Probabilistic Incremental Program
Evolution

vorgelegt von
Diplom-Informatiker
Rafat Satustowicz
aus Krakow

Von der Fakultat IV-Elektrotechnik und Informatik
der Technischen Universitat Berlin
zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
— Dr.-Ing. —

genehmigte Dissertation

Promotionsausschuf:

Vorsitzender: Prof. Dr. Klaus Obermayer
Berichter: Prof. Dr.-Ing. Erhard Konrad
Berichter: Dr. habil. Jiirgen Schmidhuber

Tag der wissenschaftlichen Aussprache: 3. April 2003

Berlin 2003

D83

The work described in this thesis was performed at IDSIA: Istituto Dalle
Molle di Studi sull’Intelligenza Artificiale in Lugano, Switzerland. It was
made possible due to funding of IDSIA, and was supported in part by the
Swiss National Fund (SNF) grant 2100-49’144.96 “Long Short-Term Mem-

ory”.

To my family

Contents

Introduction

1.1 Motivationo
1.2 Origins.
1.3 Goals of the Thesis
1.4 Outline and Principal Contributions

Probability-Based Program Search

2.1 Levin Search
2.2 Adaptive Levin Search
2.3 Self-Modifying Probabilistic Learning

Algorithmso
2.4 Conclusion

Evolutionary Algorithms

3.1 Evolution Strategies,
3.2 Evolutionary Programming
3.3 Genetic Algorithms L.

3.3.1 Genetic Programming
3.4 Population-Based Incremental Learning
3.5 Conclusion

Probabilistic Incremental Program Evolution
4.1 Programs

4.1.1 Instructions
4.1.2 Representation
4.2 Probabilistic Prototype Tree
421 Nodes e
4.2.2 Initialization,

> N

\]

11

12
14

17
19
21
22
24
25
27

4.2.3 Program Generation
4.2.4 Tree Shaping

Fitness Functions
Learning Framework
Generation-Based Learning
Elitist Learning
Termination Criteria
Summary of User-Defined Parameters
4.4 Multiple Outputs
4.5 Conclusion

Applying PIPE
5.1 PIPE Setup
Training and Test Environment Setup
Fitness Function Definition
Instruction Set Selection
Output Interface Definition
Parameter Setup
Applications
Function Regression
5.2.2 6-Bit Parity
5.2.3 3+8-Bit Multiplexer
5.2.4 Conclusion
Soccer Case Study
Learning in Multiagent Environments
Soccer Simulator
Training and Test Environment
PIPE and CO-PIPE
TD-Q Learning
Experimental Results
Conclusion
5.4 Conclusion

Evolving Structured Programs
6.1 Introduction and Previous Work

6.1.2 Non-Coding Program Parts
6.1.3 Results Overview

CONTENTS

CONTENTS

6.2

6.3

6.4

7.1

7.2

7.3
7.4

7.5

7.6

8.1

8.2

6.1.4 Outline,
Hierarchical Probabilistic Incremental Program Evolution . .
6.2.1 Hierarchical Instructions
6.2.2 SkipNodes,
Experiments Lo o
6.3.1 Function Regression
6.3.2 6-BitParity oL
Conclusion Lo

Memory

Memory Types
7.1.1 Recurrent Output Links
7.1.2 Memorizing Cells
Memory Access Strategies
7.2.1 Direct Memory Access
7.2.2 Indexed Memory Access
Multiple Outputso
Partially Observable Environments
7.4.1 Short-Term Memorizing POE Algorithms
742 Maze Tasks Lo
743 Conclusiono
Long Time Lag Challenge
7.5.1 Analog vs. Discrete Methods
7.5.2 Long Short Term Memory
7.5.3 Time-Lag Size and Algorithmic Complexity
7.5.4 Comparisons i e
7.5.5 Adding Problem
7.5.6 Temporal Order Problem
7.5.7 Conclusion
Conclusion

Automatic Task Decomposition

Filtering
8.1.1 Filtering Non—Temporal Data Sets
8.1.2 Filtering Temporal Data Sets
8.1.3 Filtering with Few Data
8.1.4 Relation to Boosting etc.
Embedded Reber Grammar
8.2.1 Task Definition

iii

76
76
76
80
82
82
85
86

89
89
89
90
91
91
91
91
91
92
92
98
98
99
100
100
101
101
104
107
107

v

CONTENTS

8.2.2 Comparison 115

8.2.3 Training and Test Environment 115

8.2.4 Neural Network Setups 115

825 PIPESetup 116

826 Results 116

8.2.7 Conclusion 118

83 Conclusion 118

9 Conclusion 119
9.1 The basic PIPE algorithm 120
9.2 Structured Programs L. 121
9.3 Memory 122
9.4 Automatic Task Decomposition 124
9.5 Final Remarks 125
Bibliography 127
Index 141
Acknowledgments 147

Zusammenfassung 149

Chapter 1

Introduction

Probabilistic Incremental Program Evolution (PIPE - Satustowicz and Schmid-
huber, 1997a,b,1999a) is a machine learning (ML) technique. Just like other
ML techniques such as, e.g., neural networks (see, e.g., Hertz, Krogh, and
Palmer (1991), or Bishop (1995) for a review), reinforcement learning (see,
e.g., Wiering (1999) for a review), or evolutionary algorithms (see Chapter
3 for a review), PIPE tries to enable computers to solve problems automati-
cally, i.e. to find solutions by “learning” from experience (examples), rather
than being explicitly programmed to solve a task. PIPE is an evolution-
ary optimization algorithm, which employs stochastic models to search for
computer programs that embody solutions to given problems.

1.1 Motivation

Solutions to a vast variety of problems can be represented by programs. Es-
pecially problems with many regularities in their solutions are interesting
for program search. Many regularities allow for high compressibility. Com-
pressible solutions allow for short algorithmic descriptions, where algorith-
mic description length is measured by Kolmogorov complexity (Solomonoff,
1964; Kolmogorov, 1965; Chaitin, 1969; Li and Vitanyi, 1993), i.e. by the
length of the shortest program, which produces the solution. In general, the
shorter the description of a solution, the smaller the search space, and there-
fore the shorter the search for the solution. Provided that program runtimes
remain short with respect to the overall search time, program search is ef-
ficient, if by mapping original solution space into program space the search
space becomes smaller.

2 CHAPTER 1. INTRODUCTION

Additionally, unlike many other ML approaches, program search is also
applicable when the size, and the shape of the solution are unknown in
advance. Most neural networks (except for growing ones), e.g., require size
and constraints (shape) of their weight matrices a priori. Reinforcement
learning techniques usually need the approximate size of the solution, e.g.,
for setting the number of state/action values (Watkins, 1989; Peng and
Williams, 1996). Most evolutionary algorithms optimize parameters of pre-
shaped mathematical models. With program search, size and shape are part
of the solution and not part of the problem description.

Program space, however, is generally a highly discontinuous space. There-
fore, gradient descent based optimization methods will usually not be appli-
cable. This leaves us with more general optimization algorithms — a choice
of randomized trial and error methods, such as, e.g., random search, stochas-
tic hillclimbing, simulated annealing, or evolutionary algorithms to search
program space.

1.2 Origins

Probabilistic Incremental Program Evolution (PIPE) emerges at the inter-
section of two ML research directions: Probability-Based Program Search
(PBPS — Schmidhuber, 1994; Wiering and Schmidhuber, 1996b; Schmid-
huber, Zhao, and Schraudolph, 1997a; Schmidhuber, Zhao, and Wiering,
1997b), and Evolutionary Algorithms (EAs — Rechenberg, 1965, 1971; Schwe-
fel, 1965, 1974; Fogel, 1962; Fogel, Owens, and Walsh, 1966; Holland, 1975;
Baluja, 1994; Baluja and Caruana, 1995). PBPS algorithms search for pro-
grams that embody solutions to problems. They employ variable probability
distributions over all possible programs to guide their searches. EAs are op-
timization algorithms that work with pools of solution candidates. They
start with a pool of randomly created solution candidates. Letting solution
candidates exchange information about the search space, EAs incrementally
create successive pools of solution candidates that better and better solve a
problem.

PIPE searches for programs and employs probability distributions to
guide its search, just like other PBPS algorithms such as, e.g., Adaptive
Levin Search (Wiering and Schmidhuber, 1996b; Schmidhuber et al., 1997b),
or Self-Modifying Probabilistic Learning Algorithms (Schmidhuber, 1994;
Schmidhuber et al., 1997a,b). PIPE employs EA-based techniques for in-
crementally finding better solution candidates, just like Genetic Program-

1.3. GOALS OF THE THESIS 3

ming (Cramer, 1985; Dickmanns, Schmidhuber, and Winklhofer, 1987; Koza,
1992), another evolutionary program search algorithm.

Thus PIPE combines two features: It employs PBPS-like probabilistic
models of program space and uses EA-based techniques to optimize the
models.

1.3 Goals of the Thesis

The goals of the thesis are to present Probabilistic Incremental Program
Evolution (PIPE), show that it works in practice, and to describe methods,
which make PIPE applicable to a wide variety of problems. Therefore, the
thesis focuses on the following areas of interest:

e Probabilistic Incremental Program Evolution (PIPE). First we
present Probabilistic Incremental Program Evolution (PIPE — Satus-
towicz and Schmidhuber, 1997a,b,1999a). Then, to illustrate PIPE’s
performance capabilities, we benchmark PIPE on a variety of problems
ranging from toy problems to complex multiagent tasks.

e Structured Programs. With “structured programs”, i.e. programs
that have constrained shapes, we investigate a way of incorporating a
priori knowledge into PIPE. If the shape of the solution is partially
known, we can use this information to reduce the size of the search
space and thus speed up the search.

e Memory. Combining PIPE with memory is essential to make PIPE
applicable to many problems. Without memory only problems for
which the Markov property holds may be solved successfully. The
Markov property requires input data to be non-ambiguous. I.e., for
each input data point there is always the same output. For all prob-
lems, where an input data point may require different outputs depend-
ing on the data point’s temporal context the Markov property does not
hold. Thus memory is crucial to enlarge the scope of problems that
can be solved by PIPE.

e Automatic Task Decomposition. Complex problems may be too
hard to be solved by PIPE within acceptable time. There are essen-
tially two ways of dealing with this problem. We can either enhance
PIPE’s performance, e.g., as discussed in the “Structured Programs”
bullet point above, or we can make the problem simpler. We present

4 CHAPTER 1. INTRODUCTION

an automatic task decomposition method called filtering (Salustowicz
and Schmidhuber, 1999b), which successively splits complex tasks into
simpler subtasks that can be solved independently. Filtering also de-
composes into solvable subtasks the possibly difficult task of integrat-
ing all the sub-solutions into a global one. Filtering is an optimization
algorithm independent method. In combination with PIPE it makes
PIPE applicable to more complex problems than PIPE could solve by
itself.

Following the sequence of the above mentioned areas of interest, we hope
to achieve our goal, to present PIPE to the reader, show him /her that PIPE
is not just of theoretical interest, and thus stimulate further research in this
direction.

1.4 Outline and Principal Contributions

In the first part of the dissertation Chapters 2 & 3 briefly review the two
main research streams — probability-based program search and evolutionary
algorithms — that engendered Probabilistic Incremental Program Evolution
(PIPE).

Chapter 2 reviews the field of probability-based program search (PBPS).
We start by presenting Levin search (LS — Levin, 1973, 1984). Although LS
is not a PBPS algorithm, it can be regarded as a starting point for the de-
velopment of PBPS algorithms. Then we present two PBPS algorithms —
Adaptive Levin Search (Wiering and Schmidhuber, 1996b; Schmidhuber et
al., 1997b) and Self-Modifying Probabilistic Learning Algorithms (SMPLAs
— Schmidhuber, 1994; Schmidhuber et al., 1997a,b). Both algorithms doc-
ument the development of the field and especially SMPLAs build the basis
for Probabilistic Incremental Program Evolution (PIPE — Satlustowicz and
Schmidhuber, 1997a,b,1999a).

Chapter 3 reviews the field of evolutionary algorithms (EAs). We
show the development of the field from its early stages starting with Evo-
lution Strategies (Rechenberg, 1965, 1971; Schwefel, 1965, 1974), and Evo-
lutionary Programming (Fogel, 1962; Fogel et al., 1966). We then continue
tracking the historic progress of EAs by reviewing Genetic Algorithms (GAs
— Holland, 1975). In this context we also present Genetic Programming
(Cramer, 1985; Dickmanns et al., 1987; Koza, 1992), a family of GAs for
evolving programs, which also stimulated the development of PIPE. Finally,
we leave the area of traditional EAs to present another one of PIPE’s origins

1.4. OUTLINE AND PRINCIPAL CONTRIBUTIONS)

— Population-Based Incremental Learning (Baluja, 1994; Baluja and Caru-
ana, 1995), a novel EA, which builds probabilistic models of its search space.

In the second part of the dissertation Chapters 4 & 5 describe PIPE and its
applications respectively.

Chapter 4 presents PIPE. It defines PIPE programs, the probabilistic
model of program space, and presents the cycles and model’s update rules
necessary for PIPE to find better and better solutions.

Chapter 5 firstly describes how to systematically setup PIPE to solve
problems. Then it tests PIPE’s performance first on toy problems and then
on a complex multiagent task — a soccer simulation.

In the third part of the dissertation Chapter 6 investigates the dependencies
between constrained program structures and PIPE’s performance.

Chapter 6 deals with the evolution of structured programs. We present
a way of incorporating a priori knowledge into PIPE by constraining pro-
gram shapes with hierarchies of program instructions. We also show how
“non-coding” program parts, i.e. instructions, which can be omitted with-
out changing the functionality of the program, can facilitate the generation
of structured programs.

In the fourth and last part of the dissertation Chapters 7 & 8 widen the
scope and size of problems that PIPE can be applied to.

Chapter 7 firstly shows several ways how memory can be integrated
into PIPE programs. In this way PIPE can solve problems for which the
Markov property does not hold, i.e. where the program output does not only
depend on the current program input, but also on the temporal context of
the input. We show that PIPE programs can successfully utilize memory to
solve a variety of problems. On problems with a so called “long time lag”,
i.e. with many time steps between a relevant input an the corresponding
output, PIPE can outperform even the best neural network algorithms, such
as, e.g., Long Short-Term Memory (Hochreiter and Schmidhuber, 1997a).

Chapter 8 presents how PIPE can be setup to solve difficult tasks within
acceptable time. Unlike the solution presented in Chapter 6, where we boost
PIPE’s performance by incorporating a priori knowledge into the algorithm,
Chapter 8 describes a novel, general automatic task decomposition method
termed filtering (Salustowicz and Schmidhuber, 1999b). Filtering not only
decomposes the complex task to be solved into solvable subtasks, but it also
decomposes into solvable subtasks the possibly also complex task of integrat-

6 CHAPTER 1. INTRODUCTION

ing the found sub-solutions into one final solution. Filtering is an an opti-
mization algorithm independent task decomposition method. In conjunction
with PIPE it allows PIPE to solve complex tasks not solvable by PIPE itself.

Finally, Chapter 9 concludes this thesis.

Chapter 2

Probability-Based Program
Search

The term Probability-Based Program Search (PBPS) describes a specific class
of search algorithms. PBPS algorithms (PBPSAs) have two pronounced
features in common that in combination distinguish them from other algo-
rithms. Firstly, they search for programs, which constitute a solution to a
given problem. Secondly, to guide their search they employ variable prob-
ability distributions over all possible programs with respect to a predefined
instruction set.

A starting point for the development of PBPSAs is Levin Search (LS —
Levin, 1973, 1984). LS is a program search algorithm, but not a PBPSA. LS
does not use variable probability distributions to guide its search. For a wide
variety of problems, however, such as time-limited optimization problems
and inversion problems, LS is optimal with respect to total expected search
time, leaving aside a problem size independent, constant factor (Levin, 1973,;
Levin, 1984; Li and Vitdnyi, 1993). LS is not necessarily optimal, if expe-
riences collectible during a search can be used to speed up future searches
(Schmidhuber, 1995, 1997; Wiering and Schmidhuber, 1996b). This is what
PBPSAs are after. PBPSAs adapt their variable probability distributions us-
ing intermediate search results to speed-up their searches. Known PBPSAs
are Self-Modifying Probabilistic Learning Algorithms (SMPLAs — Schmid-
huber, 1994; Schmidhuber et al., 1997a,b) and adaptive versions of Levin
search (Solomonoff, 1986; Wiering and Schmidhuber, 1996b; Schmidhuber
et al., 1997b) that employ a probability distribution on program space, such
as Adaptive Levin Search (ALS — Wiering and Schmidhuber, 1996b; Schmid-

7

8 CHAPTER 2. PROBABILITY-BASED PROGRAM SEARCH

huber et al., 1997b; see also Solomonoff (1986) for related ideas). The dif-
ference between ALS and SMPLAS lies in the way the algorithms alter their
probability distributions. ALS applies a fixed modification algorithm. SM-
PLAs try to find and optimize the modification algorithm itself, while solving
a given task.

Chapter 4 will show how the concept of applying a probability distri-
bution over all possible programs with respect to a predefined instruction
set has been integrated into Probabilistic Incremental Program Evolution
(PIPE — Satustowicz and Schmidhuber, 1997a,b,1999a). First, however, we
will briefly review LS, ALS, and SMPLAs.

2.1 Levin Search

Levin Search (LS — Levin, 1973, 1984), also known as universal search, is
an exhaustive search through program space. Starting with small programs
of short runtime, where program size is defined by number of total program
instructions and runtime by number of executed program instructions, LS
evaluates successively larger, and runtime-wise longer programs till it finds a
solution. More formally, LS traverses program space by evaluating programs
in order of their outputs’ Levin complexities (Levin, 1973; Levin, 1984; Li
and Vitdnyi, 1993).

To better explain Levin search, we will first describe Kolmogorov com-
plexity (Solomonoff, 1964; Kolmogorov, 1965; Chaitin, 1969; Li and Vitényi,
1993), and Levin complexity (Levin, 1973; Levin, 1984; Li and Vitanyi,
1993). Then, we will show how Levin complexity can be rewritten using a
Solomonoff-Levin distribution (Levin, 1974; Solomonoff, 1964; Géacs, 1974;
Chaitin, 1975; Li and Vitanyi, 1993). Finally, we will present Levin’s search
algorithm (Levin, 1973; Levin, 1984). In this context we will also mention
Hutter’s search (Hutter, 2001).

Kolmogorov Complexity

Let’s assume that the solution to a given problem can be written as string
s. To find s we search for a program p that produces s as output. The
Kolmogorov complexity K(s) = |p*| of string s is the length of shortest
program p*, as measured by number of program instructions, that produces
s as output and halts. K is independent of p’s programming language except
for a problem size independent constant factor as shown by the invariance
theorem (Solomonoff, 1964; Kolmogorov, 1965; Chaitin, 1969).

2.1. LEVIN SEARCH 9

In general, however, we do not know how long it takes to compute K due
to the halting problem. LS therefore uses an extension of K, termed Levin
complexity, to guide its search.

Levin Complexity

Levin complexity Kt extends Kolmogorov complexity by a time factor. Apart
from taking into account the length of a program |p|, Kt also considers the
time t(p, s) of executing program p to produce string s:

Ki(s) = min{|p| +log. t(p, 5)}

Time t(p, s) is measured by number of executed instructions, |p| denotes the
length of program p as measured by number of program instructions, and z
is the total number of instructions I; in instruction set S = {I1, I2,..., .},
from which programs can be formed.

We can rewrite the formula for Kt using a Solomonoff-Levin distribution
(Li and Vitényi, 1993). The following exposition is based on (Wiering and
Schmidhuber, 1996b; Schmidhuber et al., 1997b).

Solomonoff-Levin Distribution

A Solomonoff-Levin distribution, also known as the universal prior, defines
the a priori probability of a string s as the probability of guessing a program
p, which outputs s and halts. The distribution can be used to assign a priori
probabilities to programs in a general way. Given a sequential program
p=aiaz...ap (|p| > 0) that at each address a; can have an instruction ;
from instruction set S = {I1, I3,..., .} with z possible instructions, let the
probability of generating instruction I; at program address a; be P(I;, a;).
With a Solomonoff-Levin distribution each instruction I; € S (Vi : 1 <
i < z) has the same probability of occurring at address a; (Vj : 1 < j <
Ip|). This yields a probability matrix M, where all z - |[p| matrix entries
M;; = P(I;,a;) = % are equal. Given such a probability matrix M the
probability of generating program p is Py(p) = P(I(a1),a1) - P(I(az2),az) -

P (ap), ap) = (%)‘p‘, where I(a;) denotes the instruction I; € S, which
occurs at address a; in program p. Therefore |p| = —log, Puy(p), and we
can write:

Kt(S) = H}gn{_ logz PM(p) + logz t(p, 5)}

10 CHAPTER 2. PROBABILITY-BASED PROGRAM SEARCH

Levin’s Search Algorithm

Levin’s search algorithm (LS) successively generates programs p, that output

strings s, in order of the strings’ growing Levin complexities Kt(s,) until

a solution string s is found s = s,. From a program search perspective this

is equivalent to enumerating all programs in order of their increasing ratios
. . . oqe t(pz7sz) .

of program runtime divided by program probability Pot(ps) until a program

generates s.

In their practical implementation of LS Wiering and Schmidhuber (1996b),
and Schmidhuber et al. (1997b) have defined the following procedure:

Definitions
Let ¢(T') denote the set of not yet executed programs p satisfying Py (p) > %

Levin search (problem N, probability matrix M)
T:=1
repeat
while ¢(T) # {} and no solution found do
Generate a program p € ¢(T).
Run p until it halts or until it used up ch)'T steps.
If p computed a solution for IV, return p and exit.
T:=2-T
until 7" > Ty ax
return {}

Ty ax and c are user-defined constants. Programs p = aqas... ajp| are
generated incrementally by first selecting an instruction for address a1, then
for address ag etc. Program probabilities Pys(p) are given by matrix M as
described in the previous paragraph. Although the procedure above does not
strictly follow LS’ definition, it stays essentially equivalent to LS by keeping
the same order of complexity.

Hutter’s search (Hutter, 2001) is a recent program search algorithm,
which also shares the same order of time complexity as Levin search. It
reduces, however, Levin search’s unknown multiplicative constant factor to
5, at the expense of introducing an unknown, problem class-specific, additive
constant.

2.2. ADAPTIVE LEVIN SEARCH 11

2.2 Adaptive Levin Search

Adaptive Levin Search (ALS — Wiering and Schmidhuber, 1996b; Schmid-
huber et al., 1997b) is a heuristic extension of LS. Initially ALS works just
like LS. ALS generates and evaluates programs in order of their outputs’
growing Levin complexities. It starts with the same probability distribution
Pyr over all possible programs as LS, where Pjs is again determined by a
matrix M as described in Section 2.1. Thus given a single problem N, LS
and ALS do not differ in the way they solve it. Given, however, k successive
problems Ny, No, ..., Ni the behavior of LS and ALS is different. Being a
non-incremental program search method, LS employs a fized probability dis-
tribution to model program space. It does not alter its model to incorporate
know-how gained from solving problems. ALS, on the other hand, adaptively
modifies its variable probability distribution after having solved a problem.
It makes the program, which constitutes the found solution, more probable.
Given program ¢ = I(a1)I(az)...I(ay) with |q| instructions I(a;) from in-
struction set S = {I1,I,...,I,} is a solution to problem N, found by ALS,
ALS will increase the probabilities of generating all I(a;)’s at their corre-
sponding addresses a;, before searching for a solution to the next problem
N i1. This way ALS quicker finds solutions to successive problems, if the
solutions have a similar algorithmic description (program), where similar-
ity between programs is measured by number of equal instructions at same
addresses.

Wiering and Schmidhuber (1996b), and Schmidhuber et al. (1997b) use
the following procedures to implement ALS:

ALS (problems (Ny, Ns,...,Nt), variable matrix M)
for z:=1to k do
q := Levin search (N,, M); Adapt (¢, M)

where procedure Adapt has been defined as follows:

Adapt (program ¢, variable matrix M)

for j:=1to|q|,i:=1 to z do
if (I(a]) = Iz) then Mij = Mij —I—"y(l - Mz)
else Mij + (1 — ’Y)Mz

Parameter v (0 < v < 1) is the “learning rate”, which controls the size
of each probability adjustment.

12 CHAPTER 2. PROBABILITY-BASED PROGRAM SEARCH

2.3 Self-Modifying Probabilistic Learning
Algorithms

Self-Modifying Probabilistic Learning Algorithms (SMPLAs — Schmidhuber,
1994; Schmidhuber et al., 1997a,b) have been recently introduced in the
field of reinforcement learning (RL). RL scenarios, where agents interact
with their environment and receive sometimes positive or negative feedback
depending on their actions, are especially well suited for the application of
SMPLAsS, since SMPLAs implement “lifelong learning” (LL). LL postulates
that the entire “life” of a system is one mon-repeatable training sequence.
During system life SMPLAs search for solutions to problems Ny, Na, ..., Ng
(compare to Section 2.2). In parallel SMPLASs try to improve their problem
solving capabilities. This constitutes a significant difference to other program
search algorithms such as LS, ALS, or Genetic Programming, which use fix
solution search algorithms.

In what follows we will show how SMPLAs work and present the three
most prominent features that make SMPLAs different: (1) SMPLAs do
not generate whole programs (solution candidates) first and then execute
them. They execute each instruction immediately after it has been gener-
ated. (2) SMPLAs do not use a fix program search algorithm. They use
self-modification to change their search strategies. (3) SMPLAs implement
lifelong learning. They employ success story algorithm (SSA) to measure a
system’s lifetime performance, rather than measuring the system’s capabil-
ity to solve single problems. SSA also ensures that only beneficial system
adaptations are kept over time.

Program Generation and Execution

Like ALS, SMPLAs employ a variable probability distribution Pj; over all
possible programs to guide their search. Again Pj; can be represented
by a matrix M with entries M;; holding a probability for each instruc-
tion I; € S = {I1,I,...,1,} to occur at program address a; in a program
p = aiaz...ap,. Here z denotes the number of instructions in instruction
set S, and |p| the number of instructions in program p. ALS uses the prob-
ability distribution to generate a program q. After having generated ¢, ALS
will execute it. SMPLAs work differently. SMPLAs employ an instruction
pointer IP, which points to a program address a;p (initially IP=1). SM-
PLAs generate instruction I(ayp) for address a;p randomly with respect to
probabilities M;q,, (1 <14 < z). After having generated instruction I(asp),

2.3. SMPLAs 13

SMPLAs also generate all arguments of I(arp) in the same manner using
the n next addresses, where n is the number of I(a;p)’s parameters. After
having generated the entire instruction with its parameters, SMPLAs will
immediately execute the instruction, before shifting the IP to generate and
evaluate further instructions. For sequential programs, where IP never revis-
its or skips an address it does not matter whether instructions are generated
and executed online or whether all instructions are generated first (offline)
and executed afterwards. If, however, instruction set S contains “jump” or
“goto” instructions that allow for revisiting or skipping addresses the dif-
ference between online and offline generation and execution is significant.
The offline mode ensures that instruction I(a,,t;) executed at address a,
at timestep t; will remain unchanged when address a, is revisited by IP
at timestep to: I(ag,t1) = I(ag,t2) (t1 # t2). With online generation and
execution of instructions the equation does not necessarily hold.

Self-Modifications

To change probability values stored in matrix M, SMPLAs employ special
instructions I which are part of instruction set S. All I*¢!f instructions
modify (increase or decrease) matrix entries M;; (and renormalize matrix en-
tries My; (Vy : y # 1)) thus changing the probability of generating instruction
I; at program address a;. Since I self instructions can also set probabilities
of I*¢!f instructions the self-modifications can change SMPLAs’ probability
update algorithm (search strategy). To ensure that self-modifications are
beneficial for the overall performance of the system, SMPLAs employ the
success story algorithm.

Success Story Algorithm

Success story algorithm (SSA) identifies a system’s current performance and
ensures that only those system modifications are kept, which led to an overall
better performance. To do this SSA measures and compares reinforcement
time ratios before and after system changes. This way SSA tracks the speed
changes of reinforcement intake (reinforcement can be, e.g., given when a
problem NN, has been solved by the system).

In case of SMPLASs a system’s state V(M, R, t) at time ¢ is described by
the current probability matrix M (t), the sum of all achieved reinforcements
(rewards) R(t) from system start until ¢, and time ¢. Initially at to = 0
all M(tp)’s matrix entries M;;(to) are equal and the system has received

14 CHAPTER 2. PROBABILITY-BASED PROGRAM SEARCH

no reward R(t9) = 0. SSA saves this original state onto an initially empty
stack. Then when SMPLASs start generating and executing instructions M ()
changes whenever an 7°°!/ instruction is executed. Also R(t) changes, when-
ever the system receives reinforcement for its actions. At some points in
time SSA is called to check systems performance and undo changes to M (t),
if they have not been observed to enhance performance. SMPLAs control
the intervals of measuring system’s performance themselves by setting check-
points on their own. To set checkpoints they use special instructions I,
which are part of instruction set S. I¢*** instructions trigger SSA either
immediately or time delayed.

When SSA is triggered it runs the following procedure: If the stack, onto
which states are saved, contains only one entry Vi(M, R, t,), performance
cannot be measured. Since SSA measures reinforcement intake acceleration,
it needs at least three points in time. Thus SSA will simply save the current
state V as the second stack entry V5. If there is more than one state saved
on the stack, SSA will firstly calculate the performance of the system. Let
M(t"), R(t') and t' be the probability distribution, reinforcement, and time
(respectively) of the topmost (last) stack entry V'. Let M ("), R(t") and t”
denote the probability distribution, reinforcement, and time (respectively)
of stack entry V”, which lies right below V’. System’s performance is mea-
sured by comparing the speed differences of reinforcement intake between
checkpoints. If the success story criterion R(tiiﬁ(t,) > R(tiiﬁ/(t”), where ¢
is current time, is met, the performance of the system improved, and the
current state V' is added to the stack. Otherwise M’ is restored (the prob-
ability matrix M of current state V is replaced by M’ yielding V (M’ R,t))
and V' is popped off the stack. Then again system performance is measured
as described above. The process of measuring performance and popping off
stack entries is repeated until either the success story criterion is met, or the
stack contains only a single entry. If the success story criterion is met, V is
added to the stack. If the stack only contains a single entry, M’ is restored,
V' is popped off the stack, and the new current state V(M', R,t) is added
to the stack. In this case M’ = M (o).

2.4 Conclusion

This chapter gave an overview over the field of probability-based program
search (PBPS). For many problems there exists an optimal (with respect to
total expected search time), program search algorithm: Levin Search (LS —

2.4. CONCLUSION 15

Levin, 1973, 1984). LS is not a PBPS algorithm (PBPSA), since it does not
model program space with variable probability distributions. It can, how-
ever, be seen as a starting point for the development of PBPSAs. LS does
not use any experience collectible during its search to speed it up. PBPSAs
such as Adaptive Levin Search (ALS — Wiering and Schmidhuber, 1996b;
Schmidhuber et al., 1997b), and Self-Modifying, Probabilistic Learning Al-
gorithms (SMPLAs — Schmidhuber, 1994; Schmidhuber et al., 1997a,b) do.
They apply variable probability distributions and incrementally adapt them
by incorporating experiences gained during program search thus trying to
focus on more promising regions of the search space.

Probabilistic Incremental Program Evolution (PIPE — Salustowicz and
Schmidhuber, 1997a,b,1999a) is an alternative approach that uses evolution-
ary algorithms to optimize its probabilistic models of program space.

16 CHAPTER 2. PROBABILITY-BASED PROGRAM SEARCH

Chapter 3

Evolutionary Algorithms

Evolutionary Algorithms (EAs) is a comprehensive term for a specific class
of optimization algorithms. In general, EAs start with randomly generated
solution candidates and try to find better and better solution candidates dur-
ing the “evolutionary” optimization run. The quality of solution candidates
is measured with an objective function, also called the fitness function. A
fitness function maps solution candidates to scalar fitness values that reflect
the candidates’ performances on a given tasks. From an EA point of view
the fitness function defines the task to be solved.

EAs have two pronounced features in common that distinguish them
from other optimization algorithms (Yao, 1999). They all work with pools
(populations) of encoded solution candidates (individuals) and they all allow
for global and/or local information exchange between those solution candi-
dates. Global information exchange is achieved via the fitness function that
influences the generation of further solution candidates. Local information
exchange relies on swapping potential sub-solutions between individuals.

Traditional EAs are Evolution Strategies (ES — Rechenberg, 1965, 1971;
Schwefel, 1965, 1974), Evolutionary Programming (EP — Fogel, 1962; Fogel
et al., 1966), and Genetic Algorithms (GAs — Holland, 1975), although for
ES populations with more than two individuals were introduced at a later
stage (Schwefel, 1981). To encode solution candidates traditional EAs apply
a reversible mapping function to map parameters of a problem (phenotype)
onto fixed-length vectors of numbers or letters from a given alphabet (geno-
type). Given the encoded solution candidates (individuals), they then apply
a common algorithmic framework to search solution space. The framework
contains three, basic, repetitive steps: selection, production, and reduction,

17

18 CHAPTER 3. EVOLUTIONARY ALGORITHMS

Create an initial population Pop(i) of random individuals
Calculate each individual’s solution quality (fitness)
REPEAT

1. selection
select individuals (parents) from Pop(i) for production

2. production
apply production operators (recombination and/or mutation)
to parents to create new individuals (offspring)

3. reduction

(a) calculate each offspring’s solution quality (fitness)

(b) create a successive population Pop(i+1) from offspring
and/or parents by discarding some individuals

UNTIL a desired solution has been found or a time limit has
been reached

Figure 3.1: General algorithmic framework of traditional evolutionary algo-
rithms. Either the selection or the reduction step picks individuals based
on their fitnesses. Fitness calculations are conducted on phenotypes and
include therefore here the mapping step from genotype to phenotype.

as shown in Figure 3.1. Traditional EAs differ, however, in their mappings
from phenotype to genotype and their implementation of the three basic
steps of the algorithmic framework. Sections 3.1-3.3 will present details.
Recently a new EA termed Population-Based Incremental Learning (PBIL
— Baluja, 1994; Baluja and Caruana, 1995) has been developed. PBIL is dif-
ferent from traditional EAs in the way it samples solution space. Traditional
EAs generate a population of individuals and then successively modify those
individuals until an adequate solution has been found. PBIL, however, gener-
ates successive populations from an adaptive probability distribution, which
is refined using the best individuals of a current population. The proba-
bility distribution stores the knowledge gained during the evolutionary run
and propagates it from population to population. Thus PBIL handles the
aforementioned “information exchange between solution candidates” in a
fundamentally different way than traditional EA approaches.

In Chapter 4 we will see how PBIL’s evolution concept has been inte-

3.1. EVOLUTION STRATEGIES 19

grated into PIPE. First, however, we will briefly review ES, EP, GA, and
PBIL. With GA we will also mention its applications to evolve programs
termed Genetic Programming (GP — Cramer, 1985; Dickmanns et al., 1987,
Koza, 1992).

3.1 Evolution Strategies

Evolution strategies (ES — Rechenberg, 1965, 1971; Schwefel, 1965, 1974)
were originally developed as a method for numerical optimization. This
coined ES’ solution candidates’ encoding and production operators (selec-
tion, production, and reduction). We will review the population-based ver-
sions (Schwefel, 1981).

Encoding

With ES solution candidates are encoded close to the problem’s original
representation. Parameters of a problem are randomly juxtaposed to form
a vector-coded solution candidate (individual) & = (x1,22,...,zy,) with n
vector components x; € IR called object variables (Béack and Schwefel, 1996).
There is no emphasis neither on the position of any of the object variables in
the vector, nor on the mappings between phenotype and genotype. Usually
the identity mapping is used.

Additionally, ES also foresee the possibility of encoding so called “strat-
egy parameters” next to the object variables (Schwefel, 1981). Strategy pa-
rameters are free parameters of the ES optimization algorithm. When added
to the genotypic description they will be optimized during the evolutionary
run along with the object variables. This technique of optimizing the search
algorithm while solving the objective problem is termed self-adaptation. We
will point out relevant strategy parameters in the forthcoming Section on
production.

Selection

ES’ selection strategies are determined by the reduction schemes (see Section
on reduction below). There is no designated selection operation to define
parents in a population for production. All individuals of a current popula-
tion are used to generate offspring.

20 CHAPTER 3. EVOLUTIONARY ALGORITHMS

Production

ES use recombination and mutation to generate offspring from parents. Mu-
tation is ES’ main driving force and can be used without recombination. In
case both are used, recombination is usually applied to parent individuals
before mutation.

Recombination. There are two forms of recombination in ES: discrete
and intermediary.

Discrete recombination generates an offspring &' = (z,x5,...,2]) by
probabilistically taking some vector components from one parent ¥ = (x1, 22,
...,Tp) and some from another parent § = (y1,y2,...,Yyn) as follows:

I _
T, =

x; with pTObabﬂity Py ecombination
y; otherwise

Here Precombination 1S @ real valued number in (0,1). Offspring ¢’ is then the
complement of ' with respect to Z and 7.

Intermediary recombination works by arithmetically averaging vector com-
ponent values of parents. Given parents ¥ = (z1,z9,...,2,) and § =
(y1,Y2, - - - ,Yn) offspring & is calculated as follows:

z; =z + a(y; — ;)

Here « is a weighting parameter in (0,1). Offspring ¢’ is generated accord-
ingly.

Mutation. Given individual Z = (z1, 2, ..., z,) with n vector compo-
nents z; € IR, mutation is achieved by adding a Gaussian random number
to each vector component x;:

x; = x; + N;(0,0;)

Here N;(0,0;) is a normally distributed random number with mean 0 and
standard deviation o;. All N; are generated independently.

Parameters o; are strategy parameter that can be added to the vector-
descriptions of individuals to enable self-adaptation. Strategy parameters
are mutated right before mutating objective variables z;. If a single o is
used for all vector components z; the mutation rule for o is:

o' =0 -exp(mo- N(0,1))

Here 79 o< (y/n)~! is the “learning rate”. If a dedicated o; is used for each
vector component z; the mutation rule for o; is:

0-;: =0;- exp(Tl . N(O, 1) +7- NZ(Oa 1))

3.2. EVOLUTIONARY PROGRAMMING 21

Here the learning rates are 7/ o< (v/2n)~! and 7 o (1/2v/n)"!. Since mutat-
ing vector components independently might be inappropriate, also a com-
plete co-variance matrix can be made part of an individual (Béack and Schwe-
fel, 1996). The benefit of such self-adaptation, however, is unclear, as the
search space is exponentially increased (Yao, 1999).

Reduction

ES use one of the two deterministic reduction schemes: (A + p) or (A, u),
where p is the population size and the number of parents and A is the number
of offspring. With (A + p), p individuals with highest fitness will be selected
from parents and offspring to form the successive population. With (X,)
the p individuals will be selected from offspring only.

3.2 Evolutionary Programming

Evolutionary programming (EP — Fogel, 1962; Fogel et al., 1966) was origi-
nally developed to generate intelligent behavior by evolving finite state ma-
chines. Today, however, EP is mostly used for continuous parameter opti-
mization problems.

From an algorithmic point of view current variants of EP for numerical
optimization are very similar to ES, especially with respect to the representa-
tion of individuals, and the mutation operator including the self-adaptation
of strategy parameters. A thorough analysis of the fine differences can be
found in (Back, Rudolph, and Schwefel, 1993). The major differences be-
tween both algorithms are founded in the recombination and reduction parts,
where reduction, as with ES, determines the selection strategy. EP does not
apply any recombination and for reduction it uses a tournament selection
scheme.

During reduction each individual of p parents and A offspring competes
with ¢ opponents that are chosen uniformly random from parents and off-
spring. The individual scores a point, each time its solution quality (fitness)
is no worse than the fitness of its opponent. A total of p individuals with
highest scores form the population of the next generation, while the rest is
discarded. With ¢ < (A +) this reduction scheme is probabilistic and con-
stitutes therefore a major difference to ES’ deterministic reduction schemes.

22 CHAPTER 3. EVOLUTIONARY ALGORITHMS

3.3 Genetic Algorithms

Genetic algorithms (GAs — Holland, 1975) differ from ES and EP in terms of
solution candidates’ encoding and production operators. GAs emphasize the
use of elaborated reversible mappings between phenotypes and genotypes to
transform original problem spaces to more suitable search spaces and use
recombination instead of mutation as their main search operator.

Encoding

GAs encode parameters of problems (phenotypes) onto vectors of numbers
or letters from a given alphabet (genotypes). The user-defined, problem-
dependent mapping between phenotypes and genotypes, however, usually
goes beyond the identity mapping. The choice of the mapping and there-
fore of the genetic representation (coding) is crucial to a GA’s performance
(Goldberg, 1989; Marti, 1992). There is no predefined way of finding effi-
ciently searchable representations. There are, however, several criteria to
guide the engineering of such a genetic coding (Gruau, 1994; Salustowicz,
1995):

e completeness
Every point in phenotypic solution space is representable in the geno-
typic search space.

e closure
All individuals produced by applying production operators can be de-
coded into valid phenotypes (provided the individuals’ parents have
been valid individuals).

e proximity
Small/large changes in the genotypic description result in small/large
changes in phenotypic solutions.

e short schemata
More correlated parameters have a smaller probability of being sepa-
rated onto the two offspring during recombination than less correlated
or independent parameters (Holland, 1975).

e compactness
The length of the genotypic description, as given by number of vector
components, is minimal.

3.3. GENETIC ALGORITHMS 23

e non-isomorphism
Each genotype represents a single phenotype.

e modularity
Partial solutions are encoded just once and a mechanism for referencing
them at different places in the coding is provided to assure reusability
of information.

Selection

GAs use fitness proportionate selection. Parent individuals are selected
for production based on their solution quality. Given all p individuals
Z1,%2,...,%, of the parent population with corresponding fitness values
FIT(Z,), FIT(Z3),..., FIT(Z,), an individual i is selected for production
with probability:

FIT(Z;)

S ayoiien)

Altogether p individuals are selected for production. A single individual can
be selected multiple times.

Production

GAs apply two production steps to generate offspring from parents: recom-
bination and mutation. Recombination is GAs’ major search operator. Mu-
tation is usually of smaller importance, although some recent studies show
that mutation can speed up GAs and let the search converge more reliably
(Back, 1993; Yanagiya, 1993; Béck and Schiitz, 1996).

Recombination. Recombination is achieved with the crossover op-
erator. Crossover exchanges parts of two vector-coded individuals, thus
forming two offspring. There are various implementations of crossover.
The canonical GA introduced by Holland (1975) uses a one-point crossover.
Given two individuals & = (x1,x2,...,2,) and ¥ = (y1,Yy2,...,Yn) With n
vector components each, a single crossover point c is generated between vec-
tor component 1 and n—1 (inclusively). Then the first ¢ vector components of
Z are exchanged for vector components of and vice versa, thus creating two
offspring & = (y1,Y2, -+, Ye, Tet1s -+ Tn) and ¥ = (X1, T2y -+, Tey Yoidy -« - »
Yn)- A two-point crossover will select two crossover points ¢ and cg, where
1 <c¢ <3 <n—1, and swap the vector components between those two
points creating offspring &' = (1,Z2,...,Te;—1,Yers -+ » Yens Legtls - - Tn)

24 CHAPTER 3. EVOLUTIONARY ALGORITHMS

and ¥ = (Y1,Y2, -+ sYer—1, Tegs -« s Legy Yegt1s - - - » Yn)- An N-point crossover
will select N crossover points and work accordingly. Finally, a uniform
crossover is comparable to ES’ discrete recombination, where each vector
component of an offspring is chosen randomly from one of the two parent
individuals.

Crossover is typically executed with a certain probability P ossover- Given
Pe.rossover < 1 some individuals of the parent population might not undergo
crossover. If not changed during the following, and also probabilistic muta-
tion step, they may enter the successive population unaltered.

Mutation. Mutation alters vector components of an individual ran-
domly. Each vector component is mutated with probability Pj,tation, Where
Prutation 18 usually significantly smaller than Pp.ossover- With numerical vec-
tor components mutation will add/subtract a random number to/from the
selected vector components. With alphabet-based vector components mu-
tation will randomly exchange selected symbols for other symbols from the
alphabet.

Reduction

During the reduction step usually all parents are discarded and offspring
form the successive population. Another reduction strategy, termed elitist
strategy, discards all parents but the best parent. The new population then
consists of the best individual of the parent population and all but one (often
the worst) offspring.

3.3.1 Genetic Programming

Genetic programming (GP — Cramer, 1985; Dickmanns et al., 1987; Koza,
1992) is a GA for evolving programs. There are two main variants of GP:
“linear” GP (Cramer, 1985; Dickmanns et al., 1987), and “tree-based” GP
(Cramer, 1985; Koza, 1992). Both variants differ in the genotypes they use,
and as a consequence in the way they implement production operators.

Linear GP

Linear GP encodes programs onto variable-length vectors of numbers (Cra-
mer, 1985) or symbols (Dickmanns et al., 1987) and can therefore implement
production operators as described in Section 3.3. Neither Cramer’s (1985),
nor Dickmanns et al.’s (1987) linear GP variant, however, employs a genetic

3.4. POPULATION-BASED INCREMENTAL LEARNING 25

coding that meets the closure criterion. It seems to be difficult to find such
a coding for linear GP. Tree-based GP overcomes this drawback.

Tree-Based GP

Tree-based GP (Cramer, 1985; Koza, 1992) encodes functional programs
onto tree-structured genotypes. Programs consist of instructions that are
either functions or terminals (e.g., input variables). Each argument of a
function can either be a function or a terminal. This defines a tree structure
where each nonleaf node contains a function and each leaf node a terminal
(see Figure 3.2).

(o)
CONNC)
O ORNC)

Figure 3.2: Sample GP program tree computing f(g(x), f(z,y)), where f()
and g() are functions and x and y are terminals.

GP’s main production operator is recombination. Recombination is
achieved by swapping sub-trees between two parental individuals (see Figure
3.3). Closure is ensured, if all functions can accept as arguments all termi-
nals and all results of function evaluations with respect to data type and
value (Koza, 1992).

Further, optional GP production operators include mutation, inversion,
permutation, editing, encapsulation, and decimation (see Cramer (1985) or
Koza (1992) for implementation details).

3.4 Population-Based Incremental Learning

We have seen how traditional EAs sample search space by first generating
a pool of random solution candidates and then exploring the neighboring
regions of those solutions candidates with respect to the production oper-
ators. Population-based incremental learning (PBIL — Baluja, 1994; Baluja

26 CHAPTER 3. EVOLUTIONARY ALGORITHMS

Parents:

Offspring:

Figure 3.3: Example of recombination in tree-based GP. The two emphasized
parts of parental programs have been swapped to form two offspring.

and Caruana, 1995) works differently. It builds probabilistic models of best
solution candidates. Starting with a random model of the search space, PBIL
generates a pool of solution candidates. It then refines the model to better
represent the best of the solution candidates. New solution candidates are
then generated from the updated model, the model is refined again, and so
on. By applying a model PBIL samples the search space in a fundamentally
different way than traditional EAs.

Encoding

PBIL encodes parameters of problems (phenotypes) onto bit-vectors (geno-
types) & = (z1,x2,...,x,), where z; € {0,1}, Vi: 1 <1i < n.

3.5. CONCLUSION 27

Model

PBIL uses a vector of real-valued numbers g = (p1,p2,...,p,) for a model.
Each vector component p; represents the probability of generating a “1” at
position ¢ of a genotype & = (z1,x2,...,Zy).

Learning

Initially, PBIL starts out with a random model p'= (0.5,0.5,...,0.5). PBIL
uses the model to generate a pool of p solution candidates (population). A
solution candidate (individual) Z is generated by setting its ith component x;
to 1 with probability p; (Vi : 1 < <n). The M best performing individuals
#h, 2, ..., ZM of the population are then used to update model p. Here
M < uis a user-defined constant. For each individual #* € {z%,#2,...,#M}
model p'is updated as follows:

pi:=pi-(1—LR)+ LRz}

Here LR is the learning rate, and z is the i’th component of solution can-
didate #*. After the model update all individuals of the population are
discarded and a new population is generated using the updated model. This
cycle of generating populations and updating the model is repeated until
the model reflects a single solution with high probability. A final probability
vector (model) might be, e.g., p'= (0.99,0.01,...,0.01).

3.5 Conclusion

This chapter reviewed the field of evolutionary algorithms. It has shown the
development of the field, which started with evolution strategies (Rechen-
berg, 1965, 1971; Schwefel, 1965, 1974), and evolutionary programming (Fo-
gel, 1962; Fogel et al., 1966), has developed further with genetic algorithms
(Holland, 1975), and continues developing with population-based incremen-
tal learning (PBIL — Baluja, 1994; Baluja and Caruana, 1995). We have
also mentioned the application of genetic algorithms to program evolution
termed genetic programming (GP — Cramer, 1985; Dickmanns et al., 1987;
Koza, 1992).

Chapter 4 will now present how the ideas of PBIL and the program repre-
sentation of tree-based GP have been integrated into Probabilistic Incremen-
tal Program Evolution (PIPE — Salustowicz and Schmidhuber, 1997a,b,1999a).

28

CHAPTER 4. PIPE

Chapter 4

Probabilistic Incremental
Program Evolution

Probabilistic Incremental Program Evolution (PIPE — Satustowicz and
Schmidhuber, 1997a,b,1999a) is a new method for synthesizing programs.
PIPE searches spaces of tree-structured, functional programs that can be
constructed from predefined instruction sets. PIPE applies a generational
model: Starting with a population of randomly generated programs, it it-
eratively generates successive program populations (generations). To create
better and better programs PIPE uses an adaptive probability distribution
over all possible programs with respect to a predefined instruction set. Ini-
tially the probability distribution is random. It is then successively adapted
as follows: (1) Each generation, the probability of generating the best pro-
gram in the current population is increased; (2) occasionally the probability
of generating the best program found so far (elitist) is increased; (3) some-
times, single probabilities are mutated to better explore the search space.

PIPE emerged from three major sources of inspiration: (1) Probability-
Based Program Search; (2) Genetic Programming; and (3) Population-Based
Incremental Learning.

Probability-Based Program Search

Probability-Based Program Search Algorithms (PBPSAs) have been recently
introduced in the field of reinforcement learning (Schmidhuber, 1994; Wier-
ing and Schmidhuber, 1996b; Zhao and Schmidhuber, 1996; Schmidhuber
et al.,, 1997a,b). With PBPSAs instruction sequences are generated and
executed according to sets of variable, initially uniform probability distribu-

29

30 CHAPTER 4. PIPE

tions. The distributions are modified either by a fixed learning algorithm
such as Adaptive Levin Search (ALS — Wiering and Schmidhuber, 1996b;
Schmidhuber et al., 1997b) or by an evolving, self-modifying, probabilistic
learning algorithm (SMPLA) embedded within the distributions themselves
(Schmidhuber et al., 1997a). ALS extends Levin Search (LS — Levin, 1973,
1984), a theoretically optimal algorithm for non-incremental search in pro-
gram space, to the incremental case. SMPLAs go one step further — they try
to improve even the way they learn by modifying their learning algorithm.
PIPE similarly encodes programs in variable probability distributions,
but it is not an on-line reinforcement learning method and does not use
SMPLAs, or ALS. It is an evolutionary PBPSA that bases its search on
successive program generations comparable to those used by Genetic Pro-
gramming (e.g., Cramer, 1985; Dickmanns et al., 1987; Koza, 1992).

Genetic Programming (GP)

GP is a Genetic Algorithm for evolving programs. It starts with a popula-
tion of random programs. Each program’s quality is evaluated on a given
task. Selected programs may (1) immediately join the next generation, or
(2) exchange code with other programs (“crossover”). Programs with high
quality have higher probability of being selected than others. The procedure
is repeated for a fixed number of generations or until a satisfactory solution
has been found.

Koza’s GP variant (Koza, 1992) encodes programs in parse trees. So
does PIPE. Thus, both can be applied to the same problems. GP, however,
stores domain knowledge in program populations, whereas PIPE captures
this knowledge in a probability distribution. GP relies on crossover to gen-
erate better and better programs, whereas PIPE uses a learning method sim-
ilar to Population-Based Incremental Learning (Baluja and Caruana, 1995).

Population-Based Incremental Learning (PBIL)

PBIL generates a population of fixed-length bitstrings (solution candidates
for a given task) according to a vector of probabilities (initially 0.5). The
probabilities are then adjusted to increase the probability of the current pop-
ulation’s best individuals. This procedure is repeated until all probabilities
are either 1.0 or 0.0. Thus, PBIL does not store domain knowledge in a
population, but in a probability distribution.

4.1. PROGRAMS 31

PIPE follows PBIL’s update algorithm but uses a different representa-
tion. PIBL stores the probability distribution in a fixed-length probability
vector that encodes probabilities for bits in the solution representation be-
ing set. PIPE, however, needs to handle tree-coded programs of varying size
and uses an incrementally growing and shrinking Probabilistic Prototype Tree
(PPT) which contains the probability distribution over all possible programs
with respect to a predefined instruction set. Furthermore, PIPE significantly
extends PBIL’s initialization and update rules to accommodate tree-coded
programs.

Outline

The remainder of this chapter is organized as follows: Section 4.1 defines
instructions — the basic program elements — and describes the tree-structure
of programs. Section 4.2 is dedicated to the Probabilistic Prototype Tree
(PPT) that stores the probability distribution. Section 4.3 presents PIPE’s
learning algorithm and explains all update rules. Section 4.4 shows how
PIPE handles multiple outputs. Section 4.5 concludes this chapter.

4.1 Programs

This section defines a program’s elementary parts (instruction set) and its
representation (tree structure).

4.1.1 Instructions

Programs are made of instructions from an instruction set S = {I1, Is,..., I}
with z instructions. Instructions are user-defined. Each instruction is either
a function or a terminal. Instruction set S therefore consists of a function set
F = {f1, fo,..., fr} with k functions and a terminal set T' = {¢1,t2,...,t;}
with [terminals, where z = k + [holds. Functions and terminals differ in
that the former have one or more arguments and the latter have zero. For
instance, to solve a one-dimensional function regression task one might use
F = {+,—,%,%, sin, cos,exp,rlog} and T = {z, R}, where % denotes pro-
tected division (Vy,z € R,z # 0: y%z = y/z and y%0 = 1); rlog denotes
protected logarithm (Vy € IR,y # 0: rlog(y)=log(abs(y)) and rlog(0) = 0);
x is an input variable; and R is a generic random constant.

32 CHAPTER 4. PIPE

Generic Random Constants (GRCs)

GRCs are used by PIPE to allow for random constants in programs. A GRC
(compare also “ephemeral random constant” — Koza, 1992) is a zero argu-
ment function (a terminal). When accessed during program creation, it is
either instantiated to a random value from a predefined, problem-dependent
set of constants or a value previously stored in the PPT (see Section 4.2.3).

Closure

The instruction set must comply with the closure principle (Koza, 1992).
The closure principle ensures that all created programs are syntactically
correct. To ensure closure for PIPE every terminal and every output of a
function must be acceptable as another function’s argument with respect to
type and value.

4.1.2 Representation

Programs are encoded in n-ary trees, with n being the maximal number
of function arguments. Each nonleaf node encodes a function from F and
each leaf node a terminal from 7. The number of subtrees each node has
corresponds to the number of arguments of its function. Each argument is
calculated by a subtree. The trees are parsed depth first from left to right.
Sample program trees for the function regression task of Section 4.1.1 are
shown in Figure 4.1.

Figure 4.1: Sample program trees for function regression. (left) f(z)=

cos(exp(x)+(x%0.71)); (vight) f(z)=((sin(x)+(x%0.11))*(z-rlog(z)).

4.2. PTT 33

4.2 Probabilistic Prototype Tree

The Probabilistic Prototype Tree (PPT) stores the knowledge gained from
experiences with programs and guides the evolutionary search. It holds
random constants and the probability distribution over all possible programs
that can be constructed from a predefined instruction set. The PPT is
generally a complete n-ary tree with infinitely many nodes, where n is again
the maximal number of function arguments.

4.2.1 Nodes

All PPT nodes are created equal. Each node N;, with j < 0 contains
a random constant R; and a variable probability vector]3] Each 1:_"J has z
components, where z is the number of instructions in instruction set S. Each
component P;(I) of 1:_"J denotes the probability of choosing instruction I € S
at node N;. All components of vector ﬁ] sum up to one: Y roq Pj(I) = 1.

4.2.2 Initialization

Each PPT node Nj requires an initial random constant R; and an initial
probability P;(I) for each instruction I € S. A value for R; is randomly
taken from the same predefined, problem-dependent set of constants, from
which also the GRC function draws its instantiations (see Section 4.1.1). To
initialize instruction probabilities a predefined, constant probability Pp for
selecting an instruction from 7" (the terminal set) and (1 — Pr) for selecting
an instruction from F (the function set) are used. Each vector]3] is then
initialized as follows:

1—-Pr

Pi(I):=—VI:1€T and P;i(I) = k‘ ,VI:I€F,

where [is the total number of terminals in T and k is the total number of
functions in F'. Figure 4.2 shows an initialized PPT node for the function re-
gression task defined in Section 4.1.1 with Pr = 0.6 and R; picked uniformly
random from [0;1).

4.2.3 Program Generation

Programs are generated according to the probability distribution stored in
the PPT. To generate a program PROG from PPT, an instruction I € S
is selected with probability P;(I) for each accessed node N; of PPT. This

34 CHAPTER 4. PIPE

Px) =03

AR) =03

R+ =005
A-) =005
R*) =005
F(%) =0.05
A(sin) = 0.05
F;(cos) =0.05
R(exp) = 0.05
J(rlog) =0.05
Rj =045

N;

Figure 4.2: Initialized PPT node N; with Pr = 0.6 and R; € [0;1). N;
holds a probability P;(I) for each instruction I € S (see Section 4.1.1) and
a random constant R; to allow for GRCs.

instruction is denoted as I;. Nodes are accessed in a depth-first way, starting
at the root node and traversing PPT from left to right. Once I; € F' (a func-
tion) is selected, a subtree is created for each argument of I;. If I; = R (the
GRC), then an instance of R, called V;(R), replaces R in ProG. If P;(R)
exceeds a threshold T, then Vj(R) = R; (the value stored in the PPT).
Otherwise V;(R) is generated uniformly random from a problem-dependent
set of constants. Starting with Ny (root node) the program generation pro-
cess can be recursively written as follows:

create_program node _from PPT node (*ppt node, *programnode) {
probabilistically select instruction I; according to f’j;
/* special treatment, if instruction is a GRC */
if I; = R then {
if Pj(R) > Tg then I; :=V;(R) = R;;
else [; :=V;(R) = ‘‘random value from problem-dependent set’’;
}
for (i:=0; i< ‘‘number of I;’s arguments’’; ¢:=1i+ 1)
create_program node_from PPT node (ppt node—next[i],
program node—next[i]) ;

4.2. PTT 35

Figure 4.3 illustrates the relation between a PPT and a possible program
tree for the function regression example of Section 4.1.1.

oV

RX) =001 [>« _ .
RR) =001 S

R(+) =004 R
R-) =002 RS Rolng
R(*) =005 SN
R(%) =0.01 =
R(sin) =0.01 R
R(cos) =0.02 O
B(exp)=0.8 2
R(rog)=0.03 | _-- AN
R, =045 -- 071

Rg =071

Figure 4.3: (left) Example of node Ni’s instruction probability vector P
and random constant R;. (middle) Probabilistic prototype tree PPT with
details of node Ng. (right) Possible extracted program PROG. At the time of
creation of instruction I, the dashed part of PROG did not yet exist. Ig = R
is instantiated to Is := Vg(R) = Rg = 0.71 because probability Ps(R) (not
shown) exceeds the random constant threshold T's.

4.2.4 Tree Shaping

A complete PPT is infinite. A “large” PPT is memory intensive. Recall that
each PPT node holds a probability for each instruction, a random constant,
and n pointers to following nodes, where n is PPT’s arity. Empirical evi-
dence, however, indicates that it suffices to maintain a PPT with on average
roughly two to three times as many nodes as in the current best solution
(best program of generation). To reduce memory requirements, it is thus
possible to incrementally grow and prune the PPT.

Growing

Initially, the PPT contains only the root node. Further nodes are created
“on demand” whenever I; € F is selected and the subtree for an argument
of I; is missing. Figure 4.4 shows how the PPT grows incrementally.

36 CHAPTER 4. PIPE

1st Program 2nd Program

Initial PPT ° @ PPT after generation ° @ PPT after generation

of 1st Program of 2nd Program

Figure 4.4: Growing the PPT “on demand”. Initially the PPT contains only
the root node (left). Additional nodes are created with each program that
accesses non-existing nodes during its generation.

Pruning

PPT subtrees attached to nodes that contain at least one probability vector
component above a threshold T’p can be pruned. If Tp is set to a sufficiently
high value (e.g., Tp = 0.99999) only parts of the PPT will be pruned that
have a very low probability of being accessed. In case of functions, only
those subtrees should be pruned that are not required as function arguments
(see Figure 4.5). Apart from reducing memory requirements, pruning also
helps to discard elements of the probability distribution that have become
irrelevant over time.

4.3 Learning

PIPE attempts to find better and better programs by biasing its search
towards programs that are statistically similar to previous best solutions.

4.3.1 Fitness Functions

What makes a program better than another? In order to answer this question
it is necessary to setup a quality measure for programs. PIPE uses fitness
functions. A fitness function is problem-dependent and user-defined. It

4.3. LEARNING 37

P =097 | o o P =0.001
P(R) =0.008 P(R) =0.002
) 0003 R) 000
P(*) =0.006 P(*) =0.005
P(%) =0002 b b P(%) =0.001
P(sin) =0.003 P(sin) = 0.95
P(cos) = 0.001 R P(cos) = 0.002
P(exp) = 0.004 BB R\.,_ P(exp) = 0.03
P(rlog) = 0.002 R Sa oy S P(rlog) = 0.003
R | 1 | 1 | 1 .
R=0.23 VPP P P R=0.77
TRIOTRY O [RDOTRY
Prototype Tree

Figure 4.5: The dashed parts of the prototype tree can be pruned because
the probabilities of the adjacent nodes exceed threshold value Tp = 0.9 and
contain high probabilities for a terminal (left) and a single function with one
argument (right).

defines the task to be solved. A fitness function maps programs to scalar,
real-valued fitness values that reflect the programs’ performances on a given
task. For PIPE to work properly fitness functions need to comply with the
following: (a) Fitness values must not be negative. (b) Programs embodying
better solutions need to be mapped to smaller fitness values. Thus, PIPE
seeks to minimize fitness and PIPE’s fitness functions can therefore be seen
as “error measures”.

A secondary non-user-defined objective for which PIPE always optimizes
programs is program size as measured by number of nodes. Among programs
with equal fitness smaller ones are always preferred. This objective consti-
tutes PIPE’s built-in Occam’s razor.

4.3.2 Learning Framework

PIPE combines two forms of learning: Generation-Based Learning (GBL)
and Elitist Learning (EL). GBL is PIPE’s main learning algorithm. EL’s
purpose is to make the best program found so far an attractor. PIPE exe-
cutes:

38 CHAPTER 4. PIPE

GBL

REPEAT
with probability P,; DO EL
otherwise DO GBL

UNTIL termination criterion is reached

Here P,; is a user-defined constant in [0;1].

4.3.3 Generation-Based Learning

PIPE learns in successive generations, each comprising five distinct phases:
(1) creation of program population, (2) population evaluation, (3) learning
from population, (4) mutation of prototype tree, and (5) prototype tree
pruning.

(1) Creation of Program Population. A population of programs
ProG; (0 < j < PS; PSis population size) is generated using the prototype
tree PPT, as described in Section 4.2.3. The PPT is grown “on demand”
(see Section 4.2.4).

(2) Population Evaluation. Each program PROG; of the current pop-
ulation is evaluated on the given task and assigned a fitness value F'IT(PROG)
according to the predefined fitness function (see Section 4.3.1). The best
program of the current population (the one with the smallest fitness value)
is denoted PROG;. The best program found so far (elitist) is preserved in
ProG*.

(3) Learning from Population. Prototype tree probabilities are mod-
ified such that the probability P(PROGy) of creating PROG;, increases. This
procedure is called adapt PPT_towards (PROG}). It increases P(PROG}) in-
dependently of PROG}’s length. This is important as otherwise a strong bias
towards creating short programs is induced and hampers evolution. Proce-
dure adapt PPT_towards (PROG;) works as follows:

First P(PROG) is computed by looking at all PPT nodes N; used to
generate PROGy:

P(PROGy) = 1T P;(I;(PrOGy)) (4.1)
j:N; used to generate PROG,

where I;(PROG}) denotes the instruction of program PROG;, at node position
j. Then a target probability Prarcer for PROG is calculated:

e + FIT(ProG%)

P = P(ProG 1 — P(PROGy)) - 1
rARGET = P(b) + ((b)) - lr ¢ + FIT(PROG})

(4.2)

4.3. LEARNING 39

Here Ir is a constant learning rate and ¢ a positive user-defined constant.
«+FIT(PROG™)
e+FIT(PROG,)
steps are taken towards programs with higher quality (lower fitness) than to-

wards programs with lower quality (higher fitness). Constant & determines
the degree of fdl's influence. If V FIT(ProOG®): ¢ < FIT(PrROG®), then
PIPE can use small population sizes because generations containing only
low-quality individuals do not affect the PPT much.

Given Prarger, allsingle node probabilities P;(I;(PROGy)) are increased
iteratively (in parallel):

Fraction implements fitness-dependent learning (fdl). Larger

REPEAT UNTIL P(PROGb) > PTARGET :
Pj([j(PROGb)) = Pj([j(PROGb)) + Clr Ar - (1 — Pj(Ij(PROGb))) (43)

Here "

is a constant influencing the number of iterations. The smaller ¢!
the higher the approximation precision of Prarapr and the number of re-
quired iterations. Setting ¢!” = 0.1 turned out to be a good compromise
between precision and speed. Then all adapted vectors]3] are renormalized
by diminishing the values of all non-increased vector components propor-

tionally to their current value:

1- > F(I")
. — . . _ I*esS . . .
() = P;(I)| 1 AT i VP;(I) : T # I;(PROG,)
I*eS

Finally, each random constant in PROGy is copied to the appropriate node
in the PPT: if I;(PrROG;) = R then R; := V;(R).

(4) Mutation of Prototype Tree. Mutation is one of PIPE’s major
exploration mechanisms. Mutation of PPT probabilities is guided by the
current best solution PROG,. PIPE explores the area “around” PROGy,.
All probabilities P;(I) stored in nodes N; that were accessed to generate
program PROG; are mutated with probability Pyy,:

Py
FPar, = [PROGY| (4.4)
where the user-defined parameter Pj; defines the overall mutation probabil-
ity, z is the number of instructions in instruction set S (see Section 4.1.1)
and |PROG| denotes the number of nodes in program PROG;. To prevent
rapid growth of mutation probability Py, it is made dependent on PROG}’s

40 CHAPTER 4. PIPE

size. The justification of the square root is empirical: Larger programs im-
prove faster with higher mutation probability. Selected probability vector
components are then mutated as follows:

where mr is the mutation rate, another user-defined parameter. All mutated
vectors P; are finally renormalized:

.- bild)
PJ(I) T ijj(l*)

I*eS

VP;(I): 1€ 8

From Assignment 4.5 one can see that small probabilities (close to 0) are
subject to stronger mutations than high probabilities. Otherwise, mutations
would tend to have little effect on the next generation.

(5) Prototype Tree Pruning. At the end of each generation the
prototype tree is pruned, as described in Section 4.2.4.

4.3.4 Elitist Learning

During elitist learning (EL), the PPT is adapted towards the elitist program
ProOG® by calling adapt PPT_towards (PROG®); then the PPT is pruned.
However, neither is a population created and evaluated nor are the proba-
bilities of the PPT mutated, making EL computationally cheap. EL focuses
search on previously discovered promising parts of the search space. It is
particularly useful with small population sizes and works efficiently in the
case of noise-free problems.

4.3.5 Termination Criteria

PIPE is run either for a fixed number of program evaluations (PE) (time
constraint) or until a solution with fitness better than FIT is found (quality
constraint).

4.3.6 Summary of User-Defined Parameters.

The following above-mentioned parameters have to be set by the user:

4.4. MULTIPLE OUTPUTS 41

Pr :

PE :

FIT; :

Initial Terminal Probability. The initial probability of selecting
an instruction from terminal set 7' at each node N;. A high Pr
forces PIPE to start its search with small programs (containing
few nodes) and prevents programs from growing rapidly.

Elitist Update Probability. Probability of learning from the elitist
program PrROG® instead of a new generation of programs.
Population Size. The number of programs created and evaluated
during one generation.

Learning Rate. Influences the step size for adapting the probabil-
ities of PPT during each learning phase.

Fitness Constant. Determines the impact of fitness-dependent
learning by introducing an absolute fitness scale.

Mutation Probability. Probability of mutating probabilities in
PPT. High P,’s stimulate exploration but may destabilize
learning.

Mutation Rate. Strength of mutation of a single selected prob-
ability vector component of the PPT. A large mr ensures high
impact of mutations on future generations. Many small muta-
tions tend to make all PPT probability distributions uniform (see
mutation probability above).

Random Constant Threshold. Probability threshold that defines
when to try new values for R;’s. A too high T tends to make
PIPE forget previously discovered good random constants.
Prune Threshold. Probability threshold used in the pruning pro-
cedure to reduce memory requirements.

Program Evaluations. Maximal number of programs tested during
system life (time constraint).

Satisfactory Fitness. Fitness of a satisfactory solution. Once a
satisfactory solution is found, the search can be stopped (quality
constraint).

4.4 Multiple Outputs

To accommodate for vector—valued outputs PIPE applies multiple programs

(MPs).

If np is the number of outputs then a “full” program will consist

of np independent programs generated according to distinct probabilistic
prototype trees. One program is generated for each output and the return

42 CHAPTER 4. PIPE

value of each program is taken as an output value.

4.5 Conclusion

This chapter presented PIPE — a novel method for automatic program syn-
thesis. It showed how PIPE searches program space by generating successive
populations of programs according to a probability distribution over all pos-
sible programs with respect to a predefined instruction set. The probability
distribution guides the search and is adapted according to the search results.
Furthermore, all user—defined parameters were listed and summarized. Fi-
nally, a setup for PIPE with multiple outputs was presented.

Chapter 5

Applying PIPE

This chapter shows how PIPE can be applied to solve a variety of tasks.
Section 5.1 contains a step by step description on how to setup PIPE for an
application. Section 5.2 presents three applications: function regression, 6-
bit parity, and 348-bit multiplexer. Section 5.3 contains a soccer case study.
Section 5.4 concludes this chapter.

5.1 PIPE Setup
To apply PIPE the following steps need to be taken:
1. Training and Test Environment Setup
2. Fitness Function Definition
3. Instruction Set Selection
4. Output Interface Definition (optional)

5. Parameter Setup

5.1.1 Training and Test Environment Setup

A training and test environment that allows for establishing program quality
needs to be derived from the problem definition. An environment in this
context can be, e.g., a training and a test data set.

43

44 CHAPTER 5. APPLYING PIPE

5.1.2 Fitness Function Definition

The fitness function must define the goal of PIPE’s optimization process. It
needs to be setup following the guidelines from Section 4.3.1.

5.1.3 Instruction Set Selection

The choice of the instruction set has great influence on PIPE’s performance.
In general there is no recipe which instructions to pick, since the choice of an
appropriate instruction set is problem-dependent. Only a “weak” guideline
can be given as to how to choose a terminal and function set.

Terminal Set Selection

The terminal set must at least include all relevant input variables. It may
also include a GRC and further terminal instructions. The minimal con-
straint on the GRC is to insure closure with respect to type and value range.

Function Set Selection

To select an appropriate function set a priori knowledge about the problem
is required. Choosing an inappropriate function set will prevent PIPE from
finding a useful solution.

Many problems, however, can be solved using a single basic function
set (bfs) as a basis and enriching it with further instructions when neces-
sary. Establishing a bfs that serves well for a particular group of problems
is non-trivial and beyond the scope of this thesis. A bfs that has been em-
pirically shown to work well for a wide variety of problems is the function
set presented in Section 4.1.1. It has been successfully applied to: func-
tion approximation, parity problems, learning in partially observable envi-
ronments (Salustowicz and Schmidhuber, 1997a), learning soccer strategies
(Salustowicz, Wiering, and Schmidhuber, 1998), and time series prediction
(Satustowicz and Schmidhuber, 1999b).

5.1.4 Output Interface Definition

The result of applying PROG to data x is denoted as PROG(x). For some
problems PROG(x) needs to be transformed to a different output value
and/or type to constitute a solution. This is what a predefined output
interface does (compare also “wrappers” — Koza, 1992). If, e.g., the instruc-
tion set from Section 4.1.1 is used to evolve solutions for a Boolean problem

5.2. APPLICATIONS 45

requiring a “true” or “false” as an output, PROG(z) can transformed to ac-
commodate for the Boolean nature of the problem by using the following
output interface:

if PROG(z) < O then ‘‘false’’ else ‘‘true’’

5.1.5 Parameter Setup

All user-defined parameters (see Section 4.3.6) need to be set. In general the
optimal parameter setting is problem-dependent. There are, however, a few
“rules of thumb” that have empirically been proven to work well:

e Initial terminal probability Pr is the most important parameter. It
should be initially set to a high value (e.g., Pr = 0.8) to focus the
search on small programs first, as smaller programs require less eval-
uation time. In case PIPE cannot improve its solutions and no larger
programs are tired after some generations, PIPE needs to be restarted
with a smaller value for Pp that favors larger programs.

¢ Elitist update probability P.; needs to be set to 0 for problems with a
noisy program evaluation.

e Population size PS should be kept small (exceptions exist for obtain-
ing speed-ups through parallelization — see Section 7.4) in favor of an
increased number of generations.

e Apart from program evaluations PE and satisfactory fitness FITg
which are the termination criteria, all remaining parameters tend to
work well with “standard” values (see Section 5.2).

5.2 Applications

Three distinct problems have been selected to demonstrate how PIPE can
be applied:

e function regression
e G-bit parity

e 3+8-bit multiplexer

46 CHAPTER 5. APPLYING PIPE

All selected problems verify empirically that the “rules of thumb” from Sec-
tion 5.1.5 work. Each experiment on its own adds more insight into how
PIPE works.

Function Regression. The task is to evolve a program constituting
an approximation to a continuous, one-dimensional function. A non-trivial
function is selected to prevent PIPE from simply guessing it. Since the
function is continuous, infinite many fitness values exist and allow for a slow
incremental adaptation.

6-Bit Parity. The 6-bit parity problem is a discrete task involving
just 65 distinct fitness values. The limited number of fitness values allows
for testing PIPE’s built-in Occam’s razor. Furthermore, 6-bit parity has
been selected to show that the same basic function set as for the function
regression problem can be applied. Finally, an output interface is presented.

3+8-Bit Multiplexer. The 3+8-bit multiplexer problem has been cho-
sen to verify that PIPE works well with different function sets and program
trees of various arities.

5.2.1 Function Regression

The function to be approximated is
f(x) =23 e % cos(x) - sin(z) - (sin(x) - cos(z) — 1)
which is plotted in Figure 5.1.

1
08
0.6
04
0.2

0

f(x)

-0.2
-0.4
-06
-0.8

1 L L L L

Figure 5.1: f(z) = 2% - e - cos(z) - sin(x) - (sin?(x) - cos(x) — 1)

Training and Test Environment

The training data set Dy, samples f at 101 equidistant points in the in-
terval [0;10]. The test data set D samples f at 101 equidistant points in

5.2. APPLICATIONS 47

the interval [0.05;10.05]. Dy, is used to calculate fitness values during pro-
gram evolution, and Dy, is used to test how well the best evolved programs
generalize.

Fitness Function

The fitness value of each program PROG is FIT(PROG) = > y,ep,, |f(z) —
PRroG(z)|. To verify how an evolved program generalizes its generalization
performance is calculated: GEN(PROG) = > y,cp,. |f(z) — PrROG(z)|. To
obtain an idea how generalization performances relate to function approxi-
mation quality, consider Figure 5.2. The graphs show that with increasing
GEN(PROG) approximation quality becomes worse.

o5

0.6
0.4

T T
GEN(PROG)=1.18
D_te

T T
GEN(PROG)=4.8
D_te

+

X X
1 T T T 1 T T
08 |- Rt GEN(PROG)=9.89 B 08 |- Rt GEN(PROG)=20.46 B
06 o+ D_te + i 06 + o+ D_te 4
+ . +
+, +
y 1 04 + + |
B 02 - + * 4
= 2 o I * P LT
= APy R T N T i
. +
04 | P E
06 [o -
+
08 - s B
1 L L L L
0 2 4 6 8 10

Figure 5.2: Test data set Dy and approximations with GEN(PrRoG) = 1.18
(upper left), GEN(PROG) = 4.8 (upper right), GEN(ProG) = 9.89 (lower
left), and GEN(PrROG) = 20.46 (lower right).

Instruction Set

Following function and terminal sets have been used: F = {+, —, x, %, sin,
cos,exp,rlog} and T = {z, R} (see Section 4.1.1). R denotes the generic
random constant (GRC) in [0;1).

Output Interface

No specific output interface is required.

48 CHAPTER 5. APPLYING PIPE

Parameter Setup

The termination criteria are set to: PE = 100,000 and FITs = 0.001. The
initial terminal probability is Pr=0.8. The remaining parameters are set
to “standard” values: ¢ = 0.000001, P,=0.01, P5=10, Ir=0.01, P;;=0.4,
mr=0.4, Tr=0.3, Tp=0.999999.

Results

Since PIPE is a stochastic learning algorithm it does not always deliver
a solution of same quality. 200 independent runs have been conducted to
obtain an overview over best solutions evolved by PIPE. PIPE’s performance
on training and test data sets (Dy. and Dy, respectively) is summarized in
Figure 5.3. Performance v is plotted against percentage of programs with
FIT(ProG) < v and GEN(ProG) < v. PIPE’s performance is very similar

PIPE PIPE
100 T T 100 T T
2 2
80 4 80 B
é’ L e é’ PP
5 60| + B 5 60| A B
5 - 5 et
2 2
g 40 g 40
g 20 - / § 20 -
2 2
o s | o ¥ | | |
0 1 2 3 4 5 0 1 2 3 4 5
training performance generalization performance

Figure 5.3: Cumulative histograms of PIPE’s performance on the training
(left) and test (right) data sets for the function regression problem. The
plots show the range with the best performing programs. Programs with
FIT(ProG) > 5 and GEN(PROG) > 5 are of little interest due to the bad
solution quality they embody (see Figure 5.2 for reference).

on both data sets. The evolved programs generalize almost as well as they
learn. Though not all evolved programs constitute a good solution, 50% of
all runs achieved solutions with FIT(PrRoG) < 2.6 and GEN(PRrRoG) < 2.8
(see Figure 5.2 for reference).

A program with generalization performance GEN(PROG) = 1.18 that
was found by PIPE after 99,390 program evaluations contains 248 nodes
and computes:

(sin(((x-((cos(((sin((sin(cos((rlog(sin(0.350466))* (((cos(
sin((cos((x-((rlog(cos(((0.359722+cos(x))+(x-0.082538)))) * (x—
(0.039232-((x%0.440611)%0.499641))))*0.025812)))-(0.914140%
(xx(0.506207%0.379995)))))) *(x-((x)sin(rlog(0.334052)))+rlog(((

5.2. APPLICATIONS 49

x+x)*x))))) %hexp(exp((0.743179-0.128703))))+x)))) %(((0.507077*
((exp((x-x))-((cos(sin((x-(cos((0.915233%x))-exp(0.709387))))) -
0.492354)%0.840741)) %cos ((x*0.981004)))) * ((x%cos (x)) *(0.091520%
(0.112682+sin(sin(x))))))+x)))%x) % (sin((((cos(sin(rlog((exp(x)%
co0s(0.712427)))))+0.933998)7%0.609029) -cos (0.936381)))% (((cos(
0.790039) - (x-0.069650)) *sin(x))-x))))+sin(exp(rlog(x))))-((
5in(0.375208) * (exp(rlog(exp(0.697598)))%cos((cos(0.585192) -
0.095603))))+(((0.395458-(0.282354*sin(0.822447)))%(0.533448Y
(0.785156%0.918876))) *cos ((x-(0.639372%0.524799)))))))-sin((
sin(sin((sin(sin(sin(x)))%sin(cos(0.287498)))))+x))))*(cos (((
0.482642+((0.183318%(0.338145+0.069478)) *cos ((x+0.496698))))+
(cos ((x*0.649953)) %cos(0.151858))))%(sin(sin((0.470205+(x%
((exp(rlog(x))%(x+0.684205))+0.058088)))))+((exp(rlog((x%
0.994150)))%cos(0.178977)) *(cos (0.785409) *0.700799)))))

Conclusion

PIPE exhibits a stochastic learning behavior. Solution quality varies for
every evolutionary run. In 50% of all runs, however, PIPE finds programs
embodying high quality solutions. Generalization performances are similar
to training performances. Programs that perform well on the training set
also generalize well. Similar to programs evolved by Koza’s GP variant
(Koza, 1992), PIPE’s programs differ much from programs created by human
programmers.

5.2.2 6-Bit Parity

The 6-bit parity function has six Boolean arguments represented by integers:
1 for true and 0 for false. It returns 1 if the number of nonzero arguments
is odd and 0 otherwise.

Training and Test Environment

All 64 patterns are used for training.

Fitness Function

The fitness of a program is the number of patterns it classifies incorrectly.
Best fitness for classifying all patterns correctly is 0 and worst fitness for
classifying no patterns correctly is 64.

50 CHAPTER 5. APPLYING PIPE

Instructions Set

The terminal set is set to T' = {xg, 1, T2, 3, T4, T5, R}, where xg, 1, 22, x3,
x4, x5 are input variables and R the GRC in [0;1). Function set F' (and GRC
interval) is identical to the function set used for the function regression task
in Section 5.2.1.

Output Interface
To fit the Boolean nature of the problem the real-valued output of a program
is mapped to 0 if negative and to 1 otherwise.

Parameter Setup

The termination criteria are set to: PE = 500,000 and FITs; = 0.001. The
initial terminal probability is Pr=0.6. The remaining parameters are set
to “standard” values: ¢ = 0.000001, P.,;=0.01, P5=10, Ir=0.01, P;;=0.4,
mr=0.4, Tr=0.3, Tp=0.999999.

Results

100 independent test runs were conducted. Table 5.1 summarizes the results.
In 71% of all runs PIPE found a perfect solution within the given time

Table 5.1: Summary of 6-bit parity results.

6-bit parity

Program Evaluations Nodes
solved min— med -max min—-med-max
71 % 8,100-75,210-483,790 25— 63 231

frame. The median successful run took 75,210 program evaluations. The
appearance of solutions differs wildly. Perfect solutions are made of 25 to
231 nodes, while 63 nodes are needed in the median.

Conclusion

Due to its build-in Occam’s razor PIPE solves the 6-bit parity problem
in 71% of all runs. Experiments without the Occam’s razor (not presented)

5.2. APPLICATIONS 51

deliver significantly worse results. Furthermore, given an appropriate output
interface, a basic function set (the same as for function regression) can be
used.

5.2.3 3+48-Bit Multiplexer

The input of the Boolean x+y multiplexer function consists of x address
bits a; and y = 2% data bits d;. The target is to output the data bit d;
addressed by the address bits ji19 = (ag . ..az—1)2. The 3+8-bit multiplexer
function has therefore 11 Boolean arguments. Figure 5.4 shows a possible
input/output configuration for the 3+8-bit multiplexer.

Output

Figure 5.4: The 3+8-bit Boolean multiplexer function with address lines
ag, a1,a2 and data lines dy,dq,ds,ds, ds, ds,dg,d7. The output is the value
of data bit ds, which is singled out by address bits ajacas that are set to
1019 = 519 respectively.

Training and Test Environment

All 2048 possible patterns are used for training.

Fitness Function

The fitness of a program is the number of incorrect outputs when applying
all input patterns. Best fitness, if a program evaluates to the correct output
for each input pattern, is 0 and worst fitness for not achieving a single correct
output is 2048.

52 CHAPTER 5. APPLYING PIPE

Instruction Set

The terminal set is set to T' = {ay, a1, as,dy, d1,d2,ds, ds, ds, dg, d7}, where
ap, a1, as,dy,d1,ds,ds, dg,ds,dg,d; are input variables. No distinction is
made between address inputs and data inputs for PIPE. The following func-
tion set was used: F = {and,or,not,if}, where if is a three argument
function that returns the second argument, if the first argument evaluates
to 1, and the third argument otherwise.

Output Interface
An output mapping is not required. Only terminals and functions which
output either 1 or 0 are used.

Parameter Setup

The termination criteria are set to: PE = 500,000 and FITs = 0.001. The
initial terminal probability is Pr=0.8. The remaining parameters are set
to “standard” values: ¢ = 0.000001, P.,=0.01, P5=10, Ir=0.01, P;=0.4,
mr=0.4, Tr=0.3, Tp=0.999999.

Results

100 independent test runs were conducted. Table 5.2 summarizes the results.
In 93% of all runs PIPE found a perfect solution within the given time

Table 5.2: Summary of 34+8-bit multiplexer results.

Program Evaluations Nodes
solved min— med -max min—-med-max
93 % 17,290-130,210-484,400 29— 53 -132

frame. The median successful run took 130,210 program evaluations. The
appearance of solutions differs. Perfect solutions are made of 29 to 132
nodes, while 53 nodes are needed in the median.

Conclusion

PIPE is not bound to the function set used for the function regression and the
6-bit parity task. PIPE works well with a completely different, for Boolean

5.3. SOCCER CASE STUDY 53

problems more intuitive function set. The increased arity of program trees
and PPT (recall that instruction if has three arguments) does not prevent
PIPE from solving the 3+8-bit multiplexer problem.

5.2.4 Conclusion

This part of the chapter was dedicated to some basic applications: function
approximation, 6-bit parity, and 3+8-bit multiplexer. PIPE found programs
embodying good solution for all of them. Solution programs had a similar
form to those evolved by Koza’s GP variant (Koza, 1992) and differed much
from programs created by a human. Comparing across applications shows
that PIPE can use “standard” settings for most of its parameters, which
facilitates setting it up for different problems. It also reveals that a basic
function set can be applied to various problems such as function approxi-
mation and 6-bit parity. Not always, however, such a function set is useful.
Thus to solve the 3+8-bit multiplexer problem a different, more suitable
function set was used. This verified that PIPE is not limited to a single
instruction set, but can successfully use different instruction sets and deal
with program trees of various arities.

In a next step we will investigate how PIPE behaves in a complex mul-
tiagent environment.

5.3 Soccer Case Study

We use simulated soccer to study multiagent learning (Satustowicz et al.,
1998). Each team’s players (agents) share action set and policy, but may
behave differently due to position-dependent inputs. All agents making up
a team are rewarded or punished collectively in case of goals. We conduct
simulations with varying team sizes, and compare Probabilistic Incremental
Program Evolution (PIPE), and a PIPE version that learns by coevolution
(CO-PIPE) to TD-Q learning with linear neural networks (TD-Q). TD-Q is
based on learning evaluation functions (EFs) mapping input/action pairs to
expected reward. PIPE and CO-PIPE search policy space directly. They
synthesize programs that calculate action probabilities from current inputs.
The results show that linear TD-Q encounters several difficulties in learning
appropriate shared EFs. PIPE and CO-PIPE, however, do not depend on
EFs and find good policies faster and more reliably. This suggests that in
some multiagent learning scenarios direct search in policy space can offer
advantages over EF-based approaches.

54 CHAPTER 5. APPLYING PIPE

5.3.1 Learning in Multiagent Environments
Policy-sharing

Multiagent learning tasks often require several agents to learn to cooperate.
In general there may be quite different types of agents specialized in solving
particular subtasks. Some cooperation tasks, however, can also be solved
by teams of essentially identical agents whose behaviors differ only due to
different, situation-specific inputs. Our case study will be limited to such
teams of agents of identical type. Each agent’s modifiable policy is given by
a variable data structure: for each action in a given set of possible actions
the current policy determines the conditional probability that the agent will
execute this action, given its current input. Each team’s members share both
action set and adaptive policy. If some multiagent cooperation task indeed
can be solved by homogeneous agents then policy-sharing is quite natural as
it allows for greatly reducing the number of adaptive free parameters. This
tends to reduce the number of required training examples (learning time)
and increase generalization performance, e.g., (Nowlan and Hinton, 1992).

Challenges of Multiagent Learning

One challenge is the “partial observability problem” (POP): in general no
learner’s input will tell the learner everything about its environment (which
includes other changing learners). This means that each learner’s environ-
ment may change in an inherently unpredictable way. Also, in multiagent
reinforcement learning (RL) scenarios delayed reward/punishment is typ-
ically given to an entire successful/failing team of agents. This provokes
the “agent credit assignment problem” (ACAP): the problem of identify-
ing those agents that were indeed responsible for the outcome (Weiss, 1996;
Crites and Barto, 1996; Versino and Gambardella, 1997).

Evaluation Functions versus Search through Policy Space

There are two rather obvious classes of candidate algorithms for learning
shared policies in multiagent RL. Class I includes traditional singleagent RL
algorithms based on adaptive evaluation functions (EFs) (Watkins, 1989;
Bertsekas and Tsitsiklis, 1996). Usually online variants of dynamic pro-
gramming and function approximators are combined to learn EFs mapping
input-action pairs to expected discounted future reward. The EF's are then
exploited to generate rewarding action sequences.

5.3. SOCCER CASE STUDY 55

Methods from class II do not require EFs. Their policy space con-
sists of complete algorithms defining agent behaviors, and they search pol-
icy space directly. Members of this class are Levin search (Levin, 1973,
Levin, 1984; Solomonoff, 1986; Li and Vitanyi, 1993; Wiering and Schmid-
huber, 1996b; Schmidhuber, 1997), Genetic Programming (Cramer, 1985;
Dickmanns et al., 1987; Koza, 1992) and Probabilistic Incremental Program
Evolution (PIPE, Satustowicz and Schmidhuber, 1997a)

Comparison

In our case study we compare two learning algorithms, each representative of
its class: TD-Q learning (Lin, 1993; Peng and Williams, 1996; Wiering and
Schmidhuber, 1997) with linear neural networks (TD-Q) and Probabilis-
tic Incremental Program Evolution (PIPE, Salustowicz and Schmidhuber,
1997a). We also report results for a PIPE variant based on coevolution
(CO-PIPE, Salustowicz, Wiering, and Schmidhuber, 1997a). TD-Q learn-
ing and PIPE have both already been successfully applied to interesting
singleagent tasks (Lin, 1993; Satustowicz and Schmidhuber, 1997a) (addi-
tionally TD learning (Sutton, 1988) is quite popular due to a successful
application to backgammon (Tesauro, 1994)). Linear TD-Q selects actions
according to linear neural networks trained with the delta rule (Widrow and
Hoff, 1960) to map player inputs to evaluations of alternative actions. Linear
networks keep simulation time comparable to that of PIPE and CO-PIPE
— more complex approximators would require significantly more computa-
tional resources. PIPE and CO-PIPE are based on probability vector coding
of program instructions (Schmidhuber, 1999), Population-Based Incremen-
tal Learning (Baluja, 1994; Baluja and Caruana, 1995) and tree coding of
programs used in variants of Genetic Programming (Cramer, 1985; Koza,
1992). They synthesize programs that calculate action probabilities from
inputs. Experiences with programs are stored in adaptive probability distri-
butions over all possible programs. The probability distributions then guide
program synthesis.

Soccer

To come up with a challenging scenario for our multiagent learning case study
we decided on a non-trivial soccer simulation. Soccer recently received much
attention by various multiagent researchers (Sahota, 1993; Asada, Uchibe,
Noda, Tawaratsumida, and K. Hosoda, 1994; Littman, 1994, Stone and

56 CHAPTER 5. APPLYING PIPE

Veloso, 1996a; Matsubara, Noda, and Hiraki, 1996). Most early research
focused on physical coordination of soccer playing robots (Sahota, 1993;
Asada et al., 1994). There also have been attempts at learning low-level
cooperation tasks such as pass play (Stone and Veloso, 1996; Matsubara
et al., 1996; Nadella and Sen, 1996). Littman (1994) used a tiny 5 x 4 grid
world with two single opponent players to learn soccer strategies. Stone and
Veloso (1996b) mentioned early that even team strategies might be learnable
by TD()A) or genetic methods. Learning entire team soccer strategies in
more complex environments was then pursuit by (Salustowicz, Wiering, and
Schmidhuber, 1997a,b,1998; Luke, Hohn, Farris, Jackson, and Hendler, 1997;
Stone and Veloso, 1998). Our case study involves simulations with varying
sets of continuous-valued inputs and actions, simple physical laws to model
ball bounces and friction, and up to 11 players (agents) on each team.

Results Overview

The results indicate: linear TD-Q has severe problems in learning and keep-
ing appropriate shared EF's. It learns relatively slowly, and once it achieves
fairly good performance it tends to break down. This effect becomes more
pronounced as team size increases. PIPE and CO-PIPE learn faster than
linear TD-Q and continuously increase their performance. This suggests
that PIPE-like, EF-independent techniques can easily be applied to com-
plex multiagent learning scenarios with policy-sharing agents, while more
sophisticated and time consuming EF-based approaches may be necessary
to overcome TD-Q’s current problems.

Outline

Section 5.3.2 describes the soccer simulation. Section 5.3.4 describes PIPE
and CO-PIPE. Section 5.3.5 describes TD-Q. Section 5.3.6 reports experi-
mental results. Section 5.3.7 concludes.

5.3.2 Soccer Simulator

Our discrete-time simulations involve two teams. There are either 1, 3 or 11
players per team. Players can move or shoot the ball. Each player’s abilities
are limited (1) by the built-in power of its pre-wired action primitives and
(2) by how informative its inputs are. We conduct two types of simulations.
“Stmple” simulations involve less informative inputs and less sophisticated
actions than “compler” simulations.

5.3. SOCCER CASE STUDY 57

Soccer Field

We use a two dimensional continuous Cartesian coordinate system. The
field’s southwest and northeast corners are at positions (0,0) and (4,2) respec-
tively. As in indoor soccer the field is surrounded by impassable walls except
for the two goals centered in the east and west walls (see Figure 5.5(left)).
Only the ball or a player with ball can enter the goals. Goal width (y-
extension) is 0.4, goal depth (z-extension beyond the field bounds) is 0.01.
The east goal’s “middle” is denoted mge = (Zg4e,yy) With z4e = 4.01 and
yg = 1.0 (see Figure 5.5(right)). The west goal’s middle is at m g = (4w, Yg)
with 2, = —0.01.

20 goal middle = (4.01,1.0)
1.2- C
0.8
00 goal depth =0.01
0.0 4.0

Figure 5.5: Left: Soccer field. Right: Depth and “middle” mg. of east goal
(enlarged).

Ball/Scoring

The ball is a circle with variable center coordinates ¢, = (z,yp), variable
direction 0, and fixed radius r, = 0.01. Its speed at time ¢ is denoted
vp(t). After having been shot the ball’s initial speed is v{""* (max. 0.12
units per time step). Each following time step the ball slows down due
to friction: vp(t + 1) = vp(¢t) — 0.005 until vy(¢) = 0 or it is picked up by
a player (see below). The ball bounces off walls obeying the law of equal
reflection angles as depicted in Figure 5.6. Bouncing causes an additional
slow-down: wvy(t + 1) = vp(t) — 0.005 — 0.01. A goal is scored whenever
0.8 <yp <1.2A (xp <0V ay>4.0).

Players

There are two teams consisting of Z homogeneous players Teqst = {pe1, pez,
.., pez} and Tyest = {pwi,pwe, ...,pwz}. We vary team size: Z can be

58 CHAPTER 5. APPLYING PIPE

)

Figure 5.7: Player: center c, =

(xp,yp), radius r, and orientation 0,

d
= ().

Figure 5.6: Ball “reflected” by wall.

1, 3 or 11. At a given time step each player p € Teqst U Tiest is represented
by a circle with variable center ¢, = (xp,y,), fixed radius r, = 0.025 and
variable orientation o, = (ill‘;;’) (see Figure 5.7). Players are “solid”. If
player p, coming from a certain angle, attempts to traverse a wall then it
“glides” on it, loosing only that component of its speed which corresponds
to the movement direction hampered by the wall. Players p; and p; collide
if dist(cy,,cp;) < 1p, Where dist(c;,cj) denotes Euclidean distance between
points ¢; and ¢;. Collisions cause both players to bounce back to their
positions at the previous time step. If one of them has owned the ball then
the ball will change owners (see below).

Initial Setup

A game lasts from time ¢ = 0 to time t.,4. There are fixed initial positions
for all players and the ball (see Figure 5.8). Initial orientations are o), = (_1)

0
Vp € Teast and 5p = ((1)) Vp € Tyest-

Action Framework/Cycles

Until one of the teams scores, at each discrete time step 0 < t < topq each
player executes a “cycle” (the temporal order of the 2 - Z cycles is chosen
randomly). A cycle consists of: (1) attempted ball collection, (2) input
computation, (3) action selection, (4) action execution and (5) attempted
ball collection. Once all 2 - Z cycles have been executed we move the ball
if vp > 0. If a team scores or t = te,q then all players and ball are reset to
their initial positions.

(1) Attempted Ball Collection. A player p successfully collects ball b if
its radius r, < dist(cp,c,). We then set ¢, := ¢p, v, := 0. Now the ball will
move with p and can be shot by p.

5.3. SOCCER CASE STUDY 59

L] L] o o
L[] o
L o}
L] L] L] o] o] [e]
L] o
L[] o
L[] L] Q o

Figure 5.8: 22 players and ball in initial positions. Players of a 1 or 3 player
team are those furthest in the back (defenders and/or goalkeeper).

(2) Input Computation. In simple simulations player p’s input at a given
time is a simple input vector is (p,t). In complexr simulations it is a complex
input vector 7(p,t).

Simple vector is(p,t) has 14 components: (1) Three boolean inputs
(coded with 1=true and -1=false) that tell whether player p/a team mem-
ber/an opponent has the ball. (2) Polar coordinates (distance, angle) of both
goals and the ball with respect to pole ¢, and polar axis 6, (player-centered
coordinate system). (3) Polar coordinates of both goals relative to a ball-
centered coordinate system with pole ¢; and polar axis o, — if v = 0, then
3, = 0 and the angle towards both goals is defined as 0. (4) Ball speed. Note
that these inputs are not sufficient to make the environment fully observable
— e.g, there is no information about positions of other players.

The 56-dimensional complex vector ;c(p, t) is a concatenation of is (p,t)
and 21 ¢, /0)-based polar coordinates of all other players ordered by (a) teams
and (b) ascending distances to p. The environment still remains partially
observable, however, since the player orientations and changing behaviors
are not included in the inputs.

TD-Q’s, PIPE’s, and CO-PIPE’s input representation of distance d (an-
gle a) is % (299"}, This helps TD-Q since it makes close distances and

60 CHAPTER 5. APPLYING PIPE

small angles appear more important to TD-Q’s linear networks.

(8) Action Selection. See Sections 5.3.4 and 5.3.5.

(4) Action Ezecution. Depending on the simulation type, player p may
execute either simple actions from action set ASETg or complex actions from
action set ASETc. ASETg contains:

e go_forward: move player p 0.025 units in its current direction o), if
without ball and 0.8 - 0.025 units otherwise.

o turn_to_ball: change direction 6, of player p such that o), := (22::;’)
e turn_to_goal: change direction &), of player p such that o, := (29;:;?),
if p € Tyest and) = (x?j;“i_yip), if p € Tegst.

e shoot: If p does not own the ball then do nothing. Otherwise, to

allow for imperfect, noisy shots, execute turn(anoise) which sets o, =
(cos(anoise)vdzp*Sin(anm‘se)'dyp
Sin(anoise)'d$p+005(anoise)'dyp
from —5° < apeise < 5°. Then shoot ball in direction 0y := 0. Initial
ball speed is v{™ = 0.12. Noise makes long shots less precise than
close passes.

), where ause is picked uniformly random

Complex actions in ASET¢ are parameterized. They allow for pre-wired
cooperation but also increase action space. Parameter « stands for an an-
gle, P/O stands for some teammate player’s/opponent’s index from {1..7 —
1}/{1..Z}. Indices P and O are sorted by distances to the player currently
executing an action, where closer teammate players/opponents have lower
indices. For TD-Q « is either picked from s; = {0,%,%,—%,—5} or from
s9 = {0, %71', %71', —%71', —%71'}. PIPE uses continuous angles. Player p may
execute the following complex actions from ASET¢:

e goto_ball(a): If p owns ball do nothing. Otherwise execute turn_to_ball,
then turn(a) (TD-Q: a € s1) and finally go_forward,

e goto_goal(a): First execute turn_to_goal, then turn(a) (TD-Q: a € s1)
and finally go_forward.

e goto_own_goal(a): First execute turn(f3) such that o, := (xyg;”:yip) (if
P € Test) OF Op 1= (g;g;:;p) (if p € Teast); then turn(a) (TD-Q: a € s1);
finally go_forward.

5.3. SOCCER CASE STUDY 61

e goto_player(P,a): First execute turn(f3) such that g, := (zi :“;;’), then
turn(a) (TD-Q: « € s9) and finally go_forward. Here (P,p € Teast V

P,pGTwest)/\P?ép.

:Co—xp)
)

o goto_opponent(O,a): First execute turn() such that o, := (yo—yp
then turn(a) (TD-Q: « € s9) and finally go_forward. Here (p € Teqst A
O S Twest) V (p € Twest A O € Teast)-

o pass_to_player(P): First execute turn(f3) such that o), := (Zi:;}f), then

shoot. Here P,p € Teust VP, p € Tyyest- Initial ball speed is set to v};”it =
0.005 + /2 - 0.005 - dist(c,, cp). Tf vj" > 0.12 then v := 0.12. This
ensures that the ball will arrive at cp at a slow speed, if the distance
to the player is not larger than 1.5 (“maximal shooting distance”).

e shoot_to_goal: First execute turn_to_goal, then shoot, where initial ball
speed is set to vi™ = 0.005 + \/2 -0.005 - dist(cp, mg), where mg =
Mge if p € Tyest and mg = myy if p € Tegse. If v};mt > 0.12 then
Vit .= 0.12.

5.3.3 Training and Test Environment

We conduct two different types of simulations — simple and complex. During
simple simulations we use simple input vectors fs(p,t) and simple actions
from ASETg. During complex simulations we use complex input vectors
fc(p,t) and complex actions from ASET¢. In simple simulations we com-
pare TD-Q’s, PIPE’s and CO-PIPE’s behavior as we vary team size. In
complex simulations we study the algorithms’ performances in case of more
sophisticated action sets and more informative inputs. Informative inputs
are meant to decrease POP’s significance. On the other hand, they increase
the number of adaptive parameters. For a statistical evaluation we per-
form 10 independent runs for each combination of simulation type, learning
algorithm and team size.

Opponent and Competitor

PIPE and TD-Q are trained against a “biased random opponent” BRO,
while CO-PIPE learns through coevolution.

BRO randomly executes simple actions from ASETs. BRO is not a bad
player due to the initial bias in the action set. For instance, BRO greatly

62 CHAPTER 5. APPLYING PIPE

prefers shooting at the opponent’s goal over shooting at its own. If we let
BRO play against a non-acting opponent NO (all NO can do is block) for
twenty 5000 time step games then BRO wins against NO with on average
71.5 to 0.0 goals for team size 1, 44.5 to 0.1 goals for team size 3, 108.6 to
0.5 goals for team size 11.

We also designed a simple but good team GO by hand, which serves as
a reference competitor. GO consists of players which move towards the ball
as long as they do not have it, and shoot it at the opponent’s goal otherwise.
If we let GO play against BRO for twenty 5000 time step games then GO
wins with on average 417 to 0 goals for team size 1, 481 to 0 goals for team
size 3, and 367 to 3 goals for team size 11. Note that GO implements a
non-cooperative (singleagent) strategy. Small GO teams perform extremely
well — larger GO teams with many interacting agents, however, do not (see
team size 11).

Simple Simulations

We play 3300 games of length t.,q = 5000 for team sizes 1, 3 and 11.

Complex Simulations

In complex simulations we focus on team size 11. One run with complex
actions and more informative inputs consists of 1200 games, each lasting for
tend = 5000 time steps.

Testing

Every 100 games we test current performance by playing 20 test games (no
learning) against BRO and summing the score results. With PIPE and CO-
PIPE we test the current best-of-generation program during performance
evaluations (except for the first evaluation where we test a random program).

5.3.4 PIPE and CO-PIPE

We use PIPE as described in Chapter 4 except for “elitist learning” which
we omit due to high environmental stochasticity. We also use PIPE to coe-
volve programs. There each population consists of only two programs with
mutually dependent performance. Coevolutionary PIPE (CO-PIPE) works
just like PIPE, except that: (1) To evaluate both programs of a population
we let them play against each other. (2) The next generation consists of the

5.3. SOCCER CASE STUDY 63

winner and a new program generated according to the adapted PPT. (3)
Among programs with equal fitness and length we prefer former winners.
(4) We do not use fitness dependent learning, as the fitness function changes
over time.

Fitness Function

PIPE. The fitness of a main Program PROGRAM is FIT(PROGRAM) = 100
- number of goals scored by PROGRAM + number of goals scored by oppo-
nent. Offset “100” ensures that fitness values remain non-negative in our
experiments.

CO-PIPE. The fitness of each of the two main programs (PROGRAM;
and PROGRAM3) in the population depends on the other program’s (oppo-
nent’s) performance: FIT(PROGRAM;) = 100 - number of goals scored by
PROGRAM; + number of goals scored by PROGRAM;, where 4,5 € {1,2} and
1 # j. Again offset “100” ensures that fitness values remain non-negative in
our experiments.

Instruction Set

We use F' = {+,—,*, %, sin, cos,exp,rlog} (see Section 4.1.1) and T =
{f(p,)1y ov ey f(p, t)y, R}, where R represents the generic random constant €
[0;1) and i(p,t); 1 < j < v denotes component j of a vector i(p,t) with v
components. For simple simulations we set f(p, t) = is (p,t) and for complex
simulations we set i(p,t) := i.(p,t).

Output Interface

PIPE synthesizes programs which, given player p’s input vector f(p, t), select
actions from ASET. In simple simulations we set ASET := ASETg and in
complex simulations we set ASET := ASET¢.

Action Selection. Action selection depends on 5 (8) variables when
simple (complex) actions are used: the “greediness” parameter g € IR, and
4 (7) “action values” A, € IR, Va € ASET. Action a € ASET is selected
with probability P4, according to the Boltzmann-Gibbs distribution at tem-
perature %:

eAa'g

Py Va € ASET (5.1)

a *

> vjcasere’i?

All A, and g are calculated by a program.

64 CHAPTER 5. APPLYING PIPE

Programs. In simple simulations a main program PROGRAM consists
of a program PROGY which computes the greediness parameter g and 4
“action programs” PROG® (a € ASETs). In complex simulations we need
ProGY, 7 action programs PrROG® (a € ASET(), programs PROG* for
each angle parameter, programs PrROG* for each player parameter and
programs ProG?© for each opponent parameter (for actions using these pa-
rameters). The result of applying PROG to data = is denoted PROG(x).
Given i(p,t), PROG(i(p,t)) returns A, and g := |[PROGI(i(p,t))|. An ac-
tion @ € ASET is then selected according to the Boltzmann-Gibbs rule —
see Assignment (5.1). In the case of complex actions programs PROG®*?*,
ProG* and PrROG?® return values for all parameters of action a: o :=
PrROG (i(p,t)), P := 1 + (|round(PrROG®F (i(p,t)))| mod (Z — 1)), O =1
+ (|round(PrROG (i(p,t)))| mod Z). Recall that Z is the number of players
per team.

All programs PROG?, PROG*, PROG®", and PROG® are generated ac-
cording to distinct probabilistic prototype trees PPT®, PPT**, PPT*’ and

PPTO, respectively.

Parameter Setup

Parameters for all PIPE and CO-PIPE runs are: Pr=0.8, e=1, P,;=0 Ir=0.2,
Py=0.1, mr=0.2, Tr=0.3, Tp=0.999999. For PIPE we use a population size
of P5=10, while for CO-PIPE we use P5S=2, as mentioned above.

5.3.5 TD-Q Learning

One of the most widely known and promising EF-based approaches to rein-
forcement learning is TD-Q learning (Sutton, 1988; Watkins, 1989; Peng and
Williams, 1996; Wiering and Schmidhuber, 1997). Here Wiering uses an of-
fline TD(A) Q-variant (Lin, 1993), which he describes as follows (Satustowicz
et al., 1998):

For efficiency reasons our TD-Q version uses linear neural networks (net-
works with hidden units require too much simulation time). To implement
policy-sharing we use the same networks for all players of a team. The goal of
the networks is to map the player-specific input f(p, t) to action evaluations
Q(;(p, t),a1),... ,Q(;(p, t),an), where N denotes the number of possible ac-
tions. We reward the players equally whenever a goal has been made or the
game is over.

5.3. SOCCER CASE STUDY 65

Simple Action Selection

In simple simulations we use a different network for each of the four actions
{ai1,...,a4}. Toselect an action a(p,t) at time ¢ for player p we first calculate
Q-values of all actions. The Q-value of action ag, given input i(p,t) is

Q(i(p,t), ay) =" - i(p,t) + b* (5.2)

where @F is the weight vector for action network k and bF is its bias strength.
Once all Q-values have been calculated, a single action a(p,t) is chosen
according to the Boltzmann-Gibbs rule — see Assignment (5.1). Unlike
PIPE, which evolves the greediness parameter, TD-Q needs an a priori value
for g.

Complex Action Selection

Since complex actions may have 0, 1, or 2 parameters we use a natural,
modular, tree-based architecture. Instead of using continuous angles we
use discrete angles (see Section 5.3.2). The root node contains networks
N . N% for evaluating “abstract” complex actions neglecting the pa-
rameters, e.g., pass_to_player. Some specific root-network N%’s “angle son
networks” NGi*,... , Ngk are then used for selecting the angle parameter.
Similarly, player and opponent parameters are selected using “player son
networks” and “opponent son networks”, respectively. For instance, if an
action contains both player and angle parameters, then there are “son net-
works” for player-parameters and “son networks” for angle parameters. The
complete tree contains 64 linear networks.

After computing the seven “abstract” complex action Q-values according
to Equation (5.2), one of the seven is selected according to the Boltzmann-
Gibbs rule — see Assignment (5.1). If the selected action requires parameters
we use Equation (5.2) to compute the Q-values of all required parameters
and select a value for each parameter according to the Boltzmann-Gibbs
rule.

TD-Q Learning

For both simple and complex simulations we use an offline TD()) Q-variant
similar to Lin’s (1993). Each game consists of separate trials. At trial start
we set time-pointer ¢ to current game time t¢. We increment ¢ after each
cycle. The trial stops once one of the teams scores or the game is over.

66 CHAPTER 5. APPLYING PIPE

Denote the final time-pointer by t*. We want the Q-value Q(;(p,t),ak) of
selecting action aj, given input i(p,t) to approximate

Q(i(p,t), ax) ~ E(Y" T R(tY)),

where £ denotes the expectation operator, 0 < v < 1 the discount factor
which encourages quick goals (or a lasting defense against opponent goals),
and R(t*) denotes the reinforcement at trial end (-1 if opponent team scores,
1 if own team scores, 0 otherwise).

To learn these Q-values we monitor player experiences in player-dependent
history lists with maximum size H,,q;. At trial end player p’s history list
H(p) is

H(p) := {{i(p.t"),alp,t"), V(i(p,t)},. ... {i(p,t"), alp, t*), V (i(p, "))}}.

Here V (i(p,t)) := Maz{Q(i(p,t),ax)}, and t! denotes the start of the his-
tory list: ¢! :=t°, if t* < Hppae, and t' := t* — H,,4, + 1 otherwise.

After each trial we calculate examples using offline TD-Q learning. For
each player history list H(p), we compute desired Q-values Q™" (p,t) for

-

selecting action a(p,t), given i(p,t) (t =t!,...,t*) as follows:

Q" (p,t*) := R(t%).
Q" (p,t) =[N Q" (p,t + 1) + (1 = X) - V(i(p, t + 1))].

A determines future experiences’ degree of influence.

To evaluate the selected complex action parameters we store them in his-
tory lists as well. Their evaluations are updated on the Q""-values of their
(parent) “abstract” complex actions — Q-values of selected action parame-
ters are not used for updates of other previously selected action parameters
(or selected actions).

Once all players have created TD-Q training examples, we train the se-
lected networks to minimize their TD-Q errors. All player history-lists are
processed by dovetailing as follows: we train the networks starting with the
first history list entry of player 1, then we take the first entry of player 2,
etc. Once all fist entries have been processed we start processing the second
entries, and so on. The networks are trained using the delta-rule (Widrow
and Hoff, 1960) with learning rate lr,.

Parameter Setup

After a coarse search through parameter space we used the following param-
eters for all TD-Q runs: v=0.99, A=0.9, H,,,4-=100. All network weights are

5.3. SOCCER CASE STUDY 67

randomly initialized in [—0.01,0.01]. During each run the Boltzmann-Gibbs
rule’s greediness parameter g is linearly increased from 0 to 60. For simple
simulations we set Ir,=0.0001 and for complex simulations we set lr,,=0.001
(several other parameter values led to worse results).

5.3.6 Experimental Results
Simple Simulations

Results. We compare average score differences achieved during all test
phases. Figure 5.9 shows results for PIPE, CO-PIPE, and TD-Q. It plots
goals scored by learner and opponent (BRO) against number of games used
for learning. Larger teams score more frequently because some of their play-
ers start out closer to the ball and the opponent’s goal.

PIPE 1-player CO-PIPE 1-player TD-Q 1-player
T T T T T T T T T T T T
300 [~ learner B 300 [~ learner B 300 [~ learner B
lopponent ------ lopponent ------ lopponent ------
250 PP i 250 PO i 250 PP i
w 200 [g w 200 [g w 200 [g
k] k] k]
S 150 B S 150 - B S 150 - B
100 B 100 100 B
50 E 50 E oF
0 i M it St et St PO St e e 0 R i ettt S sy
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
#games #games #games
PIPE 3-players CO-PIPE 3-players TD-Q 3-players
T T T T T 350 [Tearmer — T T T]
300 [oPPONeEnt ——----]
250 |- B
3 3 g 200 |- g
& & &
150 B
100 ;__/"‘//‘_/\/\/L/_,\i
50 bl T]
P B s Wittt St) o et et I e e 0 1 1 I I T
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
#games #games #games
PIPE 11-players CO-PIPE 11-players TD-Q 11 players
500 [leaer —— T T 500 [leamer —— T T p 500 [leamer —— T T p
lopponent ------ lopponent ------ lopponent ------
400 g 400 | g 400 | g
2 300 E 2 300 - = 2 300 - E
& & &
200 B 200 B
100 B 100 B
0 B N R R 0 B Wi i T 0 I I I I I I
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
#games #games #games

Figure 5.9: Average number of goals scored during all test phases, for team
sizes 1, 3, 11.

PIPE learns fastest and always finds quickly an appropriate policy re-
gardless of team size. Its score differences continually increase. CO-PIPE
performs worse than PIPE, but is still able to find good policies with respect

68 CHAPTER 5. APPLYING PIPE

to BRO. Note, however, that CO-PIPE’s task is more difficult than PIPE’s
or TD-Q’s. It never “sees” BRO during training and therefore has no reason
for optimizing its strategy against it. Stochastic fluctuations in CO-PIPE’s
performance tend to level out with increasing team size.

TD-Q also improves, but in a less spectacular way. It always learns more
slowly than PIPE and CO-PIPE. It tends to increase score differences until
it scores roughly twice as many goals as in the beginning (when actions are
still random). Then, however, the score differences start declining. There
are several reasons for TD-Q’s slowness and breakdown: (1) POP makes
learning appropriate EFs difficult. (2) The linear neural networks cannot
keep useful EFs but tend to unlearn them instead. (3) Unlike PIPE, linear
TD-Q suffers from ACAP: it needs to assign proper credit to individual
player actions but fails to pick out the truly useful ones.

For each learning algorithm and GO, Table 5.3 lists results against BRO
(averages over ten runs).

Table 5.3: Results of PIPE, CO-PIPE, TD-Q, and GO playing against BRO.

| team size | GO | PIPE [CO-PIPE | TD-Q |
max. score difference 417 310 192 42
av. goals + st.d. || 417+6 | 320+42 | 212497 52+14
1 av. BRO goals + st.d. 0+0 10+7 20+10 10+3
achieved after games n.a. 3300 3000 1700
max. score difference 481 359 310 70
av. goals + st.d. || 481+8 | 373+86 | 324+62 102+14
3 av. BRO goals + st.d. 0+1 1446 14+11 3248
achieved after games n.a. 3300 3200 1700
max. score difference 364 481 357 154
av. goals + st.d. || 367+18 | 512+129 | 393+53 212484
11 av. BRO goals + st.d. 3+1 31423 36127 58123
achieved after games n.a. 3100 1900 2500

The hand-made GO team outperforms (in terms of score difference) any
of the 1 and 3 player teams. In the 11 player case, however, it plays worse
than PIPE, while CO-PIPE’s performance is comparable. This indicates
that: (1) Successful singleagent strategies may not suit larger teams. (2)
Useful strategies for large teams are learnable by direct policy search.

Conclusion. Comparing best programs of several successive generations
revealed that PIPE and CO-PIPE are able to: (1) quickly identify the inputs

5.3. SOCCER CASE STUDY 69

that are relevant for selecting actions, and (2) find programs that compute
useful action probabilities given the selected inputs. PIPE’s and CO-PIPE’s
ability to set the greediness parameter helps to control exploration as it
makes action selection more or less stochastic depending on the inputs.

Some linear TD-Q runs led to good performance. This implies clus-
ters (or niches) in weight vector space that contain good solutions. TD-Q’s
dynamics, however, do not always lead towards such niches. Furthermore,
sudden performance breakdowns hint at a lack of stability of good solutions.
An indepth analysis of TD-Q’s instability problems is in (Salustowicz et al.,
1998).

Complex Simulations

Results. Figure 5.10 shows the average number of goals scored by PIPE,
CO-PIPE, and TD-Q (learners) in comparison to BRO (opponent) during
all test phases.

PIPE 11-players CO-PIPE 11-players TD-Q 11-players
T T T

learner
[opponent ------ b 500

learner learner
[opponent ------ b 500 opponent ------ b

i 400 i

goals
8
|
goals
8
|
goals
8
T
|

- . Lo
0 400 800 1200 0 400 800 1200

#games #games

Figure 5.10: Average number of goals (means of 10 independent runs) for
PIPE (left), CO-PIPE (middle), and TD-Q (right) vs. BRO using complex

actions and inputs.

PIPE and CO-PIPE quickly find successful strategies. PIPE’s perfor-
mance steadily increases while CO-PIPE’s is slightly more stochastic. In the
long run (after 3300 games — not shown), however, both are very similar.
Note again, though, that CO-PIPE solves a more difficult task — it is tested
against an opponent that it never meets during training.

Linear TD-Q initially does worse than its opponent. It does learn to beat
BRO by about 50 % but then breaks down completely. Examining all single
runs revealed that TD-Q’s average score results were strongly influenced by
a single good run that scored up to 471 goals. Once this run’s performance
broke down after 1000 games the average declined to 16 goals.

We compare maximal average score differences in Table 5.4. PIPE and
CO-PIPE both achieve score differences that are significantly better than

70 CHAPTER 5. APPLYING PIPE

GO’s. Linear TD-Q does not.

Table 5.4: Maximal average score differences against BRO for different learn-
ing methods and GO.
| [GO | PIPE [CO-PIPE]| TD-Q |
max. score difference 364 530 536 46
av. goals & st.d. || 367£18 | 551+215 | 539+220 | 764140
av. BRO goals + st.d. 3+1 21435 3+4 30429
achieved after games n.a. 1200 1200 900

Conclusion. Complex actions embody stronger initial bias and make
cooperation easier, while more informative inputs make the POP less severe.
In principle, this allows for better soccer strategies. PIPE and CO-PIPE are
able to exploit this and perform better than with simple actions (compare
Figures 5.9 and 5.10 and Tables 5.3 and 5.4). Linear TD-Q does not. It still
suffers from the same problems as during simple simulations.

5.3.7 Conclusion

In a simulated soccer case study with policy-sharing agents we compared
direct policy search methods (PIPE and coevolutionary CO-PIPE) and an
EF-based one (linear TD-Q). All competed against a biased random oppo-
nent (BRO). PIPE and CO-PIPE always easily learned to beat this opponent
regardless of team size, amount of information conveyed by the inputs, or
complexity of actions. In particular, CO-PIPE outperformed BRO with-
out ever meeting it during the training phase. TD-Q achieved performance
improvements, too, but its results were less exciting, especially in case of
several agents per team, more informative inputs, and more sophisticated
actions.

PIPE and CO-PIPE found good strategies by simultaneously: (1) iden-
tifying relevant inputs, (2) making action probabilities depend on relevant
inputs only, (3) evolving programs that calculate useful conditional action
probabilities. Another important aspect is: unlike TD-Q, PIPE and CO-
PIPE learn to map inputs to “greediness values” used in the (Boltzmann-
Gibbs) exploration rule. This enables them to pick actions more or less
stochastically and control their own exploration process.

Wiering identifies that TD-Q’s problems are due to a combination of
reasons (Salustowicz et al., 1998): (1) Linear networks. Linear networks

5.4. CONCLUSION 71

have limited expressive power. They seem unable to learn and keep ap-
propriate evaluation functions (EFs). (2) Partial observability. Q-learning
assumes that the environment is fully observable; otherwise it is not guar-
anteed to work. Still, Q-learning variants already have been successfully
applied to partially observable environments, e.g., (Crites and Barto, 1996).
Our soccer scenario’s POP, however, seems harder to overcome than POPs
of many scenarios studied in previous work. (3) Agent credit assignment
problem (ACAP) (Weiss, 1996; Versino and Gambardella, 1997): how much
did some agent contribute to team performance? ACAP is particularly dif-
ficult in the case of multiagent soccer. For instance, a particular agent may
do something truly useful and score. Then all the other agents will receive
reward, too. Now the TD networks will have to learn an evaluation function
(EF) mapping input-action pairs to expected discounted rewards based on
experiences with player actions that have little or nothing to do with the fi-
nal reward signal. This problem is actually independent of whether policies
are shared or not. (4) Instability. Using player-dependent history lists, each
player learns to evaluate actions given inputs by computing updates based
on its own TD return signal. The players collectively update their shared
EF which can lead to significant “shifts in policy space” and to “unlearning”
of previous knowledge. This may lead to performance breakdowns.

Our multiagent scenario seems complex enough to require more sophis-
ticated and time-consuming EF-based approaches than TD-Q. In principle,
however, EFs are not necessary for finding good or optimal policies. Some-
times, particularly in the presence of POPs and ACAPs, it can make more
sense to search policy space directly. That is what PIPE and CO-PIPE
do. Recently, however, a new promising EF-based approach termed CMAC
models has been developed (Wiering, Salustowicz, and Schmidhuber 1998,
1999, to appear). CMAC models combines world models (Moore and Atke-
son, 1993; Wiering, 1999), cerebellar model articulation controllers (CMACs
— Albus, 1975), and prioritized sweeping (Moore and Atkeson, 1993; Wier-
ing and Schmidhuber, 1998). It is capable of finding soccer strategies with
comparable or even better performances than PIPE.

5.4 Conclusion
This chapter described how to apply PIPE. First a step-by-step description

on how to setup PIPE for an application was given.
Then PIPE was applied to three basic problems: function regression, 6-

72 CHAPTER 5. APPLYING PIPE

bit parity, and 3+8-bit multiplexer. The experiments revealed that (1) PIPE
was able to find suitable solutions to each of the problems, (2) PIPE’s solu-
tion programs differ much from programs created by human programmers,
(3) PIPE is rather easy to setup as it can use “standard” instruction sets
and “standard” parameter settings to solve various problems, (4) PIPE can
be used successfully with different instruction sets and deal with program
trees of various arities.

Finally, PIPE was applied in a more complex soccer case study, where
the objective was to learn complete soccer team strategies in a multiagent
environment. PIPE’s performance was compared to that of TD-Q learn-
ing with linear neural networks (TD-Q). Also a coevolutionary version of
PIPE (CO-PIPE) was applied. PIPE and CO-PIPE compared favourably
to TD-Q. Both PIPE variants found solutions that outperformed a strong
engineered single-agent strategy, while TD-Q did not.

Chapter 6

Evolving Structured
Programs

In previous chapters we have shown how PIPE evolves programs and how
it can be applied to a wide variety of problems. Here we will focus on the
evolution of structured programs. Structured programs are of interest as they
allow for restricting the search space and thus speeding up evolution.

6.1 Introduction and Previous Work

To evolve structured programs we develop Hierarchical Probabilistic Incre-
mental Program Evolution (H-PIPE — Satustowicz and Schmidhuber, 1998),
an hierarchical extension of Probabilistic Incremental Program Evolution
(PIPE — Salustowicz and Schmidhuber, 1997a). H-PIPE uses “hierarchical
instructions” (HIs) and “skip nodes” (SNs). HIs are limited to top-level,
structuring program parts. They induce structure by combining lower-level
program parts. SNs are inspired by biology’s introns (non-coding segments).
They function as gates that allow for keeping program parts dormant with-
out losing them in the course of evolution. Thus SNs can be used to switch
program parts on and off. In combination with HIs they enable H-PIPE
to substitute program parts by superior partial solutions discovered at later
evolutionary stages.

73

74 CHAPTER 6. STRUCTURED PROGRAMS

6.1.1 Structure

Early genetic programming (GP) work (Dickmanns et al., 1987) as well
as Adaptive Levin Search (Schmidhuber, 1997; Schmidhuber et al., 1997b)
allow for powerful programs with arbitrary loops etc. Sometimes, however,
it is beneficial to introduce inductive bias by appropriately constraining the
search space of possible programs. Except for programs evolved by tree-
based GP (Cramer, 1985; Koza, 1992), however, not much work has been
done on evolution of programs with significant structural constraints. There
are two such GP variants.

The first reuses program parts, usually in a way less general than that
achievable through arbitrary jumps. Typically subprograms are generated
and/or extracted from evolved programs; they may then be called in a usu-
ally non-recursive fashion from different positions in the code. Examples are:
“automatically defined functions” and encapsulation (Koza, 1992), module
acquisition (Angeline and Pollack, 1992), adaptive representations through
learning (Rosca and Ballard, 1996), automatically defined macros (Spector,
1996). Other approaches do not generate or extract subprograms but restrict
GP’s recombination operator such that it cannot destroy certain program
parts to be reused in the future (e.g., Langdon, 1995; Pringle, 1995; Zannoni
and Reynolds, 1997).

The second variant uses grammars to induce structure, constrain the
search space, and provide initial bias to speed up evolution. Examples are
context-free (Whigham, 1995; Gruau, 1996) or logic grammars (Wong and
Leung, 1996).

Programs with hierarchical instructions (HIs) are special cases of pro-
grams constrained by context-free grammars: Higher-level instructions can
be used to combine program parts made out of lower-level instructions, thus
inducing structure.

6.1.2 Non-Coding Program Parts

Non-coding program parts (“introns”) are those that do not affect the results
the program calculates. E.g., in f(z) = x % 1, the “x1” part is non-coding.
Most previous work on non-coding program parts focuses on genetic pro-
gram synthesis (Blickle and Thiele, 1994; McPhee and Miller, 1995; Nordin
et al., 1996; Haynes, 1996; Wineberg and Oppacher, 1996). Usually non-
coding program parts evolve or can be inserted to protect coding program
parts (parts that do affect results calculated by the program) from destruc-

6.1. INTRODUCTION 75

tive genetic recombination operators (Blickle and Thiele, 1994; McPhee and
Miller, 1995; Nordin et al., 1996; Haynes, 1996). Blickle and Thiele (1994),
as well as McPhee and Miller (1995), however, point out that large blocks
of non-coding segments in tree-based GP programs cause very slow conver-
gence and difficulties in escaping from local minima. Haynes (1996), on the
other hand, shows that artificial removal of non-coding segments from those
programs leads to premature convergence. Nordin, Francone, and Banzhaf
(1996) investigate the role of non-coding segments in a GP approach based
on variable-length strings. They note that non-coding segments may play
an important role in finding good solutions and speeding up convergence.
Wineberg and Oppacher (1996) use fized-length strings and find that non-
coding segments reduce the search space and speed up evolution.

General Observation

The literature above suggests: in tree-based GP programs with little struc-
ture the effect of non-coding segments is twofold. On the one hand they
seem necessary to protect blocks of coding segments, on the other hand they
can hinder discovery of acceptable solutions. In the case of structured pro-
grams, however, non-coding program parts can both speed up convergence
and aid in finding good solutions. Loosely speaking, the more structured the
programs (e.g., the greater the restrictions on the coding strings), the higher
the potential significance of non-coding segments. Our own experiments
with skip nodes will add more empirical evidence in this direction.

Skip Nodes

Much like certain “jump” instructions, skip nodes (SNs) are instructions
that allow for skipping program parts. In the context of tree-based functional
programs, SNs are functions with n arguments, where n denotes the maximal
number of arguments of functions in S. SNs return exactly one of their
arguments and ignore the others, which thus represent non-coding program
parts if n > 1. We will demonstrate the benefits of SNs in structuring parts
of H-PIPE programs.

6.1.3 Results Overview

In our experiments H-PIPE outperforms PIPE, and SNs facilitate synthesis
of certain structured programs but not unstructured ones. We conclude that
introns can be particularly useful in the presence of structural bias.

76 CHAPTER 6. STRUCTURED PROGRAMS

6.1.4 Outline

Section 6.2 describes the H-PIPE approach. Section 6.3 compares the use
of HIs and SNs to standard PIPE on function regression and 6-bit parity.
Section 6.4 concludes this chapter.

6.2 Hierarchical Probabilistic Incremental Program
Evolution

First we will describe how to extend PIPE to accommodate for hierarchi-
cal instructions (HIs). Then we will show how skip nodes (SNs) can be
integrated into PIPE and H-PIPE.

6.2.1 Hierarchical Instructions

In this section we will first extend PIPE’s elementary data structures (pro-
grams and probability distribution) to accommodate for HIs. Then we will
describe H-PIPE’s elementary procedures (program generation and “tree
shaping”) and update rules.

Program Instructions

H-PIPE’s programs are composed from z instructions in the instruction set
S =A{L,1I,...,I,}. Each node of the code tree contains an instruction I and
can have several son nodes whose instructions are viewed as arguments of 1.
To allow for HIs we partition S into m+1 disjoint, non-empty instruction sets
S0 St ..., 8™ and ensure that all “terminal instructions” — instructions
with zero arguments — are in S°. Hierarchical order arises as follows: Each
argument of an instruction in SV is in SY or in the “lower level” set SV~1.
At least one argument must be in S¥7!, except when v = 0. To allow for
enforcing descents in the instruction set hierarchy we add pointers to lower
level instructions |; to all instruction sets SV, Vv : 0 < v < m, where
0 < i < I(v) is the argument index of an instruction I € S with [(v)
arguments from SY~!. Although pointers to lower level instructions take a
single argument and return it, they are treated as terminal symbols. Thus
each instruction set S” (0 < v < m) can be written as F¥ U T", where
FY = {ff,fé’,...,f,’g’(v)} is a function set with k(v) functions and TV =
{l1,12,.- -, liw)} is a terminal set containing I(v) pointers to lower level
instructions. We also have S = FOU TP, where FO = {f2, 9, ... 7f18(0)} is

6.2. H-PIPE (s

a function set with k(0) functions and 7% = T is a terminal set containing
all terminals of S (1(0) =1).

For instance, to structure the function approximation task from Section
4.1.1 as a linear combination of non-linear parts we split the instruction set
S = {+,—,* %, sin, cos,exp,rlog,z, R} into S° = {x, %, sin, cos, exp, rlog,
z, R} and S! = {4+, —}. We then add a |; instruction to S and obtain S! =
{+,—,l1}. Function and terminal sets for the lower and upper level then
become FY = {x, %, sin, cos, exp,rlog}, T® = {z,R} and F' = {+, -}, T! =
{11}, respectively. Figure 6.1 shows an example program.

Figure 6.1: f(z)=z*sin(x)+exp(cos(0.2))+x%0.1-(z+rlog(x)). Exemplary
program tree for function approximation constrained to a linear combina-
tion of non-linear parts. Top-level structuring instructions from S! appear
in boldface.

Program Representation

With HIs the arity n(v) of a program tree may vary depending on the hi-
erarchical level v. On each level v, n(v) is the maximal number of function
arguments required by functions in SV. For instance, in the function approx-
imation example above, if we add to S° a three argument function, e.g *x,
where xx(aq,a2,a3) = a1 * az * ag, then the lower-level part of the program
tree will be 3-ary while the top-level part will remain 2-ary, as depicted in
Figure 6.2.

78 CHAPTER 6. STRUCTURED PROGRAMS

Figure 6.2: f(z)=0.7*c*sin(x)+0.2%(z*x*x)-z. Exemplary program tree for
function approximation, with different level-dependent arities. Top-level
program parts are 2-ary. Lower level program parts are 3-ary.

Hierarchical Probabilistic Prototype Tree

The probability distribution is stored in an hierarchical probabilistic proto-
type tree (H-PPT). The H-PPTis generally a complete n(v)-ary tree, where
n(v) is H-PPT’s arity at hierarchical level v.

Nodes

Each H-PPT node N;(v) contains a variable probability vector P;(v), where
list 5 = (Jm, Jm—1s- - -, J1,Jo) with m+1 variable elements describes a unique
absolute position in H-PPT. Each node N;(0) contains in addition a ran-
dom constant R;(0). The probability vectors ﬁj(v), Vv : 0 < v < m have
k(v) + {(v) components. Each component P;(v,I), Vv : 0 < v < m de-
notes the probability of choosing instruction I € S¥ at N;(v). We maintain
dres Pj(val) =1

Initialization

Each H-PPT node N;(v) requires an initial probability P;(v,I) for each
instruction I € S. Furthermore, each bottom level (v = 0) node N;(0)
requires an initial random constant R;(0). A value for R;(0) is randomly
taken from a predefined, problem-dependent set of constants (compare with
Section 4.2.2). To initialize instruction probabilities we use for each hierar-
chical level v a constant probability Ppv for selecting an instruction from 7%

6.2. H-PIPE 79

and (1 — Ppv) for selecting an instruction from F'". f’a(v) is then initialized
as follows:

Pro
Pj(v,1) := ﬁ,VI:IeT” and Pj(v,I) :=

1— Pro
k(v)

NI:IeFY

Program Generation

Extracting programs from H-PPT is analogous to extracting programs from
PPT (compare Section 4.2.3), except that instructions are selected from the
appropriate SV, depending on the hierarchical level. To generate a pro-
gram PROG from H-PPT, an instruction I € SV is selected with probability
P;j(v,I) for each accessed node N;(v) of H-PPT. This instruction is denoted
by I;. Nodes are accessed in a depth-first way, starting at the root node
Nj«(m), where j* = (1,0,...,0) and traversing H-PPT from left to right.
Once I; € T%,Vv : 0 < v < m has been selected the following instruc-
tion in this branch must be from S”~!. Figure 6.3 shows a H-PPT and a
corresponding possible program.

Figure 6.3: A H-PPT (left) and a corresponding possible program (right).
The structuring parts of the program are highlighted.

Tree Shaping

H-PPT shaping is done just like PPT shaping (see Section 4.2.4).

80 CHAPTER 6. STRUCTURED PROGRAMS

Learning

H-PIPE’s update rules are analogous to PIPE’s. The only difference is the
more sophisticated indexing method due to H-PPT’s hierarchical structure.

6.2.2 Skip Nodes

Skip nodes are inspired by biology’s introns. They are functions that serve
to switch code parts on and off. We will first define SNs for PIPE, then
for H-PIPE. Finally we describe the necessary modifications of PIPE’s and
H-PIPE’s update rules.

SNs for PIPE

Let n denote the maximal arity of the PT'T (the maximal number of argu-
ments of functions that are not SNs). There are at most n SNs. The i-th
is denoted —;. It is a function with n arguments and returns the i-th. Its
interpretation is: evaluate the i-th argument but ignore the others.

SNs are elements of the function set F'. For instance, if we add SNs to the
instruction set of the function approximation example from Section 4.1.1 we
obtain: F' = {4+, —, x, %, sin, cos, exp,rlog,—1,—2} and T' = {z, R}. Figure
6.4 shows a PIPE program with SNs. The dashed parts of the program can

i ol

ok

Figure 6.4: A PIPE program with SNs for function approximation: f(x) =
(0.11 + x) % (0.2 — x). The dashed parts of the program are non-coding
segments.

be viewed as non-coding segments. Note that they need not even be created
during program generation and are therefore computationally cheap.

6.2. H-PIPE 81

SNs for H-PIPE

Let h(v) denote the maximal number of arguments in S* of non-SN functions
in SY.

At level v (0 < v < m) there are at most h(v) SNs. The i-th is denoted
—?. It is a function with h(v) arguments in SV and returns the i-th. Its
interpretation is: evaluate the i-th argument but ignore the others. Argu-
ments in S*~! cannot be accessed by SNs. They are accessed by HIs. There
are no SNs in SY.

SNs are elements of the function set F'V. For instance, if we add SNs to
the instruction set of the function approximation example from Section 6.2.1
we obtain: F? = {*, %, sin, cos, exp,rlog}, T° = {z, R} and F!' = {+, —, —1}
}, Tt = {|1}. Figure 6.5 shows an H-PIPE program with SNs.

Figure 6.5: An H-PIPE program with SNs for function approximation:
f(z) = exp(cos(0.2)) + x + rlog(x). The dashed parts of the program are
non-coding segments.

Changes to PIPE’s and H-PIPE’s Update Rules

Learning Update Modification. Parts of PPT or H-PPT corresponding
to non-coding segments are not updated. They are not taken into account
when (1) calculating the probability P(PROG;) of the best-of-generation
program PROG;, (see Equation 4.1), nor when (2) calculating the probability
P(Proc®) of the elitist program PrROG® (see Equation 4.2), nor when (3)
performing the learning update on the H-PPT (see Assignment 4.3).

82 CHAPTER 6. STRUCTURED PROGRAMS

Mutation. PPT or H-PPT parts that correspond to non-coding seg-
ments are also not accounted for during mutation. In Equation 4.4 |PROG|
denotes the number of nodes in PROG;. With SNs; however, |PROG| denotes
the number of nodes in program PROG;, without the non-coding segments
created by SNs.

6.3 Experiments

To evaluate the impact of HIs and SNs we cross-compare: (1) PIPE, (2)
H-PIPE without SNs (H-PIPE-NO-SN), (3) PIPE with SNs (PIPE-SN), (4)
and H-PIPE (PIPE with HIs and SNs in the structuring program parts). To
illustrate the significance of appropriate initial bias we also test H-PIPE with
different structuring instructions (H-PIPE-DIFF). We consider the nontriv-
ial continuous function regression problem from Section 5.2.1 and the 6-bit
parity problem from Section 5.2.2. For each combination of learning algo-
rithm and problem we conduct 50-200 independent runs to obtain statisti-
cally significant results.

6.3.1 Function Regression

We use the same function regression problem as in Section 5.2.1. Training
and test environment, fitness function and output interface remain the same.

Instruction Set

We use the following instruction sets: (1) PIPE: F' = {4, —, , %, sin, cos,
exp,rlogl, T = {x,R}; (2) H-PIPE-NO-SN: F! = {+,-}, T* = {|1},
FO = {x, %, sin, cos,exp,rlog}, T = {x, R}; (3) PIPE-SN: F = {+, —, *,
%, sin, cos, exp,rlog,—1,—2}, T = {z, R}; (4) H-PIPE: F! = {+, — —1},
T' = {|1}, F° = {*, %, sin, cos, exp,rlog}, T® = {z, R}; (5) H-PIPE-DIFF:
Fl = {%,—1}, T = {|1}, F° = {+, —, sin, cos,exp,rlog}, T = {x, R}.
R is always picked uniformly random from the interval [0;1).

Parameter Setup

We time-constrain all runs to PE = 100,000 and use the following param-
eter setting: Pr=Ppro=Pr1=0.8, ¢ = 0.000001, P.,;=0.01, P5S=10, {r=0.01,
Py=0.4, mr=0.4, Tr=0.3, Tp=0.999999, FIT, = 0.

6.3. EXPERIMENTS 83

Results

Figure 6.6 summarizes the most interesting results in form of cumulative
histograms. Note the different x-axis scaling for H-PIPE-DIFF. We plot

PIPE H-PIPE
T

percentage of programs
8 8
T
percentage of programs
8 &8 8
Y
%
4
\

0 et o et
0 1 2 3 4 5 6 0 1 2 3 4 5 6
fitness fitness
H-PIPE-NO-SN PIPE-SN
100 : PR 100 . :
P o P
§ 80 #ﬁ § 8 o ot
g 3 s
g <] o+
S 60 S 60 # b
H 2 e
Pl Pl !
g 2f " e g 2f ;
0 Lot ++, L 0 o #T
0 1 2 3 4 5 6 0 1 2 3 4 5 6
fitness fitness
H-PIPE-DIFF
100 T T T T T L
2 &
g 80
& Fi 7
5 60
°
g wp
é 20 - fﬁ%
0 1 1 L i 1

0 2 4 6 8 10 12 14 16 18

fitness

Figure 6.6: Results for the regression problem.

performance u against percentage of programs with FIT(PrRoG) < u. Each
point indicates the number of programs with FIT(PROG) equal to or better
than its x-axis value: algorithms with better performance have more points
with smaller x-values.

PIPE vs. H-PIPE. H-PIPE outperforms PIPE. H-PIPE’s fitness in
the median run is FIT,,.q = 2.39, slightly better than PIPE’s with FIT,,.q =
2.55. In 82% of all runs H-PIPE finds programs with fitness below 4, while
only 67% of all PIPE runs accomplish this. On the other hand, the worst
3% of all H-PIPE runs (not shown) resulted in programs worse than the best
found by all PIPE runs. The median of H-PIPE’s program size (Node,eq =
92 nodes) is significantly smaller than PIPE’s (Node,eq = 157).

How much of the performance improvement can be attributed to HIs, how
much to SNs? To study this question we now compare PIPE and H-PIPE
to PIPE with SNs (PIPE-SN) and H-PIPE without SNs (H-PIPE-NO-SN).

84 CHAPTER 6. STRUCTURED PROGRAMS

PIPE and H-PIPE vs. PIPE-SN. PIPE-SN performs much like
PIPE, and worse than H-PIPE. PIPE-SN’s FIT,,.q = 2.70 is slightly higher
than PIPE’s (FIT,.q = 2.55). Like PIPE, in 67% of all runs PIPE-SN
found programs with fitness below 4. Its worst programs (not shown) are
slightly better than the worst program among the best of the individual
PIPE runs. PIPE-SN’s programs (Node,.q = 117) tend to be smaller than
PIPE’s (Node,eq = 157), but larger than H-PIPE’s (Nodeeq = 92).

We observe that SNs in unstructured PIPE programs are neither harmful
nor beneficial.

PIPE and H-PIPE vs. H-PIPE-NO-SN. H-PIPE-NO-SN is the best
competitor, slightly better than H-PIPE, much better than PIPE. H-PIPE-
NO-SN’s FIT,,.q = 2.38 is roughly as good as H-PIPE’s FIT,,.q = 2.39.
In 91% of all runs , however, H-PIPE-NO-SN found programs with fitness
below 4, compared to H-PIPE’s 82% and PIPE’s 67%. Furthermore, unlike
with H-PIPE and PIPE, no program found by H-PIPE-NO-SN has fitness
above 7.39. The median size of H-PIPE-NO-SN programs, Node,,.q = 96,
is roughly the same as H-PIPE’s (Node,eq = 92) and significantly smaller
than PIPE’s (Node,eq = 157).

For this particular problem we observe that HIs by themselves increase
PIPE’s performance more than SNs. Later (in Section 6.3.2) we will see,
however, that indeed both HIs and SNs are needed to solve certain tasks
more efficiently. But first we will illustrate the importance of choosing the
right HlIs.

PIPE and H-PIPE vs. H-PIPE-DIFF. H-PIPE-DIFF performs
significantly worse than H-PIPE and PIPE. The fitness of the best program
found by H-PIPE-DIFF in 50 independent runs is only 7.52. H-PIPE-DIFF’s
median fitness is FIT,,.q = 10.62. Compare H-PIPE’s and PIPE’s, which
are 2.39 and 2.55, respectively.

This demonstrates, not unexpectedly, that appropriate initial bias due
to “good” HIs is crucial to H-PIPE’s success.

Conclusion

HIs can increase PIPE’s performance significantly. They need to be selected
carefully, however. SNs do not contribute much to solving the function
regression task. In case of PIPE they reduce program size without affecting
solution quality. In case of H-PIPE they have a slightly detrimental effect
on overall performance.

The next experiment, however, will show that for some tasks only the

6.3. EXPERIMENTS 85

combination of HIs and SNs leads to significant performance improvement.

6.3.2 6-Bit Parity

We use the same 6-bit problem as in Section 5.2.2. Training and test envi-
ronment, fitness function and output interface remain the same.

Instruction Set

We use the following instruction sets: (1) PIPE: F' = {4, —, , %, sin, cos,
exp,rlog}, T = {xg, 1,22, 3, 74,25, R}; (2) H-PIPE-NO-SN: F! = {x, %},
T = {|1}, F* = {+, —, sin, cos,exp,rlog}, T° = {xg, x1, 22, T3, 24,75, R};
(3) PIPE-SN: F' = {+, —, %, %, sin, cos, exp,rlog, —1,—2}, T = {xg, x1, X2,
r3, 74,75, R}; (4) H-PIPE: F! = {x,%, —1}, T* = {|1}, F* = {+, —, sin,
cos,exp,rlog}, T° = {wg,x1,72,23, 24,75, R}; (5) H-PIPE-DIFF: F! =
{+,—, =1, 7' = {11}, F* = {x, %, sin,cos,exp,rlog}, T° = {xg,z1,
x9,T3,%4,%5, R}. R is always picked uniformly random from the interval
[0;1).

Parameter Setup

We time-constrain all runs to PE = 500,000 and use the following param-
eter settings: Pr=Pro=Pr1=0.6, ¢ = 0.000001, P.,;=0.01, P5=10, {r=0.01,
Py=0.4, mr=0.4, Tr=0.3, Tp=0.999999, FIT; = 0. Note that, except
for Pr, Pro, and Pp1, all parameters are set to the same values as for the
function regression task (see Section 6.3.1). Most of PIPE’s and H-PIPE’s
parameters seem robust with respect to changing tasks.

Results

Table 6.1 summarizes all results. The first column displays for each algorithm
the percentage of independent runs leading to perfect solutions within the
given time frame (PE). The next three columns show the numbers of program
evaluations necessary to find perfect solutions in the shortest, median, and
longest run, respectively. The final three columns list the minimal, median,
and maximal program sizes embodying perfect solutions.

Comparison

H-PIPE performs best. It solves the task more often and significantly faster
(with less program evaluations) than PIPE, PIPE with SNs, and H-PIPE

86 CHAPTER 6. STRUCTURED PROGRAMS

Table 6.1: Summary of 6-bit parity results. Best values are in boldface.

6-bit parity

Program Evaluations Nodes
Algorithm solved min—- med -max min-med-max
H-PIPE 94 % 5,700-37,460-397,000 | 23— 61 —96
PIPE 79 % 3,520 79,950 —497,220 | 24— 64 -137
PIPE-SN 76 % 1,676— 73,720 -487,930 | 25— 58 —110
H-PIPE-NO-SN 66 % 3,720-166,740-468,950 21- 49 -85
H-PIPE-DIFF 28 % 38,300-216,570-457,330 24— 61 94

without SNs. PIPE and PIPE-SN have roughly the same performance.
PIPE-SN finds slightly fewer solutions, but is faster than PIPE in the median
run. The median size of its solutions is also slightly smaller than PIPE’s.
Although its solution size is smallest in the median run, H-PIPE-NO-SN per-
forms significantly worse than PIPE and PIPE-SN. It finds fewer solutions
and requires more than twice as many program evaluations (in the median
run). H-PIPE-DIFF with wrong initial bias is worst of all. It needs more
than five times as many program evaluations as H-PIPE to find roughly
three times fewer solutions.

Conclusion

With this particular task H-PIPE outperforms PIPE. Neither SNs by them-
selves nor HIs by themselves are able to improve PIPE’s performance. In
absence of structure SNs’ effects are neither harmful nor beneficial, while
HIs by themselves decrease PIPE’s performance. The combination of both
HIs (embodying the proper initial bias) and SNs in H-PIPE, however, allows
for significant improvement.

6.4 Conclusion

H-PIPE, a novel method for synthesizing structured programs, uses hier-
archical instructions (HIs) to structure programs and skip nodes (SNs) to
facilitate their synthesis. HIs combine program parts, while SNs allow for
introns (non-coding segments). In our experiments, SNs by themselves were
useless for improving performance. Sometimes HIs by themselves worked

6.4. CONCLUSION 87

extremely well, but not always. Then, however, SNs were crucial to achieve
dramatic improvement.

Our review of previous work on non-coding segments suggests that non-
coding segments seem to require structured code to unfold their benefits.
Our own results add further empirical evidence in this vein.

88

CHAPTER 6. STRUCTURED PROGRAMS

Chapter 7

Memory

In previous chapters we have shown how some tasks can be solved by learning
a simple mapping from inputs to outputs. There are, however, tasks that
cannot be solved like that. This is because inputs may be ambiguous. A
particular input may demand different output responses depending on the
temporal context. Disambiguating inputs requires some sort of memory.

In this chapter we will present how to augment PIPE with memory.
We will then investigate PIPE’s behavior on tasks with a temporal context.
We will apply PIPE to learning in partially observable environments and
demonstrate that PIPE is able to find solutions to reinforcement learning
problems. Then we will focus on the “long time lag challenge”, where the
task is to isolate and store relevant input information over long periods of
time before relating it to an appropriate output. We will benchmark PIPE
against “Long Short Term Memory” (LSTM), the to our knowledge currently
most successful recurrent neural network approach to this kind of problems.

7.1 Memory Types

This section presents two types of memory that can be used by PIPE: re-
current output links, and memorizing cells.

7.1.1 Recurrent Output Links

To implement recurrent output links (ROLSs) an instruction “o” is added to
the terminal set. At each time step ¢, o contains the output of the program
at time step t — 1. For ¢t = 0, o is set to 0. Figure 7.1 shows an example

89

90 CHAPTER 7. MEMORY

program containing a ROL.

ROL

Figure 7.1: Example program with a recurrent output link (ROL).

7.1.2 Memorizing Cells

There are two kinds of memorizing cells: output cells (OCs) and memory
cells (MCs). Their data structures are identical, their applications different.
Figure 7.2 shows an example. OCs store the output of a program. The
return value of the program is then ignored. M (s are only used as internal
memory. OCs and MCs can be used together. There are noc OCs and ny;¢
MCs, where noc and njs¢ are positive integer constants. OCs and MCs can
be accessed and modified by programs during runtime. At any given time,
OCj; and MC; denote the current real-valued contents of the j-th and i-th
output and memory cells, respectively (j € {0..noc — 1}, @ € {0.npc — 1}).
All OC; and MC; are initialized with 0. OCs and MCs are accessed by write
and read functions that are added to the instruction set (see Section 7.2).

MC, MC, MC, MC OC, OC, OCj oc

Nymc Noc

0.34]1-05]191| *** 10.33 0.25|1.51(-01] = " | 0.99

Figure 7.2: Array of ny¢c and noc real-valued memory and output cells
(MCs and OCs) respectively.

7.2. MEMORY ACCESS STRATEGIES 91

7.2 Memory Access Strategies

This section presents two kinds of memory access strategies: direct and
indexed.

7.2.1 Direct Memory Access

With direct memory access (DMA) each OC; and MC; is associated with a
distinct function for setting and reading it. Functions set_Oj(arg;) (set-M;(
argy)) set the j-th (i-th) output (memory) cell to arg; and return arg;.
Terminal instructions get_O; (get_M;) return the contents of OC; (MC;). The
disadvantage of DMA is that the number of instructions in S (the instruction
set) grows linearly with the number of output/memory cells. It is applicable
only when few memory cells are used.

7.2.2 Indexed Memory Access

Indexed memory access (IMA) overcomes DMA’s problem. With IMA only
two functions need to be added to set and read arbitrary many output and
memory cells. Function set_O(arg1, args) (set-M(argy, args)) sets OC(|,ound(
argi)| mod noc) (MC(\round(argl)\ mod nMc)) := args and returns args. Func-
tion get_O(argl) (get—M(argl)) returns OC(|round(argl)| mod noc) (MC(\round(
argy)| mod nae)) (see, e.g., Teller, 1994).

7.3 Multiple Outputs

Section 4.4 described how multiple programs (MPs) can be used to accom-
modate for vector-valued outputs. Output cells (OCs) can also be used.

When OCs are used, their contents are treated as the output of a pro-
gram, while the program’s return value is ignored. As already hinted at in
Section 7.1.2 a program can have multiple output cells (npc > 1) and in
this way accommodate for multiple outputs.

7.4 Partially Observable Environments

In partially observable environments (POEs), a particular observation may
demand different action responses depending on the temporal context. Dis-
ambiguating observations requires some sort of short-term memory (e.g.,
Schmidhuber, 1991; Littman, 1994a; Kaelbling, Littman, and Cassandra,

92 CHAPTER 7. MEMORY

1995). POE tasks are generally considered difficult because of their particu-
larly nasty temporal credit assignment problem: It is usually hard to figure
out which observations are relevant and how they should affect short-term
memory contents.

7.4.1 Short-Term Memorizing POE Algorithms

Apart from recent nontraditional methods (e.g., Zhao and Schmidhuber,
1996; Schmidhuber et al., 1997a,b) there are two classes of POE algorithms.
Class I extends standard reinforcement learning (RL) algorithms based on
adaptive evaluation functions (EFs) (Watkins, 1989; Bertsekas and Tsit-
siklis, 1996). Usually, on-line variants of dynamic programming and some
kind of function approximator with a short-term memory mechanism are
combined to construct EFs mapping input/action histories to an expected
discounted future reward. The EFs are exploited in an on-line fashion to
learn rewarding action sequences (Whitehead and Ballard, 1990; Schmid-
huber, 1991; Chrisman, 1992; Lin, 1993; Cliff and Ross, 1994; Ring, 1995;
McCallum, 1996; Wiering and Schmidhuber, 1996a).

Methods from class II do not require EFs. Their policy space consists of
complete algorithms allowing for temporary memory, and they search policy
space directly. Members of this class are Levin Search (Levin, 1973, 1984;
Solomonoff, 1986; Li and Vitanyi, 1993; Schmidhuber, 1997a), Adaptive
Levin Search (ALS) (Wiering and Schmidhuber, 1996b), GP with memory
cells (e.g., Teller, 1994), and PIPE with memory. All those approaches gen-
erate and evaluate solution candidates in an off-line fashion. ALS, GP, and
PIPE also update the generator on the basis of the evaluation results. Other,
yet untried, class II methods include Simulated Annealing and Stochastic It-
erated Hill Climbing for Program Discovery (O’Reilly, 1995) with memory.

7.4.2 Maze Tasks

PIPE with memory cells can solve the POE tasks shown in Figure 7.3. S
denotes the start position and G the goal. The task is to find the shortest
path from S to G. The gray fields result in ambiguous observations: For each
gray field there is at least one other field on the shortest path from S to G
at which the agent will make the same observation but will have to execute
a different action. Memory of prior events is required to disambiguate those
observations.

7.4. PARTIALLY OBSERVABLE ENVIRONMENTS 93

Figure 7.3: Two mazes with 78 fields (left) and 196 fields (right). The agent
sees only whether its four adjacent states are blocked or free. This means
there are 22 = 16 possible observations, although only 6 (7) of them can
occur in the left (right) maze. Fields producing ambiguous observations on
the shortest path from S to G are colored gray; 19 (34) of the 29 (56) fields
in the left (right) maze have this property.

Agent Inputs. The agent input is a vector X = (N,S,W,E, MCy, MCh,
MCs), where N (S, W, E) is one of four observation components and takes
on value 1 if the field to the north (south, west, east) of the agent is blocked
and 0 otherwise. The maze in Figure 7.3-left (-right) allows for only 6 (7)
distinct observations. Fewer than nj;c = 3 memory cells did not lead to
satisfactory results for both mazes.

Agent Actions. On any given field, the agent can execute one of four
actions. Action GO_N (Go_S, Go_-W, Go_E) moves the agent one field to
the north (south, west, east) of its current position if this field is not blocked
and has no effect otherwise.

Training and Test Environment

Initially an agent AGENT is placed onto the start field S. AGENT is con-
trolled by a main program PROGRAM as follows:

executed_actions := 0
REPEAT
Action := PROGRAM (X))
EXECUTE Action
executed_actions := executed_actions + 1
UNTIL (AGENT found goal G OR ezecuted_actions = MAX _actions)

Since program runtimes are unknown, a time limit of M AX _actions executed
actions is introduced. If no agent of the current population finds the goal

94 CHAPTER 7. MEMORY

within M AX _actions executed actions, then the generation is “ignored” by
not learning from it, and not mutating the probability distributions.

Parallel Evaluation Saves Time. The current PIPE variant does
not exploit the fact that programs in a generation may have many different
fitness values. Instead, it considers just two fitness categories: “best” and
“worse than best” — the adjustment of prototype tree probabilities depends
on the best program only. Let us assume there are PS independent agents
situated in PS equal mazes. Since program runtimes may vary wildly, we
can save a lot of time by running all programs of each generation in parallel
(or by interleaving them on a serial computer) until the first agent reaches
the goal. Thus, we do not waste time on finishing executions of programs
worse than the best.

Fitness Function

Fitness is defined by the number of actions the agent executes to reach goal
G when starting from S.

Instruction Set

The function set is F' = {+, —, %, %, sin, cos, exp, rlog, set_M, get_M}. The
terminal set is T = {N, S, W, E, R}. R denotes the generic random constant
in [0;1).

Output Interface

PIPE synthesizes programs which, given AGENT’s input vector X , select
actions from ASET = {Go_N,Go_S,Go_-W, Go_E}.

Action Selection. The same action selection scheme is used as in the
soccer case study (see Section 5.3.4). Action selection depends on five vari-
ables: g € IR, A; € IR, Vi € ASET. Action i € ASET is selected with

probability P4, according to the Boltzmann-Gibbs distribution at tempera-

1
ture =:
g

e T
Py, :

1

Vi e ASET (7.1)

> vjeAser €Y

All A; and g are calculated by programs to be found by PIPE.
Programs. A main program PROGRAM consists of a program PROGY,
which computes the “greediness” parameter g, and four “action programs”

7.4. PARTIALLY OBSERVABLE ENVIRONMENTS 95

PROG® (i € ASET). These programs are generated according to five distinct
probabilistic prototype trees; they calculate

Ago.n = Proa®o-N(X)
AGO_S = PROGGO‘S (X)
Ago.w = Proc%-V(X)

AGO_E

|

-

=

o

)
)

N
s
—Eil

g = |PrOGY(X

where [PROG(z)| denotes the absolute value of PROG(z). Given X, PROG-
RAM(X) finally returns an action i € ASET randomly selected according
to Assignment 7.1. The evaluation order of all programs PROG! and PROGY
is fixed. This is important because those programs access and modify the
same memory cells. Calculating g enables PIPE to produce more or less
probabilistic/deterministic programs (possibly depending on the input).

Parameter Setup

The following parameters worked well for both mazes in Figure 7.3: P5=100,
PE=10,000,000, P,;=0, ¢ = 1, Ir=0.2, Pp=0.1, mr=0.2, Tp=0.3, Tp=
0.999999, and M AX _actions = 10,000. For experiments with the small
maze (Figure 7.3, left), Pr was set to 0.9999 and FITs to 29. For the large
maze (Figure 7.3, right), Pr was set to 0.999 and FIT; to 56.

Since fitness evaluations are extremely noisy, P, was set to 0. In the
forthcoming experiments, PIPE worked better with smaller populations sizes
PS and higher terminal probabilities Pp. A high terminal probability forces
PIPE to search for small programs first. Smaller population sizes allow
for more generations per time interval. Too small populations, however,
slow PIPE down because it can take less advantage of time-saving parallel
evaluations.

Results for Small Maze

11 independent runs were conducted. All runs found the optimal solution
of 29 steps. The earliest (latest) discovery of an optimal solution took 663
(12,837) generations, or 66,300 (1,283,700) program evaluations. The median
run took 2134 generations, or 213,400 program evaluations. In the median
(fastest/slowest) run, 31,544,100 (7,496,500/ 189,601,700) agent actions were
executed to find the shortest path. Recall that during each generation only
one program is run to completion, because the evaluation of all programs is

96 CHAPTER 7. MEMORY

stopped as soon as the first finds a solution. The program shown in Table

Table 7.1: A program embodying a partly stochastic, partly highly deter-
ministic policy for solving the small maze (see Figure 7.3, left).

PrROGEO-N: sin((((exp(N)+sin(0.286691))+0.970697)+get M(
get M(cos (exp(set M(((Wxget M((E*S)))%cos(get M(
0.126591))) ,exp(0.523777))))))))

PRrROGEO-S: (rlog((cos(sin(E))*(get M(((cos(((exp(set M(E,S))
+3) *N)) % ((N% (N+(N-E))) 4E)) +E)) +cos ((get M(((N+8) *
(exp(rlog(rlog(N)))-((S+W)-(set M(S, (N+E))%N)))))
-cos ((Wxset M(0.758213,W))))))))+((W-S)-S))

PROGEO-WV: set M((E-sin((S+S))), (get M(rlog((sin((exp(sin(
rlog(E)))+get M((set M(xrlog(E),E)-(WAN)))))+(sin(
set_ M(E,0.061605))%cos (0.542749)))))-exp(sin(W))))

PrROGCEO-F: set M((S-setM((S*xexp(E)),exp(get M(set M(W,N))))),
cos(exp(W)))

ProGY: (cos(0.666886)+((rlog((E+E))-((E-(sin((N%
0.776983)) +get M(cos(W))))+(sin(E)-E))) % ((S+
0.860636)-W)))

7.1 represents a partly stochastic, partly highly deterministic policy. Table
7.2 shows the corresponding probabilities of all actions during generation
of a shortest path. Like the maze, Table 7.2 is divided into three parts.
Starting with step 0 (= location S), the agent must go north for 8 steps to
stay on the shortest path. In steps 8-20 it has to keep going east; in steps
21-28 it must go south. Table 7.2 shows that except for step 21, the optimal
action at each step is the one with highest probability of being selected. The
program uses memory cells to distinguish between ambiguous observations
at steps 1-7 and 22-28 in an almost deterministic manner. In steps 12, 15,
18, and 21, however, the agent’s policy involves a high degree of stochasticity
(compare Jaakkola, Singh, and Jordan, 1995). Since successive populations
generally contain multiple copies of such a program, the shortest path will be
discovered within a reasonable time. It can then be stored separately. Note
that the program sets the greediness parameter g by itself, thus controlling
how stochastic/deterministic its policy is at any given step.

7.4. PARTIALLY OBSERVABLE ENVIRONMENTS

97

Table 7.2: Probability of each action in a given maze location as calculated
by the example program in Table 7.1, for the shortest path from S to G. For

each step, the probability of the optimal action appears in boldface.

Action probabilities
step Go_N Go_S Go_W Go_E
0 | 0.417796 | 0.057893 | 0.196644 | 0.327667
11 0.965758 | 0.034239 | 0.000000 | 0.000002
2 | 0.879572 | 0.120418 | 0.000001 | 0.000009
31 0.879572 | 0.120418 | 0.000001 | 0.000009
4 0.879572 | 0.120418 | 0.000001 | 0.000009
51 0.879572 | 0.120418 | 0.000001 | 0.000009
6 | 0.879572 | 0.120418 | 0.000001 | 0.000009
7 | 0.879572 | 0.120418 | 0.000001 | 0.000009
8 | 0.051486 | 0.047469 | 0.017957 | 0.883088
9 | 0.074389 | 0.016590 | 0.072058 | 0.836963
10 | 0.074389 | 0.016590 | 0.072058 | 0.836963
11 | 0.074389 | 0.016590 | 0.072058 | 0.836963
12 | 0.015821 0.229479 | 0.015041 | 0.739660
13 | 0.074389 | 0.016590 | 0.072058 | 0.836963
14 | 0.074389 | 0.016590 | 0.072058 | 0.836963
15 | 0.015821 | 0.229479 | 0.015041 | 0.739660
16 | 0.074389 | 0.016590 | 0.072058 | 0.836963
17 | 0.074389 | 0.016590 | 0.072058 | 0.836963
18 | 0.015821 0.229479 | 0.015041 | 0.739660
19 | 0.074389 | 0.016590 | 0.072058 | 0.836963
20 | 0.074389 | 0.016590 | 0.072058 | 0.836963
21 | 0.015821 | 0.229479 | 0.015041 | 0.739660
22 | 0.000273 | 0.999727 | 0.000000 | 0.000000
23 | 0.000000 | 1.000000 | 0.000000 | 0.000000
24 | 0.000000 | 1.000000 | 0.000000 | 0.000000
25 | 0.000000 | 1.000000 | 0.000000 | 0.000000
26 | 0.000000 | 1.000000 | 0.000000 | 0.000000
27 | 0.000000 | 1.000000 | 0.000000 | 0.000000
28 | 0.000000 | 1.000000 | 0.000000 | 0.000000

98 CHAPTER 7. MEMORY

Stochasticity. If actions are selected uniformly random, then the prob-
ability of finding the shortest path for the small maze is 472 ~ 3.5 - 10718,
If actions are chosen according to the example program in Table 7.1, this
probability is approximately 2.15 - 1073. Although the program does not
represent a deterministic solution, it will find the shortest path every 324th
run on average. Compare this to 2.9 - 107 runs in case of uniformly random
selected actions. Even if we knew (but we do not) that the shortest path
requires 29 steps, we would have to process on average 8.4-10'® agent moves
to find it. PIPE, however, finds it within 3.15-107 agent moves in the median
run.

Results for Large Maze

Again we conducted 11 independent runs. PIPE always found the optimal
solution of 56 steps. The earliest (latest) discovery of an optimal solution
took 1,782 (12,733) generations, or 178,200 (1,273,300) program evaluations.
The median run took 2,717 generations, or 271,700 program evaluations.
Recall that only the fastest program in each generation is run to completion.
If actions are selected uniformly random, then the probability of finding the
shortest path is 4796,

7.4.3 Conclusion

PIPE variants with memory-setting and memory-reading instructions are
applicable to partially observable environments.

If the goal is to discover a program with minimal runtime, then PIPE’s
parallel population evaluation gains efficiency by stopping runs of programs
slower than the best. This results in speed-ups even on serial computers.

7.5 Long Time Lag Challenge

Some pattern classification tasks with a simple sequential solution are hard
to learn by static approaches such as, e.g., feedforward neural networks. For
instance, the parity problem requires to separate bitstrings of length n > 0
(n integer) with an odd number of zeros from others. In principle the task
is solvable by a 3-layer feedforward net with n input units. But learning
the task from training exemplars is hard for n > 20, due to such a net’s
numerous free parameters. On the other hand, a very simple finite state
automaton with just one bit of internal state can correctly classify arbitrary

7.5. LONG TIME LAG CHALLENGE 99

strings by sequentially processing them one bit at a time, and switching the
internal state bit on or off depending on whether the current input is 1 or
0. Such simple observations make sequential, event-memorizing behavior
interesting.

7.5.1 Analog vs. Discrete Methods

How to learn sequential, event-memorizing behavior from training examples?
Analog methods typically use gradient-based methods to search continuous
spaces of algorithms represented as sets of real numbers (such as weight
matrices of recurrent neural nets). Discrete methods search spaces of enu-
merable algorithms composed from a finite set of primitive instructions. If
there are long time lags between relevant events and later error signals,
then most analog gradient-based recurrent net learning algorithms, such
as “Back—Propagation Through Time” (BPTT, e.g., (Rumelhart, Hinton,
and Williams, 1986; Werbos, 1988; Williams and Zipser, 1992)) or “Real-
Time Recurrent Learning” (RTRL, e.g., (Robinson and Fallside, 1987)) (see
overviews by Williams, 1989; Pearlmutter, 1995), will not work. Their main
problem is that error signals “flowing backwards in time” tend to decay
exponentially, as was shown first by Hochreiter (1991) and later by Ben-
gio, Simard, and Frasconi (1994). A gradient-based method called “Long
Short-Term Memory” (LSTM — Hochreiter and Schmidhuber, 1997a) elim-
inates some of gradient-based approaches’ problems and can solve complex
long time lag tasks involving distributed, high-precision, continuous-valued
representations.

Even LSTM, however, does not fully eliminate the dependence on the
time lag size. Discrete search methods, on the other hand, do not care for
time lag size at all. They are of particular interest where the algorithmic
complexity (AC) of a solution is low (i.e., the solution can be implemented
by a short program in a given programming language representing initial
bias). For instance, the few free parameters of a parity-recognizing recur-
rent net with a single input and hidden unit can be quickly and successfully
guessed — few trials with random weight initializations and a small training
set are sufficient to obtain solutions (weight matrices) with perfect general-
ization on a large test set (Schmidhuber and Hochreiter, 1996; Hochreiter
and Schmidhuber, 1997b).

Weight guessing is one of the simplest discrete methods. It will not solve
non-trivial tasks (requiring many or precise parameters) in reasonable time.
More sophisticated discrete methods searching incrementally for better se-

100 CHAPTER 7. MEMORY

quence-processing algorithms are needed. Such methods are Adaptive Levin
Search (Wiering and Schmidhuber, 1996b; Schmidhuber et al., 1997b) based
on Levin Search (Levin, 1973, 1984), Genetic Programming (Cramer, 1985;
Dickmanns et al., 1987; Koza, 1992) with memory cells (e.g., Teller, 1994),
and Probabilistic Incremental Program Evolution (PIPE) with memory cells
(Satustowicz and Schmidhuber, 1997a).

7.5.2 Long Short Term Memory

Long Short Term Memory (LSTM — Hochreiter and Schmidhuber, 1997a) is
a recent, analog, gradient-based recurrent neural net approach for supervised
learning of sequential processes. Unlike most alternative approaches it can
learn from training sequences that do not exhibit any short time lags between
relevant events. It does so by enforcing constant error flow through “constant
error carrousels” (CEC) within special units, and applying multiplicative
gate units that learn to open and close access to the constant error flow.
LSTM combines CEC and multiplicative input and output gates to form
memory cells that can store information over arbitrary periods of time. See
Hochreiter and Schmidhuber (1997a), or Gers, Schmidhuber and Cummins
(2000) for a detailed description of net structure and learning algorithm.

7.5.3 Time-Lag Size and Algorithmic Complexity

Tasks can be characterized by: (1) time lag size, and (2) an approximation
of the algorithmic complexity of their solutions.

Time-Lag Size

Time-lag size measures the number of irrelevant time steps between some
relevant event and a corresponding later error signal.

Algorithmic Complexity

Algorithmic complexity (AC) traditionally is used as a synonym for “Kol-
mogorov complexity”, which refers to the length of the shortest program
computing a solution (Kolmogorov, 1965; Solomonoff, 1964; Chaitin, 1987).
Naturally the length of the program depends on the ”programming lan-
guage” representing the initial bias. Since Kolmogorov complexity is not
computable in general, however, we roughly approximate it by simply count-
ing the number of relevant event combinations that need to be distinguished

7.5. LONG TIME LAG CHALLENGE 101

by the learner. In general, the more event combinations, the longer the
program that encodes them all.

7.5.4 Comparisons

PIPE and LSTM are compared on two problems involving both long minimal
time lags and low algorithmic complexity (AC). So far both the “adding
problem” and the “temporal order problem” (Hochreiter and Schmidhuber,
1997a) have been solved by only one single analog method (LSTM). (BPTT
and RTRL failed.) The adding experiments show that LSTM’s convergence
speed depends on time lag size, while PIPE’s does not. Sometimes simple
ROLs suffice. The forthcoming temporal order experiments, however, will
require memorizing (output) cells.

T'wo measures are used to compare the performances of LSTM and PIPE:
(1) the probability of finding a solution within a given time frame, and
(2) the average time needed to find a solution (with respect to the given
time frame). Time is measured by the number of sequence presentations, to
remain independent of implementation issues of LSTM and PIPE.

7.5.5 Adding Problem

The task is to identify two relevant, real-valued input components occurring
in a long sequence and to output their sum at the end. The task’s AC is low
because a single combination of only two (although widely separated) past
events is necessary for correct prediction (of the sum).

Task Definition

Training and test sequences have random lengths varying from minimal se-
quence length T to T + 1—T0. Each element of each input sequence is a pair of
components. The first component is a real value randomly chosen from the
interval [—1,1]; the second is either 1.0, 0.0, or -1.0 for LSTM and 1.0, or
0.0 for PIPE. It is used as a marker: at the end of each sequence, the task is
to output the sum of the first components of those pairs that are marked by
second components equal to 1.0. In a given sequence exactly two pairs are
marked as follows: first randomly select and mark one of the first ten pairs
(whose first component is then called X7). Then randomly select and mark
one of the first % — 1 still unmarked pairs (whose first component is then
called X2). The second components of all remaining pairs are zero. Since
LSTM needs a “trigger input” to mark the end of a sequence, the second

102 CHAPTER 7. MEMORY

component of the final pair is set to -1. An error signal is generated only at
the sequence end: the target for LSTM is 0.5 + X1+OXQ (the sum X; + Xo
scaled to the interval [0,1]) and for PIPE X; 4+ X,. A sequence is processed
correctly if the absolute error at the sequence end is below 0.04.

LSTM Setup

LSTM’s network topology and most important parameter values are listed
here. A detailed description of all LSTM parameters is in (Hochreiter and
Schmidhuber, 1997a). A 3-layer net with 2 input units, 1 output unit, and 1
cell block of size 2 is used. The output layer receives connections only from
memory cells. Memory cells and gate units receive inputs from memory
cells and input units. All non-input units have bias weights. All activation
functions in the hidden layer are logistic with output range [0, 1], except
for h, whose range is [—1,1], and g, whose range is [—1,1]. Output units
do not apply a squashing function. The learning rate is set to 0.5. Online
learning is used, generating sequences dynamically right before they are used
for training. Training is stopped when the average training error is below
0.01, and the 2000 most recent sequences have been processed correctly or
a total of 5,000,000 sequences has been processed.

PIPE Setup

Training and Test Environment. Each generation a new training data
set is generated. It contains 100 randomly generated sequences. When all
training sequences of a data set are processed correctly by a program, the
program is manually verified whether it constitutes an analytically correct
(“perfect”) solution.

Fitness Function. The fitness of a program is the average absolute sum of
differences of the program’s output at sequence end and the X7 + X5 target
(see above).

Instruction Set. PIPE uses recurrent output links (ROLs). The function
set is F' = {4, —, *, %, nop, sin, cos, exp,rlog}, where nop is a single argu-
ment identity function (all other functions are defined in Section 4.1.1), and
the terminal set is T = {xg, 1, 0}, where xg, x1 are input variables and o is
the ROL. At the beginning of each sequence o is set to 0.

Output Interface. No specific output interface is required.

Parameter Setup. Following parameters are used: PE = 20,000, Pr=0.9,
e = 0.000001, P,;=0.0, PS=10, Ir=0.01, Py=0.1, mr=0.1, Tr=0.3, Tp=

7.5. LONG TIME LAG CHALLENGE 103

Table 7.3: Results for the adding problem. 7' is the minimal sequence length,
T'/2 the minimal time lag. LSTM’s column “perfect solutions” gives the per-
centage of perfect solutions (all sequences in the test set correct) from a test
set containing 2560 sequences. LSTM’s “success after” column provides the
number of training sequences required to achieve LSTM’s stopping criterion.
Values for T = 50, 100, 500, and 1000 are means of 10 trials; values for T
= 1500, 2000, 2500, and 5000 are means of 6 trials. PIPE’s “perfect so-
lutions” column reports on how likely PIPE is to find perfectly predicting,
algorithmically correct solutions. PIPE’s “success after” column provides
the number of training sequences required on average (means of 35, 33, 37,
39, 41, 37, 35, and 39 independent runs for T = 50, 100, 500, 1000, 1500,
2000, 2500, and 5000 respectively) to achieve a perfect solution (within the
PE = 20,000 time limit).

LSTM PIPE
T minimal | perfect success perfect | success
lag solutions after solutions after
50 25 100%. 127,000 70% 786,000
100 50 100% 172,000 66% 832,000
500 250 100% 253,000 74% 689,000
1000 500 100% 531,000 78% 832,000
1500 750 60% 526,000 82% 830,000
2000 1000 60% 1,007,000 74% 613,000
2500 1250 60% 1,266,000 70% 661,000
5000 2500 0% n.a. 78% 675,000

0.999999, FIT, = 0.

Results

The minimal time lag between the most recent occurrence of relevant infor-
mation and the point of prediction varies from 25 to 2500 time steps. Table
7.3 summarizes all results. With increasing minimal time lag, LSTM needs
more and more sequence presentations (from 127,000 up to 1,266,000) to
solve the task. LSTM also finds fewer and fewer “perfect solutions” (from
100% down to 0%) with respect to a test set consisting of 2560 randomly
chosen sequences. (10 independent trials were conducted for each time lag

104 CHAPTER 7. MEMORY

size from 25 to 500 and 6 trials for each larger time lag size.) With mini-
mal time lag of 2500 LSTM did not find a single “perfect solution” within
5,000,000 sequence presentations. PIPE is able to find perfectly generalizing
solutions (0 incorrectly processed sequences) in 66%-82% of all independent
runs (50 for each time lag size). The number of required sequences varies,
but seems independent of whether the minimal time lag is 25, 50, 250, 500,
750, 1000, 1250, or 2500 time steps. Although LSTM learns significantly
faster than PIPE in case of smaller minimal time lags (25, 50, 250, 500 and
750), PIPE outperforms LSTM in case of very long ones (1000, 1250, and
2500).

Conclusion

LSTM’s time lag dependence mostly stems from error signal interference that
increases with sequence length (just like it is harder for a feedforward net
to discover 1 relevant input unit among 100 irrelevant ones, than 1 among
10). The sample complexity (depending on the sequence length itself) may
play a minor role, too. The task’s AC remained constant, however, and the
competing discrete method (PIPE) did not seem affected by the time lag
increase.

7.5.6 Temporal Order Problem

The following task has been solved by only one analog method (LSTM).
(BPTT and RTRL failed.) The goal is to classify sequences into four classes
depending on the temporal order of two symbols in the sequence. Since
there are only four relevant symbol combinations the task has a relatively
low AC. It is sufficient, however, to prevent PIPE with ROLs from working
efficiently. Memorizing cells are needed.

Task Definition

Inputs and targets of a sequence are represented locally (input vectors with
only one non-zero bit). The sequence starts with an F, ends with a B (the
“trigger symbol”) and otherwise consists of randomly chosen symbols from
the set {a,b,c,d} except for two elements at positions ¢; and to that are
either X or Y. The sequence length is randomly chosen between 100 and
110, t; is randomly chosen between 10 and 20, and ts is randomly chosen
between 50 and 60. There are 4 sequence classes @, R, S,U which depend
on the temporal order of X and Y. The rules are: X, X — @Q; X,Y —

7.5. LONG TIME LAG CHALLENGE 105

R; Y, X —S5; Y)Y — U. There are as many outputs as there are classes.
Each class is locally represented by a binary target vector with one non-zero
component. Error signals occur only at the end of a sequence. A sequence is
classified correctly by LSTM (PIPE) if the final absolute error of all LSTM
outputs is below 0.3 (if only PIPE’s Boolean output cell associated with the
expected output class is set true).

LSTM Setup

Again LSTM’s network topology and most important parameter values are
listed here. A detailed description of all LSTM parameters is in (Hochreiter
and Schmidhuber, 1997a). LSTM uses a 3-layer net with 8 input units, 2 cell
blocks of size 2 and 4 output units. All non-input units have bias weights,
and the output layer receives connections from memory cells only. Memory
cells and gate units receive inputs from input units, memory cells and gate
units. All activation functions are logistic with output range [0, 1], except for
h, whose range is [—1, 1], and g, whose range is [—2,2]. The learning rate is
0.5. Online learning is used, generating sequences dynamically right before
they are used for training. Training is stopped once the average training
error falls below 0.1 and the 2000 most recent sequences have been classified
correctly. All weights are initialized in the range [—0.1,0.1]. The first input
gate bias is initialized with —2.0, and the second with —4.0. The test set
consists of 2560 randomly chosen sequences.

PIPE Setup

Training and Test Environment. Each generation a new training data
set is generated. It contains 100 randomly generated sequences. PIPE pro-
grams are applied to each sequence. In case the best program of a generation
classifies 100% of the training data correctly, its performance is tested on
5000 randomly created test sequences. The run is stopped when a program
classifies all training and test sequences correctly or the time constraint PE
(see below) is exceeded.

Fitness Function. The fitness of a program is the number of training
sequences the program misclassifies. A sequence is classified correctly if at
the end of the sequence only the output cell associated with the expected
output class is switched on.

Instruction Set. 4 MPs and 4 Boolean OCs with direct memory ac-
cess are used. PIPE programs may set and reset output cells several times

106 CHAPTER 7. MEMORY

Table 7.4: Results for the temporal order problem. “# wrong predictions”
is the number of sequences incorrectly classified by LSTM (error > 0.3 for
at least one output unit) from a test set containing 2560 sequences. For
LSTM the “success after” column provides the number of training sequences
required to achieve LSTM’s stopping criterion. The results are means of
20 trials. PIPE’s “solved” column reports how often PIPE was able to
find solutions that correctly classify all sequences of the training data set
(containing 100 sequences) and the test data set (containing 5000 sequences).
PIPE’s “success after” column displays how many sequence presentations
were necessary on average (means of 46 runs).

LSTM PIPE
wrong predictions ‘ success after | solved ‘ success after
| loutof2560 | 31,390 | 92% | 6,048,000 |

while processing a single data point of a sequence. Since OCs are used,
the MPs merely impose an a priori structure on the full program. At
the beginning of each sequence all OCs are set to false. Boolean values
are represented by integers: 1 for true and 0 for false. The function set
is F = {if_set_Og_else,if reset_Og-_else,if _set_O;_else, if_reset_O_else,
if_set_Oq_else, if reset_Oy_else, if_set_Os_else, if _reset_Os_else}, where
the two argument function if _set_O;_else(argy, args) (if_reset_O;_else(args,
argz)) (0 <7 < 3) sets the i-th output cell to true (false) and returns true
if arg; evaluates to true. Otherwise args is returned. The terminal set
is T ={E,B,a,b,c,d, X,Y}, where E,B,a,b,c,d, X,Y are Boolean input
variables.

Parameter Setup. Following parameters are used: PFE = 500,000,
Pr=0.8, ¢ = 0.000001, P,;=0.0, PS=10, Ir=0.1, Py;=0.2, mr=0.2, Tp=0.3,
Tp=0.99, FIT, = 0.

Results

Table 7.4 summarizes all results. LSTM results are taken from (Hochreiter
and Schmidhuber, 1997a). LSTM finds almost perfect or perfect solutions
after on average just 31,390 sequence presentations. PIPE is able to solve
the problem in 92% of the time, but needs significantly more presentations.

7.6. CONCLUSION 107

Conclusion

A discrete method (PIPE) can employ memorizing cells to successfully solve
a task that so far has been solved only by LSTM. (BPTT and RTRL failed.)
LSTM, however, is much faster most likely because the time lags are not
extremely long (see Section 7.5.5).

7.5.7 Conclusion

Benchmarking LSTM against PIPE showed that LSTM’s requirements grow
faster than PIPE’s as time lag size grows. In case of high AC and not too
long time lags, however, LSTM tends to be superior.

7.6 Conclusion

This chapter presented various ways how PIPE can be augmented with mem-
ory. Equipped with recurrent output links (ROLs) or memorizing cells (MCs
or OCs) PIPE was able to solve tasks with a temporal context.

PIPE, e.g., found solutions to difficult reinforcement learning problems
(maze tasks). This application also revealed that PIPE can achieve signifi-
cant learning speedups (even on serial computers) by evaluating programs in
parallel, if the goal is to find programs with minimal runtime. The learning
speedup stems from PIPE’s inherent learning strategy that makes PIPE just
learn from the best program of a generation.

Furthermore, PIPE seems well suited for solving “long time lag” tasks,
where the goal is to relate relevant inputs to error signals that only occur
after a long minimal time lag. PIPE compared favorably to neural network
approaches on a long time lag task with low algorithmic complexity (AC).
On a task with shorter time lags and higher AC the currently most suited
neural network algorithm (LSTM - “Long Short Term Memory”, Hochreiter
and Schmidhuber, 1997a) was able to outperform PIPE.

The next chapter will show how PIPE can be augmented with a novel
automatic task decomposition method called filtering to solve tasks with
high algorithmic complexity.

108 CHAPTER 7. MEMORY

Chapter 8

Automatic Task
Decomposition

We have seen how long time lag tasks with low algorithmic complexity (AC)
can be solved by PIPE in conjunction with either ROLs or memorizing cells.
Although memorizing cells offer advantages over ROLs (which only work
for problems with extremely low AC), discrete methods such as PIPE fail
to learn programs that memorize a vast number of independent relevant
event combinations within acceptable time. For instance, when we tried
PIPE on a high AC task (see Section 8.2) we obtained only partial solutions.
Varying the number of memorizing cells did not help much: the problem is
not the memory limitation but PIPE’s limited ability to integrate complex
information into a single program. To enable discrete methods such as PIPE
to deal with high AC tasks we need to split them into subtasks that can be
solved independently and then be assembled into an overall solution.

8.1 Filtering

To overcome AC-related drawbacks of discrete methods we develop filtering
(Satustowicz and Schmidhuber, 1999b), a novel, general divide-and-conquer
method for automatic task decomposition. Unlike with certain previous
approaches, e.g., (Angeline and Pollack, 1992; Koza, 1992; Spector, 1996),
the decomposition is not “ad-hoc” but data-dependent. Filtering learns
“experts” and special “gates” (filters) to decompose a task. Experts learn
target values of data points, while filters learn which data points to assign
to which experts. The first expert is taught to fit as many training data

109

110 CHAPTER 8. AUTOMATIC TASK DECOMPOSITION

points as possible. After a while the training set is split into learned and yet
unlearned data. The next expert then tries to fit just the unlearned data,
etc. Once all data points have been fit by various experts, each expert also
needs to learn which incoming (test) data to process and which to pass on
to the next expert. This possibly complex decision task is also adaptively
decomposed into subtasks learned by sequences of filters, each passing the
current data to either its local expert or the next filter of the local expert or
the first filter of the next expert.

Filtering is different from boosting (Schapire, 1990; Drucker, Cortes,
Jackel, LeCun, and Vapnik, 1994) or “mixtures of experts” (Jordan and
Jacobs, 1992). Training sets of different experts do not overlap, and there is
no voting or adding mechanism. Instead the complex problem of assigning
test data to trained experts is solved sequentially by chains of adaptive filters
that learn to pass on data until an appropriate expert is found.

Filtering facilitates the task of the learning algorithm. Still, the discov-
ery of algorithmic regularities allowing for good generalization on test data
remains the burden of the learning algorithm itself. If it does not discover
any then filtering will essentially yield a lookup table.

Filtering’s basic idea is independent of a particular approach such as
PIPE. It can be used in combination with PIPE, GP, neural networks and
many other learning algorithms or a hybrid system of multiple learning al-
gorithms. An important aspect of filtering is that it does not merely shift
the problem without reducing its complexity: no single component (filter or
expert) needs to be particularly powerful or significantly more potent than
others.

We will see in Section 8.2 that a filtering variant that uses PIPE for learn-
ing both experts and filters achieves excellent generalization performance on
a complex task unsolvable by PIPE itself.

8.1.1 Filtering Non—Temporal Data Sets

For clarity we will first show how filtering can help in learning static input
patterns. It comprises two phases: (1) task decomposition (TD), and (2)
task assembly (TA). During TD a task is automatically decomposed into
subtasks that are then solved independently. During TA partial solutions
are assembled into a final one. Either the same learning algorithm, or several
different ones (hybrid system) can be used to perform TD and TA.

8.1. FILTERING 111

Task Decomposition

Given a learning algorithm ALG and a training set SET with nggr data
points, ALG is to output a desired target value for each data point in SET.
Data points are treated in a discrete way: ALG is said to have learned a data
point if the absolute difference between its target value and ALG’s output
falls below €¢4. ALG is trained on all data points in SET until either the task
is solved (according to ALG’s termination criterion), or until ALG has not
been able to improve (learn more data points) for some prespecified interval
Elspaz. ALG, however, needs to learn at least Ed,,;, > 1 data points. If
ALG stops and the task is not finished yet, (1) the learned partial solution
(the first expert — E) is saved, (2) SET is split into SETg, containing the
data correctly learned by expert F; and into SET}.s, a set containing the
remaining data. Then ALG is applied to SET.s: and the procedure of saving
experts and splitting the data set is repeated until all data points have been
learned. This decomposes the task into subtasks in a way depending only
on learning algorithm and data set. Note that E; learns from a smaller data
set than E; for i > j.

Task decomposition by itself, however, is insufficient. After a task has
been decomposed, the partial expert solutions need to be assembled in a
way that allows for sensibly classifying new, previously unseen test data.
The next subsection will address the question: which data points should be
assigned to which expert?

Task Assembly

Filters. The task of assigning data to experts may be almost as difficult as
the data fitting process itself, and may require similar decomposition. For
this purpose chains of “filters” (sequentially invoked gates) are used and as-
sociated with each expert. Let Fél denote the jth filter of the ith expert.
See Figure 8.1 for an example architecture with experts E1, Fo, F3 and cor-
responding filter chains F 13[71’ F %1, F 1%1’ F gl, and F' i%, F 1%2, F 1%2 respectively.

Each incoming data point first moves to the first expert’s first filter. Filters
are either positive or negative: positive filters take a data point and decide
whether to pass it on to their expert or not. Negative filters decide whether
the data should definitely not be passed to their expert. In this case it is
passed to the first filter of the next expert or directly to the next expert if it
is the final one. Data points that cannot be decided upon are simply passed
on to the next filter in the chain.

112 CHAPTER 8. AUTOMATIC TASK DECOMPOSITION

E, E, E,

Figure 8.1: Three experts and their associated filters. Arrows indicate pos-
sible data flow. (Figure taken from (Salustowicz and Schmidhuber, 1999b).)

Filter learning. Filters are learned sequentially in order of expert and
filter numbers by dynamically relabeling the data in SET. To train F };j, all
data points of SET that have not been learned by any previous filter F}éz,
for all x < j and all y < ¢, if x = j, are labeled as belonging to class I if they
are in SETE]. and to class II otherwise. If there are more class I than class
IT data points then a positive filter will be learned, otherwise a negative one.
A positive filter Fﬁj will learn to assign class I data points to E;. A negative
filter Fﬁ;j will learn to pass class II data points to the first filter of the next

expert Féﬂ or to the next expert ;1 in case Ej;; is the final one. No

1)
positive Fﬁ;j may pass any class II data points on to F; and no negative
F]Z;Jj may pass any class I data points on to Féjﬂ or E;q1. If a single filter
has separated at least Fd,,;, > 1 data points, but not all of them, and was
not able to improve its performance (by separating additional data points)
for some prespecified interval Fls;q., (1) the filter (Fﬁjj) is preserved, (2)
the data learned by F' Ej is eliminated from class I or II, depending on filter

type, and (3) the next filter FZE'H is trained to separate the remaining data
points. In this way filters are added incrementally until all class I and class
II data points have been correctly classified. Then filters F};_H for the next
expert are learned, and the entire procedure is repeated until all filters for all
experts (except for the final one) have been learned. Note that the number
of data points to be separated decreases with each learned filter.

8.1.2 Filtering Temporal Data Sets

With temporal data sets each training sequence may involve several inter-
mediate target signals (e.g., each time step may require a new prediction).

8.1. FILTERING 113

Therefore sets of training sequences are split and grouped into learned/un-
learned and class I/II sets in a slightly different way. Since temporal de-
pendencies can occur among unlearned and already learned points, one can-
not simply exclude the learned points from the training data set of an ex-
pert/filter: all experts and filters need to see all inputs of the entire data set
SET. Data set splits during task decomposition and assembly are achieved
by measuring an experts’/filter’s performance only on data points that have
not been already learned by a previous expert /filter.

Also during later processing of (previously unseen) test data, each data
point is given to each filter and expert. Filter outputs are then processed
sequentially (starting with F' 11“1) to determine which expert’s output is valid.

Filtering facilitates the decomposition of temporal tasks with many inde-
pendent relevant event combinations. Detecting the relevant dependencies
within a single event combination, however, remains the duty of the learning
algorithm.

In Section 8.2 we will see that PIPE with memory cells plus filtering can
extract the algorithmic regularities necessary for achieving perfect general-
ization.

8.1.3 Filtering with Few Data

Filtering can be applied even when few data is available. For instance, if
there is a training set containing just two data points of the type (x, f(x)):
f(1) = 10 and f(2) = 20, and if expert E; and E» are only able to assign
a single output value to a single input value, then expert E; can learn f(1)
= 10, expert Es f(2) = 20, and a filter Fél can learn to split the data set
and assign the data point with input 1 to expert E; and the data point with
input 2 to expert Fs.

8.1.4 Relation to Boosting etc.

The well-known method of boosting essentially first trains a learning algo-
rithm LA1 on a training subset T1, then creates a new training subset T2
for algorithm LA2 by filtering data through LA1 such that T2’s distribu-
tion differs from T1’s and includes elements of T'1 misclassified by LA1, and
so forth. After training, test data is classified by letting the LAs vote (see
Schapire’s theoretical result (Schapire, 1990)) or by adding their outputs
(Drucker et al., 1994). A somewhat related approach called miztures of ex-
perts (Jordan and Jacobs, 1992) uses gradient descent for learning to add

114 CHAPTER 8. AUTOMATIC TASK DECOMPOSITION

outputs of different experts trained in parallel on all patterns.

Filtering is quite different from all these methods: (1) training sets of
different experts do not overlap, (2) there is no need for a voting or adding
mechanism, (3) the (in general) complex problem of assigning test data to
trained experts is also decomposed into a sequence of subproblems; chains
of adaptive filters learn to pass on data until an appropriate expert is found.

8.2 Embedded Reber Grammar

The task is to learn the “embedded Reber grammar”, e.g. Smith and Zipser
(1989), Cleeremans, Servan-Schreiber, and McClelland (1989), and Fahlman
(1991). It allows for training sequences with very short time lags and can
therefore be learned by many recurrent net algorithms. Its AC is rather high,
though, since predictions are required at each time step, and numerous input
combinations need to be learned. PIPE without filtering completely failed
to solve this task. During its best runs PIPE was merely able to predict
roughly 60% of all data points of a sequence correctly. Filtering, however,
did enable PIPE to solve this popular recurrent net benchmark.

REBER

"Co—ts
X

. / GRAMMAR \

T S B E

. . —@ o—
— s . X P . s
\ / P REBER)
P \Y
e
T

GRAMMAR

Figure 8.3: Transition diagram for
the embedded Reber grammar. Each

Figure 8.2: Transition diagram for box represents a copy of the Reber

the Reber grammar. (Figure taken . .
" Hochreit 4 Schmidhuber. S-ammar (see Figure 8.2). (Figure
rom (Hochreiter and Schmidhuber, taken from (Hochreiter and Schmid-

1997a).) huber, 1997a).)

8.2.1 Task Definition

Starting at the leftmost node of the directed graph in Figure 8.3, symbol
strings are generated sequentially (beginning with the empty string) by fol-

8.2. EMBEDDED REBER GRAMMAR 115

lowing edges — and appending the associated symbols to the current string
— until the rightmost node is reached. Edges are chosen randomly if there
is a choice (probability: 0.5). The task is to read strings, one symbol at a
time, and to permanently predict the next symbol (error signals occur at
every time step). To correctly predict the symbol before last, the second
symbol has to be remembered.

8.2.2 Comparison

PIPE with MCs and filtering is compared to “Long Short Term Mem-
ory” (LSTM) (results taken from Hochreiter and Schmidhuber, 1997a), “El-
man nets trained by Elman’s training procedure” (ELM) (results taken
from Cleeremans et al., 1989), Fahlman’s “Recurrent Cascade-Correlation”
(RCC) (results taken from Fahlman, 1991), and “Real Time Recurrent Learn-
ing” (RTRL) (results taken from Smith and Zipser, 1989), where only the
few successful trials are listed. It should be mentioned that Smith and Zipser
actually make the task easier by increasing the probability of short time lag
exemplars.

8.2.3 Training and Test Environment

Local input/output representation (7 inputs, 7 outputs) is used. Following
Fahlman, 256 training strings and 256 separate test strings are used. The
training set is generated randomly. Test sequences are generated randomly,
too, but sequences already used in the training set are not used for testing.
For PIPE three pairs of training and test sets are generated. The first two
pairs (1,2) have training sets that contain on average shorter sequences than
their corresponding test sets. For the third pair (3) the opposite is true.
A trial is considered successful if all symbols of all sequences in both test
set and training set are predicted correctly — that is, if the output value(s)
corresponding to the possible next symbol(s) is (are) always the largest ones.
PIPE’s test performance is measured on all three test sets.

8.2.4 Neural Network Setups

Architectures and parameter settings for LSTM, RTRL, ELM, and RCC are
reported in the references listed in Section 8.2.2.

116 CHAPTER 8. AUTOMATIC TASK DECOMPOSITION

8.2.5 PIPE Setup

PIPE is used with MCs, MPs, and filtering. Each expert consists of 7 pro-
grams (one for each output) that share 10 MCs. Each filter consist of one
program with 10 MCs. MCs can hold continuous values and are initialized
to 0 before each sequence presentation.

Fitness Function

Expert fitness is the number of wrong predictions. Filter fitness for a positive
(negative) filter is the number of incorrectly classified class I (IT) points, if
all class IT (I) points have been classified correctly, and infinite otherwise.

Instruction Set

The function set is F' = {4, —, %, %, set_M, get_M, sin, cos,exp,rlog} (see
Sections 4.1.1 and 7.2 for function definitions), and the terminal set is 7' =
{B,T,S,X,E,P,V,R}, where B,T,S,X,E, P,V are input variables and R
is the GRC in [0;1).

Output Interface

No specific output interface is required for experts. For filters program
output is mapped to class I if > 0 and to class II otherwise.

Parameter Setup

The following parameter setup was used: FElsyq,:=1,000 program evalu-
ations, Edpin=1, Fls$;.,=10,000 program evaluations, Fd,,;,=1, PE =
5,000,000, FITs; = 0, Pr=0.9, ¢ = 0.000001, P,;=0.1, P5=10, r=0.01,
Py=0.4, mr=0.4, Tr=0.3, Tp=0.9.

8.2.6 Results

Table 8.1 shows all results for the analog methods. LSTM is the only one
that always learns to solve the task. RTRL and RCC perform better than
ELM, but worse than LSTM. Results for PIPE with filtering are shown in
Table 8.2. Filtering enabled PIPE to always learn the task. PIPE programs
consisted of on average 4 experts (min. 3, max. 7), a chain of 6 filters (min. 3,
max. 12) for Fy, 3 filters (min. 1, max. 7) for Es, and 2 filters (min. 1, max.
4) for E3. Most likely due to presence of short time lags, however, LSTM

8.2. EMBEDDED REBER GRAMMAR 117

Table 8.1: Results of several analog approaches for the embedded Reber
grammar: percentage of successful trials and number of sequence presenta-
tions until success for RTRL (results taken from Smith and Zipser, 1989),
“Elman net trained by Elman’s procedure” (results taken from Cleeremans
et al., 1989), “Recurrent Cascade-Correlation” (results taken from Fahlman,
1991) and LSTM (results taken from Hochreiter and Schmidhuber, 1997).
Only LSTM always learned to solve the task. It also needed least sequence
presentations on average (mean of 30 trials).

Analog Approaches

method‘ hidden units ‘

% of success

‘ success after

RTRL 12 “some fraction” 25,000
ELM 15 0 >200,000
RCC 7-9 50 182,000
LSTM | 3 blocks, size 2 100 8,440

Table 8.2: PIPE’s results for the embedded Reber grammar: The “tr. set”
column shows which training set is used. The “av. tr. err. / max. err.”
column reports PIPE’s average training error (fitness) and the maximal error
(worst possible fitness) on the training set. The “success after” column
reports on how many sequence presentations (averaged over 20 runs) are
necessary to achieve perfect performance on the training set. The rightmost
two columns report PIPE’s average (vs. worst possible) test set performance
on all three test sets and on how often PIPE discovered perfectly generalizing
solutions.

PIPE
tr. set | av. tr. err. / | success after | av. test err. / | perfect solutions
max. err. max. err.
1 0 /4018 24,880,896 0/ 13329 100%
2 0 / 3909 28,062,976 0 / 13329 100%
3 0 /4717 16,006,400 4.7 / 13329 10%

learned significantly faster (see Section 7.5.5). With the first two training
sets (containing short sequences) PIPE was always able to find perfectly

118 CHAPTER 8. AUTOMATIC TASK DECOMPOSITION

generalizing solutions. Training set 3 it learned in roughly 2/3 of the time
needed to learn training sets 1 and 2. When trained on longer sequences
(training set 3), however, it rarely achieved perfect generalization. The
imperfect solutions performed close to optimal (1-8 wrong predictions out
of 4630-4705) on longer test sequences, but worse (9-21 wrong predictions
out of 3994) on shorter ones (from test set 3).

8.2.7 Conclusion

Filtering enabled a discrete method (PIPE) to reliably learn the embedded
Reber grammar task (when fed with appropriate training data) that PIPE
by itself could not learn, and that has been reliably (always) solved by only
one analog method (LSTM). PIPE’s programs generalized extremely well,
except for those learned from long sequences: one of the many non-minimal
algorithmic representations of long sequences may be learned quickly but
does not necessarily embody a small finite state automaton capable of gen-
erating both the long sequences and certain shorter ones outside the training
set.

8.3 Conclusion

Filtering is a learning algorithm independent, automatic data and task de-
composition method. It can enable a learning algorithm to solve algorith-
mically complex tasks, which the algorithm by itself cannot solve. Filtering
not only splits complex tasks into several subtasks solvable by comparatively
simple algorithms (experts) but also decomposes into manageable subtasks
the hard problem of finding an appropriate expert for given data, thus going
beyond boosting and mixture of expert approaches.

Chapter 9

Conclusion

This dissertation presented Probabilistic Incremental Program Evolution
(PIPE). It started out with positioning PIPE at the intersection of two
research directions — probability-based program search (PBPS) and evo-
lutionary algorithms (EAs). After a brief review of both PBPS and EAs,
it then focused on its main goals to describe PIPE, show that PIPE is not
just of theoretical interest, and to elaborate on methods, which would make
PIPE applicable to a wide variety of problems. To reach the goals the thesis
dealt with the following four subjects:

e the basic PIPE algorithm

e structured programs

e memory

e automatic task decomposition

First we have described PIPE and demonstrated its practical applicability.
With structured programs we have then elaborated on a way to enhance the
performance of PIPE by providing a method for incorporating more a priori
knowledge into the algorithm. Enhancing PIPE with memory made it appli-
cable to the vast class of non-Markovian problems. Finally, automatic task
decomposition simplified problems and thus allowed us to solve significantly
more complex problems.

In the following sections we will now discuss in detail how and to what
extent we have reached our goals, remark on open issues and possible future
research. We will conclude this dissertation with final remarks on PIPE.

119

120 CHAPTER 9. CONCLUSION

9.1 The basic PIPE algorithm

First we have described Probabilistic Incremental Program Evolution (PIPE
— Salustowicz and Schmidhuber, 1997a,b,1999a). PIPE searches for pro-
grams applying an evolution-based optimization algorithm and probabilistic
models of program space. It generates successive populations of programs
from an initially random model and adapts the model to make the best pro-
gram of a current population more probable. In this way PIPE attempts to
incrementally find programs that embody better and better solutions to the
task at hand.

Applicability

After giving a step by step description on how to setup PIPE for applications,
we conducted a first series of experiments.

Those simple experiments have empirically proven that PIPE can solve
problems successfully. Furthermore, they have revealed the following: (1)
PIPE’s solution programs differ much from user-written programs. (2) We
can apply PIPE successfully using different programming languages (instruc-
tion sets). (3) However, we can also use a single programming language to
solve different problems. (4) We can use “standard” settings for most of
PIPE’s parameters. Although findings (3) and (4) do not make PIPE a
parameter-free algorithm, they facilitate setting PIPE up for different prob-
lems.

In a second series of experiments we focused on soccer (Satustowicz et
al., 1997a,b,1998) — a complex multiagent task, where our objective was to
develop team strategies. We benchmarked PIPE and CO-PIPE (Satustowicz
et al., 1997a), a coevolutionary version of PIPE that learns from play-
ing against itself, against a well engineered single player algorithm (SPA),
which did not take into account any team strategies and against TD-Q
learning (Sutton, 1988; Watkins, 1989; Peng and Williams, 1996; Wier-
ing and Schmidhuber, 1997), one of the most widely known and promising
approaches to reinforcement learning. By varying team sizes we investi-
gated how well PIPE and CO-PIPE were suited for learning cooperative
team strategies in a competitive environment. We found that independent
of team size both PIPE and CO-PIPE performed significantly better than
TD-Q learning. Especially the partial observability problem (POP) and the
agent credit assignment problem (ACAP — Weiss, 1996; Versino and Gam-
bardella, 1997) had a negative influence on TD-Q learning’s performance.

9.2. STRUCTURED PROGRAMS 121

With POP the agent’s input does not tell the agent everything about its
environment. The environment is said to be only partially observable and
may, from the agent’s point of view, change in an inherently unpredictable
way. ACAP is the problem of identifying those agents in a team that were
indeed responsible for the outcome. PIPE and CO-PIPE did not seem to
have problems with POP and ACAP. For small team sizes the SPA per-
formed better than PIPE and CO-PIPE. For a larger team size CO-PIPE
reached or exceeded the performance of SPA, while PIPE always exceeded
it. We concluded from these comparisons that (1) pure singleagent strate-
gies may not be optimal for larger teams of agents since they do not force
cooperation and that (2) PIPE can be successfully applied for developing
team strategies.

Concluding from these experiments we found that PIPE is practically
applicable and for certain types of problems, such as, e.g., tasks with POP
or ACAP, highly competitive.

Limitations

Naturally, like any other optimization algorithm, PIPE has some limita-
tions. To stimulate further research on PIPE we would like to name a few:
(1) Currently, we cannot make quantitative statements about PIPE’s conver-
gence rate, which strongly depends on terminal set, function set, and task.
More experiments with varying instruction sets are needed to better analyze
PIPE’s adaptation dynamics. (2) Unlike methods by Zhao and Schmidhu-
ber (1996) and Schmidhuber et al. (1997a,b), PIPE does not attempt to
improve its own learning algorithm. (3) Currently, PIPE updates its prob-
abilistic model using only one single individual per population. There may
be ways of extracting additional information that is implicit in the popu-
lation. (4) Unlike nonincremental Levin search (LS) (Levin, 1973, 1984),
PIPE does not have an optimal way of allocating computation time to pro-
grams that do not halt or whose runtimes are unknown. (5) As with with
most other comparable algorithms, several control parameters need to be set
heuristically.

9.2 Structured Programs

We have developed a principal extension to PIPE: Hierarchical PIPE (H-
PIPE — Satustowicz and Schmidhuber, 1998). H-PIPE is based on restrict-

ing the program search space by context free grammars (Whigham, 1995;

122 CHAPTER 9. CONCLUSION

Gruau, 1996). Programs are a priori structured by defining the hierarchical
order of instructions. Certain instructions cannot contain certain other in-
structions in their argument subtrees. Additionally “skip nodes” are used
to rapidly turn program parts on or off.

We have benchmarked H-PIPE against PIPE, against a PIPE version
with just skip nodes, against one with just hierarchical instruction order
and no skip nodes, and against a H-PIPE version with a different initial
bias (different hierarchical order of instructions). The results show: (1) As
expected setting the initial bias right (right hierarchical order of instructions)
is crucial to H-PIPE’s success. A wrong initial bias has a strong detrimental
effect on performance. (2) Skip nodes by themselves do not have much
influence on performance. (3) Given the right bias, the hierarchical order of
instructions may enhance performance. Sometimes, however, skip nodes are
necessary to achieve the performance increase.

With H-PIPE we have investigated a possible way of enhancing PIPE’s
performance by incorporation of a priori knowledge. We have found that
performance can be increased significantly.

Future Work

There are also many yet untried PIPE variants, which may lead to perfor-
mance enhancements. For instance, we may apply PIPE to programs with
automatically defined functions (Koza, 1992) or to programs with even more
general jump instructions (Dickmanns et al., 1987). Instead of coding pro-
grams by parse trees we may also use grids or directed acyclic graphs. It
might also be possible to improve PIPE by updating its probabilistic model
based on information conveyed by programs other than the best, and by
incorporating second-order statistics similar to those used in string-based
evolution (De Bonet, Isbell, and Viola, 1997; Baluja and Davies, 1997). Fi-
nally, we may plug PIPE into the on-line backtracking scheme proposed
by Schmidhuber (Schmidhuber, 1994; Schmidhuber et al., 1997a,b) to undo
probability modifications that have not triggered long-term reward speed-
ups.

9.3 Memory

To make PIPE applicable to non-Markovian problems we need to evolve
programs that use memory. Otherwise, all problems, where a program’s

9.3. MEMORY 123

output depends on a program’s input and the input’s temporal context, will
remain unsolvable.

We have shown several ways of evolving programs with memory. First
we have presented “recurrent output links”, where the outputs of a program
are directly fed into the program’s next time step’s inputs. Then we have
described memorizing cells — arrays of numbers — and have shown how
those cells can be set and read by programs.

We started evolving programs with memory for guiding agents through
partially observable environments (POEs). Our POEs were mazes. The
agents needed some sort of short-term memory to successfully navigate through
them. Using memorizing cells we found stochastic solutions for all mazes.
During those experiments we also discovered that when searching for pro-
grams with minimal runtime, we can boost PIPE’s performance. We can
evaluate all programs of a current population in parallel and stop the evalu-
ation of all programs as soon as one has delivered a solution. This speedup
is inherent to PIPE since PIPE only needs the currently best solution to
update its probabilistic model of program space.

Problems with short time lags between relevant inputs and corresponding
error signals can be solved by many different machine learning (ML) tech-
niques, such as, e.g., various recurrent neural network approaches. Once,
however, the data contains long minimal time lags between relevant inputs
and corresponding error signals, the task of matching both becomes signifi-
cantly more difficult. The currently most successful recurrent neural network
approach for solving this kind of problems is “Long Short-Term Memory”
(LSTM — Hochreiter and Schmidhuber, 1997a). We benchmarked PIPE
against LSTM on two tasks with long minimal time lags that more tra-
ditional recurrent neural network approaches, such as “Back—Propagation
Through Time” (e.g., Rumelhart et al., 1986; Werbos, 1988; Williams and
Zipser, 1992) and “Real-Time Recurrent Learning” (e.g., Robinson and Fall-
side, 1987; see also overviews by Williams, 1989; Pearlmutter, 1995), could
not solve. We found that with increasing minimal time lag size LSTM needs
more and more time to find fewer and fewer solutions. PIPE’s performance
seems independent of the minimal time lag size. While for smaller minimal
time lags LSTM’s performance is better than PIPE’s, PIPE outperforms
LSTM, when minimal time lag sizes become larger. We also found that
PIPE’s performance depends on the algorithmic complexity (AC) of a task.
AC is based on “Kolmogorov complexity”, which refers to the length of
the shortest program computing a solution (Kolmogorov, 1965; Solomonoff,
1964; Chaitin, 1987). While PIPE outperformed LSTM on a task with very

124 CHAPTER 9. CONCLUSION

long minimal time lags and low AC, LSTM was better suited for a task with
smaller minimal time lags and higher AC.

Overall we conclude that PIPE can be used to evolve programs with
memory and that it can be successfully applied to non-Markovian tasks. Es-
pecially for tasks with very long minimal time lags between relevant inputs
and corresponding error signals, PIPE seems to be a highly competitive al-
ternative to other ML techniques, such as, e.g., recurrent neural networks
approaches. On a task with higher AC and shorter minimal time lag, how-
ever, PIPE became less competitive. To make PIPE more competitive on
tasks with higher AC we can either enhance the basic algorithm, e.g., with
structured programs, or find a way to automatically decompose the task into
subtasks with lower AC.

9.4 Automatic Task Decomposition

We have developed filtering (Satustowicz and Schmidhuber, 1999b), a learn-
ing algorithm independent, automatic task decomposition method. In con-
nection with PIPE filtering first evolves programs, which constitute partial
solutions by splitting the training data set into learnable chunks. Then
programs are evolved, which assemble the learned partial solutions to a final
solution. Thus filtering goes beyond boosting (Schapire, 1990; Drucker et al.,
1994) and mixture of experts (Jordan and Jacobs, 1992) approaches. It not
only splits complex tasks into several subtasks solvable by comparatively
simple algorithms (experts), but also decomposes into manageable subtasks
the hard problem of finding an appropriate expert for given data.

To test filtering’s utility we have selected a task, which PIPE by itself
could not solve. The embedded Reber grammar problem is a popular bench-
mark for recurrent neural network (RNN) algorithms. Till so far, it has only
been reliably solved by LSTM. Other RNN algorithms, such as “Elman nets
trained by Elman’s training procedure” (Cleeremans et al., 1989), Fahlman’s
“Recurrent Cascade-Correlation” (Fahlman, 1991), and “Real Time Recur-
rent Learning” (Smith and Zipser, 1989) only found partial or no solutions.
PIPE augmented with filtering was able to discover perfectly generalizing
solutions to the problem.

Filtering makes PIPE applicable to a wider class of problems. We en-
hanced PIPE with filtering and were able to solve problems with higher
algorithmic complexity than solvable by PIPE itself. Of course, in principle
filtering could be used to augment other learning methods as well. Plug-

9.5. FINAL REMARKS 125

ging alternative learning methods into filtering is in fact part of an ongoing
research effort. Future progress in algorithm learning may involve com-
binations of different learning methods. Filtering is a technique sufficiently
general to allow for building hybrid systems with several learning algorithms.

9.5 Final Remarks

We have presented Probabilistic Incremental Program Evolution (PIPE), a
new, promising machine learning technique at the intersection of probability-
based program search and evolutionary algorithms. We have elaborated on
various methods to enhance PIPE and have shown that PIPE is applicable
to a wide variety of problems. For specific problem groups it even seems to
be highly competitive. Starting from this point, much can be done to further
investigate PIPE.

From the basic research point of view two main research streams seem
particularly promising — the probabilistic program space model and the
optimization algorithm. We can elaborate on the basic idea of mapping dis-
continuous program space into continuous probability space by using more
sophisticated and/or differently structured probabilistic program space mod-
els. A further investigation of PIPE’s adaptation dynamics could lead to the
design of new model optimization/update algorithms. In the long run we
might even leave the field of evolutionary program search and start using
other optimization methods, such as, e.g., gradient descent.

From the applied research point of view the following next two steps
would constitute a valuable continuation. First, we could define classes of
tasks for which PIPE is particularly well suited by establishing the tasks’
distinctive features. Some distinctive features, such as long minimal time
lags between relevant inputs and corresponding error signals, or the partial
observability problem, or agent credit assignment problem in reinforcement
learning tasks, have already been mentioned in this dissertation. In a second
step, we could then develop new extensions to PIPE, like, e.g., structured
programs and filtering — the two extensions described in this thesis — to
enhance PIPE and make it quickly applicable to complex real world tasks.

Software

For educational purposes a free of charge software package containing the
basic PIPE engine can be downloaded from:

ftp://ftp.idsia.ch/pub/rafal/PIPE_v1.0.tar.gz.

126 CHAPTER 9. CONCLUSION

Bibliography

Albus, J. S. (1975). A new approach to manipulator control: The cerebellar
model articulation controller (CMAC). Dynamic Systems, Measurement
and Control, 97:220-227.

Angeline, P. J. and Pollack, J. B. (1992). The evolutionary induction of
subroutines. In Proceedings of the 14th Annual Conference of the Cog-
nitive Science Society, pages 236-241, Hillsdale, NJ. Lawrence Erlbaum
Associates.

Asada, M., Uchibe, E., Noda, S., Tawaratsumida, S., and Hosoda, K. (1994).
A vision-based reinforcement learning for coordination of soccer playing
behaviors. In Proceedings of AAAI-94 Workshop on Al and A-life and
Entertainment, pages 16-21.

Béack, T. (1993). Optimal mutation rates in genetic search. In Forrest,
S., editor, Proceedings of the Fifth International Conference on Genetic
Algorithms, pages 2-8. Morgan Kaufmann, San Mateo, CA.

Béck, T., Rudolph, G., and Schwefel, H.-P. (1993). Evolutionary program-
ming and evolution strategies: Similarities and differences. In Fogel, D.
and Atmar, W., editors, Proceedings of the Second Annual Conference
on Evolutionary Programming, pages 11-22. Evolutionary Programming
Society, San Diego CA.

Béck, T. and Schiitz, M. (1996). Intelligent mutation rate control in canoni-
cal genetic algorithms. In Ras, W. and Michalewicz, M., editors, Foun-
dation of Intelligent Systems 9th International Symposium, ISMIS ’96,
pages 158-167. Springer, Berlin.

Béck, T. and Schwefel, H.-P. (1996). Evolutionary computation: An
overview. In Proceedings of the Third IEEE Conference on Evolutionary
Computation, pages 20-29. IEEE Press, Piscataway NJ.

127

128 BIBLIOGRAPHY

Baluja, S. (1994). Population-based incremental learning: A method for
integrating genetic search based function optimization and competitive
learning. Technical Report CMU-CS-94-163, Carnegie Mellon Univer-
sity, Pittsburgh.

Baluja, S. and Caruana, R. (1995). Removing the genetics from the standard
genetic algorithm. In Prieditis, A. and Russell, S., editors, Machine
Learning: Proceedings of the Twelfth International Conference, pages
38-46. Morgan Kaufmann Publishers, San Francisco, CA.

Baluja, S. and Davies, S. (1997). Using optimal dependency-trees for combi-
natorial optimization: Learning the structure of the search space. Tech-
nical Report CMU-CS-97-107, Carnegie Mellon University.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term depen-
dencies with gradient descent is difficult. IEEE Transactions on Neural
Networks, 5(2):157-166.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming.
Athena Scientific, Belmont, MA.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Claredon-
Press, Oxford.

Blickle, T. and Thiele, L. (1994). Genetic programming and redundancy. In
Hopf, J., editor, Genetic Algorithms within the Framework of Evolution-
ary Computation (Workshop at KI-94, Saarbriicken), pages 3338, Im
Stadtwald, Building 44, D-66123 Saarbriicken, Germany. Max-Planck-
Institut fiir Informatik (MPI-1-94-241).

Chaitin, G. (1969). On the length of programs for computing finite binary
sequences: statistical considerations. Journal of the ACM, 16:145-159.

Chaitin, G. (1975). A theory of program size formally identical to informa-
tion theory. Journal of the ACM, 22:329-340.

Chaitin, G. (1987). Algorithmic Information Theory. Cambridge University
Press, Cambridge.

Chrisman, L. (1992). Reinforcement learning with perceptual aliasing: The
perceptual distinctions approach. In Proceedings of the Tenth Interna-
tional Conference on Artificial Intelligence, pages 183—188. AAAI Press,
San Jose, California.

BIBLIOGRAPHY 129

Cleeremans, A., Servan-Schreiber, D., and McClelland, J. L. (1989). Finite-
state automata and simple recurrent networks. Neural Computation,
1:372-381.

Cliff, D. and Ross, S. (1994). Adding temporary memory to ZCS. Adaptive
Behavior, 3:101-150.

Cramer, N. L. (1985). A representation for the adaptive generation of simple
sequential programs. In Grefenstette, J., editor, Proceedings of an In-
ternational Conference on Genetic Algorithms and Their Applications,
pages 183-187, Hillsdale NJ. Lawrence Erlbaum Associates.

Crites, R. and Barto, A. (1996). Improving elevator performance using re-
inforcement learning. In Touretzky, D., Mozer, M., and Hasselmo, M.,
editors, Advances in Neural Information Processing Systems 8, pages
1017-1023, Cambridge MA. MIT Press.

De Bonet, J. S., Isbell, Jr., C. L., and Viola, P. (1997). Mimic: Finding
optima by estimating probability densities. In Jordan, M., Mozer, M.,
and Perrone, M., editors, Advances in Neural Information Processing
Systems, volume 9, pages 424-430. MIT Press, Cambridge, MA.

Dickmanns, D., Schmidhuber, J., and Winklhofer, A. (1987). Der geneti-
sche Algorithmus: Eine Implementierung in Prolog. Fortgeschrittenen-
praktikum, Institut fiir Informatik, Lehrstuhl Prof. Radig, Technische
Universitat Miinchen.

Drucker, H., Cortes, C., Jackel, L. D., LeCun, Y., and Vapnik, V. (1994).
Boosting and other ensemble methods. Neural Computation, 6(6):1289—
1301.

Fahlman, S. E. (1991). The recurrent cascade-correlation learning algorithm.
In Lippmann, R. P., Moody, J. E., and Touretzky, D. S., editors, Ad-
vances in Neural Information Processing Systems 3, pages 190-196. San
Mateo, CA: Morgan Kaufmann.

Fogel, L., Owens, A., and Walsh, M. (1966). Artificial Intelligence through
Simulated Evolution. Willey, New York.

Fogel, L. J. (1962). Autonomous automata. Industrial Research, 4:14-19.

Gécs, P. (1974). On the symmetry of algorithmic information. Soviet Math.
Dokl., 15:1477-1480.

130 BIBLIOGRAPHY

Gers, F. A., Schmidhuber, J., and Cummins, F. (2000). Learning to forget:
Continual prediction with LSTM. Neural Computation, 12(10):2451—
2471.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley, Reading.

Gruau, F. (1994). Neural Networks Synthesis using Cellular Encoding and
the Genetic Algorithm. PhD thesis, Ecole Normale Supérieure de Lyon.

Gruau, F. (1996). On using syntactic constraints with genetic programming.
In Angeline, P. J. and Kinnear, Jr., K. E., editors, Advances in Genetic
Programming 2, chapter 19, pages 377-394. MIT Press, Cambridge,
MA, USA.

Haynes, T. (1996). Duplication of coding segments in genetic programming.
In Proceedings of the Thirteenth National Conference on Artificial In-
telligence, pages 344-349, Portland, OR.

Hertz, J., Krogh, A., and Palmer, R. (1991). Introduction to the Theory of
Neural Computation. Addison-Wesley, Redwood City.

Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen
Netzen. Diploma thesis, Institut fiir Informatik, Lehrstuhl Prof.
Brauer, Technische Universitdt Miinchen. See www7.informatik.tu-
muenchen.de/ " hochreit.

Hochreiter, S. and Schmidhuber, J. (1997a). Long short-term memory. Neu-
ral Computation, 9(8):1735-1780.

Hochreiter, S. and Schmidhuber, J. (1997b). LSTM can solve hard long time
lag problems. In Mozer, M. C., Jordan, M. 1., and Petsche, T., editors,

Advances in Neural Information Processing Systems 9, pages 473—-479.
MIT Press, Cambridge MA.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Uni-
versity of Michigan Press, Ann Arbor.

Hutter, M. (2001). The fastest and shortest algorithm for all well-defined
problems. Technical Report IDSTA-16-00, Istituto Dalle Molle di Studi
sull’Intelligenza Artificiale, Manno (Lugano), Switzerland. Submitted
to the International Journal of Foundations of Computer Science.

BIBLIOGRAPHY 131

Jaakkola, T., Singh, S. P., and Jordan, M. I. (1995). Reinforcement learn-
ing algorithm for partially observable Markov decision problems. In
Tesauro, G., Touretzky, D. S., and Leen, T. K., editors, Advances in
Neural Information Processing Systems 7, Cambridge MA. MIT Press.

Jordan, M. I. and Jacobs, R. A. (1992). Hierarchies of adaptive experts. In
Moody, J., Hanson, S., and Lippmann, R., editors, Advances in Neural
Information Processing Systems - 4, pages 985-993. Morgan Kaufmann,
San Mateo, CA.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1995). Planning
and acting in partially observable stochastic domains. Technical report,
Brown University, Providence, RI.

Kolmogorov, A. (1965). Three approaches to the quantitative definition of
information. Problems of Information Transmission, 1:1-11.

Koza, J. R. (1992). Genetic Programming — On the Programming of Com-
puters by Means of Natural Selection. MIT Press.

Langdon, W. B. (1995). Directed crossover within genetic programming.
Research Note RN/95/71, University College London, Gower Street,
London WCI1E 6BT, UK.

Levin, L. A. (1973). Universal sequential search problems. Problems of
Information Transmission, 9(3):265-266.

Levin, L. A. (1974). Laws of information (nongrowth) and aspects of the
foundation of probability theory. Problems of Information Transmis-
sion, 10(3):206-210.

Levin, L. A. (1984). Randomness conservation inequalities: Information
and independence in mathematical theories. Information and Control,
61:15-37.

Li, M. and Vitanyi, P. M. B. (1993). An Introduction to Kolmogorov Com-
plexity and its Applications. Springer-Verlag, New York.

Lin, L. J. (1993). Reinforcement Learning for Robots Using Neural Networks.
PhD thesis, Carnegie Mellon University, Pittsburgh.

Littman, M. (1994a). Memoryless policies: Theoretical limitations and prac-
tical results. In Cliff, D., Husbands, P., Meyer, J. A., and Wilson, S. W.,

132 BIBLIOGRAPHY

editors, Proceedings of the International Conference on Simulation of
Adaptive Behavior: From Animals to Animats 8, pages 297-305. MIT
Press/Bradford Books.

Littman, M. L. (1994b). Markov games as a framework for multi-agent
reinforcement learning. In Prieditis, A. and Russell, S., editors, Machine
Learning: Proceedings of the Eleventh International Conference, pages
157-163, San Francisco, CA. Morgan Kaufmann Publishers.

Luke, S., Hohn, C., Farris, J., Jackson, G., and Hendler, J. (1997). Co-
evolving soccer softbot team coordination with genetic programming.
In Proceedings of the First International Workshop on RoboCup, at the
International Joint Conference on Artificial Intelligence (IJCAI-97).

Marti, L. (1992). Genetically generated neural networks I: Representational
effects. Technical Report CAS/CNS-TR-92-014, Boston University Cen-
ter for Adaptive Systems.

Matsubara, H., Noda, I., and Hiraki, K. (1996). Learning of cooperative
actions in multi-agent systems: a case study of pass play in soccer. In
Sen, S., editor, Working Notes for the AAAI-96 Spring Symposium on
Adaptation, Coevolution and Learning in Multi-agent Systems, pages
63—67, Menlo Park, CA. AAAT Press.

McCallum, R. A. (1996). Learning to use selective attention and short-term
memory in sequential tasks. In Maes, P., Mataric, M., Meyer, J.-A.,
Pollack, J., and Wilson, S. W., editors, From Animals to Animats 4:
Proceedings of the Fourth International Conference on Simulation of
Adaptive Behavior, pages 315-324. MIT Press, Bradford Books.

McPhee, N. F. and Miller, J. D. (1995). Accurate replication in genetic
programming. In Eshelman, L., editor, Genetic Algorithms: Proceed-
ings of the Sizth International Conference (ICGA95), pages 303-309,
Pittsburgh, PA, USA. Morgan Kaufmann.

Moore, A. and Atkeson, C. G. (1993). Prioritized sweeping: Reinforcement
learning with less data and less time. Machine Learning, 13:103-130.

Nadella, R. and Sen, S. (1996). Correlating internal parameters and external
performance: learning soccer agents. In Weiss, G., editor, Distributed
Artificial Intelligence Meets Machine Learning. Learning in Multi-Agent
Environments, pages 137-150. Springer-Verlag, Berlin.

BIBLIOGRAPHY 133

Nordin, P., Francone, F., and Banzhaf, W. (1996). Explicitly defined introns
and destructive crossover in genetic programming. In Angeline, P. J.

and Kinnear, Jr., K. E., editors, Advances in Genetic Programming 2,
chapter 6, pages 111-134. MIT Press, Cambridge, MA, USA.

Nowlan, S. J. and Hinton, G. E. (1992). Simplifying neural networks by soft
weight sharing. Neural Computation, 4:173-193.

O’Reilly, U.-M. (1995). An Analysis of Genetic Programming. PhD thesis,
Carleton University, Ottawa, Ontario.

Pearlmutter, B. A. (1995). Gradient calculations for dynamic recurrent
neural networks: A survey. IEEE Transactions on Neural Networks,
6(5):1212-1228.

Peng, J. and Williams, R. (1996). Incremental multi-step Q-learning. Ma-
chine Learning, 22:283-290.

Pringle, W. R. (1995). ESP: Evolutionary structured programming. Tech-
nical report, Penn State University, Great Valley Campus, PA, USA.

Rechenberg, I. (1965). Cybernetic solution path of an experimental problem.
Royal Aircraft Establishment, Library translation No. 1122, Farnbor-
ough, Hants, UK.

Rechenberg, I. (1971). Evolutionsstrategie - Optimierung technischer Sys-
teme nach Prinzipien der biologischen Evolution. Dissertation. Pub-
lished 1973 by Fromman-Holzboog.

Ring, M. B. (1995). Continual Learning in Reinforcement Environments. R.
Oldenbourg Verlag, Miinchen, Wien.

Robinson, A. J. and Fallside, F. (1987). The utility driven dynamic er-
ror propagation network. Technical Report CUED/F-INFENG/TR.1,
Cambridge University Engineering Department.

Rosca, J. P. and Ballard, D. H. (1996). Discovery of subroutines in genetic
programming. In Angeline, P. and K. E. Kinnear, J., editors, Advances

in Genetic Programming 2, chapter 9, pages 177-201. MIT Press, Cam-
bridge, MA.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning
internal representations by error propagation. In Parallel Distributed
Processing, volume 1, pages 318-362. MIT Press.

134 BIBLIOGRAPHY

Sahota, M. (1993). Real-time intelligent behaviour in dynamic environments:
Soccer-playing robots. Master’s thesis, University of British Columbia.

Salustowicz, R. P. (1995). A genetic algorithm for the topological optimiza-
tion of neural networks. Master’s thesis, Technical University of Berlin,
Germany.

Salustowicz, R. P. and Schmidhuber, J. (1997a). Probabilistic incremental
program evolution. Fvolutionary Computation, 5(2):123-141.

Satlustowicz, R. P. and Schmidhuber, J. (1997b). Probabilistic incremental
program evolution: Stochastic search through program space. In van
Someren, M. and Widmer, G., editors, Machine Learning: ECML-97,
volume 1224 of Lecture Notes in Artificial Intelligence, pages 213-220.
Springer-Verlag Berlin Heidelberg.

Satustowicz, R. P. and Schmidhuber, J. (1998). Evolving structured pro-
grams with hierarchical instructions and skip nodes. In Shavlik, J.,
editor, Machine Learning: Proceedings of the Fifteenth International
Conference (ICMLY8), pages 488-496. Morgan Kaufmann Publishers,
San Francisco, CA, USA.

Satlustowicz, R. P. and Schmidhuber, J. (1999a). From probabilities to pro-
grams with probabilistic incremental program evolution. In Corne, D.,

Dorigo, M., and Glover, F., editors, New Ideas in Optimization, pages
433-450. McGraw-Hill, London.

Salustowicz, R. P. and Schmidhuber, J. (1999b). Sequence learning through
pipe and automatic task decomposition. In Banzhaf, W., Daida, J.,
Eiben, A. E., Garzon, M. H., Honovar, V., Jakiela, M., and Smith,
R. E., editors, Proceedings of the Genetic and Evolutionary Computa-
tion Conference (GECCO ’99), pages 1184-1191. Morgan Kaufmann
Publishers, San Francisco, CA, USA.

Salustowicz, R. P., Wiering, M. A., and Schmidhuber, J. (1997a). Evolv-
ing soccer strategies. In Kasabov, N., Kozma, R., Ko, K., O’Shea, R.,
Coghill, G., and Gedeon, T., editors, Progress in Connectionist-based
Information Systems: Proceedings of the Fourth International Confer-
ence on Neural Information Processing ICONIP’97, volume 1, pages
502-505. Springer-Verlag Singapore.

BIBLIOGRAPHY 135

Satlustowicz, R. P., Wiering, M. A.; and Schmidhuber, J. (1997b). On learn-
ing soccer strategies. In Gerstner, W., Germond, A., Hasler, M., and
Nicoud, J.-D., editors, Proceedings of the Seventh International Confer-
ence on Artificial Neural Networks (ICANN’97), volume 1327 of Lecture
Notes in Computer Science, pages 769-774. Springer-Verlag Berlin Hei-
delberg.

Satlustowicz, R. P., Wiering, M. A.; and Schmidhuber, J. (1998). Learning
team strategies: Soccer case studies. Machine Learning, 33:263-282.

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning,
5:197-227.

Schmidhuber, J. (1991). Reinforcement learning in Markovian and non-
Markovian environments. In Lippman, D. S., Moody, J. E., and Touret-
zky, D. S., editors, Advances in Neural Information Processing Systems
3, pages 500-506, San Mateo, CA. Morgan Kaufmann.

Schmidhuber, J. (1994). On learning how to learn learning strategies. Techni-
cal Report FKI-198-94, Fakultat fiir Informatik, Technische Universitat
Miinchen. Revised January 1995.

Schmidhuber, J. (1995). Discovering solutions with low Kolmogorov com-
plexity and high generalization capability. In Prieditis, A. and Russell,
S., editors, Machine Learning: Proceedings of the Twelfth International
Conference, pages 488-496, San Francisco, CA. Morgan Kaufmann Pub-
lishers.

Schmidhuber, J. (1997). Discovering neural nets with low Kolmogorov com-
plexity and high generalization capability. Neural Networks, 10(5):857—
873.

Schmidhuber, J. (1999). A general method for incremental self-improvement
and multi-agent learning. In Yao, X., editor, Fvolutionary Computation:
Theory and Applications, pages 81-123. Scientific Publ. Co., Singapore.

Schmidhuber, J. and Hochreiter, S. (1996). Guessing can outperform many
long time lag algorithms. Technical Report IDSTA-19-96, IDSTA.

Schmidhuber, J., Zhao, J., and Schraudolph, N. (1997a). Reinforcement
learning with self-modifying policies. In Thrun, S. and Pratt, L., editors,
Learning to learn, pages 293-309. Kluwer, Boston, MA.

136 BIBLIOGRAPHY

Schmidhuber, J., Zhao, J., and Wiering, M. (1997b). Shifting inductive bias
with success-story algorithm, adaptive Levin search, and incremental
self-improvement. Machine Learning, 28:105-130.

Schwefel, H.-P. (1965). Kybernetische Evolution als Strategie der experi-
mentellen Forschung aus der Stromungstechnik. Diplomarbeit, Techni-
sche Universitat Berlin.

Schwefel, H.-P. (1974). Numerische Optimierung von Computer-Modellen.
Dissertation. Published 1977 by Birkh&user, Basel.

Schwefel, H.-P. (1981). Numerical Optimization of Computer Models. John
Wiley & Sons, Chichester.

Smith, A. W. and Zipser, D. (1989). Learning sequential structures with the
real-time recurrent learning algorithm. International Journal of Neural
Systems, 1(2):125-131.

Solomonoff, R. (1964). A formal theory of inductive inference. Part I. In-
formation and Control, 7:1-22.

Solomonoff, R. (1986). An application of algorithmic probability to problems
in artificial intelligence. In Kanal, L. N. and Lemmer, J. F., editors,
Uncertainty in Artificial Intelligence, pages 473-491. Elsevier Science
Publishers.

Spector, L. (1996). Simultaneous evolution of programs and their control
structures. In Angeline, P. and K. E. Kinnear, J., editors, Advances in
Genetic Programming 2, chapter 7, pages 137-154. MIT Press, Cam-
bridge, MA, USA.

Stone, P. and Veloso, M. (1996). Beating a defender in robotic soccer:
Memory-based learning of a continuous function. In Tesauro, G.,
Touretzky, D. S., and Leen, T. K., editors, Advances in Neural In-
formation Processing Systems 8, pages 896-902, Cambridge MA. MIT
Press.

Stone, P. and Veloso, M. (1998a). A layered approach to learning client
behaviors in the robocup soccer server. In Applied Artificial Intelligence
(AAI), volume 12.

BIBLIOGRAPHY 137

Stone, P. and Veloso, M. (1998b). Team-partitioned opaque-transition rein-
forcement learning. In Conference on automated learning and discovery
(CONALD’98): Robot Exploration and Learning. Carnegie Mellon Uni-
versity, Pittsburgh.

Sutton, R. S. (1988). Learning to predict by the methods of temporal dif-
ferences. Machine Learning, 3:9-44.

Teller, A. (1994). The evolution of mental models. In Kenneth E. Kinnear, J.,
editor, Advances in Genetic Programming, pages 199-219. MIT Press.

Tesauro, G. (1994). TD-gammon, a self-teaching backgammon program,
achieves master-level play. Neural Computation, 6(2):215-219.

Versino, C. and Gambardella, L. M. (1997). Learning real team solutions. In
Weiss, G., editor, DAI Meets Machine Learning, volume 1221 of Lecture
Notes in Artificial Intelligence, pages 40—61. Springer-Verlag, Berlin.

Watkins, C. (1989). Learning from Delayed Rewards. PhD thesis, King’s
College, Cambridge.

Weiss, G. (1996). Adaptation and learning in multi-agent systems: Some re-
marks and a bibliography. In Weiss, G. and Sen, S., editors, Adaptation
and Learning in Multi- Agent Systems, volume 1042 of Lecture Notes in
Artificial Intelligence, pages 1-21. Springer-Verlag, Berlin Heidelberg.

Werbos, P. J. (1988). Generalization of backpropagation with application to
a recurrent gas market model. Neural Networks, 1.

Whigham, P. A. (1995). Grammatically-based genetic programming. In
Rosca, J. P., editor, Proceedings of the Workshop on Genetic Program-
ming: From Theory to Real-World Applications, pages 33—41, Tahoe
City, California, USA.

Whitehead, S. and Ballard, D. H. (1990). Active perception and reinforce-
ment learning. Neural Computation, 2(4):409-419.

Widrow, B. and Hoff, M. E. (1960). Adaptive switching circuits. 1960 IRE
WESCON Convention Record, 4:96-104. New York: IRE. Reprinted in
Anderson and Rosenfeld [1988].

Wiering, M. A. (1999). Ezplorations in Efficient Reinforcement Learning.
PhD thesis, University of Amsterdam, Amsterdam, The Netherlands.

138 BIBLIOGRAPHY

Wiering, M. A., Salustowicz, R. P., and Schmidhuber, J. (1998). Cmac
models learn to play soccer. In Niklasson, L., Boden, M., and Ziemke,
T., editors, Proceedings of the 8th International Conference on Artifi-
cial Neural Networks (ICANN’98), volume 1, pages 443-448. Springer-
Verlag London.

Wiering, M. A., Satustowicz, R. P., and Schmidhuber, J. (1999). Reinforce-
ment learning soccer teams with incomplete world models. Journal of
Autonomous Robots, 7(1):77-88.

Wiering, M. A., Satustowicz, R. P., and Schmidhuber, J. (to appear). Model-
based reinforcement learning for evolving soccer strategies. In Soft Com-
puting Techniques in Game Playing. Springer-Verlag.

Wiering, M. A. and Schmidhuber, J. (1996a). HQ-Learning: Discovering
Markovian subgoals for non-Markovian reinforcement learning. Techni-
cal Report IDSIA-96-96, IDSIA, Lugano, Switzerland.

Wiering, M. A. and Schmidhuber, J. (1996b). Solving POMDPs with Levin
search and EIRA. In Saitta, L., editor, Machine Learning: Proceed-
ings of the Thirteenth International Conference, pages 534-542. Morgan
Kaufmann Publishers, San Francisco, CA.

Wiering, M. A. and Schmidhuber, J. (1997). Fast online Q(X). Technical
Report IDSTA-21-97, IDSIA, Lugano, Switzerland.

Wiering, M. A. and Schmidhuber, J. (1998). Efficient model-based explo-
ration. In Meyer, J. A. and Wilson, S. W., editors, Proceedings of
the Sixth International Conference on Simulation of Adaptive Behav-
ior: From Animals to Animats 6, pages 223-228. MIT Press/Bradford
Books.

Williams, R. J. (1989). Complexity of exact gradient computation algorithms
for recurrent neural networks. Technical Report Technical Report NU-
C(CS-89-27, Boston: Northeastern University, College of Computer Sci-
ence.

Williams, R. J. and Zipser, D. (1992). Gradient-based learning algorithms
for recurrent networks and their computational complexity. In Back-
propagation: Theory, Architectures and Applications. Hillsdale, NJ: Erl-
baum.

BIBLIOGRAPHY 139

Wineberg, M. and Oppacher, F. (1996). The benefits of computing with
introns. In Koza, J. R., Goldberg, D. E., Fogel, D. B., and Riolo, R. L.,
editors, Genetic Programming 1996: Proceedings of the First Annual
Conference, pages 410-415, Stanford University, CA, USA. MIT Press.

Wong, M. L. and Leung, K. S. (1996). Evolving recursive functions for
the even-parity problem using genetic programming. In Angeline, P. J.
and Kinnear, Jr., K. E., editors, Advances in Genetic Programming 2,
chapter 11, pages 221-240. MIT Press, Cambridge, MA, USA.

Yanagiya, M. (1993). A simple mutation-dependent genetic algorithm. In
Forrest, S., editor, Proceedings of the Fifth International Conference on
Genetic Algorithms, page 659. Morgan Kaufmann, San Mateo, CA.

Yao, X. (1999). Introduction. In Yao, X., editor, Fvolutionary Computation:
Theory and Applications, pages 1-36. Scientific Publ. Co., Singapore.

Zannoni, E. and Reynolds, R. G. (1997). Learning to control the program
evolution process with cultural algorithms. Ewvolutionary Computation,
5(2):181-211.

Zhao, J. and Schmidhuber, J. (1996). Incremental self-improvement for life-
time multi-agent reinforcement learning. In Maes, P., Mataric, M.,
Meyer, J.-A., Pollack, J., and Wilson, S. W., editors, From Animals
to Animats 4: Proceedings of the Fourth International Conference on
Simulation of Adaptive Behavior, Cambridge, MA, pages 516-525. MIT
Press, Bradford Books.

140 BIBLIOGRAPHY

Index

3+8-bit multiplexer, 51
6-bit parity, 49, 85

AC, 100

ACAP, 54

action selection, 63, 94

adaptive Levin search, 11

adding problem, 101

agent credit assignment problem,

54

algorithmic complexity, 100

ALS, 11

analog methods, 99

application
3+8-bit multiplexer, 51
6-bit parity, 49, 85
adding problem, 101
embedded Reber grammar, 114
function regression, 46, 82
maze task, 92
soccer, 53

BRO, 61

CEC, 100
closure, 32
CO-PIPE, 62
coevolutionary PIPE, 62
complexity
algorithmic, 100
Kolmogorov, 8
Levin, 9
constant error carrousel, 100
crossover, 23

direct memory access, 91
discrete methods, 99
DMA, 91

EA, 17
EF, 54
EL, 40
elitist learning, 40
elitist strategy, 24

elitist update probability, 41, 45
embedded Reber grammar, 114

temporal order problem, 104
automatic task decomposition, 3,

109, 124 EP, 21
algorithmic framework, 17
basic function set, 44 ES, 19

bfs, 44

biased random opponent, 61

Boltzmann-Gibbs distribution, 63,
94

boosting, 113

algorithmic framework, 17
encoding, 19

mutation, 20

production, 20
recombination, 20

141

142

reduction, 21
selection, 19
evaluation function, 54
evolution strategies, 19
algorithmic framework, 17
encoding, 19
mutation, 20
production, 20
recombination, 20
reduction, 21
selection, 19
evolutionary algorithms, 17
evolutionary programming, 21
algorithmic framework, 17
experts, 111

fdl, 39

filter learning, 112

filtering, 4, 109, 124
non-temporal data sets, 110
temporal data sets, 112
with few data, 113

filters, 111

fitness constant, 41

fitness function, 17, 36
setup, 44

fitness-dependent learning, 39

function regression, 46, 82

GA, 22
algorithmic framework, 17
crossover, 23
elitist strategy, 24
encoding, 22
mutation, 24
production, 23
recombination, 23
reduction, 24
selection, 23

INDEX

GBL, 38
generation-based learning, 38
generic random constant, 32
genetic algorithms, 22
algorithmic framework, 17
crossover, 23
elitist strategy, 24
encoding, 22
mutation, 24
production, 23
recombination, 23
reduction, 24
selection, 23
genetic programming, 24, 30
linear, 24
tree-based, 25
genotype, 22, 26
GO, 62
good opponent, 62
GP, 24, 30
linear, 24
tree-based, 25
GRC, 32
growing, 35

H-PIPE, 73, 76, 121
learning, 80
program generation, 79
skip node, 81
H-PIPE-DIFF, 82
H-PIPE-NO-SN, 82

H-PPT, 78
initialization, 78
node, 78
tree shaping, 79

HI, 76

hierarchical instruction, 76
hierarchical probabilistic incremen-
tal program evolution, 73,

INDEX

76, 121
learning, 80
program generation, 79
skip node, 81
hierarchical probabilistic prototype
tree, 78
initialization, 78
node, 78
tree shaping, 79
Hutter’s search, 10

IMA, 91
indexed memory access, 91
initial terminal probability, 41, 45
instruction
function, 31
hierarchical, 76
terminal, 31
introns, 74

Kolmogorov complexity, 8

learning rate, 41

Levin complexity, 9

Levin search, 8, 10

lifelong learning, 12

LL, 12

Long short term memory, 100
long time lag challenge, 98
LS, 8, 10

LSTM, 100

Markov property, 3
maze task, 92
MC, 90
memory, 3, 89, 122
access strategy, 91
cells, 90
recurrent output link, 89
short-term, 92

143
types, 89
mixtures of experts, 113
MP, 41

multiagent learning, 54
multiple outputs, 41, 91
multiple programs, 41
mutation probability, 41
mutation rate, 41

NO, 62

non-acting opponent, 62
non-coding program parts, 74
non-Markovian problems, 122

0¢C, 90
opponent
biased random, 61
good, 62
non-acting, 62
output
cells, 90

interface, 44
multiple, 41

parallel evaluation, 94
partial observability problem, 54
partially observable environment,
91
PBIL, 25, 30
encoding, 26
learning, 27
model, 27
PBPS, 7
incremental, 29
PBPSA, 7
incremental, 29
phenotype, 22, 26
PIPE, 29
coevolutionary, 62
hierarchical, 73, 76, 121

144

learning, 36
learning framework, 37
limitations, 121
setup, 43
skip node, 80
termination criteria, 40
PIPE-SN, 82
POE, 91
policy space search, 54
policy-sharing, 54
POP, 54
population size, 41, 45
population-based incremental learn-
ing, 25, 30
encoding, 26
learning, 27
model, 27
PPT, 33
hierarchical, 78
initialization, 33
nodes, 33
probabilistic incremental program
evolution, 29
coevolutionary, 62
hierarchical, 73, 76, 121
learning, 36
learning framework, 37
limitations, 121
setup, 43
skip node, 80
termination criteria, 40
probabilistic prototype tree, 33
hierarchical, 78
initialization, 33
nodes, 33
probability-based program search,
7
incremental, 29
program

INDEX

generation, 33
instruction, 31
multiple, 41
non-coding parts, 74
representation, 32
search, 1
structure, 74
structured, 3, 73, 121
program evaluations, 41, 45
prune threshold, 41
pruning, 36

random constant threshold, 41
Reber grammar, 114
recurrent output link, 89

ROL, 89

satisfactory fitness, 41, 45
search
adaptive Levin, 11
Levin, 8, 10
program, 1
universal, 8
self-modifications, 13
self-modifying probabilistic learn-
ing algorithm, 12
setup
fitness function, 44
function set, 44
instruction set, 44
output interface, 44
parameter, 45
terminal set, 44
training and test environment,
43
skip node, 75, 80
SMPLA, 12
SN, 75, 80
soccer, 53, 55

INDEX 145

simulator, 56
Solomonoff-Levin distribution, 9
SSA, 13
structured program, 3, 73, 121
success story algorithm, 13

task assembly, 111
task decomposition, 111
TD-Q learning, 64, 65
temporal order problem, 104
time-lag size, 100
tree shaping, 35

growing, 35

pruning, 36

universal prior, 9
universal search, 8

146 INDEX

147

Acknowledgments

I would like to thank all the many persons, who supported me in creating
this thesis, and who made my life joyful as it was.

First of all I would like to thank my beloved wife Malgosia for being a
wonderful person, for caring, and for supporting me throughout this entire
endeavor. Especially during hard working periods, she was always ready to
sacrifice her personal pleasures, and push me to reach my goals.

Special thanks also to my parents for always supporting me, and thus
making all of this possible in the first place, and to the rest of my family,
who never doubted that it will come to an good end.

Jiirgen Schmidhuber, my supervisor at IDSIA, did a lot to help me cre-
ate this thesis. He taught me many valuable things about research, and
especially machine learning. He put me through an excellent studying time
challenging me, and pushing me to the limits, while at the same time giving
me the freedom to do what really interested me. Thanks Jiirgen!

I am also very thankful to Erhard Konrad, my supervisor at Technical
University of Berlin, for his excellent scientific support, and his patience
always giving me enough time and space to pursue my way.

Marco Wiering deserves special mentioning. It has been a great pleasure
studying with him, discussing scientific issues, God, the world, and every-
thing, partying with him, and having fun. Marco contributed much to both
the scientific, and the fun part during those years.

Thanks to Nicol Schraudolph for excellent scientific discussions, and com-
ments on my papers, as well as for his friendliness, helpfulness, originality
— his friendship, and for sharing magnificent views onto research, life, and
Lugano.

Thanks also to Felix Gers and Mara Kugler for all the fun we had to-
gether, for their kindness, their warm welcomes, their grand hospitality —
never letting me down whenever I needed some place to finish my disserta-
tion, and for the best parties I ever had. I am very happy to call them my
friends.

Marcus Hoffmann made my life a little brighter every day. He was always
in a good mood, provided me with interesting information from Internet,
organized great happenings, and made the best coffee I ever had.

Monica Bancala gave IDSIA the spirit. She took care of all the non-
research matters from organization to administration in her very kind, cheer-
ful, and friendly way, always ready to help. Without exaggerating, I can say
she did a lot for making my stay at IDSIA a great pleasure. It would not

148

have been the same without her.

With Jieyu Zhao you could always have an interesting chat about scien-
tific and non-scientific issues. I very much enjoyed, and was often inspired
by our conversations.

I would also like to thank Luca Gambardella, Cristina Versino, Marco
Dorigo, and Richard Sutton for valuable discussions, comments, and sugges-
tions on my scientific work.

Thanks to Andrea Rizzoli for his great sense of humor bringing sunshine
even to rainy days, Eric Taillard for his delicious fondues, and Martin El-
dracher for early insights into a PHD student’s life. Thanks also to Paolo
Cattaneo and Raffaello Giulietti for their excellent, and extremely respon-
sive support as system administrators, and to Carlo Lepori, who took care
of all the (sometimes quite challenging) official matters.

Of course, there were also many other persons not mentioned here, who
supported the creation of this thesis, and made my life interesting, very
joyful, and very much worth living. Many thanks to all of you!

149

Zusammenfassung

Das zentrale Thema der Dissertation ist “Probabilistic Incremental Program
Evolution” (PIPE). PIPE ist ein neuer, evolutionédrer Algorithmus, der sto-
chastische Modelle verwendet um Computerprogramme zu finden, die eine
Losung zu gegebenen Problemen darstellen.

Insbesondere Probleme mit Regularitaten in ihren Loésungen sind fiir die
Programmsuche interessant. Regularitdten ermoglichen kurze algorithmi-
sche Losungsbeschreibungen. Kiirzere Beschreibungen werden im Allgemei-
nen schneller gefunden. Programmsuche kann daher effizient sein, wenn
die Abbildung des Loésungsraumes in den Programmraum den Suchraum
verkleinert. Der Programmraum ist jedoch normalerweise ein diskontinuier-
licher Raum. Gradientenabstiegsbasierte Optimierungsverfahren sind daher
fiir die Programmsuche im Allgemeinen nicht anwendbar. Ubrig bleiben
verschiedene zufallsbasierte Verfahren, unter anderem auch evolutionére Al-
gorithmen.

Das Ziel dieser Arbeit ist es PIPE vorzustellen und Methoden zu definieren,
die PIPE auf ein breites Spektrum von Problemen anwendbar machen.

Zuerst prasentieren wir PIPE und zeigen, dass PIPE fiir verschiedene
Anwendungen eingesetzt werden kann, unter anderem auch fiir komplexe
Anwendungen, wie z.B. das Lernen in Multiagentensystemen. Dann erhéhen
wir mittels strukturierter Programme, wo die Programminstruktionsabfolge
zum Teil fest vorgegeben ist, PIPE’s Leistungsfiahigkeiten. Programme ohne
internen Speicher kénnen keine Probleme 16sen, die der Markov Eigenschaft
nicht geniigen, d.h. deren Output nicht nur vom Input abhingt, sondern
auch vom zeitlichen Kontext des Inputs. Um das Anwendungsgebiet von
PIPE zu erweitern, zeigen wir, wie PIPE Programme mit internem Speicher
finden kann. Dabei scheint PIPE fiir Probleme mit sehr langen Zeitspannen
zwischen relevanten Inputs und ihren korrespondierenden Outputs beson-
ders gut geeignet zu sein. Mit der Losung von hochkomplexen Aufgaben,
d.h. wenn z.B. viele Datenabhéngigkeiten in Programmen abgebildet wer-
den miissen, kann der PIPE Algorithmus iiberfordert werden. Um PIPE
auch fiir solche Probleme konkurrenzfahiger zu machen, haben wir filtering
entwickelt. Filtering ist ein optimierungsalgorithmusunabhéngiges, automa-
tisches Aufgabenteilungsverfahren. Es teilt nicht nur die eigentliche Aufgabe
in weniger komplexe Teilaufgaben, sondern zerlegt auch das Problem des
Zusammenfiihrens der Teillosungen in Teilaufgaben.

