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Abstract—Hyper-heuristics are a class of high-level search
techniques which operate on a search space of heuristics rather
than directly on a search space of solutions. Early hyper-
heuristics focussed on selecting and applying a low-level heuristic
at each stage of a search. Recent trends in hyper-heuristic
research have led to a number of approaches being developed
to automatically generate new heuristics from a set of heuristic
components. This work investigates the suitability of using genetic
programming as a hyper-heuristic methodology to generate con-
structive heuristics to solve the multidimensional 0-1 knapsack
problem. A population of heuristics to rank knapsack items are
trained on a subset of test problems and then applied to unseen
instances. The results over a set of standard benchmarks show
that genetic programming can be used to generate constructive
heuristics which yield human-competitive results.

Index Terms—Hyper-heuristics, Genetic Programming,
Heuristic Generation, Multidimensional Knapsack Problem

I. INTRODUCTION

Many optimisation problems create a search space which is
too large to enumerate and exhaustively search for an optimal
solution. A large number of heuristics and meta-heuristics
have been successfully applied to such NP-hard problems. A
weakness of these approaches is the need to manually adapt
the method used in order to solve different problem domains or
classes of problem. Hyper-heuristics are an emerging class of
high-level search techniques designed to automate the heuristic
design process and raise the level of generality at which
search methods operate [1]. Hyper-heuristics operate on a
search space of heuristics unlike traditional computational
search methods which operate directly on a search space of
solutions. Hyper-heuristic research is driven by the desire to
provide more general search methods which select and create
methods for solving problems rather than searching directly
for solutions.

Hyper-heuristics can be broadly split into two main cate-
gories, those methodologies which select a low-level heuristic
to apply at a given point in the search and those methodologies
which create new heuristics from a set of low-level compo-
nents [2]. Here we will be concerned with the latter of these
two categories. A motivation for this area of research is that a
heuristic can be automatically specialised to a given class of
problems, with certain characteristics. It is often prohibitively

expensive to manually tune a heuristic methodology for each
new class of problem instances, but doing so would produce
better results. If we can research methods to successfully
automate that design process, then much better results can
potentially be obtained, with no extra human effort. Genetic
programming is a standard evolutionary computation tech-
nique which has been successfully employed to automatically
generate heuristics for a number of NP-hard [3] combinatorial
optimisation problems [4], [5], [6], [7], [8], [9], [10]. The
multidimensional 0-1 knapsack problem is a standard NP-hard
problem which is derived from real-world applications such as
capital budgeting [11] and project selection [12].

In this paper, we investigate the suitability of genetic
programming to evolve reusable constructive heuristics for
the multidimensional 0-1 knapsack problem. We compare
the performance of the automatically generated heuristics to
human-designed constructive heuristics and meta-heuristics
from the literature over a set of standard benchmark instances.

Section II provides an overview of hyper-heuristics in
general and genetic programming hyper-heuristic in particular.
Then the multidimensional 0-1 knapsack problem is described
in section III. Section IV provides the experimental design
and settings of genetic programming for solving the problem
which is followed by section V discussing the results of the
computational experiments. Finally, section VI concludes our
work.

II. HYPER-HEURISTICS

Denzinger et al. [13] first used the term ‘hyper-heuristic’
to describe a system which selects and combines a number
of artificial intelligence methods. Although this was when the
term ‘hyper-heuristic’ originated, the idea of operating on a
search space of heuristics can be traced back to the early
1960’s. Fisher and Thompson [14] showed that combining
rules for job shop scheduling could yield better results than
taking any single individual rule. Cowling et al. [15] intro-
duced the term in the field of combinatorial optimisation and
defined hyper-heuristics as ‘heuristics to choose heuristics’. A
more recent definition was provided by Burke et al. [2], [16]
to include hyper-heuristics which generate new heuristics from
components of existing heuristics:



‘A hyper-heuristic is a search method or learning
mechanism for selecting or generating heuristics to
solve computational search problems.’

A. A classification of hyper-heuristic approaches

Burke et al. [2] outline two main categories of hyper-
heuristics; heuristic selection methodologies and heuristic
generation methodologies. Heuristic selection methodologies
select a low-level heuristic to apply at a given point in the
search space. Heuristic generation methodologies automati-
cally generate new heuristics from a set of low-level com-
ponents or building blocks. In either case, the set of low-level
heuristics being selected or generated can either be further
split to distinguish between those which construct solutions
from scratch (constructive) and those which modify an existing
solution (perturbative) (see [17] for more). As well as the
nature of the search space, hyper-heuristics can learn from
feedback concerning heuristic performance throughout the
search process. Hyper-heuristics which utilise online learning
continuously adapt throughout the search process based on the
feedback they receive. Hyper-heuristics using offline learning
train a hyper-heuristic on a subset of instances before being
applied to a larger set of unseen instances.

B. Genetic programming as a hyper-heuristic

Genetic programming is one of the more recently developed
classes of evolutionary algorithms proposed by Koza [18].
Unlike traditional forms of evolutionary computation, pop-
ulations of computer programs usually expressed as tree
structures are evolved. Rather than producing fixed-length
encoded representations of candidate solutions to a given
problem, the evolved program itself, when executed, is the
solution. Burke et al. [19] outline the suitability of genetic
programming as a hyper-heuristic to generate new heuristics
and survey previous work attempting to create heuristics using
genetic programming. One of the advantages highlighted is
that genetic programming relies on expert knowledge to define
its terminal and function sets. As human expert knowledge is
necessary, domain specific information can be incorporated
into the fundamental components of the system. A second
advantage is that other methods (such as genetic algorithms)
may restrict the length of an encoded solution in order to
facilitate simple genetic operators, genetic programming trees
have variable length representation. This can be useful if the
best length encoding for heuristic representation is not known.
Finally, genetic programming can be used to evolve trees
as executable programs allowing low-level heuristics to be
generated directly.

Genetic programming has successfully been used to evolve
new constructive heuristics comparable to human designed
heuristics for a number of problem domains. Burke et al. [4],
[5] showed that stand-alone heuristics generated using genetic
programming could outperform the human designed ‘best-
fit’ heuristic from the literature on unseen instances of the
same class of one dimensional bin packing problems. This
work was extended to three dimensional bin packing by Allen

at al. [20] and generalised by Burke et al. [6] to include
one, two and three dimensional bin packing problems, again
obtaining human competitive results. A similar method was
presented by Burke et al. [21] for two dimensional strip
packing problems. Bader-El-Din and Poli [8] used genetic
programming to quickly generate ‘disposable’ heuristics to
solve the satisfiability problem. Again, this work generated
heuristics comparable to those which were human designed.
However, only a limited search space of heuristics was cov-
ered. Kumar et al. [22] used genetic programming as a hyper-
heuristic to evolve heuristics for the biobjective 0-1 knapsack
problem. This system successfully created ‘reusable’ heuristics
able to produce a set of Pareto-optimal solutions. The Pareto
fronts generated using this approach are indistinguishable from
those obtained using the human-desinged profit-to-weight ratio
heuristic. Hauptman et al. [10] employ genetic programming
to generate solvers for two common puzzles including the
NP-Complete Freecell. Genetic programming has also been
used as a hyper-heuristic by Keller and Poli [23] for the
travelling salesman problem, by Fukunaga [9] to generate local
search heuristics for satisfiability and by Geiger et al. [7] to
create dispatching rules for the job shop problem. At a higher
level of abstraction, Hyde et al. [24] evolve the acceptance
criteria component of a selection hyper-heuristic. The evolved
acceptance criteria performed well when compared to standard
acceptance criteria from the literature on instances of both bin
packing and MAX-SAT.

III. THE MULTIDIMENSIONAL 0-1 KNAPSACK PROBLEM

The multidimensional 0-1 knapsack problem is an NP-
hard [3] combinatorial optimisation problem whereby the
objective is to select a subset of items which maximise
profit whilst conforming to a number of constraints. Each
item consumes a certain amount of resources in each of
the knapsacks dimensions and the capacity of each of the
knapsacks dimensions must be respected. More formally, a
multidimensional 0-1 knapsack problem with n items and m
dimensions can be defined as:

maximise Z DT (D)
j=1

subject to Zaijxj <b;, i=1,...m (2)
j=1

with z; € {0,1}, j=1..,n 3)

where p; is the profit for selecting item j, x1,...,%, is a
set of decision variables indicating whether or not object j is
selected, b; is the capacity of each dimension 4 and a;; is the
resource consumption of item j in dimension %.

Senju and Toyoda [25] proposed a heuristic which starts
with all variables x1,...,x, set to 1 and successively sets
variables to O in order of increasing utility value until a
feasible solution is found. Magazine and Oguz [26] presented
a heuristic algorithm which combined the method of Senju
and Toyoda [25] with the Generalised Lagrange Multiplier



approach of Everett [27] to fix certain variables. This work was
improved by Volgenant and Zoon [28]. More recently, a variety
of exact and meta-heuristic methods have also been proposed
in the literature to solve the multidimensional 0-1 knapsack
problem including simulated annealing [29], [30], neural net-
works [31], genetic algorithms [32], memetic algorithms [33],
[34], selection hyper-heuristics [35] and particle swarm opti-
misation [36] and core-based and tree search algorithms [37],
[38], [39]. Fréville [40] provides a more complete survey of
the multidimensional 0-1 knapsack problem literature.

IV. A GENETIC PROGRAMMING HYPER-HEURISTIC FOR
THE MULTIDIMENSIONAL KNAPSACK PROBLEM

A number of papers in the literature [25], [26], [33], [41],
[42], [43], [44] make use of an add and (or) drop phase
to either construct, improve or repair solutions to the mul-
tidimensional 0-1 knapsack problem. These techniques more
often than not use a utility-weight value to score and sort the
objects in order of their relative efficiency. Here we use genetic
programming to evolve a population of heuristics which assign
a score to each potential knapsack item. Each heuristic is
evaluated by attempting to add the items to the knapsack in
descending order determined by these scores (highest rank
first) over a set of ‘training’ instances.

A. Genetic programming function and terminal sets

The first four rows of Table I show the function set of the
genetic programming runs. The arithmetic operators add, sub-
tract, multiply and protected divide are chosen to be included
in the function set. In addition to standard add, subtract and
multiply operators we use ‘protected divide’ instead of the
traditional divide function. As there is always a possibility
that the denominator could be zero, protected divide replaces
zero with 0.001. The rest of Table I shows the terminal set.
The avgDif f for item j is calculated as:

S by — ayj
avgDif f; = Loi=17t W

m
Depending on the number of dimensions in the set of instances
currently being considered there is a set of m conDim

terminals for each of conDim; 1 ... conDimy .

“4)

B. Experimental design

The ORLIb instances introduced by Chu and Beasley [33]
are used to test the genetic programming hyper-heuristic.
ORLib contains 270 instances with n € {100, 250, 500}
variables, m € {5, 10, 30} dimensions and tightness ratio €
{0.25, 0.50, 0.75}. As optimal solutions are not known for
these instances the %-gap is used to measure performance.
The %-gap is the distance from the upper bound provided by
the solution to the related LP-relaxed problem calculated as:

LPopt—SolutionFound
100 * T Popt (®)]

For each set of 10 instances we use 5 to ‘train’ the hyper-
heuristic before applying the best evolved heuristic to the

TABLE I
FUNCTION AND TERMINAL SETS OF EACH GENETIC PROGRAMMING RUN

[ Name | Description
+ Add two inputs
- Subtract second input from first input
* Multiply two inputs
% Protected divide function
Dj Profit of the current item j
avgDif f; Average difference between the capacity and
resource consumption of the current item for
each dimension of the knapsack
conDimj 1 | Resource consumption of the current item j in

dimension 1

Resource consumption of the current item j in
dimension 2

Resource consumption of the current item j in
dimension...

Resource consumption of the current item jin
dimension m

conDimj 2

conDimg, ..

conDim m

TABLE I
PARAMETERS OF EACH GENETIC PROGRAMMING RUN

Generations 50
Population Size 10000
Crossover Probability 0.85

Mutation Probability 0.1
Reproduction Probability 0.05

Tree initialisation method Ramped half-and-half
Selection Method Tournament Selection, Size 7

further 5 as yet unseen ‘test’ instances. The fitness of an
individual in the GP population is measured as the sum of the
profit obtained on the 5 training instances. The next generation
of the genetic programming run is then populated using the
best performing heuristics. Table II shows the parameters used
in the genetic programming runs. The mutation operator uses
the ‘grow’ method described by Koza [18], with a set depth
of five. The crossover operator produces two individuals with
a maximum depth of 17.

Each experiment was repeated 5 times for each set of
instances. All experiments were carried out on an Intel i7 2
GHz CPU with 6 GB memory using the genetic programming
implementation of the ECJ (Evolutionary Computation in
Java) package.

V. EXPERIMENTAL RESULTS

Table III shows the average results in terms of %-gap for
the best evolved heuristic of 5 runs for each set of instances in
ORLIib. Each set of instances consists of 5 ‘training’ instances
and 5 ‘test’ instances and is labelled as ORmxn with m € {5,
10, 30} dimensions and n € {100, 250, 500} variables. Each
mxn combination also varies with tightness ratio € {0.25,
0.50, 0.75}. From this table we note that a better average
percentage gap is obtained when tightness ratio increases.

Table IV shows the average %-gap for a number of tech-
niques from the literature over all 270 instances in the ORLib
benchmark set. Our approach generates heuristics which can
outperform previous human-designed constructive heuristics.



TABLE IIT
DETAILED PERFORMANCE OF BEST HEURISTICS GENERATED BY GE!
PROGRAMMING HYPER-HEURISTICS ON ORLIB INSTANCES BASEL
AVERAGE %-GAP

tightness ratio
Instance Set 025 | 050 | 075 Average
OR5x100 4.98 2.05 1.36 2.80
OR5x250 3.08 1.66 0.77 1.84
OR5x500 2.38 1.64 0.71 1.58
OR10x100 7.39 3.54 2.26 4.40
OR10x250 4.43 2.78 1.15 2.79
OR10x500 3.77 1.97 0.99 2.24
OR30x100 8.67 4.70 2.43 5.27
OR30x250 5.73 3.25 1.70 3.56
OR30x500 4.80 2.54 1.40 291
[ All instances | 5.03 | 2.68 | 142 [ 3.04 |
TABLE IV

COMPARISON OF GENETIC PROGRAMMING HYPER-HEURISTIC TO
PREVIOUS APPROACHES OVER ALL INSTANCES IN ORLIB IN TERMS OF
9%-GAP

[ Type | Reference [ %-gap ]
MIP Drake et al. [35] (CPLEX 12.2) 0.52
MA Chu and Beasley [33] 0.54
Selection HH Drake et al. [35] 0.70
MA Ozcan and Basaran [34] 0.92
Heuristic Pirkul [41] 1.37
Heuristic Fréville and Plateau [43] 1.91
Metaheuristic Qian and Ding [30] 2.28
Generation HH Genetic programming hyper-heuristic 3.04
MIP Chu and Beasley [33] (CPLEX 4.0) 3.14
Heuristic Akcay et al. [45] 3.46
Heuristic Volgenant and Zoon [28] 6.98
Heuristic Magazine and Oguz [26] 7.69

The heuristics generated by our genetic programming hyper-
heuristic achieve an average %-gap of 3.04, this is lower than
the human-designed constructive heuristic methods proposed
by Akcay et al. [45], Volgenant and Zoon [28] and Maga-
zine and Oguz [26]. They can also outperform the primitive
MIP applied by Chu and Beasley [33]. Many of the better
performing techniques in the literature, such as the MA of
Chu and Beasley [33] and the selection hyper-heuristic of
Drake et al. [35], make use of a repair operator based on
solutions to the LP-relaxed version of the multidimensional 0-1
knapsack problem. Once a reusable constructive heuristic has
been evolved it takes considerably less computational effort
to find a solution than calculating the LP-relaxed solutions.
In this case, the LP-relaxed solutions must be calculated for
every new instance encountered. Approaches using LP-relaxed
solutions also then require the extra effort of applying a
metaheuristic or other technique afterwards. Figure 1 shows
the fitness value of the best performing heuristic at each
generation of a sample GP run on the OR5x100 set. This plot
shows a steady improvement in solution quality with the best-
of-run heuristic not found until the latter stages of the run.
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Fig. 1. Best solution found at each generation of a sample run on the on
the 5 training instances of the OR5x100 set

VI. CONCLUSIONS

In this work we have shown that genetic programming can
be used as a hyper-heuristic to generate reusable constructive
heuristics for the multidimensional 0-1 knapsack problem. Our
method is classified as a hyper-heuristic approach as it operates
on a search space of heuristics rather than a search space of
solutions. To the authors knowledge, this is the first time in
literature a GP hyper-heuristic has been used to solve the mul-
tidimensional 0-1 knapsack problem. This method has shown
that automatically generated heuristics can be competitive with
human-designed heuristics from the literature. Many methods
make use of an add and (or) drop phase to either construct,
improve or repair solutions. As future work, the rankings
derived from the evolved heuristics can be used to define the
order in which items are considered to be added or dropped.
Many of the best results in the literature rely on knowledge
gained from the LP-relaxed version of the multidimensional
0-1 knapsack problem. We intend to incorporate the optimal
LP-relaxed results as part of a more comprehensive function
set to attempt to improve the heuristics generated.
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