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Glossary

Automated Test Suite Generation [ATSG] is the process of generating test suites

(a set of tests cases) automatically. 10

Automated Test Suite Generation Techniques [ATSGT] the method used to gen-

erate test suites automatically. 10

Class Under Test [CUT] a Java programming language class. 10

Features also referred as software features, is a distinguishing characteristic of a soft-

ware item (Java classes). 10

11
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Abstract

Automated Test Suite Generation (ATSG) is an important topic in Software Engineer-

ing, with a wide range of techniques and tools being used in academia and industry.

While their usefulness is widely recognized, due to the labor-intensive nature of the

task, the effectiveness of the different techniques in automatically generating test cases

for different software systems is not thoroughly understood. Despite many studies in-

troducing various ATSG techniques (ATSGT), much remains to be learned, however,

about what makes a particular technique work well (or not) for a specific software

system.

In this thesis, we seek an answer to the question “What features of a software system

impact the effectiveness of ATSGTs?” Once these features are identified, can they be

used to select the most effective ATSGT for a particular software system? To this end,

we have implemented the META tool (Mapping the Effectiveness of Test Automation),

a new framework that identifies important software features that can be used to select

suitable ATSGTs to apply to new software systems. META is an alternative to the

current methodology used to assess ATSGT performance.
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We evaluate the framework in two controlled experiments. In both experiments

META successfully identified the software features associated with ATSGT performance

indicating that ATSGTs are problem dependent. The area where the ATSGTs are

expected to have a good performance has been successfully mapped. Additionally,

decision trees have been generated by the META tool with an accuracy higher than

80%, as shown by n-fold cross validations.



Part I

Introduction and Background
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Chapter 1

Introduction

Automated Test Suite Generation (ATSG) addresses the problem of automating the

process of generating sets of test-cases given a particular testing goal, such as struc-

tural [54, 69, 70, 96], functional [107], non-functional [108], and state-based proper-

ties [34]. ATSG plays a critical role in the testing process due to the difficulty of man-

ual test case generation. Nowadays, software systems are increasingly sophisticated and

large, hence manually generating test cases that test all parts of the system is intel-

lectually demanding and time-consuming. Furthermore, recent software development

practices such as continuous delivery and integration demand for effective automated

approaches to testing.

Due to its significant role in ensuring bug-free software, ATSG has been widely

investigated, and a plethora of tools have been introduced. Investigations into ATSG

techniques (ATSGT) started in the early 70s, and the number of papers in the area has

increased since then, as shown by these comprehensive surveys [1, 4, 31, 7, 68]. While

their usefulness is widely recognized, due to the labour-intensive nature of the software

testing, the suitability of the different techniques in automatically generating test cases

for different software systems is not thoroughly understood [7].

16
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Research introducing new techniques or experimental studies investigating the per-

formance of different ATSGTs usually is based on a small set of CUTs (Classes Under

Test). These works present little information about the CUTs characteristics and how

they are selected [47], offering little insight into the external validity of the findings.

Interestingly, among 50 studies, more than one-third of the papers consider exclusively

container classes (e.g., vectors and lists), which are not very common in industrial

systems [47]. Furthermore, most papers are only describing the benefits of the newly

introduced technique and the innovation carried out during development, while just a

few mention the limitations or present negative results [7].

This raises questions in terms of how ATSGTs are evaluated, and whether the

datasets used in experimental studies are diverse enough to rigorously measure the

capabilities of the different techniques. Results claiming the superior performance of

an ATSGT on a selected set of CUTs may not be generalizable to untested datasets.

Ideally, an experimental study would present a description of the conditions under which

an ATSG technique can be expected to succeed or fail, however, this is rarely included

in published studies.

Furthermore, in the significant majority of research papers (if not all), the newly

developed technique presents a superior performance in all considered CUTs. It seems

unwise to believe that a specific ATSGT might always be superior in all possible sce-

narios. It is very realistic to expect that any technique has weaknesses and that some

CUTs could be conceived where the technique would be less effective than others. It

might also happen that in some specific cases their competitive advantage disappears.

This fact can be associated with our current research culture, which leads researchers to

think that negative results are somehow less of a contribution than positive ones. This

mindset leads authors to only expose the strengths of a newly developed technique.



CHAPTER 1. INTRODUCTION 18

This behaviour might lead to a growth of papers showing ATSGTs reporting bad

performance when tested in datasets that are different from the original study [62]. This

type of study, however, are putting some light into the flaws of the current methodology

used in performance assessment, raising questions like: What caused the techniques to

have bad performance? Is the technique only effective in the original study dataset?

Is the original dataset representative of real world classes? Is the ATSGT performance

associated to any specific characteristics of the original dataset? Can we extract and

measure these characteristics and associate them to the ATSGT performance? None of

these question have been answered yet.

In this thesis, we propose an alternative methodology called META (Mapping the

Effectiveness of Test Automation) to help answering all these questions. In essence, the

META framework can be used to characterize the features of CUTs that have an impact

on the ATSGT effectiveness. We show how such features can be measured for CUTs,

and how the footprints of ATSGT (regions where ATSGT strengths are expected) can

be visualized across the CUT space. The META framework can be used to make

performance prediction, enabling the selection of the most suitable ATSGT according

to the CUT features. The results can also lead to improvements since one of the aims

of the META framework is to reveal ATSGT weaknesses.

1.1 Research Problems

Researchers are every day working on evermore sophisticated techniques for automated

test suite generation. For each new technique developed, experimental studies are con-

ducted to validate ATSGT performance. This experiments are usually based on publicly

available collections of benchmark datasets. The conclusions from these experiments
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are usually not insightful and are limited by the scale of the studies that typically

restrict the type or size of benchmark instances used.

We believe that performance improvement is generally the driving factor for the

development of a new ATSGT. Unfortunately, we have reached a point that for every

new paper proposing a new ATSGT, the general expectation of the average reviewer

seems to be that the evaluation should show a result that surpasses the current state-

of-art. The "ideal" proposal of a new ATSGT, of course, would demonstrate to the

reviewer that it is better and faster. In most occasions, only with a clear win in both

respects, the paper might have a chance to receive a clear acceptance by the reviewers

[62].

This research culture has reflected negatively in the methodology currently in use

for ATSGT evaluation. For example, some results cannot be reproduced due to the lack

of details provided. This raises questions in terms of how ATSGTs are evaluated. One

may claim, for example, that the datasets used in experimental studies are not diverse

enough to rigorously measure the capabilities of the different techniques, compromising

the external validity of the results.

Results claiming the superior performance of an ATSGT over other techniques on

a selected set of CUTs may not be generalizable to untested datasets. This issue would

be easily fixed if the experimental study had included a description of the conditions

under which an ATSGT can be expected to succeed or fail. This information, however,

is rarely seen in published studies and the reason for this might be that the current

methodology does not require this type of analysis.

In conclusion, we believe that the current methodology used in ATSGT assessment

is limiting the progress in the Software Testing Community by discouraging researches

to publish bad ATSGT results. Papers with no clear superior performance over the

current state of art ATSGT are highly likely to be rejected. We claim that there are
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always scenarios where a technique will fail or at least lose its competitive advantage.

So, instead of rejecting the research, the community should require justification and

explanation for positive and negative results.

1.2 Research Goal and Objectives

The main goal of this thesis is to introduce an alternative to the current methodology

used in the assessment of ATSGTs. The alternative methodology aims to assess the

effectiveness of ATSGTs by providing information about their suitability according to

the features of the software systems, which as a consequence, enables the selection of the

best technique for a particular software system. The alternative methodology, unlike

the commonly used, aims to characterize both strengths and weaknesses of ATSGTs

by using software features. The scope of this work is software systems developed using

Object Oriented (OO) languages such as Java. However, the proposed framework can

be, theoretically, applied to any software to which features are available.

In achieving this goal, we address six strategic objectives:

RO1 Propose an alternative methodology to assess ATSGTs performance using Soft-

ware Features;

RO2 Define a suitable set of software features to characterize CUTs;

RO3 Create a benchmark set that enables ATSGTs assessment;

RO4 Identify the software features that are associated with ATSGT hardness;

RO5 Visualize performance using software features;

RO6 Predict ATSGTs performance using software features;
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1.3 Thesis Organization

This thesis is structured as follows:

Part I Chapter 2 presents the Automated Software Testing Generation research area,

introducing concepts required to a clear understanding of the ATSGTs being

studied. Chapter 3 presents a comprehensive literature review regarding ATSGTs

performance assessment.

Part II Chapter 4 presents the alternative framework to assess ATSGT performance

[RO1]. Chapter 5 introduces a broad and complex set of software features to

characterize software systems [RO2]. Additionally, a benchmark analysis is per-

formed to help developing a benchmark set to truly challenge ATSGTs [RO3].

Part III Chapter 6 and 7 present two controlled experiments to validate the new

framework to ATSGT assessment. In total, 6 ATSGTs are assessed, their per-

formances are associated with software features [RO4] and visualized in a 2-D

space using a dimensionality reduction technique [RO5]. Furthermore, decision

trees are created using software features, allowing the ATSGT performance to be

predicted [RO6].

Part IV presents the final considerations of this thesis and also plans for future works.

1.4 Publications

Publications arising from this thesis include:
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Carlos Oliveira, Aldeida Aleti, Yuan-Fang Li, Mohamed Abdelrazek (2019),

Footprints of Fitness Functions in Search-Based Software Testing. In Proceed-

ings of the Genetic and Evolutionary Computation Conference (GECCO’19). Ac-

cepted.

Carlos Oliveira, Aldeida Aleti, Kate Smiths-Miles, Lars Grunske (2018), Mapping

the Effectiveness of Automated Test Suite Generation Techniques. In IEEE

Transactions on Reliability, vol. 67, no. 3, pp. 771-785, Sept. 2018.

Carlos Oliveira (2017), Mapping Hardness of Automated Software Testing. In Pro-

ceedings of the 26th ACM SIGSOFT International Symposium on Software Test-

ing and Analysis. Doctoral Symposium, Santa Barbara, USA, pp. 440-443.
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Chapter 2

Automated Software Testing

2.1 Introduction

Automated Software Testing (AST) emerged from the attempt of organizations to do

more with less. They wanted to test their software adequately but within a minimum

schedule. A good definition of Automated Software Testing is: "The management and

performance of test activities, to include the development and execution of test scripts

to verify test requirements, using an automated test tool" [38].

Automated Test Suite Generation (ATSG) is one of the research areas inside AST.

ATSGT refers to the generation of test suites (a test suite is a set of test cases) with

no manual intervention. Once tests have been automated, they can be run quickly and

repeatedly. A test case includes test inputs, execution conditions, and expected results

developed for a particular objective, known as the oracle [29]. To illustrate what a test

case looks like, consider the method max in Figure 2.1a. A potential test case for this

method is max(1,2), which executes the if part of the branch and expects as output

the value 2. The test case max(2,1) on the other hand covers the else part of the

24
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branch. As a single test case may not cover all lines of code, many approaches to ATSG

produce a suite of test cases.

int max(int a, int b){
1 int max=null;

2 if(a<=b){
3 max=b;

}
else{

4 max=a;
}

5 return max;
}

(a) Method max.

(b) CFG of max.

Figure 2.1: Method max and its control flow graph (CFG).

The generation of a test case can be informed by the program structure and/or

source code, the software specification and/or design models, information about the

input/output data space, and information dynamically obtained from program execu-

tion [7]. A program structure can be represented as a Control Flow Graph (CFG) using

graph notation. A CFG is a direct graph where the nodes correspond to the basic blocks

(set of statements in a program) and the edges represent control flow paths [5]. The

CFG is used by many ATSGTs to guide the generation of test suites.

ATSG plays a critical role in the testing process due to the complexity of the manual

test case generation. In the two decades, software systems became increasingly com-

plex with projects containing hundreds of thousands of lines of code [39]. Therefore,

manually generating test cases for such projects is at least unreasonable. Moreover, cur-

rently methodologies such agile development requires efficiency, therefore, demanding

for effective automated approaches to testing.
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2.2 Automated Test Suite Generation - Techniques

The automation of the test suite generation has been researched for decades, since at

least the 1970s. The approaches differ in many aspects, and have been extensively

surveyed [1, 4, 31, 7, 68].

Random Testing (RT) is one of the earliest techniques, and one of the most funda-

mental testing methods [7]. The technique is easy to implement and can be combined

with other automated testing techniques. Even if a software system has incomplete

specifications, and the source code is unavailable, random testing remains a practically

feasible technique [7]. RT is also one of the few testing techniques for which theoretical

results exist in terms of fault detection capability [110].

Adaptive Random Testing (ART) is an enhancement to RT [17, 18], which is based

on the assumption that failing test cases are usually grouped into contiguous regions.

The method, however, was found to be highly inefficient in real software systems, even

on trivial problems. For example, in the Triangle Classification program, Random Test-

ing finds failures in few milliseconds, whereas ART’s execution time is prohibitive [9].

The triangle classification program is a benchmark used in many testing papers. Assum-

ing three non-zero, non-negative integer lengths for the sides of a triangle, the program

decides if the triangle is isosceles, scalene, equilateral, or invalid [68]. For this reason,

we choose RT as one of the techniques to investigate in this study.

Search-Based Software Testing (SBST) [54] uses search algorithms, such as genetic

algorithms [58, 93, 2, 3]. These algorithms require a fitness function to guide the

search towards high-quality solutions (a solution, in this case, is a test suite), which is

based on the testing goals. SBST has been applied to a wide variety of testing goals

including structural [54, 69, 70, 96], functional [107], non-functional [108], and state-

based properties [34]. Different testing approaches have been developed with search
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techniques, such as integration testing [24, 15], mutation testing [52, 115], regression

testing [102, 114], stress testing [33] and SBST approaches for web applications [6].

2.2.1 Random Testing (RT)

RT is generally regarded as not only a simple but also an intuitively appealing technique

[19, 12]. In random testing, test cases are randomly generated based on a uniform

distribution or according to the operational profile. A pool of randomly generated

inputs is maintained, and a probability is used for either reusing a generated test case

or creating a new one.

The main merits of random testing include the availability of efficient algorithms to

generate test cases, and its ability to infer reliability and statistical estimates [19]. It has

been shown that RT can be cost effective in many cases, providing a very high segment

and branch coverage [37]. For more complex software or more sophisticated criteria,

RT may fail to generate appropriate data in any reasonable time-frame [116]. Due to

its simplicity and ease of implementation, RT is a popular technique for automated test

case generation. There are no clear guidelines, however, to inform practitioners about

its effectiveness on particular software systems with particular features. Furthermore,

there is still a substantial lack of understanding of how exactly the performance of RT

depends on software characteristics.

2.2.2 Whole Suite with Archive (WSA)

WSA [84] is a Search-Based Software Testing (SBST) method. SBST techniques employ

search algorithms, such as a Hill Climbing [71], Simulated Annealing [98] and Genetic

Algorithms [59], to automate or partially automate a testing task, e.g., the automatic

generation of test data. The key to the optimization process is a problem-specific fitness

function. The role of the fitness function is to guide the search to high-quality solutions
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from a potentially vast search space, within a practical time limit, which is why these

methods are often known as fitness-guided automated testing. Work on SBST dates

back to 1976 [71], with interest in the area beginning to gather pace in the 1990s.

WSA is implemented in EvoSuite [46] and uses Monotonic GA. To measure the

quality of a solution, WSA uses branch and method coverage as a fitness function. The

goal is to cover as many control structures, such as if, while statements, and methods

as possible, by inspecting the logical predicates that result in both true and false. For

all branches to be covered, each predicate must be executed at least twice, resulting in

true and false values. In the considered SBST method, the branch distance d(b, T ) for

each branch b in test suite T is defined as

d(b, T ) =


0 if a branch has been covered,

db,Tmin if a predicate is executed at least twice,

1 otherwise.

(2.1)

The distance db,Tmin is 0 if at least one of the branches has been covered, and> 0 otherwise.

The fitness function that is minimized by WSA is:

f(T ) = |M | − |MT |+
∑
b∈B

d(b, T ), (2.2)

where |M | is the total number of methods, |MT | is the number of executed methods in

test suite T and B is the set of branches in the program. WSA starts by generating

a set of solutions, which are uniformly, randomly initialized. Formally, let t denote a

test case, which consists of a sequence of statements t = 〈s1, s2, ..., sl〉 of length l. A

statement si can be a constructor, a field, a primitive, a method, or an assignment.

A solution is defined as a test suite T, which is a collection T = {t1, t2, ..., tn} of test
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cases. An optimal solution T ∗ is a test suite that covers all possible branches and lines

of code, i.e., 100% coverage.

Since the number of test cases in a test suite and the number of statements in a

test case may vary, the solution representation is of variable size. The solutions are

evolved in iterations until a stopping criterion is achieved, which usually is a predefined

number of function evaluations. The Genetic Algorithm used by EvoSuite has four

genetic operators that are applied to solutions at every iteration: crossover, mutation,

selection, and replacement. Crossover creates two new solutions by combining test

cases from two test suites in the population. The mutation operator is applied after

the crossover operator, at a test suite level, and at a test case level. Test suites are

mutated by changing each of the test cases with a probability 1/n, where n is the

number of test cases in the test suite. In addition, new test cases are added to the test

suite at random. The mutation of test cases is performed by either adding, changing

or removing statements from a test case with a probability 1/l, where l is the number

of statements in a test case.

A rank-based selection procedure is employed to select parent solutions that will

undergo recombination and mutation procedures. Solutions are ranked based on the

fitness function. When there is a tie between solutions, shorter test suites are assigned

better ranks. As a result, solutions with better branch coverage and shorter length have

a higher chance of projecting their ‘genes’ to the next generation. Similar to the original

studies with EvoSuite, an elitist strategy is used as a replacement procedure [46]. The

elitist strategy selects the best solutions to create the next generation. The elitist

strategy consists of selecting the best individuals of the current generation to initialize

the next generation [46]. The whole population is considered in the selection process.
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2.2.3 Many-Objective Sorting Algorithm (MOSA)

MOSA [76] is a many-objective Genetic Algorithm used for automated test case gener-

ation. MOSA starts with an initial set of randomly generated test cases that evolve via

crossover and mutation [76]. The selection scheme considers both the non-dominance

relation and the proposed preference criterion, which determines the test case with the

lowest objective score (branch distance + approach level) for each uncovered branch.

Test cases are ranked according to the non-dominated sorting algorithm used by the

Non-dominated Sorting Genetic Algorithm II (NSGA-II) [32].

Next, the crowding distance is used to decide which test case to select: the test cases

with a higher distance from the rest of the population have a higher probability of being

selected. Test cases are added to the next generation based on their ranks. MOSA is

implemented in EvoSuite [76], and the objective function f(b, T ) for each branch b ∈ B

in test suite T is defined as follows:

f(b, T ) = al + norm(d(b, T )) (2.3)

The normalized branch distance (d(b, T )) is computed using the following equation:

d(b, T ) =



0 if a branch has been covered,

Dmin(t ∈ T, b)
Dmin(t ∈ T, b) + 1

if a predicate is executed at least twice,

1 otherwise.

(2.4)

where Dmin(t ∈ T, b) is the minimal non-normalized branch distance, computed accord-

ing to any of the available branch distance computation schemes [76].

The distance db,Tmin is 0 if at least one of the branches has been covered, and > 0

otherwise
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The overall objective function of a test suite T with respect to all branches is

computed as:

f(T ) = |M | − |MT |+
∑
b∈B

f(b, T ), (2.5)

where M is the set of methods in T and MT is the set of methods executed during the

test.

2.3 Automated Test Suite Generation - Objective Func-

tions

SBST approaches (WSA and MOSA) require the design of an appropriate objective

function (Equations 2.2 and 2.3), which measures the quality of generated solutions, and

guides the search process to promising areas of the search space. To this end, researchers

have proposed different definitions of objective functions, which use different measures,

such as structural coverage [85], approach level [78], distance calculation [46, 87], or

the combination of more than one measure [99, 106]. It is not known, however, which

approach would work best under what conditions. Given a software system with specific

features, which SBST technique would be suitable?

To successfully adapt a search technique for generating test data, it is essential to

reformulate the latter as a search problem, by defining the objective functions, rep-

resentation, and move operators [2]. A candidate solution is a test case consisting of

a sequence of input values, passed to the program upon execution to observe its be-

haviour. A set of test cases form a search space, and the representation of a candidate

is usually a floating point number and binary code derived from the underlying data

types of the programming language used. A neighbourhood structure in a candidate

solution for local search constitutes a collection of solutions that are in some respects
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close to the current candidate solution. For numerical variables, such as real and integer

variables, the neighbourhood is within a range of values that surround each value. The

neighbours of Boolean variables are ‘TRUE’ or ‘FALSE’ values, while the neighbours

of enumerated variables consist of any value from the enumeration.

A test adequacy criterion for structure testing is a testing aim that can be numeri-

cally measured and assessed, e.g. covered branches or statements. The test criterion is

coded as an objective function, which is used to evaluate the performance of candidate

test inputs. To assess the fitness of candidate solutions, the program is executed for

the inputs generated. The objective function plays a vital role in the performance of

search techniques. A well-defined objective function increases the likelihood of finding

a solution and reaching higher overall coverage. Better guidance of the search process

helps in consuming fewer system resources in the process [104, 13].

Miller and Spooner [71] were the first to suggest using search algorithms to automate

test data generation. The tester selects a path through the program and then produces

a straight-line version from the program that is equivalent to that path. The branch

predicates in the path are extracted and rearranged into Boolean assignments as a

‘path constraint’ form. A real-valued function is built for the whole path, to estimate

how close all the branch predicates on the path are to being satisfied. It is counted

as positive when all the branch predicates are true, and negative if the opposite is

the case. Test data are derived by choosing an initial set of data and then applying

a numerical optimization algorithm. The process is terminated when the value of the

objective function becomes positive. The function f is assigned by repeatedly executing

the straight-line version and automatically collecting the path constraint values.

It was not until 1990 that Miller and Spooner’s research directions were continued

by Korel [60], which initially executes the program with some arbitrary inputs. If

an undesired branch is taken, a local search algorithm is used to guide the program
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execution along the desired path, using a specific objective function derived from the

predicate of the desired branch. This objective function has a real value, referred to as

branch distance, which measures how close the predicate is to being executed.

The main weakness of Korel’s method [60] is its limited ability to detect the infeasi-

bility of the path. If an infeasible path is selected and the infeasibility is not detected,

then a significant computational effort is spent before the search process terminates.

The problem of a path’s infeasibility means that Korel’s approach [60] is best suited for

software featuring a relatively small number of paths to reach the selected node [61].

This work focus on three main groups based on the definition of the objective func-

tion: the coverage-oriented approach, the distance-oriented approach and the structure-

oriented approach. These three approaches were selected due to its differences in strate-

gies to evaluate the branch predicates. Our goal is to understand how different predi-

cates influence the performance of the selected fitness functions.

2.3.1 Coverage-oriented Function (CLF)

Various forms of coverage measures are used in coverage-oriented approaches: (i) state-

ment coverage – estimates the percentage of program statements covered during testing,

(ii) branch coverage – measures the extent to which branch statements in the code are

covered during the test, (iii) path coverage – measures the number of feasible paths

through the graph produced during the test.

Watkins [105] concentrates on full path coverage. Test data that follow previously

uncovered paths are assigned higher fitness values than those that pass via paths that

have already been covered. The penalization of executed paths, however, does not

exploit the information in the branch predicates [99].

In this study, we modified the original version [85] to exercise both branch values

(true and false), rather than arriving at just one value, as in the original definition



CHAPTER 2. AUTOMATED SOFTWARE TESTING 34

of the function. An individual is rewarded on the basis of the number of branches

executed. The individual covering the highest number of branches in the code gains

the lowest fitness values. This function is primarily concerned with ensuring that the

highest possible level of coverage is achieved.

Given a test suite T and a set of branches B of the program being tested, the

coverage level f1(b, T ) for each branch b ∈ B on test suite T is defined as follows:

f1(b, T ) =


0 if both branches are covered,

0.5 if the predicate is executed once,

1 otherwise,

(2.6)

The overall objective function of a test suite is calculated using the following equa-

tion:

CLF = |M | − |MT |+
∑
b∈B

f1(b, T ), (2.7)

where M is the set of methods in the object and MT is the set of methods executed

during the test. The difference |M | − |MT | is used to reward coverage of methods in

the test objects which have no branch statements.

2.3.2 Distance-oriented Function (BDF)

Branch distance-oriented approaches exploit information from branch predicates, which

evaluate how far a predicate is from obtaining its opposite value [71]. The work of

Xanthakis et al. [112] was the first to apply GAs in the generation of structural test

data. This method follows similar lines to earlier work by Miller and Spoone [71] and it,

therefore, suffers from problems that resemble those discussed regarding this method,

such as the limited ability to detect path infeasibility. A tester chooses a path, and
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then the branch predicates are extracted from it. A GA is employed to find test data

that satisfies all branch predicates in the path at once. The objective function sums up

the values of all branch distances.

Tracey et al. [98] employ simulated annealing to the generation of structural test

data. The approach aims to search for test data that covers the program’s statements

in turn. Thus, the objective function indicates whether or not the target statement

has been exercised. The objective function is the branch distance, which indicates how

close the current execution is to adopting the desired branch according to the decision

made. The objective function returns zero if the current execution leads to the target

condition (branch or statement); otherwise, it returns positive values.

The search proceeds while looking for test data to cover each statement in turn.

When the search process stagnates at one node, and no further progress can be made,

the approach attempts to generate test data for the next target node. Unlike Korel’s

approach [60], the newly generated test data do not need to conform to an already

successful sub-path. However, this leads to the search losing information about its

progress [68]. The reason for this is because a solution that deviates from the desired

path at an early stage of a search is assigned similar fitness values to those who deviate

at an advanced stage of a search.

The main criticism of branch distance-oriented techniques is that control information

about the target is not included in the objective function. This fact may cause the search

to get stuck in local optima, thereby making it difficult to obtain full coverage [106, 68].

The control-oriented approaches discussed in the next section addresses this problem.

The objective function [46] uses a branch distance measurement, which reflects how

close a branch’s predicate is to being reached. First, given a set of branches B, the
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minimal branch distance for each branch b ∈ B in test suite T is defined as follows:

f2(b, T ) =



0 if the branch is covered,

d(b, T ) if the predicate is executed once,

1 otherwise,

(2.8)

where d(b, T ) is 0 if at least one of the branch’s values (true or false) has been covered,

and > 0 otherwise. The objective function of a test suite T is:

BDF = |M | − |MT |+
∑
b∈B

f2(b, T ), (2.9)

where M is the set of methods and MT is the set of methods executed during the test.

2.3.3 Control-oriented Function (CFF)

Control-oriented approaches use control information for the objective function. This

is achieved by using a control dependency graph to determine predicate paths for the

intended node. Pargas et al. [78] apply a GA for statement and branch coverage,

guided by the control dependencies in the program. For a goal node, a sequence of

control-dependent nodes is specified, which should be exercised for the execution of the

goal node. The objective function is equivalent to the number of successful control-

dependent node executions.

It is worth noting that using only control structures in objective functions will form

plateaux in the fitness landscape [68]. As no distance information can be exploited,

this results in insufficient guidance towards unexplored structures. If the solutions fail

to fulfill one of the branch predicates, no branch distance information is given on how

to descend the landscape for the search process, as guidance for those individuals who

are closer to exercising the desired node.
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The objective function [78] uses a control dependency graph, which is equivalent

to the test object’s code, to compute an individual’s fitness value. The fitness value is

equivalent to the number of successful control dependent node executions towards the

intended branch.

Let dn be the number of control dependent nodes for the current target branch,

and en be the number of successfully executed control-dependent nodes; the objective

function f3(b, T ) for each branch b ∈ B in test suite T is defined as follows:

f3(b, T ) = norm(dn− en) (2.10)

where norm is a normalization function in the range [0, 1]. The fitness of a test

suite T is calculated as:

CFF = |M | − |MT |+
∑
b∈B

f3(b, T ), (2.11)

where M is the set of methods in T and MT is the set of methods executed during

the test.

2.4 Summary

In this chapter, we presented three ATSG techniques: Random Testing (RT), Whole

Suite with Archive (WSA) and Many-Objective Sorting Algorithm (MOSA) and three

objective functions: Coverage-oriented Function (CLF), Distance-oriented Function

(BDF) and Control-oriented Function (CFF). The aforementioned techniques use dif-

ferent approaches to achieve a high testing coverage, representing different categories

of the automated software testing generation research area.
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Chapter 3

Literature Review

3.1 Introduction

In this chapter, we describe the current ATGST methodologies available in the literature

for performance assessment. Moreover, we point out the current issues associated with

these methodologies and how they may affect the credibility of the results.

3.2 Performance Assessment

As stated before, the assessment of newly developed techniques or experimental stud-

ies investigating the performance of different ATSGTs often is based on a small set of

CUTs. Little information about the CUTs characteristics and how they are selected

are presented [47], offering usually no insight into the external validity of the find-

ings. Furthermore, the vast majority of the papers in the literature are only describing

the benefits of the newly introduced technique and the innovation carried out during

development, while just a small minority mention the limitations or present negative

39
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results [7]. In the following sections, we present the research studies using the most com-

mon methodology to assess the ATSGT performance (General Assessment) and others

that tried to use software features in the assessment (Feature-based Assessment).

3.2.1 General Assessment

In this section, we present a set of papers using the general assessment methodology

to evaluate the performance of newly developed techniques. The studies have been

selected based on diversity, i.e., papers using a small benchmark set, large benchmark

set, artificially generated instances and industrial code.

Ciupa [22] published ARTOO: Adaptive Random Testing for Object-Oriented Soft-

ware. The tool is an extension of ART (Adaptive Random Testing) initially developed

for numerical inputs. ARTOO implements the notion of distance between objects and

also a new strategy to select inputs objects that have the highest average distance to

those already used as test inputs.

The set of classes used to evaluate ARTOO performance was extracted from Eiffel-

Base Library version 5.6. A total of 8 classes have been selected and the details are

presented in Table 3.1. Analysis of the results shows improvements when compared to

directed random strategy. The number of tests required to find the first fault is reduced

by two orders of magnitude in some cases and also there was an increase in the number

of faults detected.

However, no justification for the CUTs selection has been presented,

and no additional CUT features are available. One might ask why, among

almost 1000 classes, only 8 classes have been selected and why those 8.

Moreover, considering only 8 classes reduces the external validity of the

study considerably.
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Table 3.1: Properties of the ARTOO CUTs

Class Total lines
of code

Lines of
contract
code

Routines Attributes Parent
classes

ACTION SEQUENCE 2477 164 156 16 24
ARRAY 1208 98 86 4 11

ARRAYED LIST 2164 146 39 6 23
BOUNDED STACK 779 56 62 4 10

FIXED TREE 1623 82 125 6 4
HASH TABLE 1791 178 122 13 9
LINKED LIST 1893 92 106 6 19

STRING 2980 296 171 4 16

In [23], Ciupa evaluates the variance of the number of faults detected by random

testing over time. An empirical test totalizing 1215 hours of randomly testing 27 Eiffel

classes, each with 30 seeds of the random number generator. The AutoTest Framework

[64] was used to execute the aforementioned tests.

The results showed that the relative number of faults detected by random test-

ing over time can be predicted but that different faults are detected in each different

execution. Moreover, it shows that random testing can quickly find faults: the first

failure is likely to be detected within 30 seconds. However, similarly to the previ-

ous approach, no information regarding the CUT selection criteria has been

provided. Furthermore, no features have been presented to characterize the

CUTs apart of their names.

Csallner [27] presents an automatic error-detection approach that combines static

checking and concrete test-case generation (CNC). The approach consists of taking the

abstract error conditions inferred using theorem proving techniques by a static checker,

deriving specific error conditions using a constraint solver, and producing concrete test

cases using JCrasher tool [26] that are executed to determine whether an error exists.
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Two Java projects have been used to evaluate CNC: the JABA bytecode analysis

framework and the JMS module of the JBoss4 open source J2EE application server,

which is an implementation of Sun’s Java Message Service API. More specifically, they

have run CnC on all the jaba.* packages of JABA, which consist of some 18 thousand

non-comment source statements (NCSS), and on the JMS packages of JBoss 4.0 RC1,

which consist of some five thousand non-comment source statements. The number

of CUTs and the selection criteria used is not available. Moreover, the only

feature described is the NCSS.

The results have demonstrated the usefulness of CnC in relation to ESC/Java [43]

and JCrasher [26], as well as by finding bugs in real-world applications. The authors

also stated that the best use of CnC is during development where the programmer

can apply the tool to newly created code, inspecting reports of conditions indicating

possible crashes.

In the area of regression testing, Taneja [94] presents DiffGen an automated regres-

sion unit-test generation and checking for Java programs. For two versions of a Java

class, DiffGen instruments the code by adding new branches and using a testing gener-

ation tool to expose behavioral differences between the two class versions. DiffGen has

been evaluated using JTopas (13 classes) previously used by [41] and [36]. Table 3.2

present the provided information regarding the CUTs.

The results showed that DiffGen can effectively detect regression faults that cannot

be detected by the state-of-the-art techniques (5 of 7 faults that were not detected

before). However, none of the related papers [36, 41, 94] has presented a

selection criteria for the CUTs. No additional CUT features are available.

DSD-Crasher [28] is a bug finding tool that executes a three-step approach to pro-

gram analysis. (a) Identify the program’s intended execution behavior with dynamic
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Table 3.2: Properties of the DiffGen CUTs

Version Class LOC

1 ExtIOException 78
1 AbstractTokenizer 1672
1 Token 159
1 Tokenizer 287
1 ExtIndexOutOfBoundsException 67
2 ExtIOException 89
2 ThrowableMessageFormatter 137
2 AbstractTokenizer 2966
2 Token 447
3 EnvironmentProvider 240
3 PluginTokenizer 407
3 StandardTokenizer 1992
3 StandardTokenizerProperties 2736

invariant detection; (b) Statically analyze the program within the restricted input do-

main to explore many paths; (c) Automatically generate test cases that focus on ver-

ifying the results of the static analysis. The tool has been accessed using JBoss JMS

(Sun’s Java Message Service API [51]) and Groovy (http://groovy.codehaus.org/).

The author’s justification for selecting the projects are:

• Groovy is a very representative test application for this kind of analy-

sis: it is a medium-size, third-party application. Importantly, its test

suite was developed completely independently of this evaluation by

the application developers, for regression testing and not to yield good

Daikon invariants.

• JBoss JMS is a good example of a third party application, especially

appropriate for comparisons with CnC as it was a part of CnC’s past
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evaluation [26]. Nevertheless, the existing test suite supplied by the

original authors was insufficient, and we had to supplement it ourselves.

The results showed that DSD-Crasher is an improvement over using CnC alone [26].

The reduction in false positives enables DSD-Crasher (as opposed to CnC) to produce

reasonable reports about NullPointerExceptions. The number of CUTs used in the

experiment is very low (34 classes in total). No additional CUT features are

available.

Thummalapenta addresses the issue of selecting relevant method-call sequences

when automatically generating unit tests that achieve high structural code coverage

with DyGen [95]. The novel approach generates tests by mining dynamic traces recorded

during program executions. DyGen uses these traces to create parameterized unit tests

(PUTs) and uses dynamic symbolic execution to generate new unit tests for the PUTs

that can achieve high structural code coverage. The new tool is evaluated using 10

.NET libraries totalizing 5.757 classes (3.3).

Table 3.3: Properties of the DyGen CUTs

.NET Libraries KLOC # Public classes # Public methods

mscorlib 179 1316 13199
System 149 947 8458
System.Windows.Forms 226 1403 17785
System.Drawing 24 223 2823
System.Xml 122 270 5426
System.Web.RegularExpressions 10 16 162
System.Configuration 17 105 773
System.Data 126 298 5464
System.Web 202 1140 11487
System.Transactions 9.5 39 405

TOTAL 1063 5757 65982
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The new method generated regression tests covering 27,485 basic blocks, which is

24.3% higher than the number of blocks covered by recorded dynamic traces. Even

though a significant number of classes have been used in this experiment, the

study does not present a selection criteria for the CUTs. One might think

that the classes are too similar, risking the external validity. Moreover, the

presented information regarding the CUTs is very minimal.

In [74], Pacheco describes a new technique to select, from a large set of test inputs, a

small subset that is likely to reveal faults in the CUT. The new approach takes a program

or software component, a set of correct executions-say (extracted from observations of

the software running properly or from an existing test suite that a user wishes to

enhance) aiming to infer an operational model of the software’s operation. After that,

the execution operational inputs patterns that differ from the model in specific ways

are suggestive of faults.

The new approach, called Eclat, has been evaluated using 6 libraries totalizing

631 CUTs and 75.000 non-comment non-blank lines of code. The chosen libraries are

presented in Table 3.4.

Table 3.4: Properties of the Eclat CUTs

Program versions suites per version public methods NCNB LOC

BoundedStack 1 2 11 88
DSAA 1 1 110 640
JMLSamples 1 1 221 1392
utilMDE 1 2 69 1832
RatPoly 97 1 17 512
Directions 80 2 42 342

The results have shown that Eclat is effective in generating fault-revealing test

inputs. The input generation technique generates legal, fault-revealing inputs for the

methods in the test programs, and the input selection technique identifies inputs that
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have higher chances of revealing faults as the candidate inputs. Eclat reveals real,

previously unknown errors in the test programs.

Similarly to the other approaches included in this section, a significant

drawback of this work is that the authors do not present additional in-

formation regarding the CUTs. The author justifies the use of the CUTs

mentioned above by saying: "all subject programs implement modestly-

sized libraries designed to support larger programs; thus, unit testing is

appropriate for them".

Ribeiro [83] tackles the problem of object reuse on standard typed Genetic Program-

ming for representing and evolving test data. He proposes eCrash, a new methodology

to overcome this limitation by reusing objects. Object Reuse aims to allow one instance

to be passed to multiple methods as an argument, or several times to the same method

as arguments. In the context of Object-Oriented Evolutionary Testing, it allows the

generation of test programs that analyse structures of the SUTs that would not be

reachable.

The new tool has been tested using two classes of the JDK 1.4.2. The results show

improvements in the effectiveness of the search and also in the test case generation pro-

cess. This result was obtained by yielding solutions with smaller overall size and lower

structural complexity, and it is able to increase the feasibility of Test Programs. In a

similar fashion to the other approaches in this area, no additional informa-

tion regarding the CUTs has been provided. Ribeiro justifies the selection

of these 2 classes by saying: "Their selection is supported by the fact that

they are container classes, which are a typical benchmark in software testing

of OO programs".

In [97], a genetic algorithm is used to automatically generate test cases for the unit

testing of classes in a general usage scenario. Test cases are defined as chromosomes,
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which contain information on which objects to create, which methods to invoke and

which values to use as inputs. The new algorithm mutates these structures to maximize

a defined coverage measure. The new method has been implemented in the tool eToc

(Evolutionary Testing of Classes) that has been tested against the CUT presented in

Table 3.6.

Table 3.5: Properties of the eToc CUTs

Class LOC public methods

StringTokenizer 313 6
BitSet 1046 26
HashMap 982 13
LinkedList 704 23
Stack 118 5
TreeSet 482 15

Total 3645 88

The classes used to evaluate the proposed technique were taken randomly from the

standard Java library distributed with the Software Development Kit (SDK) version

1.4.0. The results showed that using a genetic algorithm for the unit testing of classes

can be very powerful. Optimal coverage of the public method branches was achieved

within a reasonable computation time, and the generated test suites were generally

small. However, no additional information regarding the CUTs has been

provided. The author does not provide a justification for the CUT selection.

Inkumsah [56] developed EvaCon to overcome two main issues associated with high

structural coverage. The first one is the need for in-depth knowledge of the program

structure and semantics. The second one refers to specific method sequences required

to lead the receiver object or non-primitive arguments to specific desirable states. Eva-

Con has been evaluated using 13 classes previously used in evaluating white-box test

generation tools (Table 3.6).
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Table 3.6: Properties of the EvaCon CUTs

Class number of public methods number of branches LOC

BankAccount 6 6 60
BinarySearchTree 16 67 260
BinomialHeap 10 94 215
BitSet 25 130 638
DisjSet 6 44 140
FibonacciHeap 9 92 207
HashMap 10 89 374
LinkedList 29 105 738
ShoppingCart 6 13 117
Stack 5 16 160
StringTokenizer 5 47 222
TreeMap 47 252 1626
TreeSet 13 20 301

The experiments showed that the tests generated using EvaCon can achieve higher

branch coverage than evolutionary testing or concolic testing alone, reaching a max

improvement of 6%. No additional information regarding the CUTs has been

provided. The author does not justify the CUT selection.

The aforementioned papers claim superiority of the newly developed techniques

without considering the characteristics of the CUTs used in experiments. One of the

risks involved is the possible similarity among the CUTs, compromising the external

validity of the results. Ideally, the experiment should consider a diverse set of classes

aiming to evaluate the techniques behaviour in CUTs with different characteristics. The

use of features is essential to validate the results of the experiment by defining the scope

of the benchmark set.
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3.2.2 Feature-based Assessment

Analyzing the performance of different ATSG techniques (ATSGT) by using software

features has been the focus of previous research. Cseppento et al. [29] evaluated Sym-

bolic Execution-based Test Tools. The approach was based on collecting a represen-

tative set of programming language concepts (e.g., language constructors, operations

and control flow statements) that are handled by the tools, map them to 300 code

snippets that serve as inputs to the tools, create an automated framework to execute

and evaluate these snippets, and perform experiments on four Java and one .NET test

generator tool.

The results showed that the evaluation could identify both strengths and weaknesses

in the tools by associating the code snippets with low coverage as weakness and the ones

with high coverage as strengths. The downside of the research is the use of artificial

code that might not reflect the characteristics of real software systems. No information

about the complexity of the code snippets is provided, consequently, it is no clear how

diverse they were.

Lammermann et al. [63] assess the difficulty of a test object for evolutionary testing

using software measures for procedural code. The approach checks for a possible con-

nection between different software measures and the execution of the evolutionary test.

The results indicate that using source code or structured-based software features can

only lead to mediocre predictions. Cyclomatic Complexity (CC) was able to generate

the best forecasts.

Wang et al. [103] compared three well-known public-accessible unit test data gen-

eration tools: JCrasher [26], TestGen4J [66] and JUB [100]. Java classes were applied

and evaluated based on their mutation scores. As a comparison, two additional sets

of tests were created for each class. One test set contained random values and the

other contained values to satisfy edge coverage. Results showed that the automatic
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test data generation tools generated tests with almost the same mutation scores as the

random tests. The criteria used to select the set of classes in the experiment was not

presented in the paper. The reason stated by the researchers is: “nobody has developed

a general theory for how to choose representative classes for empirical studies, or how

many classes we may need”. Therefore, it could be the case that all the classes were

elementary, explaining similar performances.

Chitirala [21] measured the effectiveness of two automated test generation tools,

EvoSuite [44] and Tpalus [117], using metrics such as code coverage, mutation scores,

and size of the test suite. The results showed that EvoSuite gains the upper hand when

it comes to coverage scores and readability of the test cases, but Tpalus had success

in terms of killing mutants. The difference was around 10% for the test subjects. The

number of CUTs used in the experiment was deficient. Only 10 classes were used and,

among them, 3 were container classes. Therefore, the results can not be generalized.

Shamshiri at al. [87] conducted a study on the effects of using evolutionary algo-

rithms for test suite generation. They compared four ATSGTs: Genetic Algorithm

(GA), Chemical Reaction Optimization Algorithm (CRO), Random+, and Pure Ran-

dom. All the ATSGTs were implemented on EvoSuite [44]. 995 CUT were used in

the experiments. These CUTs were extracted from SF110 corpus. The results showed

that Random techniques are as effective as search-based ones in CUT containing only

branchless methods. Random techniques presented better results in search spaces char-

acterised with plateaus. However, when optimising problems characterised with gradi-

ents, search-based techniques outperformed random techniques.

Only recently, Panichella and Molina [77] considered an object-oriented complexity

metric in the selection of benchmark subjects. However, the authors did not consider

investigating the effect of this feature on the effectiveness of the techniques. In general,

the literature investigating the effectiveness of different ATSGTs presents little or no
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information about the CUT characteristics used in the experiments, impacting the

generalisability of the results.

Different from related work, this research aims to provide a better understanding of

which CUT features are related to the performance of ATSGTs, and whether software

features can be used to select an ATSGT for a particular software system. To this

end, we employ well-known code-based metrics from the literature [20]. Furthermore,

we take advantage of well-established metrics from graph theory and apply them to

measure properties of the CFG of a software system.

Not all features, however, are indicative of how hard a particular CUT is for an

ATSGT. So one of the main challenges is to identify which features should be selected

to characterise CUT, such that they capture the difficulty of CUTs. Next, using these

features we investigate whether it is possible to infer and visualise algorithm perfor-

mance across instance space. Finally, we check whether features can be used to select

a suitable ATSG approach.

3.3 Summary

In this chapter, we presented an overview of the literature regarding ATSGT assess-

ment. The vast majority of papers use the general methodology to assess performance

while only a minority tried to identify relationships between features and performances.

Moreover, papers using general assessments do not present any justification for the se-

lection of the CUTs used in the experiments. Additionally, only very few features are

presented to characterize the CUTs.
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Chapter 4

META Framework

4.1 Introduction

In this chapter, the alternative method to ATSGT assessment is introduced. The con-

cepts are described as a framework aiming to facilitate its understanding and usage.

Section 1 presents the overall framework definition. Section 2 describes the main compo-

nents of the framework: Classes Under Test, ATSGTs, Feature Selection, Performance

Visualization and Performance Prediction.

4.2 Definition

The Mapping the Effectiveness of Test Automation (META) framework (Figure 4.1)

is inspired from the Algorithm Selection Problem (ASP) [90] introduced in the area of

optimisation and machine learning, and the No Free Lunch theorem, which tell us that

there does not exist a single algorithm that can be expected to outperform all other

algorithms on all problem instances [111]. Hence, if method A is superior over method

B in solving a particular set of problems, then one may claim that there exist other

untested problems where method B may outperform method A. Empirical studies in

55



CHAPTER 4. META FRAMEWORK 56

CUTs CUT Features

C
U

T

ATSGT ATSGT Performance
MeasuresAT

SG
T

ATSGT
Footprints

Start

ATSGT
Footprints

Visualisation

Effectiveness Visualization

Feature 
Extraction

Performance
Estimation

META Framework

Test case generation

Feature Selection

YesSelected features
are sufficient?

Feature 
Learning 

CUT
Feature

Distribution

Performance Prediction

ATSGT 
Decision Tree
Construction

Effective
ATSGT

Selection

No

Figure 4.1: The main components of the Mapping the Effectiveness of Test Automation
(META) Framework

the area of ATSG should focus on identifying conditions under which an algorithm is

expected to succeed or fail instead of claiming superiority of a method over another.

In this thesis, these ideas were extended and adapted to assess the strengths and

weaknesses of ATSGTs into an application called META tool. The proposed tool can be

used to predict which ATSGT from a portfolio of different techniques is likely to perform

best based on measurable features of a collection of CUTs. META is an alternative to

the current ATSGT assessment methodology.

4.3 Main Components

The framework is composed of five main components: Classes Under Test, ATSGTs,

Feature Selection, Performance Visualization and Performance Prediction. The compo-

nents work together aiming to associate CUT features to ATSGT performance by using

Evolutionary Algorithms, Machine Learning and Dimensionality Reduction techniques.

4.3.1 Classes Under Test

The first component of the META Framework contains the CUTs and their charac-

teristics (features). The software systems are considered at a class level, and features
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are measured for each class. The features are defined and extracted from the CUTs

to be subsequently analyzed by the feature selection method. The META framework

does not impose restrictions on the programming language and can be applied to other

programming languages for which automated test case generation approaches exist. For

this thesis, however, we focus on JAVA programming language. However, further work

is required to investigate META’s effectiveness in other object oriented languages.

Features are problem dependent and must be chosen so that the varying complexi-

ties of the CUT instances are exposed, any known structural properties of the CUTs are

captured, and any known advantages and limitations of the different ATSGTs are re-

lated to features. The most common measures and metrics used to characterise features

of CUTs are extracted from code.

Other software features are extracted from the Control Flow Graph (CFG), which

represents the structure of the code (see Figure 2.1). The most common metric that is

based on the CFG is the Cyclomatic Complexity (CC) [67], which analyses the branch-

ing complexity of the CFG. Our approach uses well-established software measures,

such as CC, and introduces new measures inspired by graph theory to analyze differ-

ent aspects of the CFG. These metrics can provide valuable information about graph

complexity. In essence, the software features considered in this work can be classified

into code-based and graph-based features.

A good selection of CUTs and features is crucial to a proper ATSGT assessment

using META. In order to define hardness, CUTs that can challenge all ATSGTs in

the portfolio are required, and also features that can explain it. Therefore, Chapter

5 presents a comprehensive analysis of the features and benchmarks available in the

literature to later present the ones selected to be part of this study [RO2 and RO3].
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4.3.2 Automated Software Test Generation Techniques

In this component, the ATSGT portfolio is defined. Moreover, the metric used to

assess their performance (evaluate the quality of test suites) is also defined. The most

common is the code coverage, i.e., the degree to which a particular test suite tests a

software system. Mutation testing is another technique commonly used to evaluate

test suites. It involves changing a program slightly with mutation operators. Each new

version generated is called a mutant and tests detect and reject mutants (kill mutants)

by causing the behavior of the original code to differ from the mutant. Test suites are

measured by the percentage of mutants that they kill.

For this study, branch coverage is used, also known as decision coverage, which quan-

tifies the percentage of branches/decisions that have been executed by the test suite.

The term branch/decision means that two or more exits are possible from statements

like an IF or a CASE, always generating two outcomes, either true or false. Branch

coverage is widely used as a performance metric in the literature [75, 47, 44]. One of the

main benefits of branch coverage is its low overhead on the execution of the program

under test [113]. The European Cooperation for Space Standardization (ECSS) gives

100% branch coverage as one of the measures to assure the quality of a critical software

[109].

4.3.3 Feature Selection

The feature learning component of the META framework identifies the most significant

features of CUTs that impact the effectiveness of the ATSGTs [RO4]. The input to

this step is the collection of CUT features (Section 4.3.1) and the performance of the

ATSGTs (Section 4.3.2). The output is the set of features that best describe the reasons

why ATSGTs are effective or not in generating test suites.
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Initially, the features are analysed, normalized if needed, and the ones presenting

high correlation with any other feature were removed. This process is highly recom-

mended when using dimensionality reduction techniques, such as Principal Component

Analysis (PCA), as including nearly-redundant variables, can cause these methods to

overemphasize their contributions.

The next step consists of selecting the best set of features to highlight the strengths

and weaknesses of the ATSGTs on the CUT space. A genetic algorithm is used to

search for the best features to explain good and bad performances. The GA has the

following characteristics:

Chromosome: the solution is a set of features, with a minimum of three and a

maximum of ten. These limits were defined based on experiments conducted in

the initial stage of the research. We detected that solutions containing more than

ten features had none to insignificant variation gain. In other words, in most of the

cases the GA best solution would contain less than 10 features without any limit

set. In cases where the solution size was greater than 10, the difference between

the amount of data retained after the dimension reduction (PCA variation) was

negligible when compared to the best solution containing 10 or fewer features.

Selection Strategy: Roulette Wheel Selection was chosen. RWS allocates prob-

abilities of selection based on the fitness of solutions, allowing poor solutions to

be selected with a very small probability. This strategy is effective in preventing

premature convergence [118].

Crossover Operator: Uniform Crossover has been chosen due to its efficiency

when applied to GA with small to medium populations [91].

The main steps of the method are presented in Algorithm 1.
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Algorithm 1 Feature Selection with a Genetic Algorithm
1: procedure FeatureLearning(features, ATSGTP)
2: Input: n,mr, cr . n is population size, mr is mutation rate, cr is crossover

rate, ATSGTP is ATSGT performance.
3: P← RandomSolutions(n) . P is the population
4: for i← 1 to n do
5: Q← ∅ . Q is the Auxiliary Population
6: while !TerminationCodition do
7: for i← 1 to n do
8: p1, p2 ← RouletteWheelSelection(P,F) . p1, p2 are parent

solutions
9: o1, o2 ← UniformCrossover(p1, p2, cr)

10: o′1 ← Mutation(o1,mr)
11: o′2 ← Mutation(o2,mr)
12: f(o′1)← EvaluateFitness(o′1,ATSGP)
13: f(o′2)← EvaluateFitness(o′2,ATSGP)
14: Insert(o′1, o′2,Q)
15: R← P ∪Q
16: RankSolutions(R)
17: P← SelectBestSolutions(R)
18: Return(P)
19: procedure EvaluateFitness(s, ATSGP)
20: Input: s . set of features to be evaluated
21: 2D_coordinates ← PCA(s, ATSGP)
22: f(s)← SVM(2D_coordinates, ATSGP)
23: Return(f(s)) . Return the fitness of the set of features

An individual solution contains the set of features that are used to characterise the

CUTs. The crossover operator (line 9) takes two sets of features and combines them at

different random positions. Then both solutions are mutated. The mutation operator

(Lines 10 and 11) replaces a random feature from the set of features with a new feature.

Solutions are evaluated based on how well the set of features can be used to separate

the CUT space into ATSGT footprints.

The first step of the evaluation process consists of using Principal Component Anal-

ysis (PCA) to reduce the number of dimensions to 2. PCA is a statistical procedure

that applies an orthogonal transformation to change a set of observations of possibly
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correlated variables into a set of values of linearly uncorrelated variables called principal

components. The number of principal components is less than or equal to the number

of original variables [57]. PCA is one of the most widely used statistical tools for data

analysis and dimensionality reduction [16].

The second step consists of applying Support Vector Machines (SVM) in the 2D co-

ordinates generated by the PCA method. A SVM is a discriminative classifier formally

defined by a separating hyperplane [42]. In two dimensional space this hyperplane is a

line dividing a plane in two parts where in each class lay in either side. The goal of SVM

is to verify the quality of the selected features in explaining the ATSGT performances.

The fitness function is described by the second procedure in the algorithm 1.

Figure 4.2 is an example showing a clear separation between ATSGT 1 and ATSGT

2. In this example, SVM would produce a highly accurate prediction score, and conse-

quently, the set of features used to create this space would receive a high fitness score.

A high fitness means that the selected features were able to identify accurately the

characteristics associated with good and bad performance.

In summary, the feature selection process aims to find the best set of features to

explain the ATGST performance in the two dimensional space. The 2D space is created

using PCA, reducing the number of dimensions from n to 2. In the 2D space, each dot

is a CUT labeled as easy or hard according to the performance results. Finally, SVM is

applied to find how well the selected features can explain the performance results. The

SVM accuracy is the solution fitness.

4.3.4 Effectiveness Visualisation

Once the most significant features are identified (4.3.3), they are used to visualise the

footprints of the ATSGTs, as shown in Figure 4.2. PCA is used as a dimensionality
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Figure 4.2: Visualising the strengths and weaknesses of ATSGs.

reduction technique on the optimal subset of features. The aim is to plot the perfor-

mance of the two ATSGTs across the CUT space in 2D, which is likely to reveal where

the methods are performing well, and where they are suffering.

Using the two principal components from the PCA analysis, the effectiveness of the

ATSGTs is visualised in a 2D map, as illustrated in Figure 4.2. The plot on the left

visualises the effectiveness of two ATSG techniques, ATSGT1 and ATSGT2 over all

CUTs. The yellow circles are the CUTs where ATSGT1 was the most effective, whereas

the green squares represent the CUTs where the second technique was the most effective.

Next, the same CUTs are projected in a 2-dimensional map based on how they

score in terms of the most significant features identified in the feature learning step.

The plot on the right in Figure 4.2 illustrates this point. The blue circles indicate

that the respective CUTs have high-class complexity, while the CUT with low-class

complexity is represented as purple squares. Looking at both plots, we notice that

ATSGT1 is effective when class complexity is high, whereas ATSGT2 works best when

class complexity is low.



CHAPTER 4. META FRAMEWORK 63

4.3.5 Performance Prediction

A decision tree (DT) is produced using the most significant CUT features (4.3.3). The

DT can be used to select the most effective ATSGT for new software systems based

on their features. The clustering algorithm DBSCAN [14] is used to identify the areas

in the CUT space where the different techniques in the portfolio are effective or not.

DBSCAN is a high performance clustering algorithm that can find clusters of different

shapes and manages the noise points effectively [14]. The method consists of identifying

the clusters by acknowledging the fact that within each cluster the typical density of

points is higher than outside of the cluster.

In the next step, the C4.5 [82] algorithm is used to generate the decision tree with

the features identified in the feature learning phase described in Section 4.3.3).The C4.5

was developed by Ross Quinlan and it is often referred to as statistical classifier [49].

C4.5 performs by default a tree pruning process. This leads to the formation of smaller

trees, more simple rules and produce more intuitive interpretations [49]. In [65], Lim

et al. show that the c4.5 algorithm can provide good classification accuracy, being the

fastest among the decision tree algorithms with univariate splits.

Other advantages of c4.5 are [49]:

• C4.5 builds models that can be easily interpreted.

• It can handle both categorical and continuous values.

• It can deal with noise and deal with missing value attributes.

4.4 Summary

This chapter presented the META Framework, an alternative methodology to asses

ATSGT performance [RO1]. The framework is divided into 5 main parts. The CUT
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contains the Features and CUTs selected to be part of the performance assessment

[RO2 and RO3]. The ATSGT contains the ATSGTs to be assessed and the perfor-

mance measures. The Feature Selection section manages the interaction between the

CUT and ATSGT. This component is the part of the META framework that enables

the identification of features that influence more significantly the ATSGT performance

[RO4].

Once the critical features have been identified through the feature learning proce-

dure, they are used to analyse and visualise the footprints of the ATSG techniques,

which help understand the strengths and weaknesses of algorithms. The feature learn-

ing procedure identifies features that capture the difficulty of CUTs. A training set of

CUTs is used to learn critical features.

This process helps to identify which ATSGTs in a portfolio is likely to be best for

a relevant set of CUTs, and which ones are likely to produce suboptimal results. The

footprints are generated in the Effectiveness Visualization step and show the per-

formance of the different ATSGTs across the CUT space using dimensionality reduction

techniques [RO5].

Finally, in the Performance Prediction section, a decision tree is created based

on the most significant CUT features, which can be used to predict and select the most

effective ATSGT for generating test cases for new software projects. Its accuracy is

evaluated in a validation set of CUTs [RO6].
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Chapter 5

Feature Set and Benchmark Analysis

5.1 Introduction

The META Framework relies on a good selection of CUTs to be effective, i.e., the

selected classes need to be diverse enough to challenge the ATSGTs in the portfolio.

Additionally, a broad and robust set of features is required to enable performance

characterization. Without a good selection of CUTs and features, the process might

fail due to the inability to differentiate performances. This chapter describes how the

CUTs have been selected and also presents the set of features used to characterize

ATSGT performance [RO2 and RO3].

5.2 Benchmarks

Benchmarks have been used in many areas of computer science to compare the perfor-

mance of different systems such as databases and information retrieval algorithms. The

development and use of a benchmark within a research area are usually accompanied by

rapid technical progress and community building [89]. This fact has led researches to

formulate a theory of benchmarking within scientific disciplines [89]. The theory states
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that software engineering research should become more experimental and cohesive by

working as a community to define benchmarks[89].

The development of a benchmark requires a community to verify their understanding

of the field by coming to an agreement on what are the key problems, and encapsu-

lating the knowledge in an evaluation. The use of benchmark results in a more severe

examination of research contributions, and a general improvement both in the tools and

techniques being created. During the benchmarking process, there is greater communi-

cation and collaboration among different research groups, leading to a solid consensus

on the community’s research objectives. The technical advancement and increased co-

hesiveness in the community have been viewed as positive side-effects of benchmarking.

Therefore, benchmarking is strongly recommended to communities aiming to achieve

these positive effects [89].

Any research community that is enough well-established and practice collaboration

can benefit from benchmarking. Multi-author publications, multi-site research projects,

and standards for reporting, are examples for the latter.

5.2.1 Examples

TPC-A is the Transaction Processing Council (TPC) Benchmark A for Online Trans-

action Processing including a LAN or WAN network. It emerged from the DebitCredit

test initially issued in 1984. This effort was led by Jim Gray [35] but had so many con-

tributors from industry and academia that the author on the paper was given as "Anon

et al." This paper arouses the database community. Researchers began to publish im-

provements and variants of the test, and vendors used the version and interpretation

that made their product appear most efficient, further fuelling "benchmarketing" wars.

Eventually, several representatives from industry and academia formed the TPC to
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standardise and manage benchmarks for Database Management Systems (DBMS). De-

veloping TPC-A took more than two years and required almost 1200 person-days of

effort contributed by researchers and 35 vendors who were members of the consortium.

The process required many meetings as well as laboratory work by the participants.

The TPC-A specification is more than 40 pages long with 11 different clauses covering

issues such as transaction and terminal profiles, scaling rules, response time, and rules

for full disclosure [89].

SPEC (Standard Performance Evaluation Corporation) is a consortium with com-

mittees that create a variety of benchmarks. CPU2002 is the one responsible for evalu-

ating computer systems. It replaces CPU95 and is programmed to be replaced in 2004.

Members of the committees include hardware and software vendors, universities and

customers. Requirements, test cases, and votes on benchmark composition are solicited

from committee members and the general public through SPEC’s web site. CPU2000

consists of 26 programs (12 with only integer arithmetic and 14 with floating point) to

be compiled and run on a computer system [89].

SF100 [45] is a benchmark containing a large set of projects that were extracted

from the SourceForge open-source development platform. The selection was targeting

a dataset of all projects written in the JAVA programming language, collected using a

Web crawler. The final project list contains 100 projects randomly selected from a final

filtered list of 321 projects.

SF110 [47] is a combination of SF100 and the ten most popular open source projects

according to the SourceForge website.

According to the author, SF100 and SF110 do not only represent the largest case

studies in the literature of test data generation for object-oriented software to date but

most importantly they are the only ones that are not negatively affected by threats to

external validity [45].
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5.2.2 Issues

While it is very useful to speed up development in the research area, complains regarding

benchmarks are not uncommon. Most of the questions are related to the lack of a

methodology when creating benchmarks. In the worst cases, no details regarding the

content are presented. One good example comes from the Operational Research (OR)

Community. Hooker, in his paper "Testing heuristics: we have all it wrong" [55],

expressed his concerns about the lack of diversity and usefulness of commonly studied

benchmarks and their inherent bias. He claims that these instances are typically well

suited to the first study that chooses to report on them but not necessarily diverse or

challenging.

Back to Software Engineering Community, Fraser in [45] questions, "How are case

studies chosen in the literature?". He states that in most cases, this choice is not

made systematically, i.e., researchers choose software artifacts without providing any

specific and unbiased motivation. Notice that, in many software testing contexts, this

is the only viable option. This is a typical example in the context of testing techniques

targeted for industrial systems. Obtaining real data from industry is challenging and

time-consuming activity, and so case studies tend to be either "small" or biased toward

a specific kind of software.

The situation gets even worse when in a group of 50 papers, more than one third

of them are considering container classes (e.g., vectors and lists) exclusively. Targeting

only these particular types of classes might create a strong bias in the results due to the

not common practice of writing new container classes. For example, when an industrial

set of classes containing 4,208 classes is considered, not even a single class is a container

class [47]. Thus there is a high chance that the results are misleading, since the datasets

on which the tools are evaluated may not be diverse enough to highlight their true

capabilities. Therefore, most of the results claiming the superior performance of an



CHAPTER 5. FEATURE SET AND BENCHMARK ANALYSIS 70

ATCG technique over other methods on a selected set of CUTs cannot be generalized

to untested datasets.

Panichella et al. [75] have shown that 56% of the classes in SF110 are trivial, i.e.,

with Cyclomatic Complexity (CC) equal to 1. This means that the classes have no

branches and can be covered with a simple method call. These types of classes present

no challenge to even the most straightforward tool.

Table 5.1 presents a sample of 50 studies where only a single paper [73] explained

why a particular set of classes was selected and how this selection was done.

Table 5.1: Evaluation Setting in the Literature [47]

Tool Reference Projects Classes Source

APex [Jamrozik et al. 2012] 9 9 Open Source

Artoo [Ciupa et al. 2008a] 1 8 Open Source

AutoTest [Ciupa et al. 2008b] 1 27 Open Source

Ballerina [Nistor et al. 2012] 6 14 Open Source

CarFast [Park et al. 2012] 12 1,500 Generated

Check’n’Crash [Csallner et. al. 2005] 2 - OS / Literature

Covana [Xiao et al. 2011] 2 388 Open Source

CSBT [Sakti et al. 2012] 2 3 Open Source

DiffGen [Taneja and Xie 2008] 1 21 Literature

DSDCrasher [Csallner et al. 2008] 2 24 Open Source

DyGen [Thummalapenta et al. 2010] 10 5,757 Industrial

Eclat [Pacheco and Ernst 2005] 7 631 OS/Lit./Constr.

eCrash [Ribeiro et al. 2010] 1 2 Open Source

eCrash [Ribeiro et al. 2009] 1 2 Open Source

eToc [Tonella 2004] 1 6 Open Source

continued
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continued

Tool Reference Projects Classes Source

eToc [McMinn et al. 2012] 10 20 Open Source

EvaCon [Inkumsah and Xie 2008] 1 6 Open Source

EvoSuite [Fraser and Arcuri 2011a] 6 727 OS + Industrial

EvoSuite [Fraser and Arcuri 2013c] 20 1,741 OS + Industrial

Jartege [Oriat 2005] 1 1 Constructed

JAUT [Charreteur et. al. 2010] 3 7 Constructed

JCrasher [Csallner et. al. 2004] 1 8 Literature

JCute [Sen and Agha 2006] 1 6 Open Source

jFuzz [Jayaraman et. al. 2009] 1 - Open Source

JPF [Visser et al. 2004] 1 1 Open Source

JPF [Visser et al. 2006] 1 4 Constructed

JTest+Daikon [Xie and Notkin 2006] 1 9 Constructed / Lit.

JWalk [Simons 2007] 6 13 Constructed

Korat [Boyapati et al. 2002] 1 6 Literature

MSeqGen [Thummalapenta et al. 2009] 2 450 Open Source

MuTest [Fraser and Zeller 2012] 10 952 Open Source

NightHawk [Andrews et al. 2007] 2 20 Literature

NightHawk [Andrews et al. 2011] 1 34 Open Source

NightHawk [Beyene et. al. 2012] 2 - Open Source

OCAT [Jaygarl et al. 2010] 3 529 Open Source

Palus [Zhang et al. 2011] 6 4,664 OS + Industrial

Pex [Tillmann and Schulte 2005] 2 8 Constructed

PexMutator [Zhang et al. 2010] 1 5 Open Source

continued
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continued

Tool Reference Projects Classes Source

Randoop [Pacheco et al. 2007] 14 4,576 OS / Industrial

Rostra [Xie et al. 2004] 1 11 Constructed / Lit.

RuteJ [Andrews et al. 2006] 1 1 Open Source

Symclat [d’Amorim et al. 2006] 5 16 Constructed / Lit.

Symstra [Xie et al. 2005] 1 7 Literature

Symbolic JPF [Pasareanu et al. 2008] 1 1 Industrial

Symbolic JPF [Staats and Pasareanu 2010] 6 6 Industrial/OS

TACO [Galeotti et al. 2010] 6 6 OS/Lit.

Testera [Marinov and Khurshid 2001] 4 4 Open Source

TestFul [Baresi et al. 2010] 4 15 OS + Literature

YETI [Oriol 2012] 100 6,410 Open Source

N/A [Arcuri and Yao 2008] 1 7 Open Source

N/A [Wappler and Wegener 2006] 2 4 Open Source

N/A [Andrews et al. 2008] 2 2 Open Source

5.3 Features

Features are problem dependent and must be chosen so that the varying complexities of

the CUT instances are exposed, any known structural properties of the CUTs are cap-

tured, and any known advantages and limitations of the different ATSGTs are related

to features. The most common measures and metrics used to characterise features of

CUTs are extracted from code.
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Other software features are extracted from the Control Flow Graph (CFG) which

represents the structure of the code (see Figure 2.1). The most common metric that is

based on the CFG is the Cyclomatic Complexity (CC) [67], which analyses the branch-

ing complexity of the CFG. Our approach uses well-established software measures,

such as CC, and introduces new measures inspired by graph theory to analyze differ-

ent aspects of the CFG. These metrics can provide valuable information about graph

complexity. In essence, the software features considered in this work can be classified

into code-based and graph-based features.

0 45

Node Degree

0 35

Eccentricity

0 0.4

Cluster Coefficient

Figure 5.1: Example of Graph Features

5.3.1 Code-based Features

Useful features of CUTs are measurable properties that (a) can be computed in polyno-

mial time and (b) are expected to expose what makes a ATSGT hard for a given CUT.

At the same time, features must correlate to ATSGT performance, measure diverse

aspects of the CUTs, and be uncorrelated with one another. The feature set should be

small in size, yet it should comprehensively measure aspects of the CUTs that either

challenge ATSGTs or make their task easy.
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The first group of objected oriented code metrics was proposed based on measure-

ment theory and expertise of experienced software developers [20]. The set includes

simple features that count the number of methods or lines of code to more elaborated

features that measure the interaction between methods and the depth of the inheritance

tree. In total, 25 code-based metrics are used (Table 10.1).

The second group has been explicitly defined to capture predicate hardness. For

each CUT, features of the predicates are measured, such as the number of variables in

a predicate, number of inequalities, and type of variables. The second set of features is

present in Table 10.2.

We postulate that it is characteristics of branches in a CUT that make it harder or

easier for a search-based software testing method to cover. The META framework will

identify the specific characteristics that have an impact.

5.3.2 CFG-based Features

The selected set includes features used in graph theory and also features created specif-

ically for software systems like CC [67]. The CFG is a directed graph, however, undi-

rected graph features are also used by removing the direction restriction. The CFG

is generated per method, therefore, to generate values for the whole CUT, metrics are

reported as average, standard deviation, sum, maximum, and minimum values. The

full list of CFG-based features is presented in Table 10.3.

5.3.3 Feature Extraction

Software systems are considered at a class level, and features are measured for each

class. The feature extraction procedure shown in Figure 4.1 can be instantiated with

existing tools for feature extraction, such as jCT [30] and CKJM [92]. In this work, we

introduce new metrics that are based on control flow graph (CFG) features and inspired
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from graph theory (Table 10.3). The feature extraction procedure for these metrics can

be performed using the software package NetworkX [86].

5.4 Benchmark Assessment

In this section we will use META tool to analyze the biggest benchmark set publicly

available. The SF110 Corpus of Classes [47] is a statistically representative sample of

110 Java projects from SourceForge. The project details are presented in Table 5.2

Table 5.2: Summarized statistics of the whole SF110 corpus [47]

Property Value

Number of Projects 110
Number of Testable Classes 23,886
Number of Target Branches 808,056
Number of Java Files 27,997
Lines of Code 6,628,619
Non-Commenting Source Statements 2,340,843
Average Cyclomatic Complexity Number 2.63
Number of Jar File Libraries 1,939

The analysis consists in extracting the most significant features available in the

literature associated with ATSGT hardness and visualizing it in a 2-dimensional space.

The selected features are: Average Cyclomatic Complexity, Average Method Complexity

and Coupling between Object Classes.

In order to visualize the SF110 classes in a meaningful way, we apply the META

Tool visualization component. The SF110 classes are projected in a 2-dimensional space

using the three features mentioned above, revealing classes considered easy and hard

according to the literature. Three new axes were created, which are linear combinations

of the three selected features. Projecting it using the two principal components
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holds 89% of the variation in the data. The coordinate system that defines the

new instance space is defined as:

p1
p2

 =

 0.7 0.75 0.92

−0.57 0.61 −0.02



Average Cyclomatic Complexity

Average Method Complexity

Coupling between Object Classes

 (5.1)

Applying this new coordinate system on all SF110 classes and plotting, we create

a new 2-dimensional space with the two main principal components p1 and p2. The

centre of this new space corresponds to classes with average values of the features

Average Cyclomatic Complexity, Average Method Complexity and Coupling between

Object Classes. The classes that are near to each other in the new space have similar

values of these three features. Figure 5.2a presents the 2-dimensional image of SF110.

Figures 5.2b, 5.2c, 5.2d present the feature distribution in the SF110 class space.

The literature states CUTs with Cyclomatic Complexity lower than five are ex-

tremely easy to be solved due to the reduced number of branches [75]. Therefore, we

consider a CUT hard if its Average Cyclomatic Complexity is equal to or higher than

5, meaning that the CUT contains at least two conditional statements. Table 10.5

presents the selected classes, and Table 5.3 shows a summary of the selected projects.

Figure 5.2a presents the 2-dimensional image of SF110 complexity.

Using these CUTs, we were able to successfully associate ATGST performance to

features in the first controlled experiment (Chapter 6). However, these CUTs were

unable to challenge the ATSGTs in the second experiment portfolio. Therefore, a dif-

ferent approach was required to define the second experiment dataset. The alternative

approach is detailed in the next section.
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Figure 5.2: SF110 Benchmark in a 2D representation

5.5 Benchmark Generation

As stated previously, a critical step of META framework is the dataset that is used to

train the META model. In the previous section, we examined the diversity of a common

dataset used in SBST (SF110 [47]). We observed that this benchmark instances are not

diverse enough, as one of the fitness functions had superior performance in all instances,

suggesting one of the following: (i) the instances are not revealing the unique strengths

and weaknesses of each fitness function as much as is desired, or (ii) the features are

not discriminant enough. Therefore, we propose a method to generate new CUTs, in

order to enrich the repository’s diversity.
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Table 5.3: Summary of SF110 classes with Ciclomatic Complexity equal to or higher
than five

Project # Classes Average CC Average Method Complexity Coupling between Object Classes
squirrel-sql 17 7.88 86.77 4.12
sweethome3d 5 6.79 143.95 18.60
vuze 78 7.56 104.92 23.86
freemind 10 8.66 72.73 11.00
checkstyle 4 5.50 42.13 8.00
weka 24 7.76 133.61 9.42
liferay 30 6.68 89.44 11.90
pdfsam 16 8.07 99.60 9.06
firebird 1 7.20 107.00 36.00
dsachat 2 6.00 122.38 17.50
beanbin 1 5.50 61.00 0.00
jsecurity 1 10.22 80.00 2.00
jmca 3 7.60 98.94 4.00
tullibee 2 20.50 144.13 1.50
byuic 2 8.27 123.77 8.50
saxpath 1 5.67 37.67 0.00
gangup 4 7.99 122.11 11.00
apbsmem 1 5.00 253.00 6.00
a4j 1 5.50 114.50 8.00
httpanalyzer 1 10.67 229.67 2.00
javaviewcontrol 3 7.70 85.89 1.67
corina 7 6.60 107.15 5.00
schemaspy 1 5.43 97.86 7.00
javabullboard 1 5.39 75.36 0.00
lilith 22 7.34 70.38 8.82
summa 5 6.64 94.33 4.20
nutzenportfolio 1 6.40 80.00 13.00
dvd-homevideo 2 5.51 186.70 3.00
diebierse 1 5.33 79.67 5.00
biff 1 10.39 183.68 4.00
jiprof 7 7.18 93.36 6.86
lagoon 1 6.80 108.00 6.00
db-everywhere 2 5.62 105.61 12.50
jhandballmoves 3 5.29 41.88 8.00
hft-bomberman 1 7.67 94.11 6.00
templateit 1 5.00 65.33 15.00
noen 1 5.15 81.85 10.00
openjms 6 6.83 90.00 1.17
echodep 3 16.41 227.30 48.00
battlecry 2 8.91 127.89 4.00
fixsuite 1 10.50 172.00 8.00
openhre 1 8.00 97.71 3.00
wheelwebtool 6 7.37 131.77 7.17
javathena 4 10.33 72.63 5.00
ipcalculator 2 6.08 130.42 1.00
xbus 2 6.33 84.00 3.00
ifx-framework 1 6.33 73.67 1.00
shop 2 7.38 84.30 8.50
jaw-br 1 18.00 236.00 9.00
jopenchart 3 5.11 71.72 4.33
jiggler 11 8.11 291.63 4.36
gfarcegestionfa 5 7.06 103.56 3.80
dcparseargs 1 5.00 61.56 3.00
celwars2009 1 7.60 160.25 3.00
heal 4 8.36 179.82 14.50
feudalismgame 2 19.53 293.42 8.50
newzgrabber 4 5.78 127.73 6.00
TOTAL 326
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While there is no doubt that these problem repositories have had a tremendous im-

pact on SBST studies, and have improved research practice by ensuring comparability

of performance evaluations, there is also concern that these repositories may not be a

representative sample of the larger population of software testing problems. It is impor-

tant to challenge whether existing datasets are enabling us to evaluate fitness function

performance in an unbiased manner, and therefore we seek new tools and methodologies

that enable us to generate new problem instances that drive an improved understand-

ing of the strengths and weaknesses of different approaches. The development of such

methodologies to support the objective assessment of different fitness functions is at

the core of the META framework. This is achieved by generating artificial CUTs.

The generated CUTs must be diverse and large enough to cover a wide degree of

problem difficulty uniformly, that is for all fitness functions there must exist both easy

and hard instances, and the transition from easy to hard should be densely covered [72].

The most obvious way to artificially generate CUTs is to select and sample an arbitrary

probability distribution. However, this approach lacks control, as there is no guarantee

that the resulting dataset will have specific features. Hence, we employ a different

method, initially introduced for machine learning problems [72], where datasets are

evolved using a genetic algorithm to be present at target locations in the instance

space.

In this work, we use a Genetic Programming (GP) algorithm to evolve branch

predicates that are easy and hard for different fitness functions. In GP the individuals

in the population are computer programs represented as trees. New programs are

produced by removing branches from one tree and inserting them into another. This

simple process ensures that the new program is also a tree and thus it is also syntactically

valid.

The GP uses a variable length (n) solution representation:
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[(vt0, ct0, cv0), (vt1, ct1, cv1), ..., (vtn, ctn, cvn)], where each gene (vti, cti, cvi) has three

components: variable type vt, comparator type ct, and variable value vv. The GP algo-

rithm was set only to generate classes that are similar to real-world CUTs (unrealistic

CUTs were discarded). The CUTs have one method and one nested set of conditional

statements up to 4 levels and 14 branches. The possible values for variable types,

comparator types and

• Variable types: double, long, integer and boolean,

• Comparator types: =, 6=, >,<,≤,≥

• Variable value ranges: Boolean: 0, 1, Double: [−1.7 ∗ 10308,+1.7 ∗ 10308], Integer:

[−231,+231], Long: [−263,+263]

The GP uses mutation and crossover operators to evolve classes of various character-

istics and levels of difficulty for our fitness functions. The mutation operator modifies

the variable type, the comparator type or the comparator value. For example, given a

parent solution s = [(vt0, ct0, vv0), (vt1, ct1, vv1), ..., (vtn, ctn, vvn)], the mutation opera-

tor generates a new candidate solution s′ = [(vt0, ct0, vv0), (vt
′
1, ct1, vv1), ..., (vtn, ctn, vvn)]

by mutating the variable type vt1 into vt′1.

The crossover consists of exchanging predicates of two parent solutions to generate

two new solutions. For example, given two parent solutions

s1 = [(vt10, ct
1
0, vv

1
0), (vt

1
1, ct

1
1, vv

1
1), ..., (vt

1
n, ct

1
n, vv

1
n)]

and

s2 = [(vt20, ct
2
0, vv

2
0), (vt

2
1, ct

2
1, vv

2
1), ..., (vt

2
n, ct

2
n, vv

2
n)]
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the crossover operator generates the following two new candidate solutions

s′1 = [(vt20, ct
2
0, vv

2
0), (vt

1
1, ct

1
1, vv

1
1), ..., (vt

1
n, ct

1
n, vv

1
n)]

and

s′2 = [(vt10, ct
1
0, vv

1
0), (vt

2
1, ct

2
1, vv

2
1), ..., (vt

2
n, ct

2
n, vv

2
n)]

.

The main steps of the method are presented in Algorithm 2. The following parameter

values were used: (a) Population size: 500, (b) Mutation rate: 0.1, (c) Crossover rate:

0.85, (d) Termination condition: 1000 iterations.

Algorithm 2 Generating CUTs with Genetic Programming.
1: procedure EvolveHardCUTs(dataSet, OF1, OF2)
2: Input: n,mr, cr . n is population size, mr is mutation rate, cr is crossover rate, FF1

and FF2 are the fitness functions.
3: P← RandomSolutions(n) . P is the population
4: for i← 1 to n do
5: Q← ∅ . Q is the Auxiliary Population
6: while !TerminationCodition do
7: for i← 1 to n do
8: p1, p2 ← RouletteWheelSelection(P)
9: o1, o2 ← UniformCrossover(p1, p2, cr)

10: o′1 ← Mutation(o1,mr)
11: o′2 ← Mutation(o2,mr)
12: f(o′1)← EvaluateFitness(o′1,FF1, FF2)
13: f(o′2)← EvaluateFitness(o′2,FF1, FF2)
14: Insert(o′1, o′2,Q)
15: R← P ∪Q
16: RankSolutions(R)
17: P← SelectBestSolutions(R)
18: Return(P)
19: procedure EvaluateFitness(c, FF1, FF2)
20: bc1 ← execute(c, FF1)
21: bc2 ← execute(c, FF2) . bc1, bc2 are the branch coverage performance
22: Return(bc1/bc2)
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The GP algorithm evolved 202 classes. CFF did not outperform the other objective

functions in any of these classes. It is possible that CFF is superior in CUTs with

unrealistic features, such as nested if conditions with a tree size larger than 10. However,

our CUT generator was set up in a way that unrealistic CUTs were discarded. An

example of a CUT is shown in Figure 5.3.

public class Evolved_CUT_1 {
public void method1 (Double number00 , Long number10 , I n t eg e r number20 , I n t eg e r

number30 , Long number40 , Boolean number50 , Boolean number60 ) {
i f ( ( number00 <= 2.6234427914696525E307D) ) {

System . out . p r i n t l n ( "b1" ) ;
i f ( ( number10 < −4282759360621669546L) ) {

System . out . p r i n t l n ( "c1" ) ;
i f ( ( number30 == 1640314761) ) {

System . out . p r i n t l n ( "d1" ) ;
} else { System . out . p r i n t l n ( "d2" ) ; }

} else { System . out . p r i n t l n ( "c2" ) ;
i f ( ( number40 > 550514008264203262L) ) {

System . out . p r i n t l n ( "d3" ) ;
} else { System . out . p r i n t l n ( "d4" ) ; }

}
} else {
System . out . p r i n t l n ( "b2" ) ;

i f ( ( number20 > 1937584) ) {
System . out . p r i n t l n ( "c3" ) ;

i f ( ( number50 == fa l se ) ) {
System . out . p r i n t l n ( "d5" ) ;

} else { System . out . p r i n t l n ( "d6" ) ; }
} else { System . out . p r i n t l n ( "c4" ) ;

i f ( ( number60 == true ) ) {
System . out . p r i n t l n ( "d7" ) ;

} else {
System . out . p r i n t l n ( "d8" ) ;

}
}

}
}

}

Figure 5.3: An example of an evolved CUT.

The generated classes contain one method with six parameters that have been typed

randomly during the generation process aiming to insert hardness into the classes. The

method contains nested "if / else" operators that are used by the genetic programming

algorithm to create conditions that will increase the class difficulty to each ATSGT in

the portfolio. The depth of the "if / else" tree is limited to 3.
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5.6 Summary

In this chapter, we presented the dataset and the features that will be used in the

two controlled experiments that aim to validate the alternative method to ATSGT

assessment called META. We described two types of features extracted either from the

code or from the class control-flow graph. We used some of these features to assess

the quality (hardness) of a publicly available benchmark SF110 using META tool 2-D

visualization component. Additionally, we presented an alternative method to generate

(evolve) easy and hard CUTs that can be used when the current benchmark is not

challenging enough.

The dataset selection [RQ2] and feature set definition [RQ3] presented in this

chapter are the most important step of the META. In order to detect the techniques’

footprint, META requires all the techniques to be pushed to its limits. This is done

by defining a dataset that contains CUTs with different characteristics that can be

described as features. In this way, the techniques are evaluated in a variety of scenarios

and, most of the times, they lose their competitive advantage according to the variation

of a specific feature. META has been built to capture these variations by using machine

learning algorithms.
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Chapter 6

META Evaluation 1

6.1 Introduction

This chapter describes the first controlled experiment designed to evaluate the META

Framework capabilities. The experiment consists in use META Tool to identify the

characteristics of the CUTs that cause each ATSGT in the portfolio to have a com-

petitive advantage over each other, using these characteristics to visualize the ATSGTs

footprints and predict their performance. The experimental results indicate that the

ATSGTs tested are problem dependent and its performance can be predicted with high

accuracy.

6.2 Experiments Setup

Three techniques were selected to be part of the study. The first technique is called

WSA (2.2.2) and uses an SBST approach that is considered one of the most promising

and has been exhaustively investigated by the community [7]. The second method is

also part of the SBST category and is known as MOSA [76] (2.2.3). It introduces a new

preference criterion based on the Pareto optimality algorithm. The third method is

87
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RT (2.2.1), which is recommended as a comparison baseline to evaluate new techniques

[53].

The selected tool used in the simulations was EvoSuite [46], known as the state-of-

the-art in search-based software testing generation [48]. The tool implements all three

techniques (WSA, MOSA and RT). Each ATSGT configuration was executed 10 times

on each CUT to account for randomness inherent in the ATSGTs. The number 10

has been derived from SF110 first case study [47]. The same number of runs has also

been applied in [75], using a similar dataset extracted from SF110. The experiments

took more than 4.200 minutes. The tool was executed using different random seeds (10

different random seeds), and the average of the ten runs was considered. The time-out

was two minutes per class, stated as the best trade-off between time and branch coverage

in [47]. EvoSuite was executed using its default parameter settings [46]. Recent research

has shown that the default values, commonly used in the literature, give reasonably

acceptable results [11]. Table 10.4 presents the complete set of default parameters.

The employed machines were hosted in a cloud cluster of 10 instances with two CPUs

and 8 GB of RAM each were used.

The CUTs considered in this study are part of the SF110 Corpus of Classes [47],

which is a statistically representative sample of 110 Java projects from SourceForge.

Classes with branchless methods, i.e., methods that can be completely covered with

a simple call, have been excluded and only classes with CC equal or higher than five

have been selected. A CC higher than five means that the methods have at least two

conditional statements. From 326 classes, 115 have been excluded due to execution

errors. In total, 211 classes have been considered. An overview of the selected classes

is presented in Table 6.1.
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Table 6.1: Overview of the selected projects.

Number of Classes 211
Average Cyclomatic Complexity: 7.57
Standard Deviation of Cyclomatic Complexity 4.23
Minimum Cyclomatic Complexity 3.00
Maximum Cyclomatic Complexity 171

Branch coverage was used as the ATSGT performance measure. An ATSGT is

considered superior if its branch coverage is at least 1% higher than the other techniques,

otherwise, the label "Equal" is used.

6.3 Results

The statistics from the results of the experiments are presented in Table 6.2 for both

class and project level.

Table 6.2: Branch coverage statistics. Confidence Intervals (CI) were calculated using
bootstrapping [40] at 95%.

ATSGT Group Med CI Mean CI Std

RT Class 0.50 [0.40 - 0.60] 0.51 [0.46 - 0.56] 0.37
Project 0.41 [0.28 - 0.54] 0.44 [0.37 - 0.52] 0.31

MOSA Class 0.47 [0.40 - 0.55] 0.50 [0.45 - 0.55] 0.37
Project 0.44 [0.27 - 0.54] 0.43 [0.35 - 0.52] 0.31

WSA Class 0.48 [0.40 - 0.56] 0.50 [0.45 - 0.55] 0.37
Project 0.40 [0.27 - 0.54] 0.44 [0.36 - 0.51] 0.31

As can be seen, the overall performances of the three ATSGTs are very similar,

with a median coverage between 0.41 and 0.5. The standard deviation of the different

techniques is also very similar. These statistics indicate that, overall, there is little

difference between the effectiveness of the three techniques in generating high-quality



CHAPTER 6. META EVALUATION 1 90

test suites. The question, however, remains whether for particular CUTs a certain

ATSGT is better than the others.

6.3.1 Feature Selection

As described in Section 4.3.3, the META framework performed feature learning on the

56 features that were extracted from the 211 CUTs. The aim is to select the best set

of features that highlight the strengths and weaknesses of the ATSGTs. The feature

learning process searches for groups containing between 3 and 10 features. To account

for the randomness in the results, each trial was run 10 times on each CUT for each

approach, using different random seeds, and the mean was considered. The Support

Vector Machine (SVM) identified high-density areas in the 2D CUT space where WSA,

MOSA and RT perform well with 88% accuracy. The META framework identified

the following optimal features which best capture the difficulty in generating test cases

for the CUTs:

i) Number of Methods ;

ii) Coupling between Object Classes ;

iii) Response for a Class.

Using these three features, we were able to characterise the CUT Space and define

the footprints of the techniques. In essence, the answer to the fourth research object is

RO4: The most significant features that have

an impact on the effectiveness of WSA, MOSA

and RT are Number of Methods, Coupling

between Object Classes, and Response

for a Class.
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6.3.2 Effectiveness Visualization

To visualize the results in a meaningful way, we apply PCA as a dimensionality re-

duction technique on the optimal subset of features presented in the previous section.

The aim is to plot the performance of the two ATSGTs across the CUT space in 2D,

which is likely to reveal where the methods are performing well, and where they are

suffering. Three new axes were created, which are linear combinations of the selected

set of features. Projecting it using the two principal components holds 86%

of the variation in the data. The coordinate system that defines the new instance

space is defined as:

p1
p2

 =

 0.7 0.75 0.92

−0.57 0.61 −0.02




Number of Methods

Coupling between Object Classes

Response for a Class

 (6.1)

Applying this new coordinate system on all CUTs and plotting, we create a new

CUT sub-space with the two main principal components p1 and p2. The centre of

this new space corresponds to a CUT with average values of the features Number of

Methods, Coupling between Object Classes and Response for a Class. CUTs that are

near to each other in the CUT sub-space have similar values of these three features.

Using a DBSCAN to cluster the CUTs, we identified the area in the new space where

the different techniques perform well. We also determined the area where the features

were unable to identify the best technique, which was labeled as Equal. Figure 7.1 is

analysed in the same way as in Figure 4.2.

Figure 6.1a presents the footprints of the ATSG techniques in the CUT-space. The

most important feature that impacts ATSGT performance is the Coupling between

Object Classes. Figure 6.1b shows the distribution of the Coupling between Object
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Classes feature in the CUT-space. The feature has the highest contribution to the first

principal component, providing a visual performance boundary. The higher the feature

value the harder it is for RT, while the SBST techniques (WSA and MOSA) have better

performance with higher values of the feature. In essence, we can conclude that

RO5: Using the two principal PCA

components (features number of methods,

the coupling between object classes, and

the response for a class), we can visualize

the ATSGT’s footprints in 2D with a variation

of 86% (very little data lost).

The distribution of the other two features is presented in Figures 6.1c and 6.1d.

The SBST techniques are more effective in generating test cases for CUT with a high

Number of Methods and high values of the feature Response for a Class.

Table 6.3 summarises the results for all CUTs. The CUTs are grouped according

to the ATSGT Footprint, indicating which technique is the most effective (RT, WSA,

MOSA, or Equal). It can be noticed that the overall performances of the three tech-

niques are similar, as shown in the last three rows of Table 6.3. However, analysing

the performance within the footprint area, it is possible to see a significant diïňĂerence

between the means of the different techniques, ranging from 1% to more than 10%. For

example, in the WSA footprint area, the mean of WSA is 4.42% better than RT and

10.53% better than MOSA.

The nonparametric Wilcoxon test [25] with a p-value threshold of 0.05 has been

applied to check whether the different performances are statistically significant or not.

Table 6.4 presents the results inside each footprint area. RT is statistically superior to

MOSA and WSA in 36% and 39% of the cases. MOSA is statistically superior to RT
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Table 6.3: The number of classes and average branch coverage reported as percentage
(%) grouped by project and footprint area. Effect Size Statistic calculated using Vargha-
Delaney (Â12)

Project
Equal Footprint RT Footprint MOSA Footprint WSA Footprint

Classes RT WSA MOSA Classes RT WSA MOSA Classes RT WSA MOSA Classes RT WSA MOSA
squirrel-sql 5 82.80 82.80 82.80 6 | 3* 88.80 79.22 84.85 2 | 1* 69.43 70.80 65.20 2 | 2* 68.35 49.39 71.25
sweethome3d 5 14.00 13.92 14.00 - - - - - - - - - - - -

vuze 4 91.70 91.85 91.95 1 | 1*** 93.30 92.80 92.90 3 | 2* 72.26 75.07 71.40 1 | 1* 8.00 15.00 35.30
checkstyle - - - - 2 | 1** 48.20 38.00 36.65 2 | 1* 12.60 16.05 12.35 - - - -
freemind 6 24.50 24.50 24.50 3 | 1* 47.27 45.47 44.53 - - - - 1 | 1* 97.00 95.70 99.20
weka 7 57.43 53.92 57.71 2 | 1* 91.85 85.55 86.25 3 | 2* 22.18 23.97 23.03 5 | 3* 43.82 42.52 47.02
liferay 12 75.83 73.46 75.86 1 | 1* 97.20 95.60 95.60 7 | 6** 47.45 55.32 48.75 3 | 2*** 61.47 60.07 64.90
jmca - - - - 1 | 1* 86.60 85.20 85.40 1 | 1*** 59.10 71.70 50.20 1 | 1* 37.80 45.70 46.40

jsecurity - - - - - - - - 1 | 1*** 87.70 89.60 87.90 - - - -
pdfsam 15 19.50 19.50 19.15 - - - - - - - - - - - -
firebird 1 96.00 96.00 96.00 - - - - - - - - - - - -
dschat 2 1.00 1.00 1.00 - - - - - - - - - - - -
beanbin 1 100.00 100.00 100.00 - - - - - - - - - - - -
tullibee 2 100.00 100.00 100.00 - - - - - - - - - - - -
saxpah 1 100.00 100.00 100.00 - - - - - - - - - - - -
gangup 2 2.50 2.50 2.50 1 | 1*** 12.40 5.00 5.00 - - - - - - - -
apbsmem 1 22.00 22.00 22.00 - - - - - - - - - - - -

a4j 1 10.00 10.00 10.00 - - - - - - - - - - - -
httpanalyzer 1 5.00 5.00 5.00 - - - - - - - - - - - -

javaviewcontrol 1 90.00 90.00 90.00 1 | 1*** 87.00 86.50 85.50 - - - - 1 | 1** 27.60 31.70 35.40
corina 4 50.60 50.60 49.90 3 | 2* 54.70 44.93 50.60 - - - - - - - -

schemaspy 1 7.00 7.00 7.00 - - - - - - - - - - - -
lilith 3 39.00 37.67 39.00 1 | 1* 76.80 75.60 74.60 - - - - 1 | 1*** 47.50 47.30 47.60
summa 1 52.00 52.00 52.00 1 | 1* 42.10 35.10 40.90 1 | 1*** 25.30 47.67 12.00 2 | 2* 78.45 64.65 79.30

dvd-homevideo 2 9.00 9.00 7.71 - - - - - - - - - - - -
diebierse 1 33.00 33.00 33.00 - - - - - - - - - - - -

biff 1 16.40 16.80 16.80 - - - - - - - - - - - -
jiprof 2 100.00 100.00 100.00 - - - - 1 | 1 ** 67.50 72.50 69.90 2 | 1* 45.20 36.36 48.00

jhandballmoves 1 98.00 98.00 98.00 - - - - 1 | 1*** 70.00 71.20 70.80 1 | 1* 39.80 39.00 41.80
openjms 6 43.40 42.44 42.84 - - - - - - - - - - - -
echodep 2 7.00 7.00 7.00 - - - - 1 | 1* 2.80 4.00 1.00 - - - -
battlecry 2 80.00 80.00 80.00 - - - - - - - - - - - -
fixsuite 1 9.00 9.00 9.00 - - - - - - - - - - - -

wheelwebtool 2 51.50 44.36 51.50 1 | 1** 54.00 51.70 52.40 - - - - 3 | 2* 50.53 54.27 56.17
javathena 2 39.25 39.25 37.00 - - - - - - - - 1 | 1* 92.50 72.00 92.90
ipcalculator 1 33.00 33.00 33.00 - - - - 1 | 1** 94.40 95.50 64.67 - - - -
ifx-framework 1 43.00 43.00 43.00 - - - - - - - - - - - -

jaw-br 1 0.00 0.00 0.00 - - - - - - - - - - - -
jopenchart 2 82.50 82.50 77.43 1 | 1* 73.50 71.00 71.00 - - - - - - - -
jiggler 1 86.00 86.00 86.00 3 | 2** 57.60 36.50 56.50 - - - - 2 | 1** 64.60 65.10 67.30

gfarcegestionfa 2 4.50 4.50 4.50 1 | 1** 88.60 88.57 88.20 - - - - - - - -
dcparseargs 1 98.00 98.00 98.00 - - - - - - - - - - - -
celwars2009 1 8.67 13.00 13.00 - - - - - - - - - - - -

feudalismgame 2 2.50 2.50 1.93 - - - - - - - - - - - -
newzgrabber 2 5.50 4.90 5.50 - - - - 1 | 1**** 54.50 59.67 36.63 1 | 1**** 8.80 8.90 9.40

lagoon - - - - 1 | 1* 34.60 34.00 34.40 - - - - - - - -
hft-bomberman - - - - 1 | 1* 9.00 7.50 5.00 - - - - - - - -

xbus - - - - 1 | 1 *** 89.80 88.00 88.00 - - - - 1 | 1* 98.40 76.60 100.00
shop - - - - 1 | 1* 22.30 13.00 9.75 - - - - 1 | 1* 55.90 55.40 62.40
byuic - - - - - - - - 1 | 1* 48.60 50.80 43.40 1 | 1* 25.30 23.80 25.40

db-everywhere - - - - - - - - 1 | 1* 57.10 59.40 52.30 1 | 1* 40.29 33.40 50.10
openhre - - - - - - - - 1 | 1*** 6.90 7.00 6.50 - - - -
heal - - - - - - - - 2 | 1* 81.50 84.19 59.28 2 | 2* 67.80 66.65 71.50

nutzenportfolio - - - - - - - - - - - - 1 | 1** 8.20 6.42 8.40
javabullboard - - - - - - - - - - - - 1 | 1* 28.60 25.30 29.30
templateit - - - - - - - - - - - - 1 | 1* 27.86 30.20 36.40

Total 112 45.03 44.76 44.89 33 62.78 57.96 59.40 30 51.72 56.14 45.61 36 48.86 45.45 53.28

RT Overall Performance 50.49 * Large Effect Size ** Medium Effect Size
WSA Overall Performance 49.40 *** Small Effect Size **** Negligible Effect Size
MOSA Overall Performance 49.75
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Table 6.4: The number of classes per footprint area divided in three p-values categories.
P-values were calculated using the Wilcox nonparametric test.

P-values
Footprint

RT MOSA WSA
WSA MOSA RT WSA RT MOSA

<=0.05 13 12 10 11 13 18
>0.05 and <= 0.1 5 8 3 4 4 5

>0.1 15 13 17 15 19 13
Total 33 33 30 30 36 36

and WSA in 33% and 37% of the cases. Lastly, WSA is statistically superior to RT

and MOSA in 36% and 50% of the cases.

In order to evaluate the magnitude of the performance difference, the Vargha-

Delaney Effect Size Statistic (Â12) [101] is applied. The Â12 statistic is equal to 0.5 if

two ATSGTs have equivalent performances and different otherwise. The closer to 0.5,

the more similar the performances are. Suppose we are comparing ATSGT A x ATSGT

B. The Â12 statistic will be higher than 0.5 if ATSGT A has better performance than

ATSGT B and lower than 0.5 if ATSGT B has better performance than A.

According to Table 6.3, the performances in the Equal footprint area are very similar

(all classes present a small or negligible effect size). However, the other footprint areas

present a significant difference in the coverages. Most of the CUTs in RT, WSA and

MOSA footprint areas present a large effect size. In case the most suitable technique is

selected (as suggested by the META framework) the coverage can increase by 8%. In

our experiments (15,167 branches in total), this means that an additional 1,213 lines

will be executed, which is quite significant.

6.3.3 Performance Prediction

ATSGT Decision Tree (DT) was constructed using the c4.5 algorithm implemented

in WEKA [50] as J48 algorithm. The following parameters were used: (a) pruning
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confidence: 0.25, (b) minimum number of instances: 2, (c) number of folds: 3, (d)

seed: 1. We use the training data to build a predictive model that is mapped to a

tree structure. The goal is to achieve a perfect classification of the ATSGTs with the

minimal number of decisions. The rules defining the DT for ATSGT selection are shown

in Figure 6.2.

The decision tree can be used to select the appropriate method (WSA, MOSA or

RT) when a new software project requires the generation of test cases. The results

were validated for consistency and accuracy using a 10-fold cross-validation technique.

Results from the classifier are presented in Table 6.5 and 6.6.

Table 6.5: Results from the 10-fold cross validation of the decision tree. The model
took 0.1 seconds to build.

Number of leaves in the decision tree 16
Size of the tree 31
Kappa statistic 0.84
Mean absolute error 0.07
Root mean squared error 0.23

Correctly Classified Instances 186 88.15%
Incorrectly Classified Instances 25 11.85%

Table 6.6: Results from the 10-fold cross-validation of the decision tree. Detailed
Accuracy By Class.

ATSGT Precision Recall F-Score

RT 91.2% 98.1% 94.5%
EQUAL 87.8% 85.5% 86.7%
WSA 89.3% 80.6% 84.7%
MOSA 84.6% 86.3% 85.4%

Average 88.1% 88.2% 88.1%

Similar accuracy was found with 2 and 3-fold cross validation (85.31% and 88.15%

respectively). Precision denotes the proportion of predicted positive cases that are
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correctly real positives [81]. The recall is the proportion of real positive cases that

are correctly predicted positive [81]. As there is always a quality compromise between

Precision and Recall, being desirable but different features, the F-Measure is used

as a harmonic mean to counter this problem. It references the true positives to the

arithmetic mean of predicted positives and real positives, being a constructed rate

normalized to an idealized value [81]. The Kappa statistic is a metric that compares

an observed accuracy with an expected accuracy (random chance) [88]. A value greater

than zero means that the classifier is doing better than chance.

In summary, the ATSGT decision tree selects the most effective ATSGT technique

with high accuracy (88.1%) and F-Score (88.1%), hence we conclude that the answer

to the sixth research objective is as follows:

RO6: Using the features number of

methods, the coupling between object

classes, and the response for a class, it is

possible to predict the most suitable ATSGT

accurately..

What becomes apparent in the ATSGT decision tree is that RT most of the time

outperforms MOSA and WSA in CUTs with low coupling between object classes (≤

0.6). However, in CUT instances with more than one method (> 1.17) WSA is the

most effective technique.

The tree contains leaves marked as Equal, where all ATSGTs perform the same. As

RT is a much more effortless technique than WSA and MOSA, in terms of implementa-

tion and application, it is reasonable to suggest that one should use RT in cases where

the decision tree cannot distinguish between the different techniques. The DT would be

useful in making such predictions and guide practitioners in selecting the right method.
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In most cases, when there is a high number of methods WSA outperforms the other

techniques. Furthermore, in CUTs with a high response for a class (>23) MOSA is

the most effective technique, unless the response for a class is greater than 45 and the

coupling between objects is low (≤ 1.23), in which case the most effective technique

is WSA. The response for a class measures the number of different methods that are

executed when an object of that class receives a message (when a method is invoked

for that object). The coupling between object classes, on the other hand, represents

the number of classes coupled to a given class.

When the coverage achieved by each technique for different levels of coupling be-

tween object classes are plotted, as shown in Figure 6.3, it is clear that MOSA is the

best technique in CUTs with high values of this feature. In CUTS with low coupling

between object classes (<3), RT becomes the best performer.

To conclude, MOSA is the winner in complex CUTs as defined by coupling between

object classes, which was the most significant feature in terms of describing CUT hard-

ness, followed by WSA. As expected, RT outperforms the other techniques only in easy

CUTs.

6.4 Threats to Validity

Threats to Internal Validity. In this study, we focus on 3 ATSGTs, WSA, MOSA

and RT. Although these selected techniques may influence the set of features that have

been identified as important, the META framework is conceived in a way that the model

of ATSGT effectiveness can continuously improve in accuracy with more techniques.

In other words, the more information is provided to the META framework, the more

accurate the results will be. The selected dataset, features and performance metric have
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Figure 6.3: Coupling between Object Classes [0,1]. Results have been discretized in 10
bins, eg., 1 represents the range [0,0.1).

a critical influence on the final results. Changing any of these might lead to different

outcomes. The META framework is a continuously evolving tool.

The validity of the presented experiments can be questioned on the grounds that

the stochastic behaviour of the ATSGTs may lead to different results for the same prob-

lem instance. This threat was reduced by conducting multiple runs for each ATSGT

and CUT instance. The Wilcox nonparametric test was applied to check for statisti-

cal significance in the results. Moreover, Vargha-Delaney (Â12) was used to measure

the magnitude of the difference between the performance achieved by two different

algorithms. These two statistical tests have been recommended by Arcuri et al. [10].

We also presented results using bootstrapping [40] to create confidence intervals

for some of the statistics. These results help the reader to analyse how reliable the
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presented results are. The experimental results may be affected by the implementation

of the META framework. To make sure that the code does not contain errors or bias

towards certain methods, we have followed regular code-review and testing sessions.

Threats to External Validity. Threats to external validity relate to the gener-

alizability of the experimental results and are specifically related to the SF110 Corpus

if it correctly represents common software systems and the selected ATSGTs. The

SF110 Corpus has been specifically assembled with a focus on having a representative

benchmark and is accepted by the community. However, there may be bias towards

SBST (WSA and MOSA). In the future, we will include other benchmark sets into our

investigation.
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Chapter 7

META Evaluation 2

7.1 Introduction

This chapter describes the second controlled experiment designed to validate the META

Framework capabilities. Differently from the controlled experiment 1, we assessed the

performance of the objective function part of the ATSGT. META Tool was used to

identify the CUTs features responsible for providing a competitive advantage to each

ATSGT in the portfolio. Moreover, the identified features were used to visualize the

ATSGTs footprints and predict their performance. The results indicate that the ATS-

GTs in the portfolio are problem dependent, and its performance can be forecasted with

high accuracy.

7.2 Experiment Setup

Three fitness functions were selected to be part of the study. The first fitness function is

called CLF (Section 2.3.1) and it is a control flow based approach. As stated in Section

2.3.1, CLF fitness function was modified to exercise both branch values (true and false),

rather than arriving at just one value. The second fitness function is a branch distance

103
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approach and it is known as BDF (Section 2.3.2). A function that calculates how far

a test it is from executing a branch is used to guide the search. The third method is

CFF (2.3.3), a control flow based approach.

In the same way as the first experiment, the selected tool used in the simulations was

EvoSuite [46]. The three fitness functions in the portfolio (CLF, BDF and CFF) were

implemented and executed using the WSA method. Each ATSGT configuration was

executed ten times on each CUT to account for randomness inherent in the ATSGTs.

The tool was executed using different random seeds (10 different random seeds), and

the average of the ten runs was considered. The time-out was two minutes per class,

stated as the best trade-off between time and branch coverage in [47].

In all experiments, EvoSuite was executed with its default parameter setting (Table

10.4). The employed machines were hosted in a cloud cluster of 10 instances with two

CPUs and 8 GB of RAM each were used. Similarly to the first experiment, the software

systems are considered at a class level, and features are measured for each class.

The CUTs considered in this study were evolved using a Genetic Programming

Algorithm (5.5). Since the main goal of the fitness function is to guide the SBST

method to execute as many branches as possible, we developed an algorithm to evolve

hard predicates to each fitness function in the portfolio. The classes are identical, the

only exception is the branch predicates.

Genetic Programming (GP) is an evolutionary computation technique that aims to

automatically solve problems without a clear description of the solution structure [80].

In GP, a population of computer programs is evolved, and in every generation, the GP

transforms the population into a new population that might possibly be better. The

evolution is guided by a fitness function that is nothing more than the problem trying

to be solved.
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In every iteration, the population is transformed by two main operations: the

Crossover and the mutation. Crossover is the creation of a new program by combining

randomly selected parts of two selected programs in the population. The mutation is

the creation of a new program by randomly modifying a randomly selected part of a

program in the population.

The algorithm was created to evolve hard CUTs for each fitness function in the

portfolio. In other words, the defined fitness function compares the performance of the

fitness function A with the other two, aiming to make the performance difference as big

as possible. The crossover and mutation only are performed over the branch predicate.

The following variable types and operators are used:

• Variable Types: Boolean, Integer, Long, Double;

• Comparison Operators: Greater than (>), less than (<), equal to (==), not equal

to (!=), greater than or equal to (>=), less than or equal to (<=).

The CUTs have the same number of methods (1) and the same number of branches

(7). In every iteration new programs are generated aiming to create hard and more

complex CUTs to each fitness function in the portfolio by changing the variable values,

variable types and the comparison operator via mutation or crossover.

As we stated in chapter 6, features are problem dependent and must be chosen so

that the varying complexities of the CUT instances are exposed, any known structural

properties of the CUTs are captured, and any known advantages and limitations of the

different ATSGTs are related to features. Therefore, in order to capture the character-

istics that influence the performance of the fitness functions, we need to extract features

direct from the branch predicate structure.

Unfortunately, the code-based and graph-based features used in Chapter 6 were not

useful due to the high similarities of the CUTs. Therefore, a new set of features were
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designed specifically to tackle the fitness function problem. Table 10.2 presents the

features extracted from the branch predicates. All the features are code-based.

Branch coverage was used as the ATSGT performance measure. An ATSGT is

considered superior if its branch coverage is at least 1% higher than the other techniques,

otherwise, we use the label ‘Equal’.

7.3 Results

The statistics from the results of the experiments are presented in Table 7.1 for the

class level. BDF is overall the best fitness function covering approximately 10% more

branches than CLF and 34% more than CFF. The question, however, remains whether

for particular CUTs a specific fitness function is better than the others.

Table 7.1: Branch coverage statistics. Confidence Intervals (CI) were calculated using
bootstrapping at 95%.

Fitness Function Median CI Mean CI Std

BDF 0.93 [0.92 - 0.95] 0.89 [0.88 - 0.91] 0.10
CLF 0.84 [0.81 - 0.87] 0.78 [0.75 - 0.81] 0.19
CFF 0.58 [0.48 - 0.69] 0.55 [0.52 - 0.58] 0.20

7.3.1 Feature Selection

As described in Section 4.3.3, the META framework performed feature learning on the

16 predicate features that were extracted from the 202 CUTs. The aim is to select

the best set of features that highlights the strengths and weaknesses of the ATSGTs.

The feature learning process searches for groups containing between 3 and 10 features.

The Support Vector Machine (SVM) identified high-density areas in the 2D CUT space



CHAPTER 7. META EVALUATION 2 107

where BDF and CLF perform well with 75% accuracy. The META framework iden-

tified the following optimal features which best capture the difficulty in generating test

cases for the CUTs:

i) Integer Variables with <= and >= comparator ;

ii) Equalities with Double Variables ;

iii) Double Variables with <= and >= comparator.

iv) Equalities with Long Variables ;

v) Inequalities with Long Variables ;

vi) Long Variables with <= and >= comparator.
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(b) Integer Variables with <= and >= com-
parator.
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(c) Number of Equalities with Long type.
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(d) Number of equalities with Double type.

Figure 7.1: Visualisation of the effectiveness footprints of SBST Fitness Functions. The
principal components are defined in Equation 7.1.
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Using these six features, we were able to characterise the CUT Space and define the

footprints of the techniques. In essence, the answer to the fourth research object is

RO4: The most significant features that have an impact on the effectiveness of BDF

and CLF are Integer Variables with <= and >= comparator, Equalities

with Double Variables, Double Variables with <= and >= comparator,

Equalities with Long Variables, Inequalities with Long Variables and Long

Variables with <= and >= comparator.

7.3.2 Performance Visualization

Using these six features the META framework created the CUT Space and identified

the footprints of the two objective functions. Using the footprint visualisation method,

a 2d effectiveness map is created, as shown in Figure 7.1a. Each point is a CUT, which

is colored red if CLF is the most effective objective function, and blue if BDF is the

winner. The first two components used to visualise the CUT space explain

47.5% of the variation in the data. The values of these two components are as

follows:

p1
p2

 =

−.28 .21 −.75 −.25 .50 .76

−.77 .55 .11 .59 .01 −.13





i

ii

iii

iv

v

vi


(7.1)

These are the footprints of the two objective functions. The best separation is

provided by the second principal component (PC2) axis. Therefore, the features that
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contribute the most to the PC2 are the most important ones. This answers the first

research challenge:

Figures 7.1b, 7.1c and 7.1d show the same principal components, however, the CUTs

are now colored according to the most significant features. Figure 7.1b shows how the

CUTs score according to the Integer Variables with <= and >= comparator. When

both Figures 7.1a and 7.1b are considered side by side, it becomes clear that BDF is

effective in generating test suite for classes that have a high number of Integer Variables

with <= and >= comparator, whereas CLF is more effective in CUTs that score low

according to this feature. Similarly, Figures 7.1c and 7.1d show that BDF is more

effective when both the number of equalities with long type and the number of equalities

with double type is low, while CLF is more effective when the CUTs score low in these

two features.

CLF presents better or equal performance in all cases inside the CLF footprint

area, having cases where the performance difference reaches 11%. In most of the cases,

however, the difference ranges between 2 and 5%. On the other hand, BDF presents

a significantly superior performance inside BDF footprint area. In the best case, the

average branch coverage reaches a difference of 55%. This indicates that BDF is better

than CLF on average, but there are problem instances where CLF outperforms BDF.

Therefore, we can conclude that the answer to the fifth research object is

RO5: Using the two principal PCA components (features Integer Variables with

≤ and ≥ comparator, Equalities with Double Variables, Double Variables

with ≤ and ≥ comparator, Equalities with Long Variables, Inequalities

with Long Variables and Long Variables with ≤ and ≥ comparator), we can

visualize the ATSGT footprints in 2D with a variation of 47.5%.
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7.3.3 Performance Prediction

Next, a decision tree is constructed using the same procedure applied in 6.3.3. The

generated tree can be used for objective function selection when solving new SBST

problems. The goal is to achieve an optimal classification of the Objective Functions

with a minimal number of decisions. The rules defining the decision tree for Objective

Function selection are shown in Figure 7.2.

The decision tree can be used to select the appropriate objective function when a

new software project requires the generation of test cases. The results were validated

for consistency and accuracy using 10-fold cross-validation technique. Results from the

classifier are presented in Table 7.2 and 7.3.

Table 7.2: Result from the 10-fold cross-validation of the decision tree. The model took
0.1 seconds to build.

Kappa statistic 0.48
Mean absolute error 0.3
Root mean squared error 0.4

Correctly Classified Instances 150 74.26%
Incorrectly Classified Instances 52 25.74%

Table 7.3: Result from the 10-fold cross-validation of the decision tree.

Objective function Precision Recall F-Score

CLF 75.8% 71.3% 73.5%
BDF 74.3% 77.2% 75.0%

Average 74.3% 74.3% 74.2%

Precision denotes the proportion of predicted positive cases that are correctly real

positives [81]. The recall is the proportion of real positive cases that are correctly

predicted positive [81]. As there is always a quality compromise between Precision

and Recall, being desirable but different features, the F-Measure is used as a harmonic
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.

Figure 7.2: Objective Function decision tree.

mean to counter this problem. It references the true positives to the arithmetic mean

of predicted positives and real positives, being a constructed rate normalized to an

idealized value [81].
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In summary, the decision tree selects the most effective objective function with high

accuracy. Hence, we conclude that the answer to the sixth research objective is as

follows:

RO6: Using the featuresInteger Variables with <= and >= comparator,

Equalities with Double Variables, Double Variables with <= and >=

comparator, Equalities with Long Variables, Inequalities with Long

Variables and Long Variables with <= and >= comparator we can accurately

predict the most suitable ATSGT.

Analyzing Figure 7.2, we observe that BDF has issues when dealing with equalities

using Long and Double variables. CLF is superior in most of the cases where the branch

predicate present equalities with Double or Long. While BDF has superior performance

when the number of Integer variables using <= or >= is higher than 0.5.

7.4 Threats to Validity

Threats to Internal Validity. This study focus on 3 SBST fitness functions: BDF,

CLF and CFF. These selected techniques may affect the set of features that we have

identified as important. However, as mentioned in the previous chapter, the META

framework can continuously improve in accuracy with more techniques. When new

ATSGTs, features, or dataset are included, the framework is rerun and the decision

tree is updated, which may result in different footprints and predictions. It is expected

that the accuracy of the results will improve with more ATSGTs, features, and dataset.

Threats to External Validity. Threats to external validity relate to the gen-

eralizability of the experimental results and are specifically related to the artificially

generated CUTs if it correctly represents common software systems and the selected
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ATSGTs. The artificial instances have been specifically generated to challenge the fit-

ness functions in the portfolio and contain similarities to some private benchmark set

[79]. While the META framework is not ATSGT dependent, the identified features may

evolve when new ATSGTs are included. In the future, we intend to make the process of

adding new techniques and new benchmark sets easier, such that the META framework

can continuously evolve.
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Chapter 8

Discussion

This chapter discusses the strengths, limitations, and future research directions for

META Framework, drawing from the experimental results that were performed to as-

sess its effectiveness. The META Framework has been developed to address the lim-

itations of the current methods to assess the performance of ATSGTs. The greatest

strength of this new methodology is the focus in generating insights about the ATSGT

performance and not only to report which method is the best. META, backed by the

No-free-lunch theorem, assumes that no ATSGT will always be the best in all possible

scenarios. Therefore, it requires the CUTs to be diverse enough to challenge all the

ATSGTs in the portfolio, highlighting its strengths and weaknesses. META provides

as outcomes the software features that challenge the ATSGTs (Feature Selection), al-

lowing the definition of the ATSGT footprints in 2d (Performance Visualization) and

a decision tree (Performance Prediction). The downside of the technique mainly stems

from the fact that it is time consuming due to the extensive analysis required for the

selection of the software systems (CUTs) and software features. Usually, when META

is unable to identify hardness, it means that either the CUTs are not diverse enough

to challenge the ATSGTs or the features cannot capture the hardness of the problems,

115



CHAPTER 8. DISCUSSION 116

requiring additional analysis to extend both sets. Sometimes, it might happen that the

CUTs that challenge a specific ATSGT in the portfolio are not realistic. Therefore, no

benchmark will contain this type of CUTs. However, this can be addressed by having

an online repository of features and benchmark sets.

8.1 Strengths of META Framework

The META framework has as its backbone the No Free Lunch theorem [111], which tells

us that no single algorithm can outperform all other algorithms in all problem instances.

In other words, if method A is superior over method B in solving a particular set of

problems, then one may claim that there exist other untested problems where method

B may outperform method A.

META provides an unbiased environment by claiming that all ATSGTs have strengths

and weaknesses. If META did not detect any weaknesses in a specific ATSGT, the fea-

tures and benchmark sets need to be re-evaluated. For example, imagine that Formula

1 is composed of two cars: Ferrari and Mercedes. Ferrari is better in straight lines

while Mercedes is better in curves. If all the circuits are 100% straight lines, Ferrari

will always win. On the other hand, if the track contains only curves, Mercedes will

always win. META requires both curves and straight lines to assess the cars correctly.

If one of them is missing, META will fail.

META requires a shift in the current mindset created by the current methodology

that almost always requires new developed ATSGTs performance to be superior to the

current state-of-art. As META will always highlight weakness along with the strengths

of the tested techniques, there will be no 100% superior ATSGT. What we have now

are the conditions that make ATSGT A better than ATSGT B and vice-versa.
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8.1.1 Performance Assessment with Insights

One of the main qualities of META is the generation of insights as an outcome of the

performance assessment. The features are used to characterize performance, highlight-

ing both strengths and weaknesses of all ATSGTs in the portfolio. These insights can

guide the development of new ATSGTs and also the improvement of the existing ones

by describing its problems.

The need for insights leads to the development of new features that aims to highlight

the hidden characteristics of the CUTs that are crucial to the understanding of ATSGT

performance. This might help to accelerate the development of new ATSGTs ready to

tackle these hard problems.

8.1.2 Performance Visualization

The generation of insights by using features to analyze ATSGT performance allowed

the characterization of good and bad performance. However, an easy way to visualize

these different performances was still missing. META presents an innovative way of

describing performance in a 2-Dimensional space using Principal Component Analysis.

The new method makes easier the visualization of the ATSGT footprints, providing an

easy understanding of ATSGT performance by showing its variation according to the

feature values.

META provides a 2-Dimensional scatter graph with dots representing the CUTs

used in the experiment (CUT Space). The ATSGTs are described by different colors

representing its footprint, i.e., area where its performance is superior. Auxiliary graphs

describing the same CUT Space are used to represent each feature variation aiming to

provide the reader with associations between ATSGT footprint and feature variations.
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8.1.3 Performance Prediction

The definition of the association between ATSGT performance and features also enables

META to predict performance. This is done by generating a decision tree using the

J48 Algorithm. META uses both the features with more significance and the ATSGT

footprints as inputs. The result is a set of rules that can be used to predict which

ATSGT is likely to perform better according to the values of the features extracted

from the CUTs. A decision tree is a handy tool for practitioners who would like to

apply automated software testing in industry or academia. It provides them with the

most effective method, given the specific features of the software system being tested.
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Part IV

Conclusion
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Chapter 9

Conclusion

Given a portfolio of ATSGTs, the META framework can be used to select the technique

that is likely to be best for a relevant set of CUT instances. Using the framework,

relationships between features of CUTs and the effectiveness of ATSGTs were uncovered.

Three significant features that impact ATSGT effectiveness were identified. An ATSGT

decision tree was built using these three significant features, which identified the correct

technique in more than 88% of the cases.

The effectiveness of three objective functions widely used in Search-Based Software

Testing was also investigated. Objective functions are crucial in guiding the search

algorithm and finding high-quality test cases. META identified the CUT features that

impact the effectiveness of different objective functions and also generated a decision

tree based on the most significant features, which can be used for objective function se-

lection. Using these significant features, we constructed a decision tree, which identified

the correct technique in more than 76% of the cases.

Beyond the challenge of accurately predicting which ATSGT / Objective Function is

likely to perform best for a given CUT, based on the relationship between CUT features

and objective function performance, the META framework also explains why. Insights
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can be drawn from the most significant features that can lead to better guidance on

improvements and in the development of new techniques.
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Chapter 10

Appendix

Table 10.1: Code-based features.

Feature . Definition

1 Number of Static Methods . The total number of methods that are static in a

class.

2 Number of Public Static Methods . The total number of methods that are

public and static at the same time.

3 Number of Protected Static Methods . The total number of methods that are

protected and static at the same time.

4 Number of Private Static Methods . The total number of methods that are

private and static at the same time.

5 Number of Default Static Methods . The total number of methods that are

static and have default access at the same time.

6 Number of Methods . The total number of methods in a class.

7 Number of Public Methods . The total number of methods with public access

in a class.
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8 Number of Protected Methods . The total number of methods with protected

access.

9 Number of Private Methods . The total number of methods with private access.

10 Number of Default Methods . The total number of methods with default access.

11 Depth of Inheritance Tree . The depth of the inheritance tree (DIT) metric

provides for each class a measure of the inheritance levels from the object hierarchy

top. In Java where all classes inherit Object the minimum value of DIT is 1 [20].

12 Number of Children . A class’s number of children (NOC) metric measures the

number of immediate descendants of the class [20].

13 Coupling between object classes . The coupling between object classes (CBO)

metric represents the number of classes coupled to a given class (efferent couplings).

This coupling can occur through method calls, field accesses, inheritance, arguments,

return types, and exceptions [20].

14 Response for a Class . The metric called the response for a class (RFC) measures

the number of different methods that can be executed when an object of that class

receives a message (when a method is invoked for that object) [20].

15 Lack of cohesion in methods . A class’s lack of cohesion in methods (LCOM)

metric counts the sets of methods in a class that are not related through the sharing

of some of the class’s fields. The original definition of this metric, which is the one

used in this work, considers all pairs of a class’s methods. In some of these pairs

both methods access at least one common field of the class, while in other pairs

the two methods to not share any common field accesses. The lack of cohesion in

methods is then calculated by subtracting from the number of method pairs that

don’t share a field access to the number of method pairs that do [20].
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16 Afferent couplings . A class’s afferent couplings (CA) is a measure of how many

other classes use the specific class. CA is calculated using the same definition as

that used for calculating CBO.

17 Efferent couplings . A class’s efferent couplings (CE) is a measure of how many

other classes is used by the specific class. Coupling has the same definition in context

of CE as that used for calculating CBO.

18 Lack of cohesion in methods 3 . LCOM3 varies between 0 and 2. m is the

number of procedures (methods) in class, a is the number of variables (attributes)

in class, µ(A) is the number of methods that access a variable (attribute). The

constructors and static initializations are taking into accounts as separately methods.

LCOM3 =

(
1
2

a∑
j=1

µ
(
Aj)

)
−m

1−m

19 Lines of Code . The lines are counted from Java binary code and it is the sum of

number of fields, number of methods and number of instructions in every method

of given class.

20 Data Access Metric . This metric is the ratio of the number of private and

protected attributes to the total number of attributes declared in the class. A high

value for DAM is desired. (Range 0 to 1).

21 Aggregation . This metric measures the extent of the part-whole relationship,

realized by using attributes. The metric is a count of the number of data declarations

(class fields) whose types are user defined classes.

22 Functional Abstraction . This metric is the ratio of the number of methods

inherited by a class to the total number of methods accessible by member methods

of the class. The constructors and the java.lang.Object (as parent) are ignored.

(Range 0 to 1).
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23 Cohesion Among Methods of Class . This metric computes the relatedness

among methods of a class based upon the parameter list of the methods. The metric

is computed using the summation of number of different types of method parameters

in every method divided by a multiplication of number of different method parameter

types in whole class and number of methods. A metric value close to 1.0 is preferred.

(Range 0 to 1).

24 Inheritance Coupling . This metric (IC) provides the number of parent classes

to which a given class is coupled. A class is coupled to its parent class if one of the

following conditions is satisfied: (a) One of its inherited methods uses a variable (or

data member) that is defined in a new /redefined method; (b) One of its inherited

methods calls a redefined method; (c) One of its inherited methods is called by a

redefined method and uses a parameter that is defined in the redefined method.

25 Coupling Between Methods . The metric measure the total number of new/re-

defined methods to which all the inherited methods are coupled.
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Table 10.2: Predicate code-based features.

Feature . Definition

1 Comparators . Number of comparators inside predicates in a class: equalities,

inequalities and ranges (higher and less than)

2 Equalities . Number of equalities inside predicates in a class

3 Inequalities . Number of inequalities inside predicates in a class

4 Ranges . Number of ranges inside predicates in a class (e.g., $1<x)

5 Variables . Number of variables inside predicates in a class

6 Boolean Variables . Number of boolean variables inside predicates in a class

7 Integer Variables . Number of integer variables inside predicates in a class

8 Long Variables . Number of long variablesinside predicates in a class

9 Double Variables . Number of double variables inside predicates in a class

10 Equalities with Boolean . Number of equalities with boolean variables inside

predicates in a class

11 Inequalities with Boolean . Number of inequalities with boolean variables inside

predicates in a class

12 Equalities with Integer . Number of equalities with integer variables inside pred-

icates in a class

13 Inequalities with Integer . Number of inequalities with integer variables inside

predicates in a class

14 Ranges with Integer . Number of ranges with integer variables inside predicates

in a class

15 Equalities with Long . Number of equalities with long variables inside predicates

in a class
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16 Inequalities with Long . Number of inequalities with long variables inside pred-

icates in a class

17 Ranges with Integer . Number of ranges with long variables inside predicates in

a class

18 Equalities with Double . Number of equalities with double variables inside pred-

icates in a class

19 Inequalities with Double . Number of inequalities with double variables inside

predicates in a class

20 Ranges with Double . Number of ranges with double variables inside predicates in

a class
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Table 10.3: CFG-based features.

Feature . Definition

1 CFGs count . The number of control flow graphs

2 Number of Vertices in a CFG . The number of vertices in the control flow graph

reported as average, standard deviation, sum, maximum, and minimum values

3 Number of Edges in a CFG . The number of edges in the control flow graph

reported as average, standard deviation, sum, maximum, and minimum values.

4 Radius . The minimum eccentricity of the CFG. Eccentricity is the maximum graph

distance between any two vertices.

5 Diameter . The maximum eccentricity.

6 Center Size . The set of nodes with eccentricity equal to radius.

7 Periphery Size . The set of nodes with eccentricity equal to the diameter.

8 Average Shortest Path Length . This measure is equal to a =
∑

s,t∈V
d(s,t)
n(n−1)

where V is the set of nodes, d(s, t) is the shortest path from s to t, and n is the

number of nodes in the CFG.

9 Largest Eigenvalue of the Laplacian . The largest eigenvalue of the Laplacian

of the CFGs [8]

10 Second Largest Eigenvalue of the Laplacian . The second largest eigenvalue

of the Laplacian of the CFGs [8].

11 Algebraic Connectivity . The second smallest eigenvalue of the Laplacian [8].

This reflects how well connected a graph is.

12 Smallest Non-Zero Eigenvalue of the Laplacian . The smallest non zero eigen-

value of the Laplacian of the graph [8].

13 Eigenvalue Gap of the Laplacian . The difference between the largest and the

second largest eigenvalue of the Laplacian of the graph.
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14 Largest Eignevalue Adjacency . The largest eigenvalue of the adjacency matrix

of the graph. The elements of the adjacency matrix indicate whether pairs of vertices

are adjacent or not in the graph.

15 Second Largest Eignevalue Adjacency . The second largest eigenvalue of the

adjacency matrix of the graph.

16 Smallest Eigenvalue Adjacency . The smallest eigenvalue of the adjacency ma-

trix of CFGs.

17 Second Smallest Eigenvalue Adjacency . The second smallest eigenvalue of the

adjacency matrix CFG.

18 Eigenvalue Gap Adjacency . The difference between the largest and the second

largest eigenvalue of the adjacency matrix of CFG.

19 Standard Eigenvalue Deviation Adjacency . The standard deviation of the

eigenvalues of the adjacency matrix of CFGs.

20 Energy . The mean of the eigenvalues of the adjacency matrix of the CFGs.

21 Node Degree . The number of edges adjacent to that node.

22 Minimum Node Degree . The lowest node degree of the graph.

23 Maximum Node Degree . The highest node degree of the graph.

24 Density of the CFG . This measures how many edges are in the graph compared

to the maximum possible number of edges, reported as average, standard deviation,

sum, maximum, and minimum values.

25 Edge Connectivity . It is equal to the minimum number of edges that must be

removed to disconnect the graph, reported as average, standard deviation, sum,

maximum, and minimum values.

26 Node Connectivity . The minimum number of nodes that must be removed to

disconnect the graph, reported as average, standard deviation, sum, maximum, and

minimum values.
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27 Clustering Coefficient . The local clustering of each node in a graph is the fraction

of triangles that actually exist over all possible triangles in its neighbourhood. The

average clustering coefficient of the CFG is the mean of local clusterings.

28 Transitivity . The fraction of possible triangles present in the CFG, reported as

average, standard deviation, sum, maximum, and minimum values over all CFGs.

29 McCabe’s cyclomatic complexity . It is computed as CC = E − V + P , where

P is the number of connected components, E are edges in the CFG and V are nodes.

30 Class Complexity . The percentage of methods in the class with CC higher than

10. Class Complexity is a new proposed feature that aims to classify a CUT accord-

ing to the number of complex CFGs.
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Table 10.4: EvoSuite default settings.

Name Type Default

algorithm Algorithm MONOTONIC_GA

archive_type ArchiveType COVERAGE

array_limit int 1000000

assertion_minimization_fallback double 0.5

assertion_minimization_fallback_time double 0.6666666667

assertion_strategy AssertionStrategy MUTATION

assertion_timeout int 60

assertions boolean TRUE

bloat_factor int 2

branch_comparison_types boolean FALSE

branch_eval boolean FALSE

branch_statement boolean FALSE

break_on_exception boolean TRUE

breeder_truncation double 0.5

call_probability double 0

carve_object_pool boolean FALSE

carving_timeout int 120

catch_undeclared_exceptions boolean TRUE

check_best_length boolean TRUE

check_contracts boolean FALSE

check_contracts_end boolean FALSE

check_max_length boolean TRUE

check_parents_length boolean FALSE

chop_carved_exceptions boolean TRUE

chop_max_length boolean TRUE

chromosome_length int 40

classpath String[] []

client_on_thread boolean FALSE

cluster_recursion int 10

concolic_mutation double 0

concolic_timeout int 15000

connection_data String connection.xml

consider_main_methods boolean TRUE

constraint_solution_attempts int 3

coverage boolean TRUE

coverage_matrix boolean FALSE
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coverage_matrix_filename String matrix

covered_goals_file String evosuite-report/covered.goals

cpu_timeout boolean FALSE

criterion Criterion[] BRANCH

crossover_function CrossoverFunction SINGLEPOINTRELATIVE

crossover_rate double 0.75

ctg_bests_folder String best-tests

ctg_cores int 1

ctg_delete_old_tmp_folders boolean TRUE

ctg_dir String .evosuite

ctg_memory int 1000

ctg_min_time_per_job int 1

ctg_project_info String project_info.xml

ctg_schedule AvailableSchedule BUDGET

ctg_seeds_dir_name String seeds

ctg_seeds_ext String seed

ctg_time int 3

ctg_tmp_logs_dir_name String logs

ctg_tmp_pools_dir_name String pools

ctg_tmp_reports_dir_name String reports

ctg_tmp_tests_dir_name String tests

debug boolean FALSE

decomposition_threshold int 500

defuse_aliases boolean TRUE

defuse_debug_mode boolean FALSE

double_precision double 0.01

dse_constant_probability double 0.5

dse_constraint_length int 100000

dse_constraint_solver_timeout_millis long 1000

dse_keep_all_tests boolean FALSE

dse_negate_all_conditions boolean TRUE

dse_probability double 0.5

dse_rank_branch_conditions boolean TRUE

dse_solver SolverType EVOSUITE_SOLVER

dse_variable_resets int 2

dynamic_limit boolean FALSE

dynamic_pool double 0.5
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dynamic_pool_size int 50

dynamic_seeding boolean TRUE

eclipse_plugin boolean FALSE

elite int 1

enable_alternative_fitness_calculation boolean FALSE

enable_alternative_suite_fitness boolean FALSE

enable_asserts_for_evosuite boolean FALSE

enable_asserts_for_sut boolean TRUE

enable_secondary_objective_after int 0

enable_secondary_starvation boolean FALSE

epsilon double 0.001

epson double 0.01

error_branches boolean FALSE

evosuite_use_uispec boolean FALSE

exception_branches boolean FALSE

exclude_ibranches_cut boolean FALSE

exploitation_starts_at_percent double 0.5

extra_timeout int 60

filter_assertions boolean FALSE

filter_sandbox_tests boolean FALSE

float_precision float 0.01

functional_mocking_input_limit int 5

functional_mocking_percent double 0.5

global_timeout int 120

group_id String none

handle_servlets boolean FALSE

handle_static_fields boolean TRUE

headless_chicken_test boolean FALSE

headless_mode boolean TRUE

hierarchy_data String hierarchy.xml

honour_data_annotations boolean TRUE

ignore_missing_statistics boolean FALSE

ignore_threads String[] []

initial_kinetic_energy double 1000

initialization_timeout int 120

inline boolean TRUE

insertion_score_object int 1
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insertion_score_parameter int 1

insertion_score_uut int 1

insertion_uut double 0.5

insertion_uut double 0.4

insertion_uut double 0.1

instrument_context boolean FALSE

instrument_libraries boolean FALSE

instrument_method_calls boolean FALSE

instrument_parent boolean FALSE

instrumentation_skip_debug boolean FALSE

is_running_a_system_test boolean FALSE

jee boolean TRUE

jmc boolean FALSE

junit_check boolean TRUE

junit_check_on_separate_process boolean FALSE

junit_check_timeout int 60

junit_failed_suffix String _Failed_ESTest

junit_strict boolean FALSE

junit_suffix String _ESTest

junit_tests boolean TRUE

keep_regression_archive boolean FALSE

kincompensation double 1

kinetic_energy_loss_rate double 0.2

lambda int 1

lm_iterations int 1000

lm_mutation_type MutationType EVOSUITE

lm_src String ukwac_char_lm

lm_strings boolean FALSE

local_search_adaptation_rate double 2

local_search_arrays boolean TRUE

local_search_budget long 5

local_search_budget_type LocalSearchBudgetType TIME

local_search_dse DSEType TEST

local_search_ensure_double_execution boolean TRUE

local_search_expand_tests boolean TRUE

local_search_primitives boolean TRUE

local_search_probability double 1
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local_search_probes int 10

local_search_rate int -1

local_search_references boolean TRUE

local_search_restore_coverage boolean FALSE

local_search_selective boolean FALSE

local_search_selective_primitives boolean FALSE

local_search_strings boolean TRUE

log_goals boolean FALSE

log_timeout boolean FALSE

make_accessible boolean FALSE

max_array int 10

max_attempts int 1000

max_coverage_depth int -1

max_delta int 20

max_generic_depth int 3

max_initial_tests int 10

max_int int 2048

max_length int 0

max_length_test_case int 2500

max_loop_iterations long 10000

max_mutants int 100

max_mutants_per_class int 1000

max_mutants_per_method int 700

max_mutants_per_test int 100

max_num_fitness_evaluations_before_giving_up int 10

max_num_mutations_before_giving_up int 10

max_recursion int 10

max_replace_mutants int 100

max_size int 100

max_stalled_threads int 10

max_started_threads int 100

max_string int 1000

min_free_mem int 50000000

min_initial_tests int 1

minimization_timeout int 60

minimize boolean TRUE

minimize_old boolean FALSE
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minimize_second_pass boolean TRUE

minimize_skip_coincidental boolean TRUE

minimize_sort boolean TRUE

minimize_strings boolean TRUE

minimize_values boolean FALSE

mock_if_no_generator boolean TRUE

molecular_collision_rate double 0.2

mu int 1

mutation_generations int 10

mutation_probability_distribution MutationProbabilityDistribution UNIFORM

mutation_rate double 0.75

mutation_timeouts int 3

neighborhood_model CGA_Models LINEAR_FIVE

new_object_selection boolean TRUE

new_statistics boolean TRUE

no_runtime_dependency boolean FALSE

null_probability double 0.1

num_random_tests int 20

num_tests int 2

number_of_mutations int 1

number_of_tests_per_target int 10

object_reuse_probability double 0.9

output_granularity OutputGranularity MERGED

p_change_parameter double 0.1

p_functional_mocking double 0

p_object_pool double 0.3

p_random_test_or_from_archive double 0.5

p_reflection_on_private double 0

p_special_type_call double 0.05

p_statement_insertion double 0.5

p_test_change double 0.3333333333

p_test_delete double 0.3333333333

p_test_insert double 0.3333333333

p_test_insertion double 0.1

parent_check boolean TRUE

plot boolean FALSE

population int 50
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population_limit PopulationLimit INDIVIDUALS

port int 1044

primitive_pool double 0.5

primitive_reuse_probability double 0.5

print_covered_goals boolean FALSE

print_current_goals boolean FALSE

print_goals boolean FALSE

print_missed_goals boolean FALSE

print_to_system boolean FALSE

process_communication_port int -1

pure_equals boolean FALSE

pure_inspectors boolean TRUE

random_perturbation double 0.2

random_tests int 0

randomize_difficulty boolean TRUE

rank_bias double 1.7

ranking_type RankingType PREFERENCE_SORTING

recycle_chromosomes boolean TRUE

reflection_start_percent double 0.8

regression_analysis_branchdistance int 0

regression_analysis_combinations int 0

regression_analysis_objectdistance int 0

regression_analyze boolean FALSE

regression_branch_distance boolean FALSE

regression_different_branches boolean FALSE

regression_disable_special_assertions boolean FALSE

regression_diversity boolean FALSE

regression_fitness RegressionMeasure RANDOM

regression_random_strategy int 3

regression_skip_different_cfg boolean FALSE

regression_skip_similar boolean FALSE

regression_statistics boolean FALSE

remote_testing boolean FALSE

replace_calls boolean TRUE

replace_gui boolean FALSE

replace_system_in boolean TRUE

replacement_function TheReplacementFunction DEFAULT
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report_dir String evosuite-report

reset_all_classes_during_assertion_generation boolean TRUE

reset_all_classes_during_test_generation boolean FALSE

reset_standard_streams boolean FALSE

reset_static_field_gets boolean FALSE

reset_static_fields boolean TRUE

reset_static_final_fields boolean TRUE

restrict_pool boolean FALSE

reuse_budget boolean TRUE

reuse_leftover_time boolean FALSE

sandbox boolean TRUE

sandbox_mode SandboxMode RECOMMENDED

save_all_data boolean TRUE

scaffolding_suffix String scaffolding

search_budget long 60

secondary_objectives SecondaryObjective[] [TOTAL_LENGTH]

seed_clone double 0.2

seed_dir String evosuite-seeds

seed_mutations int 3

seed_probability double 0.1

seed_types boolean TRUE

selection_function SelectionFunction RANK

serialize_ga boolean FALSE

serialize_regression_test_suite boolean FALSE

serialize_result boolean FALSE

show_progress boolean TRUE

shuffle_goals boolean TRUE

shutdown_hook boolean TRUE

shutdown_timeout int 1000

skip_covered boolean TRUE

sort_calls boolean FALSE

sort_objects boolean FALSE

sourcepath String[] []

starvation_after_generation int 500

starve_by_fitness boolean TRUE

statistics_backend StatisticsBackend CSV

stop_zero boolean TRUE
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stopping_condition StoppingCondition MAXTIME

stopping_port int -1

strategy Strategy EVOSUITE

string_length int 20

string_replacement boolean TRUE

synthesis_threshold int 10

test_archive boolean TRUE

test_carving boolean FALSE

test_comments boolean FALSE

test_dir String evosuite-tests

test_excludes String test.excludes

test_factory TestFactory ARCHIVE

test_format OutputFormat JUNIT4

test_includes String test.includes

test_naming_strategy TestNamingStrategy NUMBERED

test_scaffolding boolean TRUE

testability_transformation boolean FALSE

timeline_interpolation boolean TRUE

timeline_interval long 60000

timeout int 3000

timeout_reset int 2000

tournament_size int 10

track_boolean_branches boolean FALSE

track_covered_gradient_branches boolean FALSE

track_diversity boolean FALSE

tt_scope TransformationScope ALL

usage_rate double 0.5

use_deprecated boolean FALSE

use_existing_coverage boolean FALSE

use_separate_classloader boolean TRUE

validate_runtime_variables boolean TRUE

variable_pool boolean FALSE

virtual_fs boolean TRUE

virtual_net boolean TRUE

write_all_goals_file boolean FALSE

write_cfg boolean FALSE

write_covered_goals_file boolean FALSE
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write_individuals boolean FALSE

write_junit_timeout int 60
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Table 10.5: SF110 classes with Ciclomatic Complexity equal to or higher than five

Project Class

squirrel-sql net.sourceforge.squirrel_sql.client.session.EditableSqlCheck

squirrel-sql net.sourceforge.squirrel_sql.client.session.SQLEntryPanelUtil

squirrel-sql net.sourceforge.squirrel_sql.client.session.mainpanel.overview.datascale.IndexedColumnFactory

squirrel-sql net.sourceforge.squirrel_sql.client.session.parser.kernel.ErrorStream

squirrel-sql net.sourceforge.squirrel_sql.client.session.parser.kernel.Scanner

squirrel-sql net.sourceforge.squirrel_sql.client.update.gui.installer.event.InstallStatusListenerImpl

squirrel-sql net.sourceforge.squirrel_sql.client.util.codereformat.CodeReformator

squirrel-sql net.sourceforge.squirrel_sql.client.util.codereformat.CodeReformatorKernel

squirrel-sql net.sourceforge.squirrel_sql.fw.datasetviewer.cellcomponent.StringFieldKeyTextHandler

squirrel-sql net.sourceforge.squirrel_sql.fw.gui.CascadeInternalFramePositioner

squirrel-sql net.sourceforge.squirrel_sql.fw.gui.action.TableCopyCommand

squirrel-sql net.sourceforge.squirrel_sql.fw.gui.action.TableCopyHtmlCommand

squirrel-sql net.sourceforge.squirrel_sql.fw.gui.action.TableCopyInStatementCommand

squirrel-sql net.sourceforge.squirrel_sql.fw.gui.action.TableCopyInsertStatementCommand

squirrel-sql net.sourceforge.squirrel_sql.fw.gui.action.TableCopySqlPartCommandBase

squirrel-sql net.sourceforge.squirrel_sql.fw.gui.action.TableCopyWhereStatementCommand

squirrel-sql net.sourceforge.squirrel_sql.fw.gui.action.exportData.JTableExportData

sweethome3d com.eteks.sweethome3d.j3d.Ground3D

sweethome3d com.eteks.sweethome3d.j3d.PhotoRenderer

sweethome3d com.eteks.sweethome3d.j3d.Room3D

sweethome3d com.eteks.sweethome3d.j3d.Wall3D

sweethome3d com.eteks.sweethome3d.swing.AutoCommitSpinner

vuze com.aelitis.azureus.core.dht.netcoords.vivaldi.ver1.impl.tests.VivaldiTest

vuze com.aelitis.azureus.core.metasearch.impl.DateParserClassic

vuze com.aelitis.azureus.core.metasearch.impl.DateParserRegex

vuze com.aelitis.azureus.core.networkmanager.impl.tcp.VirtualChannelSelectorImpl

vuze com.aelitis.azureus.core.peermanager.piecepicker.impl.PiecePickerImpl

vuze com.aelitis.azureus.core.peermanager.unchoker.DownloadingUnchoker

vuze com.aelitis.azureus.core.peermanager.unchoker.UnchokerUtil

vuze com.aelitis.azureus.core.peermanager.utils.BTPeerIDByteDecoderUtils

vuze com.aelitis.azureus.core.util.GeneralUtils

vuze com.aelitis.azureus.plugins.net.netstatus.swt.NetStatusPluginTester

vuze com.aelitis.azureus.plugins.startstoprules.defaultplugin.DefaultRankCalculator

vuze com.aelitis.azureus.plugins.startstoprules.defaultplugin.SeedingRankColumnListener

vuze com.aelitis.azureus.plugins.startstoprules.defaultplugin.StartStopRulesDefaultPlugin

vuze com.aelitis.azureus.ui.swt.UIConfigDefaultsSWTv3

vuze com.aelitis.azureus.ui.swt.browser.listener.MetaSearchListener
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Project Class

SF110 classes with Ciclomatic Complexity equal to or higher than five
vuze com.aelitis.azureus.ui.swt.browser.listener.VuzeListener

vuze com.aelitis.azureus.ui.swt.columns.torrent.ColumnProgressETA

vuze com.aelitis.azureus.ui.swt.columns.utils.TableColumnCreatorV3

vuze com.aelitis.azureus.ui.swt.columns.vuzeactivity.ColumnActivityActions

vuze com.aelitis.azureus.ui.swt.skin.SWTBGImagePainter

vuze com.aelitis.azureus.ui.swt.skin.SWTSkinImageChanger

vuze com.aelitis.azureus.ui.swt.skin.SWTSkinUtils

vuze com.aelitis.azureus.ui.swt.views.skin.sidebar.SideBarToolTips

vuze com.aelitis.azureus.util.DataSourceUtils

vuze org.bouncycastle.asn1.util.ASN1Dump

vuze org.bouncycastle.asn1.x509.X509DefaultEntryConverter

vuze org.bouncycastle.util.Strings

vuze org.gudy.azureus2.cl.Main

vuze org.gudy.azureus2.core3.config.impl.ConfigurationChecker

vuze org.gudy.azureus2.core3.disk.impl.DiskManagerUtil

vuze org.gudy.azureus2.core3.disk.impl.resume.RDResumeHandler

vuze org.gudy.azureus2.core3.html.HTMLUtils

vuze org.gudy.azureus2.core3.ipchecker.natchecker.NatChecker

vuze org.gudy.azureus2.core3.ipfilter.impl.IpFilterAutoLoaderImpl

vuze org.gudy.azureus2.core3.tracker.client.impl.bt.TrackerStatus

vuze org.gudy.azureus2.core3.tracker.host.impl.TRHostConfigImpl

vuze org.gudy.azureus2.core3.tracker.server.impl.TRTrackerServerTorrentImpl

vuze org.gudy.azureus2.core3.tracker.server.impl.tcp.blocking.TRBlockingServerProcessor

vuze org.gudy.azureus2.core3.util.AEMonSem

vuze org.gudy.azureus2.core3.util.StringInterner

vuze org.gudy.azureus2.platform.unix.ScriptBeforeStartup

vuze org.gudy.azureus2.pluginsimpl.local.disk.DiskManagerRandomReadController

vuze org.gudy.azureus2.pluginsimpl.remote.RPRequestHandler

vuze org.gudy.azureus2.pluginsimpl.update.PluginUpdatePlugin

vuze org.gudy.azureus2.ui.common.Main

vuze org.gudy.azureus2.ui.console.commands.Plugin

vuze org.gudy.azureus2.ui.console.commands.Priority

vuze org.gudy.azureus2.ui.console.commands.Set

vuze org.gudy.azureus2.ui.console.commands.Share

vuze org.gudy.azureus2.ui.console.commands.Show

vuze org.gudy.azureus2.ui.swt.ImageRepository

vuze org.gudy.azureus2.ui.swt.KeyBindings
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Project Class

SF110 classes with Ciclomatic Complexity equal to or higher than five
vuze org.gudy.azureus2.ui.swt.Main

vuze org.gudy.azureus2.ui.swt.MenuBuildUtils

vuze org.gudy.azureus2.ui.swt.Messages

vuze org.gudy.azureus2.ui.swt.PropertiesWindow

vuze org.gudy.azureus2.ui.swt.TorrentUtil

vuze org.gudy.azureus2.ui.swt.URLTransfer

vuze org.gudy.azureus2.ui.swt.components.CompositeMinSize

vuze org.gudy.azureus2.ui.swt.components.graphics.PingGraphic

vuze org.gudy.azureus2.ui.swt.components.graphics.ScaledGraphic

vuze org.gudy.azureus2.ui.swt.components.graphics.SpeedGraphic

vuze org.gudy.azureus2.ui.swt.debug.UIDebugGenerator

vuze org.gudy.azureus2.ui.swt.mainwindow.SelectableSpeedMenu

vuze org.gudy.azureus2.ui.swt.pluginsimpl.BasicPluginConfigImpl

vuze org.gudy.azureus2.ui.swt.shells.GCStringPrinter

vuze org.gudy.azureus2.ui.swt.views.FilesViewMenuUtil

vuze org.gudy.azureus2.ui.swt.views.GeneralView

vuze org.gudy.azureus2.ui.swt.views.ViewUtils

vuze org.gudy.azureus2.ui.swt.views.table.impl.TableTooltips

vuze org.gudy.azureus2.ui.swt.views.table.impl.TableViewSWT_Common

vuze org.gudy.azureus2.ui.swt.views.table.impl.TableViewSWT_EraseItem

vuze org.gudy.azureus2.ui.swt.views.table.impl.TableViewSWT_PaintItem

vuze org.gudy.azureus2.ui.swt.views.table.impl.TableViewSWT_TabsCommon

vuze org.gudy.azureus2.ui.swt.views.tableitems.mytorrents.HealthItem

vuze org.gudy.azureus2.ui.swt.views.tableitems.mytorrents.PiecesItem

vuze org.gudy.azureus2.ui.swt.views.utils.CategoryUIUtils

vuze org.gudy.azureus2.update.CoreUpdateChecker

freemind accessories.plugins.ChangeNodeLevelAction

freemind freemind.controller.NodeDragListener

freemind freemind.controller.filter.condition.ConditionFactory

freemind freemind.main.Base64Coding

freemind freemind.modes.XMLElementAdapter

freemind freemind.modes.common.CommonNodeKeyListener

freemind freemind.modes.mindmapmode.actions.ApplyPatternAction

freemind freemind.modes.mindmapmode.actions.ExportBranchAction

freemind freemind.preferences.layout.KeyEventTranslator

freemind freemind.preferences.layout.KeyEventWorkaround

checkstyle com.atlassw.tools.eclipse.checkstyle.config.gui.widgets.ConfigPropertyWidgetFactory
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Project Class

SF110 classes with Ciclomatic Complexity equal to or higher than five
checkstyle com.atlassw.tools.eclipse.checkstyle.config.savefilter.FileContentsHolderSaveFilter

checkstyle com.atlassw.tools.eclipse.checkstyle.config.savefilter.TreeWalkerModuleSaveFilter

checkstyle com.atlassw.tools.eclipse.checkstyle.projectconfig.filters.UnOpenedFilesFilter

weka weka.Run

weka weka.attributeSelection.CfsSubsetEval

weka weka.classifiers.CheckClassifier

weka weka.classifiers.bayes.net.search.ci.ICSSearchAlgorithm

weka weka.classifiers.functions.supportVector.RegSMO

weka weka.classifiers.lazy.kstar.KStarNominalAttribute

weka weka.classifiers.lazy.kstar.KStarNumericAttribute

weka weka.classifiers.pmml.consumer.GeneralRegression

weka weka.classifiers.trees.j48.C45ModelSelection

weka weka.clusterers.CheckClusterer

weka weka.core.ContingencyTables

weka weka.core.Statistics

weka weka.core.json.JSONInstances

weka weka.core.matrix.EigenvalueDecomposition

weka weka.core.matrix.QRDecomposition

weka weka.core.matrix.SingularValueDecomposition

weka weka.core.stemmers.LovinsStemmer

weka weka.estimators.UnivariateKernelEstimator

weka weka.gui.AttributeVisualizationPanel

weka weka.gui.graphvisualizer.HierarchicalBCEngine

weka weka.gui.sql.ResultSetHelper

weka weka.gui.treevisualizer.TreeBuild

weka weka.gui.treevisualizer.TreeVisualizer

weka weka.gui.visualize.VisualizeUtils

liferay com.liferay.portal.dao.db.DBFactoryImpl

liferay com.liferay.portal.dao.orm.hibernate.LockModeTranslator

liferay com.liferay.portal.dao.orm.hibernate.TypeTranslator

liferay com.liferay.portal.jsonwebservice.JSONRPCResponse

liferay com.liferay.portal.kernel.cal.RecurrenceSerializer

liferay com.liferay.portal.kernel.dao.orm.QueryUtil

liferay com.liferay.portal.kernel.search.facet.AssetEntriesFacet

liferay com.liferay.portal.kernel.search.facet.MultiValueFacet

liferay com.liferay.portal.kernel.search.facet.RangeFacet

liferay com.liferay.portal.kernel.search.facet.ScopeFacet
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Project Class

SF110 classes with Ciclomatic Complexity equal to or higher than five
liferay com.liferay.portal.kernel.servlet.filters.invoker.FilterMapping

liferay com.liferay.portal.kernel.util.URLCodec

liferay com.liferay.portal.kernel.workflow.WorkflowConstants

liferay com.liferay.portal.model.impl.UserCacheModel

liferay com.liferay.portal.security.pacl.PACLClassUtil

liferay com.liferay.portal.security.pacl.checker.BaseReflectChecker

liferay com.liferay.portal.spring.hibernate.DialectDetector

liferay com.liferay.portal.spring.jpa.DatabaseDetector

liferay com.liferay.portal.spring.jpa.LocalContainerEntityManagerFactoryBean

liferay com.liferay.portal.struts.StrutsURLEncoder

liferay com.liferay.portal.tools.LangBuilder

liferay com.liferay.portal.util.EntityResolver

liferay com.liferay.portal.webdav.WebDAVServlet

liferay com.liferay.portal.xml.NodeList

liferay com.liferay.portlet.dynamicdatamapping.storage.FieldConstants

liferay com.liferay.portlet.expando.model.ExpandoColumnConstants

liferay com.liferay.portlet.expando.util.ExpandoConverterUtil

liferay com.liferay.portlet.shopping.model.impl.ShoppingOrderCacheModel

liferay com.liferay.taglib.portlet.DefineObjectsTag

liferay com.liferay.util.CreditCard

pdfsam it.pdfsam.gnu.gettext.GettextResource

pdfsam it.pdfsam.plugin.split.listener.RadioListener

pdfsam jcmdline.StringFormatHelper

pdfsam org.pdfsam.guiclient.business.PagesWorker

pdfsam org.pdfsam.guiclient.commons.renderers.JPdfSelectionTableRenderer

pdfsam org.pdfsam.i18n.GettextResource

pdfsam org.pdfsam.plugin.coverfooter.listeners.RunButtonActionListener

pdfsam org.pdfsam.plugin.docinfo.listeners.RunButtonActionListener

pdfsam org.pdfsam.plugin.encrypt.listeners.RunButtonActionListener

pdfsam org.pdfsam.plugin.merge.listeners.RunButtonActionListener

pdfsam org.pdfsam.plugin.mix.listeners.RunButtonActionListener

pdfsam org.pdfsam.plugin.setviewer.listeners.RunButtonActionListener

pdfsam org.pdfsam.plugin.split.listeners.RadioListener

pdfsam org.pdfsam.plugin.split.listeners.RunButtonActionListener

pdfsam org.pdfsam.plugin.vcomposer.listeners.RunButtonActionListener

pdfsam org.pdfsam.plugin.vpagereorder.listeners.RunButtonActionListener

firebird org.firebirdsql.encodings.EncodingFactory
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Project Class

SF110 classes with Ciclomatic Complexity equal to or higher than five
dsachat dsachat.client.gui.MainFrame

dsachat dsachat.gm.gui.GmFrame

beanbin net.sourceforge.beanbin.search.WildcardSearch

jsecurity org.jsecurity.util.AntPathMatcher

jmca com.soops.CEN4010.JMCA.JMCAAnalyzer

jmca com.soops.CEN4010.JMCA.JParser.JavaParserTokenManager

jmca com.soops.CEN4010.JMCA.JParser.ParseException

tullibee com.ib.client.Contract

tullibee com.ib.client.Order

byuic com.yahoo.platform.yui.compressor.JavaScriptCompressor

byuic com.yahoo.platform.yui.compressor.YUICompressor

saxpath org.saxpath.Axis

gangup gui.GroupPanel

gangup map.VisibilityMap

gangup module.BasicRules

gangup module.GameModule

apbsmem apbs_mem_gui.Run

a4j net.kencochrane.a4j.DAO.Product

httpanalyzer httpanalyzer.HttpPreference

javaviewcontrol com.pmdesigns.jvc.tools.HtmlEncoder

javaviewcontrol com.pmdesigns.jvc.tools.JVCParserTokenManager

javaviewcontrol com.pmdesigns.jvc.tools.ParseException

corina corina.editor.EditorTabSetFactory

corina corina.editor.SamplePrintEditor

corina corina.editor.SamplePrinter

corina corina.manip.Truncate

corina corina.map.SiteRenderer

corina corina.prefs.components.FontPopup

corina corina.util.NaturalSort

schemaspy net.sourceforge.schemaspy.view.DotNode

javabullboard framework.MainClass

lilith de.huxhorn.lilith.Lilith

lilith de.huxhorn.lilith.data.logging.MessageFormatter

lilith de.huxhorn.lilith.data.logging.protobuf.LoggingEventProtobufDecoder

lilith de.huxhorn.lilith.data.logging.protobuf.LoggingEventProtobufEncoder

lilith de.huxhorn.lilith.swing.table.renderer.ApplicationRenderer

lilith de.huxhorn.lilith.swing.table.renderer.IdRenderer
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Project Class

SF110 classes with Ciclomatic Complexity equal to or higher than five
lilith de.huxhorn.lilith.swing.table.renderer.LevelRenderer

lilith de.huxhorn.lilith.swing.table.renderer.LoggerNameRenderer

lilith de.huxhorn.lilith.swing.table.renderer.MarkerRenderer

lilith de.huxhorn.lilith.swing.table.renderer.MessageRenderer

lilith de.huxhorn.lilith.swing.table.renderer.MethodRenderer

lilith de.huxhorn.lilith.swing.table.renderer.NdcRenderer

lilith de.huxhorn.lilith.swing.table.renderer.ProtocolRenderer

lilith de.huxhorn.lilith.swing.table.renderer.RemoteAddrRenderer

lilith de.huxhorn.lilith.swing.table.renderer.RequestUriRenderer

lilith de.huxhorn.lilith.swing.table.renderer.SourceRenderer

lilith de.huxhorn.lilith.swing.table.renderer.StatusCodeRenderer

lilith de.huxhorn.lilith.swing.table.renderer.ThreadRenderer

lilith de.huxhorn.lilith.swing.table.renderer.ThrowableRenderer

lilith de.huxhorn.lilith.swing.table.renderer.TimestampRenderer

lilith de.huxhorn.lilith.swing.table.tooltips.MessageTooltipGenerator

lilith de.huxhorn.lilith.swing.table.tooltips.ThreadTooltipGenerator

summa dk.statsbiblioteket.summa.common.util.PayloadMatcher

summa dk.statsbiblioteket.summa.common.util.RAMEater

summa dk.statsbiblioteket.summa.ingest.split.XMLSplitterParserTarget

summa dk.statsbiblioteket.summa.search.tools.QuerySanitizer

summa org.apache.lucene.search.exposed.ExposedTimSort

nutzenportfolio ch.bfh.egov.nutzenportfolio.service.projekt.ProjektDaoService

dvd-homevideo Convert

dvd-homevideo Menu

diebierse bierse.controller.DefaultSettingsController

biff Scanner

jiprof com.mentorgen.tools.profile.Controller

jiprof com.mentorgen.tools.profile.instrument.PerfMethodAdapter

jiprof com.mentorgen.tools.util.profile.Client

jiprof org.objectweb.asm.jip.ClassReader

jiprof org.objectweb.asm.jip.FieldWriter

jiprof org.objectweb.asm.jip.Frame

jiprof org.objectweb.asm.jip.MethodWriter

lagoon nu.staldal.lagoon.LagoonCLI

db-everywhere com.gbshape.dbe.mysql.MysqlTableStructure

db-everywhere com.gbshape.dbe.sapdb.SapdbTableStructure

jhandballmoves visu.handball.moves.actions.NewPassEventAction
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jhandballmoves visu.handball.moves.controller.MouseController

jhandballmoves visu.handball.moves.model.PassEvent

hft-bomberman server.ServerGameModel

templateit org.templateit.WorkbookParser

noen fi.vtt.noen.mfw.bundle.server.plugins.persistence.PersistencePluginImpl

openjms Browser

openjms DurableSubscriber

openjms Listener

openjms Receiver

openjms Sender

openjms org.exolab.jms.tools.admin.AdminInfo

echodep edu.uiuc.ndiipp.hubandspoke.profile.HaSMETSValidator

echodep edu.uiuc.ndiipp.hubandspoke.profile.HaSMETSWebValidator

echodep edu.uiuc.ndiipp.hubandspoke.workflow.WorkflowManager

battlecry bcry.battlecry

battlecry bcry.bcGenerator

fixsuite org.fixsuite.message.parsers.fpl.MsgContentsParser

openhre com.browsersoft.openhre.hl7.impl.parser.HL7ParserImpl

wheelwebtool wheel.ErrorPage

wheelwebtool wheel.asm.ClassReader

wheelwebtool wheel.asm.FieldWriter

wheelwebtool wheel.asm.Frame

wheelwebtool wheel.asm.MethodWriter

wheelwebtool wheel.xhtmlConversion.Node

javathena org.javathena.core.utiles.Constants

javathena org.javathena.login.parse.FromAdmin

javathena org.javathena.login.parse.FromChar

javathena org.javathena.login.parse.FromClient

ipcalculator ipac.BinaryCalculate

ipcalculator ipac.URLOpener

xbus net.sf.xbus.admin.html.AdminDispatcherServlet

xbus net.sf.xbus.base.xml.IteratedWhitespaceInElementAndCommentDeletion

ifx-framework org.sourceforge.ifx.basetypes.IFXObject

shop umd.cs.shop.JSListAxioms

shop umd.cs.shop.JSTerm

jaw-br jaw.entrada.Salvar

jopenchart de.progra.charting.model.StackedChartDataModelConstraints
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jopenchart de.progra.charting.render.InterpolationChartRenderer

jopenchart de.progra.charting.render.LineChartRenderer

jiggler jigl.image.ColorHistogram

jiggler jigl.image.levelSetTool.LevelSetNudge

jiggler jigl.image.levelSetTool.LevelSetSharpen

jiggler jigl.image.levelSetTool.LevelSetSmooth

jiggler jigl.image.levelSetTool.LocalMedianSmooth

jiggler jigl.image.ops.ConnectedComponents

jiggler jigl.image.types.ComplexMIPMap

jiggler jigl.image.types.MIPMap

jiggler jigl.image.types.TiledComplexMIPMap

jiggler jigl.image.utils.ImageGenerator

jiggler jigl.image.utils.LocalDifferentialGeometry

gfarcegestionfa fr.unice.gfarce.dao.OracleFormationDao

gfarcegestionfa fr.unice.gfarce.dao.OracleIdentiteDao

gfarcegestionfa fr.unice.gfarce.interGraph.CreerUnEtudiantAction

gfarcegestionfa fr.unice.gfarce.interGraph.CreerUneFormationAction

gfarcegestionfa fr.unice.gfarce.interGraph.ModifTableStockage

dcparseargs de.devcity.parseargs.ArgsParser

celwars2009 Entity

heal org.heal.module.search.AdvSearchDAO

heal org.heal.module.search.SimpleSearchDAO

heal org.heal.servlet.WSSimpleSearchAction

heal org.heal.servlet.cataloger.MetadataRecordModifier

feudalismgame src.Battle

feudalismgame src.Purchase

newzgrabber Newzgrabber.GroupsDialog

newzgrabber Newzgrabber.LineData

newzgrabber Newzgrabber.Newzbatch

newzgrabber Newzgrabber.OptionsPanel


