated childhood
cancer patients were gathered, their organs at risk were segmented, and 300 artificial Wilms’
tumor plans were sampled automatically. Each artificial plan was automatically emulated
on the 142 CTs, resulting in 42,600 3D dose distributions from which dose-volume metrics
were derived. Anatomical features were extracted from digitally reconstructed radiographs
simulated from the CTs to resemble historical radiographs. Further, patient and radiotherapy
plan features typically available from historical treatment records were collected. An evolu-
tionary ML algorithm was then used to link features to dose-volume metrics. Besides 5-fold
cross validation, a further evaluation was done on an independent dataset of five CTs each
associated with two clinical plans. Cross-validation resulted in mean absolute errors <0.6 Gy
for organs completely inside or outside the field. For organs positioned at the edge of the field,
mean absolute errors <1.7 Gy for Dyean, <2.9 Gy for Dy, and <13% for Vsgy, and Viggy, were
obtained, without systematic bias. Similar results were found for the independent dataset.
To conclude, we proposed a novel organ dose reconstruction method that uses ML models to
predict dose-volume metric values given patient and plan features. Our approach is not only
accurate, but also efficient, as the setup of a surrogate is no longer needed.

The contents of this chapter are based on the following preprint: M. Virgolin, Z. Wang (shared first co-author), B.V. Balgobind,
IW.E.M. van Dijk, J. Wiersma, P.S. Kroon, G.O. Janssens, M. van Herk, D.C. Hodgson, L. Zadravec Zaletel, CR.N. Rasch, A. Bel,
P.AN. Bosman, and T. Alderliesten. Surrogate-free machine learning-based organ dose reconstruction for pediatric abdominal
radiotherapy. Submitted. Preprint arXiv:2002.07161, arXiv (2020).

179

https://arxiv.org/abs/2002.07161

180 8. SURROGATE-FREE MACHINE LEARNING-BASED ORGAN DOSE RECONSTRUCTION

8.1. INTRODUCTION

Patients undergoing radiotherapy (RT) are prone to develop radiation-related Adverse Ef-
fects (AEs) [1-3]. To improve the design of future multi-modality treatments, clinicians
are interested in better understanding the relationship between radiation dose and onset
of AEs. Modern research efforts in this direction delve into dosimetric details, employ-
ing dose distribution metrics to a specific organ (or sub-volume) as explanatory variables.
Such rich information is obtained by simulating the RT plan on 3D imaging of the patient
(i.e., CT scans) with organ segmentations in a Treatment Planning System (TPS) [4-6].

Unfortunately, when so-called late AEs (onset can be decades after RT) need to be
studied, it is not always possible to straightforwardly obtain detailed information on dose
distributions [1]. For patients who underwent RT before the use of planning CTs became
commonplace (in the following, historical patients), 2D radiographs were used for treat-
ment planning (e.g., this was the case until the 1990s in the Netherlands [2]), meaning no
3D anatomical imaging is available. Consequently, no simulations can be performed in a
TPS to estimate 3D dose distributions for these patients [7-9]. The information available
for historical patients normally consists of what was reported in treatment records, e.g.,
features of the patient such as age and gender, and features of the plan such as prescribed
dose, geometry of the plan, and the use of blocks. Additionally, 2D radiographs can be
available, from which information can be gathered on the internal anatomy (mainly bony
anatomy, as internal organs are normally not clearly distinguishable), and on the plan
configuration with respect to the patient’s anatomy [2, 10].

To improve the understanding of late AEs, recent research is striving to develop in-
creasingly accurate dose reconstruction methods, i.e., methods to estimate the 3D dose dis-
tribution received by historical patients [7, 9, 11, 12]. State-of-the-art approaches employ
phantoms, i.e., 3D surrogates of the human anatomy upon which the RT plan can be sim-
ulated, to compute the dose distribution. Phantoms exist in different forms: physical or
virtual, made by simple geometrical shapes or by adopting and morphing actual CT scans
and organ segmentations [7, 11, 12]. Generally, phantoms are built to represent average
anatomies, for categories of patients (e.g., for a certain age range), and are collected into
so-called phantom libraries [13-15]. Whenever dose reconstruction for a historical patient
is needed, the phantom that represents the category that the patient belongs to is retrieved
from the library and used as surrogate for simulation of the RT plan.

As the largest source of error related to phantom-based dose reconstruction comes
from the mismatch between the anatomy of the phantom and the true anatomy of the
patient [16], it is important to define the best way to match phantoms to patients. This
issue is still under research, and different approaches employ different heuristic matching
criteria that are normally hand-crafted and based upon statistics and guidelines drawn
from large population studies (e.g., ICRP89, NANTHES) [13-15, 17]. However, the use of
heuristic matching criteria has been hypothesized to be too simplistic to capture the high
variability of internal human anatomy [11, 15, 18-20]. For example, a popular phantom-
based dose reconstruction approach uses solely age and gender for surrogate matching
[21]. Our group’s recent work focusing on Wilms’ tumor (the most common type of kid-
ney cancer for childhood cancer patients) irradiation for pediatric patients showed that
utilizing surrogate CTs using age- and gender-based matching can lead to poor dose re-
construction quality in individual cases [22].

8.2. MATERIALS ¢ METHODS 181

To improve the resemblance of a surrogate phantom, there have been efforts to replace
the normally hand-crafted heuristic matching criteria with data-driven decisions. For ex-
ample, statistical models inferred from CTs and 3D organ segmentations of adult patients
have been used to drive a deformable image registration procedure that adapted 3D or-
gan segmentations to the 2D anatomy of a specific patient, given features of the latter as
measurable from 2D radiographs [9, 23]. Using a state-of-the-art Machine Learning (ML)
algorithm, it has been shown that features typically available for historical patients treated
for Wilms’ tumor can be linked to different 3D anatomy similarity metrics based on organ
segmentations and CTs (Chapter 6). Our group recently proposed an automatic pipeline
that uses ML to steer the assembling of a new original anatomy based on 3D CTs and organ
segmentations of multiple patients using the features of a historical patient (Chapter 7).
However, it is important to realize that maximizing some form of overall anatomical re-
semblance is difficult. Moreover, from the standpoint of optimizing dose reconstruction
accuracy, it can be considered sub-optimal for RT dosimetry purposes. This is because in
RT dosimetry, what part of anatomy is most meaningful largely depends on the particular
RT plan [20].

To the best of our knowledge, although both patient anatomy and plan geometry play
a key role in determining dose-volume metrics for Organs At Risk (OARs), existing dose
reconstruction approaches focused solely on patient anatomy information, to obtain a
representative surrogate. Plan information is used only later, to calculate the dose on the
surrogate. The purpose of this chapter is to develop and validate an ML approach to predict
dose-volume metrics for OARs based on patient anatomy and plan geometry information.
Specifically, we propose to use ML to directly learn what dose-volume metrics for an OAR
are likely given information on the patient and on the plan, without the need to select
or craft any surrogate anatomy. We argue that this is a sensible choice because ML can
directly be trained upon what ultimately matters, i.e., dose reconstruction accuracy. In this
chapter we present our ML-based organ dose reconstruction approach and its validation,
that was performed on a relatively large dataset of artificial plans, as well as on a smaller
dataset of clinical plans.

8.2. MATERIALS & METHODS

We considered pediatric flank RT, and in particular RT for Wilms’ tumor, as an application
for our dose reconstruction method, in continuity with our previous work. The choice to
focus on pediatrics is because children are the most prone to develop late AEs [3], and are
typically underrepresented in existing phantom libraries [11]. Moreover, more than 85%
of pediatric patients survives Wilms’ tumor five years or longer, but considerable chances
of the onset of late AEs remain [2].

8.2.1. PATIENT DATA

To be able to create a ground-truth to learn dose-volume metrics from, CT scans were
needed. Hence, a total of 142 pediatric planning CTs were collected by involving the
following institutes (number of CTs in brackets): Amsterdam University Medical Centers /
Emma Children’s Hospital (n = 38), University Medical Center Utrecht / Princess Maxima
Center for Pediatric Oncology (n = 42), The Christie NHS Foundation Trust (n = 33),

182 8. SURROGATE-FREE MACHINE LEARNING-BASED ORGAN DOSE RECONSTRUCTION

Princess Margaret Cancer Centre (n = 18), and Institute of Oncology Ljubljana (n = 11).
Five further CTs were collected from the Amsterdam University Medical Centers and kept
aside to be used exclusively for an additional validation step (Sec. 8.2.5).

The inclusion criteria were: patient age at scan acquisition between 1 to 8 years; the CT
field of view including a common abdominal region from the tenth thoracic (T10) vertebral
body to the first sacral (S1) vertebral body; presence of five lumbar vertebrae (rare cases
of patients with six exist); patient scanned in supine position; quality of CT sufficient to
perform organ segmentations. The patients underwent RT between 2002 and 2018, mostly
but not exclusively for abdominal cancers. The median CT slice resolution was 0.94 x 0.94
mm, the median slice thickness was 3 mm.

As we focused on Wilms’ tumor treatment, four OARs were considered: the liver, the
spleen, the contralateral kidney (left or right, depending on the side of the tumor), and the
spinal cord (between T10 and S1). To provide accurate and consistent OAR segmentations,
we carefully prepared the OAR segmentations in all CTs (n = 142 + 5): for 60 CTs, pre-
existing clinical segmentations of OARs were manually improved and approved (LW.E.M.
van Dijk, checked by B.V. Balgobind only for difficult cases). To aid the manual segmen-
tation of the OARs for the remaining CTs (n=387), the software ADMIRE (research version
2.3.0) from Elekta (Elekta AB, Stockholm, Sweden) was used to generate multi-atlas based
automatic segmentations using the previous 60 CTs as atlas. These segmentations were
further manually checked slice-by-slice and possibly adapted (Z. Wang, LW.E.M. van Dijk),
and finally checked and approved (LW.E.M. van Dijk, checked by B.V. Balgobind only for
difficult cases). Some patients did not have both kidneys intact, due to nephrectomy prior
to RT. The number of CTs that had only a complete right kidney, only a complete left
kidney, and two complete kidneys were 36, 40, and 71, respectively.

8.2.2. AUTOMATIC GENERATION OF ARTIFICIAL WILMS TUMOR PLANS

A method to automatically generate historical-like abdominal flank irradiation plans (i.e.,
artificial plans) for Wilms’ tumor treatment based on information visible on 2D radio-
graphs was created, in order to obtain large plan variations.

Figures 8.1(a) and 8.1(c) illustrate examples of actual historical plans on respective
historical radiographs. As can be observed from the examples, a typical historical flank
irradiation field is a rectangular area, with possible shielding blocks, that is located on the
right or on the left flank. Flank irradiation is done by beams from anterior-posterior (AP)
and posterior-anterior (PA) direction. Along right-left (RL), one field border is located
at the edge of the patient’s body contour, while the other is located as to include the
vertebral column [24]. In some cases, blocks were placed to protect OARs from irradiation
(Fig. 8.1(c)). In historical plans the isocenter was positioned in the center of the treatment
field that is projected on the coronal plane (Fig. 8.1) and at the middle of the patient’s AP
abdominal diameter.

To generate artificial plans, two reference digitally reconstructed radiographs (DRRs)
were considered, randomly selected from the data. One DRR was derived from a CT of a
5-year old female patient without nephrectomy (ref 1 in Fig. 8.2), and the other was de-
rived from a CT of a 4-year old female patient with nephrectomy of the left kidney (ref 2
in Fig. 8.2). Upon these two DRRs, boundaries defining plan variability were identified by
an experienced pediatric radiation oncologist (B. V. Balgobind), to ensure that generated

8.2. MATERIALS ¢ METHODS 183

plans would appear to be reasonable according to historical clinical guidelines. Note that
historical clinical guidelines are slightly different from current ones (e.g., currently the
iliac crests should be safeguarded, unlike in Fig. 8.1(c)). Figure 8.2 shows two examples
of landmark locations identifying possible plan variations, on the two reference DRRs.
Specifically, given the boundaries of possible isocenter positions and field borders, plans
with a rectangular field were generated by sampling uniformly within those boundaries.
For each plan generated, an additional version of that plan including one block was gen-
erated as well. A block was simulated as the area in the upper lateral corner enclosed by
the border of the rectangular field and a line crossing two randomly sampled endpoints.
The endpoints were sampled from two regions roughly covering the start and end points
of rib 9 and rib 12 on the DRRs (regions indicated by the green boxes in Fig. 8.2). This
way, a sampled block covered part of the liver (in right-sided plans) or part of the spleen
(in left-sided plans). All plans consist of two opposing and symmetrical beams in AP-PA
directions irradiating one side of the abdominal flank. Figures 8.1(b) and 8.1(d) illustrate
two examples of sampled artificial plans (without or with a block) on respective DRRs.

A total of 300 artificial plans were generated automatically, of which 150 without a
block, and 150 with a block. The random sampling of the plan side led to 142 left-sided
plans and 158 right-sided plans (roughly half-half). The same set of plan features used
in our previous work was considered to generate plans in DICOM RTPLAN format (e.g.,
gantry and collimator angles, isocenter location, field sizes) [25].

8.2.3. GENERATION OF THE DATASET FOR ML

Figure 8.3 summarizes the pipeline used to generate the dataset for ML. Firstly, we em-
ulated each of the 300 artificial plans on each of the 142 CT scans by the automatic plan
emulation method proposed in our previous work [25], leading to a total of 42,600 em-
ulations. The method automatically transfers a plan prepared on one CT to another CT
(with quality comparable to human experts), using landmark detection upon the respective
DRRs. Secondly, for each of the 42,600 plan emulations, dose-volume metrics of interest
(see Sec. 8.2.3) were collected for the different OARs by use of our automatic dose com-
putation pipeline [25]. The pipeline used the collapsed cone dose calculation algorithm
of Oncentra TPS (version 4.3, Elekta AB, Stockhom, Sweden). Thirdly, features that are
plausible to be available for typical historical cases were collected from the anatomy of
the included CTs as visible in the respective DRRs, from the artificial plans, and from the
relationship between anatomy and plan geometry.

RESPONSE VARIABLES: DOSE-VOLUME METRICS

To select dose-volume metrics to use as response variables for ML, we considered met-
rics typically used to validate state-of-the-art dose reconstruction approaches [9, 12], and
typically found to be of clinical relevance in studies of AEs in adults (e.g., QUANTEC)
[6, 10, 26]. Studies on dose-volume response relationships for pediatric patients (so-called
PENTEC studies [27]) are currently limited.

This reasoning led us to consider mean organ dose (Dmean), two levels of percentage
of OAR volume receiving at least X Gy (V'xgy), and the minimum dose received by the
maximally exposed 2 cubic centimeters of an OAR (D), the latter being similar but more
robust than the maximum dose to a single point. Typically, V'sgy and V 3y are considered.

184 8. SURROGATE-FREE MACHINE LEARNING-BASED ORGAN DOSE RECONSTRUCTION

- A
S Symmetric .
Jaw pairs |

Figure 8.1: (a) An actual hand-drawn plan on a historical radiograph with a rectangular
field (indicated by white corners). (b) An artificial plan with a rectangular field (in white
lines) plotted on the DRR of a recent patient. (c) An actual hand-drawn plan on a historical
radiograph with a rectangular field (in white bars) and an additional block (outlined by
dashed yellow lines) to spare part of the liver. (d) An artificial plan plotted on the DRR of
a recent patient with a rectangular field (in white bars) and an additional block (obtained
by multi-leaf collimators, outlined by yellow lines) to spare part of the liver. For each plot,
the isocenter is indicated by a red dot in the middle of the field.

8.2. MATERIALS ¢ METHODS 185

Figure 8.2: Examples of landmark locations to specify geometry variability of two types of
artificial plans (left-sided plans in the left figure and right-sided plans in the right figure).
Ref 1 is the DRR derived from the reference CT of a 5-year-old female patient and ref 2
is the DRR derived from the reference CT of a 4-year-old female patient. The box around
the isocenter (IC) specifies the range of possible isocenter positions. The vertical position
of T1/T2 and of B1/B2 specify the lowest/highest position of the upper and lower border
of the field, respectively. The horizontal positions of R1/R2 and L1/L2 specify the right-
most/leftmost position of the right and left border of the field, respectively. The isocenter
and artificial field border positions were sampled uniformly at random within the specified
ranges. The green boxes indicate the regions where two endpoints of a line representing a
block border can be sampled. This line, together with the upper and left/right field borders,
encloses the block.

186

8. SURROGATE-FREE MACHINE LEARNING-BASED ORGAN DOSE RECONSTRUCTION

142 recent CTs

DRR
2.6
£

Height 98 cm
Weight 23 kg
Tumor site

left kidney

Patient clinical
record

Feature
extraction +
Automatic plan
emulation + Dose
calculation

Explanatory variables:

Features of Patient +
Plan + Relationship of
patient anatomy
with plan geometry

300 artificial plans

L

Response variables:

Dose-volume metrics of
each plan+CT (patient)
combination

7=\
RS

e

Machine Learning

]

Figure 8.3: Pipeline for data generation. Artificial plans are sampled automatically. The
explanatory and response variables are used as input to train the ML model. The ex-
planatory variables include features of the plan (e.g., isocenter location, field size), patient
features (e.g., age, nephrectomy), and features on the relationship between the anatomy
of the patient and the geometry of the plan (e.g., signed distance between the 2°¢ lumbar
vertebra and the plan isocenter). The response variables are dose-volume metrics for each

OAR.

8.2. MATERIALS ¢ METHODS 187

However, instead of V' 3y, we decided to use V1gy in this work since our plans have a
prescribed dose of 14.4 Gy (thus V'3, was always 0 for the OARs). Regarding Dy, we
decided to include this metric because peak dose values to a small OAR portion may be
relevant to explain late AEs related to OARs that work in a serial fashion (e.g., the spinal
cord).

EXPLANATORY VARIABLES: FEATURES OF PATIENTS AND PLANS

To assess what information can be available for historical patients, we considered the
Dutch records of the Emma Children’s Hospital/Academic Medical Center childhood can-
cer survivor cohort, who underwent RT between 1966 and 1996 [2]. For this cohort, along
with historical patient records and treatment plan details, 2D coronal radiographs were
consistently taken, hence providing partial information on the anatomy.

The complete set of features considered in this work is reported in Table 8.1. Note the
absence of height and weight (which are used by some phantom-based methods [15]). For
12% of the patients, height and/or weight data were missing and preliminary experiments
using automatic imputation methods showed no benefit in including them.

For the features related to anatomical geometry, anatomical landmarks from DRRs
were detected automatically using the landmark detection method in our previous work
[25]. Note that the landmarks concerned only bony anatomy because other internal anatomy
tissues are not reliably visible in historical radiographs. Importantly, we normalized fea-
tures related to measurements of anatomy and anatomy-plan geometry configuration (e.g.,
rib-cage width, field sizes, distances between landmarks and the isocenter) by the width
and height of the respective DRR they were measured from (after the DRRs were cropped
to a same region of interest between T10 and S1). This was done because when plans
are emulated, they are scaled based on proportions derived from the landmarks [22, 25].
Since differences in anatomy solely due to overall anatomy scaling do not result in dif-
ferent dose-volume metric values, these differences should not be accounted for by the
explanatory variables (confirmed in preliminary experiments).

The abdominal diameter in AP (Diam’3,) is the only anatomical feature not measurable
from DRRs generated along AP/PA direction. In historical RT, it was measured using a
ruler to determine the isocenter position along the AP axis, and was subsequently reported
in the records. For our cohort, Diam’S, was not reported in the records because a CT scan
was used for RT planning. We therefore measured Diam/s, automatically on the CT scans,
by using a pre-determined isocenter position of typical abdominal flank irradiation plans.
In particular, the intervertebral disk between the 15 and the 2nd lumbar vertebra (L1 and
L2) was used to determine the isocenter position along the inferior-superior (IS) axis, and
the center of mass of the kidney was used to determine the isocenter position along the RL
axis (as the aim of Wilms’ tumor plans is to irradiate the renal fossa). For CTs including
both kidneys, two Diamgcp were measured, and the average was taken. Conversely, only
one Diamlj, was measured for CTs including a single kidney.

In our simulations we used for all artificial plans the same fractionation scheme (8 x
1.8 Gy), beam energy (6 MV), and prescribed dose (14.4 Gy at isocenter). These settings
are the most common in historical records, and are still valid in the current Wilms’ tumor
RT protocol [24]. Moreover, choosing a specific prescribed dose (e.g., 14.4 Gy) does not
limit generalizability, since the dose distribution over the entire anatomy depends linearly

188 8. SURROGATE-FREE MACHINE LEARNING-BASED ORGAN DOSE RECONSTRUCTION

Figure 8.4: An example of the beam’s eye view of a plan plotted on a DRR with the land-
mark locations used to compute the features concerning plan field configuration on top of
the patient’s anatomy. The plot next to the DRR illustrates how the block is simulated by
aligning the center of the leaves with the boundary of the block and how the slope of an
MLC-simulated block is calculated.

on the prescribed dose. Thus, if dose reconstruction for a historical case using a different
prescription is needed, the dose-volume metrics predicted by the models trained on plans
with a 14.4 Gy prescribed dose can be re-scaled.

For both fields with and without a block, the features representing field sizes in RL
and IS directions (Wpieq and Lp,q) were set by simply considering the full rectangular
area (i.e., irrespective of blocking). For fields with a block, the slope of the block (note that
the block is formed by Multi-Leaf Collimators (MLCs)) and the ratio between the blocked
region and non-blocked region of the field (Ratiopjok) was computed. In addition, we con-
sidered features that relate to how the plan was configured with respect to the patient’s
anatomy, based on the position of the isocenter and of the bony landmarks. For instance,
AL (T108) links the bottom of the T10 vertebra to the position of the isocenter in RL
direction. Figure 8.4 shows an example of the anatomical landmarks and plan geomet-
rical borders used to calculate features describing plan configuration with respect to the
patient’s anatomy.

DATASET FOR SUPERVISED LEARNING

Features and dose-volume metrics were finally collected in a dataset. The dataset cor-
responded to a 2D matrix, where the rows represented patient-plan combinations, i.e.,
examples (n = 42, 600), and the columns represented features (33) and response variables
(4 for each OAR).

8.2.4. MACHINE LEARNING

In the following sections we describe how ML was performed in terms of training and
validation on the artificial plans. We further introduce the ML algorithm adopted, and
describe an independent validation on clinical cases.

8.2. MATERIALS ¢ METHODS

189

Table 8.1: Description of the 33 features considered as explanatory variables for ML.

Feature name Origin Unit Description

Age Records years patient age at CT scanning

ArmsUp DRR yes/no whether the patient had arms in a raised position during scanning
Diamﬁ, Records cm patient AP diameter measured at isocenter

Nephrectomy Records yes/no whether the patient underwent nephrectomy

Whisr DRR cm width (in RL) of right-part of the rib cage (from vertebral column to location of right-most rib)
WL DRR cm width (in RL) of left-part of the rib cage (from vertebral column to location of left-most rib)
Wye DRR cm average vertebral column width

Lye DRR cm length (in IS) of the vertebral column from T11 to L4

Whield Plan cm field width (in RL)

LField Plan cm field length (in IS)

FieldSide Plan right/left ~ whether the plan concerns left-sided or right-sided flank irradiation
Interceptp, i Plan cm distance (in RL) between isocenter and block endpoint of the top field border
Ratiogjo ok Plan % Area(Block) / Area(Rectangular field), 0 for block-free plans
Slopegock Plan - AL/AW of the block (see Fig. 8.4); 0 for block-free plans

Oc Plan o angle of collimator system with respect to gantry system
Agi(TlOB) Plan + DRR cm RL distance between bottom of T10 and isocenter

AlF(T105) Plan + DRR cm IS distance between bottom of T10 and isocenter

Aﬁecl_(T12R) plan + DRR cm RL distance between right border of T12 and isocenter

AlS(T12%) Plan 4+ DRR cm IS distance between right border of T12 and isocenter

Al (T12%) Plan + DRR cm RL distance between left border of T12 and isocenter

AlS(T12%) Plan + DRR cm IS distance between left border of T12 and isocenter

Agi(LlB) Plan + DRR cm RL distance between bottom of L1 and isocenter

Al(L1P) Plan + DRR cm IS distance between bottom of L1 and isocenter

AﬁCI_(LQR) Plan + DRR cm RL distance between right border of L2 and isocenter

AlS(L2%) Plan 4+ DRR cm IS distance between right border of L2 and isocenter

AlS(L2%) Plan + DRR cm RL distance between left border of L2 and isocenter

AlS(L2%) Plan + DRR cm IS distance between left border of L2 and isocenter

Aﬁ([AB) Plan + DRR cm RL distance between bottom of L4 and isocenter

AlS(L4P) Plan + DRR cm IS distance between bottom of L4 and isocenter

Affl_(RibR) Plan + DRR cm RL distance between location of right-most rib and isocenter

Al (Rib™) Plan 4+ DRR cm IS distance between location of right-most rib and isocenter
A?L(Ribl‘) Plan + DRR cm RL distance between location of left-most rib and isocenter

AL (Rib™) Plan + DRR cm IS distance between location of left-most rib and isocenter

Abbreviations: R (in superscript): right, L (in superscript): left, RL: right-left, AP: anterior-posterior, IS: inferior-superior, IC:
isocenter, VC: vertebral column, W: width, L in Lyc and Lpq : length.

190 8. SURROGATE-FREE MACHINE LEARNING-BASED ORGAN DOSE RECONSTRUCTION

TRAINING AND EVALUATION OF ML MODELS
Since dose metrics are scalars, we treated the learning problem as a regression problem.
We trained a separate ML model for each combination of dose-volume metric and OAR.

Preliminary analysis showed that right-sided plans and left-sided plans led to markedly
different distributions of possible dose-volume metric values for all OARs except for the
spinal cord. Thus, ML models were set to be composed of two sub-models, each to be
trained independently on a particular sub-set of the data based on plan side (right or left).

The quality of the models was estimated with a 5-fold cross-validation. This means
that a random partition of 1/5th of the total number of patients and plans was held out
(test set), and training was performed on the remaining data. Then, the prediction error
was measured on the test set. This process was repeated five times, each time considering
a different data partition for the test set. No patient nor plan that was in the test set was
included in the data at training time.

Each training step included hyper-parameter tuning by grid-search with internal 5-
fold cross-validation (upon the training set), as well as feature selection (which resulted in
eight features being systematically discarded, see Sec. 8.2.4). For each dose-volume metric

k € {Dpeans Dy Vigy: Vwa}, the Root Mean Square Error (RMSE) loss was used, i.e.,

174

N 1 ~ 2
RMSE(Y* V)= | = (Y.k _ Y.k) 8.1
()) v ; 1 7) ()

where Y* are the ground truth values and Y'* are the model predictions for the dose-
volume metric k, and v is the total number of rows in the training set. The RMSE was
chosen to regularize ML, i.e., to penalize larger errors more [28].

To account for the stochastic nature of the ML algorithm employed (see Sec. 8.2.4) and
for the random partitioning of the data, the 5-fold cross-validation was repeated ten times.
The averages and standard deviations over the 5 x 10 validation results (five folds repeated
ten times) were considered.

To put the results of ML into perspective, for each cross-validation, a baseline pre-
diction was considered that simply used the average dose-volume metric observed in the
training data. The Wilcoxon signed-rank test was used to assess whether the results ob-
tained by ML and by this baseline are significantly different (p-value < 0.05).

FEATURE SELECTION
An automatic feature selection step was performed before training the ML models, as
follows.

1. Compute the absolute Pearson correlation coefficient |p| between all pairs of fea-
tures based on the values of the training set.

2. If | p| > 0.95 (highly positive or negative correlation) between two features, discard
the second feature.

3. Repeat (2) until no two features that have |p| > 0.95 remain.

8.2. MATERIALS ¢ METHODS 191

Note that, at (2), one could discard a feature at random. We systematically discarded the
second feature to obtain a deterministic outcome.

As aforementioned, a model for the prediction of the dose-volume metric of an organ
was composed of two sub-models, trained independently based on the side of the plan.
We found that partitioning the dataset by plan side does not influence feature selection
significantly, i.e., the pairs of features that have |p| > 0.95 remain the same. Figure 8.5
shows the value |p| between features across the entire dataset (averaged between left-
and right-sided plans). The following eight features were systematically discarded in our
experiments:

IC (T'127) - highly correlated with ALG (T107) (and others);
(T 12%) - highly correlated with ATS(7107) (and others);
IC (L27) - highly correlated with ALG (L1P) (and others);
1€ (L2™) - highly correlated with AZS (L17) (and others);
1€ (L2%) - highly correlated with AL (L17) (and others);
1 (L2 - highly correlated with ATS(L17) (and others);
Af%CL(RlbL highly correlated with AL (L17) (and others);
15 (Ri) (

) -
) - highly correlated with AZ$(L17) (and others).

MACHINE LEARNING ALGORITHM

The recently introduced Genetic Programming version of the Gene-pool Optimal Mixing
Evolutionary Algorithm (GP-GOMEA) was considered as ML algorithm, as it was found
to achieve competitive performance on a variety of benchmark problems (Chapters 2 and
3), as well as in previous work concerning radiotherapy (Chapter 7 and [29]).

In addition, GP-GOMEA can perform symbolic regression, i.e., it can generate a re-
gression ML model in the form of a (symbolic) mathematical expression. GP-GOMEA
incorporates information theory methods that enable it to synthesize fairly accurate ex-
pressions of particularly compact size, an aspect that makes these expressions lightweight
and fast to execute, and that can aid human-interpretability.

The salient hyper-parameters of GP-GOMEA are reported in Table 8.2. Other hyper-
parameter settings that are not reported in the table were set to the ones used for bench-
marking GP-GOMEA in Chapter 3 (Sec. 3.8). A short description of the hyper-parameters
in Table 8.2 follows.

Tree height. GP-GOMEA encodes machine learning models with symbolic trees. In
our case, trees were binary. The maximal tree height of a tree limits how complex the
encoded machine learning model can be. For instance, a tree with height 2 can contain
up to 7 nodes, a tree with height 4 can contain up to 31 nodes. Larger trees can encode
relatively complex models (but risk overfitting), smaller trees can encode relatively simple
formulas (but risk underfitting).

Evaluations limit. The evaluations limit is used to terminate GP-GOMEA. An evalu-
ation is the computation of the loss function of a model. Terminating early/late can be
useful to prevent overfitting/underfitting.

192 8. SURROGATE-FREE MACHINE LEARNING-BASED ORGAN DOSE RECONSTRUCTION

™ N
ArmsUp . .-
Diam|$. .
Interceptgiock
Lieta
Lve
Nephrectomy
Ratiogjock
1.0
Slopesiock
Wrieid
Waipt
Whip#
Wye
NS(L17)
A§(L24)
NS(L2R)
DS(L4B)
DS(Rib)
DE(RibR)
AJS(T108)
DE(T12Y)
NE(T12R)
AG(L15)
B (L2Y
A (L2R)
NS (L4B)
NS (RibY)
DG (RibR)
N (T108)
NG (T124)
NG (T12R)
Oc

0.8

0.6

-0.4

-0.2

Wrielg .

Age
Lrietd
Lve

Wit
Wi
Wye

ArmsUp
Diam$

Interceptgiock
Nephrectomy
Ratiogiock
Slopesiock

Figure 8.5: Absolute Pearson correlation coefficient (|p|) between features (average be-
tween left- and right-sided plans). Cells marked by a cross have |p| > 0.95 (excluding
cells in the diagonal).

8.2. MATERIALS ¢ METHODS 193

Hyper-parameter Setting(s)

Tree height* {2,3,4}

Evaluations limit* {10%,10°,106}

Function set* {[+, =, %, =), [+, =, X, +p, -2, \/m, sin, cos, exp] }
Interleaving generations g 6

Starting population size 500

Table 8.2: Salient hyper-parameters of GP-GOMEA and their settings. Starred hyper-
parameters are subject to grid-search tuning, using the settings reported within curly
braces.

Function set. The atomic components that can be instantiated as nodes can be fea-
tures (of Table 8.1), random constants, or functions from a pre-defined function set. Ran-
dom constants are sampled uniformly at random between {—p, +p}, where p := 5 x
max(x), and x is the 2D matrix containing all numerical feature values for all patients
and plans (in the training set). We considered a simpler function set of algebraic func-
tions ([+, —, X, <)), and a more complex one including trigonometric and transcenden-
tal functions ([+, —, X, +p, -2, m ,sin, cos, exp| }). More complex functions can help fit
the data better, at the risk of overfitting.

Interleaving generations & starting population size. Whereas typical GP algorithms per-
form a single evolutionary run, GP-GOMEA uses a scheme of multiple runs of increasing
evolutionary budget. Larger-budget runs are started later in the scheme, and executed in
an interleaved fashion such that smaller-budget runs perform more iterations (called gen-
erations) than larger-budget runs. The first run r; uses the starting population size and
executes g generations before the next run rj is started. The run 79 has a population size
that is double of that of 1 (1000), and performs 1 generation every g generations of r;.
The first time 75 has executed g generations, 73 is started, with double the population of
r9 (2000). Subsequently, rs will execute 1 generation every time r5 has executed g gener-
ations. If a run converges to all identical machine learning models, then it is terminated.
A run is also terminated if a larger-budget run exists that has found a better machine
learning model.

As shown in Table 8.2, we used a starting population size of 500 and a number of gen-
erations for interleaving g = 6. These choices are based on what is reported in Chapter 3,
except for the starting population size (set to 50 in the chapter), as the chapter shows that
runs with population sizes above a thousand are typically started anyway within the first
couple of minutes (Fig. 3.7). Hence, computations performed by runs with smaller pop-
ulation sizes are essentially wasted. We set ¢ = 6 because it is the intermediate value
(between 4 and 8) considered in Chapter 3, and because GP-GOMEA is fairly robust to the
choice of g, i.e., the results for ¢ = 4 are similar to the ones of g = 6 and g = 8.

8.2.5. INDEPENDENT EVALUATION ON CLINICAL PLANS

As aforementioned, the 300 plans used to cross-validate our approach were generated with
an automatic sampling procedure (Sec. 8.2.2). To assess whether our results on artificial

194 8. SURROGATE-FREE MACHINE LEARNING-BASED ORGAN DOSE RECONSTRUCTION

plans can be valid for clinically-used plans, we further evaluated our approach on an in-
dependent dataset for which clinical plans were crafted manually.

For this validation, we trained ML models (as a reminder, one model per OAR - dose-
volume metric combination) on the dataset using the 142 CTs and the 300 artificial plans,
and evaluated their prediction accuracy on a separate set of five CTs each associated with
two clinical plans. We gathered five clinical plans (three right-sided, two left-sided) for
these five CTs. Under the supervision of an experienced pediatric radiation oncologist
(B.V. Balgobind), two adapted versions of each plan were manually created that both had
the isocenter in the middle of the fields. In one plan no block was used and in the other
plan a block was introduced to protect part of the liver or spleen, depending on the plan
side. Training (including 5-fold cross-validation to determine the best hyper-parameter
settings) and validation were repeated ten times to account for the stochastic nature of
GP-GOMEA. Averages and standard deviations were computed over these ten repetitions.

8.3. RESULTS

8.3.1. DOSE-VOLUME METRIC DATA DISTRIBUTION

Among the 300 artificial plans, plan side and OAR type was found to influence the dis-
tribution of a dose-volume metric considerably. To illustrate the effect of OAR type and
plan side on the dose, Figure 8.6 shows the distributions found for Dyean and Dy for
the liver and the spleen, in case of left- and right-sided plans. For Dyean for the liver,
distributions approximately resembling the normal distribution were obtained (in case of
right-sided plans with particular high variance and long left tail). The distribution in case
of right-sided plans had a mean of 9.5 Gy (typically a major part of the liver was in-field),
the distribution in case of left-sided plans had a mean of 3.4 Gy (typically a minor part
of the liver was in-field). In terms of D, for the liver we observed values close to the
prescribed dose (14.4 Gy) both in case of left- and right-sided plans. The distributions of
Dipean and Dy for the spleen associated with the different plan sides had more marked
differences than the ones for the liver. In case of right-sided plans, values close to 0 Gy
were obtained for both metrics (typically the spleen was outside the field). For left-sided
plans, large values of Dyean Were found to be much more frequent than low values. The
distribution of Dy exhibited a peak around the prescribed dose. For the contralateral
kidney and for the spinal cord the distributions are similar for both plan sides, as the con-
tralateral kidney should be outside the field and the spinal cord should be included within
the field (according to protocol).

For all OARs, distributions obtained for V5Gy and Vlocy largely resembled the ones
obtained for Dean. In fact, Pearson correlation coefficients above 98% were found when
comparing Dy,e.n With VsGy and VwGy for almost all OARs. Smaller (yet still large) corre-
lation coefficients were found between D, and Vlocy for the left and right kidney, with

values of 96% and 91% respectively.

8.3.2. VALIDATION ON ARTIFICIAL PLANS

For each considered OAR, the Mean Absolute Errors (MAEs) (and standard deviation) at
validation time for Dyean, Daces Vsay, and Viggy from the ten repetitions of the 5-fold
cross-validation procedure using the artificial plans are reported in Table 8.3. We further

8.3. RESULTS

195

Liver, right-sided plans

Liver, right-sided plans

1.0 1.0
0.8 0.8
> >
20.6 g0.6
[[
3 3
o o
20.4 00.4
'S w
0.2 0.2
0.0+ 0.0
0.0 25 50 75 100 125 15.0 00 25 50 75 100 125 15.0
Dmean [GY] Dacc [Gy]
10 Liver, left-sided plans 10 Liver, left-sided plans
0.8 0.8
> >
g'0.6 0.6
[Q
3 3
o o
0 0.4 0 0.4
i I
0.2 0.2
0.0 0.0
0.0 25 50 75 100 125 15.0 00 25 50 75 100 125 15.0
Dmean [GY] Dacc [Gy]
10 Spleen, right-sided plans 10 Spleen, right-sided plans
0.8 0.8
So6 Sos
[[
=] 3
o o
20.4 00.4
e &
0.2 0.2
0.0 0.0
0.0 25 50 75 100 125 15.0 00 25 50 75 100 125 15.0
Dmean [GY] Dacc [Gy]
10 Spleen, left-sided plans 10 Spleen, left-sided plans
0.8 0.8
> >
g0.6 0.6
[[
=] 3
o o
20.4 00.4
'S w
0.2 0.2
0.0+ 0.0
0.0 25 50 75 100 125 15.0 00 25 50 75 100 125 15.0
Dmean [Gy] Dacc [Gy]

Figure 8.6: Distributions for the liver and the spleen of Dyean and Dy obtained by the
automatic plan sampling procedure used to generate artificial plans and by applying the
plans to the CT scans.

196 8. SURROGATE-FREE MACHINE LEARNING-BASED ORGAN DOSE RECONSTRUCTION

present the average decrease in MAE when using ML compared to when using the base-
line (i.e., the effect size), as well as the outcome of statistical significance tests (Wilcoxon
signed-rank) comparing ML to the baseline.

The errors for Dpean and Dy were generally below 2 Gy, which corresponds to ap-
proximately 14% of the prescribed dose of 14.4 Gy. For all OARs but for the spinal cord,
the plan side had considerable impact on the magnitude of the errors. As the spinal cord
in RL direction was in-field no matter the plan side, the MAEs of dose-volume metrics
predictions were found to be small: < 1 Gy for Dypean and Dy, < 4% for Vscy and Viggy.
For OARs that were almost out-of-field, e.g., the spleen in case of right-sided plans, small
MAES of D yean were found (< 0.1 Gy), as very low values were obtained across all patient-
plan combinations (see Fig. 8.6). Note that in this case (and also for the D, for the liver
in both left- and right-sided plans), ML performs significantly but not substantially better
than the baseline.

For the liver in case of right-sided plans, and for the spleen in case of left-sided plans,
larger MAEs were found (liver: 1.7 Gy for Dean, 12.1% for Vsgy, 12.6% for Vogy; spleen:
1.5 Gy for Diean, 9.3% for Visgy, 10.7% for V1ggy). These errors can be attributed to the
particular configuration of the position of these OARs and the field of the plans.

Among the dose-volume metrics, D for the (partly) in-field OARs had low variability,
with a Dy close to the prescribed dose (14.4 Gy). For example, small errors were obtained
for the Dy for the liver (< 0.4 Gy), as we consistently obtained a large D, value for
both left- and right-sided plans (see Fig. 8.6). In contrast, D, was harder to predict when
the OAR was contralateral to the plan side. The MAEs obtained for Dy for the spleen in
case of right-sided plans was 1.6 Gy. This was 2.9 Gy for the left kidney, and 1.4 Gy for
the right kidney.

The largest average error was found for D for the left kidney, amounting to 20% of
the prescribed dose. For all dose-volume metrics for the right kidney, and for D, for the
spleen, we found that ML predictions were slightly worse compared to using the base-
line (note the negative effect sizes), but not significantly so. Lastly regarding the kidneys,
although errors in Dy, were relatively large, errors in V'1og, were relatively small (com-
pared with V'ygy for the other OARs). In fact, only a small percentage of the contralateral
kidney, from 0 to less than 3% typically received at least 10 Gy.

Although not reported in Table 8.3, we remark that the errors were found to be unbi-
ased: no systematic over- nor under-estimations of dose-volume metrics were found on
average, with the mean (non-absolute) error being close to zero for all metrics.

8.3.3. INDEPENDENT VALIDATION ON CLINICAL PLANS

Figure 8.7 and Figure 8.8 show, for each clinical case, the ground truth dose-volume metric
values and the predictions obtained by the ML models (trained on the artificial plans).
Results for Dyyean and Dy are presented in Figure 8.7, and results for V'sgy and Vg, are
presented in Figure 8.8.

The errors in Dyean between predictions and ground truth values were generally low,
totaling an average of 1.0 Gy (with a range of 0.0-4.9 Gy) across all OARs. Compared to the
results obtained in the cross-validation using the artificial plans (Table 8.3), for the liver in
case of right-sided plans, the average error on the clinical plans was found to be smaller
(1.2 Gy vs. 1.7 Gy). Similar average errors in Dpe,n Were found for the kidneys (0.8 Gy vs.

8.4. D1scussIoN 197

Table 8.3: Mean test MAE =+ standard deviation and effect size (in small font) against the
baseline (MAE of baseline - MAE of ML), of ten repetitions of 5-fold cross-validation for
each OAR and dose-volume metric on the artificial plans. Bold results are significantly

better than the baseline (the opposite is never found).

Side OAR ‘ Dmean [GY] DZCC [GY] VSGy [%] VlOGy [%]
g Liver 1.7+0.207 0.2+0.000 121+1.551 126+1.85.1
%D g Spleen 0.1+£0000 1.6£0.5-01 0.94+0.20.0 0.44+0.10.0
& § Leftkidney 06+0501 2940205 44+0501 2.54+0.400
€ Spinal cord 04+0107 02+0000 32+0456 3.3+045s8
g Liver 0.8+0.00.2 0.4+0.10.0 58+041.1 55+031.4
“E :C: Spleen 1.5+0.20.7 0.3+ 0.00.0 93+1.152 10.7+1.46.0
—~ = Rightkidney | 0.64+1.0-03 144+04-01 23+14-04 08+0.7-0.1
< Spinal cord 0.44+0.00.9 0.240.00.0 3.1+0375 29+0374

0.6 Gy for the left kidney and 0.5 Gy vs. 0.6 Gy for the right kidney), the liver in case of
right-sided plans (1.0 Gy vs. 1.7 Gy), and the spinal cord (0.4 Gy vs. 0.4 Gy). Larger average
errors in D,y were found for the spleen (0.5 Gy vs. 0.1 Gy in case of the right-sided plans
and 3.6 Gy vs. 1.5 Gy in case of left-sided plans). The largest error of 4.9 Gy was found for
the spleen of case Prap (1.9 Gy error found for the spleen of case Prs), indicating that the
impact of the block on the plan was not well modeled. Furthermore, the error in spleen
Dipean of Pry and Ppqp was large (2.8 Gy and 4.7 Gy, respectively), indicating both field
types (without and with a block, respectively) were not well modeled for this case (see the
discussion in Sec. 8.4).

Regarding D, similar results to the ones obtained on artificial plans were found for
the spinal cord, where an average error of 0.1 Gy was obtained in D,.. (with a range of
0.0-0.4 Gy). For the spleen of cases Pr; and Pg1p, large errors in D,.. were found (12.3
Gy on average), as ML predictions essentially wrongly represented the spleen to be out-of-
field. Whereas this was the case for Pro and Prap, and for Pr3 and Pgrsp, where small
errors were obtained (1.1 Gy on average). Similarly, large errors in D, were found in
some cases for the contralateral kidneys (e.g., the left kidney: 5.1 Gy on average, with a
range of 0.5-7.6 Gy).

Results for V'5gy (average error 8% with a range of 0-35%) and V' 1gy (average error 7%
with a range of 0-49%) mostly followed the trend of the errors for Diyean, as these metrics
were found to be correlated for most OARs.

8.4. D1scussION

In this chapter we presented a new and different paradigm in organ dose reconstruction.
By leveraging the modeling power of ML, we showed how patient and plan features can
be used to predict organ dose-volume metrics directly, without the need of adopting a
surrogate anatomy. Once the ML models are trained, they can readily be used to com-
pute dose-volume metric predictions for a new historical patient and plan, by using their
features as input.

198 8. SURROGATE-FREE MACHINE LEARNING-BASED ORGAN DOSE RECONSTRUCTION

Diean for the liver D, for the liver
14 T 16
_ o o
5 1:3 T T = 15 | & FEE==
© m O
g & EE 14 EETr
o 2200
2 —— — 13
Dean fOr the spleen D, for the spleen
16 16 ==La
. T o m
= 12 g 12
e m | =
§ 8 o T 8
c 4 4 o
Dpean fOr the left or right kidney D, for the left or right kidney
4 17
oo
_ O o
3 3 13 il
o 2 -0 9
g IxggTFIo0D TIT IT T
a 1 —— 5 TT
0 1 B e
Dpean for the spinal cord D, for the spinal cord
12 16
11 T i T T
8 11 mm 15
g 10 Tloo== 355
a oy Julini 14 =
QPRI VP QP QPRI VP QP
[ground-truth Pr1 Pr> Pr3 Py P
PRlB PRZB PR3B PLlB PLZB

Figure 8.7: Mean and standard deviation of predictions across ten repetitions for the dose-
volume metrics Dppean and Dy, of the ten clinical plans. A plan-patient combination is
encoded by color, and presence or absence of blocking is encoded by marker shape. Note
that different plots have different scales of the vertical axis. For each case, the ground-
truth dose-volume metric is indicated by a red square. In each plot, the first six cases
(white background, plan subscripts starting with ‘R’) are right-sided plans, the last four
cases (gray background, plan subscripts starting with ‘L’) are left-sided plans.

8.4. D1scuUssION 199

Vsg, for the liver Vigay for the liver
110 110
= 90 85
S 70 I = T o0 IT 2 T
€
5 50 T
g 30 E & 35 E I
K g] i 2800
10 et 10 } —
Vsgy for the spleen Vioay for the spleen
100 100
Ex [T To
£ 75 o TE 75 ¥
by m
g 50 o
2 25 i
Vsgy for the left or right kidney Vio6y for the left or right kidney
30 16
< n m o
= 20 12
£ 8
3 10 L 4
> IITT==DDDD iﬁ==DuDD
0 — = — = 0 ’
Vsgy for the spinal cord Vioay for the spinal cord
95 90
o=
5 8 FEEEL 80 TE 3
5 75 8- 70 i i
= 65 |4 I 60
3 i
55 by : 50 —— — —.
Q¥R ?‘*“’Q@Q’?w 20 NS Qw@%@ PRV
O ground-truth Pr1 Pra2 Pr3 Piy P
PRlB PRZB PRBB PLll‘:l F’LZB

Figure 8.8: Mean and standard deviation of predictions across ten repetitions for the dose-
volume metrics Vsgy and Vyggy of the ten clinical plans. A plan-patient combination is
encoded by color, and presence or absence of blocking is encoded by marker shape. Note
that different plots have different scales of the vertical axis. For each case, the ground-
truth dose-volume metric is indicated by a red square. In each plot, the first six cases
(white background, plan subscripts starting with ‘R’) are right-sided plans, the last four
cases (gray background, plan subscripts starting with ‘L’) are left-sided plans.

200 8. SURROGATE-FREE MACHINE LEARNING-BASED ORGAN DOSE RECONSTRUCTION

Key to obtaining a decent amount of data to perform ML were the collaboration of five
international institutes to gather pediatric patient CTs (147), the development of a new
automatic sampling procedure yielding artificial Wilms’ tumor RT plans, and the creation
of an automatic dose reconstruction pipeline to calculate the dose for all patient and plan
combinations. We validated our approach on 300 automatically generated artificial plans,
and on ten manually created clinical plans, to assess whether the results of the validation
on the artificial plans generalize well in practice. Our approach showed promising levels
of accuracy in dose reconstruction in both settings.

Errors were found to be overall similar between the validation on the ten clinical plans
and the validation on the artificial plans. However, for some metrics, errors were larger
for the ten clinical plans. This may be due to chance, because ten is a small number to
validate upon. Another possibility is that the artificial plan generation method needs to
be improved. Artificial plans were generated by sampling geometry properties uniformly
within predefined boundaries on two reference DRRs. Uniform sampling might not be
representative of the distribution clinical plans have. Moreover, we consulted a single
radiation oncologist to define clinically acceptable boundaries to use in the sampling of
artificial plans. Consulting multiple experts and allowing for a larger variation might
better help covering the extent of variation that is present in historical plans (Sec. 8.2.2).
For example, the isocenter locations of artificial left-sided plans were never sampled below
the 1st lumbar vertebra (see Fig. 8.2) and approximately half of the D e, values for the
spleen in case of the artificial left-sided plans were close to the prescribed dose (14.4 Gy,
see Fig. 8.6), which means that the spleen was often almost completely in-field in our
artificially generated set of left-sided plans. When a block was applied, only a small part
of the spleen was spared. However, in clinical practice, isocenter locations can be lower,
and a larger part of the spleen might actually be outside the field (see Fig. 8.9). This might
explain the relatively large errors observed in Figure 8.7 for Pr1p and Prap where the
isocenter location is lower than the sampled range. Ultimately, effort should be done to
improve the sampling of artificial plans.

In the validation performed upon artificial plans as well as in the one performed upon
clinical plans, a main result that emerges is that dose-volume metrics for an organ are
hard to predict when, due to the field setup, it is unclear whether the OAR is (partially)
included in the field or not. For example, consider the Dy as opposed to the D ea, for
the spleen for Pr; and Pg;p in Figure 8.7 a tiny part of the spleen being inside the field
causes a large Dy (wrongly predicted to be small), and small D e,y (correctly predicted
to be small). As experimentally observed in Chapters 6 and 7, 2D bony anatomy provides
only coarse information on OAR shape and position even for ML algorithms (e.g., an MAE
of 6.4 mm for the prediction of the liver position along the IS axis was reported in Chap-
ter 7). Yet, because bony anatomy is the only structure that is reliably visible in historical
radiographs, most of the anatomical features rely on it. Patients with similar anatomical
features derived from bony anatomy may have different OAR shape and position, and thus
different dose-volume metrics. Furthermore, impreciseness in feature values due to e.g.,
uncertainties in landmark detection and plan emulation, aggravate the situation.

Compared to conventional dose reconstruction methods (that use surrogate anatomies
and heuristics to decide what surrogate to use), we considered a relatively large number of
features: 33. Phantom-based methods consider, e.g., only age and gender [7, 21], or gender

8.4. D1sCUSSION 201

Figure 8.9: Effective field shape of plans Py (on the upper left), P11 (on the upper right),
Pr (on the lower left) and Prop (on the lower right) plotted on top of the associated DRR.
The fields are placed lower than most of the sampled artificial plans (see Fig. 8.2) and
consequently a (large) part of the spleen (indicated by the light blue contours) is outside
the field (for Pr1p and Prop an even larger part of the spleen was blocked).

202 8. SURROGATE-FREE MACHINE LEARNING-BASED ORGAN DOSE RECONSTRUCTION

together with height and weight percentiles [15]. However, if a 2D radiograph is available,
the added value of this information should be exploited. In our work, the majority of the
features we considered, i.e., 23 out of 33 (minus eight due to automatic feature selection),
regarded patient anatomy as visible on a 2D radiograph, which we simulated with DRRs.
Our DRRs were generated in a conformal fashion, e.g., the abdomen was always fully
included in RL direction. The automatic landmark detection that was used to generate
features expects this conformity to achieve precise detection [25]. When dealing with
actual historical radiographs, however, several challenges need to be taken into account.
For example, our automatic landmark detection method requires further development to
account for noise in the radiograph (e.g., the presence of hand-writing on the radiograph).
Moreover, educated guesses of landmark locations may be needed in some cases, as some
historical radiographs do not include the entire abdomen (see Fig. 8.1(c)). Nevertheless, as
long as the features are somehow collected (e.g., manually), they can be used as input for
the ML models to get respective dose-volume metric predictions.

There are disadvantages of our approach compared to conventional dose reconstruc-
tion methods that use surrogate anatomies beyond the need for patient radiographs, which
are not always available in retrospective data. In particular, a key limitation is that ML
models do not predict the entire 3D dose distribution an organ receives, but only the met-
rics they were trained for. Potentially useful information to link to AEs may be contained
in 3D dose distributions. To predict 3D dose distributions, the ML models would need to
be trained to predict a 3D output. Surrogate-based methods do allow to obtain the entire
3D dose distribution to an organ, since the distribution can be visualized on the organ of
the surrogate anatomy, after plan simulation. However, considering the magnitude and
variations of the errors of organ mean dose obtained by conventional approaches [22], it is
questionable whether the full 3D distribution will be sufficiently reliable. Our approach, as
currently proposed, can straightforwardly be extended to predict any (scalar) dose-volume
metric that is suspected to be useful to study AEs (it suffices to train ML on that metric).

Another limitation of our approach is that it does not take into consideration uncer-
tainties related to OAR motion. For validation, we aimed at reconstructing the dose based
on the particular snapshot of anatomy at the moment the CT (ground-truth) / respective
DRR (to simulate historical radiographs) was taken. Yet, OAR motion plays a key role in
the uncertainty of organ positioning at the edge of the field, which can lead to a discrep-
ancy between the planned dose and the actual delivered dose. In RT practice, radiation
delivery is performed over a number of days, with fractionation schemes. The OAR po-
sition can therefore vary (i.e., inter-fractional position variation). Intra-fractional organ
motion due to, e.g., respiration variation, contributes to the difference between planned
dose and delivered dose as well [30].

Lastly, a main limitation of our approach is that the ML models we generated are
specific to pediatric patients (1 to 8 years of age) and Wilms’ tumor RT plans: they can
only predict reliable dose-volume metrics of specific OARs they were explicitly trained for.
The RT plans we have sampled were also restricted to a standard AP-PA setup without
considering wedges, boost fields, or other radiation sources such as Cobalt-60. Moreover,
the predictions of the ML models (as well as the validation performed in this study) are
based on the dose calculation algorithm we adopted when preparing training data, which
has inaccuracies. Specifically, we used a collapsed cone algorithm available in Oncentra

8.5. CONCLUSION 203

TPS. Though good accuracy was reported in the in-field and near-field region (< 5 cm from
the field borders, achieves an error of 1-2% of the prescribed dose), in low dose regions
(10-15 cm from the field border) an underestimation of 10% of the dose in the region was
reported [31]. We remark that the OARs we considered in this study were mostly within
5 cm near the field border (except for the spleen in case of the right-sided plans). To make
the method more general for OARs far from field borders, more advanced Monte Carlo
dose calculation algorithms should be applied in future implementations. However, we
believe that the core ideas of our work can be replicated for other cohorts and other types
of plans. Essentially, as long as a sufficient number of anatomies and plans are collected
or generated, and a large number of dose reconstructions are performed to be used as
examples, new ML models can be trained to predict how the dose-volume metrics are
linked to anatomy-plan configurations. As was the case in our study, the collection and
preparation of sufficient data for ML is likely to be the largest required effort.

Our proposed approach presents several advantages compared to traditional dose re-
construction methods. First of all, we found our validation results to compare favorably
with respect to our recent work considering dose reconstruction for a similar childhood
cancer cohort [22]. The work considered 31 patients aged 2 to 6, 12 Wilms’ tumor clini-
cal plans, and a total of 50 dose reconstruction combinations, which were performed by
matching a surrogate CT based on age and gender. The work reported an MAE for the
D ppean for the liver of 1.6 Gy (average across both left- and right-sided plans), and an MAE
for the Dipean for the spleen of 2.6 Gy. For the liver, we obtained an MAE of 1.3 Gy when
validating on artificial plans, and of 1.1 Gy when validating on ten clinical plans. For the
spleen, we obtained an MAE of 0.8 Gy on artificial plans, and of 1.7 Gy for the clinical
plans. Furthermore, our ML-based predictions resulted in much smaller variations. The
inter-quantile range (25th to 75th percentile) of the (non-absolute) prediction error of our
previous work was 3.6 Gy for the liver, and 4.7 Gy for the spleen [22]. On the artificial
plans, we obtained a range of 2.0 Gy for the liver, and of 1.2 Gy for the spleen. On the
clinical plans, the range for the liver was 1.9 Gy, and the one for the spleen was 2.2 Gy. We
remark that since the dose reconstruction accuracy is largely influenced by the particular
plans considered, these values may not be a fair comparison. We are currently working on
a multi-institute study to compare our approach with two state-of-the-art, phantom-based
dose reconstruction approaches [12, 21]. In that study, a same set of patients and plans
will be used for validation.

Finally, a benefit of having ML models is that, once features are collected, they can be
used as inputs for the model to obtain the prediction of a dose-volume metric immediately.
Running a model on a computer simply means to follow the steps encoded by the formula
the model represents, which takes a few milliseconds. Conversely, in a surrogate-based
approach, the features are used to craft or select a surrogate anatomy. Then, effort and
time must be put to emulate the plan on the surrogate anatomy, calculate the dose, and
obtain the dose-volume metrics [12, 21, 25].

8.5. CoNCLUSION

We presented the first surrogate-free organ dose reconstruction method based on ML.
Our method was enabled by the collection of large amounts of patient and CT data, and
the automatic generation of artificial plans and of dose distribution data. We assembled

204 8. SURROGATE-FREE MACHINE LEARNING-BASED ORGAN DOSE RECONSTRUCTION

a dataset of dose-volume metrics corresponding to features of patient anatomy and plan
geometry, and subsequently trained ML models to predict how features of patient anatomy
and of treatment plans influence dose-volume metrics. The predictions were validated
upon both artificial and clinical RT plans, and achieved good accuracy in both cases.

ACKNOWLEDGMENTS

The authors acknowledge Stichting Kinderen Kankervrij (KiKa) for financial support (project
#187), and the Maurits and Anna de Kock foundation for financing a high performance
computing system. Elekta is acknowledged for providing the research software ADMIRE
for automatic segmentation. The authors thank Abigail Bryce-Atkinson for her help in
data preparation and feature extraction, and Dr. Cécile M. Ronckers for sharing her ex-
pertise.

REFERENCES 205

REFERENCES

[1]

(2]

(3]

(4]

(10]

H. Birgisson, L. Pahlman, U. Gunnarsson, and B. Glimelius, Adverse effects of pre-
operative radiation therapy for rectal cancer: long-term follow-up of the Swedish rectal
cancer trial, Journal of Clinical Oncology 23, 8697 (2005).

I. W. E. M. van Dijk, F. Oldenburger, M. C. Cardous-Ubbink, M. M. Geenen, R. C.
Heinen, J. de Kraker, F. E. van Leeuwen, H. J. van der Pal, H. N. Caron, C. C. Koning,
et al., Evaluation of late adverse events in long-term Wilms’ tumor survivors, Interna-
tional Journal of Radiation Oncology - Biology - Physics 78, 370 (2010).

Y. T. Cheung, T. M. Brinkman, C. Li, Y. Mzayek, D. Srivastava, K. K. Ness, S. K. Patel,
R. M. Howell, K. C. Oeffinger, L. L. Robison, et al., Chronic health conditions and neu-
rocognitive function in aging survivors of childhood cancer: A report from the childhood
cancer survivor study, JNCI: Journal of the National Cancer Institute 110, 411 (2017).

E. Donovan, N. Bleakley, E. Denholm, P. Evans, L. Gothard,]J. Hanson, C. Peckitt,
S. Reise, G. Ross, G. Sharp, et al., Randomised trial of standard 2D radiotherapy (RT)
versus intensity modulated radiotherapy (IMRT) in patients prescribed breast radiother-
apy, Radiotherapy and Oncology 82, 254 (2007).

F.Y.Feng, H. M. Kim, T. H. Lyden, M. J. Haxer, M. Feng, F. P. Worden, D. B. Chepeha,
and A. Eisbruch, Intensity-modulated radiotherapy of head and neck cancer aiming to
reduce dysphagia: early dose—effect relationships for the swallowing structures, Inter-
national Journal of Radiation Oncology - Biology - Physics 68, 1289 (2007).

T. Bolling, I. Ernst, H. Pape, C. Martini, C. Riube, B. Timmermann, K. Fischedick,
R.-D. Kortmann, and N. Willich, Dose—volume analysis of radiation nephropathy in
children: Preliminary report of the risk consortium, International Journal of Radiation
Oncology - Biology - Physics 80, 840 (2011).

M. Stovall, R. Weathers, C. Kasper, S. A. Smith, L. Travis, E. Ron, and R. Kleinerman,
Dose reconstruction for therapeutic and diagnostic radiation exposures: use in epidemi-
ological studies, Radiation Research 166, 141 (2006).

D. Verellen, M. De Ridder, and G. Storme, A (short) history of image-guided radiother-
apy, Radiotherapy and Oncology 86, 4 (2008).

A.Ng, K. K. Brock, M. B. Sharpe, J. L. Moseley, T. Craig, and D. C. Hodgson, Individ-
ualized 3D reconstruction of normal tissue dose for patients with long-term follow-up: a
step toward understanding dose risk for late toxicity, International Journal of Radiation
Oncology - Biology - Physics 84, €557 (2012).

W. M. Leisenring, A. C. Mertens, G. T. Armstrong, M. A. Stovall, J. P. Neglia, J. Q.
Lanctot, J. D. Boice Jr, J. A. Whitton, and Y. Yasui, Pediatric cancer survivorship re-
search: experience of the childhood cancer survivor study, Journal of Clinical Oncology
27, 2319 (2009).

206

REFERENCES

[11]

[12]

[13]

[14]

[15]

X. G.Xu, An exponential growth of computational phantom research in radiation protec-
tion, imaging, and radiotherapy: a review of the fifty-year history, Physics in Medicine
& Biology 59, R233 (2014).

C. Lee,]J. W. Jung, C. Pelletier, A. Pyakuryal, S. Lamart, J. O. Kim, and C. Lee, Recon-
struction of organ dose for external radiotherapy patients in retrospective epidemiologic
studies, Physics in Medicine & Biology 60, 2309 (2015).

V. F. Cassola, F. M. Milian, R. Kramer, C. A. B. de Oliveira L O V B, and H. J. Khoury,
Standing adult human phantoms based on 10th, 50th and 90th mass and height per-
centiles of male and female Caucasian populations, Physics in Medicine & Biology 56,
3749 (2011).

W. P. Segars, J. Bond, J. Frush, S. Hon, C. Eckersley, C. H. Williams, J. Feng, D. J.
Tward, J. T. Ratnanather, M. I. Miller, et al., Population of anatomically variable 4D
XCAT adult phantoms for imaging research and optimization, Medical Physics 40,
043701 (2013).

A. M. Geyer, S. O'Reilly, C. Lee, D. J. Long, and W. E. Bolch, The UF/NCI family of
hybrid computational phantoms representing the current US population of male and fe-
male children, adolescents, and adults-application to CT dosimetry, Physics in Medicine
& Biology 59, 5225 (2014).

[16] J. V.Bezin, R. S. Allodji, J.-P. Mége, G. Beldjoudi, F. Saunier, J. Chavaudra, E. Deutsch,

F. de Vathaire, V. Bernier, C. Carrie, et al., A review of uncertainties in radiotherapy dose
reconstruction and their impacts on dose—response relationships, Journal of Radiological
Protection 37, R1 (2017).

[17] J. Valentin, Basic anatomical and physiological data for use in radiological protection:

(18]

[19]

reference values: ICRP publication 89, Annals of the ICRP 32, 1 (2002).

G. L. de la Grandmaison, I. Clairand, and M. Durigon, Organ weight in 684 adult
autopsies: new tables for a Caucasoid population, Forensic Science International 119,
149 (2001).

M. Virgolin, I. W. E. M. van Dijk, J. Wiersma, C. M. Ronckers, C. Witteveen, A. Bel,
T. Alderliesten, and P. A. N. Bosman, On the feasibility of automatically selecting
similar patients in highly individualized radiotherapy dose reconstruction for historic
data of pediatric cancer survivors, Medical Physics 45, 1504 (2018).

Z. Wang, B. V. Balgobind, M. Virgolin, I. W. E. M. van Dijk, J. Wiersma, C. M. Ron-
ckers, P. A. N. Bosman, A. Bel, and T. Alderliesten, How do patient characteristics
and anatomical features correlate to accuracy of organ dose reconstruction for Wilms’
tumor radiation treatment plans when using a surrogate patient’s CT scan? Journal of
Radiological Protection 39, 598 (2019).

R. M. Howell, S. A. Smith, R. E. Weathers, S. F. Kry, and M. Stovall, Adaptations to a
generalized radiation dose reconstruction methodology for use in epidemiologic studies:
An update from the MD Anderson late effect group, Radiation Research 192, 169 (2019).

REFERENCES 207

(22]

(25]

(28]

[29]

(30]

Z. Wang, I. W. E. M. van Dijk, J. Wiersma, C. M. Ronckers, F. Oldenburger, B. V.
Balgobind, P. A. N. Bosman, A. Bel, and T. Alderliesten, Are age and gender suit-
able matching criteria in organ dose reconstruction using surrogate childhood cancer
patients’ CT scans? Medical Physics 45, 2628 (2018).

P. Mishra, R. Li, S. S. James, R. H. Mak, C. L. Williams, Y. Yue, R. I. Berbeco, and J. H.
Lewis, Evaluation of 3D fluoroscopic image generation from a single planar treatment
image on patient data with a modified XCAT phantom, Physics in Medicine & Biology
58, 841 (2013).

M. M. Van Den Heuvel-eibrink, J. A. Hol, K. Pritchard-Jones, H. Van Tinteren,
R. Furtwingler, A. C. Verschuur, G. M. Vujanic, I. Leuschner, J. Brok, C. Riibe, et al.,
Position paper: rationale for the treatment of Wilms tumour in the UMBRELLA SIOP-
RTSG 2016 protocol, Nature Reviews Urology 14, 743 (2017).

Z. Wang, M. Virgolin, P. A. N. Bosman, K. F. Crama, B. V. Balgobind, A. Bel, and
T. Alderliesten, Automatic generation of three-dimensional dose reconstruction data for
two-dimensional radiotherapy plans for historically treated patients, Journal of Medical
Imaging 7,1 (2020).

B. Emami, J. Lyman, A. Brown, L. Cola, M. Goitein, J. E. Munzenrider, B. Shank, L. J.
Solin, and M. Wesson, Tolerance of normal tissue to therapeutic irradiation, Interna-
tional Journal of Radiation Oncology - Biology - Physics 21, 109 (1991).

L. S. Constine, C. M. Ronckers, C.-H. Hua, A. Olch, L. C. M. Kremer, A. Jackson, and
S. M. Bentzen, Pediatric Normal Tissue Effects in the Clinic (PENTEC): an international
collaboration to analyse normal tissue radiation dose—volume response relationships for
paediatric cancer patients, Clinical Oncology 31, 199 (2019).

C. M. Bishop, Pattern recognition and machine learning (Springer, 2006).

M. Virgolin, T. Alderliesten, A. Bel, C. Witteveen, and P. A. N. Bosman, Symbolic re-
gression and feature construction with GP-GOMEA applied to radiotherapy dose recon-
struction of childhood cancer survivors, in Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO) (ACM, 2018) pp. 1395-1402.

S. C. Huijskens, I. W. E. M. van Dijk, R. de Jong,]. Visser, R. D. Fajardo, C. M. Ronckers,
G. O.Janssens, J. H. Maduro, C. R. Rasch, T. Alderliesten, et al., Quantification of renal
and diaphragmatic interfractional motion in pediatric image-guided radiation therapy:
a multicenter study, Radiotherapy and Oncology 117, 425 (2015).

T. Krieger and O. A. Sauer, Monte Carlo-versus pencil-beam-/collapsed-cone-dose cal-
culation in a heterogeneous multi-layer phantom, Physics in Medicine & Biology 50,
859 (2005).

CONCLUDING DI1ScuUSSION

With our society increasingly leveraging big data and machine learning to drive informed
decisions, it is imperative to design scalable machine learning algorithms, preferably such
that the outcomes of these algorithms can be understood by humans. The work in this thesis
provides steps to improve Genetic Programming (GP) in this direction, and presents practical
applications of the resulting algorithms. Ideas from modern Optimal Mixing Evolutionary
Algorithms (OMEAs) for discrete optimization have been harnessed, ported to GP, and im-
proved, to perform better-than-random variation, leading to GP-GOMEA. The findings show
that not only can GP-GOMEA solve a variety of synthetic benchmark problems in a scalable
fashion, it can also deal competitively with the real-world machine learning task of symbolic
regression when small expressions are desired. Moreover, GP-GOMEA has been found to be
particularly useful for real-world applications in the health domain. In this final chapter, mer-
its and limitations of the findings, possibilities for future work, and also potential implications
for society are discussed with respect to the research questions posed in the introduction.

209

210 9. CONCLUDING DiscUssION

STRUCTURE OF THE DISCUSSION

The discussion of this thesis is structured by first providing answers to the research ques-
tions posed in Section 1.5. These answers will highlight the merits obtained and the major
limitations encountered. The discussion proceeds by presenting general ramifications of
the results of this thesis with respect to its main goal, i.e., improving GP to be more efficient
and effective in synthesizing programs/machine learning models, with the focus of obtaining
relatively small models, to increase the chances of them being interpretable. These ramifica-
tions will include limitations and future work directions for the scientific community, as
well as implications for society.

9.1. ANSWERS TO THE RESEARCH QUESTIONS

RESEARCH QUESTION 1. How caN AN OMEA BE DESIGNED FOR GP, AND HOW DOES IT
FARE AGAINST STATE-OF-THE-ART GP ALGORITHMS?

In Chapter 2 we showed that the concepts behind OMEAs can indeed be extended to GP.
We created GP-GOMEA, a GP version of the GOMEA family of algorithms. To realize
GP-GOMEA, we enforced program structure to adhere to a fixed, maximal template, so
that linkage learning could be performed. The use of a fixed template was not found to
necessarily be a strict limitation, because it can be expanded over time when runs are
started by the Interleaved Multistart Scheme (IMS).

Experimental results on well-known benchmark problems showed that GP-GOMEA
can achieve at least competitive scalability when compared with state-of-the-art GP al-
gorithms. In particular, GP-GOMEA scaled better than other algorithms when the prob-
lem had an inherent structure that could be exploited if identified. Moreover, optimally-
performing programs obtained with GP-GOMEA were found to normally be one order of
magnitude smaller (in number of tree nodes that encode the program) than the optimal
programs obtained with the other tested GP algorithms. GP-GOMEA can thus be seen
as a promising approach with respect to the goal of this thesis, i.e., improving the effi-
ciency and effectiveness of GP, with a focus on synthesizing relatively small programs (to
increase interpretability chances).

While the work presented in Chapter 2 provides evidence that answers positively to
the research question, a gap still exists with respect to reaching the main goal of the thesis.
This is due to two major limitations:

+ The benchmark problems that were considered in Chapter 2 require an optimal pro-
gram to be found (see Sec. 2.4.1). In this context, a program is optimal if it embodies a
particular structure (for the so-called artificial benchmark problems), or if it provides
the correct output to all possible input cases (for the so-called Boolean benchmark
problems). For supervised learning problems such as symbolic regression on real-
world data, no conditions for program optimality (or, equivalently in this context,
for machine learning models) are known. More specifically, no particular program
structure is required, nor are all conceivable input/output pairs available (the data
is limited) to test whether the program (or model) perfectly captures the intrinsic
relationships in the data. Moreover, for realistic data, there are no guarantees that
the optimal problem structure exists in the program encoding. Hence, a main lim-
itation of our answer to this research question is that validating the performance

9.1. ANSWERS TO THE RESEARCH QUESTIONS 211

of GP-GOMEA on the considered benchmark problems may not be sufficiently rep-
resentative of GP-GOMEA’s performance on real-world symbolic regression (and
supervised learning in general). However, since GP-GOMEA was shown to be able
to solve benchmark problems efficiently and to find smaller programs than the other
GP algorithms, it can be expected that GP-GOMEA will have a better performance
when searching for a small program that represents a model that fits some real world
data (investigated in the next research question).

« The programs found by GP-GOMEA were typically one order of magnitude smaller
than the programs found by the other algorithms, but they still contained a rela-
tively large number of instructions, i.e., over one hundred for the largest problem
instances. For a Boolean problem, reading a program containing one hundred AND,
OR, NAND, and NOR instructions can be considered unreasonable, and will likely not
help in obtaining a full understanding of its workings (to prevent, e.g., unexpected
outcomes). Still, it is reasonable to hypothesize that GP-GOMEA’s capability of con-
sistently finding relatively small optimal programs will help the algorithm deal pro-
ficiently with scenarios where the programs are forced to be small, and in particular
small enough to make readability and interpretability much more likely.

RESEARCH QUESTION 2. DOES GP-GOMEA WORK WELL ON REALISTIC CASES OF SYMBOLIC
REGRESSION?

An answer to this research question is provided in Chapter 3. GP-GOMEA was used to syn-
thesize programs that represent machine learning models for realistic symbolic regression
datasets (of moderate dimensionality), in the form of mathematical formulas composed of
arithmetic operations. To consider realistic datasets means to overcome the first of the
two major limitations identified for the answer to the first research question, i.e., that
benchmark problems might not well represent real-world supervised learning tasks.

To overcome the second major limitation of our answer to the first research question,
we enforced relatively strict limi