Skip to main content

Swing Up and Balance Control of the Acrobot Solved by Genetic Programming

  • Conference paper
  • First Online:
Book cover Research and Development in Intelligent Systems XXIX (SGAI 2012)

Abstract

The evolution of controllers using genetic programming is described for the continuous, limited torque minimum time swing-up and inverted balance problems of the acrobot. The best swing-up controller found is able to swing the acrobot up to a position very close to the inverted ‘handstand’ position in a very short time, which is comparable to the results which have been achieved by other methods using similar parameters for the dynamic system. The balance controller is successful at keeping the acrobot in the unstable, inverted position when starting from the inverted position.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boone, G.: Minimum-time control of the acrobot. In: Robotics and Automation, 1997. Proceedings. 1997 IEEE International Conference on, vol. 4, pp. 3281–3287 (1997)

    Google Scholar 

  2. Coulom, R.: High-accuracy value-function approximation with neural networks. In: EuropeanSymposium on Artificial Neural Networks (2004)

    Google Scholar 

  3. Doucette, J., Heywood, M.I.: Revisiting the acrobot ’height’ task: An example of efficient evolutionary policy search under an episodic goal seeking task. In: Evolutionary Computation(CEC), 2011 IEEE Congress on, pp. 468 –475 (2011)

    Google Scholar 

  4. Dracopoulos, D.C.: Genetic evolution of controllers for challenging control problems. Journalof Computational Methods in Science and Engineering 11(4), 227–242 (2011)

    MathSciNet  Google Scholar 

  5. Duong, S., Kinjo, H., Uezato, E., Yamamoto, T.: On the continuous control of the acrobotvia computational intelligence. In: B.C. Chien, T.P. Hong, S.M. Chen, M. Ali (eds.) Next-Generation Applied Intelligence, Lecture Notes in Computer Science, vol. 5579, pp. 231–241.Springer Berlin / Heidelberg (2009)

    Google Scholar 

  6. Franklin, G.F., Powell, J.D., Emami-Naeini, A.: Feedback Control of Dynamic Systems, 4edn. Prentice Hall, New Jersey (2002)

    Google Scholar 

  7. Fukushima, R., Uezato, E.: Swing-up control of a 3-dof acrobot using an evolutionary approach.Artificial Life and Robotics 14, 160–163 (2009)

    Google Scholar 

  8. Jung, T., Polani, D., Stone, P.: Empowerment for continuous agent-environment systems.Adaptive Behavior - Animals, Animats, Software Agents, Robots, Adaptive Systems 19, 16–39 (2011)

    Article  Google Scholar 

  9. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA, USA (1992)

    MATH  Google Scholar 

  10. Lai, X.Z., She, J.H., Yang, S.X., Wu, M.: Comprehensive unified control strategy for underactuated two-link manipulators. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on 39(2), 389–398 (2009)

    Article  Google Scholar 

  11. RLC: Reinforcement learning competition. http://www.rl-competition.org (2009)

  12. Spong, M.W.: Swing up control of the acrobot. In: Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on, vol. 3, pp. 2356–2361 (1994)

    Google Scholar 

  13. Spong, M.W.: The swing up control problem for the acrobot. Control Systems, IEEE 15(1)49–55 (1995)

    Google Scholar 

  14. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge, Massachusetts (1998)

    Google Scholar 

  15. Wiklendt, L., Chalup, S., Middleton, R.: A small spiking neural network with lqr control applied to the acrobot. Neural Computing & Applications 18, 369–375 (2009)

    Article  Google Scholar 

  16. Willson, S., Mullhaupt, P., Bonvin, D.: Quotient method for controlling the acrobot. In: Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on, pp. 1770–1775 (2009)

    Google Scholar 

  17. Xu, X., Hu, D., Lu, X.: Kernel-based least squares policy iteration for reinforcement learning. Neural Networks, IEEE Transactions on 18(4), 973–992 (2007)

    Article  Google Scholar 

  18. Yoshimoto, J., Nishimura, M., Tokita, Y., Ishii, S.: Acrobot control by learning the switching of multiple controllers. Artificial Life and Robotics 9, 67–71 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris C. Dracopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this paper

Cite this paper

Dracopoulos, D.C., Nichols, B.D. (2012). Swing Up and Balance Control of the Acrobot Solved by Genetic Programming. In: Bramer, M., Petridis, M. (eds) Research and Development in Intelligent Systems XXIX. SGAI 2012. Springer, London. https://doi.org/10.1007/978-1-4471-4739-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4739-8_19

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4738-1

  • Online ISBN: 978-1-4471-4739-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics