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Abstract. In this paper we present an approach to automated program code 
generation for sensor nodes and other small devices. Using Genetic 
Programming, we are able to discover algorithms that solve certain problems. 
Furthermore, non-functional properties like code size, memory usage, and 
communication frequency can be optimized using multiobjective search 
techniques. The evolution of algorithms requires program testing, which we 
perform using a customized simulation environment for sensor networks. The 
simulation model takes into account characteristic features of sensor nodes, 
such as unreliable communication and resource constraints. An application 
example is presented that demonstrates the feasibility of our approach and its 
potential to create robust and adaptive code for sensor network applications. 

1 Introduction 

Today we experience a growing demand for distributed systems consisting of sensor 
nodes [1]. As explained in [2], such devices are restricted in resources like memory 
size, processing speed, and battery power. The communication among them is costly 
in terms of energy and not reliable either. Furthermore, the topology of sensor 
networks is volatile and usually cannot be determined a priori, enforcing self 
organization. Algorithms and protocols normally applied to distributed systems are 
therefore often insufficient and need to be replaced with specialized counterparts. 

These requirements make programming sensor nodes a demanding task for 
software developers because the design of sensor network applications must pay 
attention to aspects that are not directly related to the application functionality itself. 
We claim that Genetic Programming techniques are an effective means to 
automatically discover powerful programming solutions for sensor networks. Clearly, 
Genetic Programming is not suited to produce very large programs for general 
application tasks. However, we view sensor nodes as ideal targets for Genetic 
Programming since these nodes can only perform a limited functionality due to their 
resource constraints. 

In this paper we introduce DGPF, the Distributed Genetic Programming 
Framework [3], which allows us to automatically discover distributed algorithms for 
given problems. Additionally, such algorithms can be optimized in various ways, 
taking energy consumption into account as well as memory usage or code size. In the 
next section we describe how Genetic Programming can be applied to sensor 
networks followed by an example in the third section. At the end of the paper, a short 



summary of related work is given along with future work and a conclusion. 

2 Genetic Programming and Sensor Networks 

For a long time, Genetic Algorithms have been used in science to derive solutions for 
any type of problems, from construction of wind turbines to pattern-recognition 
systems. The application of Genetic Algorithms with the goal to evolve computer 
programs is called Genetic Programming. This section will give a brief overview on 
how Genetic Algorithms work in common and how they can be applied to sensor 
networks. 

2.1 Genetic Algorithms 

As shown in Fig. 1, Genetic Algorithms start with an initial population of random 
solution candidates called individuals. In our case, the individuals are small programs 
that can be executed on sensor nodes. As in nature, the population will be refined step 
by step in a cycle of computing the fitness of its individuals, selecting the best 
individuals and creating a new generation derived from these. If a reasonable good 
solution has evolved, the algorithm will terminate. 

Randomized optimization algorithms are called “multiobjective” if they permit the 
specification of more than one optimization objective. Using our DGPF, several 
fitness functions can be defined, allowing us to optimize programs not only for 
functionality but also for nonfunctional requirements like energy consumption and 
communication frequency. Furthermore, different search algorithms like randomized 
Hill Climbing and Genetic Algorithms can be combined to speed up the optimization 
process. 
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Fig. 1. Common cycle of Genetic Algorithms. 

In our case the individuals that are being evolved are algorithms in the form of small 
programs. The functionality and effectiveness of such an algorithm can be determined 
by simulating it on a virtual hardware representing a single sensor node. In terms of 
distributed algorithms, it is not sufficient to simulate only one sensor node. Thus 
multiple instances of the program will be executed in a network simulator in parallel. 
The following two subsections describe the virtual hardware and the network model 
used in our simulations. 



2.2 Virtual Hardware 

A sensor node is modeled as an automaton that consists of a virtual hardware holding 
its execution state and a program running on that hardware. Unlike most other 
approaches in Genetic Programming which grow stateless functions, we have 
developed an architecture with a fixed-sized memory. The instruction set can be 
reduced to the one introduced by Teller [4], granting the Turing completeness needed 
to model real distributed algorithms or network protocols. Like real microprocessors, 
direct and indirect memory access and a collection of arithmetic expressions are 
included in the instruction set as well as conditional jumps. Communication is also 
modeled with primitive directives which allow storing memory words in an output 
buffer and transmitting the buffered data. A single message can be received into the 
input buffer and will be processed by reading the received words sequentially. Newly 
incoming messages get lost if the input buffer is already occupied. 
The example in the next section displays some of the available instructions (see Fig. 
2). 

2.3 Simulation 

The network simulation provides additional statistical data for each automaton, 
holding information on the number of messages sent, lost, and successfully processed. 

As in real networks, many automata run asynchronously at approximately the same 
speed which, however, might differ from node to node and cannot be regarded as 
constant either. To grant realistic simulations, the network model has the following 
properties: 

 

1. The links between the nodes are randomly created, yet it will be ensured that
 there are no network partitions.  

2. Messages are simple word sequences with no predefined structure. 
3. Messages cannot be sent directly. Like radio broadcasts they will be received 

by any node in transmission distance. Finding out which message is of 
concern will be in the responsibility of each node. 

4. Messages can get lost without special cause. 
5. Transmissions may take a random time until they reach their target. 
6. The collision of two transmissions underway leads to the loss of both 

messages. 

3 Example Algorithm 

One example problem that we have solved with the DGPF is the so-called election 
problem. This problem is well known in the area of distributed computing and 
therefore we have used it to validate our approach. Election means to select one node 
out of a group of nodes, for instance to act as a communication relay. 

Each node owns a unique identifier and all nodes must know the ID of the elected 
node after the election algorithm has terminated. One method to perform such an 



election would be to select the node with the maximum ID. We therefore introduce a 
functional fitness function that evaluates how many nodes know the maximum ID 
after a given amount of time. Additionally, we enter three non-functional fitness 
functions into the evolution: parsimony pressures for minimum code size, minimum 
memory size and a minimum transmission count. Each automaton is initialized with 
its own ID in its memory cell. 

It took several hours to obtain the solution depicted in Fig. 2 using an older version 
of our framework on a 3 GHz Pentium 4 PC. Most time was spent on the network 
simulation. Due to many optimizations, the current version of the DGPF runs 
significantly faster and also incorporates various new distribution schemes [3] for 
Genetic Algorithms resulting in further speedup, depending on the number of 
available computers. 

The discovered algorithm seems to be simple and quite efficient for the problem 
definition: The nodes initially send the contents of their first memory cell (their ID) to 
all neighbors. If and only if a node then receives a greater ID, it stores it in the first 
memory cell and starts the cycle again. Otherwise, no message is sent which pays 
respect to the parsimony pressure for minimum transmission count. The node waits 
instead for incoming transmissions.  

 

@0:
  Send mem[0]
@1:  
  mem[1]=Receive
  If(mem[1]<=mem[0]) Goto @1
@2:
  mem[0]=mem[1]
  Goto @0

 
Fig. 2. The genetically evolved election algorithm. 

4 Related Work 

Although Genetic Programming was invented almost 20 years ago by Koza [5] , it is a 
novel idea to employ it for finding distributed algorithms, in particular for sensor 
networks. In protocol engineering, Genetic Protocol design has already proven to be a 
useful and promising technology in several independent research projects [6], [7], [8]. 
In contrast to these approaches, our framework is not just bound to communication 
protocol synthesis but is able to evolve functional programs together with a dedicated 
protocol. 

The idea of multiobjective optimization using Genetic Algorithms reaches back to 
the 1960s but is generally contributed to Schaffner. His VEGA-algorithm [9], 
although not very efficient, was the first real evolutionary algorithm which considered 
multiple optimization criteria in a non-trivial manner. A few years later, Zitzler et. al. 
showed that their advanced multiobjective evolutionary algorithm SPEA2 
outperforms singleobjective GA in code size reduction by far [10]. Extending this 
idea, we optimize not only for code size, but also for other non-functional criteria. 



5 Future Work and Conclusion 

In the near future, a graphical user interface will be provided to ease the work with the 
DGP Framework. The quality of the results and the speed of the evolutionary process 
will be increased by integrating additional optimization techniques. In terms of sensor 
network programming, we will implement a port to the MSP430 instruction set. This 
will allow us to test the evolved programs on real sensor nodes like the ESBs of the 
ScatterWeb platform [11]. 

In this paper we have presented a method and a framework for automated creation 
of efficient algorithms for sensor networks based on Genetic Programming. We have 
shown the viability of the approach for a simple example. Our new framework and all 
results are provided as open source to the research community under the LGPL 
license. More information on our research as well as the fully documented Java 
source code of the DGPF can be found at http://dgpf.sourceforge.net. 
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