
Combining Cooperative and Adversarial
Coevolution in the Context of Pac-Man

Alexander Dockhorn and Rudolf Kruse
Institute of Intelligent Cooperating Systems

Department for Computer Science, Otto von Guericke University Magdeburg
Universitätsplatz 2, 39106 Magdeburg, Germany

Email: {alexander.dockhorn, rudolf.kruse}@ovgu.de

Abstract—In this paper we discuss our recent approach for
evolving a diverse set of agents for both the Pac-Man and
the Ghost Team track of the current Ms. Pac-Man vs. Ghost
Team competition. We used genetic programming for generating
various agents, which were distributed in multiple populations.
The optimization includes cooperative and adversarial subtasks,
such that Pac-Man is constantly competing against the Ghost
Team, whereas the Ghost Team is formed of four cooperatively
evolving populations. For the generation of a Ghost Team and
calculation of the associated fitness we took one individual from
each population. This strict separation preserves the evolution
pressure for each population such that respective Ghost Teams
compete against each other in developing an efficient cooperation
in catching Pac-Man. This approach not only is useful for
developing a versatile set of playing agents, but also for adapting
the team to the current behavior of the competing populations.
Ultimately, we aim for optimizing both tasks in parallel.

I. INTRODUCTION

Artificial intelligence (AI) in games proved to be successful
in creating playing agents in a variety of games. Besides
the well known successes in 2-player full-information games
such as Chess [1] and Go [2], artificial agents were recently
successful in playing games of Poker [3] against expert level
players. All those agents feature top-level play against human
players. However, the entertainment industry is also in need
of intermediate solutions, which scale well with the level
of human play they currently face. Thus, bringing both an
enjoyable playing experience and providing a suitable opponent
for mastering the game is a key demand for applications in
the entertainment industry.

Nevertheless, designing multiple AIs is a cumbersome and
expensive task for game developers. Simple solutions like
conditionalized behavior, or cheating AIs are the result. Such an
agent can be reported as unfair by the players and in many cases
a winning strategy can be found to exploit the deterministic
behavior of the implemented AI. Alternative to those classical
methods, AIs based on Monte Carlo Tree Search are non-
deterministic and were successfully applied in many games,
e.g. Checkers [4], Backgammon [5], and Go [6]. However,
scaling the skill level of such a heuristic search algorithm is
unpredictable, which is rendering it less useful in playing with
unexperienced players. For this purpose, we want to present our
development process for creating diverse cooperating agents,
which are able to adapt to the players current skill level.

This paper focuses on automatically learning playing agents
for the Ms. Pac-Man vs. Ghost Team competition [7], the
successor of the CEC 2011 competition [8]. Ms. Pac-Man is
the unofficial second installment of the Pac-Man Series, which
was originally released by Namco in the year 1980. In 1982
the studio General Computer Corporation made use of the
successful game design and developed their own expansion
of the game. Besides improvements in the level and graphic
design the game featured a variable Ghost behavior. While
the original game included deterministic Ghosts with differing
functions, a degree of randomness was added in Ms. Pac-Man.
This avoided exploitation by players, who knew the perfect
path for collecting all the pills without dying, and therefore
made the game much more interesting in the long term.

Our learning process is based on a combination of coopera-
tive and adversarial coevolution with multiple populations. We
expect the strict separation to support diversity in the overall
team. In the original Pac-Man game the four Ghosts were either
set to strictly follow the player, cut off his escape route or
guarding a specific area. Those strategies are easily translated
to conditionalized behaviors, which will form the basis of our
gene pool. We will use genetic programming to create and
modify agents and rate them based on their cooperative success
in catching Ms. Pac-Man. Besides evolving a Ghost Team, we
are also learning an agent for Pac-Man. This should simulate
the learning process of an actual player. Both learning processes
are individually evaluated based on their performance against
hand-coded bots. Furthermore, their populations are combined
in an adversarial learning scheme implementing coevolution.

The remainder of this paper will be structured as follows: in
Section II & III we will present an overview about the game,
the competition task and review past submissions. Furthermore,
we will shortly review genetic programming and its recent
applications. After this short introduction, we will present our
approach for developing a diverse set of playing agents for Pac-
Man using genetic programming in Section IV. The concept
of our combined coevolution will be introduced in Section V.
In the following evaluation section (Section VI) we will first
confirm successful adaptation in both single learning subtasks.
We will go on with evaluating the behavior of the adversarial
coevolution of both agents. This paper ends with a discussion
of our results in Section VII after which we will provide a
conclusion regarding the general applicability of our approach.



Fig. 1: The four mazes included in the Ms. Pac-Man vs. Ghost Team competition

II. THE GAME

The current installation of the Ms. Pac-Man versus Ghost
Team Competition started in 2016 [7]. A simulator of the
game is available through the competition website [9]. The
competition is divided into two tracks, one for implementing
a Pac-Man AI and the other one for implementing a full set
of Ghost controllers.

The aim of Pac-Man is to traverse a maze and collect
all the pills, while avoiding contact with the four Ghosts.
Special power pills are distributed in the corners of each level.
Collecting them allows Pac-Man to slow down his enemies
and eat them. Each of these actions scores Pac-Man points.
The scoring scheme is as follows:

• Eating a pill: 10 points. Each of the 4 mazes includes
about 200 pills.

• Eating a power pill: 50 points. Each maze contains 4
power pills in the corners.

• Eating a Ghost: After eating a power pill, Ghosts will
be eatable for a short period. Eating multiple Ghosts
per period, will score Pac-Man 200, 400, 800, and 1600
points per Ghost. However, eating another power pill will
reset the combo counter. The high risk in pursuing Ghost
in contrast to the high reward makes eating Ghosts an
interesting challenge of the game.

A level ends after collecting all the pills and power pills. The
maximal score per level is equal to:

scoremax = 10n+ 4× 50 + 4× (200 + 400 + 800 + 1600)

where n equals the number of pills per level. Completing a
level will reset all positions and load the next level cycling
through all four levels. The game goes on till Pac-Man lost
all of his 3 lives. Agents can be rated by the highest or the
average number of points they score.

The Pac-Man controller needs to respond to all getMove()
queries with a timebudget of 40 ms. The same timebudget
applies to the Ghost Team controller, which can freely distribute
the time between all four Ghosts. Since Ghosts can only change
their direction at junctions of a maze, the free distribution of
time ensures that a single Ghost controller will have enough
time to respond to the current game state at junctions.

Fig. 2: A normal game view and the partial observation scheme
of the Ghosts.

A. Partial Observation

In contrast to the original game, the competition impairs
agents in their observation of the world. All query responses to
the game’s application programming interface (API) are limited
to the current visibility of objects from the agents position.
Here, walls are blocking the perception, therefore, limiting the
agent to notice objects only if they are in an orthogonal line of
sight. See fig. 2 for a comparison of the standard game view
and the implemented line of sight for partial observability.

While general information about the maze is permanently
available, the availability of pills and power pills, and the
positions of moving actors need to be tracked throughout the
game. Furthermore, Ghosts are limited in their communication,
such that they are only able to send messages including their
own position, their target position, or the recently observed
position of Pac-Man.

III. PREVIOUS WORK

Since the competition is in its second installment, many
researchers already crafted solutions for learning agents who
are able to play the game on a fairly good level. We want
to give a short overview of used strategies for implementing
either a Pac-Man or a Ghost Team AI. Since the design of
the competition changed throughout the years, results are not
always comparable. For example the competition in 2011 was



based on pixel map input, which is much more abstract than the
current year’s API. However, partial observation adds another
interesting challenge to the game and, for example, makes it
hard to plan several steps ahead.

Since the dawn of applying computational intelligence
in games, using rule based agents is a common approach
applicable to most games. Here, expert knowledge can be
integrated to develop agents with high skill level. Inductive
learning can be used to develop such rules from random
playouts and, therefore, eliminate the need of human guidance.
Gallagher and Ryan [10] used population based incremental
learning to adapt a finite-state machine for playing a simplified
version of Pac-Man. In each state the appropriate move was
chosen based on an associated probability table. The proposed
solution was only a minor success due to the lack of an efficient
state representation. Extending the solution to the full game
was judged to be impractical.

In contrast, simulation based methods like Monte-Carlo Tree
Search (MCTS) proved to be useful in previous years of this
competition. The MCTS approach by Tong and Sung [11] was
capable of avoiding Ghosts and attaining a maximal score of
21.000 points. Robles and Lucas [12] applied a Tree Search
method at the screen capture version of the game. Together with
Samothrakis they implemented Ghost Team agents using MCTS
[13]. The same approach was used by Nguyen and Thawonmas
[14] to create a full Ghost Team. In their simulations the Ghosts’
search tree was expanded randomly while Pac-Man moved
according to simple rules. This approach outperformed all
other candidates and won the CEC 2011 competion [8]. Ikehata
and Ito [15] used MCTS for creating a Pac-Man AI named
ICEPambush3, which outperformed the CIG 2009 winner.

In contrast to simulation based methods, Lucas [16] used
Neural Networks to evaluate the current game state and report
an appropriate move. Gallagher and Ledwich [17] adopted a
similar method using the visual output of the game. Due to the
high complexity of the neural network input they determined the
network weights using a neuroevolutionary approach. Although
the average score was lower, it proved to be capable of learning
skillful playing behavior in context of complex inputs.

Genetic programming is a third concept often applied for
creating agents for the game Pac-Man. Here, each individuum
encodes a conditionalized tree, which when evaluated returns
an appropriate action. Mutation and crossover operators can be
defined to evolve the tree and therefore change the behavior of
the developed agent. We chose our tree-representation based
on the work of Kruse et al. [18]. John Koza [19], Alhejali and
Lucas [20], as well as Brandstetter and Ahmadi [21] proved the
capabilities of genetic programming in the context of Pac-Man.

In addition to genetic programming, learning a full set
of Ghosts can be done using coevolution. Here the genetic
representation of the Ghost Team is split into several parts,
which need to cooperate in order to catch Pac-Man. A general
overview of coevolution algorithms was presented by Wiegand
[22]. In this paper we will further expand on the work of
Cardona et al. [23], who made use of the coevolution framework
to learn a set of Ghost controllers.

IV. GENERATING BEHAVIOR TREES THROUGH GENETIC
PROGRAMMING

As it was already suggested in John Koza’s book about
genetic programming [19] developing an agent for Pac-Man
can be done by evolving conditionalized trees. Furthermore,
our work was inspired by Alhejali and Lucas [20] who evolved
Ms. Pac-Man agents in the previous competition. The full
source code of our AI will be made available on our website
[25] after the competition.

Three kinds of nodes were used in the implementation:
functions, data terminals, and action terminals. To ensure a
type-safe conversion of the results data terminals were splitted
into numerical and boolean nodes. Several function calls of the
API were mapped to terminal nodes and provided the input for
the agent’s decision making process. In contrast to the work
of Alhejali and Lucas we did not include hand-coded action
terminals. On the one hand, this will increase the complexity
of the evolution process, but on the other hand, we wanted to
design an as pure as possible learning process.

A. General Behavior Tree Nodes

Due to the adverserial tasks for both agents we suggest to
use a differing set of action and data terminals, which will be
discussed in their following respective subsections.

1) Function-Nodes: Function-Nodes are used by both im-
plementations and are listed below:
Control Functions: The main control structure in our behavior
is made of If. . . Then. . . Else. . . -nodes and If. . . Less-Than. . . -
Then. . . Else. . . -nodes. The first control node has three children
and is evaluating its first subtree for determining which of the
other children needs to be evaluated and returned. Our second
node type includes four children for which the first two are
evaluated and numerically compared. In case the first value
is less than the second value the if -case will be evaluated,
otherwise the control flow will continue with the evaluation of
the second tree.

Boolean Functions: In order to simplify the combination of
boolean inputs we included nodes for the boolean function
And, Or, Xor, and Not. Those evaluate their subtrees and apply
the appropriate boolean function before returning the results.

RandomNumber: This node generates a random number in
the range of [0, 1].

Constants: We also provide constant nodes for the representa-
tion of integer and double numbers, as well as representing the
boolean states true and false. Integer numbers are limited to a
range of [1, 100] and were created for comparing the outcome
of distance evaluations with fixed thresholds. Double numbers
are limited to a range of [0, 1] and will represent probability
based decisions in combination with random numbers. We
added boolean nodes with fixed values to simplify the mutation
process. Therefore, it can quickly turn boolean function
evaluators on or off by replacing one of its children with
a constant value.



B. PacMan based Genetic Programming Nodes

The Pac-Man controller is based on a single tree with a
terminal node output. We decided to use simple methods which
wrap specific API calls of the competition framework. It needs
to be noted that the partial observation enforced by the games
interface forces us to store the availability of unseen pills
in internal memory. Queries about the availability and the
distance to pills and power-pills are answered with the current
information from the game’s interface and the internal memory.

1) Data Terminals:
IsPowerPillStillAvailable: Checks if any power pill is still
available.

AmICloseToPower: Checks if any power pill is closer than
a specified threshold. The threshold can be influenced by
mutation and is a fixed value in the range of [1, 100].

IsEmpowered: Checks if Pac-Man is currently able to eat at
least one Ghost.

IsGhostClose: Estimates the distance to each Ghost and reports
if at least one is closer than a specified threshold. The threshold
can be influenced by mutation as discussed above.

SeeingGhosts: Reports if any Ghost is visible in the current
state of the game.

DistanceToGhostNr: Sorts the approximate distances to each
Ghost and reports the Ghost with the specified rank.

EmpoweredTime: Estimates the empowered time left since
the last power pill was eaten.

2) Action Terminals: The following action terminal nodes
were included for determining the movement:
FromClosestGhost: Determines the shortest path to the closest
Ghost and goes in the opposit direction of the first move. The
FromClosestGhost-node provides basic fleeing behavior to the
generated Pac-Man controller.

ToClosestEdibleGhost: Moves towards the closest edible
Ghost. Non-edible Ghosts are not taken into account.

ToClosestPowerPill: Goes to the closest power pill that is still
available.

ToClosestPill: Goes in the direction of the closest pill that is
still available.

C. Ghost Team based Behavior Tree Nodes

The Ghost Team is implemented by four separate Ghost
controllers, which share information through the restricted
messaging protocol. At each game tick Ghosts share their
current position and, if in sight, Pac-Man’s current position.
The information is stored for the next 15 ticks till it becomes
updated or deleted. We also check for the power pill availability
in each tick. In case it becomes known that a power pill is
not available anymore it is removed from an internal list. The

game’s interface does not allow Ghost controllers to share
information about the presence of power pills. So each Ghost
needs to explore the current state of a power pill by itself.

1) Data Terminals: Based on this the following data terminal
nodes were created for learning Ghost behavior:

SeeingPacMan: Returns if Pac-Man is in the current line of
sight.

IsPacManClose: Determines the distance to the last known
position of Pac-Man and compares it against a threshold. The
threshold can be influences by mutation and is a fixed value
in the range of [1, 100].

IsPacManCloseToPower: Determines the distance to the last
known position of Pac-Man and all power pills. The smallest
value is checked against a threshold. We store the threshold
the node itself, so it can be mutated as explained above.

IsEdible: Checks if the Ghost, that is calling this node, is
edible.

IsPowerPillAvailable: Checks to the best of this Ghosts
knowledge if any power pill is still available for collection.

DistanceToOtherGhosts: Returns the distance to the closest
other Ghost.

EstimatedDistanceOptimistic/Pessimistic: Estimates the dis-
tance to the last known position of Pac-Man. In case it is
outdated an optimistic or pessimistic estimate is returned.

2) Action Terminals: Additionally, to the specialized data
terminal nodes we mapped movement specific API calls to
action terminal nodes for the Ghosts. The following were
created to represent basic chasing and fleeing behavior and
return the move to the best of the Ghosts knowledge.

ToPacman & FromPacMan: Returns the first move on the
shortest path to the last known position of Pac-Man or away
from it.

FromClosestPowerPill & ToClosestPowerPill: Returns the
first move on the shortest path to the next available power pill
or away from it. Since it is not always known if a power pill
still exists it is assumed that, if not seen differently, a pill is
still available for collection.

Split & Group: The Split-Node returns a move away from the
closest other Ghost. Whereas, the implemented Group-Node
returns a move in direction to the closest Ghost.

V. COMBINING COOPERATIVE AND ADVERSERIAL
COEVOLUTION

To get a better grasp at the performance of each learning
process we first validate each genetic programming process on
its own. After this, we continue our analysis with a discussion of
the results of the combined evolution framework in Section V-B.



Fig. 3: Evolution process combining cooperative and adverserial tasks for simultaneous generation of both controller types.

A. Single Evolution Process

1) Pac-Man: Similar to the work of Alhejali and Lucas
we used genetic programming for evolving a set of Pac-Man
agents. The Ghost Team sample implementation provided by
the competition’s API was used as an opponent. The population
size was fixed to 1000 individuals, which were competing for
the best average score in 3 games. We used natural selection
and kept one-third of the best individuals per generation. New
individuals were created using mutation of previously winning
individuals.

For each generation we stored the best performing Pac-Man
controller, its fitness, and the average fitness of the whole
population. The full evoluationary process was repeated ten
times. We report the average results and confidence intervals
per generation (α = 0.05). Our results will be discussed in
Section VI-A1.

2) Ghost Team: In the single evolution process we coop-
eratively evolved four populations of Ghost controllers. We
draw one Ghost of each population to form a group of diverse
Ghost controllers and play multiple games against hand-coded
Pac-Man AIs. Since the game does not provide a score for the
Ghost Team, we decided to rate a team by the average fitness
value a Pac-Man controller can achieve against them. This
process is repeated several times to get a better view on the
cooperation between individuals in the separated populations.

For our experiment we chose to use four populations of
250 individuals each. We used natural selection and kept one-
third of the best individuals per generation. New individuals
were generated using mutations on previous ones, capable of
replacing values in single nodes or replacing whole subtrees
with random configurations. Due to the enforced return type of
each sub-tree, no invalid trees were created during this process.
For this work we refrained from implementing additional
crossover operators, which may be added at a later point in
time.

For each generation we store the best performing team, its
fitness, and the average fitness of the generation. Additionally,
we repeated this process ten times. We report the average result
and confidence intervals per generation (α = 0.05). Results
will be discussed in Section VI-A2.

We also compared our process for evolving diverse Ghost
Teams based on 4 populations of each 250 individuals with
the uniform approach of evolving Ghost controllers based on

Fig. 4: Performance per generation of evolved Pac-Man
controllers. The score is based on the average score each
controller achieved in three playthroughs. Additionally the
results were averaged over ten repetitions of the experiment.
Error bars show the confidence interval for α = 0.05.

one generation including 1000 individuals. Uniform Ghost
Teams include 4 copies of the same Ghost behavior. Results
are compared based on their performance in minimizing Pac-
Man’s score throughout the generations and the confidence
intervals per generation.

B. Combined Evolution Process

In contrast to the single evolution processes we tried to evolve
both agents in parallel to eliminate the need of creating hand-
made versions of the concurring player. This also simulates
a learning process on both sides. The adversarial tasks of
clearing the maze and catching Pac-Man form an adversarial
coevolution problem. However, in this special case one part
is represented by a cooperative coevolution process. Figure 3
visually represents our evolution process.

During the learning phase we expect to observe several jumps
in the fitness value. At those time points, the Pac-Man agent
should have learned a strategy to avoid the current generation
of Ghost controllers. Over time the Ghost controllers will be
able to adapt and, therefore, lower the score achieved by the
Pac-Man agent. We stored the best individual of each iteration
to provide Ghost controllers on differing skill levels. Both
controller types will be evaluated against our handcrafted AIs
to prove the increasing quality over the generations. Our results
will be discussed in Section VI-B



Fig. 5: Performance per generation of evolved Ghost Team
controllers. The score is based on the average score a rule-
based Pac-Man achieved in three playthroughs and needs to
be minimized. Error bars show the confidence interval for
α = 0.05 but are neglectable.

Fig. 6: Performance per generation of evolved Ghost Team
controllers. The score is based on the average score a MCTS-
based Pac-Man achieved in three playthroughs and needs to
be minimized. Error bars show the confidence interval for
α = 0.05 but are neglectable.

VI. RESULTS

A. Single Evolution Process

1) Pac-Man Learning Results: Our first test focused on
the learning capabilities of our Pac-Man controller. The
learning was based on a simple rule-based Ghost controller
implementation with shared position tracking of the Pac-Man
agent. Problematic was the fitness calculation due to the non-
deterministic behavior of the used controllers. However, the
individual fitness stabilized over multiple generations. As it is
shown in Figure 4 the average performance steadily increased.
The performance in the first generations increased much faster
than during later generations, which is due to the population
converging to more successful strategies.

First successful controllers simply collected the closest pill,
which is still available. In the course of generations controllers
started to include fleeing behavior. This improved during
the following generations which used the provided distance
calculations for switching between fleeing and chasing behavior.

Fig. 7: Performance per generation of evolved Ghost Team
controllers using an uniform Ghost Teams. The score is based
on the average score a rule-based Pac-Man achieved in three
playthroughs and needs to be minimized. Error bars show the
confidence interval for α = 0.05 but are neglectable.

Fig. 8: Performance per generation of evolved Ghost Team
controllers using an uniform Ghost Team. The score is based
on the average score a MCTS-based Pac-Man achieved in three
playthroughs and needs to be minimized. Error bars show the
confidence interval for α = 0.05 but are neglectable.

2) Ghost Learning Results: As a next step we evaluated the
Ghost learning behavior in two occassions. The first evaluation
is based on a simple rule-based Pac-Man implementation. This
prefers fleeing from Ghosts, except it is empowered, in which
case it will pursue Ghosts for scoring bonus points. In case
Pac-Man is currently not endangered he goes for the nearest
available pill or power pill. Figure 5 shows our learning results.

The behavior of our Ghosts are still very limited. Depending
on the current game state they either split or group up and
defend the nearest power pill. In case Pac-Man comes to collect
it, they will start to chase him. Those simple rules were enough
to decrease the number of points Pac-Man is able to score.

However, with our second evaluation we let the Ghost con-
trollers train against a MCTS-based Pac-Man implementation
and hoped for much more elaborate strategies. The fitness
results per generation are shown in Figure 6. The average
fitness improved much slower due to the stronger play of the
opponent. Nevertheless, in contrast to the simple AI the created
agents were much more elaborate in their counterplay. The



(a) Evolution of Pac-Man Controllers (b) Evolution of Ghost Controllers

Fig. 9: Performance per generation of evolved controllers. The score is based on the average score an individual achieved
against the best performing opponent of the previous generation. Error bars show the confidence interval for α = 0.05.

winning team mixed splitting, grouping, chasing, and defending
power pills depending on the game state.

Furthermore, we checked if a team of diverse Ghosts
performs better than a team of uniform Ghosts. Therefore,
we repeated the experiments with just one population of 1000
Ghosts and created teams by multiple instances of the same
Ghost. The performance results of each generation is shown in
Figures 7 and 8. While the final performance is approximately
the same, the convergence is much slower. First generations
of uniform teams performed worse than teams consisting of
diverse Ghost controllers.

B. Combined Evolution Process

Our final evaluation covers the coevolution of both agents.
Due to the faster convergence of diverse Ghost Teams, we
decided to use those for an increased dynamic between both
contesting parties. The average result from 10 runs is shown in
Figure 9. To get a better view on the development Figure 10
present one single run of the evolutionary process. As expected,
the fitness curves of Pac-Man as well as the Ghost Team
show several bumps. Reviewing the Pac-Man agents of each
generation showed that for example a strong improvement of the
best Pac-Man from generation four to generation five is caused
by an additional check if Pac-Man is currently empowered. In
case he is, he stops eating the closest pill and starts pursuing
Ghosts. Ghosts of the next generation learned to flee from
Pac-Man on several occassions. In course of the following
generations this avoidance behavior was established in most
of the populations, which explains the steady decline in the
average performance of Pac-Man controllers.

Such adaptations repeated in the upcoming generations. After
most of the Ghosts learned to flee from Pac-Man, Pac-Man
controllers established a more passive play style. This led to
more aggressive Ghosts, which in turn were later countered by
more aggressive Pac-Man behaviors. We observed that those
changes cycle and after multiple generations similar behaviors
established repeatedly. This is also represented by the generally
smaller trees in the combined evolution process.

Fig. 10: Detailed illustration of a single run of our coevula-
tionary process.

VII. CONCLUSIONS

While the learning outcome of each single evaluation had
very promising results, the combined coevolution did not led
to high level play. Both, Pac-Man and Ghost controllers were
successful in evolving complex strategies for countering the
behavior of their current opponent. In repeated games against
a non-changing player we were able to develop agents with
strong counterplay.

The combined coevolution adapted both controller types
simultaneously. Since each Pac-Man base-strategy (flee, pursue,
collect) was countered by another Ghost base-strategy (group,
split, pursue), the agents had no need to advance the strategies
themself. Therefore, high level play evolved very slowly and
is not comparable with the outcome of each single learning
process. Reducing the selection pressure or preserving agents
for multiple generations might help in expanding strategies
to the current enemy behavior. Furthermore, increasing the
capabilities of the mutation operator or developing a crossover
operator might help in increasing the adaptation speed.

Our approach proved to be useful to create a diverse set of
agents for both player types. Each generated agent, regardless



of which it was created in the single or combined evolution
process, can be used for playing the game against any other
(human/digital) player. Splitting the Ghost agents in four
populations lead to diverse behaviors which complemented each
other. During the course of early generations each population
converged to one behavior type. Further generations lead to
improvements of all agents in their respective fields. This
two-phase development reflects exploration and exploitation of
possible playing strategies in each population.

In respect to previous studies by Alhejali and Lucas [20]
as well as Brandstetter and Ahmadi [21] we will continue our
analysis based on changing the complexity of available nodes,
which might help in reducing the complexity of the learning
process. This can lead to smoother transitions between winning
strategies and increase the total complexity of resulting trees.

REFERENCES

[1] M. Campbell, a. J. Hoane Jr., and F.-h. Hsu, “Deep Blue,” Artificial
Intelligence, vol. 134, no. 1-2, pp. 57–83, 2002.

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot,
S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of Go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[3] N. Brown, C. Kroer, and T. Sandholm, “Dynamic thresholding and
pruning for regret minimization,” 2017.

[4] J. P. A. M. Nijssen and M. H. M. Winands, Playout Search for Monte-
Carlo Tree Search in Multi-player Games. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 72–83.

[5] F. van Lishout, G. M. J.-B. Chaslot, and J. W. H. M. Uiterwijk, “Monte-
Carlo Tree Search in Backgammon,” Proc. Comput. Games Workshop,
pp. 175–184, 2007.

[6] S. Gelly and D. Silver, “Monte-Carlo tree search and rapid action value
estimation in computer Go,” Artificial Intelligence, vol. 175, no. 11, pp.
1856–1875, jul 2011.

[7] P. R. Williams, D. Perez-Liebana, and S. M. Lucas, “Ms. Pac-Man
Versus Ghost Team CIG 2016 competition,” in 2016 IEEE Conference
on Computational Intelligence and Games (CIG). IEEE, sep 2016, pp.
1–8.

[8] P. Rohlfshagen and S. M. Lucas, “Ms Pac-Man versus Ghost Team CEC
2011 competition,” in 2011 IEEE Congress of Evolutionary Computation
(CEC). IEEE, jun 2011, pp. 70–77.

[9] P. R. Williams, “Ms. Pac-Man Vs. Ghost Team Competition 2017,”
http://www.pacmanvghosts.co.uk.

[10] M. Gallagher and a. Ryan, “Learning to play pac-man: An evolutionary
rule based-approach,” in Proc, vol. 03, pp. 2462–2469, 2003.

[11] B. K. B. Tong and C. W. Sung, “A Monte-Carlo approach for ghost
avoidance in the Ms. Pac-Man game,” 2nd International IEEE Consumer
Electronic Society Games Innovation Conference, ICE-GIC 2010, 2010.

[12] D. Robles and S. M. Lucas, “A simple tree search method for playing
Ms. Pac-Man,” CIG2009 - 2009 IEEE Symposium on Computational
Intelligence and Games, pp. 249–255, 2009.

[13] S. Samothrakis, D. Robles, and S. M. Lucas, “Fast Approximate Max-n
Monte-Carlo Tree Search for Ms Pac-Man,” IEEE Trans. Comp. Intell.
AI Games, vol. 3, no. 2, pp. 142–154, 2011.

[14] K. Q. Nguyen and R. Thawonmas, “Applying Monte-Carlo Tree Search
to collaboratively controlling of a Ghost Team in Ms Pac-Man,” 2011
IEEE International Games Innovation Conference, IGIC 2011, pp. 8–11,
2011.

[15] N. Ikehata and T. Ito, “Monte-Carlo tree search in Ms. Pac-Man,” in 2011
IEEE Conference on Computational Intelligence and Games (CIG’11).
IEEE, aug 2011, pp. 39–46.

[16] S. Lucas, “Evolving a neural network location evaluator to play ms.
pac-man,” IEEE Symposium on Computational Intelligence and . . . , pp.
203–210, 2005.

[17] M. Gallagher and M. Ledwich, “Evolving pac-man players: Can we
learn from raw input?” Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games, CIG 2007, no. Cig, pp. 282–287,
2007.

[18] R. Kruse, C. Borgelt, C. Braune, S. Mostaghim, and M. Steinbrecher,
Computational Intelligence, 2nd ed., ser. Texts in Computer
Science. London: Springer London, 2016. [Online]. Available:
http://link.springer.com/10.1007/978-1-4471-5013-8http://link.springer.
com/10.1007/978-1-4471-7296-3

[19] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA, USA: MIT Press,
1992.

[20] A. M. Alhejali and S. M. Lucas, “Evolving diverse Ms. Pac-Man
playing agents using genetic programming,” 2010 UK Workshop on
Computational Intelligence, UKCI 2010, 2010.

[21] M. F. Brandstetter and S. Ahmadi, “Reactive control of Ms. Pac Man
using information retrieval based on Genetic Programming,” 2012 IEEE
Conference on Computational Intelligence and Games, CIG 2012, pp.
250–256, 2012.

[22] R. P. Wiegand, “An Analysis of Cooperative Coevolutionary Algorithms,”
Ph.D. dissertation, GeorgeMason University, 2003.

[23] A. B. Cardona, J. Togelius, and M. J. Nelson, “Competitive coevolution
in Ms. Pac-Man,” 2013 IEEE Congress on Evolutionary Computation,
CEC 2013, pp. 1403–1410, 2013.

[24] “Cooperative and Adverserial Genetic Programming Implementation for
the Ms. Pac-Man vs. Ghost Team Competition,” http://fuzzy.cs.ovgu.de/
wiki/pmwiki.php/Mitarbeiter/Dockhorn?userlang=en.

[25] “Cooperative and Adverserial Genetic Programming Implementation for
the Ms. Pac-Man vs. Ghost Team Competition,” http://fuzzy.cs.ovgu.de
/wiki/pmwiki.php/Mitarbeiter/Dockhorn?userlang=en.


