Skip to main content

Using Genetic Programming to Learn Behavioral Models of Lithium Batteries

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13989))

Abstract

Li-ion batteries play a key role in the sustainable development scenario, since they can allow a better management of renewable energy resources. The performances of Li-ion batteries are influenced by several factors. For this reason, accurate and reliable models of these batteries are needed, not only in the design phase, but also in real operating conditions. In this paper, we present a novel approach based on Genetic Programming (GP) for the voltage prediction of a Lithium Titanate Oxide battery. The proposed approach uses a multi-objective optimization strategy. The evolved models take in input the State-of-Charge (SoC) and provide as output the Charge/discharge rate (C-rate), which is used to evaluate the impact of the charge or discharge speed on the voltage. The experimental results showed that our approach is able to generate optimal candidate analytical models, where the choice of the preferred one is made by evaluating suitable metrics and imposing a sound trade-off between simplicity and accuracy. These results also proved that our GP-based behavioral modeling is more reliable and flexible than those based on a standard machine learning approach, like a neural network.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andre, D., Meiler, M., Steiner, K., Wimmer, C., Soczka-Guth, T., Sauer, D.U.: Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation. In: J. Power Sour.196(12), 5334–5341 (2011). https://doi.org/10.1016/j.jpowsour.2010.12.102

  2. Cai, L., White, R. E.: Mathematical modeling of a lithium ion battery with thermal effects in COMSOL Inc. Multiphysics (MP) software. J. Power Sour. 196(14), 5985–5989 (2011). https://doi.org/10.1016/j.jpowsour.2011.03.017

  3. Catenacci, M., Verdolini, E., Bosetti, V., Fiorese, G.: Going electric: expert survey on the future of battery technologies for electric vehicles. Energy Policy 61, 403–413 (2013). https://doi.org/10.1016/j.enpol.2013.06.078

  4. Chen, M., Rincon-Mora, G.A.: Accurate electrical battery model capable of predicting runtime and I-V performance. IEEE Trans. Energy Conver. 21(2), 504–511 (2006). https://doi.org/10.1109/TEC.2006.874229

  5. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems. 2nd Edition, Springer, New York (2007). https://doi.org/10.1007/978-0-387-36797-2

  6. Davydov, Y., Zitikis, R.: Quantifying non-monotonicity of functions and the lack of positivity in signed measures. Modern Stochast. Theory Appl. 4(3), 219–231 (2017). https://doi.org/10.15559/17-VMSTA84

  7. De Jong, E., Watson, R. A., Pollack, J. B.: Reducing bloat and promoting diversity using multi-objective methods. In: 3rd Annual Conference on Genetic and Evolutionary Computation, pp. 11–18 (2001)

    Google Scholar 

  8. Di Capua, G., et al.: Mutual inductance behavioral modeling for wireless power transfer system coils. IEEE Trans. Ind. Electron. 68(3), pp. 2196–2206 (2021). https://doi.org/10.1109/TIE.2019.2962432

  9. Ebrahimzade, H., Khayati, G.R., Schaffie, M.: A novel predictive model for estimation of cobalt leaching from waste Li-ion batteries: Application of genetic programming for design. J. Eenviron. Chem. Eng. 6(4), 3999–4007 (2018). https://doi.org/10.1016/j.jece.2018.05.045

    Article  Google Scholar 

  10. Echevarria, Y., Blanco, C., Sánchez, L.: Learning human-understandable models for the health assessment of li-ion batteries via multi-objective genetic programming. Eng. Appl. Artif. Intell. 86, 1–10 (2019). https://doi.org/10.1016/j.engappai.2019.08.013

  11. Frank, E., Hall, M.A., Witten, I.H.: The WEKA Workbench. Online Appendix for Data Mining: Practical Machine Learning Tools and Techniques, 4th edn.. Morgan Kaufmann (2016)

    Google Scholar 

  12. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer, New York (2009). DOI: https://doi.org/10.1007/978-0-387-84858-7

  13. Hentunen, A., Lehmuspelto, T., Suomela, J.: Time-domain parameter extraction method for thévenin-equivalent circuit battery models. IEEE Trans. Energy Conversion 29(3), 558–566 (2014). https://doi.org/10.1109/TEC.2014.2318205

    Article  Google Scholar 

  14. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2(5), 359–366 (2003). https://doi.org/10.1016/0893-6080(89)90020-8

    Article  MATH  Google Scholar 

  15. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Networks 4(2), 251–257 (2003). https://doi.org/10.1016/0893-6080(91)90009-T

    Article  Google Scholar 

  16. Klein, R., Chaturvedi, N.A., Christensen, J., Ahmed, J., Findeisen, R., Kojic, A.: Electrochemical model based observer design for a lithium-ion battery. IEEE Trans. Control Syst. Technol. 21(2), 289–301 (2013). https://doi.org/10.1109/TCST.2011.2178604

    Article  Google Scholar 

  17. Koza, J.K.: Genetic programming as a means for programming computers by natural selection. Statist. Comput. 4, 87–112 (1994). https://doi.org/10.1007/BF00175355

    Article  Google Scholar 

  18. Li, Y., et al.: Model order reduction techniques for physics-based lithium-ion battery management: a survey. IEEE Ind. Electron. Mag. 16(3), 36–51 (2022). https://doi.org/10.1109/MIE.2021.3100318

    Article  Google Scholar 

  19. Luke, S., Spector, L.: A comparison of crossover and mutation in genetic programming. Genetic Programming 97, 240–248 (1997)

    Google Scholar 

  20. Madani, S.S., Schaltz, E., Knudsen Kær, S.: An electrical equivalent circuit model of a lithium titanate oxide battery. Batteries (MDPI) 5(1) (2019). https://doi.org/10.3390/batteries5010031

  21. Ng, M.F., Zhao, J., Yan, Q., et al.: Predicting the state of charge and health of batteries using data-driven machine learning. Nat. Mach. Intell. 2, 161–170 (2020). https://doi.org/10.1038/s42256-020-0156-7

    Article  Google Scholar 

  22. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  23. Rumelhart, D., Hinton, G., Williams, R.: Learning representations by backpropagating errors. Nature 323, 533–536 (1986). https://doi.org/10.1038/323533a0

    Article  MATH  Google Scholar 

  24. Schröer, P., van Faassen, H., Nemeth, T., Kuipers, M., Sauer, D.U.: Challenges in modeling high power lithium titanate oxide cells in battery management systems. J. Energy Storage 28 (2020). https://doi.org/10.1016/j.est.2019.101189

  25. Shukla, A., Pandey, H.M., Mehrotra, D.: Comparative review of selection techniques in genetic algorithm. In: International Conference on Futuristic Trends on Computational Analysis and Knowledge Management, pp. 515–519 (2015). https://doi.org/10.1109/ABLAZE.2015.7154916

  26. Stoyka, K., Di Capua, G., Femia, N.: A novel AC power loss model for ferrite power inductors. IEEE Trans. Power Electron. 34(3), 2680–2692 (2019). https://doi.org/10.1109/TPEL.2018.2848109

    Article  Google Scholar 

  27. Stroe, D.I., Swierczynski, M., Stroe, A.I., Knudsen Kær, S.: Generalized Characterization methodology for performance modelling of lithium-ion batteries. Batteries (MDPI) 37(2) (2016). https://doi.org/10.3390/batteries2040037

  28. Yao, H., Jia, X., Wang, B., Guo, B.: A new method for estimating lithium-ion battery capacity using genetic programming combined model. In: 2019 Prognostics and System Health Management Conference, pp. 1–6 (2019). https://doi.org/10.1109/PHM-Qingdao46334.2019.8942970

  29. Yao, H., Jia, X., Zhao, Q., Cheng, Z.-J., Guo, B.: Novel lithium-ion battery state-of-health estimation method using a genetic programming model. IEEE Access 8, 95333–95344 (2020). https://doi.org/10.1109/ACCESS.2020.2995899

    Article  Google Scholar 

  30. Zadeh, L.: Optimality and non-scalar-valued performance criteria. IEEE Trans. Autom. Control 8(1), 59–60 (1963). https://doi.org/10.1109/TAC.1963.1105511

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by MOST, the Italian National Center for Sustainable Mobility, funded by the Italian Ministry of University and Research (MUR) in 2022–2025, by the “Innovazione per il Controllo avanzato e la gestione di Grid Energetiche” project within the Puglia FESR 2014 – 2020 (CUP B81B22000020007), and by Power4Future S.p.A. under the frame of the grant CDS000944, funded by the Italian Ministry of Enterprises and Made in Italy (MISE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Fontanella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Di Capua, G. et al. (2023). Using Genetic Programming to Learn Behavioral Models of Lithium Batteries. In: Correia, J., Smith, S., Qaddoura, R. (eds) Applications of Evolutionary Computation. EvoApplications 2023. Lecture Notes in Computer Science, vol 13989. Springer, Cham. https://doi.org/10.1007/978-3-031-30229-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30229-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30228-2

  • Online ISBN: 978-3-031-30229-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics