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Abstract Previous work proposed to unify an algebraic theory of fitness
landscapes and a geometric framework of evolutionary algorithms (EAs).
One of the main goals behind this unification is to develop an analyti-
cal method that verifies if a problem's landscape belongs to certain ab-
stract convex landscape classes, where certain recombination-based EAs
(without mutation) have polynomial runtime performance. This paper
advances such unification by showing that: (a) crossovers can be for-
mally classified according to geometric or algebraic axiomatic proper-
ties; and (b) the population behaviour induced by certain crossovers in
recombination-based EAs can be formalised in the geometric and alge-
braic theories. These results make a significant contribution to the basis
of an integrated geometric-algebraic framework with which analyse re-
combination spaces and recombination based EAs.

Keywords: Abstract convex landscape · Abstract convex search ·
Convex hull closure · Geometric crossover · Recombination P-structure

1 Introduction

An open challenge in evolutionary computing is to identify (without running any
experiments) if a fitness landscape class is well matched with an evolutionary
algorithm (EA) class, where good performance guarantees can be provided. Pre-
vious work [1] laid the foundations for an analytical fitness landscape method
that determines if a problem's landscape belongs to certain abstract convex
landscape classes, where certain recombination-based EAs exhibit polynomial
runtime [2]. The theories we began unifying, namely a general geometric frame-
work (GF) of EAs [3] and an algebraic theory of fitness landscapes known as
elementary landscapes (EL) [4], complement each other towards such challenge
even if they originally pursue distinct aims.

On the one hand, GF naturally frames (geometric) mutation and recombina-
tion operators within the same search space structure when viewed as a metric
space. Among the many benefits of this approach we find: having a clear way
of comparing mutation and crossover in a fitness landscape, the formal design
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and analysis of EAs across many representations (real vectors, sets, permuta-
tions, syntactic trees, etc.), and generalisations of particle swarm optimisation
and genetic programming with important applications [3]. Besides, there has
been a recent development of general runtime analysis in GF [2]. Particularly,
geometric-crossover EAs (without mutation) are proved to find optimal solutions
in polynomial time by restricting to classes of problems with certain abstract
convex landscapes. However, GF lacks analytic tools to tell whether a given
landscape is abstractly convex.

On the other hand, EL provides algebraic means to analyse combinatorial
landscapes. Some of them, called ‘elementary’, have received special attention
because: they satisfy desirable conditions related to smoothness (i.e. correlation
between fitness values) and structure of local optima, and they are present in im-
portant NP-complete problems (e.g. travelling salesman, graph colouring, weight
partitioning, etc.). However, the algebraic structures known as P-structures that
model crossover are not so readily intuitive as geometric crossovers in GF [5].
Furthermore, studies on population-based search algorithms using P-structures
are scarce [6], and no runtime analysis has been done in this algebraic context.

Recombination landscapes are not essentially different in both theories and
can be unified, meaning that EL can be applied consistently to analyse certain
landscapes arising in GF [1]. This paper extends their unification, by showing
that the algebraic approach of EL admits dual formalisations of two fundamen-
tal aspects about crossovers and their behaviour in GF: classification of geomet-
ric crossovers and abstract convex search (accomplished by geometric-crossover
EAs). The main contributions are:

1. Proving the existence of two broad classes of crossovers: those which are
recombination P-structures, including geometric crossovers [1], and those
which are neither geometric nor recombination P-structures. This justifies
that a unification of GF and EL would not be an ‘empty’ theory (i.e. a theory
encompassing all recombination operators).

2. A formalisation of abstract convex search in EL, describing the population-
behaviour of recombination P-structure EAs; a class that is larger than
complete geometric-crossover EAs. It also provides a characterisation of
population-based EAs less restrictive than the existing one in EL.

This paper is organised as follows. Section 2 introduces recombination and
abstract convex search in GF. Section 3 introduces recombination in EL and
other concepts necessary to unify abstract convex search. Section 4 presents the
main results. Section 5 summarises this work and suggests future research.

2 Recombination in the Geometric Framework

Moraglio proposed a general geometric framework (GF) of EAs, independent
of the problem and representation of solutions, solely based on an axiomatic
definition of distance across metric spaces [3]. In GF, the search space of config-
urations (representing candidate solutions) is defined as a metric space (X, d),



with configuration set X and metric d : X ×X → [0,∞). Thus, a metric space
constitutes the structure of a fitness landscape (X, d, f) with an arbitrary real-
valued fitness function f : X → R. This geometric view of the search space
allows mutation1 and crossover operators to be conceived within the same space
structure, by means of metric balls and metric segments respectively.

Definition 1 (Metric ball and segment [7]). Let (X, d) be any metric space.
A closed ball centred at point x ∈ X with radius r ∈ R≥0 is defined as Bd[x; r] :=
{y ∈ X | d(x, y) ≤ r}. A geodesic interval or metric segment is defined as
[x; y]d := {z ∈ X | d(x, z) + d(z, y) = d(x, y)}, where x, y ∈ X are called the
extremes of the segment and d(x, y) its length.

Many kinds of crossovers can be modelled in GF (e.g. multi-parental or prob-
abilistic). For notational simplicity, we assume crossovers taking two parents and
returning one offspring; and, denote by Im[ξ(·, ·)] the set of all offspring produced
with non-zero probability by a crossover ξ, called the image set.

Definition 2 ([Complete] geometric crossover [3]). Let (X, d) be any met-
ric space. A crossover operator ξ is a geometric crossover for (X, d), if all offspring
belong to the parents' metric segment. That is, ∀x, y ∈ X : Im[ξ(x, y)] ⊆ [x; y]d.
If ∀x, y ∈ X : Im[ξ(x, y)] = [x; y]d, then it is called complete geometric crossover.

Example 1 (Uniform geometric crossover). Let a Hamming metric space
(Hn

q , dH) be defined by a set Hn
q := {0, 1, . . . , q−1}n of n-dimensional Hamming

sequences on a q-ary alphabet for q ≥ 2, and the Hamming metric dH. Traditional
uniform crossover, denoted Uniform(x, y) for any parents x, y ∈ Hn

q , is an
example of a crossover that is geometric and also complete. For instance, consider
parents 100, 001 ∈ H3

2. Then, we have Im[Uniform(100, 001)] = [100; 001]dH .
The same holds for other pair of parents as well [3].

Example 2 (Non-complete geometric crossover). Consider the traditional
one-point crossover on Hamming sequences, but returning only a single offspring
with its ‘head’ coming from the first parent and its ‘tail’ from the second parent:
OnePoint(i) : Hn

q ×Hn
q → Hn

q , (x, y) 7→ z = (x1, . . . , xi−1, yi, . . . , yn); where z
is offspring of parents x and y, at crossover point i: 1 ≤ i ≤ n. Notice for example,
OnePoint(2)(000, 111) = 011 is not generated by OnePoint(i)(111, 000) for
any 1 ≤ i ≤ 3. Therefore, it is not a complete geometric crossover, because it is
asymmetric, and still is geometric since offspring belong to parents segment [3].

However, some crossovers are not geometric. That is, for any metric on a given
set X, there always exist some offspring that lie outside the metric segment of
some parents. See Sect. 4.1 for examples of non-geometric crossovers.

Proposition 1 (Existence of non-geometric crossovers [3,8]). The set of
non-geometric crossovers GX is not empty. Therefore, recombination operators
split into two proper classes: geometric GX and non-geometric GX . The class of
complete geometric crossovers, GX -complete, is a proper subclass of GX .
1 Geometric mutation is defined by requiring that the mutated offspring belongs to
the d-metric ball of its single parent.



To prove that a crossover is geometric, it suffices to find a distance where
Definition 2 holds. Proving non-geometricity is harder, as we would have to
test arbitrarily many distances before reaching a conclusion, which is infeasible.
Fortunately, we can circumvent this obstacle using the axiomatic inbreeding
properties fulfilled by all geometric crossovers regardless of the metric space [8]:
if we find a single counterexample (i.e. instance of a metric space) where any of
these properties fails, then such crossover is automatically not geometric for any
metric. Proposition 2 states one of the inbreeding properties that we use later
for our results in Sect. 4.

Proposition 2 (Convergence property of geom. crossovers [8]). If χ is
a geometric crossover and z is a child of x and y, then the recombination χ(x, z)
cannot produce the other parent y, unless z = y.

Achieving generality in a theory may come at the expense of depth, only
being able to assert trivial or tautological statements. Proposition 1 justifies
that this is not the case in GF, because it is not a theory of all crossovers,
rather it restricts to geometric crossovers only. Moreover, this crossover class is
relevant, since many crossovers across different representations are geometric,
and polynomial runtime guarantees are possible for geometric-crossover EAs in
problem classes with certain abstract convex fitness landscapes [3,2]. Essentially,
the abstract convex nature of landscapes is what enables good performance of
geometric-crossover EAs.

2.1 Abstract Convexity

To formalise the abstract convex search performed by geometric-crossover EAs
(Sect. 2.2), a more general notion of convexity than that of traditional Euclidean
spaces is required. A natural choice would be geodesic convexity, since GF un-
derstands recombination in terms of geodesic intervals.

Definition 3 (Geodesic convex space [7]). Let (X, d) be a metric space. A
point z ∈ X is geodesically between two points x, y ∈ X, if and only if z ∈ [x; y]d.
Then, a subset C ⊆ X is geodesically convex if and only if all points geodesically
between any two points x and y in C are also in C, that is ∀x, y ∈ C : [x; y]d ⊆ C.
The family C of all geodesically convex subsets C on X is called the geodesic
convexity of (X, d), and the pair (X, C) a geodesically convex space.

Geodesic convexity is not equivalent to convexity (Definition 4); the latter
being more abstract, where metrics are undefined and the concepts of neigh-
bourhood or nearness are stated in terms of (convex hull) closure operators in a
set-theoretical fashion. We explain next why geodesic convexity is problematic
in our context.

Definition 4 (Convexity space [7]). A family C of subsets of a set X is called
a convexity on X if: (I) the empty set ∅ and the universal set X are in C; (II) C
is stable under arbitrary intersections, that is if D ⊆ C, then

⋂
D ∈ C; and,

(III) C is stable under arbitrary nested unions, that is if D ⊆ C is totally ordered



by inclusion, then
⋃
D ∈ C. The pair (X, C) is called convexity space; and the

members of C are called convex sets.

Definition 5 (Convex hull closure [7]). Let (X, C) be a convexity space. The
convex hull closure of a set A, co(A) :=

⋂
{C | A ⊆ C ∈ C}, is the intersection of

all convex supersets C ∈ C, or equally the smallest convex set, that includes A.

Abstract convex search relies on convexity of sets, and precisely the prob-
lem with geodesic convexity is that it cannot guarantee across representations
(i.e. metric spaces) that a population set would be a convex set as in Defi-
nition 4. This is because metric segments do not share the convexity proper-
ties of convex hulls. In other words, metric segments need not be convex hulls:
[x; y]d ⊆ co({x, y}) for all x, y ∈ X [7]. Convexity spaces where equality holds
(i.e. geodesic convex sets equal the convex hull of their extreme points) are called
convex geometries [9].

2.2 Abstract Convex Search

GF postulates that the core behaviour of (recombination-based) EAs can be de-
scribed axiomatically across representations and problems, and, ultimately, the
differences between EAs stem from the representation of solutions and adequacy
of search operators [3,10,2]. To support this claim, GF proved that the main
operations of geometric-crossover EAs (i.e. selection, geometric crossover and
replacement) produce new individuals that always belong to the convex hull of
their ancestors; regardless of the representation, problem, geometric crossover,
offspring probability distribution imposed on the geometric crossover, selection
and replacement strategies [3,10]. This relationship between parents and off-
spring via convex hulls is the key property characterising the population be-
haviour of any geometric-crossover EA through generations (Fig. 1).

Proposition 3 (Abstract convex search [3]). Let (X, d) be a metric space
and Pt ⊆ X a population at generation t. For any EA doing the cycle selection-
geometric crossover-replacement: co(P0) ⊇ co(P1) ⊇ · · · ⊇ co(Pt) ⊇ co(Pt+1).

P co(P ) Psel

co(P ) ⊇ co(Psel) co(P ) ⊇ co(Psel) ⊇ Poffs co(P ) ⊇ co(Poffs)

Fig. 1. Abstract convex search in two-dimensional Euclidean space: relationship be-
tween parent P , mating pool after selection Psel and offspring Poffs populations, and
their respective convex hulls co(P ), co(Psel) and co(Poffs).



3 Recombination in Elementary Landscapes Theory

Stadler proposed an algebraic theory of fitness landscapes known as elementary
landscapes (EL) [4]. If the geometric approach of GF (Sect. 2) allows us to
seamlessly understand mutation and recombination structures in the same space,
in EL the situation is more complicated. Originally, EL defines the search space
structure (X,N ) in terms of (mutation) neighbourhoods N : X → Xk mapping
an individual to some k > 0 possible neighbours (e.g. bit-flip mutation). This
naturally leads to formalise the search space as a graph, with the structure given
by the adjacency matrix. To model recombination, EL uses an algebraic notion
of interval (Definition 6) that captures general recombination structures, not just
genetic crossovers [11,12].

Definition 6 (Recombination P-structure [5]). Let X be a non-empty fi-
nite set of configurations, P(X) its power set and an operatorR : X×X → P(X)
mapping a pair of parents into a set of possible offspring. We call (X,R) a recom-
bination P-structure if ∀x, y, z ∈ X: (I) fix-point: R(x, x) = {x}; (II) symmetry:
R(x, y) = R(y, x); (III) null-recombination: {x, y} ⊆ R(x, y); and (IV) size–
monotonicity: if z ∈ R(x, y), then |R(x, z)| ≤ |R(x, y)|.

Example 3 (Uniform recombination P-structure). Let parents x, y ∈ Hn
q

be arbitrary Hamming sequences. Then, RΩ(x, y) := {(z1, . . . , zn) | zi ∈ {xi, yi},
1 ≤ i ≤ n} is a recombination P-structure [11]. For instance, consider x := 100
and y := 001 inH3

2, then we have offspring:RΩ(100, 001) = {100, 001, 000, 101}.

Example 4 (One-point recombination P-structure). Let parents x, y ∈
Hn

q be arbitrary Hamming sequences. Recall the single-offspring one-point cross-
over OnePoint(i) : Hn

q × Hn
q → Hn

q , (x, y) 7→ z = (x1, . . . , xi−1, yi, . . . , yn),
1 ≤ i ≤ n, from Example 2. Then, the one-point recombination P-structure
is R1(x, y) :=

⋃
1≤i≤n{OnePoint(i)(x, y),OnePoint(i)(y, x)} [12]. For exam-

ple, R1(000, 111) =
⋃

1≤i≤3{OnePoint(i)(000, 111),OnePoint(i)(111, 000)}
= {0, 1}3 \ {010, 101}.

However, recombination, acting on pairs of parents, does not have a natural
interpretation in graphs. Instead, [12,5] propose hypegraphs (Definition 7), where
vertices remain as in graphs but edges are generalised to represent the offspring
sets produced by recombining pairs of parents. Figure 2 shows an example for
three-dimensional binary sequences and the uniform recombination P-structure
RΩ, other cases are difficult to visualise clearly.

Definition 7 (Hypergraph [5]). Let (X,R) be a recombination P-structure.
Its hypergraph (X,E ) has vertex set X and hyperedge set E := {R(x, y) |
R(x, y) 6= ∅ ∧ x, y ∈ X}, where offspring R(x, y) represent a hyperedge.

Despite recombination search spaces are then formalised using hypergraphs,
they are comparable (i.e. topologically equivalent) to mutation spaces on graphs
under certain conditions [5].



Figure 2 also illustrates via hyperedges of RΩ hypergraph the following coin-
cidence: offspring produced by the uniform recombination P-structure RΩ and
Hamming segments are equivalent [11], and, independently, [10,13] show it for
Hamming segments, convex hulls and traditional schema [14]. For instance, the
schema 0** corresponding to the hyperedge {000, 001, 010, 011} is obtained by
RΩ(010, 001), [010; 001]dH or co({010, 001}).

RΩ(110, 101) = RΩ(100, 111) =
[110; 101]dH = [100; 111]dH = 1**

RΩ(010, 001) = RΩ(000, 011) =
[010; 001]dH = [000; 011]dH = 0**

RΩ(000, 100) = [000, 100]dH = *00

Fig. 2. Hypergraph of the uniform recombination P-structure RΩ in three-dimensional
binary Hamming space: vertices are ‘circles’, hyperedges are both ‘solid’ and ‘dotted-
enclosing lines’ (left). Enclosed vertices define hyperedges, not the ‘lines shapes’ or
their colours. Examples of specific hyperedges, offspring of RΩ and uniform geometric
crossover, and corresponding schema (right).

3.1 Crossover Random Walk

Discrete-time dynamical systems may be used to model the behaviour of recom-
bination P-structure EAs, but this is often analytically impractical for realistic
EAs [6]. Instead, the model adopted in EL is a crossover random walk, a variation
on the simple random walk based on mutation moves: start with a prescribed
‘father’ x0 in a population, mate it with a ‘mother’ y0 randomly sampled from
the population to produce a ‘child’ z1, then repeat the cycle using the child as
father in the next recombination (Fig. 3) [4,5,6].

z0 = x0

y0

z1

y1

z2

yn

zn zn+1

R(x0, y0) R(z1, y1) R(zn, yn)

Fig. 3. Schematic representation of a crossover-walk over time.

In this manner, the sequence of fathers (or children) is a crossover ran-
dom walk. The main reason [4,5,6] use this model is that the generalised adja-
cency matrices of hypergraphs, associated to recombination P-structures, can be



seen as transition matrices of a Markov process. That is the population search
behaviour induced by recombination P-structures can be studied in terms of
Markov processes. However, [6] makes two important assumptions that cause the
model not to be general. First, it is assumed that there exists none or little sta-
tistical interdependence between genes (i.e. epistasis), and low selection genetic
pressure; otherwise, the analysis of population behaviour is impractical. Sec-
ondly, it is formalised exclusively for traditional string crossovers (e.g. one-point
or uniform), not all crossovers that can be described by general recombination
P-structures. Generalising this model remains as an open problem.

3.2 Bridge to the Geometric Framework

Figure 2 hints at a close relationship between geometric crossovers and re-
combination P-structures. This is not coincidental. Indeed, complete geometric
crossovers are also recombination P-structures (Proposition 4). Note it does not
hold for general geometric crossovers, as [1] unwittingly claimed. For example,
any geometric crossover where offspring never include the parents will not fulfil
the null-recombination axiom (Definition 6), also the crossover in Example 2 is
geometric but not a recombination P-structure due to asymmetry.

Proposition 4 (GX -complete crossovers are recomb. P-structures [1]).
Let (X, d) be any metric space with finite set X, and any crossover ξ(x, y) :=
[x; y]d for arbitrary parents x, y ∈ X. Then, ∀x, y ∈ X and any metric d, (X, ξ)
is a recombination P-structure.

Besides, recombination P-structures can be used to define closures that are
equivalent to convex hulls [11,12]. One may attempt to define one by taking the
union over all pairs of points for a given set, and collect their intervals given by
a P-structure (Fig. 4b). Precisely, this is the closure clR(S) :=

⋃
x,y ∈S R(x, y),

where S ⊆ X for a general recombination P-structure (X,R) [12]. However,
it does not equal the convex hull (Fig. 4a) because, unlike convex hulls, the
closure clR is not idempotent [15,7]. In general clR(clR(S)) 6= clR(S), compare
Fig. 4c and Fig. 4b. See Fig. 5 for an example on the one-point recombination
P-structure R1. Since clR is not idempotent, [12] suggests to define a recursive
version, for some natural number k ∈ N0, as follows:

clkR(S) :=


S if k = 0,

clR(S) =
⋃

x,y∈S

R(x, y) if k = 1,

clk−1
R (clR(S)) if k ≥ 2 .

(1)

The smallest k that makes clkR idempotent is the closure iteration number2,
denoted cin(S), of the subset S ⊆ X: cin(S) := mink∈N0 cl

k+1
R (S) = clkR(S); and

2 Certain crossover families (e.g. one-point and masked crossovers) have logarithmic
upper-bounds for the closure iteration number, with increasing dimension of the
search space [16]. In short, idempotency does not require excessively many iterations.



the maximum closure iteration number of X is cin∗(X) := maxS⊆X cin(S) [17].

B

A D

C

X

co(S)
(a)

B

A D

C

X

clR(S) =
⋃

x,y∈S
R(x, y)

(b)

B

A D

C

X

x′

y′

clR(clR(S)) =
⋃{
R(x′, y′) | x′, y′ ∈

⋃
x,y∈S

R(x, y)
}

(c)

Fig. 4. Schematic comparison of (a) the convex hull closure, shaded in ‘grey’; (b)
recombination P-structure closure clR, in ‘solid lines’; and, (c) the twice-iterated cl2R,
in ‘solid and dotted lines’. For a given subset S := {A, B, C, D} of some space X.

111

000 000100 100

001 001 101

010

011 011111

110 110 Closure Iteration Numbers
(iterations until idempotency)

cinR1({000, 111}) = 2
cinRΩ({000, 111}) = 1

cl1R1({000, 111}) ∪ {010, 101} = cl2R1({000, 111}) = cl1RΩ({000, 111}) = {0, 1}3

Fig. 5. Space covered on the hypercube, with set of parents {000, 111}, by: one-point
recombination closure with one iteration cl1R1 (left), uniform recombination closure
cl1RΩ and one-point twice-iterated cl2R1 (center). Super-indices indicate number of clo-
sure iterations, and sub-indices the recombination P-structure chosen.

However, what [12] does not explicitly notice is that clkR (Eq. 1) is an equiva-
lent definition of the convex hull closure, not just for recombination P-structures
but more generally for ‘relaxed’ recombination P-structures satisfying only the
null-recombination and symmetry axioms (also known as interval spaces).

Proposition 5 (Convex hull ≡ recomb. P-structure closure [17,7]). Let
(X,R) be a recombination P-structure. Then, for any subset S ⊆ X and any
natural number k ≥ cin(S): co(S) = clkR(S).

4 Main Results

This section contains the two main contributions of this paper. Section 4.1
shows that the geometric versus non-geometric crossovers classification can be
expanded by incorporating new recombination P-structures classes. Section 4.2
formalises abstract convex search for recombination P-structure EAs.

4.1 Axiomatic Classification of Crossovers

Proposition 1 justifies that GF is not a futile theory encompassing all crossovers,
because not all of them are geometric. Since recombination P-structures may be



a larger class than complete geometric crossovers, as Proposition 4 suggests,
three non-trivial relevant questions that we consider here are: (Q1) do recombi-
nation P-structures encompass all crossovers, thus making GF-ELs unification
futile; (Q2) is there any crossover that is a recombination P-structure but not
geometric; and, (Q3) how recombination P-structures and geometric crossover
classes compare to each other. We tackle them in order as follows: Lemmas 1
and 2 answer question (Q1) negatively; Theorem 1 together with Lemma 5 and
Theorem 2 answer question (Q2) positively; and, Theorem 3 for question (Q3).

Let us begin (Q1) by proving that Koza subtree swap crossover, which was
proved to be non-geometric [8], is not a recombination P-structure.

Lemma 1. Koza subtree swap crossover is not a recombination P-structure.

Proof. It is not geometric since it does not fulfil the purity inbreeding property
(i.e. recombining a parent with itself is the parent itself) [8]. Therefore, it does
not fulfil the fix-point axiom of recombination P-structures R(x, x) = {x}. ut

Davis order crossover is non-geometric [8]. Now, we prove it is not a recom-
bination P-structure, because it fails the symmetry axiom (Example 5); and,
neither for a symmetric version (Definition 9), because it is not size-monotonic
(Example 6).

Definition 8 (Davis order crossover [18]). Let individuals x, y, z ∈ Sn be
permutations of length n of a finite set S. Pick at random loci i and j such
that 1 ≤ i ≤ j ≤ n, as indices delimiting the crossover section3. Then, from the
first parent x (the ‘cutter’) copy into offspring positions zi, . . . , zj the crossover
section xi, . . . , xj . Finally, from left to right, fill in order the remaining positions
of z with the genes of the second parent y (the ‘filler’) except those that have been
copied. We denote this crossover, parametrised with crossover section indices i
and j, by Davis(i, j) : Sn × Sn → Sn, (x, y) 7→ z = Davis(i, j)(x, y).

Example 5 (Davis order crossover is asymmetric). Let parents
x := 312 (the ‘cutter’) and y := 123 (the ‘filler’). Consider offspring 213
= Davis(2, 2)(312, 123), where 1 is the crossover section. Notice that 213 cannot
be generated by Davis(i, j)(123, 312) for any crossover section indices i and j,
because it is not possible to generate 2 at the first position. Either the second
parent places 3 or 1 as fillers, or the first parent places 1 with the crossover sec-
tion. Therefore, Davis(i, j)(312, 123) 6= Davis(i, j)(123, 312), for 1 ≤ i ≤ j ≤ 3.

Example 4 demonstrated that if a crossover is asymmetric, it does not mean
there are no (symmetric) recombination P-structures based on it. In fact, that
example shows how symmetry is enforced on recombination P-structures for tra-
ditional genetic crossovers (e.g. two-point or uniform crossovers) [12,5]. Likewise,
we may define a symmetric Davis order crossover.

3 Notice that a crossover section with all parent's genes is also a valid contiguous
section.



Definition 9 (Symmetric Davis order crossover). Let arbitrary parents
x, y ∈ Sn be permutations of length n of a finite set S. Then, s-Davis(x, y) :=⋃

1≤i≤j≤n{Davis(i, j)(x, y),Davis(i, j)(y, x)} is what we call symmetric Davis
order crossover ; producing all possible offspring of parents x and y, over all
possible crossover sections.

Example 6 (Symmetric Davis order crossover is not size-monotonic).
Using the same parents as in the previous example, we have s-Davis(312, 123)
= {312, 123, 321, 132, 213}. That is |s-Davis(312, 123)| = 5. Recombining now
parent x := 312 with offspring z := 213 we have s-Davis(312, 213) = {231} ∪
s-Davis(312, 123). Therefore, |s-Davis(312, 213)| = 6 > 5 = |s-Davis(312, 123)|,
so s-Davis is not size-monotonic.

Lemma 2. Neither Davis order crossover (Davis) nor its symmetric version
(s-Davis) are recombination P-structures.

Proof. Examples 5 and 6 provide counterexamples respectively. ut

Therefore, the answer to (Q1) is negative by Lemmas 1 and 2, because GF-
EL unification is not a theory encompassing all crossovers. Regarding question
(Q2), we show next two examples of crossovers that are not geometric but are
recombination P-structures, at least in Hamming graphs: the all-paths crossover
(Definition 10), and the intersecting-balls crossover (Definition 11). Note that
these crossovers are not restricted to a particular representation, like Uniform
crossover on strings, so one must be specified when proving whether they are
geometric crossovers or recombination P-structures: choose a graph for all-paths,
or a metric space for intersecting-balls.

Definition 10 (All-paths crossover [11]). Let G be a connected graph with
vertex set V (G). Let also x, y, z ∈ V (G). Then, we define AllPaths(x, y) := {z |
z lies on any x-y path in G}, as the all-paths crossover that returns offspring z
lying on any path between parents x and y.

Example 7 (All-paths crossover in hypercubes). Let (H3
2, dH) be the Ham-

ming metric space of the three-dimensional hypercube graph. If parents are iden-
tical, offspring equal parents: AllPaths(001, 001) = 001. But, if the parents are
different, then offspring are the whole vertex set: AllPaths(000, 001) = {0, 1}3.

Lemma 3. Let x, y ∈ Hn
q be distinct vertices of a Hamming graph. Then,

AllPaths(x, y) returns all sequences Hn
q as offspring.

Proof. We show constructively that all vertices in the Hamming graph are visited
by at least one path between x and y. List all vertices (v1, v2, . . . , vqn) in Hn

q

as a Grey code cyclic sequence; where two consecutive vertices are at Hamming
distance one, dH(vi, vi+1) = 1, and cyclic because the same holds for the first and
last vertices dH(v1, vqn) = 1. Since x, y ∈ Hn

q , and x 6= y, then there exist distinct
vi, vj ∈ Hn

q such that (v1, . . . , vi = x, . . . , vj = y, . . . , vqn). Then, p1 := (vi =
x, vi+1, . . . , vj−1, vj = y) and p2 := (vj = y, vj+1, . . . , vqn , v1, . . . , vi−1, vi = x)



are disjoint paths between x and y, because: both p1 and p2 start or end at x
and y, each pair of consecutive vertices is an edge since they are at Hamming
distance one, and are independent because the only common vertices are the
start or end vertices. Therefore, any vertex in Hn

q is visited by p1 or p2. ut

Theorem 1. Let (Hn
q , dH) be the Hamming metric space of an arbitrary Ham-

ming graph. Then, AllPaths(x, y) is not a geometric crossover, but it is a
recombination P-structure, for any parents x, y ∈ Hn

q .

Proof. Even if AllPaths and Uniform coincide in some trivial cases like n = 1
and n = 2 for q = 2, where the Hamming graph is isomorphic to the complete
graph K2 and cycle graph C4 respectively, AllPaths cannot be geometric be-
cause the convergence property (Proposition 2) does not hold in general, as it
can be deduced from Example 7. Now, let us prove that AllPaths is a recom-
bination P-structure:

(I) Fix-point: AllPaths(x, x) = {x}. It holds because the only path that can
begin and end at offspring x is x itself. Otherwise, cycles (i.e. loops) can be
formed, and AllPaths only returns paths not cycles.

(II) Symmetry: AllPaths(x, y) = AllPaths(y, x). It holds because AllPaths
is an interval function, which by definition are symmetric [11].

(III) Null-recombination: {x, y} ⊆ AllPaths(x, y). It holds because AllPaths
is an interval function, and all intervals include their extremes, here parents
x and y, as offspring [11].

(IV) Size-monotonicity: if z is offspring of AllPaths(x, y), then |AllPaths(x, z)|
≤ |AllPaths(x, y)|. If x = y, it is trivial because there is only one off-
spring: z = x = y. Assuming x 6= y, we have two cases. If z = x, then
|AllPaths(x, x)| = 1 ≤ |AllPaths(x, y)|. For z 6= x, note that AllPaths
returns offspring in all possible paths between parents and the Hamming
graph is connected, so all offspring (vertices) are visited by at least one path
(Lemma 3). Therefore, |AllPaths(x, z)| = qn ≤ qn = |AllPaths(x, y)|,
where qn is the number of vertices of a Hamming graph. ut

Definition 11 (Intersecting-balls crossover). Let (X, d) be any metric space
and arbitrary parents x, y ∈ X. Then, we define the intersecting-balls crossover
as Balls(d) : X × X → S ⊆ X, (x, y) 7→ Bd[x; d(x, y)] ∩ Bd[y; d(y, x)], para-
metrised with metric d.

Lemma 4 is necessary to justify that [19] used an equivalent definition of the
intersecting-balls crossover, which they suggested to be geometric when in fact
it is not necessarily geometric (Lemma 5).

Lemma 4. Rothlauf's crossover R(x, y) := {z | max{d(x, z), d(z, y)} ≤ d(x, y)}
is identical to Balls(d)(x, y), for any metric space (X, d) and any x, y, z ∈ X.

Proof. Follows directly: z ∈ R(x, y) ⇐⇒ d(x, z) ≤ d(x, y) and d(z, y) ≤ d(x, y)
⇐⇒ z ∈ (Bd[x; d(x, y)] ∩Bd[y; d(y, x)]) ⇐⇒ z ∈ Balls(d)(x, y). ut



Definition 12 (Hamming intersecting-balls crossover). Let (Hn
q , dH) be

any Hamming metric space and any x, y ∈ Hn
q . Then, the Hamming intersecting-

balls crossover is Balls(dH)(x, y) := BdH [x; dH(x, y)] ∩BdH [y; dH(y, x)].

Lemma 5. Let (Hn
q , dH) be any Hamming metric space. Then, Balls(dH) is

not a geometric crossover.
Proof. We prove, by counterexample, that Balls(dH) does not fulfil in all cases
the convergence inbreeding property (Proposition 2). Consider parents x := 010
and y := 100 in H3

2. Then, we have offspring 001 ∈ Balls(dH)(x, y), but y =
100 ∈ Balls(dH)(x, 001). Therefore, Balls(dH) is not geometric. ut

Proving that Balls(dH) is a recombination P-structure, in Theorem 2, re-
quires some extra care. Compared to the fix-point, symmetry and null-recom-
bination axioms, size-monotonicity is more complicated and we divide its proof
into three major steps. Let us briefly explain the overall idea. Size-monotonicity
states: if z ∈ Balls(dH)(x, y), then |Balls(dH)(x, z)| ≤ |Balls(dH)(x, y)|. The
main difficulty is that in general Balls(dH)(x, z) 6⊆ Balls(dH)(x, y). However,
we note that if additionally z ∈ [x; y]dH , then inclusion does hold. This is one
of the steps, proved in Lemma 6 for general metric spaces. Since, in principle, z
may be anywhere in the intersection of the two balls given by Balls(dH)(x, y),
the role of the other two steps is to ensure that each z can always be mapped via
an automorphism to a corresponding z′ ∈ [x; y]dH ; so that the size-monotonicity
of |Balls(dH)(x, z)| can be proved from that of |Balls(dH)(x, z′)|.
Lemma 6. Let (X, d) be any metric space. Then, for all x, y ∈ X it holds: if
z ∈ [x; y]d, then Balls(d)(x, z) ⊆ Balls(d)(x, y).
Proof. Note first that if z ∈ [x; y]d, then naturally z ∈ Balls(d)(x, y). We need
to prove that if s ∈ Balls(d)(x, z), then s ∈ Balls(d)(x, y). By Definition 11
we know:

z ∈ Balls(d)(x, y) ⇐⇒
(
d(x, z) ≤ d(x, y)

)
∧
(
d(y, z) ≤ d(x, y)

)
, (2)

s ∈ Balls(d)(x, z) ⇐⇒
(
d(x, s) ≤ d(x, z)

)
∧
(
d(z, s) ≤ d(x, z)

)
. (3)

Hence, d(x, s) ≤ d(x, z) ≤ d(x, y), and therefore s ∈ Bd[x; d(x, y)]. To complete
the proof, we need to show s ∈ Bd[y; d(y, x)] as well. That is, d(y, s) ≤ d(x, y)
holds. From the assumption z ∈ [x; y]d, we know

d(x, y) = d(x, z) + d(z, y) , (4)

and from the triangle inequality of metric spaces

d(y, s) ≤ d(y, z) + d(z, s) . (5)

Now, combining Eqs. 4 and 5 we see that

d(y, s) ≤ d(y, z) + d(z, s) ≤ d(y, z) + d(x, z) = d(x, y) , (6)

because d(z, s) ≤ d(x, z) from Eq. 3, and symmetry of distances in metric spaces.
Hence, from Eq. 6 it holds s ∈ Bd[y; d(y, x)], so s ∈ Balls(d)(x, y). Therefore,
we conclude that if s ∈ Balls(d)(x, z), then s ∈ Balls(d)(x, y). ut



Theorem 2. Let (Hn
q , dH) be the Hamming metric space of an arbitrary Ham-

ming graph. Then, (Hn
q ,Balls(dH)) is a recombination P-structure.

Proof. (I) Fix-point: Balls(dH)(x, x) = {x}. In metric spaces dH(x, y) = 0 iff
x = y. Therefore, Balls(dH)(x, x) = BdH [x; dH(x, x)] ∩ BdH [x; dH(x, x)] =
BdH [x; 0] ∩BdH [x; 0] = {x} ∩ {x} = {x}.

(II) Symmetry: Balls(dH)(x, y) = Balls(dH)(y, x). Follows from Definition 12
and commutativity of intersection: A ∩B = B ∩A.

(III) Null-recombination: {x, y} ⊆ Balls(dH)(x, y). Since dH(x, x) = 0 ≤ dH(x, y),
we know x ∈ BdH [x; dH(x, y)]. Since dH(x, y) = dH(x, y), we know as well
y ∈ BdH [x; dH(x, y)]. Therefore, {x, y} ⊆ BdH [x; dH(x, y)]. By symmetry,
{x, y} ⊆ BdH [y; dH(y, x)]. So {x, y} ⊆

(
BdH [x; dH(x, y)] ∩ BdH [y; dH(y, x)]

)
= Balls(dH)(x, y).

(IV) Size-monotonicity: if z is offspring of Balls(dH)(x, y), then |Balls(dH)(x, z)|
≤ |Balls(dH)(x, y)|. The proof has three parts:
(a) We prove that: ∀x, y ∈ Hn

q , if z ∈ Balls(dH)(x, y), then ∃z′ ∈ [x; y]dH

such that dH(x, z) = dH(x, z′). Assuming that z ∈ Balls(dH)(x, y), we
know dH(x, z) ≤ dH(x, y). Because the Hamming graph is connected and
undirected, there exists at least one path between x and y, in particular
shortest-paths [x; y]dH . Because it is unweighted, for each integer dis-
tance unit between x and y there is a corresponding z′ ∈ [x; y]dH . Since
dH(x, z) ≤ dH(x, y), it is always possible to find z′ ∈ [x; y]dH such that
dH(x, z) = dH(x, z′).

(b) From Lemma 6 follows that if z′ ∈ [x; y]dH , then |Balls(dH)(x, z′)| ≤
|Balls(dH)(x, y)|.

(c) We prove that: for all x, y, z, z′ ∈ Hn
q , if dH(x, z) = dH(x, z′), then

|Balls(dH)(x, z)| = |Balls(dH)(x, z′)|. It follows from the fact that the
Hamming graph is distance-transitive [20]. This means that if dH(x, z) =
dH(x, z′), then there exists an automorphism φ : Hn

q → Hn
q , where

φ(x) = x and φ(z) = z′. Every automorphism φ is an isomorphism by
definition, and in graphs they are just a relabelling of vertices, therefore
whatever the cardinality of Balls(x, z) is, it is preserved under φ. That
is, |Balls(dH)(x, z)| =

∣∣Balls(dH)
(
φ(x), φ(z)

)∣∣ = |Balls(dH)(x, z′)|.
The proof size-monotonicity follows now easily. From (a) we know that for
each z ∈ Balls(dH)(x, y) we can always find a z′ ∈ [x; y]dH , where dH(x, z) =
dH(x, z′). But this means, using (b) and (c), that we have |Balls(dH)(x, z)|
= |Balls(dH)(x, z′)| ≤ |Balls(dH)(x, y)|. ut

Using the previous results we now compare recombination P-structures with
geometric crossover classes (Q3).

Theorem 3 (Crossover classes). Let RP be the set of recombination P-
structures (resp. RP for crossovers that are not recombination P-structures),
GX be the geometric crossovers, and GX -complete be the complete geometric
crossovers. It holds that: (a) RP 6= ∅; (b) GX 6= RP; (c) RP ∩ GX 6= ∅;
(d) GX -complete ⊂ RP; and (e) RP ⊂ GX -complete.



Proof. (a) Lemmas 1 and 2 prove, respectively, that neither Koza subtree swap
nor (symmetric) Davis order crossovers are recombination P-structures.

(b) Example 2 shows that the single-offspring one-point crossover (OnePoint)
is geometric, but it is not a recombination P-structure due to its asymmetry.

(c) In Hamming graphs, Theorem 1 proves it for AllPaths crossover, also
Lemma 5 and Theorem 2 prove it for Balls(dH) crossover.

(d) Follows from Proposition 4, and (c) makes the inclusion strict: complete
geometric crossovers are a subclass of geometric crossovers (Proposition 1).

(e) Let U be the universal set of crossovers, where GX -complete,RP ⊂ U . Then,
using (d) and taking complements, RP ⊂ GX -complete follows. ut

U

GX

RP

GX

Koza

s-Davis
Davis

complete
Uniform

OnePoint

Balls(dH)
AllPaths

Fig. 6. Classification within the universal set U of crossovers by geometric crossovers
GX and recombination P-structures RP, with class members examples: all-paths
(AllPaths), Hamming intersecting-balls (Balls(dH)), Davis order (Davis), sym-
metric Davis order (s-Davis), Koza subtree swap (Koza), single-offspring one-point
(OnePoint) and uniform (Uniform) crossovers.

The main purpose of Theorem 3, summarised in Fig. 6, is to start developing
a unified and systematic understanding of crossovers within the geometric GF
(Sect. 2) and algebraic EL (Sect. 3) theories. By relaxing the axioms of recombi-
nation P-structures or properties of geometric crossovers, new formal crossover
subclasses can be incorporated, which can give us deeper insight not only into the
similarities and differences in behaviour of crossovers, but also about the theo-
ries themselves. For instance, EL landscape analysis is possible when a crossover
belongs to GX -complete or RP, but not necessarily for all those in GX -complete
(e.g. OnePoint) [1]. It should be clear that the focus of this classification is not
on the practical value of crossovers (e.g. Koza is useful, however GX and RP
miss it), but what crossovers can and cannot be studied within GF and ELs.

4.2 Algebraic Abstract Convex Search

We switch our attention from recombination P-structures themselves (Sect. 4.1)
to characterising the population-behaviour of EAs using them. Specifically, we
prove that any recombination P-structure EA, using any selection and replace-
ment strategies but no mutation, exhibits an abstract convex search behaviour
analogue to Proposition 3.

Theorem 4 (Algebraic abstract convex search). Let (X,R) be a recom-
bination P-structure and Pt ⊆ X the population at generation t. Then, there



exists a maximum closure iteration number m := cin∗(X) such that: clmR(P0) ⊇
clmR(P1) ⊇ · · · ⊇ clmR(Pt) ⊇ clmR(Pt+1); for any EA repeating the cycle: selection,
recombination R and replacement.

Proof. We need to prove that: (a) such maximum closure iteration number exists;
and, (b) the closure of recombination P-structures produces a nested chain of
inclusions of population sets.

(a) From Proposition 5 we know that for any population Pt ⊆ X there ex-
ists a natural number k ≥ cin(Pt), such that co(Pt) = clkR(Pt). Since all
populations Pt are subsets of X, the maximum closure iteration number
m := cin∗(X) exists. By definition (see below Eq. 1), cin∗(X) ≥ cin(Pt) for
all populations Pt. Therefore, co(Pt) = clmR(Pt) for all populations Pt.

(b) Since (a) proves that there exists a maximum closure iteration number such
that co(Pt) = clmR(Pt) for any Pt, we know also that co(Pt) ⊇ co(Pt+1) if
and only if clmR(Pt) ⊇ clmR(Pt+1) for any Pt. Therefore, a chain of inclusions
is formed, provided that selection and replacement can only return a subset
of the convex hull of a population [10]. ut

Note that Proposition 3 and Theorem 4 become equivalent for complete geo-
metric crossovers in finite metric spaces, since they are a subclass of recombina-
tion P-structures (Theorem 3). Table 1 illustrates it for the uniform recombina-
tion P-structure RΩ, which is a complete geometric crossover, whose maximum
closure iteration number is one for all populations P : co(P ) = cl1RΩ (P ) [11].

It remains as future work to find whether ‘degenerate’ cases like Example 8
are the only kind of algebraic abstract convex search for crossovers in the class
RP ∩ GX (i.e. non-geometric crossovers that are recombination P-structures).

Example 8 (Abstract convex search of all-paths crossover). AllPaths
convex search is ‘degenerate’ because, as long as the current population contains
different parents, the vertex set of the Hamming graph is returned as offspring;
until other mechanism like replacement or selection returns a population with
the same individual. For instance, if P1 := {001, 010, 111}, the following chain
may be generated: cl1AllPaths(P1) = {0, 1}3 ⊇ {0, 1}3 ⊇ . . . ⊇ {0, 1}3 ⊇ 001.
Notice that the maximum closure iteration number of AllPaths is one, be-
cause AllPaths generates at once the whole vertex set or a singleton set of the
Hamming graph, which are convex sets [17].

Theorem 4 has significant implications for GF and EL. First, it shows that the
convex search of complete geometric-crossover EAs can be phrased algebraically
in EL via recombination P-structures, in a way that remains consistent with
GF. Secondly, that the abstract convex search behaviour of some non-geometric
crossovers, for example the AllPaths crossover (Definition 10), can be formally
justified. Finally, we now have a proper characterisation of population behaviour
for recombination P-structures EAs, which is less restrictive than the previous
crossover-walk model (Sect. 3.1) because it is defined for general recombination
P-structures not just string crossovers, and no assumptions are made on selection



Parents
population

Parents closure
(and their schema)

Offspring
population

Hyperedge of
parents closure

P1 = {001, 010, 111}
cl1RΩ

(P1)={0,1}3

(***) {010, 100, 110}

P2 = {010, 100, 110}
cl1RΩ

(P2)={0,1}2×{0}

(**0) {100, 000, 100}

P3 = {100, 000, 100}
cl1RΩ

(P3)={000,100}

(*00) {100, 100, 000}

P4 = {100, 100, 000}
cl1RΩ

(P4)={000,100}

(*00) {100, 100, 100}

P5 = {100, 100, 100} cl1RΩ(P5) = 100

Table 1. A small trace of abstract convex search for the three-dimensional binary
Hamming space using uniform recombination with initial population {001, 010, 111},
population size equal three, generational replacement and no selection.

pressure or genes interdependence (epistasis). Moreover, it has a clear geometri-
cal interpretation (Sect. 2.2) and GF has demonstrated that is analytically useful
to study recombination-based EAs [2].

As a final remark, some of our results (e.g. Proposition 4 or Theorem 4)
can be further generalised to more abstract algebraic spaces like interval spaces
[7], by relaxing the axioms of recombination P-structures and keeping only the
nullary and symmetric ones (Definition 6). It turns out that Proposition 5, which
is key for Theorem 4, remains true [7]. However, our aims here have not required
such degree of generality.

5 Summary and Future Work

Previous work [1] established the foundations for developing a unified approach
to analyse fitness landscapes, based on an algebraic theory of fitness landscapes
(Sect. 3) and a geometric framework of EAs (Sect. 2). Aiming for a solution to
an open challenge in evolutionary computing: to determine a priori for a given
problem if its fitness landscape matches a class of EAs where good performance
can be guaranteed across representations. However, to use EL as an analytic tool,
we needed to show that recombination landscapes seen from EL and GF can be
unified, that is their underlying space structures are not essentially different.

This paper expands the unification between GF and EL to eventually de-
velop an integrated GF-EL framework; where EAs can be analysed and de-
signed across representations (GF), but also it is possible to know analytically if



good performance can be guaranteed for a given problem landscape (EL). First,
we augmented the classification of crossovers in GF with algebraic crossover
classes from EL (Sect. 4.1). Then, we formalised the abstract convex popula-
tion behaviour of recombination P-structure EAs, as an extension of complete
geometric-crossover EAs, which provides a more general characterisation of pop-
ulation behaviour than the existing model in EL (Sect. 4.2).

As future work, we consider the following questions. First, to augment the
classification of crossovers with new classes or members and compare them.
Secondly, to study the relation between abstract convex spaces (e.g. convex ge-
ometries [9]) and crossovers, by looking at how the presence or absence of con-
vexity influences crossover behaviour. Thirdly, to export the runtime analysis of
geometric-crossover EAs [2] to recombination P-structure EAs; and, conversely,
use the ideas presented here to derive new insights about runtime analysis of
geometric-crossover EAs. Finally, it would be interesting to integrate mutation
within GF-EL unification to understand more realistic EAs using mutation and
recombination operators.
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