Skip to main content

A Unifying View on Recombination Spaces and Abstract Convex Evolutionary Search

  • Conference paper
  • First Online:
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2019)

Abstract

Previous work proposed to unify an algebraic theory of fitness landscapes and a geometric framework of evolutionary algorithms (EAs). One of the main goals behind this unification is to develop an analytical method that verifies if a problem’s landscape belongs to certain abstract convex landscape classes, where certain recombination-based EAs (without mutation) have polynomial runtime performance. This paper advances such unification by showing that: (a) crossovers can be formally classified according to geometric or algebraic axiomatic properties; and (b) the population behaviour induced by certain crossovers in recombination-based EAs can be formalised in the geometric and algebraic theories. These results make a significant contribution to the basis of an integrated geometric-algebraic framework with which analyse recombination spaces and recombination based EAs.

The full version of this article, including some omitted proofs, can be found online at https://www.researchgate.net/profile/Marcos_Diez_Garcia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Geometric mutation is defined by requiring that the mutated offspring belongs to the d-metric ball of its single parent.

  2. 2.

    Certain crossover families (e.g. one-point and masked crossovers) have logarithmic upper-bounds for the closure iteration number, with increasing dimension of the search space [16]. In short, idempotency does not require excessively many iterations.

  3. 3.

    Notice that a crossover section with all parent’s genes is also a valid contiguous section.

References

  1. García, M.D., Moraglio, A.: Bridging elementary landscapes and a geometric theory of evolutionary algorithms: first steps. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018, Part II. LNCS, vol. 11102, pp. 194–206. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_16

    Chapter  Google Scholar 

  2. Moraglio, A., Sudholt, D.: Principled design and runtime analysis of abstract convex evolutionary search. Evol. Comput. 25(2), 205–236 (2017)

    Article  Google Scholar 

  3. Moraglio, A.: Towards a Geometric Unification of Evolutionary Algorithms. Doctoral thesis, University of Essex, Essex, UK, November 2007

    Google Scholar 

  4. Stadler, P.F.: Towards a theory of landscapes. In: López-Peña, R., Waelbroeck, H., Capovilla, R., García-Pelayo, R., Zertuche, F. (eds.) Complex Systems and Binary Networks. Lecture Notes in Physics, vol. 461, pp. 78–163. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0103571

    Chapter  Google Scholar 

  5. Stadler, P.F., Wagner, G.P.: Algebraic theory of recombination spaces. Evol. Comput. 5(3), 241–275 (1998)

    Article  Google Scholar 

  6. Stadler, P.F., Seitz, R., Wagner, G.P.: Population dependent fourier decomposition of fitness landscapes over recombination spaces: evolvability of complex characters. Bull. Math. Biol. 62(3), 399–428 (2000). Society for Mathematical Biology

    Article  Google Scholar 

  7. van de Vel, M.L.J.: Theory of Convex Structures. North-Holland Mathematical Library, North-Holland (1993)

    MATH  Google Scholar 

  8. Moraglio, A., Poli, R.: Inbreeding properties of geometric crossover and non-geometric recombinations. In: Stephens, C.R., Toussaint, M., Whitley, D., Stadler, P.F. (eds.) FOGA 2007. LNCS, vol. 4436, pp. 1–14. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73482-6_1

    Chapter  MATH  Google Scholar 

  9. Farber, M., Jamison, R.E.: Convexity in graphs and hypergraphs. SIAM J. Algebr. Discret. Meth. 66(3), 231–247 (1986). Society for Industrial and Applied Mathematics

    MathSciNet  MATH  Google Scholar 

  10. Moraglio, A.: Abstract convex evolutionary search. In: Proceedings of the 11th Workshop on Foundations of Genetic Algorithms, FOGA 2011, pp. 151–162. ACM, Schwarzenberg, Austria (2011)

    Google Scholar 

  11. Changat, M., et al.: Topological Representation of the Transit Sets of k-Point Crossover Operators. arXiv:1712.09022 (2017)

  12. Gitchoff, P., Wagner, G.P.: Recombination induced hypergraphs: a new approach to mutation-recombination isomorphism. Complexity 2(1), 37–43 (1996)

    Article  MathSciNet  Google Scholar 

  13. Moraglio, A., Togelius, J., Silva, S.: Geometric differential evolution for combinatorial and programs spaces. Evol. Comput. 21(4), 591–624 (2013)

    Article  Google Scholar 

  14. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence. Complex Adaptive Systems. MIT Press, Cambridge (1992, reprint edn)

    Google Scholar 

  15. Stadler, B.M.R., Stadler, P.F.: Generalized topological spaces in evolutionary theory and combinatorial chemistry. J. Chem. Inf. Comput. Sci. 42(3), 577–585 (2002). American Chemical Society

    Article  Google Scholar 

  16. Mitavskiy, B.: Crossover invariant subsets of the search space for evolutionary algorithms. Evol. Comput. 12(1), 19–46 (2004)

    Article  Google Scholar 

  17. Pelayo, I.M.: Geodesic Convexity in Graphs. Springer Briefs in Mathematics. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-8699-2

    Book  MATH  Google Scholar 

  18. Davis, L.: Applying adaptive algorithms to epistatic domains. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence-Volume 1, IJCAI 1985, pp. 151–162. Morgan Kaufmann Publishers Inc. (1985)

    Google Scholar 

  19. Thorhauer, A., Rothlauf, F.: On the bias of syntactic geometric recombination in genetic programming and grammatical evolution. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO 2015, pp. 1103–1110. ACM, New York, NY, USA (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Diez García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

García, M.D., Moraglio, A. (2019). A Unifying View on Recombination Spaces and Abstract Convex Evolutionary Search. In: Liefooghe, A., Paquete, L. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2019. Lecture Notes in Computer Science(), vol 11452. Springer, Cham. https://doi.org/10.1007/978-3-030-16711-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16711-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16710-3

  • Online ISBN: 978-3-030-16711-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics