
Crossover Control in Selection

Hyper-heuristics: Case Studies using MKP

and HyFlex

John H. Drake, BSc (Hons), MSc

Thesis submitted to The University of Nottingham

for the degree of Doctor of Philosophy

July 2014

Abstract

Hyper-heuristics are a class of high-level search methodologies which operate over

a search space of heuristics rather than a search space of solutions. Hyper-heuristic

research has set out to develop methods which are more general than traditional search

and optimisation techniques. In recent years, focus has shifted considerably towards

cross-domain heuristic search. The intention is to develop methods which are able to

deliver an acceptable level of performance over a variety of different problem domains,

given a set of low-level heuristics to work with.

This thesis presents a body of work investigating the use of selection hyper-heuristics

in a number of different problem domains. Specifically the use of crossover operators,

prevalent in many evolutionary algorithms, is explored within the context of single-

point search hyper-heuristics. A number of traditional selection hyper-heuristics are

applied to instances of a well-known NP-hard combinatorial optimisation problem,

the multidimensional knapsack problem. This domain is chosen as a benchmark for

the variety of existing problem instances and solution methods available. The results

suggest that selection hyper-heuristics are a viable method to solve some instances of

this problem domain. Following this, a framework is defined to describe the concep-

tual level at which crossover low-level heuristics are managed in single-point selection

hyper-heuristics. HyFlex is an existing software framework which supports the design

of heuristic search methods over multiple problem domains, i.e. cross-domain opti-

misation. A traditional heuristic selection mechanism is modified in order to improve

results in the context of cross-domain optimisation. Finally the effect of crossover use

in cross-domain optimisation is explored.

i

Acknowledgements

My sincerest thanks go to my supervisor Dr. Ender Özcan without whom this thesis

would not be possible. The advice and support he has given me over the last few years

has enabled me to get to where I am today. I am also grateful to my external supervisor

Professor Edmund Burke and the LANCS initiative for supporting me throughout the

course of my PhD.

A special mention is due to the academic and administrative members of the Au-

tomated Scheduling, optimisAtion and Planning (ASAP) research group, past and

present. I have been lucky enough to have a good working and social relationship

with many members of the group, for which my life as a PhD student has been a richer

experience.

Finally, I would like to thank my family and friends for their unconditional support

throughout my academic career and life in general. There is no way I would have

reached this point if it wasn‘t for you.

ii

Contents

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Aims and Scope . 4

1.3 Contributions . 4

1.3.1 Academic publications produced 4

1.4 Thesis Structure . 5

1.4.1 Chapter 2: Literature Review . 5

1.4.2 Chapter 3: The Multidimensional Knapsack Problem 6

1.4.3 Chapter 4: A Study of Selection Hyper-heuristics Applied to the

Multidimensional Knapsack Problem 6

1.4.4 Chapter 5: A Case Study of Controlling Crossover in a Selection

Hyper-heuristic Framework with MKP 6

1.4.5 Chapter 6: An Improved Choice Function Heuristic Selection for

Cross-Domain Heuristic Search . 6

1.4.6 Chapter 7: Crossover Control in Cross-domain Optimisation . . . 7

1.4.7 Chapter 8: Conclusion . 7

2 Hyper-heuristics 8

2.1 Introduction . 8

2.2 Metaheuristics . 9

2.2.1 Local Search . 10

2.2.2 Evolutionary Algorithms . 10

2.2.3 Tabu Search . 11

iii

CONTENTS

2.2.4 Simulated Annealing . 12

2.2.5 Great Deluge . 12

2.2.6 Late Acceptance Strategy . 13

2.3 A survey of hyper-heuristics . 14

2.3.1 Hyper-heuristic history and definitions 14

2.3.2 A classification of hyper-heuristic approaches 16

2.3.3 Heuristics to select heuristics . 17

2.3.4 Heuristics to generate heuristics 23

2.4 Recent advances in selection hyper-heuristics operating on perturbative

low-level heuristic sets . 28

2.5 The HyFlex framework . 35

2.5.1 Recent studies using the CHeSC2011 benchmark problems 36

2.5.2 Problem domains used in the CHeSC2011 competition 42

2.5.3 CHeSC2011 results and scoring system 49

2.6 Concluding remarks . 51

3 The Multidimensional Knapsack Problem 52

3.1 Introduction . 52

3.2 Problem definition . 53

3.2.1 Fitness function . 53

3.3 Literature review . 54

3.4 Problem instances . 56

3.4.1 Datasets used by existing approaches for the MKP 58

3.5 Concluding remarks . 60

4 A Study of Selection Hyper-heuristics Applied to the Multidimensional

Knapsack Problem 61

4.1 Introduction . 61

4.2 Generic selection hyper-heuristics for the MKP 62

4.2.1 Heuristic selection methods and move acceptance criteria used . 63

4.2.2 Low-level heuristics . 63

iv

CONTENTS

4.2.3 Experimental setup . 69

4.3 Results and Discussion . 70

4.3.1 Performance comparison between hyper-heuristics sharing a

common heuristic selection method 71

4.3.2 Performance comparison between hyper-heuristics sharing a

common acceptance criterion . 73

4.3.3 Performance comparison of all hyper-heuristics 75

4.3.4 Comparison with existing approaches to the MKP from the liter-

ature . 81

4.3.5 Remarks and potential future improvements 82

4.4 Concluding Remarks . 83

5 A Case Study of Controlling Crossover in a Selection Hyper-heuristic Frame-

work with MKP 84

5.1 Introduction . 84

5.2 Controlling crossover in selection hyper-heuristics 85

5.2.1 Controlling crossover at the hyper-heuristic level 87

5.2.2 Controlling crossover at the domain-specific level 88

5.3 Experimental setup . 90

5.3.1 Hyper-heuristic framework . 90

5.3.2 Hyper-heuristic components . 91

5.3.3 Experimental data and test framework definitions 92

5.4 Finding a suitable initialisation method for the list of solutions 92

5.5 Experiments . 94

5.5.1 Controlling crossover at the hyper-heuristic level for the MKP . . 95

5.5.2 Controlling crossover at the domain level for the MKP 97

5.5.3 Comparison of hyper-heuristics managing crossover at the

hyper-heuristic level, hyper-heuristics managing crossover at the

domain level and CPLEX 12.5 . 98

5.6 Framework generality tested on the Boolean satisfiability problem 105

5.7 Concluding remarks . 107

v

CONTENTS

6 An Improved Choice Function Heuristic Selection for Cross-Domain Heuristic

Search 109

6.1 Selection hyper-heuristics and the Choice Function 110

6.1.1 Choice Function heuristic selection 110

6.1.2 Modified Choice Function heuristic selection 111

6.2 Experimentation . 113

6.2.1 Experimental setup . 113

6.2.2 Relative performance of Choice Function - All Moves and Mod-

ified Choice Function - All Moves hyper-heuristics compared to

CHeSC2011 ‘default’ hyper-heuristics 113

6.2.3 Relative performance of Choice Function - All Moves and Mod-

ified Choice Function - All Moves hyper-heuristics compared to

CHeSC2011 entrants . 116

6.2.4 Direct comparison between Choice Function - All Moves and Modi-

fied Choice Function - All Moves hyper-heuristics using CHeSC2011

benchmark instances . 121

6.3 Performance of the Modified Choice Function on the MKP 125

6.4 Concluding Remarks . 128

7 Crossover Control in Cross-domain Optimisation 129

7.1 The Modified Choice Function - All Moves hyper-heuristic with and with-

out crossover operators in cross-domain optimisation 129

7.1.1 Crossover management scheme at the hyper-heuristic level . . . 130

7.1.2 Indirect comparison of Modified Choice Function - All Moves with

and without crossover over the CHeSC2011 benchmark domains 132

7.1.3 Direct comparison of Modified Choice Function - All Moves with

and without crossover over the HyFlex benchmark domains . . . 139

7.2 Introducing the crossover management scheme of the CHeSC2011 win-

ner into a Modified Choice Function - All Moves hyper-heuristic using an

FC framework . 142

7.2.1 The FC Modified Choice Function - All Moves hyper-heuristic with

and without crossover . 142

vi

CONTENTS

7.2.2 The FC Modified Choice Function - All Moves hyper-heuristic with

the crossover control scheme of the CHeSC2011 winner 146

7.3 Introducing a different crossover control scheme into the CHeSC2011

winner . 149

7.3.1 Results . 149

7.4 Concluding Remarks . 151

8 Conclusion 154

8.1 Context . 154

8.2 Summary of Work . 155

8.2.1 Chapter 4 . 155

8.2.2 Chapter 5 . 155

8.2.3 Chapter 6 . 155

8.2.4 Chapter 7 . 155

8.3 Extensions and Future Work . 156

8.3.1 Further improvement of the Choice Function heuristic selection

method . 156

8.3.2 Dynamic heuristic selection and move acceptance criteria selection 156

8.3.3 Closer integration of selection hyper-heuristic and generation

hyper-heuristic paradigms . 157

8.3.4 Automation of crossover application strategies and experimenta-

tion over a wider variety of conditions using the HyFlex framework157

8.4 Final Remarks . 158

A Categorisations of selection hyper-heuristics discussed in the literature re-

view 159

References 159

vii

List of Figures

2.1 An abstract depiction of Great Deluge hill climbing in the case of a max-

imisation problem . 13

2.2 Comparison of current solution to solution in memory in Late Accep-

tance Strategy hill climbing . 14

2.3 A high-level overview of hyper-heuristic components 17

2.4 Classic single-point search hyper-heuristic framework 18

4.1 The FB selection hyper-heuristic framework 62

4.2 An example of generalised Swap Dimension mutation on a binary string 66

4.3 An example of Paramaterised Mutation on a binary string with a muta-

tion rate of 3 . 67

4.4 An example of binary one-point crossover 68

4.5 An example of binary two-point crossover 68

4.6 An example of binary uniform crossover 69

4.7 Borda counts for hyper-heuristics with a common heuristic selection

method . 72

4.8 Borda counts for hyper-heuristics using Reinforcement Learning as a

heuristic selection method . 72

4.9 Borda counts for hyper-heuristics with a common move acceptance cri-

terion . 74

4.10 Borda counts for hyper-heuristics with a common move acceptance cri-

terion (ii) . 75

4.11 Box and whisker comparison of twelve hyper-heuristics over all 270 OR-

Lib instances in terms of %-gap . 77

viii

LIST OF FIGURES

4.12 Average working and best %-gap values with respect to number of eval-

uations for MKP instance ORLib30x500_0.75-01 79

4.13 Average working and best %-gap values with respect to number of eval-

uations for MKP instance ORLib30x500_0.75-01 (ii) 80

5.1 A general framework for controlling crossover with hyper-heuristic con-

trol shown by arrow (a) and low-level control shown by arrow (b) 87

5.2 Single-point search hyper-heuristic framework with local improvement

(FC) . 90

5.3 Average low-level heuristic utilisation for Choice Function - Only Improv-

ing hyper-heuristics with Random, Memory and No Crossover over all

instances in ORLib . 97

6.1 Classic FA single-point search hyper-heuristic framework 110

6.2 Number of points scored in the MAX-SAT domain using the Formula

One system for each CHeSC2011 competitor and Modified Choice Function

- All Moves hyper-heuristic . 118

6.3 Number of points scored in the personnel scheduling domain using

the Formula One system for each CHeSC2011 competitor and Modified

Choice Function - All Moves hyper-heuristic 119

6.4 Box and whisker comparison of 20 CHeSC2011 entrants and Choice Func-

tion - All Moves using normalised objective function 120

6.5 Box and whisker comparison of 20 CHeSC2011 entrants and Modified

Choice Function - All Moves using normalised objective function 120

6.6 Average working and global best fitness values with respect to time for

10 runs on the ‘rat575’ instance of the travelling salesman problem . . . 123

6.7 Average working and global best fitness values with respect to time for

10 runs on the ‘u2152’ instance of the travelling salesman problem 124

7.1 Number of points scored in the MAX-SAT domain using the Formula

One system for each CHeSC2011 competitor and Modified Choice Function

- All Moves hyper-heuristic with crossover 135

7.2 Number of points scored in the personnel scheduling domain using

the Formula One system for each CHeSC2011 competitor and Modified

Choice Function - All Moves hyper-heuristic with crossover 135

ix

LIST OF FIGURES

7.3 Number of points scored in the bin packing domain using the Formula

One system for each CHeSC2011 competitor and Modified Choice Function

- All Moves hyper-heuristic with crossover 136

7.4 Number of points scored in the vehicle routing problem domain using

the Formula One system for each CHeSC2011 competitor and Modified

Choice Function - All Moves hyper-heuristic with crossover 137

7.5 Box and whisker comparison of 21 CHeSC2011 entrants and Modified

Choice Function - All Moves with crossover using normalised objective

function . 139

7.6 Number of competition instances in which Modified Choice Function - All

Moves hyper-heuristic with and without crossover perform best on aver-

age for each CHeSC2011 problem domain 141

7.7 Formula One points scored using each crossover control scheme within

FC Modified Choice Function - All Moves compared to CHeSC2011 entrants 148

7.8 Formula One points scored by each crossover control mechanism within

AdapHH compared to CHeSC2011 competitors 150

x

List of Tables

2.1 Key definitions of heuristic selection methods 19

2.2 Key definitions of heuristic selection methods (ii) 20

2.3 Key definitions of move acceptance criteria 20

2.4 Summary of the number of instances and low-level heuristics provided

for each problem domain in HyFlex . 43

2.5 Summary of the one-dimensional bin packing instances included in

HyFlex . 44

2.6 Summary of the Boolean satisfiability (MAX-SAT) instances included in

HyFlex . 45

2.7 Summary of the permutation flow shop instances included in HyFlex . . 46

2.8 Summary of the personnel scheduling instances included in HyFlex . . . 47

2.9 Summary of the travelling salesman problem instances included in HyFlex 48

2.10 Summary of the vehicle routing problem instances included in HyFlex . 49

2.11 HyFlex indexes of problem instances used for the CHeSC2011 competition 50

2.12 Results of CHeSC2011 using the Formula One ranking system 50

3.1 Summary of the properties of the ORLib set of 270 MKP benchmark in-

stances . 57

3.2 The number of objects n and dimensions m in (a) the SAC-94 instances

and (b) the Glover and Kochenberger MKP benchmark instances 58

3.3 Summary of the datasets used by existing methods in the literature . . . 59

4.1 Overall performance of each hyper-heuristic over OR-Lib benchmarks

in terms of average %-gap . 76

xi

LIST OF TABLES

4.2 Performance of other approaches over OR-Lib benchmarks 82

5.1 Average best solutions for C*, R* and jqdInit initialisation methods over

each set of 10 instances in the 90 ORLib instances with m = 5 93

5.2 Average list quality for C*, R* and jqdInit initialisation methods over

each set of 10 instances in the 90 ORLib instances with m = 5 94

5.3 Performance of initialisation methods over the 90 ORLib instances with

m = 5 . 94

5.4 Average %-gap over all ORLib instances for each hyper-heuristic with

Random Crossover, Memory Crossover and without crossover 95

5.5 Average %-gap over all ORLib instances for each hyper-heuristic using

a list of solutions to provide the second input for crossover managed at

the domain level . 97

5.6 Detailed performance of CPLEX 12.5, Choice Function - Late Acceptance

Strategy with crossover managed at domain level and Choice Function -

Only Improving with No Crossover on ORLib instances based on average

%-gap) . 99

5.7 Number of instance sets particular statistical differences occur 100

5.8 (a) Success rate of CPLEX 12.5, Choice Function - Late Acceptance Strategy

hyper-heuristic and Choice Function - Only Improving with No Crossover

over all SAC-94 instances and (b) Performance of CPLEX 12.5, Choice

Function - Late Acceptance Strategy hyper-heuristic and Choice Function -

Only Improving with No Crossover on Glover and Kochenberger instances 101

5.9 Average %-gap of other (meta-)heuristics and CPLEX over all instances

in ORLib . 102

5.10 Performance comparison with best metaheuristic technique in the liter-

ature over ORLib instances with n = 500 objects. 103

5.11 Success rate of techniques from the literature over a subset SAC-94 in-

stances . 104

5.12 Performance comparison of Choice Function - Late Acceptance Strategy

hyper-heuristic, CPLEX 12.5 and permutation, weight-biased and direct

representation evolutionary algorithms on Glover and Kochenberger in-

stances . 105

xii

LIST OF TABLES

5.13 Performance of a Choice Function - Late Acceptance Strategy hyper-

heuristic over SATLIB benchmarks . 106

6.1 Formula One scores for (a) a single run of Modified Choice Function - All

Moves hyper-heuristic and the CHeSC default hyper-heuristics and (b) a

single run of classic Choice Function - All Moves hyper-heuristic and the

CHeSC default hyper-heuristics . 115

6.3 Pairwise comparison between Modified Choice Function - All Moves and

Choice Function - All Moves using an independent Student’s t-test 121

6.4 Comparison between Choice Function - Late Acceptance Strategy (CF-LAS)

and Modified Choice Function - Late Acceptance Strategy (MCF-LAS) on all

270 instances of ORLib in terms of %-gap 126

6.5 (a) Success rate of Choice Function - Late Acceptance Strategy and Modified

Choice Function - Late Acceptance Strategy over SAC-94 instances and (b)

Performance of Choice Function - Late Acceptance Strategy and Modified

Choice Function - Late Acceptance Strategy on Glover and Kochenberger

instances . 127

7.1 Results of the median of 31 runs of the Modified Choice Function - All

Moves hyper-heuristic (a) without crossover and (b) with crossover, com-

pared to CHeSC2011 competitors using Formula One scores over all

problem domains . 133

7.2 Pairwise comparison of Modified Choice Function - All Moves with and

without crossover using independent Student’s t-test 140

7.3 Results of the median of 31 runs of FC Modified Choice Function - All Moves

hyper-heuristics (a) without crossover and (b) with crossover, compared

to CHeSC2011 competitors using Formula One scores over all problem

domains . 144

7.4 Formula One scores for FA Modified Choice Function - All Moves (a) with-

out crossover, (b) with crossover and FC Modified Choice Function - All

Moves (c) without crossover and (d) with crossover in each problem do-

main compared to CHeSC2011 competitors 145

7.5 Formula One scores for Modified Choice Function - All Moves with the

crossover control mechanism of the CHeSC2011 winner and CHeSC2011

competitors in each problem domain . 147

xiii

LIST OF TABLES

7.6 Formula One scores for (a) an independent run of AdapHH and (b)

AdapHH with modified crossover management scheme in each problem

domain compared to CHeSC2011 competitors 149

7.7 Pairwise comparison of AdapHH with differing crossover control

schemes using independent T-Test . 151

A.1 Categorisation of recent selection hyper-heuristics based on selection

method used . 160

A.2 Categorisation of recent selection hyper-heuristics based on acceptance

criterion used . 160

A.3 Categorisation of recent selection hyper-heuristics based on problem do-

main solved . 160

A.4 Categorisation of recent selection hyper-heuristics applied to the HyFlex

benchmarks based on selection method used 161

A.5 Categorisation of recent selection hyper-heuristics applied to the HyFlex

benchmarks based on acceptance criterion used 161

xiv

CHAPTER 1

Introduction

1.1 Background and Motivation

Optimisation problems often explore a search space which is too large to enumerate

and exhaustively search for an optimal solution. Various heuristics and metaheuris-

tics have been applied successfully to problems of this nature. One drawback of such

approaches is the necessity to manually adapt the method used to solve different prob-

lem domains or classes of problem. Hyper-heuristics are a class of high-level search

techniques which aim to raise the level of generality at which search methods oper-

ate [190]. Hyper-heuristics are broadly split into two main categories, those which

select a low-level heuristic to apply from a set of existing heuristics and those which

create new heuristics from a set of low-level components [28]. This thesis is concerned

with the first category, those methodologies which select a low-level heuristic to apply

at a given point in a search.

The objective of cross-domain heuristic search is to develop methods which are able to

consistently find good quality solutions in multiple problem domains, using a given

set of low-level heuristics. The HyFlex framework [28, 166], introduced chiefly to sup-

port the first Cross-domain Heuristic Search Challenge (CHeSC2011) [31], is used as a

benchmark framework for many of the methods investigated in this thesis. HyFlex

provides a common software interface to test the performance of high-level search

strategies over multiple problem domains, and an increasing body of associated re-

search with which to compare. Currently HyFlex supports six problem domains and

provides a search space of low-level heuristics from four categories.

The multidimensional knapsack problem (MKP) is a well-studied combinatorial opti-

misation problem with roots in capital budgeting and project selection. The objective of

the MKP is to maximise the profit obtained when selecting a subset of knapsack items,

1

CHAPTER 1: INTRODUCTION

given a set of constraints on the knapsack capacities. Each item has an associated profit

value and consumes a certain amount of resources in a number of dimensions, with

a capacity set for total resource consumption in each dimension. A large number of

researchers have used this problem domain as a benchmark to compare algorithm per-

formance. In recent years, the MKP has become somewhat of a favoured testing ground

for research which combines exact and (meta-)heuristic methods. Here the MKP is used

as a case study to compare a number of selection hyper-heuristics.

There has been an increase in the number of theoretical studies investigating the effect

of mixing strategies in evolutionary algorithms of late. Using ‘asymptotic hitting time’

as a performance measure, He et al. [98] showed that for simple (1+1) EAs, there is no

benefit to using a single mutation operator over a ‘mixed strategy’ of multiple mutation

operators. Moreover if the mutation operators within a mixed strategy EA are mutu-

ally complementary, there exists a mixed strategy EA which strictly outperforms any

EA using a single mutation operator. Lehre and Özcan [134] presented an initial study

analysing the expected run-time of selection hyper-heuristics. This study showed that

mixing low-level heuristics is more efficient than using an individual low-level heuris-

tic in some problem domains provided the right mixing distribution. Although this is

restricted to selection hyper-heuristics based on a (1+1) EA solving simple problems,

it is shown that mixing heuristics could lead to exponentially faster search than using

individual heuristics on certain problem domains. He et al. [99] provided a formal

definition of complementary metaheuristics, and the conditions under which mixed

strategy EAs outperform ‘pure strategy’ EAs using a single search method. This work

also compared population-based mixed strategy and pure strategy EAs solving the 0-1

knapsack problem. It is observed that using a mixed strategy EA could result in bet-

ter solutions than a pure strategy EA in over three quarters of the problem instances

tested. A key theme emerging from these studies is that mixing low-level heuristics is

provably beneficial to a search process in at least some circumstances. This provides a

reasonable justification for investigating methods which aim to utilise the strengths of

different operators at different points of a search such as selection hyper-heuristics.

The No Free Lunch (NFL) theorem [214] shows that over the set of all possible prob-

lems, any two search algorithms will exhibit the same performance on average. Hyper-

heuristic research aims to combine search algorithms, utilising the strengths of different

search methods at different points of the search process. In practice this can lead to a

hyper-heuristic being outperformed by a bespoke search method for a given problem,

due to the initial overhead involved in ‘learning’ how to solve the problem at hand. Al-

though this will mean some loss in solution quality obtained compared to some state-

2

CHAPTER 1: INTRODUCTION

of-the-art method, this is offset by the gain in generality hyper-heuristics offer. Which

of these aspects is more important will depend on the problem domain in question.

Crossover is a core operator in many evolutionary algorithms, inspired by its biologi-

cal namesake, included in many hyper-heuristic frameworks such as HyFlex [166] and

Hyperion [200]. The behaviour of crossover operators is a well-studied area in the field

of evolutionary computation. In Genetic Algorithms, the canonical form of crossover

combines two suitably fit solutions to yield a new solution which inherits genetic mate-

rial from both. The building block hypothesis [102, 90] states that a Genetic Algorithm

works well when short, relatively fit sub-strings (schemas or building blocks) are re-

combined to produce a higher-order solution of even greater fitness. It follows from

the NFL theorem that there are different classes of functions where both crossover and

mutation can outperform each other. Mitchell et al. [157] introduced a class of prob-

lems known as ‘Royal Road’ functions in order to try and analyse the type of land-

scape crossover operators perform well in. These simple functions were designed in a

way that tried to exploit the nature of crossover, by isolating the highly-fit blocks (or

schemas) which were needed for an optimal solution, however Forrest and Mitchell

[72] showed that a random mutation hill climber could actually outperform a Genetic

Algorithm on these functions. Jansen and Wegener [113] showed that it is possible to

have a function which can be expected to be optimised in polynomial time using a Ge-

netic Algorithm with crossover, whereas using evolution strategies based on only selec-

tion and mutation need expected exponential time. This work indicated that crossover

can be beneficial in some cases and should not be completely dismissed when design-

ing optimisation methods, however it did not explicitly make use of building blocks.

Watson and Jansen [210] introduced a function that was not only solvable by a Genetic

Algorithm in polynomial time on average and exponential time for a mutation-based

algorithm, but also used building blocks. Doerr et al. [58, 59] provided the first the-

oretical proof of crossover being beneficial in a practical optimisation problem. Their

studies showed that introducing a problem-specific crossover operator into a mutation-

based evolutionary algorithm solving the all-pairs shortest path problem reduces the

expected optimisation time.

Despite the inclusion of crossover in modern selection hyper-heuristic frameworks and

the proven benefit of using such operators in certain problem domains, there has been

little research effort into strategies managing crossover in selection hyper-heuristics.

As mixing low-level heuristics and utilising crossover is provably beneficial in some

problems, it is a natural research direction to investigate the use of crossover operators

in selection hyper-heuristics.

3

CHAPTER 1: INTRODUCTION

1.2 Aims and Scope

The purpose of this thesis is to provide a contribution to hyper-heuristic research by

investigating the use of crossover in selection hyper-heuristics and applying selection

hyper-heuristics to a new problem domain. Firstly, generic hyper-heuristics are applied

to the multidimensional knapsack problem in order to assess the suitability of hyper-

heuristics as a solution method in this problem domain. Secondly, these methods are

then hybridised with specific exact methods and used as a test-bed for crossover man-

agement at different conceptual levels. Thirdly a modified version of a well-known

hyper-heuristic heuristic selection method is presented, with the intention of improv-

ing cross-domain performance. This mechanism is then used within a base hyper-

heuristic to compare high-level crossover control mechanisms. Finally, a number of

high-level crossover control mechanisms are compared within the hyper-heuristics de-

veloped in earlier chapters and a state-of-the-art selection hyper-heuristic.

1.3 Contributions

1.3.1 Academic publications produced

A number of academic publications have been produced as a result of completing the

research presented in this thesis. These publications are listed in order of the relevant

chapter in which this research is contained:

Chapter 5:

• John H. Drake, Ender Özcan and Edmund K. Burke. A Case Study of Controlling

Crossover in a Selection Hyper-heuristic Framework with MKP. Submitted to an

international journal 2013.

Chapter 6:

• John H. Drake, Ender Özcan and Edmund K. Burke. An Improved Choice Func-

tion Heuristic Selection for Cross Domain Heuristic Search. In Carlos A. Coello

Coello, Vincenzo Cutello, Kalyanmoy Deb, Stephanie Forrest, Giuseppe Nicosia,

and Mario Pavone, editors, Proceedings of Parallel Problem Solving From Nature

(PPSN 2012), Part II, Volume 7492 of LNCS, pages 307-316, Taormina, Italy, 2012.

Springer.

In addition to the publications produced as a direct result of the work in this thesis a

4

CHAPTER 1: INTRODUCTION

number of related papers have been published during this course of research. These

are listed in chronological order of publication:

• John H. Drake, Matthew Hyde, Khaled Ibrahim and Ender Özcan. A Genetic Pro-

gramming Hyper-Heuristic for the Multidimensional Knapsack Problem. Pro-

ceedings of the 11th IEEE International Conference on Cybernetic Intelligent Systems

(CIS 2012), pages 76-80, Limerick, Ireland, 2012. IEEE Press.

• Jerry Swan, John H. Drake, Ender Özcan, James Goulding and John Woodward.

Computer and Information Sciences III: 27th International Symposium on Computer and

Information Sciences, chapter A Comparison of Acceptance Criteria for the Daily

Car-Pooling Problem, pages 447-483. Springer, 2013.

• John H. Drake, N. Kililis and Ender Özcan. Generation of VNS Components

with Grammatical Evolution for Vehicle Routing. In Krzysztof Krawiec, Alberto

Moraglio, Ting Hu, A. Sima Etaner-Uyar and Bin Hu, editors, Genetic Program-

ming - 16th European Conference (EuroGP 2013), Volume 7831 of LNCS, pages 25-36,

Vienna, Austria, 2013. Springer.

• Warren G. Jackson, Ender Özcan and John H. Drake. Late Acceptance-based Se-

lection Hyper-heuristics for Cross-domain Heuristic Search. Proceedings of the 13th

Annual Workshop on Computational Intelligence (UKCI 2013), pages 228-235, Surrey,

UK, 2013. IEEE Press.

1.4 Thesis Structure

The structure of the rest of the thesis, in the form of a brief overview of each of the

individual chapters, will be outlined in the following sections.

1.4.1 Chapter 2: Literature Review

Chapter 2 presents a detailed literature survey of hyper-heuristics with a focus on

recent developments in selection hyper-heuristics. A clear classification of hyper-

heuristic methods is given, providing a grounding for the methods used in the remain-

der of the thesis. An introduction to the HyFlex framework and crossover control in

selection hyper-heuristics is provided.

5

CHAPTER 1: INTRODUCTION

1.4.2 Chapter 3: The Multidimensional Knapsack Problem

The multidimensional knapsack problem is a well-studied combinatorial optimisation

problem formally introduced in Chapter 3. A number of exact and metaheuristic meth-

ods used previously to solve this problem and popular benchmark sets are discussed.

This problem domain is used as a benchmark case study in many of the empirical in-

vestigations in this thesis.

1.4.3 Chapter 4: A Study of Selection Hyper-heuristics Applied to the Mul-

tidimensional Knapsack Problem

Chapter 4 applies a number of standard selection hyper-heuristics operating over a

generic set of low-level heuristics to the MKP. This chapter serves as a preliminary

study of the suitability of hyper-heuristics as a method to solve this problem, analysing

the performance of particular heuristic selection method - move acceptance criterion pair-

ings in selection hyper-heuristics.

1.4.4 Chapter 5: A Case Study of Controlling Crossover in a Selection

Hyper-heuristic Framework with MKP

Chapter 5 details an investigation of crossover use in selection hyper-heuristics solving

the MKP. The responsibility of managing the second input solutions for crossover is

tested at two levels. Firstly, it is tested at the hyper-heuristic level with the high-level

search strategy providing a second solution each time a crossover low-level heuristic is

selected. Secondly it is tested at the domain level, where the solutions are managed at

the same level as the low-level heuristics.

1.4.5 Chapter 6: An Improved Choice Function Heuristic Selection for Cross-

Domain Heuristic Search

A modified version of a traditional single-point selection hyper-heuristic heuristic se-

lection method is presented in Chapter 5. The modified version of the Choice Function

is designed to overcome some of the shortfalls of the standard Choice Function when

used for cross-domain optimisation.

6

CHAPTER 1: INTRODUCTION

1.4.6 Chapter 7: Crossover Control in Cross-domain Optimisation

Chapter 7 investigates the introduction of the crossover management techniques of

Chapter 5 into the selection hyper-heuristic proposed in Chapter 6. The crossover

management scheme of a state-of-the-art selection hyper-heuristic is also investigated,

firstly by introducing it into an existing selection hyper-heuristic and secondly by re-

placing it within the hyper-heuristic from which it is taken.

1.4.7 Chapter 8: Conclusion

The final section provides a summary of the work undertaken in the thesis and the

contributions contained therein. An outline of potential future research directions and

discussion for extensions to the existing work is given.

7

CHAPTER 2

Hyper-heuristics

2.1 Introduction

This chapter will overview the related hyper-heuristics literature for the work con-

tained within this thesis, providing some context to the contributions made. The lit-

erature review is split into four main areas. These areas are: metaheuristics, hyper-

heuristics, recent developments in selection hyper-heuristics and the HyFlex frame-

work.

Section 2.2 gives a definition of metaheuristics and a brief description of some well-

studied metaheuristic techniques. An introduction to, and classification of, hyper-

heuristic approaches is then presented in Section 2.3. The term hyper-heuristic is used

to define a method which operates on a search space of low-level heuristics or heuris-

tic components rather than a search space of solutions. A formal definition and brief

history of hyper-heuristics is given. The two main categories of hyper-heuristics, se-

lection hyper-heuristics and generation hyper-heuristics, are introduced. The hyper-

heuristics used in this thesis are contained within the former category. Following this

a detailed description of recent developments in selection hyper-heuristics is given in

Section 2.4. Categorisation of the recent selection hyper-heuristics discussed are pro-

vided by heuristic selection method, move acceptance criterion and problem domain

used in Appendix A.

Hyper-heuristic research aims to ‘raise the level of generality’ at which search methods

operate. One flavour of generality is the application of search methods across multi-

ple problem domains. Recently, considerable research effort has gone into developing

selection hyper-heuristics for cross-domain optimisation. An increased amount of at-

tention is now given to methods which ayre able to perform well over a variety of

problems. The HyFlex [27, 166] framework was developed to support the first Cross-

8

CHAPTER 2: HYPER-HEURISTICS

domain Heuristic Search Challenge (CHeSC2011) [31] and standardise research into

heuristic search methods operating over multiple problem domains. Section 2.5 in-

troduces this framework and describes methods from the literature developed using

HyFlex. The problem domains contained within HyFlex are briefly introduced with

references for further reading provided where necessary.

The main focus of this thesis is to investigate the management of low-level heuristics

such as crossover, which require more than one solution as input, within single-point

search hyper-heuristic frameworks. Hyper-heuristic research provides a distinct sep-

aration between the heuristic search space and the solution search space, isolating the

high-level heuristic search method from the problem domain it is being applied to. A

conceptual framework is proposed, defining the process of managing the solutions for

input to low-level heuristics requiring multiple solutions at either the hyper-heuristic

level or the problem domain level. Experimental results suggest that, in at least some

problem domains, it is preferable to manage input solutions at the problem domain

level. Due to the nature of the separation between heuristic search space and solu-

tion search space, it is not always possible to manage input solutions at the problem

domain level. As a result, different strategies for managing the input solutions at the

hyper-heuristic level are tested, with results suggesting an instance-specific relation-

ship between the strategy used to manage input solutions and performance in terms

of objective value. In this chapter a context for the work presented in the remainder of

the thesis is provided.

2.2 Metaheuristics

Many real-world optimisation problems create a search space which is so large that it

becomes impractical to exhaustively search all possible states. Heuristics, in the field of

optimisation, seek to find good quality solutions to a problem given a ‘rule of thumb’,

using some intuition with no guarantee of solution quality. In essence, a metaheuristic is

a high-level strategy which is designed to guide a computational search for any prob-

lem where heuristics exist to modify the current state of a given solution. Traditional

heuristics are liable to become trapped in local, suboptimal areas of the search space,

never to discover the globally optimal solution. Metaheuristics are designed to escape

local optima, often offering a good trade-off between computational effort and solution

quality. The term metaheuristic was first used by Glover [86] to describe Tabu Search

and has recently been defined by Sörensen and Glover [199] as:

‘...a high-level problem-independent algorithmic framework that provides

9

CHAPTER 2: HYPER-HEURISTICS

a set of guidelines or strategies to develop heuristic optimization algo-

rithms. ... A problem-specific implementation of a heuristic optimization

algorithm according to the guidelines expressed in a metaheuristic frame-

work is also referred to as a metaheuristic.’

This definition includes many popular techniques such as evolutionary algorithms,

Simulated Annealing, Tabu Search and many more. Some of the most popular tech-

niques, including some which will be used in the remainder of this thesis are described

in the following sections.

2.2.1 Local Search

Local search methods are a relatively simple class of metaheuristics, based on the con-

cept of locality between candidate solutions for a given problem. A typical local search

algorithm moves through the search space from one solution to another within a neigh-

bourhood, where a neighbour is defined as any state that can be reached from the cur-

rent solution through some modification. In the case that a local search method will

only move from one solution to another when that move results in some improvement

with respect to a particular objective function, it is referred to as hill climbing.

2.2.2 Evolutionary Algorithms

Evolutionary algorithms are a class of search techniques inspired by the natural process

of evolution, of which by far the most well-known are Genetic Algorithms [90]. A Ge-

netic Algorithm iteratively updates a population of solutions through the use of oper-

ators which modify a solution (mutation) or recombine multiple solutions (crossover).

A simple Genetic Algorithm is outlined in Algorithm 1.

Algorithm 1 Pseudocode of a simple Genetic Algorithm

1: generate initial population of solutions

2: repeat

3: calculate f itness of each solution in the population

4: select suitably fit solutions to breed

5: apply crossover with a given probability

6: apply mutation with a given probability

7: until termination criterion is met

8: return best solution

10

CHAPTER 2: HYPER-HEURISTICS

Memetic Algorithms [159, 160] are a hybrid approach to problem solving which com-

bine evolutionary algorithms (often Genetic Algorithms) with local search techniques

in order to improve the fitness of each individual in the population. The term Memetic

Algorithm was first coined by Moscato [159] to cover a number of techniques using the

idea of a meme [55] as a ’unit of cultural transmission’. A simple Memetic Algorithm

introduces a local search phase into a Genetic Algorithm after crossover and mutation

have (potentially) been performed during the evolutionary process.

2.2.3 Tabu Search

Tabu Search [87, 89] is another metaheuristic technique designed to overcome the prob-

lem of escaping local optima in local search. Tabu Search makes use of a memory to

guide the algorithm to areas of the search space it has not previously visited. The mem-

ory makes a note of recently visited areas of the search space and places them on a list

of tabu (taboo) moves, i.e. the algorithm is not allowed to visit these points when mov-

ing to the next solution. This hopefully leads the search away from local optima and

towards solutions closer to the global optimum. Algorithm 2 shows the basic outline

of Tabu Search.

Algorithm 2 Pseudocode of Tabu Search

1: select an initial candidate solution S

2: repeat

3: find the best neighbour solution S′ adjacent to S not in tabu list

4: add S′ to tabu list

5: if S′ is a ’better’ solution than S then

6: S← S′

7: end if

8: until termination criterion is met

9: return S

Tabu Search only tends to make negative moves when stuck in local optima, unlike

Simulated Annealing which can make negative moves at any time. Tabu Search has

been successfully implemented as a metaheuristic for a large number of application

areas including examination timetabling [80], vehicle routing [83], the travelling sales-

man problem [87] and job shop scheduling [87].

11

CHAPTER 2: HYPER-HEURISTICS

2.2.4 Simulated Annealing

Simulated Annealing [127] is a stochastic metaheuristic technique for combinatorial

optimisation problems. Analogous to the process of annealing in metallurgy, Simu-

lated Annealing probabilistically decides whether to accept a change to a given system

based on a temperature parameter. The temperature parameter is initially set to a high

value which is gradually reduced as the system ‘cools’ throughout the search process.

In general, Simulated Annealing will accept non-improving moves with greater prob-

ability at the beginning of a search whilst the temperature is high. As the temperature

reduces the system will accept non-improving moves at a much lower rate. In the case

where a degradation in solution quality occurs, a move is accepted probabilistically

based on the current value of the temperature parameter, and the level of change in so-

lution quality. A number of measures have been proposed in the literature to calculate

this probability. Where Simulated Annealing is used in this thesis, the probability p is

defined as:

p =
1

1 + e−∆/T (2.2.1)

where ∆ is the change in objective function value and T is the current temperature

value. The acceptable level of worsening solutions will be reduced as the temperature

decreases and the probability of moving to a lower quality solution will lessen over

time. The basic outline of Simulated Annealing is shown in Algorithm 3.

2.2.5 Great Deluge

Great Deluge is a general purpose hill climbing optimisation technique introduced

by Dueck [65], inspired by the notion of a person on a hill escaping flood water (i.e.

a ‘Great Deluge’). The analogy is that in a great deluge, a person will try to move in

any direction which avoids a rising water level in the hope of finding higher ground.

As shown in Figure 2.1, a move between x and x’ is permitted provided it is above

(in the case of a maximisation problem) a certain threshold which is gradually raised

during the search process.

12

CHAPTER 2: HYPER-HEURISTICS

Algorithm 3 Pseudocode of Simulated Annealing

1: select an initial candidate solution S, initialise T

2: repeat

3: find a neighbour solution S′ adjacent to S

4: ∆← difference in quality between S′ and S

5: if S′ is a ’better’ solution than S then

6: S← S′

7: else

8: r← random number between [0,1]

9: if p < r then

10: S← S′

11: end if

12: decrease T

13: end if

14: until termination criterion is met

15: return S

Figure 2.1: An abstract depiction of Great Deluge hill climbing in the case of a max-

imisation problem

Threshold

Feasible Search Region

2.2.6 Late Acceptance Strategy

Late Acceptance Strategy is a hill climbing metaheuristic strategy proposed by Burke

and Bykov [20]. Late Acceptance Strategy promotes a general trend of improvement

throughout the search process, by comparing a candidate solution to a solution gener-

ated a specified number of steps before kept in memory. In its most basic form Late

Acceptance Strategy is an extension of simple greedy hill climbing. In hill climbing,

13

CHAPTER 2: HYPER-HEURISTICS

a solution is accepted if it is of better quality than the one immediately preceding it.

Late Acceptance Strategy accepts a solution if it is of better quality than the previous

solution or the solution n iterations previously, where n is the size of a memory of pre-

viously seen solutions. An accepted solution replaces the solution it is compared with

in the memory of previous solutions. In the case of a non-accepted solution, the so-

lution of n iterations previously is replaced by the solution of the previous iteration

(i.e. last accepted solution). The entire list of n previously seen solutions is initialised

to the value of the starting solution at the beginning of the optimisation process. In

the example given in Figure 2.2, assuming a minimisation problem, the new solution

will be accepted as it has a fitness value strictly less than the solution kept in memory

from n iterations past. In the case of a maximisation problem, this solution will also be

accepted as it has a fitness value greater than its immediate predecessor in the memory

(i− 1). In both cases it will replace the n-th previous solution (i− n) in the memory.

Figure 2.2: Comparison of current solution to solution in memory in Late Acceptance

Strategy hill climbing

Current Solution (iteration i)

Fitness value: 2103

Relative Position Fitness Value

i-1 2001

i-2 2303

… …

i-n 2256

2.3 A survey of hyper-heuristics

This section introduces the field of hyper-heuristics and is split into four sections. Sec-

tion 2.3.1 briefly describes the history of hyper-heuristics and introduces the standard

definitions used in hyper-heuristic research. Section 2.3.2 provides a classification

of hyper-heuristic approaches, distinguishing between the main categories of hyper-

heuristic methodologies. Section 2.3.3 and Section 2.3.4 provide a more detailed intro-

duction to selection hyper-heuristics and generation hyper-heuristics respectively.

2.3.1 Hyper-heuristic history and definitions

Hyper-heuristics are high-level search methodologies which aim to solve computation-

ally difficult problems. Unlike traditional techniques, a hyper-heuristic operates on a

search space of heuristics rather than directly on the search space of solutions. The

14

CHAPTER 2: HYPER-HEURISTICS

term ‘hyper-heuristic’ was first used by Denzinger et al. [57] to describe a technique

which selects and combines a number of artificial intelligence methods. Although the

term hyper-heuristic was first used at this time, ideas which exhibited hyper-heuristic

behaviour can be traced back as early as 1961 in the field of job shop scheduling [70],

where combining scheduling rules was shown to outperform taking any of the rules

individually. The term hyper-heuristic was first used in the field of combinatorial opti-

misation by Cowling et al. [47], and was defined as ‘heuristics to choose heuristics’. This

paper investigated the application of a number of Simple Random, Greedy and Choice

Function-based hyper-heuristic approaches to a real-world sales summit scheduling

problem using two deterministic move acceptance criteria: All Moves and Only Im-

proving. The Choice Function heuristic selection method will be introduced in detail in

Section 2.3.3. In the first journal article to appear using the term, Burke et al. [22] pre-

sented a Tabu Search-based hyper-heuristic. In this system, a set of low-level heuris-

tics are ranked using rules based on Reinforcement Learning and compete against

each other for selection. The hyper-heuristic selects the highest ranked heuristic not

present in the tabu list. If an improvement is made after applying the selected heuris-

tic its rank is increased, if not, its rank is decreased and it is placed in the tabu list

until the current solution has changed. This hyper-heuristic was applied to nurse

scheduling and university course timetabling problems obtaining competitive results.

Hyper-heuristics have since been applied successfully to a wide range of problems such

as examination timetabling [22, 175, 176, 35, 192], production scheduling [70], nurse

scheduling [22, 166], bin packing [166, 135], sports scheduling [84], dynamic environ-

ments [124, 126] and vehicle routing [166, 79].

Research trends have lead to a number of different hyper-heuristic approaches being

developed, particularly those concerned with automatically generating new heuristics,

for which the original definition of a hyper-heuristic is too limited to cover. A more

general definition is offered by Burke et al. [29, 36]:

‘A hyper-heuristic is a search method or learning mechanism for selecting

or generating heuristics to solve computational search problems.’

This more general terminology includes systems which use high-level strategies other

than heuristics within the definition of hyper-heuristics and covers the two main

classes of hyper-heuristics, those concerned with heuristic selection and those with

heuristic generation. Burke et al. [36] also identified a number of closely related ar-

eas to hyper-heuristic research including: Adaptive Operator Selection [68, 148], Re-

active Search [10, 11], Variable Neighbourhood Search [163], Adaptive Memetic Algo-

rithms [169] and Algorithm Portfolios [106]. Although an overview of these methods is

15

CHAPTER 2: HYPER-HEURISTICS

not directly provided in this thesis, a number of the approaches discussed will overlap

with some of these areas. The references provided are a good starting point for each of

these techniques for the interested reader.

Although often considered as an alternative to metaheuristics, the recent definition

of a metaheuristic offered by Sörensen and Glover [199] somewhat subsumes hyper-

heuristics. According to this definition, a selection hyper-heuristic is a metaheuristic

which provides a framework within which to mix and control low-level heuristics,

whereas a generation hyper-heuristic is a metaheuristic to generate heuristics. It fol-

lows that if a metaheuristic is a heuristic, a hyper-heuristic can either be a metaheuris-

tic itself (e.g. a Genetic Programming system to generate heuristics [107]) or contain

metaheuristic components (e.g. a selection hyper-heuristic using Simulated Annealing

move acceptance criterion [14]).

2.3.2 A classification of hyper-heuristic approaches

There are two main categories of hyper-heuristics outlined by Burke et al. [29]. The

first category contains those methodologies which select which low-level heuristic to

apply at a given position in the search space from a set of existing heuristics. The sec-

ond contains methodologies which create new heuristics from a set of components of

other existing low-level heuristics [28]. These categories are then further broken down

to distinguish between hyper-heuristics which construct solutions (constructive) [25]

and those which aim to improve complete solutions through local search (perturba-

tive) [175].

Aside from the nature of the search space, many hyper-heuristics learn from feedback

given regarding heuristic performance to guide low-level heuristic choice or genera-

tion. Such feedback is used to learn in one of two ways: online learning occurs during

the process of solving a problem instance and adapts continuously throughout the pro-

cess [173]; in offline learning, a system is trained on a subset of problems prior to full

execution in order to assert a set of rules to apply to unseen instances [107]. This tax-

onomy of learning behaviours is congruent with the general classification of parameter

setting in evolutionary algorithms provided by Eiben et al. [66]. The definition of on-

line and offline learning is parallel to the differentiation between parameter control and

parameter tuning given in this paper.

The classification of hyper-heuristic components as defined by Burke et al. [29] is sum-

marised in Figure 2.3. A given hyper-heuristic will generally belong to one of the four

subcategories of heuristic selection and heuristic generation and use one of the three

16

CHAPTER 2: HYPER-HEURISTICS

feedback mechanisms outlined. Section 2.3.3 and Section 2.3.4 provide an introduction

to selection and generation hyper-heuristics respectively.

Figure 2.3: A high-level overview of hyper-heuristic components

2.3.3 Heuristics to select heuristics

Selection hyper-heuristics operate over a set of low-level heuristics, selecting a heuristic

to apply at each point of a search in a domain-agnostic way. This section introduces a

number of traditional selection hyper-heuristic frameworks and some of the popular

mechanisms and components used by methods operating within these frameworks.

Depending on the number of solutions used during the search process, a distinction is

made between approaches performing single-point-based search using a single current

solution and population-based (multi-point-based) search using multiple candidate so-

lutions. The traditional single-point-based search hyper-heuristic framework relies on

two key components, a heuristic selection method and a move acceptance criterion as

decomposed by Özcan et al. [173]. Operating on a single solution, low-level heuristics

are repeatedly selected and applied, with a decision made as to whether to accept a

move at each step until some termination criterion is met. Such hyper-heuristics are

labelled heuristic selection method - move acceptance criterion hereafter in this thesis. This

general framework is illustrated in Figure 2.4.

The heuristic selection method chooses which heuristic to apply at a given time from

the set of n available low-level heuristics LLH1, ..., LLHn. A new candidate solution is

then obtained by applying the selected heuristic. A move acceptance criterion is used

17

CHAPTER 2: HYPER-HEURISTICS

Figure 2.4: Classic single-point search hyper-heuristic framework

Hyper-heuristic

Selection Mechanism Acceptance Criteria

Low-level heuristics

Select

Heuristic

Apply

Heuristic

LLH1 LLH2 LLH3 LLHn

Domain Barrier

Accept/Reject

Solution?

Termination Criteria

Terminate?
Yes

No

Initial

Solution

to decide whether to accept or reject the new solution. If accepted, the new candidate

replaces the original solution. Most of the hyper-heuristics developed in this thesis are

of this nature. This approach sits firmly in the category of selection hyper-heuristics op-

erating on perturbative heuristics. The learning techniques used will vary depending

on the heuristic selection mechanism used. Table 2.1 and Table 2.2 provide definitions

for some of the common heuristic selection methods used in the remainder of the thesis,

while Table 2.3 provides definitions for a number of common move acceptance criteria.

In their initial hyper-heuristic work Cowling et al. [47] experimented with a number

of heuristic selection mechanisms, including Simple Random and Choice Function, using

two simple move acceptance criteria, accepting All Moves and Only Improving moves.

In this early work, the Choice Function selection combined with All Moves acceptance

was shown to work well when applied to a sales summit scheduling problem.

Reinforcement Learning [115] is frequently used as a heuristic selection method in selec-

tion hyper-heuristics. Nareyek [162] analysed a number of weight adaptation functions

and two simple heuristic selection methods within Reinforcement Learning for heuristic

selection. Taking the heuristic with the maximum utility value, and using simple addi-

tive (+1) and subtractive (-1) weight adaptation, were shown to be reasonable choices

when using Reinforcement Learning as a heuristic selection method in selection hyper-

heuristics for constraint satisfaction problems (CSP).

Great Deluge [65] is a metaheuristic which has shown to be a promising acceptance

criterion in hyper-heuristics. In hyper-heuristics, Bilgin et al. [14] found that a hyper-

18

CHAPTER 2: HYPER-HEURISTICS

Table 2.1: Key definitions of heuristic selection methods

Selection Method Description

Choice Function

(CF) [47]

Heuristics are chosen based on a combination of three different

measures. The first measure (f1) records the previous performance

of each individual heuristic, with more recent executions carry-

ing larger weight. The value of f1 for each low-level heuristic

h1, h2, ..., hj is calculated as:

f1(hj) = ∑
n

αn−1 In(hj)

Tn(hj)
(2.3.1)

where In(hj) and Tn(hj) are the change in evaluation function and

the time taken to call the heuristic respectively for each previous

invocation n of heuristic hj and α is a value between 0 and 1 giving

greater importance to recent performance.

The second measure (f2) attempts to capture any pair-wise depen-

dencies between heuristics. Values of f2 are calculated for each

heuristic hj when invoked immediately following hk using the for-

mula in Equation 2.3.2:

f2(hk, hj) = ∑
n

βn−1 In(hk, hj)

Tn(hk, hj)
(2.3.2)

where In(hk, hj) and Tn(hk, hj) are the change in evaluation func-

tion and the time taken to call the heuristic respectively for each

previous invocation n of heuristic hj following hk and β is a value

between 0 and 1 which also gives greater importance to recent per-

formance.

The third measure (f3) is the time elapsed (τ(hj)) since a heuristic

was last selected by the Choice Function. This gives all heuristics a

positive chance of selection.

f3(hj) = τ(hj) (2.3.3)

In order to rank heuristics a score is given to each heuristic with

Choice Function F calculated as:

F(hj) = α f1(hj) + β f2(hk, hj) + δ f3(hj) (2.3.4)

where α and β as defined previously weight f1 and f2 respectively

to provide intensification of the heuristic search process whilst δ

weights f3 to provide sufficient diversification.

19

CHAPTER 2: HYPER-HEURISTICS

Table 2.2: Key definitions of heuristic selection methods (ii)

Selection Method Description

Reinforcement

Learning (RL)

[115]

All low-level heuristics are given a utility weight. If a heuristic im-

proves a solution this weight is increased by an amount defined by

the chosen adaptation function, conversely if a heuristic does not

improve a solution this weight is decreased accordingly. Heuristic

selection at the next step of the search is then based on these values.

This selection can be done in many ways, for example it is possible

to choose randomly between the heuristics with the largest utility

weight, or to select a heuristic with a probability proportional to its

utility weight

Simple Random

(SR) [47]

Selects a heuristic randomly from the set of available low-level

heuristics at each point in the search

Table 2.3: Key definitions of move acceptance criteria

Move Acceptance Criteria Description

All Moves (AM) [47] Accepts any move made following the application of a

heuristic, regardless of change in solution quality

Only Improving (OI) [47] Accepts any move made following the application of a

heuristic which yields an improvement in solution quality

Great Deluge (GD) [115] When used as an acceptance criterion, Great Deluge always

accepts improving moves and accepts worsening moves

which are below (in the case of a minimisation problem)

a certain threshold which is reduced over time at a linear

rate (see Section 2.2.5 for more information)

Simulated Annealing

(SA) [127]

Any move resulting in a solution of equal or greater qual-

ity than the previous move is accepted. If a move yields a

solution of poorer quality, the move is accepted probabilis-

tically based on the level of degradation in solution quality

and the current temperature (a parameter which decreases

over time). Please refer to Section 2.2.4 for more informa-

tion

Late Acceptance Strategy

(LAS) [20]

Accepts a move if it is an improvement on the solution ob-

served a pre-determined number of steps previously held

in memory. In the case of a non-improving move, the so-

lution in memory is replaced by the last solution accepted.

Further details can be found in Section 2.2.6

20

CHAPTER 2: HYPER-HEURISTICS

heuristic without learning (Simple Random) performed comparably to (and often bet-

ter than) more ‘advanced’ heuristic selection mechanisms (Choice Function and Tabu

Search) when Great Deluge was used as a move acceptance criterion over a wide range of

timetabling benchmarks. Özcan et al. [176] extended this work and applied a Reinforce-

ment Learning - Great Deluge hyper-heuristic to the same set of benchmark instances,

again providing good results. Kendall and Mohamad [120] used a slight variation

of the Great Deluge algorithm (record-to-record travel [65]) and also found it to be a

promising acceptance criterion when solving a telecommunications network problem.

Simulated Annealing [127] is another generic metaheuristic technique for optimisation

often used as an acceptance criterion in hyper-heuristics. Choice Function - Simulated

Annealing was found to be the best of thirty-five different heuristic selection method - move

acceptance criterion combinations over a range of examination timetabling benchmarks

by Bilgin et al. [14].

Late Acceptance Strategy [20] is a relatively new general purpose optimisation strategy.

Late Acceptance Strategy has been shown to perform as well as other powerful optimisa-

tion methods including Simulated Annealing and Great Deluge [175, 20], but only relies

on the setting of a single parameter, the length of the memory. Although only one pa-

rameter is required, it is still important that this parameter is set appropriately. If it

is too short the search will converge on a sub-optimal point quickly, if the memory is

too long the search will stagnate. Özcan et al. [175] experimented using Late Acceptance

Strategy as a move acceptance criterion within a single-point hyper-heuristic frame-

work to solve standard benchmarks of the examination timetabling problem. This

work suggested that Late Acceptance Strategy was relatively successful when used with

Simple Random selection in the context of examination timetabling, it was unsuitable

when used with more intelligent heuristic selection methods such as Choice Function

and Reinforcement Learning.

The work contained in this thesis uses many single-point search hyper-heuristics such

as those described here. A large number of other heuristic selection mechanisms and

move acceptance criteria exist in the literature. As a complete description of all heuris-

tic selection mechanisms and move acceptance criteria is beyond the scope of this chap-

ter, a number of survey papers [190, 38, 36] provide a thorough grounding in this area.

Selection hyper-heuristic frameworks

Özcan et al. [174] describe and compare four different selection hyper-heuristic frame-

works: FA, FB, FC and FD. FA is the traditional selection hyper-heuristic framework

21

CHAPTER 2: HYPER-HEURISTICS

where a low-level heuristic is selected and applied, then subsequently accepted or re-

jected based the quality of the move, as shown in Figure 2.4 previously. FB selects a

low-level heuristic from a set of mutational heuristics and hill climbers. If a muta-

tional heuristic is selected, a hill climber is then also applied before a decision is made

whether to accept or reject the move. FC selects and applies a mutational heuristic fol-

lowed by a pre-defined hill climber, before deciding whether or not to accept a move.

FD separates mutational heuristics and hill climbers into two distinct groups. A muta-

tional heuristic from the first group is chosen and applied with the move accepted or

rejected based on performance. A hill climber is then chosen from the second group

and a separate decision is made whether to accept or reject the move. A number of

these frameworks are used in this thesis and are discussed further in the relevant sec-

tions.

Controlling crossover in selection hyper-heuristics

Despite the inclusion of crossover operators in modern hyper-heuristic frameworks

such as HyFlex [166] and Hyperion [200], limited research effort has been directed at

managing the input for this type of low-level heuristic. Typically a selection hyper-

heuristic operates within a single-point search framework. In the case of low-level

heuristics which require more than one solution as input, a natural choice for one of the

solutions is the current working solution in the hyper-heuristic. Unfortunately there is

not necessarily a natural choice for which solution to use as the second input to such op-

erators. In the CHeSC2011 competition [165] based on the HyFlex framework, only two

of the top ten entrants provided a description of a strategy to control input solutions for

crossover operators. Of the two hyper-heuristics which do provide a description, one

simply uses the best seen solution so far as the second input and the other, the eventual

competition winner [155], provides a detailed explanation of a crossover management

scheme. This hyper-heuristic maintains a memory of the 5 best solutions seen so far,

of which a random solution is used each time a crossover low-level heuristic is chosen.

When a new best-of-run solution is found it replaces one of the 5 solutions in memory,

again chosen at random. The HyFlex framework is introduced in detail in Section 2.5.

Kheiri and Özcan [122] used a simple scheme to manage the second inputs for low-level

heuristics, again using the HyFlex framework. A circular queue containing the best

solutions seen so far is maintained to provide second inputs for crossover operators,

however the length of the queue is set arbitrarily. A pointer indicates which solution

is to be used each time a crossover heuristic requires a second input solution, which is

then advanced to the next solution in the queue following each application of crossover.

22

CHAPTER 2: HYPER-HEURISTICS

The methods discussed above relate to hyper-heuristics which manage the inputs for

multi-input operators at the hyper-heuristic level. That is to say, the high-level search

methodology is responsible for providing a second input when a low-level heuristic

such as crossover is selected. Maturana et al. [149] selected a crossover operator to

use at each step in evolutionary algorithms solving the satisfiability problem (3-SAT).

Although the choice of crossover operator is made at the hyper-heuristic level, the se-

lection of input solutions for the crossover operator chosen is performed at the domain

level. The crossover operators available all require two individuals as input, with two

schemes used to select these individuals. In the early experimentation, this selection

is performed randomly between all individuals in the population. A fitness-biased se-

lection scheme is also used however the details of this mechanism are not described in

detail.

Cobos et al. [43] presented two selection hyper-heuristics operating over a set of meta-

heuristics including Genetic Algorithm variants. Rather than the single-point search

framework used by Kheiri and Özcan [122] and Misir et al. [155], the low-level heuris-

tics in this framework work with a shared population of solutions. The Genetic Algo-

rithm variants perform crossover on two individuals selected from this shared popula-

tion. In this case, the responsibility for providing the two inputs necessary for crossover

is below the domain barrier, managed by the low-level heuristics, rather than at the

hyper-heuristic level.

Ren et al. [188] used Ant Colony Optimisation and a Genetic Algorithm to evolve se-

quences of low-level heuristics to be applied to instances of the p-median problem.

Included in the set of low-level heuristics was the crossover operator of Correa et al.

[45]. Although this work stated that this crossover operator ‘requires two input solu-

tions’, each sequence of low-level heuristics is only applied to a single solution. How

the second input solution required for crossover is managed is not defined.

2.3.4 Heuristics to generate heuristics

Aside from selection hyper-heuristics there is also considerable research interest in the

field of automated heuristic generation. Techniques in this area seek to automatically

create heuristics which are competitive with human-designed heuristics. Evolutionary

algorithms are commonly used to search the space of low-level heuristic components

in order to automatically design new heuristics. The first part of this section describes

the use of Genetic Programming to evolve heuristics. Following this, recent work fo-

cussed on evolving policy matrices to solve combinatorial optimisation problems is

introduced. Grammatical Evolution is another branch of evolutionary computation

23

CHAPTER 2: HYPER-HEURISTICS

whereby solutions are evolved using a pre-defined grammar. A number of studies

which use Grammatical Evolution to create low-level heuristics are then discussed. Fi-

nally, some other recent related techniques are discussed, which do not fit strictly under

the definition of generation hyper-heuristics.

Genetic Programming as a hyper-heuristic to generate heuristics

Genetic Programming is one of the more recently developed class of evolutionary algo-

rithms proposed by Koza [129]. Unlike traditional forms of evolutionary computation,

populations of computer programs (usually expressed as tree structures although other

representations are possible) are evolved using the naturally inspired notions of inher-

itance (crossover), selection and variation (mutation). Rather than producing fixed-

length encoded representations of candidate solutions to a given problem, the evolved

program itself (when executed) is the solution. Genetic Programming can be seen as

an extension of Genetic Algorithms with only the representations separating the two

classes, however there are enough differences to consider the two as separate tech-

niques. A standard pseudocode for a typical Genetic Programming system is shown in

Algorithm 4.

Algorithm 4 Pseudocode of Genetic Programming

1: generate initial population of programs

2: repeat

3: calculate f itness of each program in the population

4: select suitably fit programs to breed

5: create new programs by performing genetic operations on selected individuals

6: until acceptable solution is found

7: return best solution

Burke et al. [28] outline the suitability of Genetic Programming as a hyper-heuristic

to generate new heuristics and provide a survey of previous work creating heuristics

using Genetic Programming. Some of the main advantages of using Genetic Program-

ming as a hyper-heuristic in such a way highlighted in this paper are:

• Genetic Programming relies on expert knowledge to define its terminal and func-

tion sets (variables to define the state of the problem and operators to combine

them). As human expert knowledge is necessary, domain-specific information

can be incorporated into the fundamental components of the system.

• Whilst some other methods such as Genetic Algorithms may restrict the length

24

CHAPTER 2: HYPER-HEURISTICS

of an encoded solution in order to facilitate simple genetic operators, Genetic

Programming trees have variable length representation. This can be useful if the

best length encoding for heuristic representation is not known and the effects of

code bloat are controlled.

• A functional programming language such as LISP is naturally suited to repre-

senting data in a tree structure. This property allows Genetic Programming to

evolve executable programs (i.e. heuristics).

Genetic Programming has successfully been used to evolve new constructive heuris-

tics comparable to human designed heuristics by Burke et al. for strip packing [30]

and bin packing problems [24, 26, 34] and to create dispatching rules for the job shop

scheduling problem by Geiger et al. [82]. Bader-El-Den and Poli [7] used Genetic Pro-

gramming to quickly generate ‘disposable’ heuristics to solve the satisfiability problem.

Again, this work generated heuristics comparable to human designed ones however

only a limited search space of heuristics was covered. Fukunaga [74, 75, 76] also used

Genetic Programming to generate local search heuristics for the satisfiability problem.

Hauptman et al. [97] presented a Genetic Programming system to generate solvers for

two common puzzles including the NP-Complete FreeCell puzzle. At a higher level

of abstraction, Hyde et al. [109] used Genetic Programming to evolve the acceptance

criterion component of a selection hyper-heuristic. The evolved acceptance criterion

performed well when compared to standard acceptance criteria from the literature on

instances of both bin packing and MAX-SAT. Drake et al. [61] employed a Genetic Pro-

gramming system to evolve reusable constructive heuristics for the MKP. The evolved

heuristics were able to yield human-competitive results, outperforming a number of

traditional human designed constructive heuristics. Hong et al. [103] evolved mutation

operators for an Evolutionary Programming system in the form of probability distribu-

tions using Genetic Programming. The evolved distributions were able to outperform

two standard distributions: Gaussian and Cauchy, over a set of function optimisation

problems.

Grammatical Evolution as a hyper-heuristic to generate heuristics

Grammatical Evolution (GE) [191] is another recently developed class of evolutionary

algorithm closely related to Genetic Programming. Grammatical Evolution was intro-

duced to address some of the issues present when using Genetic Programming. Any

function and terminal set in Genetic Programming can be expressed in an equivalent

Grammatical Evolution grammar. Grammatical Evolution aims to separate the geno-

25

CHAPTER 2: HYPER-HEURISTICS

type and phenotype of an individual in the population in a similar way to nature,

something which is not done in Genetic Programming. In Genetic Programming, the

search process is performed on the same component which the fitness function evalu-

ates over (i.e. Genetic Programming trees). In Grammatical Evolution the search pro-

cess is performed over a binary string (the genotype) and the fitness function evaluates

the program (the phenotype) which is obtained. There are a number of advantages

to approaching the search process in this way. Any strategy that operates on binary

strings can be used to perform the search, this is not strictly limited to evolutionary ap-

proaches. In addition, the search is not limited by tree structure and the need to ensure

solutions are valid, nor compromised by code ‘bloat’ in the same way it is in Genetic

Programming. The genotype is processed as codons and mapped into phenotypes us-

ing a specified grammar. In biology, a codon describes a component of a protein. In

Grammatical Evolution a specified number of bits representing a codon is converted

to an integer, defining which rule will be chosen in a given part of the sequence. A

grammar defining the structure of the desired output from the Grammatical Evolution

is expressed in Backus Naur Form (BNF) in the form of production rules. BNF has the

advantage of being language independent and only minor changes need to be made to

a grammar to alter the search space. If the production rules specify a set of heuristics

or heuristic components Grammatical Evolution can be used as a hyper-heuristic to

generate heuristics.

Recently Burke et al. [33] have used Grammatical Evolution to generate low-level

heuristics for bin packing. This paper generates heuristics which can consistently ob-

tain solutions which use only one bin more than the optimal lower bound and often

the optimal number of bins itself. Grammatical Evolution was also seen to be flexible

enough to generate different move operators for different classes of bin packing prob-

lems as appropriate. Keller and Poli [118, 119] also use a grammar-based Genetic Pro-

gramming system to evolve solvers for the travelling salesman problem. Drake et al.

[63] used Grammatical Evolution to evolve both constructive and perturbative heuris-

tics embedded in a Variable Neighbourhood Search framework to solve the vehicle

routing problem (VRP). In this work, the suitability of using Grammatical Evolution to

generate heuristics for the VRP was investigated.

Generating heuristics through policy matrix evolution

A new area of heuristic generation has emerged in recent years, focussing on the cre-

ation of policies to perform particular actions at a given point in a search. In general

such methods create an ‘index policy’ [85], which assigns a score to each possible action

26

CHAPTER 2: HYPER-HEURISTICS

at a given decision point, with the action given the largest score chosen.

Özcan and Parkes [172] introduced the notion of using policy matrices to solve combi-

natorial optimisation problems. In this paper, a Genetic Algorithm was used to search

over a space of matrices which discretise the set of possible decisions when solving

online bin packing problems. As this representation is general it is possible to formu-

late existing heuristics as matrices within this framework. Human-competitive per-

formance was observed on a set of online bin packing benchmarks, with the evolved

policy matrices outperforming standard heuristics from the literature such as first-fit

and best-fit. This work was improved by Asta et al. [5] by reducing the search space

of matrices that the Genetic Algorithm operates on. If the original representation is re-

duced effectively, it is possible for the Genetic Algorithm to find policies more quickly

without sacrificing solution quality.

Parkes et al. [177] also investigated the evolution of policy matrices to solve the online

bin packing problem, using Genetic Programming as a high-level search method. Al-

though presented as a general study on the role of the mutation operator in Genetic

Programming, this work proposes an interesting method of generating policy matrices

from evolved Genetic Programming expressions. A policy matrix is created from the

results of using all possible combinations of integer values as input for each individual

in the population.

It is noted by Asta et al. [6] that despite the policy matrix approach of Özcan and Parkes

[172] being able to generate heuristics which outperform existing heuristics, it is re-

stricted to a specific set of bin capacities and range of item sizes. This paper inves-

tigates the scalability of a Genetic Algorithm-based policy matrix approach, training

on a set of small instances before applying the policy matrices found to larger unseen

instances. Rather than operating on problem-specific constraints, the evolved policy

matrices cover a set of more general problem features. It is shown that results com-

parable to the method of Özcan and Parkes [172] and the traditional best-fit heuristic

could be obtained for a set of online bin packing instances.

Recent techniques related to heuristic generation

Sim et al. [194, 195] used a method inspired by Artificial Immune Systems to manage

sets of low-level heuristics to solve instances of the one-dimensional bin packing prob-

lem. The proposed system maintains a set of randomly generated heuristics, repre-

sented as trees, initiated using a standard construction method from the GP literature.

Their results indicated that mixing heuristics in such a way was preferable to applying

27

CHAPTER 2: HYPER-HEURISTICS

a single deterministic heuristic, over a large number of benchmark problem instances.

Although not explicitly concerned with generating heuristics, López-Ibáñez and Stüt-

zle [136, 137] introduced a framework to automatically ‘construct’ Ant Colony Opti-

misation algorithms (ACO) for multi-objective optimisation problems. This work de-

scribed and generalised a number of components of ACOs, presenting the choice of

which components to use as an algorithm configuration problem. By describing the

design of ACOs as a set of component choices in such a way, it is possible to represent

a large number of ACO variants, including some combinations of components not pre-

viously investigated. Using offline algorithm configuration techniques to select which

components to use, this system was shown to outperform existing ACO methods on

instances of the bi-objective travelling salesman problem. This work was extended

by Bezerra et al. [13], who applied the automatically configurable ACO system to in-

stances of the bi-objective bidimensional knapsack problem. Again, improved results

were shown when compared to four existing ACO algorithms.

2.4 Recent advances in selection hyper-heuristics operating on

perturbative low-level heuristic sets

In this section recent selection hyper-heuristic methods are covered, of which many

are applied to multiple problem domains. A summary of the methods described here

is provided in Appendix A. Table A.1 categorises selection hyper-heuristics by the

heuristic selection method used, Table A.2 categorises selection hyper-heuristics by the

acceptance criterion used and Table A.3 categorises selection hyper-heuristics by the

problem domain solved.

Maturana et al. [149] used a variant of Reinforcement Learning, Adaptive Operator Selec-

tion [68], to select which crossover operator to use in evolutionary algorithms solving

the satisfiability (SAT) problem. This work employed Adaptive Operator Selection over

a subset of 20 ‘active’ operators, updated at regular intervals throughout the search,

from a total of 307 crossover operators split into four categories. Evolutionary algo-

rithms using Adaptive Operator Selection over multiple crossover operators were shown

to outperform using a single state-of-the-art crossover method in some benchmark in-

stances of SAT.

García-Villoria et al. [77] applied a number of different hyper-heuristic methods to an

NP-hard scheduling problem, the response time variability problem (RTVP). After in-

troducing a number of constructive hyper-heuristics for the problem a set of single-

28

CHAPTER 2: HYPER-HEURISTICS

point search hyper-heuristics were tested. Simple Random, Greedy and two variations

of Probability-based heuristic selection were used to select a heuristic from a set of local

search operators with All Moves accepted. The first variant of Probability-based heuristic

selection used performance indicators to calculate the probability of selecting a given

heuristic at each step. The second worked in much the same way however it contained

a Tabu Search element, with a threshold used to exclude poor performing heuristics

from selection as the search progresses. Using a hyper-heuristic to select a local search

heuristic was shown to outperform naive iterative selection, with particular improve-

ment shown by the Probability-based heuristic selection methods which include a learn-

ing mechanism. The local search heuristics were then replaced by a set of metaheuris-

tics. The combination of metaheuristics within a hyper-heuristic framework was ob-

served to outperform applying each of the metaheuristics individually.

A heuristic selection method modelled as a Markov chain was applied to the multi-

objective DTLZ benchmark set by McClymont and Keedwell [150]. Essentially a Re-

inforcement Learning scheme, this heuristic selection mechanism maintains a set of

weighted edges representing probabilities of transitioning from one heuristic to an-

other. After each invocation, the edge weights are updated based on the heuristics per-

formance. Given a set of four low-level heuristics, this heuristic selection method was

incorporated into a Evolution Strategy framework and compared to Simple Random and

a Probability-based heuristic selection method ‘TSRoulWheel’, proposed by Burke et al.

[23]. A Threshold-based acceptance criterion which gradually increases the probability

of accepting a non-improving move as the search stagnates, was combined with this

heuristic selection method and applied to the benchmarks provided by HyFlex and

submitted to CHeSC2011.

Kiraz et al. [124] and Kiraz et al. [126] tested a number of selection hyper-heuristics in

dynamic environments. A suite of hyper-heuristics were tested using Simple Random,

Greedy, Random Permutation Descent, Choice Function and Reinforcement Learning heuris-

tic selection methods with All Moves, Improving and Equal, Great Deluge and a number

of Simulated Annealing variants as acceptance criteria. Experiments were carried out

using the Moving Peaks Benchmark to simulate landscapes with various different dy-

namic properties. Nine landscape properties were tested consisting of pairwise com-

binations of low, medium and high frequency of landscape change with low, medium

and high severity of change. The selection hyper-heuristics operated over a set of seven

low-level heuristics derived from a single Gaussian mutation operator, with seven dis-

crete parameter values defining the level of mutation for each heuristic. Over all nine

landscapes, Choice Function - Improving and Equal was shown to outperform all other

29

CHAPTER 2: HYPER-HEURISTICS

hyper-heuristics.

The short-term electrical power generation scheduling (SEPGS) problem was solved

using hyper-heuristics by Berberoglu and Uyar [12]. The objective of this problem is

to minimise the cost of generating power whilst satisfying demand. As this problem

can be represented using a binary encoding, seven generic mutation and hill climbing

operators were taken from the Genetic Algorithms literature to use as low-level heuris-

tics. Twenty-four heuristic selection method - move acceptance criterion combinations were

tested using Simple Random, Random Descent, Random Permutation, Random Permutation

Descent, Greedy and Choice Function heuristic selection with All Moves, Only Improving,

Improving and Equal and Great Deluge move acceptance criteria. Random Permutation

Descent - Only Improving performed best out of the twenty-four hyper-heuristics tested.

The ready-mixed concrete (RMC) delivery problem is a real-world combined schedul-

ing and vehicle routing problem from the construction industry solved with hyper-

heuristics by Misir et al. [153]. Using Simple Random heuristic selection, a new Threshold-

based acceptance criterion was proposed. ‘Adaptive Iteration Limited List-based Threshold

Acceptance’ (AILLA) is a Threshold-based acceptance criterion where the threshold is set

at the level of the previous ’best-of-run’ before the current best-of-run was found. A

list of previous best solutions is maintained, with the threshold increased to the level

of the next most recent ‘best-of-run’ after a certain number of iterations. Working on a

set of nine low-level heuristics, five hyper-heuristics were tested. Simple Random was

combined with AILLA, Late Acceptance Strategy, Simulated Annealing, Great Deluge and

Improving and Equal move acceptance criteria. Given ten minutes of execution time,

the best performing hyper-heuristics were Simple Random - AILLA and Simple Random -

Late Acceptance Strategy. When this was increased to an hour of execution time, Simple

Random - AILLA began to clearly outperform Simple Random - Late Acceptance Strategy.

Cobos et al. [43] applied hyper-heuristics operating on a low-level set of metaheuris-

tics for web document clustering. Simple Random and Probability-based ‘Roulette Wheel’

heuristic selection methods were used over a set of metaheuristics including Particle

Swarm Optimisation, two Genetic Algorithms and a number of variants of Harmony

Search, operating on a shared population of solutions. The hyper-heuristics were used

to find the best metaheuristic to solve a number of benchmark datasets for text docu-

ment clustering. The best metaheuristic identified by the hyper-heuristic was shown to

outperform ‘Carrot2’, an existing web search performing web document clustering.

Bilgin et al. [15] applied a number of hyper-heuristics to the patient admission schedul-

ing problem and the nurse rostering problem. These are two different examples of

real-world scheduling problems arising in the area of healthcare. Using Simple Ran-

30

CHAPTER 2: HYPER-HEURISTICS

dom, Choice Function and a Tabu Search method which selects randomly between non-

tabu heuristics, a number of individuals are generated at each step before the best is

selected to be considered by the move acceptance criterion. Each of the three heuris-

tic selection methods were used in conjunction with Simulated Annealing, Great Del-

uge, Improving and Equal and Only Improving move acceptance criteria. For the patient

admission scheduling problem, hyper-heuristics using Great Deluge move acceptance

criterion generally outperformed all other hyper-heuristics. For the nurse rostering in-

stances Choice Function - Great Deluge obtained the best results of the hyper-heuristics

tested.

Blazewicz et al. [17] investigated the use of selection hyper-heuristics to predict DNA

sequences. A set of low-level heuristics were defined which manipulate a given se-

quence through insertion, deletion, swap and shift operations. The heuristic selec-

tion methods used were: the four variants of the Choice Function taken directly from

Cowling et al. [47], a Reinforcement Learning scheme which also maintains a set of

tabu heuristics and a mechanism which although termed ‘Simulated Annealing’, is de-

scribed as a Probability-based heuristic selection method which selects heuristics based

on the rankings of a Reinforcement Learning scheme. The Choice Function and Reinforce-

ment Learning hyper-heuristics were tested with accept All Moves acceptance criterion.

The Probability-based selection hyper-heuristic used Simulated Annealing as an accep-

tance criterion. Using a base set of six low-level heuristics, the Probability-based heuristic

selection - Simulated Annealing hyper-heuristic outperformed all other hyper-heuristics.

As an extension an updated set of fourteen low-level heuristics was also tested. In ex-

cess of seventy subsets of the extended set were used in conjunction with each of the six

hyper-heuristics. In these tests promising results were shown by the ‘Roulette Choice’

variant of the Choice Function using a set of ten low-level heuristics.

A Probability-based heuristic selection - Simulated Annealing hyper-heuristic was applied

to two different domains by Bai et al. [8]. The heuristic selection method used chooses

a heuristic probabilistically based on the rankings of a Reinforcement Learning scheme

with short-term memory. This hyper-heuristic demonstrated a high level of generality,

performing well on instances of both bin packing and university course timetabling.

Improved performance over an existing hyper-heuristic and some bespoke metaheuris-

tics was shown for university course timetabling problems. This method was later

adapted to solve the multimodal homecare scheduling problem [189], a combination of

the vehicle routing problem with time windows and nurse rostering problem. Given an

solution generated using Constraint Programming, a number of methods were tested

to improve the quality of the initial solution. When compared with a number of tech-

31

CHAPTER 2: HYPER-HEURISTICS

niques from the literature the hyper-heuristic showed satisfactory results.

A system which evolved sequences of low-level heuristics was presented by Ren et al.

[188]. A Genetic Algorithm and Ant Colony Optimisation were both used to evolve

a population of sequences of low-level heuristics to solve p-median problem. Each se-

quence of heuristics maintains an individual solution which it is applied to at each gen-

eration. Each hyper-heuristic operates over a number of low-level heuristics taken from

the literature whose parameters are adaptively managed by a separate Ant Colony Op-

timisation scheme. Results are presented for a number of benchmarks of the p-median

problem where it is shown that managing low-level heuristic parameters adaptively

can outperform setting such parameters randomly.

Smet et al. [198] presented a generic model for nurse rostering problems, applying a

suite of selection hyper-heuristics to a number of benchmark sets. Six hyper-heuristics

were tested consisting of pairwise combinations of Choice Function or Simple Random

heuristic selection and Simulated Annealing, Great Deluge or Improving and Equal accep-

tance criteria. Hyper-heuristics operated on a set of either four or five low-level heuris-

tics depending on the instance being solved. Over the instances tested, Choice Function

- Simulated Annealing, Simple Random - Simulated Annealing and Simple Random - Great

Deluge offered the best performance with no statistically significant difference between

these methods. Both hyper-heuristics using Improving and Equal acceptance criterion

were found to perform poorly. The authors note that the acceptance criterion used

has a more significant impact on the performance of a hyper-heuristic than heuristic

selection mechanism, in line with the observations of Özcan et al. [174]. The hyper-

heuristics were also compared to an Adaptive Large Neighbourhood Search (ALNS)

method from the literature. In every instance, the best performing hyper-heuristic was

found to match or improve the performance of ALNS.

A bi-level hyper-heuristic approach applied to black-box optimisation benchmarking

(BBOB) functions was introduced by Krempser et al. [130]. At the highest level, a

heuristic selection method is used to decide whether to use a Genetic Algorithm or Dif-

ferential Evolution operator to update a shared population. Once this choice is made,

another heuristic selection method is used to decide which operator to use within the

individual metaheuristics. Three heuristic selection methods were used: Simple Ran-

dom, Adaptive Operator Selection - a Probability-based heuristic selection method which

uses the scores of a Reinforcement Learning scheme and a deterministic comparison

based strategy known as ‘fitness-based area under curve bandit’ (AUC) proposed by Fialho

et al. [69]. The results show that using an intelligent selection strategy could outper-

form Simple Random selection at both levels. It is also observed that by splitting the

32

CHAPTER 2: HYPER-HEURISTICS

levels of abstraction, first selecting which type of operator to use before selecting the

specific operator, is beneficial when compared to considering a Genetic Algorithm or

Differential Evolution hyper-heuristic independently.

Burke et al. [35] applied a number of hyper-heuristics to a set of examination

timetabling benchmarks. Hyper-heuristics using either Simple Random, Greedy, Choice

Function or Reinforcement Learning heuristic selection methods were tested in combi-

nation with three move acceptance criteria based on Simulated Annealing. The hyper-

heuristics utilising Reinforcement Learning were shown to perform poorly in these exper-

iments. Better performance was observed using Simple Random selection with the same

move acceptance criterion. That an ‘intelligent’ mechanism is unable to learn which

heuristic to apply at a given time suggests a complex relationship between heuristic

selection method and move acceptance criteria.

The performance of a selection hyper-heuristic can be dependent on the parameters of

the low-level heuristics chosen to solve a given problem. Misir et al. [156] applied a

suite of hyper-heuristics using a set of eleven stochastic perurbative low-level heuris-

tics to the patient admission scheduling problem. Each of the eleven heuristics used

a parameter to specify the number of individuals to be produced by this heuristic at a

given iteration. Once a heuristic selection method had chosen a heuristic to apply and

the required number individuals was produced by the chosen heuristic, three strate-

gies were used to decide which individual to retain and pass to the move acceptance

criteria. A greedy strategy kept the best individual created, a first ascent strategy kept

the first individual created which is an improvement over the original individual and a

hill climbing strategy replaced the incumbent solution each time an improving individ-

ual was found until the required number of individuals was produced. In total, four-

teen hyper-heuristics were testing using Simple Random and Adaptive Dynamic Heuristic

Set [154] heuristic selection methods and Simulated Annealing, Late Acceptance Strategy,

Great Deluge, Improving and Equal, All Moves, Only Improving and Adaptive Iteration Lim-

ited List-based Threshold Acceptance [153] move acceptance criteria. All hyper-heuristics

were run for ten minute and fifty minute time periods. The results showed that the pa-

rameter settings of the low-level heuristics, in this case the number of individuals to be

created at each iteration, the time limit imposed and the heuristic selection mechanism

or move acceptance criterion used had the greatest effect of the quality of results for a

given hyper-heuristic in different experimental conditions.

An online parameter tuning problem in a dynamic environment was studied by Köle

et al. [128]. The Open Racing Car Simulator (TORCS) car setup optimisation problem

involves searching for the best parameter settings of a race car to improve performance

33

CHAPTER 2: HYPER-HEURISTICS

on a number of different tracks. A preliminary investigation involving six hyper-

heuristics using Simple Random, Random Descent and Reinforcement Learning heuristic se-

lection methods with All Moves and Improving and Equal acceptance criteria showed that

the best performing hyper-heuristic in this environment was Simple Random - Improving

and Equal. Operating over a set of eight mutation operators with fixed rates of muta-

tion, this hyper-heuristic was compared to a number of population-based evolutionary

algorithms from the literature. This hyper-heuristic outperformed both a Genetic Al-

gorithm and Particle Swarm Optimisation however the application of a single heuristic

from the low-level heuristic set was shown to offer slightly better performance.

A number of hyper-heuristics were used by Wauters et al. [211] to solve the Eternity

II puzzle. The Eternity II puzzle belongs to an NP-complete class of edge matching

puzzles. Hyper-heuristics with Simple Random heuristic selection were tested with Im-

proving and Equal, Great Deluge, Simulated Annealing, All Moves and ‘Iteration Limited

Threshold Accepting’ (ILTA) move acceptance criteria. Iteration Limited Threshold Accept-

ing is a Threshold-based move acceptance criterion which accepts non-improving solu-

tions within a fixed range after a certain number of non-improving iterations. The five

hyper-heuristics were tested over a set of three perturbative low-level heuristics and

optimised over a number of different objective functions. It is shown that optimising

with respect to a secondary objective function can lead to improved performance in a

primary objective, rather than optimising directly over the primary objective function.

The Simple Random - ILTA hyper-heuristic outperformed all other hyper-heuristics for

this problem. A variant of this hyper-heuristic was the winner of the META’10 Eternity

II contest.

Demeester et al. [56] used Simple Random-based hyper-heuristics for three exam

timetabling datasets. Improving or Equal, Great Deluge, Simulated Annealing, Late Ac-

ceptance Strategy and ‘Steepest Descent Late Acceptance’ were used as move acceptance

criteria. Steepest Descent Late Acceptance is a variant of Late Acceptance Strategy which

first applies the criteria for Only Improving to the candidate solution and the incumbent

solution before applying the standard Late Acceptance Strategy criteria. This method is a

slight variation of a traditional single-point search selection hyper-heuristic framework

as at each step multiple candidate solutions are created. The best of these solutions is

then passed to the move acceptance criterion to decide whether to accept the move. The

Simple Random - Simulated Annealing hyper-heuristic improved on a number of best re-

sults from the literature over the Toronto benchmark dataset and performed well over

a second dataset provided by the authors.

A Reinforcement Learning heuristic selection method analogous to Ant Colony Optimi-

34

CHAPTER 2: HYPER-HEURISTICS

sation was proposed by Kiraz et al. [125]. In this system a pheromone value is main-

tained for each pair of heuristics hihj, denoting the desirability of selecting hj following

the application of hi. After each application of a low-level heuristic these values are

updated according to the fitness value of the solution obtained. This is similar to the

f2 component of the Choice Function [47] (see Table 2.1) which seeks to utilise pair-wise

synergy between low-level heuristics. Two variants of this heuristic selection method

were proposed using standard methods taken from the evolutionary algorithms litera-

ture. The first selects a low-level heuristic using roulette wheel selection of all low-level

heuristics, weighted by the pheromone levels of each heuristic pairing. The second uses

tournament selection, tested for a variety of tournament sizes. These heuristic selec-

tion methods were shown to outperform the original Choice Function [47], Reinforcement

Learning [162] and the Modified Choice Function [62] when combined with Improving and

Equal move acceptance and applied to dynamic environment problems produced by

the moving peaks benchmarks.

Misir et al. [151] presented a study analysing the effect of using different low-level

heuristic sets in selection hyper-heuristics, over three real-world healthcare problem

domains. This study focussed on a different flavour of generality than most hyper-

heuristics studies. Rather than concentrating on the performance over differing prob-

lem domains, this study analysed the ability of hyper-heuristics to adapt to differing

low-level heuristic sets. A large number of selection hyper-heuristics were tested us-

ing Simple Random and ADHS [154] heuristic selection with AILLA [153], Great Deluge,

Simulated Annealing, Late Acceptance Strategy, Improving and Equal, Only Improving and

All Moves acceptance criteria. The performance of the selection hyper-heuristics tested

was observed to be linked to the low-level heuristics sets and termination criterion

used. It is noted that if a hyper-heuristic is allowed a limited amount of execution time,

‘intelligent’ mechanisms for heuristic selection may not necessarily perform as well as

simple ones. It is also observed that in the framework tested, a naive move acceptance

criterion can be effective given the right low-level heuristic set.

2.5 The HyFlex framework

Hyper-heuristic research aims to ‘raise the level of generality’ at which search and opti-

misation methods operate. Recently there has been increased interest in cross-domain

optimisation, i.e. methods which are able to perform well over more than one problem

domain. This is due in part to the introduction of HyFlex [27, 166], a multi-domain

framework designed to aid research into heuristic search methods. Rather than having

35

CHAPTER 2: HYPER-HEURISTICS

to develop and tune methods to individual problems or even instances of problems,

cross-domain optimisation methods attempt to be general enough to provide an ac-

ceptable level of performance, irrespective of the underlying problem domain they are

solving.

The HyFlex [27, 166] framework1 offers a common framework in which to test heuris-

tic search algorithms over a broad set of problem domains. This framework was

used to support an international research competition, the first Cross-domain Heuris-

tic Search Challenge (CHeSC2011) [31]. Before the competition four problem domains

were provided: Boolean satisfiability (MAX-SAT), one-dimensional bin packing, per-

sonnel scheduling and permutation flow shop. Following the competition an extra two

problem domains, the vehicle routing problem (VRP) and the travelling salesman prob-

lem (TSP), were made available. For each problem domain a set of low-level heuris-

tics are defined and categorised as either ‘ruin-recreate’, ‘mutation’, ‘local search’ or

‘crossover’. Each of these problem domains is discussed in detail in Section 2.5.2.

A summary of the work discussed in the following section is given by heuristic selec-

tion method and move acceptance criteria in Table A.4 and Table A.5 respectively in

Appendix A.

2.5.1 Recent studies using the CHeSC2011 benchmark problems

Burke et al. [32] embedded two heuristic selection methods into an Iterated Local

Search [140, 141] framework. Iterated Local Search typically contains two phases, a

diversification phase and an intensification phase. During the diversification phase,

a perturbation is made to the current solution to move into a different region of the

search space. Following this in the intensification phase, local search is performed to

reach the local optima of the current area of the search space. This process is repeated

until a given termination criterion is met. The Choice Function and a Reinforcement Learn-

ing scheme known as ‘Extreme value-based Adaptive Operator Selection’ were compared to

a baseline Simple Random selection strategy, as heuristic selection methods used in an

Iterated Local Search framework. Following the selection and application of a heuristic

the Iterated Local Search framework applied each available local search heuristic to the

candidate solution, keeping the individual which yielded the greatest improvement.

Using the best individual resulting from the application of local search, Only Improving

moves when compared to the original solution were accepted by the algorithm. The

three Iterated Local Search variants were applied to four different problem domains

1Available at: http://www.asap.cs.nott.ac.uk/external/chesc2011/index.html

36

CHAPTER 2: HYPER-HEURISTICS

using the HyFlex framework. The Reinforcement Learning scheme performed well on

three of the four problem domains, matching and improving some best-known solu-

tions for the personnel scheduling problem. On the fourth problem domain, permuta-

tion flow shop, the Choice Function outperformed both other variants in all instances.

An extension to this method was presented by Walker et al. [209] showing improved

performance over instances of the vehicle routing problem. The adapted algorithm

replaced the greedy application of local search operators with an ordered application

scheme based on previous performance.

Genetic Programming has often been used in the field of hyper-heuristics as a method

of generating heuristics or heuristic components [28] (see Section 2.3.4). Nguyen et al.

[164] used Genetic Programming to evolve disposable selection hyper-heuristics to

solve individual instances of three of the HyFlex benchmark problem domains: MAX-

SAT, bin packing and permutation flow shop. The Genetic Programming system used

a function set containing a number of conditional operators and acceptance criteria

(All Moves, Only Improving and Simulated Annealing) and a terminal set consisting of

the low-level heuristics provided for each problem domain. This method showed im-

proved results compared to human-designed hyper-heuristics albeit at a much greater

computational cost, as each instance requires a full Genetic Programming run. Al-

though there is an extra overhead of computational cost in generating hyper-heuristics

in this manner, the automation of the heuristic design process is an important goal of

hyper-heuristic research.

Misir et al. [154] introduced a hyper-heuristic based on a new heuristic selection

method and Adaptive Iteration Limited List-based Threshold Acceptance (AILLA) [153] ac-

ceptance criterion. The heuristic selection method, ‘Adaptive Dynamic Heuristic Set’

(ADHS), is an intelligent mechanism which maintains an set of tabu heuristics made

unavailable for selection based on a number of metrics gathered during the search pro-

cess. At each stage a poor performing heuristic is applied, before a Probability-based

heuristic selection method selects a second heuristic to apply. These components were

shown to work well with each other when applied to four HyFlex benchmarks; MAX-

SAT, bin packing, personnel scheduling and permutation flow shop. ADHS - AILLA

outperformed Simple Random - AILLA, Simple Random - Simulated Annealing and Simple

Random - Only Improving in most of the instances of the MAX-SAT, bin packing and

personnel scheduling problem domains. In the permutation flow shop domain, Sim-

ple Random - Simulated Annealing outperformed the other three hyper-heuristics in all

ten problem instances. ADHS - AILLA was later submitted to CHeSC2011 [155] out-

performing all other competition entrants in MAX-SAT, bin packing and the travelling

37

CHAPTER 2: HYPER-HEURISTICS

salesman problem. It was also classified as the overall winner of CHeSC2011 based on

the competition scoring method.

A heuristic selection method based on the idea of dominance was presented by Özcan

and Kheiri [171] and applied to the first four problem domains of the HyFlex bench-

mark set: MAX-SAT, bin packing, personnel scheduling and permutation flow shop.

A greedy phase repeatedly applies each heuristic to a solution for a given number of

steps. Heuristics which are dominated by another heuristic at every point are placed on

a tabu list. Once the greedy phase is complete, the non-tabu heuristics are selected and

applied using the Random Descent heuristic selection method [47]. A naive move accep-

tance criterion which accepts all improving moves is used at each step in this phase. In

the case of non-improving moves the move is accepted with probability 0.25, the move

is rejected and the Random Descent phase continued with probability 0.5 and the move

is rejected and the algorithm returned to the greedy phase with probability 0.25. This

hyper-heuristic outperformed a set of eight ‘default hyper-heuristics’ provided by the

CHeSC2011 organisers, performing particularly well in the MAX-SAT and bin packing

domains. The default hyper-heuristics were based on state-of-the-art methods from the

literature and provided by the HyFlex framework.

Chan et al. [39] developed an Iterated Local Search-based hyper-heuristic inspired by

real-world pearl hunting, a diving technique used to retrieve pearls from pearl oysters.

This scheme repeatedly applies a low-level heuristic to move the search to different

areas of search space before using local search to try to improve the solution. A static

threshold, set at the level of the best result achieved during the first iteration, is used to

decide whether to accept the initial move in the search space. If the quality of solution

does not meet this threshold, local search is not applied and a diversification operator

is applied again to reach a new point in the search space. This hyper-heuristic was

tested on the original four problem domains of HyFlex and submitted to CHeSC2011.

The perturbative low-level heuristics used to diversify the search were applied in an

arbitrary order during the first half of the available computation time. During the

second half of available computation time, low-level heuristics were applied in order of

performance during the first half of the run. The local search phase repeatedly applied

sequences of the available local search heuristics to the current solution. This hyper-

heuristic finished fourth out of twenty entries to CHeSC2011, outperforming all other

competition entrants in the vehicle routing problem domain.

Another hyper-heuristic based on an Iterated Local Search framework was presented

by Lehrbaum and Musliu [133]. The diversification phase applies a perturbative opera-

tor, chosen by a Probability-based heuristic selection method, based on relative previous

38

CHAPTER 2: HYPER-HEURISTICS

performance. The improvement phase applies each available heuristic in descending

order of previous performance, accepting solutions which are Improving and Equal to

the current solution. In the case of equal quality solutions, only solutions which differ

from the current solution are accepted. A tabu list of recently seen solutions is also

maintained to prevent the search from returning to these points. Persistently poor per-

forming low-level heuristics are temporarily placed on a tabu list with a given probabil-

ity at each step of the search process. This hyper-heuristic performed particularly well

on instances of MAX-SAT and personnel scheduling and finished sixth out of twenty

entries to CHeSC2011.

Ochoa et al. [167] compared a modified version of the Adaptive Iterated Local Search

(AILS) algorithm presented by Walker et al. [209] with an Adaptive Memetic Algo-

rithm. The Adaptive Memetic Algorithm was effectively a parallel Iterated Local

Search with four threads, periodically recombined through the use of crossover in order

to share information. The Adaptive Memetic Algorithm was shown to outperform the

best hyper-heuristics submitted to CHeSC2011 on the vehicle routing problems con-

tained in HyFlex.

Hsiao et al. [105] proposed a population-based hyper-heuristic set within an Iterated

Local Search framework. At each step of the first half of available computation time, an

individual is selected from a small population using the tournament selection strategy

and a perturbative low-level heuristic is applied to modify the solution. All available

local search operators are then repeatedly applied until no further improvement is pos-

sible. In the second half of available computation time rather than using tournament

selection, the population is reduced to a single solution consisting of the best individual

found so far during the run. The perturbative heuristics are selected in ascending order

of perceived severity in a cyclic manner before the local search operators are applied.

If an improving solution is found following the local search phase, the same pertur-

bative heuristic is chosen in the next iteration and the improved solution replaces the

incumbent solution in the population. If a solution of equal quality is generated, the

decision of which perturbative heuristic to apply is performed probabilistically, with

the new solution replacing the incumbent solution in the population. In the case a

non-improving individual is produced following the local search phase, the next low-

level heuristic is used following the order of severity and the worst individual in the

population is replaced by the produced individual. This hyper-heuristic was applied

to the first four HyFlex benchmark domains in this paper however results for all six

domains are available as this method was submitted to CHeSC2011. When compared

to the other twenty competitors, this method finished second using the competition

39

CHAPTER 2: HYPER-HEURISTICS

scoring system. This hyper-heuristic was first in the personnel scheduling problem do-

main and good performance was shown on MAX-SAT, travelling salesman problem

and permutation flow shop instances.

Three variants of Reinforcement Learning heuristic selection methods were presented by

Gaspero and Urli [81], using techniques taken from the machine learning literature.

The first is a traditional reward-based Reinforcement Learning scheme. The second con-

trols the parameters of Reinforcement Learning through the use of an Artificial Neural

Network (ANN) [93]. The final variant rewards not only the heuristic applied at each

step, but also each of the preceding heuristics at a specified rate of degradation. Over

the six problem domains used in the CHeSC2011 competition, the Reinforcement Learn-

ing heuristic selection mechanism utilising ANNs outperformed the other two variants.

Little detail on performance compared to other techniques in general or in particular

problem domains is given.

Cichowicz et al. [41] introduced two hyper-heuristics, a ‘Five Phase’ hyper-heuristic and

a ‘Genetic Hive’ hyper-heuristic. The Genetic Hive hyper-heuristic evolved sequences of

low-level heuristics to apply during the search process using the Bees Algorithm [179].

The Five Phase hyper-heuristic ran a number of parallel streams, sharing low-level

heuristic performance information between streams. Each individual stream consists

of a phase of intensification followed by a phase of diversification, repeated until no

improvement is made in solution quality. Following this the search then continues in

the next stream. If no improvement is made in three successive iterations of all streams,

crossover operators are used to recombine solutions from different streams and reini-

tialise the algorithm. Using a number of different parameter settings for these two

hyper-heuristics a total of fourteen hyper-heuristics are compared, including standard

hyper-heuristics such as Simple Random - All Moves and Greedy - All Moves using the

HyFlex benchmark problem domains. The Genetic Hive hyper-heuristic was submitted

to CHeSC2011 and finished 12th out of the 20 competition entries.

Kubalik [131] used an evolutionary algorithm (EA) to evolve sequences of low-level

heuristics to apply to a solution at a given point of the search. A design choice was

made to impose certain structures on each sequence such that the first and last heuris-

tic in a given sequence is a local search heuristic. At each step of the search, a per-

mutation of low-level heuristics is applied in the order specified by a sequence in the

EA with All Moves accepted. This method performed well on the one-dimensional bin

packing instances in HyFlex, and finished eighth overall in the CHeSC2011 compe-

tition. Improved results were shown for a number of problem domains when some

parameters were tuned offline and an adaptive reinitialisation strategy was included.

40

CHAPTER 2: HYPER-HEURISTICS

The hyper-heuristic set parameters for each problem domain independently, based on

the execution time of the low-level heuristics in the given domain. Effectively, tuning

the parameters in an offline manner in this way breaks the domain barrier at which a

hyper-heuristic operates leading to a lower level of generality for this method.

Mascia and Stützle [147] developed a number of automatically tuned hyper-heuristics,

each tuned to solve one of the first four HyFlex problem domains independently, us-

ing an Iterated Racing procedure [138]. Based on a method which finished seventh

overall in CHeSC2011, these hyper-heuristics used a number of methods from the liter-

ature including Iterated Local Search, Simulated Annealing and Greedy and Simple Random

heuristic selection methods. The tuned methods were then included in a high-level

framework which selects a hyper-heuristic to use on a given problem instance. The

iterated racing procedure is applied again to decide which of the hyper-heuristics to

use for a given problem. The original hyper-heuristic performed well on bin packing

and permutation flow shop instances. This work showed improvement over the orig-

inal hyper-heuristic could be made through additional extensive offline tuning, again

at the cost of decreased generality.

Kalender et al. [116, 117] applied a Reinforcement Learning - Simulated Annealing hyper-

heuristic to university course timetabling problems. Each of the low-level heuristics

implemented for this problem act as neighbourhood operators working on a single

constraint. The so-called Greedy Gradient heuristic selection method uses a Reinforce-

ment Learning strategy until non-improving moves are made by the last invocation of

all low-level heuristics. When the search process stagnates in such a way, the heuris-

tic selection method is changed and Greedy heuristic selection is used instead. In the

case that no low-level heuristic offers an improvement in solution quality, the low-level

heuristic which operates on the constraint which is most violated is chosen. Due to this

feature, this method operates both above the domain barrier at the hyper-heuristic level

and below domain barrier at the problem-specific level. The Greedy Gradient heuristic

selection method was shown to outperform Choice Function, Simple Random and Greedy

heuristic selection methods when combined with Simulated Annealing acceptance crite-

rion on instances of the Yeditepe University course timetabling problem. The improve-

ment in performance was observed to be greater as the size of the instances increased.

Reinforcement Learning - Simulated Annealing was then also applied to all six benchmark

domains found in HyFlex performing well on instances of the personnel scheduling

and permutation flow shop domains.

Kheiri and Özcan [122] introduced a ‘Round-robin’ heuristic selection mechanism for

solving the HyFlex benchmark instances. This heuristic selection method is a variation

41

CHAPTER 2: HYPER-HEURISTICS

of the Random Permutation Gradient heuristic selection method presented in the early

hyper-heuristic work of Cowling et al. [47]. Both heuristic selection mechanisms apply

low-level heuristics in a randomly generated order. However, where the original Ran-

dom Permutation Gradient selection repeatedly applied low-level heuristics to a given

solution until no improvement in fitness is observed, the Round-robin heuristic selec-

tion mechanism applies each low-level heuristic for a specified period of time. This

heuristic selection method is tested in combination with a Threshold-based acceptance

criterion, which accepts all improving moves and gradually increases the probability of

accepting a non-improving move each time such a move is made. This hyper-heuristic

was shown to work well on the six benchmark problem domains provided by HyFlex,

outperforming all competition entrants in the vehicle routing problem domain and also

scoring well in the MAX-SAT and bin packing domains.

Jackson et al. [112] compare a number of Late Acceptance Strategy-based selection hyper-

heuristics over the HyFlex benchmark instances. A number of variants of a Probability-

based heuristic selection mechanism inspired by the Formula One ranking system used

in CHeSC2011 are compared to Simple Random heuristic selection when coupled with

Late Acceptance Strategy move acceptance. Using a Simple Random - Late Acceptance Strat-

egy hyper-heuristic was shown to outperform a number of the CHeSC2011 competitors

when using the competition ranking method. The best results for the Formula One

ranking-inspired Probability-based heuristic selection mechanism were in the personnel

scheduling and MAX-SAT problem domains.

2.5.2 Problem domains used in the CHeSC2011 competition

The HyFlex [27, 166] framework was developed to support research in cross-domain

optimisation and heuristic search. As one of the fundamental goals of hyper-heuristics

is to raise the level of generality at which search methods operate, it is necessary to test

new methods on a wide variety of problem domains. For CHeSC2011 six problem do-

mains with an associated set of low-level heuristics were provided through the HyFlex

framework. The following subsections describe each problem domain in turn, includ-

ing the instances available and the set of low-level heuristics provided. A summary of

the number of low-level heuristics and problem instances provided by each problem

domain is given in Table 2.4.

42

CHAPTER 2: HYPER-HEURISTICS

Table 2.4: Summary of the number of instances and low-level heuristics provided for

each problem domain in HyFlex

Domain Name Instances Ruin-recreate Mutation Local Search Crossover

Bin Packing 12 2 3 2 1

MAX-SAT 12 1 6 2 2

Permutation Flow Shop 12 2 5 4 4

Personnel Scheduling 12 3 1 5 3

TSP 10 1 5 3 4

VRP 10 2 3 3 2

One-Dimensional Bin Packing

The one-dimensional bin packing problem consists of a set of items to be packed into a

homogeneous set of containers (bins). Each item j has an associated weight wj and each

container has capacity c. The objective is to assign each item to a bin, minimising the

number of bins needed to pack all of the items, whilst ensuring the sum of the weight

of the pieces in each bin does not exceed the bin capacity. This problem was formulated

by Martello and Toth [146] as follows:

minimise
n

∑
i=1

yi (2.5.1)

subject to
n

∑
j=1

wjxij ≤ cyi, i ∈ N = {1, ..., n}, (2.5.2)

n

∑
i=1

xij = 1, j ∈ N (2.5.3)

with yi ∈ {0, 1}, i ∈ N, (2.5.4)

xij ∈ {0, 1}, i ∈ N, j ∈ N (2.5.5)

where yi is a binary variable indicating whether bin i is used, xij denotes whether item

j is packed into bin i and n is the total number of available bins. The one-dimensional

bin packing problem has roots in a number of practical application domains such as

cutting lengths of stock material [197] and scheduling advertising slots [1].

Rather than simply counting the number of bins used to measure the quality of a solu-

tion the fitness is calculated as:

f itess = 1−
(

∑n
i=1(f ullnessi/C)2

n

)
(2.5.6)

43

CHAPTER 2: HYPER-HEURISTICS

where n is the number of bins, C is the capacity of each bin and f ullnessi is the total

weight of all items in bin i. This function gives a value between zero and one with a

set of completely full bins corresponding to a value of zero. Minimising this function

corresponds to the overall objective of minimising the number of bins used n.

Twelve different problem instances are provided from a number of sources from the lit-

erature [67, 108]. The problem instances chosen vary widely in terms of the distribution

of item sizes, the number of items to be packed and the capacity of the bins. These are

summarised in Table 2.5. The low-level heuristic set contains two ruin-recreate heuris-

tics, three mutation heuristics, two local search heuristics and one crossover-heuristic.

Table 2.5: Summary of the one-dimensional bin packing instances included in HyFlex

Index Instance Name Source Capacity Items

0 falkenauer/u1000-00 [67] 150 1000

1 falkenauer/u1000-01 [67] 150 1000

2 schoenfieldhard/BPP14 [67] 1000 160

3 schoenfieldhard/BPP832 [67] 1000 160

4 10-30/instance1 [108] 150 2000

5 10-30/instance2 [108] 150 2000

6 triples1002/instance1 [108] 1000 1002

7 triples2004/instance1 [108] 1000 2004

8 test/testdual4/binpack0 [67] 100 5000

9 test/testdual7/binpack0 [67] 100 5000

10 50-90/instance1 [108] 150 2000

11 test/testdual10/binpack0 [67] 100 5000

Boolean Satisfiability (MAX-SAT)

The Boolean satisfiability problem is a well-studied combinatorial optimisation prob-

lem, whereby an assignment of a set of binary variables of a Boolean formula is sought

such that the formula evaluates to true. As an example, Equation 2.5.7 is satisfied if the

variables are assigned as follows: x1 = true, x2 = true, x3 = true, x4 = true.

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1 ∨ x2 ∨ x4) (2.5.7)

The maximum satisfiability problem (MAX-SAT) is a variant of the satisfiability prob-

lem for which the given Boolean formula is not necessarily ‘satisfiable’. In MAX-SAT,

the objective is to maximise the number of clauses satisfied in the Boolean formula.

44

CHAPTER 2: HYPER-HEURISTICS

This problem is modelled as a minimisation problem in HyFlex where the objective is

to minimise the number of unsatisfied clauses.

The instances available are taken from a number of sources in the literature [50, 51,

4]. These are summarised in Table 2.6. The low-level heuristic set contains one

ruin-recreate heuristic, six mutation heuristics, two local search heuristics and two

crossover-heuristics.

Table 2.6: Summary of the Boolean satisfiability (MAX-SAT) instances included in

HyFlex

Index Instance Name Source Variables Clauses

0 contest02-Mat26.sat05-457.reshuffled-07 [50] 744 2464

1 hidden-k3-s0-r5-n700-01-S2069048075.sat05-

488.reshuffled-07

[50] 700 3500

2 hidden-k3-s0-r5-n700-02-S350203913.sat05-

486.reshuffled-07

[50] 700 3500

3 parity-games/instance-n3-i3-pp [51] 525 2276

4 parity-games/instance-n3-i3-pp-ci-ce [51] 525 2336

5 parity-games/instance-n3-i4-pp-ci-ce [51] 696 3122

6 highgirth/3SAT/HG-3SAT-V250-C1000-1 [4] 250 1000

7 highgirth/3SAT/HG-3SAT-V250-C1000-2 [4] 250 1000

8 highgirth/3SAT/HG-3SAT-V300-C1200-2 [4] 300 1200

9 MAXCUT/SPINGLASS/t7pm3-9999 [4] 343 2058

10 jarvisalo/eq.atree.braun.8.unsat [50] 684 2300

11 highgirth/3SAT/HG-3SAT-V300-C1200-4 [4] 300 1200

Permutation Flow Shop

The permutation flow shop scheduling problem emerged from real-world problems in

the manufacturing industry. Given a set of jobs n and a set of machines m, the objective

is to minimise the completion time of the last job to leave the system. Each job i has an

associated processing time on machine j denoted by pij.

All of the benchmarks used for this problem domain are provided by Taillard [202] and

are summarised in Table 2.7. The low-level heuristic set contains two ruin-recreate

heuristics, five mutation heuristics, four local search heuristics and four crossover-

heuristics.

45

CHAPTER 2: HYPER-HEURISTICS

Table 2.7: Summary of the permutation flow shop instances included in HyFlex

Index Instance Name Source Jobs Machines

0 10x20/1 [202] 100 20

1 10x20/2 [202] 100 20

2 10x20/3 [202] 100 20

3 10x20/4 [202] 100 20

4 10x20/5 [202] 100 20

5 200x10/2 [202] 200 10

6 200x10/3 [202] 200 10

7 500x20/1 [202] 500 20

8 500x20/2 [202] 500 20

9 500x20/4 [202] 500 20

10 200x20/1 [202] 200 20

11 500x20/3 [202] 500 20

Personnel Scheduling

The personnel scheduling problem involves allocating the days and times at which a

set of employees should work over a given planning period. In particular, the problems

included in HyFlex are taken from the nurse rostering domain. A weighted objective

function is defined to measure the quality of a solution based on a number of con-

straints and objectives. As an example, certain shift patterns may be undesirable or

not allowed (i.e. allocating a single staff member to work every day of the planning

period). There may also be shift cover requirements, whereby the set of staff on duty

must possess a certain set of skills.

The problem instances used are taken from two sources [53, 111] with the vast majority

drawn from real-world personnel scheduling examples. A set of low-level heuristics

is provided containing three ruin-recreate heuristics, one mutation heuristic, five local

search heuristics and three crossover heuristics.

46

CHAPTER 2: HYPER-HEURISTICS

Table 2.8: Summary of the personnel scheduling instances included in HyFlex

Index Instance Name Source Staff Shift Types Days

0 BCV-3.46.1 [53] 46 3 26

1 BCV-A.12.2 [53] 12 5 31

2 ORTEC02 [53] 16 4 31

3 Ikegami-3Shift-DATA1 [111] 25 3 30

4 Ikegami-3Shift-DATA1.1 [111] 25 3 30

5 Ikegami-3Shift-DATA1.2 [111] 25 3 30

6 CHILD-A2 [53] 41 5 42

7 ERRVH-A [53] 51 8 42

8 ERRVH-B [53] 51 8 42

9 MER-A [53] 54 12 42

10 BCV-A.12.1 [53] 12 5 31

11 ORTEC01 [53] 16 4 31

Travelling Salesman Problem (TSP)

The travelling salesman problem is one of the most well-known and well-studied prob-

lem domains in combinatorial optimisation. Given a set of cities and the associated

travel costs between each pair of cities, the objective of the travelling salesman prob-

lem is to find the cheapest route, visiting every city once and returning to the starting

city. Although originally formulated in the 1930’s, the travelling salesman problem

still has a number of relevant real-world applications such as planning, logistics and

microchip manufacture.

Ten instances are provided for this problem domain taken from TSPLIB [187] and are

summarised in Table 2.9. The number of each type of low-level heuristic implemented

are as follows: one ruin-recreate heuristic, five mutation heuristics, three local search

heuristics and two crossover-heuristics.

47

CHAPTER 2: HYPER-HEURISTICS

Table 2.9: Summary of the travelling salesman problem instances included in HyFlex

Index Instance Name Source Cities

0 pr299 [187] 299

1 pr439 [187] 439

2 rat575 [187] 575

3 u724 [187] 724

4 rat783 [187] 783

5 pcb1173 [187] 1173

6 d1291 [187] 1291

7 u2152 [187] 2152

8 usa13509 [187] 13509

9 d18512 [187] 18512

Vehicle Routing Problem (VRP)

The vehicle routing problem (VRP) is an NP-Complete [78] combinatorial optimisation

problem where a number of customers are to be serviced by a fleet of vehicles subject to

a number of constraints. Different objectives can be considered depending on the goal

of the problem. Typical objectives include; minimisation of cost with respect to dis-

tance travelled, minimisation of the global travel time, minimisation of the number of

vehicles required to service all customers, minimisation of the penalty costs associated

with partial service of customers. The objective could also be a weighted combination

of multiple objectives. Real-world commodity distribution in logistics is a complex

problem with constraints varying depending on the application. It is therefore natural

that many different variants of the VRP exist, each simplifying the problem to a smaller

set of constraints which impose the most important restrictions for each specific appli-

cation of the problem. A large number of exact [132, 204] and metaheuristic [44, 19]

methods have been applied in the literature to solve vehicle routing problems.

A total of ten instances are provided for this problem domain taken from [196] and are

summarised in Table 2.10. Two ruin-recreate, three mutation, three local search and

two crossover low-level heuristics are implemented.

48

CHAPTER 2: HYPER-HEURISTICS

Table 2.10: Summary of the vehicle routing problem instances included in HyFlex

Index Instance Name Source Vehicles Capacity Customers

0 RC207 [196] 25 1000 100

1 R101 [196] 25 200 100

2 RC103 [196] 25 200 100

3 R201 [196] 25 1000 100

4 R106 [196] 25 200 100

5 C1-10-1 [196] 250 200 1000

6 RC2-10-1 [196] 250 1000 1000

7 R1-10-1 [196] 250 200 1000

8 C1-10-8 [196] 250 200 1000

9 RC1-10-5 [196] 250 200 1000

2.5.3 CHeSC2011 results and scoring system

In order to compare the hyper-heuristics submitted to the competition, CHeSC2011

used a points-based scoring system inspired by a system previously used by Formula

One motor racing to rank performance. The Formula One ranking system (2003-2009)

assigns a number of points to different competitors based on their performance. The

first place competitor is awarded 10 points, the second 8 points and then each further

hyper-heuristic is awarded 6, 5, 4, 3, 2, 1 and 0 points respectively. As the Formula One

ranking system allocates scores to the top 8 ranked contestants, all hyper-heuristics

which are ranked ≥ 9th position are given a score of 0.

A selection of five instances were selected from each of the six problem domains to

use as testing instances, resulting in a total of 30 instances. The HyFlex indexes of the

instances used in the competition are summarised in Table 2.11. Of these instances,

twenty belong to problem domains which were available to all contestants prior to the

competition (Boolean satisfiability (MAX-SAT), one-dimensional bin packing, person-

nel scheduling and permutation flow shop). A further ten, five from the vehicle routing

problem and five from the travelling salesman problem were unseen problems. Each

hyper-heuristic was allowed to run for 10 minutes per instance on a standard desktop

machine, with runs repeated 31 times in order to account for the stochastic nature of

solving such optimisation problems. The median result of the 31 runs is reported as the

score for a given hyper-heuristic applied to a given instance. Scores are then allocated

using the Formula One system outlined above, using the median results obtained by

each hyper-heuristic for each instance. As the maximum number of points for each

instance is 10, and there are 30 instances in total, the maximum possible score for any

49

CHAPTER 2: HYPER-HEURISTICS

Table 2.11: HyFlex indexes of problem instances used for the CHeSC2011 competition

Domain Name Instances

Seen

Bin Packing 7, 1, 9, 10, 11

MAX-SAT 3, 5, 4, 10, 11

Permutation Flow Shop 1, 8, 3, 10, 11

Personnel Scheduling 5, 9, 8, 10, 11

Unseen
TSP 0, 8, 2, 7, 6

VRP 6, 2, 5, 1, 9

hyper-heuristic is 300.

In total there were twenty entrants to CHeSC2011 as shown in Table 2.12. These are

listed in order of Formula One ranking as defined by the competition rules. References

to the methods submitted to the competition are provided where available.

Table 2.12: Results of CHeSC2011 using the Formula One ranking system

Rank Name Score Reference

1 AdapHH 181.00 Misir et al. [155]

2 VNS-TW 134.00 Hsiao et al. [105]

3 ML 131.50 -

4 PHunter 93.25 Chan et al. [39]

5 EPH 89.75 -

6 HAHA 75.75 Lehrbaum and Musliu [133]

7 NAHH 75.00 Mascia and Stützle [147]

8 ISEA 71.00 Kubalik [131]

9 KSATS-HH 66.50 -

10 HAEA 53.50 -

11 ACO-HH 39.00 -

12 GenHive 36.50 Cichowicz et al. [41]

13 DynILS 27.00 -

14 SA-ILS 24.25 -

15 XCJ 22.50 -

16 AVEG-Nep 21.00 Gaspero and Urli [81]

17 GISS 16.75 -

18 SelfSearch 7.00 -

19 MCHH-S 4.75 McClymont and Keedwell [150]

20 Ant-Q 0.00 -

50

CHAPTER 2: HYPER-HEURISTICS

2.6 Concluding remarks

This chapter introduced much of the existing related work in the literature and serves

to contextualise the work contained in the thesis herein. Previous and recent work

in hyper-heuristics, specifically selection hyper-heuristics and the HyFlex framework

have been discussed. Hyper-heuristics have been defined as a class of high-level search

methodologies which operate on a search space of low-level heuristics or heuristic com-

ponents. Hyper-heuristic research has a number of goals, chiefly to raise the generality

at which search methods operate and to provide satisfactory results to a given problem

within a reasonable period of time.

The introduction of the HyFlex framework has greatly improved the ease in which

high-level search strategies can be tested over multiple problem domains. A number of

selection hyper-heuristics designed specifically to perform cross-domain optimisation

have been detailed. The HyFlex framework includes a number of low-level heuris-

tic types for high-level search methods to operate on including crossover heuristics.

Crossover operators require > 1 solutions as input however there is little work in the

literature devoted to understanding how to select and manage these solutions. In fact

many of the state-of-the-art methods using this benchmark avoid this issue by omitting

crossover operators altogether [105, 133, 147]. In the worst case whereby only crossover

operators are available, it is possible that these methods will fail entirely. This problem

is not restricted to crossover operators and can be generalised to all n-ary operators

where n is the number of solutions required as input by a low-level heuristic, assum-

ing n > 1. As there are some domains where crossover use is provably beneficial, it

does not make sense to completely eliminate this category of low-level heuristic from

the search space.

In this thesis the management of a number of high-level selection hyper-heuristic com-

ponents is explored, particularly the management of multi-input low-level heuristics.

The following chapter introduces the multidimensional knapsack problem, a domain

which will be used as a case study to compare some of the methods presented. The

multidimensional knapsack problem is a widely studied combinatorial optimisation

problem from the literature, for which a large number of benchmark problems exist.

Selection hyper-heuristics consisting of well-known existing components are tested on

this problem domain, showing some success when compared to existing methods.

51

CHAPTER 3

The Multidimensional Knapsack

Problem

3.1 Introduction

The previous chapter presented a review of the relevant literature regarding hyper-

heuristics. A number of problem domains included in the HyFlex benchmark were

introduced. This chapter will provide a brief introduction to another problem domain,

the multidimensional knapsack problem (MKP). In subsequent chapters this problem

domain will be used as an additional case study to compare different selection hyper-

heuristics.

The multidimensional knapsack problem was chosen as a benchmark for a number of

reasons. Firstly there are a number of existing benchmark datasets containing prob-

lem instances with varying properties. Each of these benchmark sets includes a large

number of problem instances. As a core goal of hyper-heuristic research is to ‘raise the

level of generality’ at which search methods operate [190], a large, diverse set of prob-

lem instances and problem instance types is beneficial to measure performance over a

variety of experimental conditions. Secondly there is a vast body of existing work in

the literature solving this problem, including both exact and metaheuristic methods.

This provides a broad set of techniques with which to compare the hyper-heuristics

developed. Finally, to best of the authors knowledge, this is the first application of

selection hyper-heuristics to this problem domain, offering a previously unexplored

research area.

A formal definition of the multidimensional knapsack problem is provided, along with

a review of previous work applied to this domain. A description of the problem in-

stances contained within three well-known benchmark datasets is also included.

52

CHAPTER 3: THE MULTIDIMENSIONAL KNAPSACK PROBLEM

3.2 Problem definition

The NP-hard [78] multidimensional 0-1 knapsack problem (MKP) [212] is a generalised

case of the standard 0-1 knapsack problem, with roots in applications such as capital

budgeting [139] and project selection [178]. The MKP is a resource allocation model,

where the objective is to select a subset of objects which yield the greatest profit, whilst

observing the constraints on knapsack capacities. Unlike the standard 0-1 knapsack

problem, each object j consumes a different amount of resources in each dimension i

when selected.

Formally the MKP can be stated as:

maximise
n

∑
j=1

pjxj (3.2.1)

subject to
n

∑
j=1

aijxj ≤ bi, i = 1, ..., m (3.2.2)

with xj ∈ {0, 1}, j = 1, ..., n (3.2.3)

where pj is the profit for selecting item j, aij is the resource consumption of item j

in dimension i, bi is the capacity constraint of each dimension i. Using direct binary

encoding, x1,...,xn is a set of decision variables indicating whether or not object j is

included in the knapsack. The size of a problem is defined by the total number of vari-

ables n and the number of dimensions m. Tavares et al. [203] investigated five different

representations and analysed their effect on solution quality. This work highlighted

that using direct binary encoding in conjunction with local search or repair operators

in both mutation-based and crossover-based evolutionary algorithms is suitable for the

MKP.

3.2.1 Fitness function

In any optimisation problem a measure is needed to assess the quality of a solution.

There are a number of options when choosing a fitness function for the MKP. In this

thesis the following fitness function taken from [170] is used:

pro f it− o ∗ s ∗ (maxPro f it + 1) (3.2.4)

where pro f it is the profit gained from the items currently selected for inclusion, o is

the number of dimensions for which resource consumption has exceeded capacity, s

is the number of selected items and maxPro f it is the largest profit value of any of the

items. The value of this fitness function will always be positive for a feasible solution

and negative for an infeasible solution.

53

CHAPTER 3: THE MULTIDIMENSIONAL KNAPSACK PROBLEM

3.3 Literature review

A number of methods, including exact and metaheuristic techniques, have been used

to solve the MKP and its single constraint equivalent. Drexl [64] used Simulated An-

nealing [127] within a variable exchange operator to solve instances of the MKP. Op-

erating over a binary string representing a solution to the MKP, Simulated Annealing

was used to probabilistically determine whether to invert or swap a variable at a given

point of the search. Using Simulated Annealing was shown to outperform determinis-

tically selecting variable changes using a greedy strategy which only accepts changes

improving the current solution. Qian and Ding [183] used a similar scheme applied

to a larger range of instances, this method was able to outperform the constructive

heuristics of Magazine and Oguz [142] and Volgenant and Zoon [208]. Artificial Neu-

ral Networks [93] were used to solve a set of MKP instances by Ohlsson et al. [168],

showing similar performance to Simulated Annealing on the instances tested. Khuri

et al. [123] used a standard Genetic Algorithm to solve a set of 9 instances of the MKP,

inspired by real-world problems. Over 100 runs of the Genetic Algorithm, the optimal

solution was found at least once in 8 of the 9 instances tested. A Memetic Algorithm

operating over a weight-based representation was presented by Cotta and Troya [46].

Cleary and O’Neill [42] used Grammatical Evolution to evolve two types of grammar

to solve the MKP, outperforming Khuri et al. [123] in all and Cotta and Troya [46] in 2

of the 9 instances tested. A variety of different representations for Memetic Algorithms

solving the MKP were investigated by Raidl and Gottlieb [185]. This study found that

the most effective representation within this environment for the MKP was direct en-

coding as a binary string. Hembecker et al. [100] presented an application of Particle

Swarm Optimisation [121] to the MKP. This method failed to find the optimal solu-

tion for many of the small instances tested. Two classes of Memetic Algorithms for

the MKP were investigated by Özcan and Basaran [170]. A traditional Memetic Algo-

rithm, which applies local search using a hill climber to each individual generated in

a Genetic Algorithm and a Multimeme Memetic Algorithm, which manages multiple

hill climbing operators in a co-evolutionary framework were tested. Akçay et al. [2]

proposed a greedy constructive heuristic based on the ‘effective capacity’, defined as

the number of times an item could be selected without breaking capacity constraints if

multiple copies of a single variable were permitted.

Techniques which combine metaheuristics and mathematical programming belong to

the emerging research field of Matheuristics [143, 186]. Matheuristics have successfully

been applied to a variety of problem domains including the MKP, providing some of

the best results in the literature. The linear programming (LP) relaxation of the MKP

54

CHAPTER 3: THE MULTIDIMENSIONAL KNAPSACK PROBLEM

allows the variables xj from Equation 3.2.3 to take fractional values, rather than being

restricted to discrete values of 0 and 1, as shown in Equation 3.3.1:

0 ≤ xj ≤ 1, j = 1, ..., n (3.3.1)

The LP-relaxed version of the MKP is solvable in polynomial time and can provide

useful information about the current problem instance. The LP-relaxed MKP provides

good approximations for solutions to the 0-1 integer MKP, indeed some of the best

results in the literature are from methods which combine LP-relaxation and heuris-

tics [40, 182, 206]. Chu and Beasley [40] combined a traditional Genetic Algorithm with

a repair operator based on the dual variables of the LP-relaxed problem. Raidl [184]

used a similar method which used the actual values of the LP-relaxed solution when

repairing candidate solutions. Vasquez and Vimont [206] provided the best known

results for the largest instances in the ORLib benchmarks of Chu and Beasley [40],

extending the work of Vasquez and Hao [205]. Both of these approaches apply Tabu

Search to promising areas of the search space derived from LP-relaxed optima, with the

improved algorithm fixing additional variables which match the attributes of a ‘good’

solution. Puchinger et al. [181] explored the core concept for the MKP. The core concept

was originally presented for the 0-1 knapsack problem by Balas and Zemel [9] and led

to a number of successful algorithms for the classic single constraint knapsack problem.

The core concept reduces the problem to a subset of decision variables which represent

the most difficult items to identify whether or not they are in an optimal solution. This

technique relies on the structure of MKP instances and the assumption that a larger pro-

portion of items with high efficiency are included than those with low efficiency. Here

efficiency refers to those items which yield a greater profit with respect to the amount of

resources consumed in all dimensions. The core concept fixes the variables of high and

low efficiency restricting the optimisation to the difficult to place ‘medium’ efficiency

items. Applying CPLEX [110] to the core problems yielded significant improvement in

running times compared to the original problem. A Memetic Algorithm and guided

Variable Neighbourhood Search are also implemented on the restricted version of the

problem, showing better results than when applied to the original problem directly.

Vimont et al. [207] highlight one of the drawbacks of Vasquez and Hao [205] and

Vasquez and Vimont [206], namely that it is possible to fix a given variable to a non-

optimal value. This work proposed an efficient method to fix certain variables while

simultaneously pruning the search tree. The results of this method were able to find a

number of unknown optimal solutions and best known solutions for some instances of

a standard benchmark library. Wilbaut and Hanafi [213] and Hanafi and Wilbaut [94]

both present heuristics based on iterative relaxation of mixed integer programming

55

CHAPTER 3: THE MULTIDIMENSIONAL KNAPSACK PROBLEM

models, using linear programming to solve sub-problems of a wider MKP problem.

Fleszar and Hindi [71] proposed a number of heuristics based on solutions to the LP-

relaxed version of the MKP. These heuristics were capable of offering similar perfor-

mance to the Memetic Algorithm of Chu and Beasley [40] on some larger instances of

the MKP. Another method reducing the problem to a restricted subset of key variables

was introduced by Angelelli et al. [3]. ‘Kernel Search’ identifies an initial set of promis-

ing items (the kernel) and iteratively extends this set, using exact methods to solve the

problem associated with a given subset of variables (including the kernel items) to

identify items to be added to the kernel. Boussier et al. [18] presented an exact method

based on a Branch and Bound strategy able to improve some of the best known results

of well-known benchmark instances. Hanafi et al. [95] hybridise a mixed integer pro-

gramming model with a Variable Neighbourhood Decomposition Search (VNDS) [96]

metaheuristic. Mansini and Speranza [145] propose another method similar to those

of Puchinger et al. [181] and Angelelli et al. [3], which reduces a given instance of the

MKP down to a set of key variables which are expanded during the search. At each step

exact methods are applied to solve the sub-problem for a given set of variables. Croce

and Grosso [52] presented another core-based/metaheuristic hybrid which is able to

outperform some state-of-the-art approaches given limited computational resources.

3.4 Problem instances

A number of benchmarks sets exist for the MKP, each with different properties. SAC-

94 is a standard benchmark library of MKP instances taken from a number of papers

in the literature often representing real-world examples. These instances are generally

small with m ranging from 2 to 30 and n ranging from 10 to 105 with optimal solutions

known for all. The properties of these instances are given in Table 3.2(a).

Chu and Beasley [40] noted that the SAC-94 instances are too small to draw meaning-

ful conclusions of an algorithms performance, leading to the proposal of the ORLib

instances, generated using a procedure described by Freville and Plateau [73]. This is a

widely used benchmark library in the literature and contains 270 instances containing

n ∈ {100, 250, 500} variables, m ∈ {5, 10, 30} dimensions and tightness ratio ∈ {0.25,

0.50, 0.75}. The properties of the ORLib instances are summarised in Table 3.1.

As optimal solutions are not known for all of these instances, performance is often

measured using the %-gap distance from the upper bound provided by the solution to

the LP-relaxed problem calculated as:

56

CHAPTER 3: THE MULTIDIMENSIONAL KNAPSACK PROBLEM

Table 3.1: Summary of the properties of the ORLib set of 270 MKP benchmark in-

stances

Number of Instances Variables (n) Dimensions (m) tightness ratio

10 100 5 0.25

10 100 5 0.50

10 100 5 0.75

10 250 5 0.25

10 250 5 0.50

10 250 5 0.75

10 500 5 0.25

10 500 5 0.50

10 500 5 0.75

10 100 10 0.25

10 100 10 0.50

10 100 10 0.75

10 250 10 0.25

10 250 10 0.50

10 250 10 0.75

10 500 10 0.25

10 500 10 0.50

10 500 10 0.75

10 100 30 0.25

10 100 30 0.50

10 100 30 0.75

10 250 30 0.25

10 250 30 0.50

10 250 30 0.75

10 500 30 0.25

10 500 30 0.50

10 500 30 0.75

57

CHAPTER 3: THE MULTIDIMENSIONAL KNAPSACK PROBLEM

Table 3.2: The number of objects n and dimensions m in (a) the SAC-94 instances and

(b) the Glover and Kochenberger MKP benchmark instances
(a)

Instance n m Instance n m

hp1 4 8 pb1 4 27

hp2 4 35 pb2 4 34

weing1-6 2 28 pb4 2 29

weing7-8 2 105 pb5 10 20

sento1-2 30 60 pb6 30 40

weish1-5 5 30 pb7 30 37

weish6-9 5 40 pet2 10 10

weish10-13 5 50 pet3 10 15

weish14-17 5 60 pet4 10 20

weish18-21 5 70 pet5 10 28

weish22-25 5 80 pet6 5 39

weish26-30 5 90 pet7 5 50

(b)

Instance n m

GK01 15 100

GK02 25 100

GK03 25 150

GK04 50 150

GK05 25 200

GK06 50 200

GK07 25 500

GK08 50 500

GK09 25 1500

GK10 50 1500

GK11 100 2500

100 ∗ LPopt−SolutionFound
LPopt (3.4.1)

where LPopt is the fitness value of the LP-relaxed solution to a given problem and

SolutionFound is the fitness value of a solution obtained by a particular method.

A third benchmark set was provided by Glover and Kochenberger [88] including much

larger instances, with n up to 2500 and m up to 100. Again optimal solutions are not

known for all instances so performance is often measured in terms of relative %-gap

as described above. Details of the instances contained within the Glover and Kochen-

berger [88] (GK) set are given in Table 3.2(b). In order to aid fellow researchers in using

these libraries, all three benchmark instance sets have been standardised and are avail-

able in a unified format at: http://www.cs.nott.ac.uk/~jqd/mkp/index.html.

3.4.1 Datasets used by existing approaches for the MKP

A number of existing methods solving the MKP from the literature have been intro-

duced in the previous section. Table 3.3 highlights which of the datasets described in

this section are used by each of these authors. Methods marked * were implemented

by a second source. Any bracketed tick, i.e. (X), indicates that a subset of the instances

from the given benchmark set were used.

58

CHAPTER 3: THE MULTIDIMENSIONAL KNAPSACK PROBLEM

Table 3.3: Summary of the datasets used by existing methods in the literature

Method Reference SAC-94 ORLib GK

Heuristic Magazine and Oguz [142]* X
Heuristic Pirkul [180]* X
Simulated Annealing Drexl [64] X
Heuristic Volgenant and Zoon [208]* X
Genetic Algorithm Khuri et al. [123] (X)

Memetic Algorithm Chu and Beasley [40] X X
Memetic Algorithm Raidl [184] X
Memetic Algorithm Cotta and Troya [46] (X)

Matheuristic Vasquez and Hao [205] (X) X
Matheuristic Vasquez and Vimont [206] (X)

Memetic Algorithm Raidl and Gottlieb [185] X X
Grammatical Evolution Cleary and O’Neill [42] (X)

Core Concept Puchinger et al. [181] (X)

Particle Swarm Optimisation Hembecker et al. [100] (X)

Simulated Annealing Qian and Ding [183] X
Heuristic Akçay et al. [2] (X) X
Branch and Bound Vimont et al. [207] X
Memetic Algorithms Özcan and Basaran [170] X X
Matheuristic Fleszar and Hindi [71] X
Matheuristic Wilbaut and Hanafi [213] (X) X
Kernel Search Angelelli et al. [3] (X)

Branch and Bound Boussier et al. [18] (X)

Matheuristic Hanafi et al. [95] (X) X
Matheuristic Hanafi and Wilbaut [94] X
Branch and Bound Mansini and Speranza [145] (X) (X)

Matheuristic Croce and Grosso [52] (X)

59

CHAPTER 3: THE MULTIDIMENSIONAL KNAPSACK PROBLEM

3.5 Concluding remarks

This chapter briefly introduced the multidimensional knapsack problem (MKP). The

MKP is a well-studied optimisation problem which has been of interest to researchers

in both the exact and metaheuristic research communities. The MKP provides not only

a wide range of benchmark instances with varying properties with which to test our

methods, but also a large number of studies in the literature to compare performance

with. As introduced in Chapter 2, hyper-heuristics are an emerging class of search

methodologies which operate on a search space of heuristics rather than a search space

of solutions as with traditional metaheuristic approaches. No previous known work

uses selection hyper-heuristics to solve the MKP. Whilst there are a number of methods

which use more than one MKP benchmark for comparison, there is no known previous

work assessing performance over all three benchmark sets. A core principal of hyper-

heuristic research is to ‘raise the level of generality’ at which search methods operate.

The use of three benchmark sets with varying properties gives rise to the opportunity

to test generality, where generality is measured in problem diversity, without having

to modify the underlying problem domain implementation. A number of low-level

heuristics operating on the MKP are used within this thesis. Many are generic oper-

ators which can be applied to any binary represented problem however some make

use of domain-specific information for the MKP. The nature of the low-level heuristics

used varies, with different crossover, mutation and hill climbing heuristics all applied

in various chapters. The low-level heuristic sets used vary from chapter to chapter and

will be explained in detail in the relevant sections of the thesis. The following chapter

presents preliminary work applying generic selection hyper-heuristics to the multidi-

mensional knapsack problem.

60

CHAPTER 4

A Study of Selection

Hyper-heuristics Applied to the

Multidimensional Knapsack

Problem

4.1 Introduction

The previous two chapters presented a literature review of hyper-heuristics, a num-

ber of real-world optimisation problems and the concept of low-level heuristics which

require multiple solutions as input. A number of hyper-heuristic methods solving NP-

hard problems were discussed. This chapter presents initial work on solving the multi-

dimensional knapsack problem using selection hyper-heuristics, indicating that hyper-

heuristics are a viable solution method for this problem domain. Insights provided by

this work will be used in the following chapters to design and refine selection hyper-

heuristics operating over multiple problem domains.

The aims of this chapter are twofold. Firstly the suitability of hyper-heuristics to solve

the MKP is assessed. Secondly, the relationship between different heuristic selection

mechanisms and acceptance criteria pairs is analysed, to provide some insight into the

properties of hyper-heuristics which perform well in this domain. A set of generic

low-level heuristics which can be applied to any problem domain using a binary rep-

resentation are implemented. A variety of well-known heuristic selection method and

move acceptance criterion combinations are tested.

61

CHAPTER 4: A STUDY OF SELECTION HYPER-HEURISTICS APPLIED TO THE

MULTIDIMENSIONAL KNAPSACK PROBLEM

4.2 Generic selection hyper-heuristics for the MKP

The traditional single-point search hyper-heuristic framework consists of two core

components, a heuristic selection method and a move acceptance criterion. Such

hyper-heuristics will be labelled heuristic selection method - move acceptance criterion, with

acronyms used where space is restricted. In this chapter the FB selection hyper-heuristic

framework introduced by Özcan et al. [174] as shown in Figure 4.1 is used.

Figure 4.1: The FB selection hyper-heuristic framework

Hyper-heuristic

Selection Mechanism

Low-level heuristics

Select

Heuristic

Apply

Heuristic

LLH1 LLH2 LLH3 LLHn

Domain Barrier

Acceptance Criteria

Accept/Reject

Solution?

Initial

Solution

Hill Climber

HC1

Hill Climbing

Conditionally

Apply

Termination Criteria

Terminate?
Yes

No

In the FB framework, a high-level search strategy operates on a single solution using a

set of mutational and hill climbing low-level heuristics. At each point in the search a

low-level heuristic is chosen and applied to an incumbent solution to generate a new

solution. In the case where a mutational low-level heuristic has been selected, a pre-

defined hill climber is then applied to attempt to improve the new solution. The solu-

tion is either accepted and kept as the current solution, or rejected and discarded with

the incumbent solution retained as the current solution, according to the move accep-

tance criterion used. In the original FB framework, only mutational heuristics were

used, in this chapter crossover low-level heuristics are introduced into this framework.

Three heuristic selection methods are tested with four acceptance criteria resulting in

a total of twelve heuristic selection method - move acceptance criterion combinations. The

performance of selection hyper-heuristics will be tested on the multidimensional knap-

sack problem, as introduced in Chapter 3. No existing work applying selection hyper-

heuristics to the MKP is known.

62

CHAPTER 4: A STUDY OF SELECTION HYPER-HEURISTICS APPLIED TO THE

MULTIDIMENSIONAL KNAPSACK PROBLEM

4.2.1 Heuristic selection methods and move acceptance criteria used

Three classic heuristic selection methods and four move acceptance criteria are taken

from the hyper-heuristic literature to be tested. Simple Random, Choice Function and

Reinforcement Learning heuristic selection are combined with All Moves, Only Improving,

Late Acceptance Strategy and Simulated Annealing move acceptance criteria providing a

total of twelve hyper-heuristics. Each of these heuristic selection methods and move

acceptance criteria were introduced in Section 2.3.3 and detailed in Table 2.1, Table 2.2

and Table 2.3.

4.2.2 Low-level heuristics

A set of low-level heuristics operating on a binary representation are implemented

for each of the hyper-heuristics to select from. The low-level heuristics can be split

into three categories: hill climbers, mutation heuristics and crossover heuristics. Hill

climbers are black box functions which accept a candidate solution as input and guar-

antee to output a solution which is at least as good. Effectively in this implementation

these are local search operators which return a locally optimal solution for a particular

neighbourhood structure. In contrast to hill climbers which intensify a search, guiding

it closer towards local optima, mutation operators exist to introduce new genetic mate-

rial and maintain diversity within a search. A mutational heuristic takes a solution as

input, performs an operation to perturb the solution and outputs a new solution with-

out quality guarantee. Traditionally, crossover operators are included in population-

based approaches as opposed to the single-point search used here. Two solutions are

selected from a population and a new solution is generated containing material from

both of the original solutions. The general idea is that in a population-based approach

only the best quality solutions will survive, containing a mixture of material from good

quality solutions.

With the exception of one of the hill climbing heuristics, all of the low-level heuristics

implemented are generic operators which can be applied to any problem domain using

a binary representation.

Hill climbers

Three hill climbing heuristics are included in the low-level heuristic set. The first two

are selected as they have shown promising performance as ‘memes’ in the work of Öz-

can and Basaran [170].

63

CHAPTER 4: A STUDY OF SELECTION HYPER-HEURISTICS APPLIED TO THE

MULTIDIMENSIONAL KNAPSACK PROBLEM

Steepest Gradient hill climbing [161] (often referred to as steepest-ascent or steepest-

descent hill climbing depending on whether the objective function is being maximised

or minimised) systematically checks all neighbours of hamming distance one from a

candidate solution. If an improvement is found, the neighbour which provides the

greatest increase in the objective value replaces the original solution. The pseudocode

for this low-level heuristic in the case of a maximisation problem is shown in Algo-

rithm 5.

Algorithm 5 Steepest Gradient Hill Climbing

1: Input intialSolution

2: bestSolution← intialSolution

3: for i = 1 to intialSolution.length do

4: currentSolution← intialSolution with bit i inverted

5: if f itness(currentSolution) > f itness(bestSolution) then

6: bestSolution← currentSolution

7: end if

8: end for

9: return bestSolution

Davis’s Bit hill climbing [54] iterates over a binary string in a random order inverting

each bit in turn. If an improvement is found at any stage, the improved solution is

accepted as the current solution and the search is resumed at the next bit. If an inver-

sion does not yield an improvement the bit is flipped back before continuing. This is

described in Algorithm 6 which requires a random permutation of the integers 1, ..., n,

where n is the length of the binary string, as input to define the order in which the

bits in the binary string are inverted. Again this algorithm assumes a maximisation

problem.

Algorithm 6 Davis’s Bit Hill Climbing

1: Input intialSolution, permutation

2: bestSolution← intialSolution

3: for i = 1 to intialSolution.length do

4: currentSolution← bestSolution with bit permutation[i] inverted

5: if f itness(currentSolution) > f itness(bestSolution) then

6: bestSolution← currentSolution

7: end if

8: end for

9: return bestSolution

64

CHAPTER 4: A STUDY OF SELECTION HYPER-HEURISTICS APPLIED TO THE

MULTIDIMENSIONAL KNAPSACK PROBLEM

MKP Hill Climber (MKPHC). A number of papers in the literature (e.g. [40, 180, 142])

make use of an add and (or) drop phase to either construct, improve or repair solutions

to the MKP. These techniques more often than not use a utility-weight value to sort the

objects in order of their relative efficiency (‘bang for buck’). In the case of the classic 0-1

knapsack problem a simple efficiency measure utility-weightj can be defined as:

utility-weightj =
pj

wj
(4.2.1)

where pj is the profit provided for including item j in the knapsack and wj is the re-

source consumption of this item. Effectively this is the profit-to-weight ratio of a given

item. Due to the additional constraints of the multidimensional knapsack problem this

must be generalised for the multidimensional case to include the resource consumption

in all dimensions:

utility-weightj =
pj

∑m
i=1 wij

(4.2.2)

where wij is the resource consumption of a given item j in dimension i, in a problem

with m dimensions. An issue with this method is that the constraints of a single dimen-

sion which dominates all others could distort the weightings. Scaling with respect to

the knapsack capacity bi for each dimension can reduce this effect:

utility-weightj =
pj

∑m
i=1

wij
bi

(4.2.3)

Using the simple scaled efficiency measure described in Equation 4.2.3 to calculate the

relative efficiency of each item utility-weightj, a local search operator for the MKP can

be implemented. When given an infeasible solution, drop items from the knapsack in

order of increasing utility-weight until a feasible solution is found. When a feasible solu-

tion is attained, attempt to add items in order of decreasing utility-weight until a feasible

solution cannot be found by adding another of the unselected items. This operator will

be applied as a local search mechanism after each crossover or mutational operator is

applied to repair and locally improve solutions, as required by framework FB described

in Section 4.2.

65

CHAPTER 4: A STUDY OF SELECTION HYPER-HEURISTICS APPLIED TO THE

MULTIDIMENSIONAL KNAPSACK PROBLEM

Algorithm 7 MKP Hill Climber (MKPHC)

1: Input solution, utility-weights

2: while solution is infeasible do

3: remove an item from solution in ascending order of utility-weights

4: end while

5: for all items not currently added to solution do

6: add an item to the knapsack in decreasing order of utility-weights

7: if solution becomes infeasible then

8: remove the last item added from solution

9: end if

10: end for

11: return solution

Mutational Operators

Mutational low-level heuristics serve to introduce new ‘genetic material’ into the search

by stochastically modifying a solution in some way. Two simple mutation low-level

heuristics taken from the literature are implemented here.

Swap Dimension mutation [173] selects two distinct substrings of a candidate and

exchanges their position to generate a new solution, as shown in Figure 4.2.

Figure 4.2: An example of generalised Swap Dimension mutation on a binary string

Paramaterised Mutation inverts a pre-specified number of bits within a string. This

is essentially the bit string mutation of Koza [129], however rather than relying on

mutational probabilities Parameterised Mutation guarantees the number of bits that

are mutated during the operation. An example of Paramaterised Mutation with three

bits is given in Figure 4.3.

66

CHAPTER 4: A STUDY OF SELECTION HYPER-HEURISTICS APPLIED TO THE

MULTIDIMENSIONAL KNAPSACK PROBLEM

Figure 4.3: An example of Paramaterised Mutation on a binary string with a mutation

rate of 3

Crossover Operators

In evolutionary algorithms, crossover operators are used to recombine multiple candi-

date solutions to yield a new solution, which hopefully inherits good genetic material

from both solutions. Single-point selection hyper-heuristics operate on a single solu-

tion, providing a problem when considering where the second candidate solution will

come from. In this framework each operator requires two solutions as input, the first is

the current solution in the hyper-heuristic, the second is a randomly generated binary

string. This is also known as Headless Chicken Crossover [114]. Each operator produces

two offspring of which the one with the highest fitness value is kept. There are a large

number of crossover operators proposed in the literature for a variety of general and

specific purposes. Three of the most simple and well-known are included in this frame-

work. More advanced methods to provide the second solution to be used in operators

requiring multiple solutions for input are investigated in Chapter 5.

One-point crossover [90] is the most basic binary crossover technique. One-point

crossover takes two binary represented solutions as input, selects a single crossover

point at random, and exchanges the genetic data that appears on one side of this point

between the two solutions. As there is not a natural method to decide which side of the

crossover point to swap the genetic material between, it is possible to generate two new

strings by swapping either before or after the crossover point. An example with two

input (parent) solutions generating two output (child) solutions is shown in Figure 4.4.

67

CHAPTER 4: A STUDY OF SELECTION HYPER-HEURISTICS APPLIED TO THE

MULTIDIMENSIONAL KNAPSACK PROBLEM

Figure 4.4: An example of binary one-point crossover

Two-point crossover [90] is similar to one-point crossover, except two crossover sites

are chosen and the genetic material that is contained within these two sites is ex-

changed. This idea can be extended to a general k-point crossover, where k is the num-

ber of crossover sites to be used. Figure 4.5 shows an example of two-point crossover

using two parent solutions.

Figure 4.5: An example of binary two-point crossover

68

CHAPTER 4: A STUDY OF SELECTION HYPER-HEURISTICS APPLIED TO THE

MULTIDIMENSIONAL KNAPSACK PROBLEM

Uniform crossover [201] considers each position of two parent input solutions in turn.

At each position a bit is selected from one of the solutions with probability pe, set at 0.5,

and copied to the corresponding position in the child solution. Again, it is possible to

produce two different children using this method. Uniform crossover is shown in Fig-

ure 4.6 with a 0 indicating that the bit should be taken from Parent 1 and a 1 indicating

that the bit should be taken from Parent 2.

Figure 4.6: An example of binary uniform crossover

4.2.3 Experimental setup

All experiments are carried out on an Intel Core 2 Duo 3 GHz CPU with 2 GB memory,

using the ORLib [40] multidimensional knapsack problem instances as benchmarks.

As optimal solutions are not known for all instances, performance is measured using

the %-gap measure defined in Section 3.4. Since each set of instances have different

ranges of objective function values, ordinal data analysis is also used to compare hyper-

heuristics. Given m instances and n hyper-heuristics, an ordinal value Ok is given to

each hyper-heuristic for each instance set k, representing the rank of the hyper-heuristic

in this set. The total score (Borda count [16]) of a particular hyper-heuristic is the sum of

the ranks Ok assigned for each of the m instances tested. The rankings for each instance

set are obtained using the average %-gap, calculated using Equation 3.4.1, over the 10

instances in each set. The best performing hyper-heuristic is assigned the lowest rank.

For these experiments, each instance is run until 106 fitness evaluations have been per-

69

CHAPTER 4: A STUDY OF SELECTION HYPER-HEURISTICS APPLIED TO THE

MULTIDIMENSIONAL KNAPSACK PROBLEM

formed in order to directly compare results with a number of methods in the literature

including the Memetic Algorithms of Chu and Beasley [40], Raidl [184] and Özcan and

Basaran [170]. Initial solutions are set as a single random binary string of length n

for each n ∈ {100, 250, 500}. Twelve hyper-heuristics are tested using three heuristic

selection mechanisms and four acceptance criteria.

Heuristic selection method parameters

In the hyper-heuristics using Reinforcement Learning heuristic selection, the parameters

are derived from Nareyek [162]. The utility values for each low-level heuristic are ini-

tially set to 10. In each case the application of a low-level heuristic leads to an improve-

ment in the quality of solution, the utility value for this heuristic is incremented by 1.

In the case the application of the low-level heuristic leads to a degradation in solution

quality the utility value is decreased by 1. The utility value of an individual low-level

heuristic is bound by a maximum value of 30 and a minimum value of 0.

Acceptance criteria parameters

A list length of 500 is used in the Late Acceptance Strategy-based hyper-heuristics as

suggested by previous approaches [20, 175]. Simulated Annealing calculates the prob-

ability p of accepting a solution as defined in Section 2.2.4. The initial value of T is set

as the difference between the initial solution and the solution obtained by solving the

LP-relaxed version of the problem. During the search process, T is reduced to 0 in a

linear fashion proportional to the number of fitness evaluations left.

Low-level heuristic parameters

When the Parameterised Mutation low-level heuristic is chosen mutation is performed

at a rate of 10%, i.e. the number of bits inverted is the number of variables in the

problem instance n divided by 10. For Swap Dimension the substrings used are fixed

to a set number of variables n/10, i.e. the substrings are set to 10% of the total length

of the solution.

4.3 Results and Discussion

This section presents the results of the selection hyper-heuristics described in this chap-

ter. Section 4.3.1 compares the performance of hyper-heuristics which use the same

70

CHAPTER 4: A STUDY OF SELECTION HYPER-HEURISTICS APPLIED TO THE

MULTIDIMENSIONAL KNAPSACK PROBLEM

heuristic selection method. Section 4.3.2 compares the performance of hyper-heuristics

which use the same acceptance criterion. In Section 4.3.3, the performance of all twelve

hyper-heuristics is presented including a more detailed comparison between the some

methods of interest. Finally, the hyper-heuristics are compared to a number of existing

methods from the literature in Section 4.3.4.

4.3.1 Performance comparison between hyper-heuristics sharing a common

heuristic selection method

The performance of hyper-heuristics which share a common heuristic selection method

will be compared in this section. Three heuristic selection methods were used as intro-

duced in Section 4.2.1: Simple Random, Choice Function and Reinforcement Learning. For

each of the heuristic selection methods there are four possible move acceptance crite-

ria. In ordinal analysis, each hyper-heuristic is assigned a score Ok between 1 and 4

for each set of 10 instances depending on its relative ranking compared to the other

hyper-heuristics. As there are 27 sets of instances the best score possible is 27 and the

worst possible score is 108.

Simple Random hyper-heuristics

Figure 4.7(a) shows the Borda counts for the four hyper-heuristics which use Simple

Random heuristic selection. The best hyper-heuristic of this type is Simple Random -

Only Improving with a score of 33. Simple Random - All Moves performs particularly

badly compared to the other hyper-heuristics yielding the highest average %-gap in all

27 sets of instances therefore having the maximum Borda count of 108.

Choice Function hyper-heuristics

The Borda counts for Choice Function selection hyper-heuristics are presented in Fig-

ure 4.7(b). Choice Function - Only Improving performs very well compared to the other

hyper-heuristics with Choice Function heuristic selection. Unlike the early work of

Cowling et al. [47] where Choice Function - All Moves was seen to work well compared to

Choice Function - Only Improving, All Moves acceptance criterion performs very badly in

the case. The second best hyper-heuristic of this type is Choice Function - Late Acceptance

Strategy, with Choice Function - Simulated Annealing offering similar performance.

71

CHAPTER 4: A STUDY OF SELECTION HYPER-HEURISTICS APPLIED TO THE

MULTIDIMENSIONAL KNAPSACK PROBLEM

Figure 4.7: Borda counts for hyper-heuristics with a common heuristic selection

method
(a) Simple Random selection hyper-heuristics

AM OI SA LAS
0

20

40

60

80

100

120

Acceptance Criteria

B
o

rd
a

C
o

u
n

t

(b) Choice Function selection hyper-heuristics

AM OI SA LAS
0

20

40

60

80

100

120

Acceptance Criteria

B
o

rd
a

C
o

u
n

t

Reinforcement Learning hyper-heuristics

In Figure 4.8 the Borda counts of hyper-heuristics using Reinforcement Learning heuristic

selection are shown. Only Improving is again the best acceptance criteria with a Borda

count of 28, obtaining the best average %-gap in 26 of the 27 sets. Reinforcement Learn-

ing - Simulated Annealing and Reinforcement Learning - Late Acceptance Strategy obtain

the same Borda counts with scores of 67. As with Simple Random and Choice Function

heuristic selection, All Moves acceptance performs very poorly obtaining the worst re-

sults in all 27 sets of instances obtaining the maximum Borda count possible of 108.

Figure 4.8: Borda counts for hyper-heuristics using Reinforcement Learning as a heuris-

tic selection method

AM OI SA LAS
0

20

40

60

80

100

120

Acceptance Criteria

B
o

rd
a

C
o

u
n

t

72

CHAPTER 4: A STUDY OF SELECTION HYPER-HEURISTICS APPLIED TO THE

MULTIDIMENSIONAL KNAPSACK PROBLEM

4.3.2 Performance comparison between hyper-heuristics sharing a common

acceptance criterion

In the previous section, hyper-heuristics were compared relative to one another based

on a shared heuristic selection method. It cannot be ascertained from this information

whether there is any difference in the performance between hyper-heuristics which

share a common move acceptance criterion. This section compares the performance of

hyper-heuristics which use the same move acceptance criterion with different heuris-

tic selection mechanisms. Four move acceptance criteria were used as introduced in

Section 4.2.1: All Moves, Only Improving, Simulated Annealing and Late Acceptance Strat-

egy. For each of the move acceptance criteria there are three possible heuristic selection

methods. In the ordinal analysis each hyper-heuristic is assigned a score Ok between

1 and 3 for each set of 10 instances depending on its relative ranking compared to the

other hyper-heuristics. As there are 27 sets of instances the best score possible is 27 and

the worst score possible is 81.

All Moves hyper-heuristics

The All Moves hyper-heuristics were relatively the worst performing hyper-heuristics

for each of the three heuristic selection methods used in the comparisons of Sec-

tion 4.3.1. Figure 4.9(a) compares the three All Moves hyper-heuristics with differing ac-

ceptance criteria. Despite being an intelligent heuristic selection mechanism, the Choice

Function is outperformed by naive Simple Random heuristic selection when using All

Moves acceptance. Of the three heuristic selection mechanisms, Reinforcement Learning

performs best when using this move acceptance criterion.

Only Improving hyper-heuristics

Only Improving hyper-heuristics are the best performing hyper-heuristics in the case

of Simple Random, Reinforcement Learning and Choice Function heuristic selection meth-

ods. Figure 4.9(b) shows the relative performance of the three hyper-heuristics using

Only Improving move acceptance criterion. Choice Function - Only Improving was clearly

the best Choice Function-based hyper-heuristic in the previous section and again it is

the best hyper-heuristic when comparing hyper-heuristics with the same move accep-

tance criterion, scoring 38 points in total. Despite not being the best Simple Random

hyper-heuristic, Simple Random - Only Improving still offers similar performance to Re-

inforcement Learning - Only Improving, scoring 64 and 60 points in the Borda counts

respectively. Again, it is observed that a naive heuristic selection method can perform

73

CHAPTER 4: A STUDY OF SELECTION HYPER-HEURISTICS APPLIED TO THE

MULTIDIMENSIONAL KNAPSACK PROBLEM

Figure 4.9: Borda counts for hyper-heuristics with a common move acceptance crite-

rion

(a) All Moves selection hyper-heuristics

SR CF RL
0

10

20

30

40

50

60

70

80

Selection Method

B
or

da
 C

ou
nt

(b) Only Improving selection hyper-

heuristics

SR CF RL
0

10

20

30

40

50

60

70

Selection Method

B
or

da
 C

ou
nt

comparably to a more ‘intelligent’ mechanism when coupled with a certain acceptance

criterion. In terms of the number of pure best results for each of the 27 sets, Choice

Function - Only Improving offers the best performance in 19 sets, Reinforcement Learning

- Only Improving in 6 sets and Simple Random - Only Improving gives the best perfor-

mance in 2 sets.

Simulated Annealing hyper-heuristics

In relative terms, the Simulated Annealing-based hyper-heuristics were the second worst

performing hyper-heuristics in Section 4.3.1. Figure 4.10(a) compares the performance

of the three Simulated Annealing hyper-heuristics based on Borda counts, again a lower

score is better, with a minimum possible score of 27. Simple Random - Simulated An-

nealing and Reinforcement Learning - Simulated Annealing score exactly the same with

50 points. Closer inspection of these results reveals that not only do these two hyper-

heuristics score identical when using Borda counts, they also are the best performing

hyper-heuristic in the same number of datasets, both providing the best results for 11

sets of instances. Choice Function - Simulated Annealing performs slightly worse with a

Borda count of 62. With Simulated Annealing there is less variation between the perfor-

mance of hyper-heuristics using different heuristic selection methods than with other

acceptance criteria, suggesting that the heuristic selection method used has less of an

effect when combined with Simulated Annealing than other acceptance criteria.

74

CHAPTER 4: A STUDY OF SELECTION HYPER-HEURISTICS APPLIED TO THE

MULTIDIMENSIONAL KNAPSACK PROBLEM

Figure 4.10: Borda counts for hyper-heuristics with a common move acceptance crite-

rion (ii)
(a) Simulated Annealing selection hyper-

heuristics

SR CF RL
0

10

20

30

40

50

60

70

Selection Method

B
or

da
 C

ou
nt

(b) Late Acceptance Strategy selection hyper-

heuristics

SR CF RL
0

10

20

30

40

50

60

70

80

Selection Method

B
or

da
 C

ou
nt

Late Acceptance Strategy hyper-heuristics

Figure 4.10(b) shows the relative performance of the three Late Acceptance Strategy-

based hyper-heuristics. Simple Random heuristic selection combined with Late Accep-

tance Strategy outperforms both Choice Function and Reinforcement Learning heuristic se-

lection. The Simple Random - Late Acceptance Strategy hyper-heuristic has a Borda count

of 42 with the Choice Function and Reinforcement Learning-based hyper-heuristics scor-

ing 47 and 73 respectively. Simple Random - Late Acceptance Strategy has been shown to

work well previously by Misir et al. [153] and Jackson et al. [112].

4.3.3 Performance comparison of all hyper-heuristics

The %-gap was introduced as a performance measure of methods solving the MKP in

Section 3.4. The results for each of the twelve hyper-heuristics in terms of average %-

gap are presented in Table 4.1. Each result reported is the average of the %-gaps of all

27 sets of 10 instances contained in the OR-Lib benchmark set.

When considering the raw average %-gap, the best performing hyper-heuristic is Choice

Function - Only Improving. This is closely followed by four more hyper-heuristics with

very similar average %-gaps. Following a Shapiro-Wilk test [193] providing confir-

mation that the set of results for each hyper-heuristic is not normally distributed, a

Mann-Whitney U test [144] within a 95% confidence interval is performed. The re-

sults indicate that there is no statistically significant difference between the results of

Choice Function - Only Improving and the second and third placed hyper-heuristics, Re-

75

CHAPTER 4: A STUDY OF SELECTION HYPER-HEURISTICS APPLIED TO THE

MULTIDIMENSIONAL KNAPSACK PROBLEM

Table 4.1: Overall performance of each hyper-heuristic over OR-Lib benchmarks in

terms of average %-gap

Hyper-heuristic %-gap

Choice Function - Only Improving 2.16

Reinforcement Learning - Only Improving 2.35

Simple Random - Only Improving 2.39

Choice Function - Late Acceptance Strategy 3.31

Simple Random - Late Acceptance Strategy 3.34

Simple Random - Simulated Annealing 3.62

Reinforcement Learning - Simulated Annealing 3.63

Reinforcement Learning - Late Acceptance Strategy 3.67

Choice Function - Simulated Annealing 3.68

Reinforcement Learning - All Moves 4.97

Simple Random - All Moves 5.07

Choice Function - All Moves 5.39

inforcement Learning - Only Improving and Simple Random - Only Improving over the 270

instances tested.

In general, those hyper-heuristics which use Only Improving move acceptance offer

the best performance in terms of average %-gap. Late Acceptance Strategy and Simu-

lated Annealing hyper-heuristics offer relatively average performance whilst the hyper-

heuristics using All Moves move acceptance criterion perform particularly badly. The

performance of All Moves acceptance is perhaps unsurprising as this mechanism makes

no attempt to guide the search, potentially leading to too much diversity in the search

process.

Despite being intelligent heuristic selection mechanisms designed with the intention

of ‘learning’ which heuristic to select at a given point in the search, Choice Function

and Reinforcement Learning hyper-heuristics are often outperformed by Simple Random

heuristic selection. In fact Simple Random hyper-heuristics account for 2 of the 4 best

methods found. This is in line with the comments of Misir et al. [151] who observed

that ‘intelligent’ mechanisms for heuristic selection may not necessarily perform as well

as simple ones under a given set of experimental circumstances.

Figure 4.11 provides a box and whisker comparison of the twelve hyper-heuristics in

terms of the individual %-gaps obtained for all 270 instances of ORLib. This plot high-

lights the consistency in performance by those methods using Only Improving move

76

CHAPTER 4: A STUDY OF SELECTION HYPER-HEURISTICS APPLIED TO THE

MULTIDIMENSIONAL KNAPSACK PROBLEM

Figure 4.11: Box and whisker comparison of twelve hyper-heuristics over all 270 OR-

Lib instances in terms of %-gap

CF−OI

SR−OI

RL−OI

SR−LAS

CF−LAS

CF−SA

SR−SA

RL−SA

RL−LAS

RL−AM

SR−AM

CF−AM

0.0 2.5 5.0 7.5 10.0 12.5
%−gap

H
yp

er
−

he
ur

is
tic

acceptance criterion rather than, for example, All Moves acceptance by illustrating the

spread of %-gap values obtained. All methods which share a move acceptance criterion

perform very similarly with the exception of Reinforcement Learning - Late Acceptance

Strategy which is outperformed by the other two Late Acceptance Strategy-based hyper-

heuristics. When sorting the hyper-heuristics by median %-gap value in this way, the

leading methods are in a slightly different order in terms of performance. Simple Ran-

dom - Only Improving is now above Reinforcement Learning - Only Improving and Simple

Random - Late Acceptance Strategy is now above Choice Function - Late Acceptance Strategy.

In addition, Choice Function - Simulated Annealing moves from ninth to sixth place. A

Mann-Whitney U test within a 95% confidence interval indicates that there is no statis-

tically significant difference between any of the methods which exchange places when

using median %-gap rather than average %-gap.

77

CHAPTER 4: A STUDY OF SELECTION HYPER-HEURISTICS APPLIED TO THE

MULTIDIMENSIONAL KNAPSACK PROBLEM

Detailed comparison of hyper-heuristic performance

The behaviour of two of the best hyper-heuristics in the previous section, Choice Func-

tion - Only Improving and Reinforcement Learning - Only Improving, will be analysed in

more detail in this section. As discussed in Section 4.3.3, there is no statistically sig-

nificant difference between these two hyper-heuristics in terms of average %-gap. Fig-

ure 4.12 provides a plot of both the average current ‘working’ and average best found

solution, with respect to the number of fitness evaluations, of 10 runs of each hyper-

heuristic on ORLib instance ORLib30x500_0.75-01 using a fixed starting point. This

instance is taken from the largest set of instances in ORLib and is the first instance from

the set with 30 dimensions, 500 variables and a tightness ratio of 0.75. The optimal so-

lution to this problem is still unknown, 15 years after it was first proposed by Chu and

Beasley [40]. The ‘working’ solution is defined as the fitness value of the last solution

generated before it is considered by the move acceptance criterion.

From this figure, it is noted that the performance of the two hyper-heuristics again

appears very similar. Following an initial sharp drop in %-gap value, the fitness of the

best solution found so far is gradually improved throughout the search. Although the

improvements become less drastic in the later phases of the search, there are still clearly

best-of-run solutions being found towards the end of the run. This suggests that the

search may not have converged, and that more fitness evaluations are required for these

hyper-heuristics to reach the best solutions they are capable of finding on a consistent

basis. Choice Function - Only Improving seems to be searching a slightly greater range of

values, although both hyper-heuristics are operating over a very similar set of %-gap

values ranging roughly between 6% and 8%.

As stated previously, the move acceptance criterion used appears to have a greater

effect on performance than heuristic selection method, when solving the MKP bench-

marks with the hyper-heuristics tested. In light of this it may be more interesting to

compare the performance of the best hyper-heuristic, Choice Function - Only Improving,

with other hyper-heuristics sharing this heuristic selection method. Figure 4.13 shows

the plots for the same instance as before, using Choice Function - Simulated Annealing

and Choice Function - Late Acceptance Strategy.

In these two figures the acceptance mechanism used is evident in the shape of the

plots generated. Ignoring the initial dip in %-gap value which is necessary to move

the search from the starting area of the search area to one which is more promising,

the acceptance mechanism used becomes visible. Simulated Annealing will accept non-

improving moves with a decreasing probability over the course of a search. In the early

78

CHAPTER 4: A STUDY OF SELECTION HYPER-HEURISTICS APPLIED TO THE

MULTIDIMENSIONAL KNAPSACK PROBLEM

Figure 4.12: Average working and best %-gap values with respect to number of eval-

uations for MKP instance ORLib30x500_0.75-01
(a) Choice Function - Only Improving

0

2

4

6

8

10

12

14

0 125000 250000 375000 500000 625000 750000 875000

%
-g

a
p

Fitness Evaluations

Current Working Best

(b) Reinforcement Learning - Only Improving

0

2

4

6

8

10

12

14

0 125000 250000 375000 500000 625000 750000 875000

%
-g

a
p

Fitness Evaluations

Current Working Best

79

CHAPTER 4: A STUDY OF SELECTION HYPER-HEURISTICS APPLIED TO THE

MULTIDIMENSIONAL KNAPSACK PROBLEM

Figure 4.13: Average working and best %-gap values with respect to number of eval-

uations for MKP instance ORLib30x500_0.75-01 (ii)
(a) Choice Function - Simulated Annealing

0

2

4

6

8

10

12

14

0 125000 250000 375000 500000 625000 750000 875000

%
-g

a
p

Fitness Evaluations

Current Working Best

(b) Choice Function - Late Acceptance Strategy

0

2

4

6

8

10

12

14

0 125000 250000 375000 500000 625000 750000 875000

%
-g

a
p

Fitness Evaluations

Current Working Best

80

CHAPTER 4: A STUDY OF SELECTION HYPER-HEURISTICS APPLIED TO THE

MULTIDIMENSIONAL KNAPSACK PROBLEM

phases non-improving moves are more likely, before the search is intensified in later

phases behaving more like Only Improving acceptance. In Figure 4.13(a) the gradual

intensification can be seen, with an increased number of best-of-run solutions being

found towards the end of the run. Figure 4.13(b) also shows evidence of the acceptance

mechanism used. Late Acceptance Strategy promotes a general trend of improvement

throughout a search, delaying the value of the criteria used to decide whether to accept

a solution. In this figure a steady improvement in terms of the working solution and

best solution can be seen. In both cases, it seems that the search has not yet reached a

point of stagnation within 106 fitness evaluations. It could be the case that an increase in

performance could be observed by allowing the hyper-heuristics more time to run. This

could potentially undermine one of the fundamental principles of hyper-heuristics, to

obtain solutions which are ‘good enough, soon enough, cheap enough’ [21], so methods

to guide hyper-heuristics to promising search regions could be a more appropriate way

to improve performance.

4.3.4 Comparison with existing approaches to the MKP from the literature

In the previous sections, the best performing selection hyper-heuristic observed was

Choice Function - Only Improving. In this section the performance of this hyper-heuristic

will be compared to a number of existing approaches taken from the literature. As 106

fitness evaluations are allowed for each run, it is possible to perform a direct compar-

ison with the methods from the literature which use the same termination criterion.

Table 4.2 provides the performance of a number of techniques taken from the literature

as a base for comparison.

Although this table shows that Choice Function - Only Improving is capable of outper-

forming some existing methods in the literature, it is not as good as some of the state-of-

the-art metaheuristics. Choice Function - Only Improving offers better average solution

quality than the classic methods of Magazine and Oguz [142] and Volgenant and Zoon

[208], the greedy algorithm provided by Akçay et al. [2], CPLEX 4.0 presented by Chu

and Beasley [40] and the Simulated Annealing heuristic of Qian and Ding [183]. The

best performing method of Chu and Beasley [40] uses the solutions to the LP-relaxed

version of the MKP to initialise and locally improve solutions during the evolutionary

process. The extra computational effort to calculate the solution to the LP-relaxed vari-

ant of the problem is not taken into consideration when comparing based on number

of fitness evaluations. Additionally some ambiguous language is used to describe the

number of states visited. Chu and Beasley [40] search 106 ‘non-duplicate’ states how-

ever it is unclear whether or not the solutions at each step of the local improvement

81

CHAPTER 4: A STUDY OF SELECTION HYPER-HEURISTICS APPLIED TO THE

MULTIDIMENSIONAL KNAPSACK PROBLEM

phase are counted. Choice Function - Only Improving searches 106 individuals including

duplicate states and the individual steps of the hill climbing low-level heuristics.

Table 4.2: Performance of other approaches over OR-Lib benchmarks

Type Reference %-gap

MA Raidl [184] 0.53

MA Chu and Beasley [40] 0.54

MA Özcan and Basaran [170] 0.92

Permutation GA Hinterding [101] (Raidl [184]) 1.30

Heuristic Pirkul [180] 1.37

Heuristic Freville and Plateau [73] 1.91

Hyper-heuristic Choice Function - Only Improving 2.16

Heuristic Qian and Ding [183] 2.28

MIP Chu and Beasley [40] 3.14

Heuristic Akçay et al. [2] 3.46

Heuristic Volgenant and Zoon [208] 6.98

Heuristic Magazine and Oguz [142] 7.69

4.3.5 Remarks and potential future improvements

All three heuristic selection mechanisms work well with Only Improving move accep-

tance criterion. Little can be done to improve the results using this move acceptance

criterion through parameter tuning as it has no parameters. Attempts to improve the

hyper-heuristics using Only Improving acceptance could be made by reducing the num-

ber of underlying low-level heuristics, removing poor performing heuristics to reduce

the heuristic search space. Although over the whole dataset Late Acceptance Strategy

does not appear to be particularly successful, it is in fact at least as good as Only Im-

proving for all three heuristic selection mechanisms in the instances which contain only

100 objects, i.e. the smallest instances. It may be that different list lengths are suitable

for different length instances, further experimentation into using different list lengths

could support this. Simulated Annealing also struggles on these instances, however it

has been improved previously by Bai et al. [8] by adding a re-heating scheme to accept

a greater range of solutions at points where the search may have stagnated. There are

many such modifications to the parameters of Late Acceptance Strategy and Simulated

Annealing which could potentially improve the performance of hyper-heuristics using

these acceptance criteria. In general, accepting All Moves is a poor move acceptance

82

CHAPTER 4: A STUDY OF SELECTION HYPER-HEURISTICS APPLIED TO THE

MULTIDIMENSIONAL KNAPSACK PROBLEM

strategy when using each of the three given heuristic selection mechanisms on this

problem domain.

The parameters for the heuristic selection methods and move acceptance criteria used

in this chapter were decided either experimentally, or based on the experience of ex-

isting research in the literature. Unfortunately this gives no guarantee that the values

chosen are the best values for the current problem instance under consideration. It is

likely that the best parameter settings are not only dependent on the heuristic selection

method - move acceptance criterion combination, but also the problem domain used, the

low-level heuristics available and the individual instance currently being solved. A

potential future research question would be to analyse the effect of parameter tuning

within this framework. Many methods exist in the literature to tune such parameters

automatically, a comparison of some of the most popular of these methods is given by

Montero et al. [158].

4.4 Concluding Remarks

Hyper-heuristics are intelligent methods which can be used to select appropriate low-

level heuristics at a given point of a search space. A number of hyper-heuristics oper-

ating on a single-point search framework have been applied to a standard optimisation

problem, the multidimensional knapsack problem (MKP). The following chapter will

build on the work presented in this chapter by introducing problem-specific knowl-

edge into the low-level heuristic set. Selection hyper-heuristics will be hybridised with

linear programming through the use of solutions to the relaxed MKP in two ways. The

LP-relaxed solutions will be used within a new initialisation method for the MKP and

to guide the hill climbing repair operator within the framework. A number of frame-

works in which to manage crossover operators within selection hyper-heuristics will

be explored.

83

CHAPTER 5

A Case Study of Controlling

Crossover in a Selection

Hyper-heuristic Framework with

MKP

5.1 Introduction

In the previous chapter, a number of preliminary experiments were performed using

selection hyper-heuristics over a set of generic binary heuristics to solve the MKP. A

mixture of mutational, crossover and hill climbing operators were included. This chap-

ter will use an extended version of the framework developed in Chapter 4 to analyse

crossover control in selection hyper-heuristics.

In this chapter, the management of crossover in single-point search hyper-heuristics is

investigated. Two frameworks are proposed to control crossover in single-point hyper-

heuristics and tested on the multidimensional 0-1 knapsack problem (MKP). A number

of hyper-heuristics are applied to three benchmark libraries of varying properties from

the literature.

Previous work [40, 181, 182, 206] has shown that hybridising linear programming

with metaheuristic techniques can yield very good solutions to MKP benchmarks.

No known previous work attempts to combine knowledge gained from LP-relaxation

within a hyper-heuristic framework. Much of the previous work mentioned includes

intelligent mechanisms to initialise solutions using greedy methods based on LP-

relaxed solutions. Here a greedy initialisation technique is used to generate a list of

84

CHAPTER 5: A CASE STUDY OF CONTROLLING CROSSOVER IN A SELECTION

HYPER-HEURISTIC FRAMEWORK WITH MKP

potential solutions to use as inputs for crossover low-level heuristics. A new initial-

isation method which allows both feasible and infeasible solutions is proposed and

compared to two initialisation methods from the literature which produce only feasi-

ble solutions.

CPLEX [110] is a general-purpose mixed-integer programming (MIP) package used to

solve linear optimisation problems. As CPLEX has evolved, a large number of heuris-

tics are now used within the solver to aid the optimisation process. Chu and Beasley

[40] provided results using CPLEX 4.0 over a set of MKP benchmark instances. CPLEX

12.5 is a vastly improved solver over CPLEX 4.0, here the results for CPLEX 12.5 are

provided for the three benchmark sets described in Section 3.4. These results are pro-

vided as a benchmark for comparison for future researchers in this area.

The hyper-heuristics implemented operate over a generic binary representation, so it

is possible to apply the hyper-heuristics defined over any problem domain using this

representation. As such, the best hyper-heuristic found is applied to a second problem

domain; the Boolean satisfiability problem (SAT). This hyper-heuristic is compared to

two existing hyper-heuristic methods from the literature operating on this problem

domain.

5.2 Controlling crossover in selection hyper-heuristics

Hyper-heuristics have previously been shown to be successful in a wide range of NP-

hard optimisation problems as discussed in Chapter 2. As interest in hyper-heuristic

research increases, the use of general purpose hyper-heuristic frameworks such as

HyFlex [27, 166] and Hyperion [200] is growing. Such frameworks often contain

crossover low-level heuristics however the management of these operators is often

overlooked, despite being a cornerstone of evolutionary computation for a consider-

able period of time. As the definition of hyper-heuristics creates a distinct separation

between the high-level search strategy and the problem domain level, the question of

which level should be responsible for managing the solutions required as input for

crossover operators is an open research issue. This also raises a more general ques-

tion regarding the role memory has to play, specifically whether or not the low-level

heuristics in a hyper-heuristic system should be stateful or stateless.

Crossover is often used in population-based metaheuristics as a mechanism to recom-

bine multiple solutions. Two candidate solutions are selected from a population and a

new solution is generated containing material from both solutions. The general idea is

that in a population-based approach only the best quality solutions will be kept in the

85

CHAPTER 5: A CASE STUDY OF CONTROLLING CROSSOVER IN A SELECTION

HYPER-HEURISTIC FRAMEWORK WITH MKP

population, containing a mixture of material from previous solutions. Little research

effort has gone into designing methods to select the solutions as input (more specif-

ically the second input) for crossover low-level heuristics in a single-point selection

hyper-heuristic framework.

In Chapter 4, the first input used in a binary crossover operator is the current solution

and the second input is generated randomly. This does not fit in with the original ethos

of crossover which is to preserve and exploit the good characteristics of suitably fit so-

lutions. This crossover operator therefore acts as a mutation operator, by introducing

new material to the current solution from a solution which is not necessarily of good

quality. In order to make crossover in single-point search behave in a way similar to

population-based approaches, a memory of suitably fit individuals to recombine the

current solution with can be included. Such approaches which provide the second so-

lution needed for an operator are not just limited to crossover. Any operator which

requires more than one input solution where there is not a ‘natural’ choice for the sec-

ond input can be managed in this way.

As it is not obvious where the second candidate solution for crossover should be man-

aged in a single-point selection hyper-heuristic, two frameworks are proposed. In each

case, a list of potential solutions for crossover is maintained. The general shared frame-

work is shown in Figure 5.1, with a set of crossover low-level heuristics LLHi, ..., LLHn

operating on set of candidate solutions represented as binary strings. This list does not

necessarily need to be restricted to crossover, it could be used by any operator which

requires multiple solutions as a means of managing input.

The first framework maintains a list at the hyper-heuristic level. Although the candi-

date solutions exist below the domain barrier, the hyper-heuristic decides which so-

lution to use for crossover based on feedback given during the search. This raises a

number of questions including: which information should be passed back to the hyper-

heuristic, how should this list be maintained and how long should this list be? This

approach could be considered as adding stateful behaviour to the low-level heuristics.

As the low-level heuristics are given a memory, and therefore some notion of state, the

behaviour of crossover low-level heuristics will depend on previous low-level heuristic

invocations. The interaction between the hyper-heuristic and the solutions is depicted

by arrow (a) in Figure 5.1.

The second framework allows the low-level heuristics to manage the list of second so-

lutions for crossover directly. Again this poses similar questions regarding the size

of such a list and how it should be initialised and maintained. This framework can

be considered as stateless, as effectively the input arguments are hard-coded in a pre-

86

CHAPTER 5: A CASE STUDY OF CONTROLLING CROSSOVER IN A SELECTION

HYPER-HEURISTIC FRAMEWORK WITH MKP

Figure 5.1: A general framework for controlling crossover with hyper-heuristic con-

trol shown by arrow (a) and low-level control shown by arrow (b)

Hyper-heuristic

Fitness Value ...

10051 ...

14589 ...

16254 ...

20010 ...

Low-level heuristics

100011010010101

100010001000111

101101101101101

010100101001001

010011010100100

Domain Barrier

(a)

LLHi LLHn
(b)

Crossover Operators

LLH1

processing phase, with performance not dependent on previous invocations of low-

level heuristics. This framework is also shown in Figure 5.1, with the interaction be-

tween the low-level heuristics and the solutions depicted by arrow (b). Figure 5.1

should be viewed as an extension to the general hyper-heuristic framework introduced

in Section 2.3.3.

5.2.1 Controlling crossover at the hyper-heuristic level

Candidate solutions for use as inputs for crossover operators can be controlled at the

hyper-heuristic level. In Memory Crossover, a list (memory) is kept of all solutions which

were the current best-of-run when found, from which second inputs can be chosen for

crossover low-level heuristics. Initially this list is populated randomly. Each time a

new best-of-run solution is found it replaces the worst existing solution in the list. A

method of choosing a solution to use from this memory is needed. Any evolutionary

algorithm selection method can be used for this, here tournament selection is preferred.

In tournament selection, a subset of solutions of a given tournament size is chosen from

a list. These solutions are paired up and the strongest (i.e. highest quality) solution

in a pair is kept and the other discarded. The pairing process continues until a single

solution is left. Tournament selection is a stochastic selection method which favours

stronger solutions however lower quality solutions do still have some chance of selec-

tion. This method of crossover control is inspired by steady state Genetic Algorithms

87

CHAPTER 5: A CASE STUDY OF CONTROLLING CROSSOVER IN A SELECTION

HYPER-HEURISTIC FRAMEWORK WITH MKP

which select and update a population in much the same way.

As a base for comparison in order to see what benefit is gained by controlling crossover

in this way, other methods of choosing the second input solution are also tested. Ran-

dom Crossover, also known as Headless Chicken Crossover [114] and used in Chapter 4,

takes the two inputs to be the current solution in the hyper-heuristic and a randomly

generated binary string. In this case, the list of potential solutions for crossover is a

single random solution. In addition, each hyper-heuristic is also tested with crossover

low-level heuristics omitted completely.

5.2.2 Controlling crossover at the domain-specific level

It is also possible to maintain a memory such as the one described at the hyper-heuristic

level at the domain-specific level. Here, problem-specific heuristics are used to popu-

late a static list of candidate solutions generated based on problem domain-specific

knowledge. One of these solutions is then used as the second input during a crossover

operation. The list is static since it is expected that the solutions in the list will contain

the ‘building blocks’ of high quality solutions. This is implemented as a queue of solu-

tions whereby each time a solution is required for crossover the solution at the head of

the queue is taken. This solution will be used in the crossover operation before being

placed at the tail of the queue. Some procedure must be defined to initialise this list.

A number of methods exist in the literature to initialise solutions for the MKP. Gottlieb

[92] compared a number of initialisation methods for evolutionary algorithms solving

the MKP. This study focussed on initialisation methods which exploit the property that

many good, or near-optimal solutions for the MKP, lie close to the the border between

feasible and infeasible solutions. One of the initialisation routines C*, is a variation of

the method of Chu and Beasley [40] where starting with an empty solution the algo-

rithm attempts to add each item in a random order. If selecting this item results in a

feasible solution, this change is kept and the next item for selection is considered. If an

infeasible solution is obtained, this change is reversed and the next item for selection

is considered. Another - R*, based on a method originally proposed by Raidl [184],

uses the solutions to the LP-relaxed version of each problem to construct each candi-

date solution. The solution begins with no items selected and is traversed in a random

order. For each item in the solution, an attempt to add this item to the solution is made

probabilistically based on its value in the LP-relaxed solution. For example if an item

has a value of 1 or 0 in the LP-relaxed solution, the initialisation routine will always

or never attempt to add this item to the solution respectively. For an item with a frac-

tional value within the LP-relaxed solution, it will be selected with probability equal

88

CHAPTER 5: A CASE STUDY OF CONTROLLING CROSSOVER IN A SELECTION

HYPER-HEURISTIC FRAMEWORK WITH MKP

to this value. Again this change is kept if a feasible solution is obtained and reversed

otherwise, before moving on to the next item. A second pass across the items is then

made and an attempt to add each item which was not selected in the first iteration is

made. This second phase attempts to take the solution closer to the boundary of fea-

sibility and also gives items with value 0 in the LP-relaxed solution a chance of being

selected. A potential drawback of both of these approaches is that as only feasible so-

lutions can be generated, there are a large number of infeasible solutions close to the

optimal solutions which are not considered.

A new initialisation method allowing infeasible solutions for the MKP

Here a new initialisation method allowing infeasible solutions, jqdInit, is proposed.

This method is shown in Algorithm 8. Given a solution S ∈ {0, 1}n starting with no

items selected, each item j is considered sequentially from left to right. An item is

included in the solution with probability equal to the item‘s value in the LP-relaxed

solution, irrespective of whether a feasible solution is obtained or not. Pseudo-random

numbers Rj (0 ≤ Rj < 1) are used in this step. In terms of time complexity, all three

initialisation methods must visit every variable once and so are asymptotically equiva-

lent running in O(n) time, where n is the number of variables. Using this initialisation

method it is possible to generate both feasible and infeasible solutions to the MKP. In

the case of the MKP, optimal solutions lie close to the boundary of feasibility. This

means that it is possible for an infeasible solution to be very close to the optimal solu-

tion in terms of hamming distance, despite the fact that this is not reflected in the fitness

function used. It is therefore important that infeasible solutions are considered, as oth-

erwise a large number of solutions which contain good ‘building blocks’ are potentially

ignored.

Algorithm 8 Algorithm to generate MKP solutions allowing infeasibility (jqdInit)

1: Let xLP
k represent the LP-relaxed solution of item k

2: Set Sj ← 0, ∀j ∈ 1, ..., n

3: for j = 1 to n do

4: if xLP
j ≥ Rj then

5: Sj ← 1

6: end if

7: end for

8: return S

89

CHAPTER 5: A CASE STUDY OF CONTROLLING CROSSOVER IN A SELECTION

HYPER-HEURISTIC FRAMEWORK WITH MKP

5.3 Experimental setup

This section introduces the hyper-heuristic components tested and the test framework

used. As with Chapter 4, the multidimensional knapsack problem will be used as a test

problem domain for the methods defined in this chapter.

5.3.1 Hyper-heuristic framework

As discussed in Section 2.3.3, Özcan et al. [174] described four different hyper-heuristic

frameworks. One of these frameworks FC, selects and applies a mutational heuristic

LLHi ∈ LLH1, ..., LLHn, where n is the number of mutational heuristics available, fol-

lowed by a pre-defined hill climber HC before deciding whether to accept the new

solution. Such a framework is illustrated in Figure 5.2 and is the framework used in

this chapter. Özcan et al. [174] observed that using FC could yield better results than

the traditional FA framework on a number of benchmark functions.

Hyper-heuristics using an FC framework have similar characteristics to Memetic Al-

gorithms [159, 160]. Memetic Algorithms combine evolutionary algorithms and local

search techniques. A simple Memetic Algorithm will attempt to improve each candi-

date solution in a population through some hill climbing mechanism. Memetic Algo-

rithms have previously been shown to be successful on a number of different problem

domains including the MKP [40, 170]. In this chapter the effect of introducing crossover

into an FC hyper-heuristic framework is analysed.

Figure 5.2: Single-point search hyper-heuristic framework with local improvement

(FC)

Low-level heuristics

Mutational Heuristics

Local Improvement

Hyper-heuristic

Selection Mechanism Acceptance Criteria

Select /Apply

Heuristic

Apply Hill

Climbing

LLH1 LLH2 LLHn

Domain Barrier

Accept

Solution?

Termination Criteria

Terminate?
Yes

No

Initial

Solution

Hill Climbing Heuristic

 HC

90

CHAPTER 5: A CASE STUDY OF CONTROLLING CROSSOVER IN A SELECTION

HYPER-HEURISTIC FRAMEWORK WITH MKP

5.3.2 Hyper-heuristic components

Three heuristic selection methods and three acceptance criteria previously defined in

Section 4.2 are used in this chapter, resulting in a total of nine hyper-heuristics to be

tested. Simple Random, Choice Function and Reinforcement Learning heuristic selection

are paired with each of Only Improving, Simulated Annealing and Late Acceptance Strat-

egy move acceptance. These hyper-heuristics will operate over a set of seven low-

level heuristics, previously introduced in Chapter 4: one-point crossover, two-point

crossover, uniform crossover, Swap Dimension mutation and three variants of Param-

eterised Mutation. In the case of a crossover operator, two solutions are generated each

time a low-level heuristic of this type is selected, with the best of the two solutions

kept for consideration by the move acceptance criterion. The crossover and mutational

low-level heuristics used are identical to those defined in Section 4.2.2. In the case of

Parameterised Mutation, this operator is used with three different values to provide

light, medium and heavy mutation. The mutation rates used are 10% (PARA10), 25%

(PARA25) and 50% (PARA50) of the bits in a given solution respectively. In addition,

a hill climbing heuristic is applied following each low-level heuristic invocation as de-

fined by the FC hyper-heuristic framework. The hill climber is a new low-level heuristic

introduced in this chapter and is described below.

Hill climbing heuristic: In the existing literature [40, 180, 142] add and drop phases are

often used in heuristics to improve or repair MKP solutions. A utility-weight is used

to sort objects in order of their relative perceived value. Chu and Beasley [40] adopted

the surrogate duality suggested by Pirkul [180] multiplying each weight by a relevance

value r:

utilj =
pj

∑m
i=1 riwij

(5.3.1)

Relevance values ri are taken as the dual variables of each dimension i in the solution to

the LP-relaxation of the MKP. As with the MKPHC low-level heuristic from Chapter 4, a

local search operator for the MKP is implemented using relevance values. If a solution

is infeasible, drop items from the knapsack in order of increasing utility-weight until

it is feasible solution. When a solution is feasible, attempt to add items in order of

decreasing utility-weight until a feasible solution cannot be found by adding another of

the unselected items. Puchinger et al. [181] tested a number of efficiency methods, with

the relevance weights of Chu and Beasley [40] based on dual variable values observed

to be the best efficiency measure for the MKP. This heuristic is used as a local search

mechanism after each crossover or mutational operator is applied, to repair and locally

improve solutions as required by the FC framework.

91

CHAPTER 5: A CASE STUDY OF CONTROLLING CROSSOVER IN A SELECTION

HYPER-HEURISTIC FRAMEWORK WITH MKP

5.3.3 Experimental data and test framework definitions

As with the previous chapter, a run terminates after 106 fitness evaluations for each

problem instance in order to directly compare results with the techniques in the litera-

ture. All hyper-heuristic experiments were carried out on an Intel Core 2 Duo 3 GHz

CPU with 2 GB memory.

The three benchmark datasets introduced in Section 3.4 are used to test the proposed

hyper-heuristics. The instances used for each experiment are identified in the relevant

sections. Initial solutions are set as a single random binary string of length n, where n

is the total number of objects associated with each instance. For tests using the SAC-94

benchmark set, a single run of each hyper-heuristic is sufficient as these instances are

extremely small. In the case of the OR-Lib benchmark each set of 10 instances is taken

from same distribution. As a result, taking the average %-gap over these 10 instances

for each of the 27 sets effectively shows the performance of 10 runs of each hyper-

heuristic. For the larger GK instances, each of the experiments are repeated 10 times

to account for the stochastic nature of the hyper-heuristics with average performance

over 10 runs reported.

For hyper-heuristics using Simulated Annealing move acceptance criterion the same pa-

rameters are used as in Chapter 4. The starting temperature is set as the distance be-

tween the fitness value of the initial solution and the value of the LP-relaxed solution

of the current instance. As the run progresses the temperature is decreased linearly,

until it reaches 0 at the end of the run. In Late Acceptance Strategy hyper-heuristics, a list

length of 500 is used as suggested by Burke and Bykov [20] and Özcan et al. [175].

In all experiments using Memory Crossover, a memory size of 0.1 * n is used where n

is the number of variables in the instance currently being solved. This will ensure that

poor quality solutions which are found early in the search are removed from the list

quickly, in favour of better quality solutions found later on.

5.4 Finding a suitable initialisation method for the list of solu-

tions

Some preliminary experiments are required in order to validate the new initialisation

method proposed in Section 5.2.2. The three initialisation techniques described in Sec-

tion 5.2.2 (C*, R* and jqdInit) are tested on a subset of 90 instances of ORLib where m ∈
{5} and n ∈ {100, 250, 500} using the best performing hyper-heuristic from the previous

experiments, Choice Function - Only Improving. Again the hyper-heuristic is allowed to

92

CHAPTER 5: A CASE STUDY OF CONTROLLING CROSSOVER IN A SELECTION

HYPER-HEURISTIC FRAMEWORK WITH MKP

run for 106 fitness evaluations on each instance. Table 5.1 details the average of the best

solutions in the list for each initialisation method and Table 5.2 shows the average solu-

tion quality of all solutions in the list over each set of 10 instances. Standard deviations

are given as subscripts. This gives some insight into the differing nature of the pop-

ulations produced when using each initialisation method. The average best solution

and average list quality when using R* is far superior to C*. This is unsurprising as R*

was designed to generate solutions closer to the optimal solution than those generated

with C*. The best solutions produced by jqdInit are also superior to C* on average.

For some instances in this dataset jqdInit does not produce any feasible solutions. The

best solutions produced by jqdInit are only slightly poorer in quality on average than

those produced by R*. As jqdInit allows infeasible solutions, the average list quality is

very poor in terms of fitness score and is significantly worse than both C* and R* for all

datasets.

Table 5.1: Average best solutions for C*, R* and jqdInit initialisation methods over

each set of 10 instances in the 90 ORLib instances with m = 5

Instance set C* R* jqdInit

OR5x100-0.25 19105 2.31 23948 0.37 16325 0.57

OR5x100-0.50 37136 1.91 43015 0.26 42742 0.69

OR5x100-0.75 55909 0.86 60158 0.23 60082 0.33

OR5x250-0.25 47840 1.19 60137 0.16 59902 0.32

OR5x250-0.50 94016 0.51 109080 0.10 108653 0.24

OR5x250-0.75 140632 0.44 151344 0.06 151255 0.10

OR5x500-0.25 94431 0.86 120392 0.05 119937 0.27

OR5x500-0.50 188748 0.65 219323 0.03 218962 0.11

OR5x500-0.75 280437 0.35 302185 0.02 301870 0.05

Table 5.3 shows the results in terms of %-gap as the average over 10 instances for each

instance type and standard deviations included as subscripts. Interestingly on these

larger instances C* is the poorest performing initialisation method with an average

%-gap of 0.67. Using jqdInit yields the best results over these instances achieving an

average %-gap of 0.39, slightly outperforming R* which has an average %-gap of 0.43.

Despite both the average and best solutions produced by the R* initialisation method

being better than the jqdInit in all of the datasets tested, the new initialisation method

leads to better results overall after a full hyper-heuristic run.

The key difference between the previous methods and the proposed initialisation

method is the tolerance of infeasible solutions. These solutions may still contain the

‘building blocks’ of good quality solutions. The final solution quality does not seem to

93

CHAPTER 5: A CASE STUDY OF CONTROLLING CROSSOVER IN A SELECTION

HYPER-HEURISTIC FRAMEWORK WITH MKP

Table 5.2: Average list quality for C*, R* and jqdInit initialisation methods over each

set of 10 instances in the 90 ORLib instances with m = 5

Instance set C* R* jqdInit

OR5x100-0.25 17781 1.88 23545 0.29 -64285 63.77

OR5x100-0.50 35553 1.31 42575 0.38 -97229 65.86

OR5x100-0.75 54633 0.75 59777 0.22 -184816 73.04

OR5x250-0.25 45045 1.07 59739 0.15 -181532 53.70

OR5x250-0.50 90814 0.39 108657 0.11 -284952 73.26

OR5x250-0.75 137421 0.32 150905 0.08 -436705 81.19

OR5x500-0.25 90016 0.75 119951 0.06 -348724 60.51

OR5x500-0.50 183289 0.26 218853 0.03 -620003 52.80

OR5x500-0.75 275380 0.19 301674 0.01 -918566 62.05

Table 5.3: Performance of initialisation methods over the 90 ORLib instances with m

= 5

Instance set C* R* jqdInit

OR5x100-0.25 1.31 0.17 1.48 0.26 1.25 0.23

OR5x100-0.50 0.63 0.10 0.63 0.16 0.62 0.12

OR5x100-0.75 0.39 0.07 0.38 0.11 0.42 0.08

OR5x250-0.25 0.70 0.15 0.51 0.11 0.45 0.10

OR5x250-0.50 0.37 0.09 0.26 0.07 0.22 0.04

OR5x250-0.75 0.25 0.06 0.15 0.04 0.15 0.04

OR5x500-0.25 0.70 0.12 0.25 0.05 0.24 0.04

OR5x500-0.50 1.19 0.32 0.12 0.03 0.13 0.03

OR5x500-0.75 0.50 0.18 0.08 0.02 0.07 0.01

Average 0.67 0.14 0.43 0.09 0.39 0.08

be adversely affected as a result of this as seen in Table 5.3. This suggests that infeasi-

ble solutions can help the search process when solving the MKP, particularly as optimal

solutions are known to be close to the boundary of feasibility. As jqdInit is competitive

with the two existing methods from the literature it is used during all further experi-

mentation.

5.5 Experiments

Experiments are performed controlling crossover at both the hyper-heuristic level and

the domain level. In each case, the hyper-heuristics are initially tuned and tested over

94

CHAPTER 5: A CASE STUDY OF CONTROLLING CROSSOVER IN A SELECTION

HYPER-HEURISTIC FRAMEWORK WITH MKP

the ORLib benchmark set before their general applicability is assessed on two further

datasets.

5.5.1 Controlling crossover at the hyper-heuristic level for the MKP

As described in Section 5.2 crossover can be controlled at the hyper-heuristic level with

no domain-specific knowledge. When a second individual is required for crossover it

is selected from a list of potential solutions maintained by the hyper-heuristic. To as-

sess the impact of controlling crossover at the hyper-heuristic level in this framework,

the experiments are performed for three separate test cases: with Random Crossover,

with Memory Crossover and without crossover. Table 5.4 shows the performance of

each hyper-heuristic over all ORLib instances using each of the crossover management

strategies, with standard deviations included as subscripts. Due to space limitations

acronyms are used for each heuristic selection method - move acceptance criterion combina-

tion.

Table 5.4: Average %-gap over all ORLib instances for each hyper-heuristic with Ran-

dom Crossover, Memory Crossover and without crossover

Hyper- Random Memory No

heuristic Crossover Crossover Crossover

SR-OI 1.16 0.84 1.12 0.81 1.11 0.82

CF-OI 1.18 0.83 1.19 0.86 1.07 0.80

RL-OI 1.16 0.81 1.14 0.84 1.10 0.84

SR-LAS 2.79 2.12 1.20 0.93 2.54 1.84

CF-LAS 2.86 2.19 1.23 0.97 2.72 2.01

RL-LAS 2.67 1.97 1.20 0.92 2.48 1.77

SR-SA 2.35 1.33 1.21 0.85 2.10 1.18

CF-SA 2.30 1.29 1.19 0.82 2.10 1.19

RL-SA 2.21 1.22 1.21 0.86 2.04 1.10

The best performing hyper-heuristic is Choice Function - Only Improving without

crossover with the lowest average %-gap of 1.07 over all ORLib instances. Using Only

Improving acceptance criterion is clearly superior on average to both Late Acceptance

Strategy and Simulated Annealing in this framework, when no crossover or Random

Crossover is used. In the case of Only Improving acceptance, all three crossover types

perform similarly however when using Late Acceptance Strategy and Simulated Anneal-

ing as move acceptance criteria, the performance is much better if Memory Crossover

is used. The results obtained using these hyper-heuristics (Late Acceptance Strategy and

95

CHAPTER 5: A CASE STUDY OF CONTROLLING CROSSOVER IN A SELECTION

HYPER-HEURISTIC FRAMEWORK WITH MKP

Simulated Annealing with Memory Crossover) do not vary significantly from the hyper-

heuristics using Only Improving acceptance criterion.

Overall the %-gaps of the hyper-heuristics without crossover are lower than those that

use Random Crossover suggesting that using crossover as a mutation operator in this

way does not benefit the search. This supports previous assertions that the search space

of heuristics can be reduced in an attempt to improve performance. Özcan and Basaran

[170] noted that reducing the number of hill climbers (memes) can improve the perfor-

mance of a Memetic Algorithm solving the MKP. Chakhlevitch and Cowling [37] also

showed similar improvement when reducing the number of low-level heuristics in a

hyper-heuristic framework operating on a scheduling problem. For each acceptance

criterion there is little difference in the results obtained by using a different heuris-

tic selection mechanism. However, there is significant difference between the results

obtained using different acceptance criteria. This suggests that the move acceptance

criterion used has a more significant impact on the performance of a hyper-heuristic

than heuristic selection mechanism using this heuristic set. This behaviour was also

observed by Özcan et al. [174] where a number of hyper-heuristics were tested over a

set of benchmark functions.

Figure 5.3 shows the utilisation rates of each low-level heuristic for each of the Choice

Function - Only Improving hyper-heuristics with Random Crossover, Memory Crossover

and No Crossover (the best performing hyper-heuristic on average). Utility rate indi-

cates the percentage usage of a low-level heuristic during a run. Figure 5.3(a) shows

the utility rate of each heuristic considering only moves which improve on the current

best-of-run solution. Figure 5.3(b) shows the average utility rate of each heuristic con-

sidering all moves (i.e. how many times each heuristic was chosen during the search

process). These utility rates are average values over a single run of each instance over

all 270 instances in ORLib. In all cases there are clearly stronger low-level heuristics

on average however this is not reflected in the amount of times each heuristic is se-

lected overall. Due to the nature of the Choice Function, some low-level heuristics will

be selected at a higher rate than others at certain points of the search, usually through

repeated invocation. Although in percentage terms this is roughly uniform over the

full benchmark dataset, it is not the case that low-level heuristic selection is uniform

for a particular instance. Moreover these figures show that all of the low-level heuris-

tics available are capable of contributing to the improvement of a solution at a given

stage for at least some of the instances. This provides a justification for their continued

presence in the low-level heuristic set. Similar behaviour was observed for all hyper-

heuristics tested.

96

CHAPTER 5: A CASE STUDY OF CONTROLLING CROSSOVER IN A SELECTION

HYPER-HEURISTIC FRAMEWORK WITH MKP

Figure 5.3: Average low-level heuristic utilisation for Choice Function - Only Improv-

ing hyper-heuristics with Random, Memory and No Crossover over all in-

stances in ORLib
(a) Utility rate over improving moves

Random Memory None
0

10

20

30

40

50

60

70

80

90

100

U
til

ity
 r

at
e

ov
er

 im
pr

ov
in

g
m

ov
es

(b) Utility rate over all moves

Random Memory None
0

10

20

30

40

50

60

70

80

90

100

U
til

ity
 r

at
e

ov
er

 a
ll

m
ov

es

PARA10
PARA25
PARA50
SWP
UX
ONEPX
TWOPX

5.5.2 Controlling crossover at the domain level for the MKP

Although benefit has been observed in some hyper-heuristics when including

crossover as a mutation operator in this framework, the quality of solutions used to

perform crossover could not be guaranteed. When the solutions used for crossover

are taken to be best found solutions, crossover can benefit the hyper-heuristic frame-

work. As discussed in Section 3.3, the constraints of the 0-1 multidimensional knapsack

problem can be relaxed to take fractional values, yielding the related LP-relaxed ver-

sion of the problem. It is known that the solutions to the LP-relaxed version of the

MKP can provide good approximations for the 0-1 version of the problem [40]. More-

over, the framework developed for this work already performs the computational ef-

fort required to obtain the solutions to the LP-relaxed problem. Using the initialisation

method for the list of solutions obtained in Section 5.4, the same nine hyper-heuristics

are again applied to ORLib using the same parameters as before. Table 5.5 shows their

performance in terms of %-gap over a single run of each instance of ORLib.

Table 5.5: Average %-gap over all ORLib instances for each hyper-heuristic using a

list of solutions to provide the second input for crossover managed at the

domain level

Heuristic Selection Acceptance Criteria

Mechanism Only Improving Late Acceptance Simulated Annealing

Simple Random 0.74 0.76 0.71 0.74 0.71 0.76

Choice Function 0.75 0.78 0.70 0.74 0.71 0.76

Reinforcement Learning 0.73 0.74 0.71 0.75 0.70 0.76

97

CHAPTER 5: A CASE STUDY OF CONTROLLING CROSSOVER IN A SELECTION

HYPER-HEURISTIC FRAMEWORK WITH MKP

The best average %-gap over all ORLib instances is 0.70, obtained by Choice Func-

tion - Late Acceptance Strategy and Reinforcement Learning - Simulated Annealing hyper-

heuristics. Following confirmation that the data is not normally distributed using a

Shapiro-Wilk test, a Mann-Whitney U test within a 95% confidence interval shows

no statistically significant difference between these two hyper-heuristics. Interestingly,

those hyper-heuristics with Late Acceptance and Simulated Annealing acceptance outper-

form those with Only Improving acceptance. This is in contrast to the previous hyper-

heuristics, which controlled crossover at the hyper-heuristic level, where Only Improv-

ing acceptance performed best. This is closer to what would be expected, as Simulated

Annealing and Late Acceptance Strategy are designed to overcome the problem of becom-

ing trapped in local optima. Despite this, no clear conclusions can be drawn as to why

this reversal of performance is observed in the case that crossover is controlled at the

domain-specific level. As with the previous experiments, the acceptance criterion used

has a greater effect on the quality of solutions obtained than heuristic selection method.

Although there are two ‘best’ performing hyper-heuristics within this framework, only

one hyper-heuristic from each framework will be compared in the following section.

The Choice Function - Late Acceptance is taken to compare to the best performing hyper-

heuristic from Section 5.5.1 and CPLEX 12.5.

5.5.3 Comparison of hyper-heuristics managing crossover at the hyper-

heuristic level, hyper-heuristics managing crossover at the domain

level and CPLEX 12.5

Table 5.6 shows detailed results for each instance type for Choice Function - Late Ac-

ceptance Strategy with crossover controlled at the domain-specific level, the best per-

forming hyper-heuristic from Section 5.5.1 (Choice Function - Only Improving with No

Crossover) and results obtained using CPLEX 12.5. CPLEX 12.5 is allowed to run for

a maximum of 1800 CPU seconds per instance, with a maximum working memory of

8GB. For reference, the hyper-heuristics in the previous sections perform 106 fitness

evaluations in 25-30 seconds on average per instance.

98

CHAPTER 5: A CASE STUDY OF CONTROLLING CROSSOVER IN A SELECTION

HYPER-HEURISTIC FRAMEWORK WITH MKP

Table 5.6: Detailed performance of CPLEX 12.5, Choice Function - Late Acceptance Strat-

egy with crossover managed at domain level and Choice Function - Only Im-

proving with No Crossover on ORLib instances based on average %-gap)

Problem Set CPLEX 12.5 CF-LAS CF-OInoXO

OR5x100-0.25 0.99 0.19 1.16 0.20 1.22 0.25

OR5x100-0.50 0.45 0.09 0.53 0.08 0.59 0.16

OR5x100-0.75 0.32 0.07 0.40 0.07 0.39 0.08

OR5x250-0.25 0.22 0.04 0.42 0.04 0.51 0.10

OR5x250-0.50 0.11 0.02 0.20 0.03 0.42 0.19

OR5x250-0.75 0.08 0.01 0.13 0.01 0.21 0.04

OR5x500-0.25 0.07 0.01 0.19 0.03 0.60 0.13

OR5x500-0.50 0.04 0.01 0.10 0.03 0.85 0.13

OR5x500-0.75 0.02 0.00 0.06 0.01 0.32 0.09

OR10x100-0.25 1.56 0.20 2.00 0.22 2.08 0.37

OR10x100-0.50 0.79 0.10 1.02 0.19 1.16 0.15

OR10x100-0.75 0.48 0.07 0.58 0.08 0.66 0.06

OR10x250-0.25 0.45 0.07 0.83 0.09 1.02 0.18

OR10x250-0.50 0.23 0.02 0.39 0.06 0.58 0.11

OR10x250-0.75 0.14 0.02 0.23 0.03 0.41 0.06

OR10x500-0.25 0.18 0.02 0.40 0.06 1.10 0.35

OR10x500-0.50 0.08 0.01 0.18 0.02 1.20 0.31

OR10x500-0.75 0.06 0.01 0.12 0.01 0.61 0.16

OR30x100-0.25 2.89 0.28 3.45 0.46 3.91 0.57

OR30x100-0.50 1.32 0.14 1.56 0.26 1.85 0.27

OR30x100-0.75 0.82 0.06 0.92 0.08 1.04 0.20

OR30x250-0.25 1.05 0.07 1.55 0.17 2.12 0.25

OR30x250-0.50 0.48 0.03 0.71 0.08 1.08 0.14

OR30x250-0.75 0.28 0.02 0.39 0.04 0.52 0.08

OR30x500-0.25 0.50 0.05 0.92 0.10 1.99 0.27

OR30x500-0.50 0.22 0.02 0.39 0.05 1.66 0.10

OR30x500-0.75 0.14 0.01 0.23 0.02 0.82 0.15

AverageStdDev 0.52 0.06 0.70 0.09 1.07 0.18

Table 5.7 compares each technique in terms of %-gap against one another for statistical

significance (t-test, 95% confidence), indicating the number of instance sets in which

there is a particular variation in performance. For two techniques A1 and A2, ≥ in-

dicates that A1 outperforms A2 on average whilst ≫ indicates that this difference is

99

CHAPTER 5: A CASE STUDY OF CONTROLLING CROSSOVER IN A SELECTION

HYPER-HEURISTIC FRAMEWORK WITH MKP

statistically significant (conversely ≤ and ≪). When comparing the performance of

the best performing hyper-heuristic from Section 5.5.1 (Choice Function - Only Improv-

ing with No Crossover) and the best performing hyper-heuristic with crossover con-

trolled at the domain-specific level (Choice Function - Late Acceptance Strategy), control-

ling crossover at the domain-specific level results in better performance on average for

26 of the 27 sets of instances. This difference is statistically significant in 22 of these

cases. CPLEX 12.5 statistically significantly outperforms both hyper-heuristics in all 27

sets of instances.

Table 5.7: Number of instance sets particular statistical differences occur

A1 vs A2 ≪ ≤ ≥ ≫
CF-LAS vs CF-OInoXO 0 1 4 22

CF-LAS vs CPLEX 12.5 27 0 0 0

CF-OInoXO vs CPLEX 12.5 27 0 0 0

The general applicability of the best performing hyper-heuristic with crossover con-

trolled at the domain-specific level is tested by applying it to two further benchmark

sets, each with differing properties. SAC-94 is a set of benchmark instances from clas-

sic papers in the literature using mostly real-world data (as described in Section 5.3.3),

with optimal solutions known for all problems. It is difficult to perform a direct com-

parison with techniques over these instances due to the difference in termination cri-

terion and running times. For example, some methods in the literature provide the

best results over 30 runs or more. If an algorithm finds the optimal solution in at least

5% of trial runs for a given instance it is deemed a successful run. The success rate

over each dataset is therefore the number of successful runs divided by the number of

problems in the set. A Choice Function - Late Acceptance Strategy hyper-heuristic per-

forms a single run on each instance as before. Table 5.8(a) shows the performance of

the hyper-heuristic in terms of success rate over each set of instances in SAC-94. The

Choice Function - Late Acceptance Strategy hyper-heuristic with crossover controlled at

the domain-specific level performs at least as well as Choice Function - Only Improving

with No Crossover in every group of instances in this set.

The final benchmark set on which to test the hyper-heuristics is the set of 11 large

instances provided by Glover and Kochenberger [88]. The results for both hyper-

heuristics are given as the average of 10 runs on each of these instances. Table 5.8(b)

shows the performance of these hyper-heuristic over these large instances and also

presents results for CPLEX 12.5. The LP-relaxed optimal solutions are again used as a

basis to derive %-gap. Standard deviations of the average %-gaps over all 11 instances

are included as subscripts. The Choice Function - Only Improving hyper-heuristic with

100

CHAPTER 5: A CASE STUDY OF CONTROLLING CROSSOVER IN A SELECTION

HYPER-HEURISTIC FRAMEWORK WITH MKP

No Crossover performs relatively badly on this larger set of instances, obtaining an av-

erage %-gap of 0.92 compared to 0.45 obtained by the Choice Function - Late Acceptance

Strategy hyper-heuristic with crossover controlled at the domain-specific level. CPLEX

12.5 obtains an average %-gap of 0.21.

Table 5.8: (a) Success rate of CPLEX 12.5, Choice Function - Late Acceptance Strategy

hyper-heuristic and Choice Function - Only Improving with No Crossover

over all SAC-94 instances and (b) Performance of CPLEX 12.5, Choice Func-

tion - Late Acceptance Strategy hyper-heuristic and Choice Function - Only Im-

proving with No Crossover on Glover and Kochenberger instances
(a)

Dataset Num of Instances CPLEX 12.5 CF-LAS CF-OInoXO

hp 2 1.00 0.00 0.00

pb 6 1.00 0.67 0.50

pet 6 1.00 0.50 0.34

sento 2 1.00 1.00 1.00

weing 8 1.00 0.63 0.63

weish 30 1.00 1.00 0.64

(b)

Instance LPopt Score CPLEX 12.5 %-gap CF-LAS %-gap CF-OInoXO%-gap

GK01 3776 0.26 0.57 1.49 1.33 6.82

GK02 3976 0.46 0.81 3.86 1.60 9.66

GK03 5671 0.26 0.63 3.10 1.64 18.25

GK04 5794 0.46 0.91 3.77 1.84 18.18

GK05 7577 0.23 0.45 3.00 0.83 13.61

GK06 7703 0.34 0.76 5.02 1.54 23.00

GK07 19232 0.08 0.19 6.48 0.33 18.81

GK08 18831 0.15 0.33 5.68 0.55 9.57

GK09 58101 0.02 0.07 7.47 0.10 12.95

GK10 57318 0.05 0.14 8.68 0.16 14.07

GK11 95278 0.05 0.13 12.34 0.15 15.10

Average - 0.21 0.450.30 0.920.69

Comparison to previous approaches

Table 5.9 shows the results of the best hyper-heuristic presented in this chapter, Choice

Function - Late Acceptance Strategy with crossover controlled at the domain-specific level

101

CHAPTER 5: A CASE STUDY OF CONTROLLING CROSSOVER IN A SELECTION

HYPER-HEURISTIC FRAMEWORK WITH MKP

and CPLEX 12.5, compared to a number of heuristic and metaheuristic techniques from

the literature. From this table it can be seen that the hyper-heuristics presented here

perform well in comparison to many previous approaches. The use of 106 fitness eval-

uations as a termination criterion allows direct comparison to previous meta-heuristic

approaches [184, 40, 170, 101]. The %-gap of 0.70 obtained by the hyper-heuristic is bet-

ter than the previous metaheuristic methods of Özcan and Basaran [170] and Hinterd-

ing [101] and a number of existing heuristic methods. The best %-gap is still obtained

by the Memetic Algorithm of Chu and Beasley [40] and the variant of their work pro-

vided by Raidl [184]. The %-gap over all instances of ORLib of 0.52 obtained by CPLEX

12.5 is unsurprisingly far better than that of 3.14 achieved by Chu and Beasley [40] us-

ing CPLEX 4.0, offering similar performance to the best metaheuristic techniques from

the literature. Although a direct comparison can not be performed due to differing ter-

mination criteria, there has clearly been a marked improvement in the performance of

exact solvers such as CPLEX in recent years.

Table 5.9: Average %-gap of other (meta-)heuristics and CPLEX over all instances in

ORLib

Type Reference %-gap

MIP CPLEX 12.5 0.52

MA Raidl [184] 0.53

MA Chu and Beasley [40] 0.54

Hyper-heuristic CF-LAS 0.70

MA Özcan and Basaran [170] 0.92

Permutation GA Hinterding [101] (Raidl [184]) 1.30

Heuristic Pirkul [180] 1.37

Heuristic Freville and Plateau [73] 1.91

Heuristic Qian and Ding [183] 2.28

MIP Chu and Beasley [40] (CPLEX 4.0) 3.14

Heuristic Akçay et al. [2] 3.46

Heuristic Volgenant and Zoon [208] 6.98

Heuristic Magazine and Oguz [142] 7.69

The currently best known results in literature for the ORLib instances were obtained

by Vasquez and Vimont [206]. Results from this study are only available for the largest

instances of ORLib where n = 500. Results for these instances obtained with a Choice

Function - Late Acceptance Strategy hyper-heuristic and CPLEX 12.5 are provided along

with the results of Vasquez and Vimont [206] for comparison in Table 5.10, again with

standard deviation as subscripts. Choice Function - Late Acceptance Strategy is chosen

102

CHAPTER 5: A CASE STUDY OF CONTROLLING CROSSOVER IN A SELECTION

HYPER-HEURISTIC FRAMEWORK WITH MKP

arbitrarily for comparison from the best performing hyper-heuristics for the previous

experiments. The standard deviations for the hyper-heuristic and CPLEX 12.5 are avail-

able in Table 5.6.

Table 5.10: Performance comparison with best metaheuristic technique in the litera-

ture over ORLib instances with n = 500 objects.

Vasquez and Vimont [206] CPLEX 12.5 CF-LAS

Instance %-gap t[s]* %-gap t[s] %-gap t[s]

OR5x500-0.25 0.07 0.01 14651* 0.07 0.01 315 0.19 0.03 11

OR5x500-0.50 0.04 0.05 6133* 0.04 0.01 141 0.10 0.03 16

OR5x500-0.75 0.02 0.00 7680* 0.02 0.00 46 0.06 0.01 22

OR10x500-0.25 0.17 0.02 10791* 0.19 0.02 534 0.40 0.06 14

OR10x500-0.50 0.08 0.00 8128* 0.09 0.01 675 0.18 0.02 21

OR10x500-0.75 0.06 0.01 6530* 0.06 0.01 567 0.12 0.01 29

OR30x500-0.25 0.48 0.05 30010* 0.53 0.05 1800 0.92 0.10 23

OR30x500-0.50 0.21 0.02 35006* 0.23 0.02 1800 0.39 0.05 39

OR30x500-0.75 0.14 0.01 45240* 0.14 0.01 1800 0.23 0.02 55

AverageStdDev 0.14 0.02 18241* 0.15 0.02 853 0.29 0.03 26

The results of Choice Function - Late Acceptance Strategy are obtained in a fraction of the

time taken by Vasquez and Vimont and are less than 0.15% closer to the LP-relaxed op-

timum in absolute terms. Again a Mann-Whitney U test within a 95% confidence inter-

val is performed in order to assess statistical significance. For each set of 10 instances in

Table 5.10, there is no statistically significant difference in performance between Choice

Function - Late Acceptance Strategy and the method of Vasquez and Vimont. CPLEX

12.5 offers performance comparable on average to Vasquez and Vimont [206] with no

statistically significant difference between these results.

A fundamental goal of hyper-heuristic research is to provide solutions which are ‘good

enough, soon enough, cheap enough’ [21]. Although the work of Vasquez and Vimont

[206] was performed using inferior hardware there is a stark contrast in execution times

of each technique1. The results of CPLEX 12.5 are obtained in significantly less time

1Note on CPU times based on Dongarra [60]:

• Intel P4 1700 MHz = 796 MFLOP/s

• Intel P4 2 GHz (estimated) 796 * 2 / 1.7 = 936.47 (scaled from 1.7 GHz to 2GHz)

• Intel Core 2 Q6600 Kensfield (1 core) 2.4 GHz = 2426 MFLOP/s

• Intel Core 2 Duo 3 GHz (estimated) 2426 * 3 / 2.4 = 3032.5 MFLOP/s (scaled from 2.4 to 3 GHz)

Based on the above Intel Core 2 Duo 3 GHz is estimated 3032.5 / 936.47 = 3.24 times faster. t[s]* for

Vasquez and Vimont [206] in Table 5.10 are scaled using these CPU times.

103

CHAPTER 5: A CASE STUDY OF CONTROLLING CROSSOVER IN A SELECTION

HYPER-HEURISTIC FRAMEWORK WITH MKP

than Vasquez and Vimont [206] but the average time is far greater than the average

time of 25.6 seconds per instance taken by Choice Function - Late Acceptance Strategy.

CPLEX 12.5 is run for a maximum of 1800 seconds on each instance however only

takes an average of 853 seconds an instance. This average is lower than the maximum

time allowed as a run will finish early if an optimal solution is found or constraints

on memory are exceeded. Puchinger et al. [182] provided results for CPLEX 9.0 over

these 90 instances attaining an average %-gap of 0.16. Overall CPLEX 12.5 achieves

an average %-gap of 0.15 and equals or outperforms the previous results in every set

except one (OR10x500-0.25). This discrepancy may be attributed to differing parameter

settings within CPLEX or human error when collating results.

An indirect comparison between techniques can be made on a subset of the instances

in SAC-94 in terms of success rate as shown in Table 5.11. Three common problem

instance sets from SAC-94 are used for comparison, the pet problem set (with pet2

omitted), the sento problem set and the last two instances of the weing problem set. The

Memetic Algorithm of Chu and Beasley [40] performs particularly well with Particle

Swarm Optimisation and Grammatical Evolution performing particularly badly. The

Choice Function - Late Acceptance Strategy hyper-heuristic performs well in comparison

to the results in the literature. For completeness, CPLEX 12.5 is also tested and finds

optimal solutions for entire SAC-94 dataset using the hardware and settings outlined

previously taking a maximum of 0.3 seconds per instance.

Table 5.11: Success rate of techniques from the literature over a subset SAC-94 in-

stances

Technique Reference sento pet weing

MIP CPLEX 12.5 1.00 1.00 1.00

Memetic Algorithm Chu and Beasley [40] 1.00 1.00 1.00

Memetic Algorithm Cotta and Troya [46] 1.00 1.00 1.00

Multimeme Memetic Algorithm Özcan and Basaran [170] 1.00 0.80 0.50

Hyper-heuristic CF-LAS 1.00 0.60 0.50

Attribute Grammar Cleary and O’Neill [42] 0.50 0.80 0.50

Genetic Algorithm Khuri et al. [123] 0.50 0.60 0.50

Particle Swarm Optimisation Hembecker et al. [100] 0.00 - 0.50

Grammatical Evolution Cleary and O’Neill [42] 0.00 0.20 0.00

Table 5.12 compares the performance of Choice Function - Late Acceptance Strategy and

CPLEX 12.5 with the methods of Raidl and Gottlieb [185], using the benchmarks pro-

vided by Glover and Kochenberger [88]. Raidl and Gottlieb [185] experimented with a

number of different representations in evolutionary algorithms for the MKP. The three

104

CHAPTER 5: A CASE STUDY OF CONTROLLING CROSSOVER IN A SELECTION

HYPER-HEURISTIC FRAMEWORK WITH MKP

best results were obtained from direct representation (DI), weight-biased representa-

tion (WB) and permutation representation (PE). The results of their study are taken as

averages over 30 runs and were allowed 106 non-duplicate individuals. Standard de-

viations for the 30 runs of each instance by Raidl and Gottlieb [185] are provided as

subscripts. Each hyper-heuristic tested is also allowed 106 evaluations however dupli-

cate individuals are counted. The direct encoding of Raidl and Gottlieb [185] outper-

forms Choice Function - Late Acceptance Strategy however the hyper-heuristic compares

favourably to the other two encoding methods shown. Although only an indirect com-

parison can be made due to the differing nature of each techniques termination cri-

terion and subsequently running times, CPLEX performs particularly well on these

instances with an average %-gap of 0.21 compared to the 0.45 %-gap of the Choice Func-

tion - Late Acceptance Strategy hyper-heuristic.

Table 5.12: Performance comparison of Choice Function - Late Acceptance Strategy

hyper-heuristic, CPLEX 12.5 and permutation, weight-biased and direct

representation evolutionary algorithms on Glover and Kochenberger in-

stances

CPLEX DI CF-LAS WB PE

Instance %-gap %-gap %-gap %-gap %-gap

GK01 0.26 0.27 0.03 0.57 0.04 0.31 0.08 0.38 0.07

GK02 0.45 0.46 0.01 0.81 0.10 0.48 0.05 0.50 0.06

GK03 0.26 0.37 0.01 0.63 0.05 0.45 0.04 0.52 0.06

GK04 0.47 0.53 0.02 0.91 0.07 0.67 0.08 0.71 0.09

GK05 0.21 0.29 0.00 0.45 0.04 0.40 0.05 0.46 0.07

GK06 0.32 0.43 0.02 0.76 0.07 0.61 0.06 0.70 0.09

GK07 0.06 0.09 0.00 0.19 0.03 0.38 0.08 0.52 0.09

GK08 0.14 0.17 0.01 0.33 0.03 0.53 0.07 0.75 0.09

GK09 0.02 0.03 0.00 0.07 0.01 0.56 0.04 0.89 0.08

GK10 0.04 0.05 0.00 0.14 0.02 0.73 0.07 1.10 0.07

GK11 0.05 0.05 0.00 0.13 0.01 0.87 0.06 1.24 0.06

Average 0.210.16 0.250.18 0.450.30 0.540.17 0.710.27

5.6 Framework generality tested on the Boolean satisfiability

problem

As the hyper-heuristics developed in this chapter have been implemented in a generic

way, they can be applied to any problem domain which can be represented as a bi-

105

CHAPTER 5: A CASE STUDY OF CONTROLLING CROSSOVER IN A SELECTION

HYPER-HEURISTIC FRAMEWORK WITH MKP

nary string. One such domain is the well-studied Boolean satisfiability problem (SAT).

Given a number of decision variables and associated clauses, the objective of SAT is

to assign the variables in such a way that each clause is satisfied and subsequently

the entire formula evaluates to true. The performance of the best hyper-heuristic from

the previous section will be compared to two existing hyper-heuristic approaches from

the literature which have been applied to this problem. Although not strictly as rele-

vant to a second problem domain, the ‘domain-specific’ aspects of the hyper-heuristic

framework can still be used. SAT is chosen as a second test problem as the LP-relaxed

version of the problem can also be used in the initialisation process in the same way as

the MKP.

The low-level heuristics and initialisation methods used are identical to those used in

the MKP. The only two components changed are the fitness function and the hill climb-

ing heuristic used after each application of a low-level heuristic. The hill climber flips

a random variable in each unsatisfied clause and keeps the change if an improvement

is made. All instances tested are from the ‘Uniform Random-3-SAT’ category and are

taken from SATLIB [104]. All of these instances are known to be satisfiable. A single

run of the best performing hyper-heuristic from Section 5.5, Choice Function - Late Ac-

ceptance Strategy is performed with 5 seconds allowed for each instance with the results

presented in Table 5.13. The %-gap measure is again used to measure the performance

of a given algorithm, with a lower value indicating that a solution is closer to the op-

timal. As all instances are satisfiable an optimal solution exists in this case the %-gap

value is calculated as:

100 ∗ OptimalSolution−SolutionFound
OptimalSolution (5.6.1)

Where OptimalSolution is the fitness value of the optimal solution to a given problem

and SolutionFound is the fitness value of a solution obtained by a particular method.

Table 5.13: Performance of a Choice Function - Late Acceptance Strategy hyper-heuristic

over SATLIB benchmarks

Test-Set Instances Variables Clauses Average Clauses Satisfied %-gap

uf20-91 1000 20 91 91 0

uf150-645 100 150 645 637.34 1.19

uf200-860 100 200 860 848.09 1.38

uf250-1065 100 250 1065 1049.75 1.43

106

CHAPTER 5: A CASE STUDY OF CONTROLLING CROSSOVER IN A SELECTION

HYPER-HEURISTIC FRAMEWORK WITH MKP

The hyper-heuristic implemented finds a satisfied solution for all 100 instances in the

uf20-91 set in a single run. Swan et al. [200] used a subset of these instances to test

a number of different hyper-heuristics. In their study the best hyper-heuristic tested

found the optimal solution 10.35% of the time on 100 runs on the first 20 instances of

this set. In terms of average number of clauses left unsatisfied, the best hyper-heuristic

of Swan et al. [200] leaves on average 3.06 clauses unsatisfied on these instances, in

contrast Choice Function - Late Acceptance Strategy leaves no clauses unsatisfied for all

instances. As no termination criterion or running time is stated by Swan et al. [200], it

is difficult to provide a direct comparison and comment on the general performance of

this method.

Hyde et al. [109] used the uf250-1065 instances to test a number of hyper-heuristics

with Simple Random heuristic selection and move acceptance criteria generated using

Genetic Programming. In this work, the evolved acceptance criteria were able to out-

perform both All Moves and Great Deluge acceptance criteria on these instances. The

best results obtained over 95 of the instances in this set (five were used for training

purposes) obtained an average %-gap obtained of 5.595% over 30 runs of the Genetic

Programming hyper-heuristic. Choice Function - Late Acceptance Strategy obtains an av-

erage %-gap of 1.43 for these instances.

5.7 Concluding remarks

Two frameworks for controlling crossover in single-point selection hyper-heuristics are

proposed, using a common NP-hard combinatorial optimisation problem as a test bed.

Crossover is included at two levels, firstly it is controlled at the hyper-heuristic level

where no domain-specific information is used, secondly it is controlled below the do-

main barrier and given domain-specific information. In each case a list of potential sec-

ond solutions to be used in crossover is maintained. Perhaps unsurprisingly, crossover

performs better when it is controlled below the domain barrier and problem-specific

information is available. Although the management of crossover is desirable at the

domain-level in this case, unfortunately it is not always possible to access domain-

level information in other hyper-heuristic frameworks. This raises questions regarding

the definition of hyper-heuristics and exactly where the responsibility of managing the

inputs for low-level heuristics should lie. Additional questions also emerge regarding

the notion of state within low-level heuristics. In general selection hyper-heuristics typ-

ically operate over a set of stateless low-level heuristics. In the case of hyper-heuristic

level crossover control, it could be argued that managing the input for crossover low-

107

CHAPTER 5: A CASE STUDY OF CONTROLLING CROSSOVER IN A SELECTION

HYPER-HEURISTIC FRAMEWORK WITH MKP

level heuristics in such a way adds stateful behaviour. Whether this fits in to the orig-

inal definition of hyper-heuristics is open to interpretation and a case could be made

both for and against this argument. Exact solvers such as CPLEX also make use of

heuristics and have improved significantly since Chu and Beasley [40] presented their

results using CPLEX 4.0. Improved results using CPLEX 12.5 are included over the

benchmark libraries for the use of future researchers in this area.

The hyper-heuristics in this chapter have operated over low-level heuristics using a

simple binary representation. Therefore they can be applied to any problem domain

which uses this representation. It has been shown that by simply changing the fitness

evaluation function and the hill climbing low-level heuristic required by an FC hyper-

heuristic framework, it is possible to outperform existing hyper-heuristic techniques

on instances of the Boolean satisfiability problem (SAT).

The next chapter shifts the focus of the thesis to cross-domain optimisation. The core

goal of cross-domain optimisation is to develop methods which are general enough to

perform well over a range of benchmark problem domains. Increasingly, such frame-

works include crossover operators in the set of low-level heuristics. There are some

issues when using some traditional hyper-heuristic components over cross-domain op-

timisation benchmarks, particularly with Choice Function heuristic selection. A modi-

fied variant of the traditional Choice Function heuristic selection method is proposed,

with the intention of dealing with some of the limitations of the Choice Function when

operating in a cross-domain environment.

108

CHAPTER 6

An Improved Choice Function

Heuristic Selection for

Cross-Domain Heuristic Search

Chapter 5 investigated the use of crossover at two conceptual levels in selection hyper-

heuristic frameworks. Crossover low-level heuristics are increasingly included in mod-

ern selection hyper-heuristics. One such framework is HyFlex [27, 166], developed to

support the first Cross-domain Heuristic Search Challenge, CHeSC2011 [165]. This

framework provides a common interface enabling easy comparison of cross-domain

heuristic search methods.

Hyper-heuristics have been introduced in previous chapters as a class of high-level

search technologies to solve computationally difficult problems, operating on a search

space of low-level heuristics rather than solutions directly. A large number of heuristic

selection methods exist for search hyper-heuristics. The Choice Function is an elegant

heuristic selection method introduced in the very first hyper-heuristic paper for com-

binatorial optimisation presented by Cowling et al. [47]. Although the Choice Function

has been shown to work well in a variety of different problem domains, the use of

Choice Function-based hyper-heuristics is limited in cross-domain heuristic search using

the CHeSC2011 benchmarks. This chapter presents the application of Choice Function-

based hyper-heuristics to these benchmarks, highlighting the weakness of this heuris-

tic selection method in the context of cross-domain heuristic search. A Modified Choice

Function heuristic selection method is proposed, with the intensification and diversifi-

cation parameters of the Choice Function controlled automatically using a method in-

spired by Reinforcement Learning. The proposed method is tested and compared to

previous approaches over the six benchmark problem domains provided by HyFlex

109

CHAPTER 6: AN IMPROVED Choice Function HEURISTIC SELECTION FOR

CROSS-DOMAIN HEURISTIC SEARCH

for CHeSC2011. Following this, the Modified Choice Function is tested on the MKP and

compared to the best performing hyper-heuristic of Chapter 5 using Late Acceptance

Strategy move acceptance criterion.

6.1 Selection hyper-heuristics and the Choice Function

Traditional single-point based search hyper-heuristics rely on two key components, a

heuristic selection method and a move acceptance criteria as depicted in Figure 6.1.

Using the ontology of Özcan et al. [174], previously discussed in Section 2.3.3, such

a framework is classified as an FA hyper-heuristic. Hyper-heuristics working within

this framework operate on a single solution and repeatedly select and apply low-level

heuristics to this solution. At each stage a decision is made as to whether to accept the

move until some termination criterion is met.

Figure 6.1: Classic FA single-point search hyper-heuristic framework

Hyper-heuristic

Selection Mechanism Acceptance Criteria

Low-level heuristics

Select

Heuristic

Apply

Heuristic

LLH1 LLH2 LLH3 LLHn

Domain Barrier

Accept/Reject

Solution?

Termination Criteria

Terminate?
Yes

No

Initial

Solution

6.1.1 Choice Function heuristic selection

The Choice Function was introduced as a heuristic selection method by Cowling et al.

[47] in the first hyper-heuristic paper in the field of combinatorial optimisation. The

Choice Function scores heuristics based on a combination of three different measures

and applies the heuristic with the highest rank at each given step. Each measure is

weighted appropriately to provide balance between intensification and diversification

during the heuristic search process. Choosing the right parameter values to weight

these measures is not a trivial process and a small number of methods have been pro-

110

CHAPTER 6: AN IMPROVED Choice Function HEURISTIC SELECTION FOR

CROSS-DOMAIN HEURISTIC SEARCH

posed in the literature. The mechanics of the Choice Function are introduced in detail in

Section 2.3.3. Further to this work, Cowling et al. [48] described a method to adaptively

manage these parameters. A mechanism is proposed which increases the weights of α

or β following the application of a heuristic selected by the Choice Function which re-

sults in an improvement in the objective value. Although no specific implementation

details are provided, this reward is said to be proportional to the size of improvement

over the previous solution. Conversely, if a decrease in solution quality is obtained

these weights are penalised proportionally to the change in objective value. Using this

mechanism lead to an improved performance compared to the original results. The im-

plementation of the Choice Function described and used by Bilgin et al. [14] for bench-

mark function optimisation and Özcan et al. [175] and Burke et al. [35] for examination

timetabling is used in this chapter. This implementation increases α and β and reduces

δ by the same value if an improvement is made and reduces α and β and increases δ if

no improvement is made.

6.1.2 Modified Choice Function heuristic selection

Using the classic version of the Choice Function has some limitations when applied to

cross-domain optimisation using the CHeSC2011 benchmarks. Firstly, the proportional

improvement gained by a given heuristic is often not of interest but rather whether

there has been any improvement at all. In the early stages of a search, a relatively poor

heuristic can gain a large reward if it obtains a large improvement in objective value

from a poor starting position. Later on in a search, a heuristic may yield a small im-

provement which is much more significant in the context of the optimisation process

but will not receive such a large reward for this improvement. Secondly, if no im-

proving solutions are found for a period of time, the Choice Function can very quickly

descend into random search if the weighting is dominated by the diversification com-

ponent. This can be a useful trait, however the rate at which the diversification in-

creases in significance must be controlled. Özcan et al. [175] observed that Simple Ran-

dom heuristic selection with Late Acceptance Strategy move acceptance performed very

well on a set of examination timetabling instances. In this particular case very few per-

turbative low-level heuristics were implemented.

Reinforcement Learning [115] is a general term for a well-studied family of machine

learning techniques, often used in its own right as a heuristic selection mechanism (in-

troduced in Section 2.3.3). In selection hyper-heuristics, Reinforcement Learning tech-

niques are often used in an online context, deciding which action to take from a set of

possible actions based on previous experience. Nareyek [162] investigated using Rein-

111

CHAPTER 6: AN IMPROVED Choice Function HEURISTIC SELECTION FOR

CROSS-DOMAIN HEURISTIC SEARCH

forcement Learning as a heuristic selection method when solving constraint satisfaction

problems (CSP). In such a heuristic selection mechanism, each low-level heuristic is

assigned a utility value. At each step of the search process a heuristic is selected and

applied based on these utility values. If the application of the selected low-level heuris-

tic is considered successful, the utility value for that particular heuristic is increased,

improving its chances of selection at the next iteration. Conversely if the heuristic ap-

plication is considered unsuccessful it is decreased at the next iteration.

Here a Modified Choice Function (MCF) heuristic selection method is proposed, which

aims to address the issues of using the Choice Function for cross-domain optimisation.

In the Modified Choice Function, the parameters weighting each of f1, f2 and f3 in the

Choice Function are managed through a method inspired by Reinforcement Learning.

This mechanism relies on a system of reward and punishment in order to tune these

parameters. As with the original Choice Function of Cowling et al. [47], the Modified

Choice Function does not make a distinction between the values of α or β which weight

f1 and f2 respectively. For clarity these values are considered as a single intensification

parameter which is referred to as ϕ. Also in line with the original Choice Function,

this value is also used to weight each previous invocation of a given heuristic, giving

greater importance to recent performance. The parameter to weight f3 is used to control

the level of diversification of heuristic search as before and will still be referred to as δ.

In the Modified Choice Function the score Ft for each heuristic hj is defined as:

Ft(hj) = ϕt f1(hj) + ϕt f2(hk, hj) + δt f3(hj) (6.1.1)

where t is the current step in the search process. At each stage if an improvement in

objective value is made, ϕ is rewarded and set to a static maximum value close to the

upper limit of the interval (0,1) whilst δ is concurrently reduced to a static minimum

value close to the bottom end of this interval. This leads to a greater emphasis on

intensification and greatly reduces the level of diversity in heuristic selection choice

each time an improvement is obtained. If no improvement in objective value is made,

the level of intensification is decreased by linearly, reducing ϕ and the weighting of

diversification is increased at the same rate through the δ parameter. This gives the

intensification component of the Choice Function more time as the dominating factor in

the calculation of F. For the experiments in this chapter the parameters ϕt and δt are

defined as:

ϕt(hj) =

0.99, if an improving move is made

max {ϕt−1 − 0.01, 0.01}, if a non-improving move is made
(6.1.2)

112

CHAPTER 6: AN IMPROVED Choice Function HEURISTIC SELECTION FOR

CROSS-DOMAIN HEURISTIC SEARCH

δt(hj) = 1− ϕt(hj) (6.1.3)

The use of 0.99 as the maximum value and 0.01 as the minimum value, ensure that

the diversification component of the Modified Choice Function always has some non-

negative influence on the F value for each heuristic.

6.2 Experimentation

A number of experiments are performed, using the CHeSC2011 benchmarks, to com-

pare the performance of the original Choice Function with the proposed Modified Choice

Function heuristic selection methods. Section 6.2.1 describes the experimental settings

used for the hyper-heuristics tested. Section 6.2.2 compares the Choice Function and

Modified Choice Function combined with All Moves move acceptance to a set of ‘default’

hyper-heuristics provided by the organisers of CHeSC2011 prior to the competition.

The two Choice Function - All Moves variants are compared to the 20 CHeSC2011 en-

trants in Section 6.2.3 before a more direct comparison is provided in Section 6.2.4.

6.2.1 Experimental setup

In order to isolate the behaviour of the heuristic selection method component of each

hyper-heuristic, the two Choice Function variants are paired with simple All Moves move

acceptance criterion. This is a reasonable choice as Cowling et al. [47] highlighted

Choice Function - All Moves as a good heuristic selection method - move acceptance crite-

rion combination. A ‘run’ is considered as a notional 10 computational minutes, cal-

culated using a benchmark provided by the CHeSC2011 organisers. In order for a fair

comparison to be made, crossover heuristics are ignored as the original Choice Function

provides no details of how to manage operators which require more than one solution

as input. Methods to manage the second inputs for crossover have been introduced in

Chapter 5 and will be used in the context of cross-domain optimisation in Chapter 7.

6.2.2 Relative performance of Choice Function - All Moves and Modified

Choice Function - All Moves hyper-heuristics compared to CHeSC2011

‘default’ hyper-heuristics

Prior to the CHeSC2011 competition, the results of eight default hyper-heuristics were

provided by the organisers to assess the performance of a hyper-heuristic [165]. These

113

CHAPTER 6: AN IMPROVED Choice Function HEURISTIC SELECTION FOR

CROSS-DOMAIN HEURISTIC SEARCH

hyper-heuristics were inspired by state-of-the-art techniques. Each hyper-heuristic per-

forms a single run on 10 instances for each of four problem domains; Boolean satisfi-

ability (MAX-SAT), one-dimensional bin packing, personnel scheduling and permuta-

tion flow shop. They are then ranked using a system based on the Formula One scoring

system, the best performing hyper-heuristic for each instance is awarded 10 points, the

second 8 points and then each further hyper-heuristic awarded 6, 5, 4, 3, 2, 1 and 0

points respectively. Where there are more than 8 competitors, all hyper-heuristics be-

low 8th position are awarded 0 points. As there are 40 instances tested with a maximum

score of 10 for each instance, the maximum possible score a hyper-heuristics can obtain

is 400. This scoring system is discussed in detail in Section 2.5.3. As this ranking system

is based on relative performance, the Choice Function and Modified Choice Function are

compared to the competition entries independently.

Table 6.1(a) shows the results of the Modified Choice Function heuristic selection com-

bined with All Moves move acceptance criterion (MCF-AM) compared with the eight

default hyper-heuristics (HH1-HH8). Table 6.1(b) shows the results of the same exper-

iments using the original Choice Function and All Moves acceptance (CF-AM) as imple-

mented by Bilgin et al. [14] and Burke et al. [35].

These tables show that the Modified Choice Function - All Moves hyper-heuristic outper-

forms all of the CHeSC default hyper-heuristics in MAX-SAT and personnel schedul-

ing. More importantly the Modified Choice Function outperforms the original Choice

Function in all four problem domains, although both versions seem to struggle more

on the bin packing and permutation flow shop instances. This could be due to the

omission of crossover operators if such operators perform well in these problem do-

main. The best performing hyper-heuristic in this set (HH4) is based on Iterated Local

Search.

114

CHAPTER 6: AN IMPROVED Choice Function HEURISTIC SELECTION FOR

CROSS-DOMAIN HEURISTIC SEARCH

Ta
bl

e
6.

1:
Fo

rm
ul

a
O

ne
sc

or
es

fo
r

(a
)a

si
ng

le
ru

n
of

M
od

ifi
ed

C
ho

ic
eF

un
ct

io
n

-A
ll

M
ov

es
hy

pe
r-

he
ur

is
ti

c
an

d
th

e
C

H
eS

C
de

fa
ul

th
yp

er
-h

eu
ri

st
ic

s

an
d

(b
)a

si
ng

le
ru

n
of

cl
as

si
c

C
ho

ic
e

Fu
nc

tio
n

-A
ll

M
ov

es
hy

pe
r-

he
ur

is
ti

c
an

d
th

e
C

H
eS

C
de

fa
ul

th
yp

er
-h

eu
ri

st
ic

s

(a
)

H
H

1
H

H
2

H
H

3
H

H
4

H
H

5
H

H
6

H
H

7
H

H
8

M
C

F-
A

M

M
A

X
-S

A
T

55
.2

5
73

.2
5

36
.5

24
.5

1
46

51
.7

5
14

.5
87

.2
5

Bi
n

Pa
ck

in
g

59
61

76
71

15
51

39
1

17

Pe
rs

on
ne

lS
ch

ed
ul

in
g

64
57

.5
22

50
.5

50
0

49
.5

31
65

.5

Pe
rm

ut
at

io
n

Fl
ow

Sh
op

30
21

26
.5

86
19

.5
77

.5
21

69
39

.5

O
ve

ra
ll

20
8.

25
21

2.
75

16
1

23
2

85
.5

17
4.

5
16

1.
25

11
5.

5
20

9.
25

(b
)

H
H

1
H

H
2

H
H

3
H

H
4

H
H

5
H

H
6

H
H

7
H

H
8

C
F-

A
M

M
A

X
-S

A
T

58
78

39
.5

25
.5

1
49

54
.5

15
.5

69

Bi
n

Pa
ck

in
g

59
61

78
71

19
51

38
7

6

Pe
rs

on
ne

lS
ch

ed
ul

in
g

65
.5

64
.5

23
52

.5
53

0
52

31
48

.5

Pe
rm

ut
at

io
n

Fl
ow

Sh
op

38
27

.5
32

86
25

.5
78

.5
26

.5
70

6

O
ve

ra
ll

22
0.

5
23

1
17

2.
5

23
5

98
.5

17
8.

5
17

1
12

3.
5

12
9.

5

115

CHAPTER 6: AN IMPROVED Choice Function HEURISTIC SELECTION FOR

CROSS-DOMAIN HEURISTIC SEARCH

6.2.3 Relative performance of Choice Function - All Moves and Modified

Choice Function - All Moves hyper-heuristics compared to CHeSC2011

entrants

Following the CHeSC2011 competition, the results were provided for the competition

entries over a subset of the problems of all six problem domains, as introduced in Sec-

tion 2.5.3. In total 30 instances are tested, with 5 instances being used from each of

the six problem domains. Using the Formula One scoring system the maximum score

obtainable for a single hyper-heuristic is 300. The CHeSC2011 competition results were

taken as the median of 31 runs of each hyper-heuristic for each instance. Here results

are also taken as the median of 31 runs in order to maintain consistency and allow di-

rect comparison to the competition entries. Table 6.2(a) shows the results of the classic

Choice Function and All Moves acceptance criterion compared to the 20 competition en-

tries using the Formula One scoring system. Table 6.2(b) shows the results of the same

experiments using Modified Choice Function heuristic selection and All Moves move ac-

ceptance criterion.

Using the classic Choice Function performs particularly badly against the other compe-

tition entries, ranking 20th out of 21 overall only obtaining a single point in personnel

scheduling. Although overall this can be considered poor performance, it must be

noted that for a given instance only the top 8 competitors are awarded points. This

means that Choice Function - All Moves is in the top 8 for one instance of personnel

scheduling. The Modified Choice Function scores 38.85 points in total, ranking 12th out

of 21 hyper-heuristics. Since the competition results were made available, Gaspero

and Urli [81] described variations of their original method (AVEG-Nep), which are

also based on Reinforcement Learning. The best of the variants included in this pa-

per ranked 13th overall compared to the original competitors. Here it is observed that

managing the parameter settings of a Choice Function using Reinforcement Learning in-

spired techniques can outperform such methods, ranking 12th overall. For this hyper-

heuristic points are only scored in two problem domains, personnel scheduling and

MAX-SAT, leaving room for improvement in the other four domains. The vast major-

ity of these points were scored in MAX-SAT (32.85) where Modified Choice Function - All

Moves excels. When compared to the competition entries, the Modified Choice Function

- All Moves outperforms all other competitors. It is likely that a very small number of

heuristics are providing improvement in this problem domain and the increased fo-

cus on intensification is providing the gain in performance. The remaining points are

all scored in the personnel scheduling domain. Figure 6.2 shows a breakdown of the

number of points awarded to each technique over the MAX-SAT competition instances.

116

CHAPTER 6: AN IMPROVED Choice Function HEURISTIC SELECTION FOR

CROSS-DOMAIN HEURISTIC SEARCH

Table 6.2: Results of the median of 31 runs of (a) the classic Choice Function - All

Moves hyper-heuristic and (b) the Modified Choice Function - All Moves hyper-

heuristic, compared to CHeSC2011 competitors using Formula One scores

(a)

Rank Name Score

1 AdapHH 181

2 VNS-TW 134

3 ML 131.5

4 PHunter 93.25

5 EPH 89.25

6 HAHA 75.75

7 NAHH 75

8 ISEA 71

9 KSATS-HH 66

10 HAEA 53.5

11 ACO-HH 39

12 GenHive 36.5

13 DynILS 27

14 SA-ILS 24.25

15 XCJ 22.5

16 AVEG-Nep 21

17 GISS 16.75

18 SelfSearch 7

19 MCHH-S 4.75

20 CF - AM 1

21 Ant-Q 0

(b)

Rank Name Score

1 AdapHH 177.1

2 VNS-TW 131.6

3 ML 127.5

4 PHunter 90.25

5 EPH 88.75

6 NAHH 72.5

7 HAHA 71.85

8 ISEA 68.5

9 KSATS-HH 61.35

10 HAEA 52

11 ACO-HH 39

12 MCF - AM 38.85

13 GenHive 36.5

14 DynILS 27

15 SA-ILS 22.75

16 XCJ 20.5

17 AVEG-Nep 19.5

18 GISS 16.25

19 SelfSearch 5

20 MCHH-S 3.25

21 Ant-Q 0

117

CHAPTER 6: AN IMPROVED Choice Function HEURISTIC SELECTION FOR

CROSS-DOMAIN HEURISTIC SEARCH

Figure 6.2: Number of points scored in the MAX-SAT domain using the Formula One

system for each CHeSC2011 competitor and Modified Choice Function - All

Moves hyper-heuristic

0 5 10 15 20 25 30 35

MCF−AM
VNS−TW
AdapHH

HAHA
KSATS
NAHH

AVEG−Nep
ML

PHUNTER
ISEA
XCJ

MCHH−S
GISS

SA−ILS

H
yp

er
−h

eu
ris

tic

Formula One points scored

Figure 6.3 shows a breakdown of the number of points awarded to each technique

over the personnel scheduling competition instances. Please note that hyper-heuristics

which score zero points for these domains are omitted from these figures.

As with any ranking mechanism, there are issues with one method potentially gaining

an advantage simply by the metrics of the comparison method used. Gaspero and

Urli [81] used a normalised cost function value to compare the relative performance of

hyper-heuristics. This can be generalised to compare hyper-heuristics over an arbitrary

number of instances or domains. The median objective function value of the 31 runs for

a given instance are normalised to a value ∈ [0, 1], using the maximum and minimum

fitness value obtained for all hyper-heuristics. The normalised objective function value

objnorm, for a given problem instance inst is calculated as:

objnorm(inst) =
objactual(inst)− objbest(inst)
objworst(inst)− objbest(inst)

(6.2.1)

where objactual represents the actual median objective achieved in this instance by a

given algorithm and objbest(inst) and objworst(inst) represent the best and worst median

objective values obtained by any of the CHeSC2011 competitors. Figure 6.4 shows the

normalised objective function values over all 30 instances for the 20 CHeSC2011 com-

118

CHAPTER 6: AN IMPROVED Choice Function HEURISTIC SELECTION FOR

CROSS-DOMAIN HEURISTIC SEARCH

Figure 6.3: Number of points scored in the personnel scheduling domain using the

Formula One system for each CHeSC2011 competitor and Modified Choice

Function - All Moves hyper-heuristic

0 5 10 15 20 25 30 35 40

VNS−TW
ML

HAHA
SA−ILS

ISEA
PHUNTER

GISS
EPH

AdapHH
KSATS

GenHive
MCF−AM

SelfSearch
NAHH
HAEA

H
yp

er
−h

eu
ris

tic

Formula One points scored

petitors and Choice Function - All Moves. Figure 6.5 provides the same figure using the

Modified Choice Function - All Moves and CHeSC2011 entrants. In these figures, the 21

hyper-heuristics being compared are sorted by median normalised objective function

value with a lower value indicating better performance.

The box plots provided in Figure 6.4 and Figure 6.5 give an indication of relative vari-

ation in performance for each hyper-heuristic over all domains. It is clear from these

figures that both Choice Function - All Moves and Modified Choice Function - All Moves do

not provide consistent relative performance over the six benchmark problem domains

used in CHeSC2011. Relative to the competition entrants, Choice Function - All Moves

has the worst median normalised objective function value of all hyper-heuristics with

Modified Choice Function - All Moves only faring slightly better, ranking 18th out of the

21 hyper-heuristics compared. In the case of the Modified Choice Function - All Moves

hyper-heuristic, the lack of consistency in performance over all six domains is exagger-

ated by how well it performs in the MAX-SAT problem domain. This leads to a large

distribution in normalised objective function value with only DynILS offering a greater

variation in performance.

119

CHAPTER 6: AN IMPROVED Choice Function HEURISTIC SELECTION FOR

CROSS-DOMAIN HEURISTIC SEARCH

Figure 6.4: Box and whisker comparison of 20 CHeSC2011 entrants and Choice Func-

tion - All Moves using normalised objective function

AdapHH

ML

VNS−TW

PHUNTER

ISEA

NAHH

HAEA

EPH

HAHA

KSATS

ACO−HH

XCJ

GenHive

DynILS

SA−ILS

SelfS

AVEGNep

MCHH−S

GISS

Ant−Q

CF−AM

0.00 0.25 0.50 0.75 1.00
Normalised Cost Function

H
yp

er
−

he
ur

is
tic

Figure 6.5: Box and whisker comparison of 20 CHeSC2011 entrants and Modified

Choice Function - All Moves using normalised objective function

AdapHH

ML

VNS−TW

PHUNTER

ISEA

NAHH

HAEA

EPH

HAHA

KSATS

ACO−HH

XCJ

GenHive

SA−ILS

DynILS

SelfS

AVEGNep

MCF−AM

GISS

MCHH−S

Ant−Q

0.00 0.25 0.50 0.75 1.00
Normalised Cost Function

H
yp

er
−

he
ur

is
tic

120

CHAPTER 6: AN IMPROVED Choice Function HEURISTIC SELECTION FOR

CROSS-DOMAIN HEURISTIC SEARCH

6.2.4 Direct comparison between Choice Function - All Moves and Modified

Choice Function - All Moves hyper-heuristics using CHeSC2011 bench-

mark instances

The Formula One scoring system is limited in that it only measures relative perfor-

mance against a set of previous approaches. A direct comparison between the two

experiments can be performed on the raw objective values achieved by both hyper-

heuristics. Table 6.3 shows the results of an independent Student’s t-test within a 95%

confidence interval on the values of each of the 31 runs for each instance in the com-

petition. Where this table refers to a particular instance number, this represents the

order in which this instance appears in the list of the instances tested for CHeSC2011

from Table 2.11, rather than the HyFlex index of that problem instance1. In this ta-

ble, ≫ (≪) denotes that using Modified Choice Function - All Moves (Choice Function -

All Moves) is performing statistically significantly better than using Choice Function -

All Moves (Modified Choice Function - All Moves). Additionally, > (<) denotes that there

is no statistically significant performance variation between Modified Choice Function -

All Moves and Choice Function - All Moves however Modified Choice Function - All Moves

(Choice Function - All Moves) performs slightly better on average.

Table 6.3: Pairwise comparison between Modified Choice Function - All Moves and

Choice Function - All Moves using an independent Student’s t-test

Problem Domain Instance 1 Instance 2 Instance 3 Instance 4 Instance 5

MAX-SAT ≫ ≫ ≫ ≫ ≫
Bin Packing < ≫ ≫ < ≪
Personnel Scheduling < > > < >

Permutation Flow Shop ≫ ≫ ≫ ≫ ≫
TSP ≪ < ≪ ≫ >

VRP ≫ ≫ ≫ ≫ ≫

These results show the Modified Choice Function statistically significantly outperforming

the classic Choice Function in 3 of the 6 problem domains; MAX-SAT, permutation flow

shop and the vehicle routing problem. In many cases there is no statistically significant

difference in performance. In only 3 of the 30 problem instances does the original Choice

Function - All Moves performs statistically significantly better than Modified Choice Func-

tion - All Moves. These three cases are interesting as they are in problem domains where

it is possible for either hyper-heuristic to statistically significantly outperform the other

on an individual instance.
1e.g. instance 1 for MAX-SAT is the first instance tested in this domain with HyFlex index 3 in Table 2.11

121

CHAPTER 6: AN IMPROVED Choice Function HEURISTIC SELECTION FOR

CROSS-DOMAIN HEURISTIC SEARCH

In order to analyse the performance of both hyper-heuristics to a greater level of

depth, extra analysis can be performed on the performance during individual runs.

Instance 3 and Instance 4 from the travelling salesman problem domain are chosen,

as each hyper-heuristic statistically significantly outperforms the other in one of these

instances. These instances correspond to ‘rat575’ and ‘u2152’ from Reinelt [187] with

HyFlex indexes of 2 and 7, and consist of 575 and 2152 cities respectively. Figure 6.6

and Figure 6.7 plot the average fitness value of the current ‘working’ solution and best

solution found so far over time, for 10 runs of a given hyper-heuristic. Each run lasts

for 484 seconds, as allowed by the benchmarking tool provided by the CHeSC2011 or-

ganisers for the machine used. As the travelling salesman problem is modelled as a

minimisation problem, a lower objective function value is better.

Figure 6.6(a) and Figure 6.6(b) show the average performance of 10 runs of Choice Func-

tion - All Moves and Modified Choice Function - All Moves on ‘rat575’. In this instance,

Choice Function was shown to statistically significantly outperform the Modified Choice

Function in Table 6.3. The red line on each figure corresponds to the average fitness

value of the best solution found so far, with the blue line denoting the average fitness

value of the current working solution. Overall there is limited improvement in ob-

jective function value in both hyper-heuristics relative to the range of fitness values

encountered. In the case of Choice Function - All Moves, the average working solution

value is between around 7000 and 1500 during the search process. There is evidence of

some diversification in solution quality, however in general the working value tends

towards the best value encountered. With Modified Choice Function - All Moves, there is

a high average current working solution value in the early stages of the search. As this

method focusses on intensification, it is likely that in some runs this hyper-heuristic can

get stuck in poor quality regions of the search space, particularly early in the search if

given a poor starting point. After the initial stages where searching within poor qual-

ity regions is more prevalent, the average current working solution values for Modified

Choice Function - All Moves are within a much smaller range than for Choice Function

- All Moves. On this instance Choice Function - All Moves outperforms Modified Choice

Function - All Moves in terms of best solution found at the end of a run, with each

hyper-heuristic averaging scores of 6963.12 and 6979.59 respectively.

Figure 6.7(a) and Figure 6.7(b) show the average performance of 10 runs of Choice Func-

tion - All Moves and Modified Choice Function - All Moves on ‘u2152’. In this instance,

Modified Choice Function was seen to statistically significantly outperform the Choice

Function in Table 6.3. Very similar behaviour is observed by both hyper-heuristics to

that shown in Figure 6.6 for the previous instance. Again, it is possible for the Mod-

122

CHAPTER 6: AN IMPROVED Choice Function HEURISTIC SELECTION FOR

CROSS-DOMAIN HEURISTIC SEARCH

Figure 6.6: Average working and global best fitness values with respect to time for 10

runs on the ‘rat575’ instance of the travelling salesman problem
(a) Choice Function - All Moves

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 50 100 150 200 250 300 350 400 450

A
v

e
ra

g
e

 F
it

n
e

ss
 V

a
lu

e

Time (seconds)

Current Working Global Best

(b) Modified Choice Function - All Moves

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 50 100 150 200 250 300 350 400 450

A
v

e
ra

g
e

 F
it

n
e

ss
 V

a
lu

e

Time (seconds)

Current Working Global Best

123

CHAPTER 6: AN IMPROVED Choice Function HEURISTIC SELECTION FOR

CROSS-DOMAIN HEURISTIC SEARCH

Figure 6.7: Average working and global best fitness values with respect to time for 10

runs on the ‘u2152’ instance of the travelling salesman problem
(a) Choice Function - All Moves

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 50 100 150 200 250 300 350 400 450

A
v

e
ra

g
e

 F
it

n
e

ss
 V

a
lu

e

Time (seconds)

Current Working Global Best

(b) Modified Choice Function - All Moves

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 50 100 150 200 250 300 350 400 450

A
v

e
ra

g
e

 F
it

n
e

ss
 V

a
lu

e

Time (seconds)

Current Working Global Best

124

CHAPTER 6: AN IMPROVED Choice Function HEURISTIC SELECTION FOR

CROSS-DOMAIN HEURISTIC SEARCH

ified Choice Function to be rooted in areas of the search space with poor quality solu-

tions. Similar patterns also emerge in terms of the range of objective function values

observed for the current working solution. Choice Function - All Moves again operates

over a much larger range of objective function values once the effects of the early stages

of the Modified Choice Function have worn off. In this case Modified Choice Function - All

Moves outperforms Choice Function - All Moves in terms of best solution found with each

hyper-heuristic averaging scores of 69731.92 and 72270.33 respectively.

Figure 6.6 and Figure 6.7 along with Table 6.3 highlight a key issue in hyper-heuristic

design. Similar behaviour patterns are shown by both hyper-heuristics on two in-

stances of the same type with varying results in terms of performance. In particular,

the emphasis placed on intensification by the Modified Choice Function is beneficial in the

case of ‘u2152’ but not ‘rat575’. These results suggest that there are in fact properties

on a per instance basis, as well as on a per domain basis, for which a particular hyper-

heuristic will work well. This adds an extra layer of complexity when designing hyper-

heuristics general enough to perform well on multiple domains, as good performance

in a given instance of a problem does not necessarily suggest that a hyper-heuristic will

work well for all instances of that domain.

6.3 Performance of the Modified Choice Function on the MKP

In Chapter 5 a number of hyper-heuristics utilising crossover were tested on the multi-

dimensional knapsack problem (MKP). This section briefly compares the performance

of the Modified Choice Function introduced in this chapter with the best performing

hyper-heuristic from Chapter 5. The Modified Choice Function is paired with Late Accep-

tance Strategy acceptance criterion, in order to isolate the effect of varying the heuristic

selection method. Exactly the same experimental setup is used from Chapter 5 using

three well-known benchmark libraries from the literature. In each case a run for a sin-

gle instance terminates once 106 fitness evaluations have been performed. A single run

of each hyper-heuristic is performed on each of the instances in the ORLib and SAC-94

benchmark sets. In the case of the larger GK instances provided by Glover and Kochen-

berger [88], results are presented as the average of 10 runs for each instance. Crossover

is controlled at the domain level, maintaining a list of elite solutions initialised using

the jqdInit method (introduced in Section 5.2.2) to be used when a second solution

is required for crossover. The only difference between the Choice Function - Late Accep-

tance Strategy hyper-heuristic of Chapter 5 and Modified Choice Function - Late Acceptance

Strategy is the weighting of f1, f2 and f3.

125

CHAPTER 6: AN IMPROVED Choice Function HEURISTIC SELECTION FOR

CROSS-DOMAIN HEURISTIC SEARCH

Table 6.4 shows the results of the Modified Choice Function - Late Acceptance Strategy

hyper-heuristic over the 270 ORLib instances in terms of average %-gap, along with

the results for Choice Function - Late Acceptance Strategy as provided in Table 5.6.

Table 6.4: Comparison between Choice Function - Late Acceptance Strategy (CF-LAS)

and Modified Choice Function - Late Acceptance Strategy (MCF-LAS) on all 270

instances of ORLib in terms of %-gap

Instance Set CF-LAS MCF-LAS

OR5x100-0.25 1.16 0.20 1.09 0.21

OR5x100-0.50 0.53 0.08 0.57 0.08

OR5x100-0.75 0.40 0.07 0.38 0.05

OR5x250-0.25 0.42 0.04 0.41 0.10

OR5x250-0.50 0.20 0.03 0.22 0.04

OR5x250-0.75 0.13 0.01 0.14 0.02

OR5x500-0.25 0.19 0.03 0.21 0.04

OR5x500-0.50 0.10 0.03 0.10 0.03

OR5x500-0.75 0.06 0.01 0.06 0.01

OR10x100-0.25 2.00 0.22 1.87 0.16

OR10x100-0.50 1.02 0.19 0.95 0.16

OR10x100-0.75 0.58 0.08 0.53 0.09

OR10x250-0.25 0.83 0.09 0.79 0.11

OR10x250-0.50 0.39 0.06 0.41 0.05

OR10x250-0.75 0.23 0.03 0.24 0.03

OR10x500-0.25 0.40 0.06 0.44 0.07

OR10x500-0.50 0.18 0.02 0.20 0.03

OR10x500-0.75 0.12 0.01 0.13 0.01

OR30x100-0.25 3.45 0.46 3.61 0.53

OR30x100-0.50 1.56 0.26 1.60 0.29

OR30x100-0.75 0.92 0.08 0.97 0.15

OR30x250-0.25 1.55 0.17 1.75 0.22

OR30x250-0.50 0.71 0.08 0.79 0.10

OR30x250-0.75 0.39 0.04 0.43 0.07

OR30x500-0.25 0.92 0.10 1.05 0.10

OR30x500-0.50 0.39 0.05 0.44 0.06

OR30x500-0.75 0.23 0.02 0.27 0.02

AverageStdDev 0.70 0.09 0.73 0.11

The results for both hyper-heuristics are very similar over the ORLib instances with

126

CHAPTER 6: AN IMPROVED Choice Function HEURISTIC SELECTION FOR

CROSS-DOMAIN HEURISTIC SEARCH

Choice Function - Late Acceptance Strategy obtaining an average %-gap of 0.70 and Mod-

ified Choice Function - Late Acceptance Strategy a %-gap of 0.73 with little difference in

standard deviation. An independent Student’s t-test within a 95% confidence interval

shows no difference in statistical significance between Choice Function - Late Acceptance

Strategy and Modified Choice Function - Late Acceptance Strategy on this benchmark set.

This is in contrast to the results in the previous section where over six different problem

domains, significant difference in performance is often observed.

Table 6.5(a) and Table 6.5(b) compare the performance of Choice Function - Late Accep-

tance Strategy and Modified Choice Function - Late Acceptance Strategy over the SAC-94

and GK problem instances.

Table 6.5: (a) Success rate of Choice Function - Late Acceptance Strategy and Modified

Choice Function - Late Acceptance Strategy over SAC-94 instances and (b) Per-

formance of Choice Function - Late Acceptance Strategy and Modified Choice

Function - Late Acceptance Strategy on Glover and Kochenberger instances
(a)

Dataset CF-LAS MCF-LAS

hp 0.00 0.00

pb 0.67 0.50

pet 0.50 0.50

sento 1.00 1.00

weing 0.63 0.63

weish 1.00 0.90

(b)

Instance CF-LAS MCF-LAS

GK01 0.57 1.49 0.58 1.66

GK02 0.81 3.86 0.78 3.75

GK03 0.63 3.10 0.63 4.30

GK04 0.91 3.77 0.86 5.81

GK05 0.45 3.00 0.44 5.83

GK06 0.76 5.02 0.78 4.04

GK07 0.19 6.48 0.22 2.88

GK08 0.33 5.68 0.31 7.60

GK09 0.07 7.47 0.07 6.85

GK10 0.14 8.68 0.14 11.71

GK11 0.13 12.34 0.14 11.10

Average 0.450.30 0.450.29

Again the two methods are showing virtually identical performance on both of these

benchmark sets. Modified Choice Function - Late Acceptance Strategy is slightly outper-

formed in terms of success rate in the pb and weish instances from SAC-94, finding

the optimal solution in one and three less instances respectively compared to Choice

Function - Late Acceptance Strategy. On the GK benchmark set, both methods obtain the

same average %-gap over 10 runs of each of the 11 instances.

The results of Chapter 5 suggested that in this problem domain the move acceptance

127

CHAPTER 6: AN IMPROVED Choice Function HEURISTIC SELECTION FOR

CROSS-DOMAIN HEURISTIC SEARCH

criterion chosen is more important than the heuristic selection mechanism used, echo-

ing the findings of Özcan et al. [173, 174] and Smet et al. [198] amongst others. The

combination of the results of this chapter and Chapter 5 suggest that the relationship

between performance and heuristic selection and move acceptance is more complex

than this and can vary depending on the domain used. It is also possible that general-

ising the comparison of these components in such a way is not a good idea, and that in

fact instance specific dependencies between problems and hyper-heuristic components

exist as is the case in Section 6.2.4. A similar notion is discussed by Misir et al. [156],

who observed that the move acceptance criteria used can be more important than the

heuristic selection mechanism under certain experimental circumstances.

6.4 Concluding Remarks

In this chapter a modified version of the Choice Function heuristic selection method is

described, managing the parameters which weight the intensification and diversifica-

tion components of Choice Function scores through methods inspired by reinforcement

learning. The Modified Choice Function aggressively rewards the intensification weight-

ing and heavily punishes the diversification component each time an improvement is

made. It is observed that managing these parameters in such a way provides great

benefits compared to a classic implementation of the Choice Function, when applied

to the CHeSC2011 benchmarks. The Modified Choice Function combined with All Moves

move acceptance performs particularly well in the MAX-SAT problem domain, outper-

forming all of the CHeSC2011 entrants, however the performance over all 6 problem

domains is varied. A closer analysis of the two heuristic selection mechanisms reveals

that there can be statistically significant domination by one heuristic selection mecha-

nism over the other on different instances within the same domain. The Modified Choice

Function was then paired with Late Acceptance Strategy move acceptance and compared

to the best hyper-heuristic of Chapter 5 on three standard benchmark sets for the MKP.

Very little variation in performance was observed on this problem domain, where pre-

viously move acceptance has been observed to be a more important hyper-heuristic

component than heuristic selection method. In this chapter no operators in the HyFlex

framework which require more than one input solution such as crossover have been

used. The next chapter will introduce such operators into this hyper-heuristic, combin-

ing the ideas of this chapter and Chapter 5.

128

CHAPTER 7

Crossover Control in Cross-domain

Optimisation

In the previous chapter a variant of Choice Function heuristic selection was presented,

showing improved results on average over six problem domains offered by the HyFlex

framework. This chapter brings together the crossover management strategies of Chap-

ter 5 and selection hyper-heuristics using the Modified Choice Function heuristic selec-

tion method proposed in Chapter 6. In Section 7.1, one of the crossover management

schemes from Chapter 5 will be used with this hyper-heuristic and applied to the six

HyFlex problem domains. The crossover mechanism of the winning entrant of the first

Cross-domain Heuristic Search Challenge (CHeSC2011) is introduced in Section 7.2.

This crossover mechanism is included in the best performing Modified Choice Function-

based selection hyper-heuristic in Section 7.2.1. Finally in Section 7.3 the crossover

management scheme within the CHeSC2011 winner is replaced by the crossover man-

agement strategy from Section 7.1.

7.1 The Modified Choice Function - All Moves hyper-heuristic

with and without crossover operators in cross-domain op-

timisation

In Chapter 5 the management of crossover operators in selection hyper-heuristics at

two levels of abstraction was investigated. Although against the traditionally accepted

definition of hyper-heuristics, which strictly enforces the domain barrier, improved

performance was observed by integrating problem domain-specific knowledge. Unfor-

tunately it is not always the case that it is possible to choose the level at which crossover

should operate. In fact, if taking the traditional hyper-heuristic model of separating the

129

CHAPTER 7: CROSSOVER CONTROL IN CROSS-DOMAIN OPTIMISATION

heuristic and problem search space literally, this is breaking the cardinal rule of cross-

ing the domain barrier. The HyFlex [27, 166] framework introduced in Section 2.5 is one

such case where crossover management can only be performed at the hyper-heuristic

level. In Chapter 6 the Modified Choice Function heuristic selection mechanism was pre-

sented and applied to the six problem domains provided by the HyFlex framework.

In order to simplify the comparison of heuristic selection mechanisms in Chapter 6

crossover was omitted entirely, however it was observed in Chapter 5 that the use of

crossover can be beneficial in some problem domains.

In the CHeSC2011 competition very few of the leading entrants provide a strategy for

controlling crossover1. In fact of the leading ten entrants, four omit crossover low-level

heuristics entirely including two of the top three hyper-heuristics. Two of the top ten

do not provide a description of their algorithm at all, so no comment can be made re-

garding crossover use. A further two include crossover operators but provide no infor-

mation of how the second solution is chosen. Only two of the top ten hyper-heuristics

provide descriptions for managing the second input required by a crossover operator.

The first simply uses the current best-of-run solution as the second input solution. The

second gives a detailed explanation of a crossover management scheme and was the

eventual CHeSC2011 competition winner. It is clear that the management of the second

inputs required for crossover is not considered an important part of hyper-heuristic

design. Indeed, there are no standard mechanisms defined for controlling crossover

in this context. In spite of this, the only method in the top ten which provides a de-

tailed and considered strategy for controlling crossover was the best performing hyper-

heuristic overall. It may be no coincidence that the only method to consider anything

more than an arbitrary crossover control mechanism won the CHeSC2011 competition.

7.1.1 Crossover management scheme at the hyper-heuristic level

Here crossover is included in a Modified Choice Function - All Moves hyper-heuristic,

with the second solutions for crossover managed at the hyper-heuristic level as defined

in Chapter 5. A memory of elite solutions is maintained from which a second solution,

necessary for crossover operators, is selected. An n-ary operator is a low-level heuristic

which requires n solutions as input (assuming n > 1). In the HyFlex framework the

only n-ary operators currently available are crossover operators. Each time a crossover

operator is chosen, the first input solution is the current solution. For the second in-

put solution, a random solution is provided from a memory of elite solutions of length

1Descriptions of the hyper-heuristics entered into the competition are taken from: http://www.asap.

cs.nott.ac.uk/external/chesc2011/results.html

130

CHAPTER 7: CROSSOVER CONTROL IN CROSS-DOMAIN OPTIMISATION

m. The memory effectively contains the best m solutions found so far. At every m-th

selection of a crossover operator the elite memory of solutions is not used. Instead,

a new solution generated from scratch using the solution initialisation methods pro-

vided by the framework is used. If the application of a crossover operator yields an

improvement in solution quality compared to the worst solution in the elite memory,

the new solution replaces it in the memory, provided that the new solution does not

already exist in the memory. This scheme intends to ensure that poor quality solutions

early in the search are quickly expunged from the memory, whilst still preserving a

certain element of diversity. A generalised pseudocode of this mechanism is shown in

Algorithm 9.

Algorithm 9 Crossover input management scheme used in Section 7.1

1: Inputs:

2: current solution (curSoln)

3: array of solutions in elite memory (memSoln[m])

4: crossover operator selected (crossOp)

5: variable to count crossover calls (calledCount)

6: if crossover operator is selected then

7: calledCount++

8: if calledCount mod m+1 == 0 then

9: generate a new solution for crossover, newCrossSoln

10: apply crossover operator - newSoln← crossOp(curSoln, newCrossSoln)

11: else

12: randIndex ← random Int between 0 and m-1

13: apply crossover operator - newSoln← crossOp(curSoln, memSoln[randIndex])

14: end if

15: if newSoln is better than the worst solution in memSoln[] then

16: newSoln replaces the worst solution in memSoln[] //if it is not already in

memSoln[]

17: end if

18: end if

The hyper-heuristic level crossover management scheme in Chapter 5 used a memory

of solutions as potential input solutions for n-ary operators. The length of this memory

was relative to the size of instance currently being solved. The notion of instance size is

particularly difficult to define when performing cross-domain optimisation. In the case

of the CHeSC2011 benchmarks the problems available vary widely in terms of their

parameters and characteristics. As a result, the memory length of potential solutions

131

CHAPTER 7: CROSSOVER CONTROL IN CROSS-DOMAIN OPTIMISATION

for n-ary operators m is set to 10 for these experiments.

7.1.2 Indirect comparison of Modified Choice Function - All Moves with and

without crossover over the CHeSC2011 benchmark domains

This section will compare the Modified Choice Function - All Moves hyper-heuristic of

Chapter 6, which does not use crossover low-level heuristics, with the same hyper-

heuristic using the crossover management scheme described in Section 7.1.1. An indi-

rect comparison is performed, ranking each hyper-heuristic against the set of hyper-

heuristics submitted to the CHeSC2011 competition over a variety of benchmark do-

mains. As discussed previously, many of the leading entrants of the CHeSC2011 com-

petition do not include crossover low-level heuristics, as no natural mechanism exists

to manage the second solution needed for such heuristics. Despite this the winning

hyper-heuristic of the CHeSC2011 competition does include a strategy for controlling

crossover, suggesting that crossover could be useful in obtaining good quality solutions

in a number of domains.

Table 7.1 shows the results of the relative performance of the Modified Choice Function

- All Moves hyper-heuristics compared to CHeSC2011 competition entrants, using the

Formula One scoring system introduced in Section 6.2.3. Table 7.1(a) shows the results

of the Modified Choice Function - All Moves hyper-heuristic without crossover which

was shown to outperform the classic Choice Function on these problems in Chapter 6.

Table 7.1(b) shows the relative results of Modified Choice Function - All Moves including

crossover management as described in Section 7.1.1, using the same scoring metrics.

From these tables, it can be seen that including crossover operators clearly gives a

marked improvement in performance when compared to the CHeSC2011 entrants.

Where the Modified Choice Function - All Moves hyper-heuristic without crossover scores

38.85 points, ranking 12th out of 21 hyper-heuristics, the same hyper-heuristic includ-

ing crossover scores 73.7 points and ranks 6th. The top five hyper-heuristics are un-

changed from the original CHeSC2011 competition, with the ‘AdapHH’ method of Misir

et al. [155] in first place with 177.1 points when ranked against Modified Choice Function

- All Moves without crossover and 179.35 when compared to Modified Choice Function

- All Moves with crossover. This is interesting as despite being outperformed by the

hyper-heuristic containing crossover on average, the variant which does not include

crossover is beaten less often by the best hyper-heuristic overall. This suggests that in at

least one problem domain, the Modified Choice Function - All Moves hyper-heuristic with-

out crossover is outperforming the Modified Choice Function - All Moves hyper-heuristic

with crossover. Most of the competition entrants remain in the same relative order

132

CHAPTER 7: CROSSOVER CONTROL IN CROSS-DOMAIN OPTIMISATION

Table 7.1: Results of the median of 31 runs of the Modified Choice Function - All Moves

hyper-heuristic (a) without crossover and (b) with crossover, compared to

CHeSC2011 competitors using Formula One scores over all problem do-

mains

(a)

Rank Name Score

1 AdapHH 177.1

2 VNS-TW 131.6

3 ML 127.5

4 PHunter 90.25

5 EPH 88.75

6 NAHH 72.5

7 HAHA 71.85

8 ISEA 68.5

9 KSATS-HH 61.35

10 HAEA 52

11 ACO-HH 39

12 MCF - AM 38.85

13 GenHive 36.5

14 DynILS 27

15 SA-ILS 22.75

16 XCJ 20.5

17 AVEG-Nep 19.5

18 GISS 16.25

19 SelfSearch 5

20 MCHH-S 3.25

21 Ant-Q 0

(b)

Rank Name Score

1 AdapHH 179.35

2 VNS-TW 129.35

3 ML 122

4 PHunter 86.75

5 EPH 84.75

6 MCF - AM 73.7

7 HAHA 73.6

8 NAHH 70.5

9 ISEA 65.5

10 KSATS-HH 57.2

11 HAEA 49

12 ACO-HH 37

13 GenHive 33.5

14 SA-ILS 22.1

15 DynILS 22

16 XCJ 19.5

17 AVEG-Nep 18.5

18 GISS 16.6

19 SelfSearch 5.5

20 MCHH-S 3.6

21 Ant-Q 0

133

CHAPTER 7: CROSSOVER CONTROL IN CROSS-DOMAIN OPTIMISATION

when Modified Choice Function - All Moves with crossover is added for comparison with

the exception of SA-ILS and DynILS which swap places and NAHH and HAHA which

also exchange positions.

Although using the Formula One scoring system as a comparison method gives a good

indication of overall performance over all six problem domains, it may be that one

method excels in one or more different domains to another. Here the performance

in some of the individual problem domains will be presented, again relative to the

CHeSC2011 competition entrants. In the previous chapter, Figure 6.2 and Figure 6.3

showed the performance of Modified Choice Function - All Moves without crossover

which scored 32.85 points in the MAX-SAT problem domain and 6 points in the per-

sonnel scheduling domain. This hyper-heuristic scored 0 points in the other 4 domains.

Figure 7.1 shows the number of Formula One points of each of the CHeSC2011 entrants

and the Modified Choice Function - All Moves hyper-heuristic with crossover in the MAX-

SAT problem domain. Here the proposed hyper-heuristic with crossover scores 21.2

points and is the fifth best competitor. Crucially the Modified Choice Function - All Moves

hyper-heuristic is no longer the highest scoring method, suggesting crossover is in fact

detrimental to performance in this domain. Despite the fact that it is no longer the best

method in this domain it still offers competitive performance, outperforming 16 of the

other 20 hyper-heuristics. The best hyper-heuristic is AdapHH [155] which scores 34.1

points.

Figure 7.2 shows the performance of Modified Choice Function - All Moves hyper-

heuristic with crossover and CHeSC2011 entrants on the personnel scheduling domain

using the Formula One scoring system. In this problem domain Modified Choice Func-

tion - All Moves hyper-heuristic with crossover performs slightly better than Modified

Choice Function - All Moves hyper-heuristic without crossover, with each method scor-

ing 8.5 points and 6 points respectively. The Modified Choice Function - All Moves hyper-

heuristic with crossover performs almost as well as the winning CHeSC2011 entrant

(AdapHH), scoring with only 0.5 points separating these two methods. The best per-

forming hyper-heuristic in personnel scheduling is VNS-TW [105] with 37.5 points.

As discussed in Section 6.2.3, the Modified Choice Function - All Moves hyper-heuristic

without crossover scores 0 points in all other domains. Including crossover leads to

points being scored in two further domains, bin packing and the vehicle routing prob-

lem.

Figure 7.3 shows the results of the Modified Choice Function - All Moves hyper-heuristic

with crossover over the bin packing problem instances. This hyper-heuristic ranks

third in this domain with 21 points beaten by only two other methods, ISEA [131]

134

CHAPTER 7: CROSSOVER CONTROL IN CROSS-DOMAIN OPTIMISATION

Figure 7.1: Number of points scored in the MAX-SAT domain using the Formula One

system for each CHeSC2011 competitor and Modified Choice Function - All

Moves hyper-heuristic with crossover

0 5 10 15 20 25 30 35

AdapHH
VNS−TW

HAHA
KSATS

MCF−AM
NAHH

ML
AVEG−Nep
PHUNTER

MCHH−S
ISEA
XCJ

GISS
SA−ILS

H
yp

er
−h

eu
ris

tic

Formula One points scored

Figure 7.2: Number of points scored in the personnel scheduling domain using the

Formula One system for each CHeSC2011 competitor and Modified Choice

Function - All Moves hyper-heuristic with crossover

0 5 10 15 20 25 30 35 40

VNS−TW
ML

HAHA
SA−ILS

ISEA
PHUNTER

GISS
EPH

AdapHH
MCF−AM

KSATS
GenHive

SelfSearch
HAEA
NAHH

H
yp

er
−h

eu
ris

tic

Formula One points scored

135

CHAPTER 7: CROSSOVER CONTROL IN CROSS-DOMAIN OPTIMISATION

Figure 7.3: Number of points scored in the bin packing domain using the Formula

One system for each CHeSC2011 competitor and Modified Choice Function -

All Moves hyper-heuristic with crossover

0 5 10 15 20 25 30 35 40 45

AdapHH
ISEA

MCF−AM
ACO−HH

NAHH
XCJ

GenHive
ML

DynILS
KSATS

EPH
PHUNTER

VNS−TW
HAEA

H
yp

er
−h

eu
ris

tic

Formula One points scored

and AdapHH which score 29 and 45 points respectively. This is a big improvement on

the 0 points scored by the version of this hyper-heuristic without crossover presented

in Chapter 6, indicating that crossover greatly improves the solution quality in this

domain.

Figure 7.4 presents the results for the hyper-heuristic with crossover over the instances

of the vehicle routing problem provided by HyFlex. Again using crossover results in

an improvement in performance, obtaining 23 points and ranking third place. Inter-

estingly the other methods in the top three places also utilise crossover operators. The

first placed hyper-heuristic is PHUNTER [39] with 30 points and second is HAEA with

24 points. This suggests that using crossover may be desirable when trying to obtain

solutions comparable with state-of-the-art hyper-heuristics in this problem domain.

Despite offering a great improvement in performance in terms of Formula One scores

when crossover is added, Modified Choice Function - All Moves still scores 0 points in the

permutation flow shop and travelling salesman problem domains.

The best performing hyper-heuristics in the permutation flow shop domain are ML,

AdapHH and VNS-TW. These are also the top three hyper-heuristics in the competi-

tion overall. Both ML and VNS-TW use an underlying Iterated Local Search [140, 141]

framework. Iterated Local Search consists of two phases, ‘shaking’ and ‘local improve-

136

CHAPTER 7: CROSSOVER CONTROL IN CROSS-DOMAIN OPTIMISATION

Figure 7.4: Number of points scored in the vehicle routing problem domain using the

Formula One system for each CHeSC2011 competitor and Modified Choice

Function - All Moves hyper-heuristic with crossover

0 5 10 15 20 25 30

PHUNTER

HAEA

MCF−AM

KSATS

ML

AdapHH

HAHA

EPH

AVEG−Nep

GISS

GenHive

VNS−TW

XCJ

NAHH

ISEA

SA−ILS

ACO−HH

H
yp

er
−h

eu
ris

tic

Formula One points scored

ment’. The shaking phase is applied first and uses perturbation operators to modify

the current solution and move the search into a different area of the search space. Fol-

lowing this one or more local search operators are applied in the second phase to move

the new solution to a local optimum. In both of these hyper-heuristics, only mutation

low-level heuristics are used in the shaking phase, all crossover low-level heuristics are

omitted from the set of available heuristics. The FA and FC frameworks as defined by

Özcan et al. [174] were introduced as hyper-heuristic frameworks in Section 2.3.3. In

hyper-heuristic terms these two methods are effectively variants of the FC framework.

Although not strictly tied to the FC framework, AdapHH contains a number of mecha-

nisms which allow it to behave as if it were an FC hyper-heuristic. It is possible that this

hyper-heuristic is behaving in this way in order to be effective in this domain. Modified

Choice Function - All Moves uses an FA framework which simply selects and applies a

low-level heuristic from the set of available heuristics, with no discrimination between

heuristic types. Performance in this domain could be affected by not strictly enforcing

local search each time a modification is made in order to reach a local minimum.

In the case of the travelling salesman problem the best three hyper-heuristics are

AdapHH, EPH and PHUNTER. Again, these hyper-heuristics are all amongst the top

137

CHAPTER 7: CROSSOVER CONTROL IN CROSS-DOMAIN OPTIMISATION

entrants to the CHeSC2011 competition finishing first, fourth and fifth respectively. All

of these hyper-heuristics are capable of selecting crossover low-level heuristics, indicat-

ing that crossover may be beneficial in this domain. The hyper-heuristics which finish

second and third overall, VNS-TW and ML are fourth and sixth in this problem do-

main, with another ILS-based hyper-heuristic, DynILS, coming 5th. These three hyper-

heuristics are all based on the iterative application of a perturbation operator, followed

by a local search phase and do not select from the set of crossover low-level heuristics.

This suggests that although crossover low-level heuristics are beneficial to the state-of-

the-art methods, they are not necessary to obtain above average performance. Despite

the fact that the leading entrants are all hyper-heuristics that use crossover, surprisingly

Modified Choice Function - All Moves with crossover performs badly in this domain. This

implies that it may not simply be a case of whether or not to include crossover, and that

the best crossover management methods may in fact be domain-specific. It may also be

the case that it is not the low-level heuristic set used which determines the quality of

solutions found in this domain, but in fact the synergy between other hyper-heuristic

components.

Figure 7.5 provides a box whisker plot of the performance of the Modified Choice Func-

tion - All Moves with crossover compared to the CHeSC2011 entrants, using the nor-

malised objective function of Gaspero and Urli [81] introduced in Section 6.2.3. Again,

the 21 hyper-heuristics being compared are sorted by median normalised objective

function value with a lower value indicating better performance.

Ranking hyper-heuristics by median normalised objective function value modifies the

position of many of the top ten competitors from Table 7.1(b). Effectively this metric

measures the distance from the best performing hyper-heuristics in every single in-

stance tested relative to the best and worst performing hyper-heuristics. This could

arguably provide a better measure of average performance over all 30 instances than

the Formula One scoring system. In any case the best performing hyper-heuristic is

still AdapHH using this scoring mechanism. ML and VNS-TW exchange places becom-

ing the second and third best hyper-heuristics respectively. EPH, HAHA and Modified

Choice Function - All Moves all drop places, with Modified Choice Function - All Moves the

eighth best hyper-heuristic when compared this way. Conversely NAHH [147], ISEA

and HAEA all rank higher than when compared using the Formula One ranking sys-

tem. It is likely that those hyper-heuristics which rank in a higher position using the

Formula One system perform better in some problem domains than others. The hyper-

heuristics placing higher using median normalised objective function value are likely

to provide better performance on average over all domains.

138

CHAPTER 7: CROSSOVER CONTROL IN CROSS-DOMAIN OPTIMISATION

Figure 7.5: Box and whisker comparison of 21 CHeSC2011 entrants and Modified

Choice Function - All Moves with crossover using normalised objective func-

tion

AdapHH

ML

VNS−TW

PHUNTER

NAHH

ISEA

HAEA

EPH

MCF−AM_Cross

HAHA

KSATS

XCJ

GenHive

ACO−HH

DynILS

SelfS

SA−ILS

AVEGNep

GISS

MCHH−S

Ant−Q

0.00 0.25 0.50 0.75 1.00
Normalised Cost Function

H
yp

er
−

he
ur

is
tic

7.1.3 Direct comparison of Modified Choice Function - All Moves with and

without crossover over the HyFlex benchmark domains

The previous section presented an indirect comparison of the Modified Choice Function

- All Moves hyper-heuristic with crossover omitted and with crossover managed at the

hyper-heuristic level using the Formula One scoring system. The comparison was indi-

rect as each method was ranked against a common set of hyper-heuristics which were

entered into the CHeSC2011 competition. Whilst this gives a reasonable overview of

performance generally and in some specific domains, little can be said of the perfor-

mance difference in the domains where both methods score 0 points. This section will

provide a direct comparison between the objective function values obtained by both

hyper-heuristics in 31 runs of each of the 30 competition instances.

Table 7.2 shows the results of an independent Student’s t-test within a 95% confidence

interval on the objective function values for 31 runs of each instance. For each prob-

lem domain, five instances are tested. Each cell of the table provides the number of

instances of a particular domain in which there is a variation in performance between

the two hyper-heuristics. In this table, > and≫ denote the number of cases that Modi-

fied Choice Function - All Moves with crossover is outperforming Modified Choice Function

139

CHAPTER 7: CROSSOVER CONTROL IN CROSS-DOMAIN OPTIMISATION

Table 7.2: Pairwise comparison of Modified Choice Function - All Moves with and with-

out crossover using independent Student’s t-test

Problem Domain ≪ < > ≫
MAX-SAT 3 2 0 0

Bin Packing 0 0 0 5

Personnel Scheduling 1 1 3 0

Permutation Flow Shop 0 0 3 2

Travelling Salesman Problem 1 0 0 4

Vehicle Routing Problem 1 1 0 3

- All Moves without crossover on average or statistically significantly respectively. Con-

versely, < and ≪ denote the number of cases which the Modified Choice Function - All

Moves without crossover is outperforming Modified Choice Function - All Moves with

crossover on average or statistically significantly.

From this table it becomes clear that there is a certain pattern in the performance in

some problem domains with respect to whether or not crossover low-level heuristics

are used.

In the previous section it was shown that Modified Choice Function - All Moves is no

longer the best hyper-heuristic in the MAX-SAT domain when crossover low-level

heuristics are introduced. A direct comparison between the objective function values

shows that the Modified Choice Function - All Moves hyper-heuristic without crossover

performs better on average in all 5 instances of the competition set, with the difference

being statistically significant in 3 instances. Conversely, in bin packing and permuta-

tion flow shop, Modified Choice Function - All Moves with crossover outperforms Mod-

ified Choice Function - All Moves without crossover on average in all 5 instances. This

difference is statistically significant in all 5 bin packing instances and in 2 of the 5 per-

mutation flow shop instances. In the case of bin packing the difference in performance

was noted in the previous section, as there is a clear improvement in relative perfor-

mance against the CHeSC2011 competitors in this problem domain. For permutation

flow shop this difference was less clear in Section 7.1.2 as both methods scored 0 points

using the Formula One scoring system.

Differentiating between the performance of each hyper-heuristics in the other three

problem domains is more difficult. In personnel scheduling, both methods outper-

form each other on average in at least one of the instances with the variant not using

crossover obtaining statistically significantly better results in one instance. In the case

of both the travelling salesman problem and the vehicle routing problem it is the case

140

CHAPTER 7: CROSSOVER CONTROL IN CROSS-DOMAIN OPTIMISATION

that either including or omitting crossover low-level heuristics can provide statistically

significantly better results depending on the instance in question. This presents a prob-

lem when trying to generalise methods as performance does not only vary on a per

domain basis but also a per instance basis.

Figure 7.6 shows some of the information of Table 7.2 visually giving the number of

instances in which each hyper-heuristic performs best on average. With the exception

of MAX-SAT, the problem domains have been abbreviated in this figure as follows: bin

packing (BP), personnel scheduling (PS), permutation flow shop (PFS), the travelling

salesman problem (TSP) and the vehicle routing problem (VRP).

Figure 7.6: Number of competition instances in which Modified Choice Function - All

Moves hyper-heuristic with and without crossover perform best on average

for each CHeSC2011 problem domain

MAX−SAT BP PS PFS TSP VRP
0

1

2

3

4

5

N
u

m
b

er
 o

f
in

st
an

ce
s

Problem Domain

Without Crossover
With Crossover

In terms of the total number of instances in which each hyper-heuristic performed bet-

ter on average, Modified Choice Function - All Moves with crossover is better in 20 cases

and Modified Choice Function - All Moves without crossover better in 10 cases.

In the case of MAX-SAT, bin packing and permutation flow shop it seems that explicitly

including or removing crossover low-level heuristics from the set of available heuristics

could potentially lead to improved performance. With the remaining three domains,

particularly the travelling salesman problem and the vehicle routing problem, perfor-

mance can vary significantly depending on the instance being solved so making this

decision is less clear cut. Five instances is a small sample from which to provide general

comments on the performance of a hyper-heuristic, however it is clear that crossover

operators are beneficial in some problem domains and instances and not others.

141

CHAPTER 7: CROSSOVER CONTROL IN CROSS-DOMAIN OPTIMISATION

7.2 Introducing the crossover management scheme of the

CHeSC2011 winner into a Modified Choice Function - All

Moves hyper-heuristic using an FC framework

The winner of the CHeSC2011 competition, AdapHH [155], is currently considered as

the state-of-the-art selection hyper-heuristic in cross-domain search. As briefly men-

tioned in Section 2.3.3, the only method of the top 10 entrants to this competition to

provide a strategy was AdapHH. Unlike many of the other leading entrants, this hyper-

heuristic included crossover operators in the available low-level heuristic set. Al-

though the original description of this algorithm contained no mention of a method to

manage the second input solution required by crossover operators, the code of AdapHH

was later made publicly available with the crossover management scheme defined by

Misir [152]:

‘...a population of five solutions including previously explored new best

solutions is accommodated. They are applied using the current solution

and a randomly selected one from these five solutions. Each time a new

best solution is found, a randomly chosen solution from these solutions is

replaced by the new solution.’

The following two sections explore the introduction of different high-level hyper-

heuristic components, namely crossover input management schemes, into different

hyper-heuristics. Section 7.2.1 augments the hyper-heuristics of Section 7.1 to use the

FC framework as defined by Özcan et al. [174]. Following this the crossover manage-

ment scheme of Misir et al. [155] is introduced into the Modified Choice Function - All

Moves hyper-heuristic in Section 7.2.2.

7.2.1 The FC Modified Choice Function - All Moves hyper-heuristic with and

without crossover

The Modified Choice Function - All Moves hyper-heuristics in Section 7.1 operate using an

FA framework. That is, the hyper-heuristics select and apply a low-level heuristic from

the full set of available heuristics without discriminating between different heuristic

types. This section will modify these hyper-heuristics to operate using an FC frame-

work. As introduced in Section 2.3.3, Özcan et al. [174] describe four different selection

hyper-heuristic frameworks. Using their definition, a selection hyper-heuristic operat-

ing within an FC framework first selects and applies a heuristic from a set of mutational

142

CHAPTER 7: CROSSOVER CONTROL IN CROSS-DOMAIN OPTIMISATION

low-level heuristics, before selecting and applying a second low-level heuristic from a

set of hill climbers. This is the same framework used for the hyper-heuristics presented

in Chapter 5 and shown in Figure 5.2. As discussed in Section 7.1.2, the top three hyper-

heuristics in CHeSC2011 are all capable of behaving as FC selection hyper-heuristics.

Table 7.3 presents the results of Modified Choice Function - All Moves with and with-

out crossover, using an FC selection hyper-heuristic framework over the CHeSC2011

benchmarks. As with the previous experiments, the median of each of 31 ten minute

runs are used to compare a hyper-heuristic with the 20 entrants to CHeSC2011 using

the Formula One scoring system defined in Section 2.5.3. From Table 7.3(a) and Ta-

ble 7.3(b) it is clear that the FC versions of these hyper-heuristics perform slightly worse

than their FA counterparts presented in Section 7.1. Table 7.4 shows the breakdown of

points scored in each problem domain, compared to the CHeSC2011 entrants, for each

of the FA and FC Modified Choice Function - All Moves hyper-heuristics with and without

crossover .

As seen in Table 7.4, in the case of Modified Choice Function - All Moves without crossover,

very high scores are obtained in the MAX-SAT problem domain using this hyper-

heuristic within an FC framework. Despite performing well, the FC hyper-heuristic

is not the best method in this domain, unlike the FA Modified Choice Function - All Moves

of Chapter 6. The FC Modified Choice Function - All Moves without crossover scores

28.35 points in this domain whereas the FA version of this hyper-heuristic scored 32.85

points. The performance of these two hyper-heuristics over all six problem domains

is very similar in terms of Formula One score. The FC and FA Modified Choice Func-

tion - All Moves hyper-heuristics without crossover score 36.35 and 38.85 points in total

against the CHeSC2011 competitors. Both hyper-heuristics score 6 points in the person-

nel scheduling problem domain. Although the FC hyper-heuristic scores fewer points

in total, it does score 2 points in the vehicle routing problem where previously the FA

hyper-heuristic scored no points. This could be a direct result of the addition of a lo-

cal improvement phase. The methods which are first, second and third in this domain

all operate within frameworks which use local improvement following a perturbative

move in the search space.

For Modified Choice Function - All Moves with crossover, again the performance of the FA

and FC variants are similar in terms of total Formula One points scored (73.7 and 73.2

respectively). In the case of MAX-SAT, both variants score exactly the same number of

Formula One points (21.2) so the inclusion of a local search phase has little effect in this

domain. Both methods are also similar in bin packing and the vehicle routing problem,

with the FC hyper-heuristic slightly outperforming the FA hyper-heuristic obtaining 24

143

CHAPTER 7: CROSSOVER CONTROL IN CROSS-DOMAIN OPTIMISATION

Table 7.3: Results of the median of 31 runs of FC Modified Choice Function - All Moves

hyper-heuristics (a) without crossover and (b) with crossover, compared to

CHeSC2011 competitors using Formula One scores over all problem do-

mains

(a)

Rank Name Score

1 AdapHH 179.1

2 VNS-TW 131.6

3 ML 127.5

4 PHunter 90.25

5 EPH 89.25

6 HAHA 72.85

7 NAHH 71.5

8 ISEA 68.5

9 KSATS-HH 61.35

10 HAEA 52

11 ACO-HH 39

12 GenHive 36.5

13 MCF - AM 36.35

14 DynILS 27

15 SA-ILS 22.75

16 XCJ 20.5

17 AVEG-Nep 19.5

18 GISS 16.25

19 SelfSearch 5

20 MCHH-S 3.25

21 Ant-Q 0

(b)

Rank Name Score

1 AdapHH 176.85

2 VNS-TW 131.35

3 ML 122

4 PHunter 87.75

5 EPH 84.25

6 HAHA 74.1

7 MCF - AM 73.2

8 NAHH 69.5

9 ISEA 65.5

10 KSATS-HH 57.7

11 HAEA 49

12 ACO-HH 37

13 GenHive 33.5

14 SA-ILS 23.1

15 DynILS 22

16 XCJ 18.5

17 AVEG-Nep 18.5

18 GISS 16.6

19 SelfSearch 6

20 MCHH-S 3.6

21 Ant-Q 0

144

CHAPTER 7: CROSSOVER CONTROL IN CROSS-DOMAIN OPTIMISATION

Table 7.4: Formula One scores for FA Modified Choice Function - All Moves (a) without

crossover, (b) with crossover and FC Modified Choice Function - All Moves

(c) without crossover and (d) with crossover in each problem domain com-

pared to CHeSC2011 competitors

(a)

SAT BP PS FS TSP VRP Total

32.85 0 6 0 0 0 38.85

(b)

SAT BP PS FS TSP VRP Total

28.35 0 6 0 0 2 36.35

(c)

SAT BP PS FS TSP VRP Total

21.2 21 8.5 0 0 23 73.7

(d)

SAT BP PS FS TSP VRP Total

21.2 24 2 0 1 25 73.2

145

CHAPTER 7: CROSSOVER CONTROL IN CROSS-DOMAIN OPTIMISATION

and 25 points in each domain respectively, compared to 21 and 23 points gained by the

FA variant. The only notable difference in performance is observed in the personnel

scheduling domain where the FA hyper-heuristic score 8.5 points and the FC hyper-

heuristic scores 2. This is unexpected as in general hyper-heuristics which use a local

search phase performed well in this domain in the competition.

7.2.2 The FC Modified Choice Function - All Moves hyper-heuristic with the

crossover control scheme of the CHeSC2011 winner

The previous section presented variants of the hyper-heuristics tested in Section 7.1 op-

erating using an FC framework as defined by Özcan et al. [174]. Here the crossover con-

trol scheme of the CHeSC2011 winner will be introduced to manage second input so-

lutions for crossover operators in a Modified Choice Function - All Moves hyper-heuristic.

Each time a second solution is required by a crossover operator, one is selected at ran-

dom from a list of 5 solutions. In the case a superior solution is found after applying

the crossover low-level heuristic, the new solution replaces one of the 5 solutions in

the list at random. Initially the list of 5 solutions is comprised of copies of the starting

solution.

Table 7.5 shows the Formula One scores obtained by the Modified Choice Function - All

Moves hyper-heuristics with the AdapHH crossover control scheme, compared to the 20

CHeSC2011 entrants.

Overall the Modified Choice Function - All Moves with AdapHH crossover scores 34.6

points over the six problem domains, ranking 12th out of 21 when compared to the

CHeSC2011 entries. This hyper-heuristic performs very well in the vehicle routing

problem, scoring 26 points, second only to PHUNTER. In the remaining five problem

domains points are scored in four, with 6 points scored in bin packing being the only

performance of note.

Figure 7.7 shows the number of Formula One points scored by an FC Modified Choice

Function - All Moves hyper-heuristic using the crossover control scheme described in

Section 7.1.1, the crossover control scheme of AdapHH [155] or no crossover at all.

As seen in Figure 7.7, the most striking difference between the hyper-heuristic using

the AdapHH crossover control scheme and the two Modified Choice Function - All Moves

hyper-heuristics from Section 7.2.1 (With Crossover and Without Crossover), is the

complete deterioration in performance in the MAX-SAT problem domain. Whereas the

decision to either include crossover operators or not in the low-level heuristic set did

not affect the performance in this domain significantly, the management of the inputs

146

CHAPTER 7: CROSSOVER CONTROL IN CROSS-DOMAIN OPTIMISATION

Table 7.5: Formula One scores for Modified Choice Function - All Moves with the

crossover control mechanism of the CHeSC2011 winner and CHeSC2011

competitors in each problem domain

Rank Hyper-heuristic SAT BP PS FS TSP VRP Total

1 AdapHH 34.75 45 9 37 40.25 14 180

2 VNS-TW 34.25 2 39.5 34 17.25 5 132

3 ML 14.5 11 31 39 13 18 126.5

4 PHunter 10.5 3 11.5 9 26.25 30 90.25

5 EPH 0 10 10.5 21 35.25 11 87.75

6 HAHA 32.75 0 25.5 3.5 0 12 73.75

7 NAHH 14 19 2 22 12 4 73

8 ISEA 6 29 14.5 3.5 12 3 68

9 KSATS-HH 23.85 11 9.5 0 0 20 64.35

10 HAEA 0.5 3 2 10 11 24 50.5

11 ACO-HH 0 20 0 9 8 1 38

12 MCF - AM 0.6 6 1 0 1 26 34.6

13 GenHive 0 12 6.5 7 3 6 34.5

14 DynILS 0 12 0 0 13 0 25

15 SA-ILS 0.6 0 19.5 0 0 3 23.1

16 XCJ 5.5 12 0 0 0 4 21.5

17 AVEG-Nep 12 0 0 0 0 8 20

18 GISS 0.6 0 10 0 0 6 16.6

19 SelfSearch 0 0 3 0 3 0 6

20 MCHH-S 4.6 0 0 0 0 0 4.6

21 Ant-Q 0 0 0 0 0 0 0

147

CHAPTER 7: CROSSOVER CONTROL IN CROSS-DOMAIN OPTIMISATION

Figure 7.7: Formula One points scored using each crossover control scheme within FC

Modified Choice Function - All Moves compared to CHeSC2011 entrants

0

10

20

MAXSAT BP PS FS TSP VRP
Problem Domain

F
or

m
ul

a
O

ne
 P

oi
nt

s
S

co
re

d

CrossoverType

AdapHH Crossover

With Crossover

Without Crossover

for such operators can have a great effect on performance. This is an interesting result

as it is not necessarily a simple case of whether or not crossover operators are useful

in a particular problem class. In the case of the vehicle routing problem it is clear from

Figure 7.7 that both of the hyper-heuristics which use crossover outperform the hyper-

heuristic which doesn‘t. This result suggests that crossover is inherently beneficial in

the case of the vehicle routing problem irrespective of method of managing the second

solutions. Bin packing is another interesting case, where including crossover obvi-

ously provides benefits, however the strategy used to manage the input solutions also

has a great bearing on performance. The crossover strategy of AdapHH scores 6 points

in this domain, with the crossover control scheme of Section 7.1.1 scoring 24 points.

For the travelling salesman problem and permutation flow shop domains, all three

hyper-heuristics perform particularly poorly, scoring a single point between them. It

is possible that there is another crossover control scheme which will perform well in

these domains, however it is more likely that this is a result of the high-level heuristic

selection method - move acceptance criterion combination used. The methods that perform

particularly well in these two domains are often the hyper-heuristics which perform

well overall. Not including crossover operators at all is the best scheme in personnel

scheduling however even this strategy does not perform well when compared to the

148

CHAPTER 7: CROSSOVER CONTROL IN CROSS-DOMAIN OPTIMISATION

CHeSC2011 entrants.

7.3 Introducing a different crossover control scheme into the

CHeSC2011 winner

Where the previous section introduced the crossover control scheme of the CHeSC2011

winner into an FC Modified Choice Function - All Moves hyper-heuristic, this section will

reverse these roles and introduce the crossover control scheme defined in Section 7.1.1

into the CHeSC2011 winner. Following the CHeSC2011 competition the source code for

the winning hyper-heuristic (AdapHH) was made available2. No modifications were

made to this source code with the exception of modifying the mechanism to provide

second solutions for crossover. Here the results of an independent set of 31 runs of

AdapHH over the CHeSC2011 benchmarks are presented along with 31 runs of this

hyper-heuristic with the crossover control scheme of Section 7.1.1.

7.3.1 Results

As an indirect comparison, Table 7.6(a) and Table 7.6(b) present the number of Formula

One points scored by each AdapHH hyper-heuristic when compared with the other 19

competition entrants. These figures are presented visually in Figure 7.8. Please note

that in each case the results obtained replace the results of the original CHeSC2011

AdapHH hyper-heuristic when calculating the Formula One scores for each instance.

Table 7.6: Formula One scores for (a) an independent run of AdapHH and (b) AdapHH

with modified crossover management scheme in each problem domain

compared to CHeSC2011 competitors

(a)

SAT BP PS FS TSP VRP Total

35.75 32 13.5 42 45 15 183.25

(b)

SAT BP PS FS TSP VRP Total

34.75 31 14 39 44 13 175.75

2Available at: http://code.google.com/p/generic-intelligent-hyper-heuristic/downloads/

list

149

CHAPTER 7: CROSSOVER CONTROL IN CROSS-DOMAIN OPTIMISATION

Figure 7.8: Formula One points scored by each crossover control mechanism within

AdapHH compared to CHeSC2011 competitors

0

10

20

30

40

MAXSAT BP PS FS TSP VRP
Problem Domain

F
or

m
ul

a
O

ne
 P

oi
nt

s
S

co
re

d

CrossoverType

AdapHH Crossover

Modified Crossover

Interestingly the results of 31 independent runs of AdapHH yield slightly different re-

sults to those achieved in CHeSC2011, scoring 183.25 points overall compared to 181

in the original competition. Comparing the results of Table 7.6 it can be seen that the

original crossover management scheme of AdapHH is able to yield better results than

modifying the crossover management scheme to the method described in Section 7.1.1.

The original AdapHH outperforms the version with a modified crossover management

scheme in all problem domains with the exception of personnel scheduling. There does

not appear to be a significant difference in general, with both hyper-heuristics retaining

first place when compared to the other 19 competition entrants.

As a direct comparison, Table 7.7 shows the results of an independent Student’s t-test

within a 95% confidence interval on the objective function values for 31 runs of each

instance. Each cell of the table provides the number of instances of a particular domain

in which there is a variation in performance between the two hyper-heuristics. In this

table > and ≫ show the number of cases that the original AdapHH is outperforming

performing AdapHH with a modified crossover control scheme on average or statisti-

cally significantly respectively. Conversely, < and≪ denote the number of cases which

the AdapHH with modified crossover control scheme outperforms the original AdapHH

on average or statistically significantly.

In terms of average performance, the original AdapHH outperforms AdapHH with mod-

150

CHAPTER 7: CROSSOVER CONTROL IN CROSS-DOMAIN OPTIMISATION

Table 7.7: Pairwise comparison of AdapHH with differing crossover control schemes

using independent T-Test

Problem Domain ≪ < > ≫
MAX-SAT 0 1 4 0

Bin Packing 0 2 2 1

Personnel Scheduling 0 3 2 0

Permutation Flow Shop 0 3 1 1

Travelling Salesman Problem 0 1 4 0

Vehicle Routing Problem 1 1 2 1

ified crossover management in 18 of the 30 instances. There are very few cases in which

the difference is statistically significantly different. An notable case is the vehicle rout-

ing problem where it is possible for both AdapHH hyper-heuristics to statistically sig-

nificantly outperform each other in different instances.

7.4 Concluding Remarks

In this chapter, crossover control has been investigated within cross-domain optimisa-

tion in a number of ways. Firstly crossover operators have been added to the Modi-

fied Choice Function - All Moves hyper-heuristic introduced in Chapter 6, managed us-

ing a hyper-heuristic level scheme similar to those used in Chapter 5. The inclusion

of crossover low-level heuristics results in a large improvement in performance for a

Modified Choice Function - All Moves hyper-heuristic. It has been observed that crossover

seems to provide a greater benefit in some problem domains or instances than others.

An interesting question this raises is that if crossover is only beneficial in some circum-

stances, can methods be designed to recognise when crossover is helpful or not and

include it appropriately in a selection hyper-heuristic framework when necessary?

Following this, the hyper-heuristic level crossover control scheme introduced was com-

pared with the crossover management scheme of the CHeSC2011. This was done in

two ways, firstly the crossover control scheme defined in Section 7.1 was replaced with

the crossover management scheme of AdapHH within a Modified Choice Function - All

Moves hyper-heuristic. Secondly, this crossover control scheme is used within AdapHH,

replacing the existing crossover control scheme defined for this hyper-heuristic. When

comparing different crossover control schemes, it becomes clear that there are some

domains or instances for which the choice of crossover control scheme is crucial in de-

termining performance. Unfortunately despite having a large impact in some instances

151

CHAPTER 7: CROSSOVER CONTROL IN CROSS-DOMAIN OPTIMISATION

in Section 7.2 within a Modified Choice Function - All Moves hyper-heuristic, the choice

of crossover management scheme does not make a great deal of difference in the case

of AdapHH. This provides a challenge when trying to generalise certain hyper-heuristic

components, such as the management of solutions for n-ary operators, as dependencies

clearly exist between different hyper-heuristic components.

It has been noted that although controlling crossover below the domain barrier has

shown to be useful in some instances in Chapter 5, depending on the framework used

this is not always possible. This raises a broader question regarding the responsibility

of crossover management. In the case of the HyFlex framework, this responsibility lies

entirely with the implementer of the high-level heuristic search methodology rather

than the coder of the low-level problem domain. Although this is essentially a de-

sign decision when defining the framework, it would be feasible to extend the HyFlex

framework to support domain-level crossover management. This could be done by

explicitly allowing the framework to manage potential solutions for heuristics which

require more than one solution as input, providing a method which provides access to

these solutions to the high-level heuristic search method.

As discussed at the start of this thesis in Section 1.1, Doerr et al. [58, 59] showed that

crossover is provably beneficial in at least some classes of practical optimisation prob-

lems. If it is indeed the case that the benefit of crossover varies on a per instance basis,

this effectively reduces the size of each problem class for which crossover is useful to

one, rendering generalisation irrelevant. It could also be the case that in the problem

domains where crossover is useful in some cases but not others, there is a subset of

instances which share certain features for which the use of crossover leads to gains in

performance. This raises a larger question regarding the tuning of hyper-heuristics,

particularly in an offline manner. If in advance of a full run, a hyper-heuristic is made

aware of instance specific properties (e.g. size, nature of the search landscape), it would

be possible to make choices regarding which hyper-heuristic components or parame-

ter settings to use in different cases. A counter argument to this type of tuning is that

in effect, as the hyper-heuristic is able to distinguish between problem domains based

on these properties and therefore alter behaviour for different domains, the domain

barrier is effectively broken.

The same argument can be made regarding offline tuning based on the set of low-level

heuristics available, using properties such as heuristic type (i.e. mutation, crossover

etc.) or expected runtime. As an example, in the case of the personnel scheduling

domain the expected runtime of each low-level heuristic is exceptional in length com-

pared to the other problem domains in HyFlex. Some of the competitors to CHeSC2011

152

CHAPTER 7: CROSSOVER CONTROL IN CROSS-DOMAIN OPTIMISATION

take advantage of this fact, modifying behaviour at execution time based on the ob-

served runtimes of low-level heuristics, often through schemes designed based on pre-

vious experience. This is a slippery slope when the intention is to develop general

methods which are able to perform well over a large number of domains. If the be-

haviour of a hyper-heuristic is adjusted in such a way for each available problem do-

main, potentially it is reduced to a set of if-then clauses, with individual behaviours

specified for each problem domain. This reduces the hyper-heuristic design process to

a software engineering task, with the intention of ‘winning’ a competition, rather than

focusing on algorithm design for multiple problem domains.

A further complication is the relatively small number of problem domains being con-

sidered. In some cases the choice of whether or not to include crossover operators at

all will affect performance, however in others it can be affected by the method used to

manage the inputs for such operators. In a more general sense, using only six problem

domains could be seen as a very small sample. It is accepted that in order to assess the

effectiveness of a stochastic method, multiple runs are needed to provide a reasonable

picture of average performance. It is also the case that to assess how effective a method

is in a given problem domain, a reasonable size sample of problem instances should

be tested to average performance. Therefore it could be considered unreasonable to

expect any generalisations made using these benchmarks to hold true if there were 50

or 5000 problem domains.

153

CHAPTER 8

Conclusion

8.1 Context

Hyper-heuristics are a class of high-level search methodologies which function at a

higher level of abstraction than traditional techniques, operating on a heuristic search

space rather than a search space of solutions. The need for more general methods

than those in existence encouraged the development of frameworks such as HyFlex,

to support the design of techniques which are able to perform well on a variety of

problem domains and instances. This thesis has shown that there are still a number of

oversights and unanswered questions within selection hyper-heuristic design.

A number of methods have been developed and applied to a variety of problem do-

mains, with a focus on the use of crossover operators in single-point selection hyper-

heuristic search. The management of arguments for low-level heuristics which require

more than one solution has been greatly overlooked by previous researchers. A frame-

work in which to define at what level this management occurs at has been proposed,

with the responsibility of such decisions given to either the high-level search method-

ology or the low-level problem implementation. It has been shown that crossover does

in fact appear to be beneficial to a search in some cases, however it is possible that

this behaviour can be independent of the domain or instance being solved. Develop-

ing methods which are genuinely ‘general’ in the true sense of the word remains an

ongoing challenge in hyper-heuristic research. Here, some of the obstacles within de-

veloping a general problem solver have been highlighted.

154

CHAPTER 8: CONCLUSION

8.2 Summary of Work

8.2.1 Chapter 4

This chapter presented an initial study into the use of hyper-heuristics to solve the

multidimensional knapsack problem (MKP). Operating on a set of standard binary

low-level heuristics and a set of hyper-heuristic components taken from the literature,

twelve hyper-heuristics using a variety of selection methods and acceptance criteria

were tested. In this problem domain the choice of acceptance criteria is the determin-

ing factor in performance using the given low-level heuristic set.

8.2.2 Chapter 5

Crossover management in selection hyper-heuristics is explored using the MKP as a

benchmark in Chapter 5. Crossover management strategies are categorised as operat-

ing at one of two levels, either the hyper-heuristic level or the domain level. A new

initialisation method for a well-studied problem domain is also introduced. It is ob-

served that in this problem domain, managing crossover arguments at the domain level

provides better results than at the hyper-heuristic level.

8.2.3 Chapter 6

In Chapter 6 a tradition selection method, the Choice Function, was modified to provide

improved performance on cross-domain benchmarks. Over all of the HyFlex bench-

mark domains tested, the new selection method outperformed the classic Choice Func-

tion using simple All Moves acceptance.

8.2.4 Chapter 7

Chapter 7 explores a number of issues surrounding the use of crossover in selection

hyper-heuristics operating over multiple domains. Different schemes for controlling

the second arguments for crossover are tested in two different hyper-heuristics. Ex-

periments show that in certain problem domains the use of crossover operators can be

beneficial to some hyper-heuristics.

155

CHAPTER 8: CONCLUSION

8.3 Extensions and Future Work

A number of possible research directions can be pursued in order to extend the work

presented in this thesis.

8.3.1 Further improvement of the Choice Function heuristic selection

method

Although dynamic, the Modified Choice Function heuristic selection mechanism pre-

sented in Chapter 6 is fairly inflexible. A particular drawback is the lack of adaptation

for hyper-heuristics which operate on low-level heuristic sets with different average

application times. For example, the degradation rate in the Choice Function weightings

might be suitable for a hyper-heuristic which is capable of performing 1,000 low-level

heuristics a second, however it may not deal well with a low-level heuristic set which

averages 100 low-level heuristic applications in 10 minutes. This variation in number

of heuristic applications is evident in the HyFlex framework. In the case of the person-

nel scheduling problem, the typical number of heuristic applications possible within

the 10 minute time limit is in the order of 103. In the case of some of the other problem

domains, it is not unreasonable to expect the number of low-level heuristic applications

within 10 minutes to be in the order of 106. It is possible to increase the flexibility of

the Choice Function through independent management of all parameters including the

degradation rate for each measure used in the scoring mechanism.

Another potential area for improvement is to consider setting the parameters of the

Choice Function as a parameter tuning exercise rather than parameter control as defined

by Eiben et al. [66]. There is an existing body of research in automated parameter

tuning [158], including methods which use metaheuristics to decide the parameters of

a given system in advance of a full run. Potential methods for doing so include Ant

Colony Optimisation and Iterated Racing [138]. This has been done previously in the

case of the Choice Function by Crawford et al. [49], where the weightings were managed

with Particle Swarm Optimisation.

8.3.2 Dynamic heuristic selection and move acceptance criteria selection

As the performance of a hyper-heuristic is difficult to predict on a per instance basis, is

it possible to extract a set of features of a given problem in advance? If the nature of the

search space can be identified before a problem is solved, potentially hyper-heuristic

components which are known to perform well on such landscapes can be used. The

156

CHAPTER 8: CONCLUSION

idea of a (hyper-)hyper-heuristic has been investigated previously by Hyde et al. [109]

and Krempser et al. [130]. Potentially an even higher level of abstraction exists where

a method selects from a set of hyper-heuristic components to create a hyper-heuristic

tailored to solving the current problem instance.

8.3.3 Closer integration of selection hyper-heuristic and generation hyper-

heuristic paradigms

Currently the two main branches of hyper-heuristic research, heuristic selection and

heuristic generation research are very disparate. An interesting direction would be to

try to integrate these branches by searching over a set of low-level heuristics which are

adapting during a search. If the set of low-level heuristics used by a selection hyper-

heuristic is inadequate at a given time, a heuristic generation hyper-heuristic could be

used to modify the set of low-level heuristics available.

8.3.4 Automation of crossover application strategies and experimentation

over a wider variety of conditions using the HyFlex framework

In Chapter 7 it is observed that including or omitting crossover can yield statistically

significant differences in performance, not only between different problem domains

but also between different instances within a problem domain. These observations

are made after a period of 10 minutes execution time as defined by the CHeSC2011

competition benchmarks. An interesting direction would be to analyse whether this

behaviour can be seen at an earlier stage. If it can be ascertained that crossover is

not helpful to the search process early on, a decision can be taken whether to proceed

with using operators in this category. It would be possible to integrate such a decision

mechanism in any of the Modified Choice Function - All Moves variants presented in

Chapter 7, or indeed into the CHeSC2011 winner AdapHH. Such an approach would fall

under the category of online learning as a decision is taken during the search process.

Alternatively this decision could be made in an offline manner in advance of a run.

Assuming that some a-priori information exists (in the case of the MKP the number

of variables, dimensions and tightness ratio are available), can a decision to include or

omit crossover be taken using these features? This is similar to the ideas used in Algo-

rithm Portfolios [91], where component algorithms are combined based on ‘expected

computational cost’ and overall risk.

Much of the existing work using the HyFlex benchmarks has been constrained by a

fairly arbitrary measure of time as defined by the CHeSC2011 competition rules. There

157

CHAPTER 8: CONCLUSION

is no evidence to suggest that a period of 10 minutes is an appropriate amount of time

to ascertain the benefit of a given crossover management strategy. Any further work

which seeks to adaptively decide how to manage crossover needs to be verified by

performing runs of different lengths to ensure that the correct decision is made.

8.4 Final Remarks

This thesis has explored a number of issues within hyper-heuristics with a focus on

the use of crossover low-level heuristics within a single-point search framework. Al-

though hyper-heuristic research is still relatively young compared to some well-known

existing metaheuristic approaches, many gains have been seen in real-world problems

as a result of using such methods. Despite this, there is still a long way to go in terms

of realising the original goals of hyper-heuristic systems. In order for hyper-heuristics

to operate at a truly higher-level of abstraction than traditional search techniques, a

greater emphasis on generality must be explored. Here it is observed that not only is

performance both domain and instance independent for a given hyper-heuristic, the

performance of different hyper-heuristic components is also often independent of the

problem being solved. Many hyper-heuristic methods, including some of those in-

cluded in this thesis, perform offline tuning in order to set the parameters for the set

of instances it expects to encounter. In order for hyper-heuristics to genuinely reach

a high level of generality, it could be argued that it is necessary for all parameters to

be controlled in an adaptive online manner. Hyper-heuristics of this nature would be

closer to the idea of an ‘oracle’ general problem solver, able to effectively manage any

set of problems or experimental conditions it encounters.

158

APPENDIX A

Categorisations of selection

hyper-heuristics discussed in the

literature review

159

APPENDIX A: CATEGORISATIONS OF SELECTION HYPER-HEURISTICS DISCUSSED IN

THE LITERATURE REVIEW

Table A.1: Categorisation of recent selection hyper-heuristics based on selection

method used

Heuristic Selection Method References

Choice Function [12, 15, 17, 35, 124, 126, 198]

Greedy [12, 35, 77, 124, 126]

Probability-based Selection [8, 17, 43, 77, 130, 150, 156, 151, 189]

Random Descent [12, 126, 128]

Permutation-based Selection [12]

Reinforcement Learning [17, 35, 124, 126, 125, 128, 149, 150]

Simple Random [12, 15, 35, 43, 56, 77, 124, 126, 130, 128, 150, 153,

156, 151, 198, 211]

Tabu Search [15]

Table A.2: Categorisation of recent selection hyper-heuristics based on acceptance cri-

terion used

Acceptance Criterion References

All Moves [12, 17, 77, 126, 128, 156, 151]

Threshold-based Acceptance [12, 15, 56, 124, 126, 150, 153, 156, 151, 198, 211]

Improving and Equal [12, 15, 56, 126, 125, 128, 153, 156, 151, 198, 211]

Late Acceptance [56, 153, 156, 151]

Only Improving [12, 15, 126, 130, 156, 151]

Simulated Annealing [8, 15, 17, 35, 56, 126, 153, 156, 151, 189, 198, 211]

Table A.3: Categorisation of recent selection hyper-heuristics based on problem do-

main solved

Problem Domain References

Bin Packing [8]

DNA Sequence Prediction [17]

DTLZ Benchmark [150]

Dynamic Environments [124, 126, 125, 128]

p-median Problem [188]

Satisfiability [149]

Scheduling Problems [12, 77, 153, 156, 189, 198]

Timetabling [8, 35, 56, 116, 117]

Vehicle Routing Problems [153, 189]

Web Document Clustering [43]

160

APPENDIX A: CATEGORISATIONS OF SELECTION HYPER-HEURISTICS DISCUSSED IN

THE LITERATURE REVIEW

Table A.4: Categorisation of recent selection hyper-heuristics applied to the HyFlex

benchmarks based on selection method used

Heuristic Selection Method References

Choice Function [32, 116]

Greedy [41, 116, 117]

Probability-based Selection [133, 150, 154]

Random Descent [171]

Permutation-based Selection [41, 122, 131]

Reinforcement Learning [32, 81, 116, 150, 209]

Simple Random [32, 41, 112, 116, 150]

Table A.5: Categorisation of recent selection hyper-heuristics applied to the HyFlex

benchmarks based on acceptance criterion used

Acceptance Criterion References

All Moves [41, 81, 131, 164, 209]

Threshold-based Acceptance [122, 150, 154]

Improving and Equal [105, 133, 154]

Late Acceptance [112]

Only Improving [32, 164]

Simulated Annealing [116, 117, 154, 164]

161

References

[1] Micah Adler, Phillip B. Gibbons, and Yossi Matias. Scheduling space-sharing for

internet advertising. Journal of Scheduling, 5(2):103–119, 2002.

[2] Yalçıin Akçay, Haijun Li, and Susan H Xu. Greedy algorithm for the general

multidimensional knapsack problem. Annals of Operations Research, 150(1):17–29,

2007.

[3] Enrico Angelelli, Renata Mansini, and M. Grazia Speranza. Kernel search: A

general heuristic for the multi-dimensional knapsack problem. Computers & Op-

erations Research, 37(11):2017–2026, 2010.

[4] Josep Argelich, Chu-Min Li, Felip Manya, and Jordi Planes. Maxsat evaluation

2009 benchmark data sets. Online, 2009. URL http://www.maxsat.udl.cat/.

[5] Shahriar Asta, Ender Özcan, and Andrew J. Parkes. Dimension reduction in the

search for online bin packing policies. In Christian Blum and Enrique Alba, edi-

tors, Proceedings of the Genetic and Evolutionary Computation Conference Companion

(GECCO 2013), pages 65–66, Amsterdam, The Netherlands, 2013. ACM.

[6] Shahriar Asta, Ender Özcan, Andrew J. Parkes, and A. Şima Etaner-Uyar. Gen-

eralizing hyper-heuristics via apprenticeship learning. In Martin Middendorf

and Christian Blum, editors, Proceedings of the European Conference on Evolutionary

Computation in Combinatorial Optimisation (EvoCOP 2013), volume 7832 of LNCS,

pages 169–178, Vienna, Austria, 2013. Springer.

[7] Mohamed Bader-El-Den and Riccardo Poli. Generating sat local-search heuristics

using a gp hyper-heuristic framework. In Nicolas Monmarché, El-Ghazali Talbi,

Pierre Collet, Marc Schoenauer, and Evelyne Lutton, editors, Proceedings of the

International Conference on Artificial Evolution (EA 2007), volume 4926 of LNCS,

pages 37–49, Tours, France, 2008. Springer.

[8] Ruibin Bai, Jacek Blazewicz, Edmund K. Burke, Graham Kendall, and Barry Mc-

162

REFERENCES

Collum. A simulated annealing hyper-heuristic methodology for flexible deci-

sion support. 4OR: A Quarterly Journal of Operations Research, 10(1):43–66, 2012.

[9] Egon Balas and Eitan Zemel. An algorithm for large zero-one knapsack prob-

lems. Operations Research, 28(5):1130–1154, 1980.

[10] Roberto Battiti. Modern heuristic search methods, chapter Reactive search: Toward

self-tuning heuristics, pages 61–83. Wiley, 1996.

[11] Roberto Battiti, Mauro Brunato, and Franco Mascia, editors. Reactive search and

intelligent optimization. Springer, 2008.

[12] Argun Berberoglu and A. Sima Uyar. Experimental comparison of selection

hyper-heuristics for the short-term electrical power generation scheduling prob-

lem. In Cecilia Di Chio, Anthony Brabazon, Gianni A. Di Caro, Rolf Drechsler,

Muddassar Farooq, Jörn Grahl, Gary Greenfield, Christian Prins, Juan Romero,

Giovanni Squillero, Ernesto Tarantino, Andrea Tettamanzi, Neil Urquhart, and

A. Sima Etaner-Uyar, editors, Proceedings of the International Conference on the

Applications of Evolutionary Computation (EvoApplications 2011), volume 6625 of

LNCS, pages 444–453, Torino, Italy, 2011. Springer.

[13] Leonardo Bezerra, Manuel López-Ibáñez, and Thomas Stützle. Automatic gener-

ation of moaco algorithms for the biobjective bidimensional knapsack problem.

In Marco Dorigo, Mauro Birattari, Christian Blum, Anders Lyhne Christensen,

Andries Petrus Engelbrecht, Roderich Groß, and Thomas Stützle, editors, Pro-

ceedings of Swarm Intelligence - 8th International Conference (ANTS 2012), volume

7461 of LNCS, pages 37–48, Brussels, Belgium, 2012. Springer.

[14] Burak Bilgin, Ender Özcan, and Emin Erkan Korkmaz. An experimental study on

hyper-heuristics and exam timetabling. In Edmund K. Burke and Hana Rudová,

editors, Proceedings of the International Conference on the Practice and Theory of Au-

tomated Timetabling (PATAT 2006), volume 3867 of LNCS, pages 394–412, Brno,

Czech Republic, 2006. Springer.

[15] Burak Bilgin, Peter Demeester, Mustafa Misir, Wim Vancroonenburg, and

Greet Vanden Berghe. One hyperheuristic approach to two timetabling problems

in health care. Journal of Heuristics, 18(3):401–434, 2012.

[16] Duncan Black, Robert Albert Newing, Iain McLean, Alistair McMillan, and

Burt L. Monroe. The theory of committees and elections. Cambridge: University

Press, 1958.

163

REFERENCES

[17] Jacek Blazewicz, Edmund K. Burke, Graham Kendall, Wojciech Mruczkiewicz,

Ceyda Oguz, and Aleksandra Swiercz. A hyper-heuristic approach to sequencing

by hybridization of dna sequences. Annals of Operations Research, 207(1):27–41,

2013.

[18] Sylvain Boussier, Michel Vasquez, Yannick Vimont, Saïd Hanafi, and Philippe

Michelon. A multi-level search strategy for the 0-1 multidimensional knapsack

problem. Discrete Applied Mathematics, 158(2):97–109, 2010.

[19] Olli Bräysy and Michel Gendreau. Vehicle routing problem with time windows,

part ii: Metaheuristics. Transportation Science, 39(1):119–139, 2005.

[20] Edmund K. Burke and Yuri Bykov. A late acceptance strategy in hill-climbing

for exam timetabling problems. In Proceedings of the International Conference on

the Practice and Theory of Automated Timetabling (PATAT 2008), page Extended Ab-

stract, Montreal, Canada, 2008.

[21] Edmund K. Burke, Emma Hart, Graham Kendall, Jim Newall, Peter Ross, and

Sonia Schulenburg. Hyper-heuristics: An emerging direction in modern search

technology. In F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics,

chapter 16, pages 457–474. Kluwer Academic Publishers, 2003.

[22] Edmund K. Burke, Graham Kendall, and Eric Soubeiga. A tabu-search hyper-

heuristic for timetabling and rostering. Journal of Heuristics, 9(6):451–470, 2003.

[23] Edmund K. Burke, Dario Landa-Silva, and Eric Soubeiga. Meta-heuristics:

Progress as Real Problem Solvers, chapter Multi-objective Hyper-heuristic Ap-

proaches for Space Allocation and Timetabling, pages 129–158. Springer, 2005.

[24] Edmund K. Burke, Matthew Hyde, and Graham Kendall. Evolving bin packing

heuristics with genetic programming. In Thomas Philip Runarsson, Hans-Georg

Beyer, Edmund K. Burke, Juan J. Merelo Guervós, L. Darrell Whitley, and Xin

Yao, editors, Proceedings of Parallel Problem Solving from Nature (PPSN 2006), vol-

ume 4193 of LNCS, pages 860–869, Reykjavik, Iceland, 2006. Springer.

[25] Edmund K. Burke, Barry McCollum, Amnon Meisels, Sanja Petrovic, and Rong

Qu. A graph-based hyper-heuristic for educational timetabling problems. Euro-

pean Journal of Operational Research, 176(1):177–192, 2007.

[26] Edmund K. Burke, John Woodward, Matthew Hyde, and Graham Kendall. Au-

tomatic heuristic generation with genetic programming: Evolving a jack-of-

alltrades or a master of one. In Hod Lipson, editor, Proceedings of the Genetic

164

REFERENCES

and Evolutionary Computation Conference (GECCO 2007), pages 1559–1565, Lon-

don, UK, 2007. ACM.

[27] Edmund K. Burke, Tim Curtois, Matthew Hyde, Graham Kendall, Gabriela

Ochoa, Sanja Petrovic, and José Antonio Vázquez-Rodríguez. Hyflex: A flexi-

ble framework for the design and analysis of hyper-heuristics. In Proceedings of

the Multidisciplinary International conference on Scheduling: Theory and Applications

(MISTA 2009), pages 790–797, Dublin, Ireland, 2009.

[28] Edmund K. Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender Öz-

can, and John R. Woodward. Computational Intelligence: Collaboration, Fusion and

Emergence, chapter Exploring Hyper-heuristic Methodologies with Genetic Pro-

gramming, pages 177–201. Springer, 2009.

[29] Edmund K. Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender Öz-

can, and John Woodward. Handbook of Metaheuristics 2nd ed., chapter A Classifi-

cation of Hyper-heuristic Approaches, pages 449–468. Springer, 2010.

[30] Edmund K. Burke, Matthew Hyde, Graham Kendall, and John Woodward. A

genetic programming hyper-heuristic approach for evolving 2-d strip packing

heuristics. IEEE Transactions on Evolutionary Computation, 14(6):942–958, 2010.

[31] Edmund K. Burke, Michel. Gendreau, Matthew. Hyde, Graham. Kendall, Barry.

McCollum, Gabriela. Ochoa, Andrew J. Parkes, and Sanja. Petrovic. The cross-

domain heuristic search challenge - an international research competition. In

Carlos A. Coello Coello, editor, Proceedings of Learning and Intelligent Optimization

(LION 2011), volume 6683 of LNCS, pages 631–634, Rome, Italy, 2011. Springer.

[32] Edmund K. Burke, Michel Gendreau, Gabriela Ochoa, and James D. Walker.

Adaptive iterated local search for cross-domain optimisation. In Natalio Krasno-

gor and Pier Luca Lanzi, editors, Proceedings of the Genetic and Evolutionary Com-

putation Conference (GECCO 2011), pages 1987–1994, Dublin, Ireland, 2011. ACM.

[33] Edmund K. Burke, Matthew Hyde, and Graham Kendall. Grammatical evolution

of local search heuristics. IEEE Transactions on Evolutionary Computation, 16(3):

406–417, 2012.

[34] Edmund K. Burke, Matthew Hyde, Graham Kendall, and John Woodward. Au-

tomating the packing heuristic design process with genetic programming. Evo-

lutionary Computation (MIT Press), 20(1):63–89, 2012.

165

REFERENCES

[35] Edmund K. Burke, Graham Kendall, Mustafa Misir, and Ender Özcan. Monte

carlo hyper-heuristics for examination timetabling. Annals of Operations Research,

196(1):73–90, 2012.

[36] Edmund K. Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender Öz-

can, and Rong Qu. Hyper-heuristics: A survey of the state of the art. Journal of

the Operational Research Society, 64(12):1695–1724, 2013.

[37] Konstantin Chakhlevitch and Peter Cowling. Choosing the fittest subset of low

level heuristics in a hyperheuristic framework. In Günther R. Raidl and Jens Got-

tlieb, editors, Proceedings of Evolutionary Computation in Combinatorial Optimization

(EvoCOP 2005), volume 3448 of LNCS, pages 23–33, Lausanne, Switzerland, 2005.

Springer.

[38] Konstantin Chakhlevitch and Peter Cowling. Hyperheuristics: Recent develop-

ments. In Carlos Cotta, Marc Sevaux, and Kenneth Sörensen, editors, Adaptive

and Multilevel Metaheuristics, volume 136 of Studies in Computational Intelligence,

pages 3–29. Springer, 2008.

[39] Ching-Yuen Chan, Fan Xue, W.H. Ip, and C.F. Cheung. A hyper-heuristic in-

spired by pearl hunting. In Youssef Hamadi and Marc Schoenauer, editors,

Proceedings of Learning and Intelligent Optimization (LION 2012), volume 7219 of

LNCS, pages 349–353, Paris, France, 2012. Springer.

[40] Paul C. Chu and John E. Beasley. A genetic algorithm for the multidimensional

knapsack problem. Journal of Heuristics, 4(1):63–86, 1998. ISSN 1381-1231.

[41] Tomasz Cichowicz, Maciej Drozdowski, Michal Frankiewicz, Grzegorz Pawlak,

Filip Rytwinski, and Jacek Wasilewski. Five phase and genetic hive hyper-

heuristics for the cross-domain search. In Youssef Hamadi and Marc Schoenauer,

editors, Proceedings of Learning and Intelligent Optimization (LION 2012), volume

7219 of LNCS, pages 354–359, Paris, France, 2012. Springer.

[42] Robert Cleary and Michael O’Neill. An attribute grammar decoder for the 0/1

multiconstrained knapsack problem. In Günther R. Raidl and Jens Gottlieb, ed-

itors, Proceedings of Evolutionary Computation in Combinatorial Optimization (Evo-

COP 2005), volume 3448 of LNCS, pages 34–45, Lausanne, Switzerland, 2005.

Springer.

[43] Carlos Cobos, Martha Mendoza, and Elizabeth Leon. A hyper-heuristic approach

to design and tuning heuristic methods for web document clustering. In Proceed-

166

REFERENCES

ings of the IEEE Congress on Evolutionary Computation (CEC 2011), pages 1350–

1358, New Orleans, LA, USA, 2011. IEEE Press.

[44] Jean-François Cordeau, Michel Gendreau, Gilbert Laporte, Jean-Yves Potvin, and

François Semet. A guide to vehicle routing heuristics. The Journal of the Opera-

tional Research Society, 53(5):512–522, 2002.

[45] Elon Santos Correa, Maria Teresinha A. Steiner, Alex A. Freitas, and Celso

Carnieri. A genetic algorithm for the p-median problem. In Lee Spector, Erik D.

Goodman, Annie Wu, W. B. Langdon, Hans-Michael Voigt, Mitsuo Gen, Sandip

Sen, Marco Dorigo, Shahram Pezeshk, Max H. Garzon, and Edmund Burke, ed-

itors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO

2001), pages 1268–1275, San Francisco, CA, USA, 2001. Morgan Kaufmann.

[46] Carlos Cotta and José Troya. Artificial Neural Nets and Genetic Algorithms, chapter

A Hybrid Genetic Algorithm for the 0-1 Multiple Knapsack Problem, pages 250–

254. Springer, 1998.

[47] Peter Cowling, Graham Kendall, and Eric Soubeiga. A hyperheuristic approach

to scheduling a sales summit. In Edmund K. Burke and Wilhelm Erben, editors,

Proceedings of the International Conference on the Practice and Theory of Automated

Timetabling (PATAT 2000), volume 2079 of LNCS, pages 176–190, Konstanz, Ger-

many, 2001. Springer.

[48] Peter Cowling, Graham Kendall, and Eric Soubeiga. A parameter-free hyper-

heuristic for scheduling a sales summit. In Proceedings of the Metahuristics Inter-

national Conference (MIC 2001), pages 127–131, Porto, Portugal, 2001.

[49] Broderick Crawford, Ricardo Soto, Eric Monfroy, Wenceslao Palma, Carlos Cas-

tro, and Fernando Paredese. Parameter tuning of a choice-function based hyper-

heuristic using particle swarm optimization. Expert Systems with Applications, 40

(5):1690–1695, 2013.

[50] CRIL. Sat competition 2007 benchmark data sets. Online, 2007. URL http:

//www.cril.univ-artois.fr/SAT07/.

[51] CRIL. Sat competition 2009 benchmark data sets. Online, 2009. URL http:

//www.cril.univ-artois.fr/SAT09/.

[52] Federico Della Croce and Andrea Grosso. Improved core problem based heuris-

tics for the 0-1 multi-dimensional knapsack problem. Computers & Operations

Research, 39(1):27–31, 2012.

167

REFERENCES

[53] Tim Curtois. Staff rostering benchmark data sets. Online, 2009. URL http:

///www.cs.nott.ac.uk/~tec/NRP/.

[54] Lawrence Davis. Bit-climbing, representational bias, and test suite design. In

Richard K. Belew and Lashon B. Booker, editors, Proceedings of the International

Conference on Genetic Algorithms (ICGA 1991), pages 18–23, San Diego, CA, USA,

1991. Morgan Kaufmann.

[55] Richard Dawkins. The Selfish Gene. Oxford University Press, Oxford, UK, 2006.

[56] Peter Demeester, Burak Bilgin, Patrick De Causmaecker, and Greet Vanden

Berghe. A hyperheuristic approach to examination timetabling problems: Bench-

marks and a new problem from practice. Journal of Scheduling, 15(1):83–103, 2012.

[57] Jörg Denzinger, Matthias Fuchs, and Marc Fuchs. High performance atp sys-

tems by combining several ai methods. Technical report, SEKI-Report SR-96-09,

University of Kaiserslautern, 1996.

[58] Benjamin Doerr, Edda Happ, and Christian Klein. Crossover can provably be

useful in evolutionary computation. In Conor Ryan and Maarten Keijzer, editors,

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2008),

pages 539–546, Atlanta, Georgia, USA, 2008. ACM.

[59] Benjamin Doerr, Edda Happ, and Christian Klein. Crossover can provably be

useful in evolutionary computation. Theoretical Computer Science, 436:71–86, 2012.

[60] Jack J. Dongarra. Performance of various computers using standard linear

equations software. Online, 2013. URL http://www.netlib.org/benchmark/

performance.pdf. retrieved 22/05/2013.

[61] John H. Drake, Matthew Hyde, Khaled Ibrahim, and Ender Özcan. A genetic

programming hyper-heuristic for the multidimensional knapsack problem. In

Proceedings of the 11th IEEE International Conference on Cybernetic Intelligent Systems

(CIS 2012), pages 76–80, Limerick, Ireland, 2012. IEEE Press.

[62] John H. Drake, Ender Özcan, and Edmund K. Burke. An improved choice func-

tion heuristic selection for cross domain heuristic search. In Carlos A. Coello

Coello, Vincenzo Cutello, Kalyanmoy Deb, Stephanie Forrest, Giuseppe Nicosia,

and Mario Pavone, editors, Proceedings of Parallel Problem Solving from Nature

(PPSN 2012), Part II, volume 7492 of LNCS, pages 307–316, Taormina, Italy, 2012.

Springer.

168

REFERENCES

[63] John H. Drake, Nikolaos Kililis, and Ender Özcan. Generation of vns components

with grammatical evolution for vehicle routing. In Krzysztof Krawiec, Alberto

Moraglio, Ting Hu, A. Sima Etaner-Uyar, and Bin Hu, editors, Genetic Program-

ming - 16th European Conference (EuroGP 2013), volume 7831 of LNCS, pages 25–

36, Vienna, Austria, 2013. Springer.

[64] A. Drexl. A simulated annealing approach to the multiconstraint zero-one knap-

sack problem. Computing, 40(1):1–8, 1988.

[65] Gunter Dueck. New optimization heuristics: The great deluge algorithm and the

record-to-record travel. Journal of Computational Physics, 104(1):86–92, 1993.

[66] Agoston Endre Eiben, Robert Hinterding, and Zbigniew Michalewicz. Parame-

ter control in evolutionary algorithms. IEEE Transactions on Evolutionary Compu-

tation, 3(2):124–141, 1999.

[67] ESICUP. European special interest group on cutting and packing benchmark data

sets. Online, 2011. URL http://paginas.fe.up.pt/~esicup/.

[68] Álvaro Fialho, Luís Da Costa, Marc Schoenauer, and Michèle Sebag. Extreme

value based adaptive operator selection. In Günter Rudolph, Thomas Jansen,

Simon M. Lucas, Carlo Poloni, and Nicola Beume, editors, Proceedings of Parallel

Problem Solving from Nature (PPSN 2008), volume 5199 of LNCS, pages 175–184,

Dortmund, Germany, 2008. Springer.

[69] Álvaro Fialho, Marc Schoenauer, and Michèle Sebag. Toward comparison-based

adaptive operator selection. In Martin Pelikan and Jürgen Branke, editors, Pro-

ceedings of the Genetic and Evolutionary Computation Conference (GECCO 2010),

pages 767–774, Portland, Oregon, USA, 2010. ACM.

[70] H. Fisher and G.L. Thompson. Probabilistic learning combinations of local job-

shop scheduling rules. In Factory Scheduling Conference, Carnegie Institute of

Technology, 1961.

[71] Krzysztof Fleszar and Khalil S. Hindi. Fast, effective heuristics for the 0-1 multi-

dimensional knapsack problem. Computers & Operations Research, 36(5):1602–

1607, 2009. ISSN 0305-0548.

[72] Stephanie Forrest and Melanie Mitchell. Relative building-block fitness and the

building block hypothesis. In L. Darrell Whitley, editor, Proceedings of Foundations

of Genetic Algorithms (FOGA 1992), pages 109–126, Vail, Colorado, USA, 1992.

Morgan Kaufmann.

169

REFERENCES

[73] Arnaud Freville and Gérard Plateau. An efficient preprocessing procedure for

the multidimensional 0-1 knapsack problem. Discrete Applied Mathematics, 49(1-

3):189–212, 1994.

[74] Alex S. Fukunaga. Automated discovery of composite sat variable-selection

heuristics. In Rina Dechter and Richard S. Sutton, editors, Proceedings of Eigh-

teenth National Conference on Artificial Intelligence, pages 641–648, Edmonton, Al-

berta, Canada, 2002. MIT Press.

[75] Alex S. Fukunaga. Evolving local search heuristics for sat using genetic program-

ming. In Kalyanmoy Deb, Riccardo Poli, Wolfgang Banzhaf, Hans-Georg Beyer,

Edmund K. Burke, Paul J. Darwen, Dipankar Dasgupta, Dario Floreano, James A.

Foster, Mark Harman, Owen Holland, Pier Luca Lanzi, Lee Spector, Andrea Tet-

tamanzi, Dirk Thierens, and Andrew M. Tyrrell, editors, Proceedings of the Genetic

and Evolutionary Computation Conference (GECCO 2004), Part II, volume 3103 of

LNCS, pages 483–494, Seattle, WA, USA, 2004. Springer.

[76] Alex S. Fukunaga. Automated discovery of local search heuristics for satisfiabil-

ity testing. Evolutionary Computation (MIT Press), 16(1):31–61, 2008.

[77] Alberto García-Villoria, Said Salhi, Albert Corominas, and Rafael Pastor. Hyper-

heuristic approaches for the response time variability problem. European Journal

of Operational Research, 211(1):160–169, 2011.

[78] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[79] Pablo Garrido and Carlos Castro. Stable solving of cvrps using hyperheuristics.

In Franz Rothlauf, editor, Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO 2009), pages 255–262, Québec, Canada, 2009. ACM.

[80] Luca Di Gaspero and Andrea Schaerf. Tabu search techniques for examination

timetabling. In Edmund K. Burke and Wilhelm Erben, editors, Proceedings of the

International Conference on the Practice and Theory of Automated Timetabling (PATAT

2008), volume 2079 of LNCS, pages 104–117, Konstanz, Germany, 2000. Springer.

[81] Luca Di Gaspero and Tommaso Urli. Evaluation of a family of reinforcement

learning cross-domain optimization heuristics. In Youssef Hamadi and Marc

Schoenauer, editors, Proceedings of Learning and Intelligent Optimization (LION

2012), volume 7219 of LNCS, pages 384–389, Paris, France, 2012. Springer.

170

REFERENCES

[82] C. D. Geiger, R. Uzsoy, and H. Aytug. Rapid modeling and discovery of priority

dispatching rules: An autonomous learning approach. Journal of Scheduling, 9(1):

7–34, 2006.

[83] Michel Gendreau, Alain Hertz, and Gilbert Laporte. A tabu search heuristic for

the vehicle routing problem. Management science, 40(10):1276–1290, 1994.

[84] Jonathon Gibbs, Graham Kendall, and Ender Özcan. Scheduling english football

fixtures over the holiday period using hyper-heuristics. In Robert Schaefer, Car-

los Cotta, Joanna Kolodziej, and Günter Rudolph, editors, Proceedings of Parallel

Problem Solving from Nature (PPSN 2011), volume 6238 of LNCS, pages 496–505,

Kraków, Poland, 2011. Springer.

[85] John C. Gittins. Bandit processes and dynamic allocation indices. Journal of the

Royal Statistical Society. Series B (Methodological), 41(2):148–177, 1979.

[86] Fred Glover. Future paths for integer programming and links to artificial intelli-

gence. Computers & Operations Research, 13(5):533–549, 1986.

[87] Fred Glover. Tabu search - part 1. ORSA Journal on Computing, 1(2):190–206, 1989.

[88] Fred Glover and Gary Kochenberger. Benchmarks for "the multiple knapsack

problem". Online, n.d. URL http://hces.bus.olemiss.edu/tools.html. re-

trieved 03/02/2012.

[89] Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic Publishers,

1997.

[90] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-

ing. Addison-Wesley, Boston, MA, USA, 1989. ISBN 0201157675.

[91] Carla P. Gomes and Bart Selman. Algorithm portfolios. Artificial Intelligence, 126

(1-2):43–62, 2001.

[92] Jens Gottlieb. On the effectivity of evolutionary algorithms for the multidimen-

sional knapsack problem. In Cyril Fonlupt, Jin-Kao Hao, Evelyne Lutton, Ed-

mund M. A. Ronald, and Marc Schoenauer, editors, Proceedings of Artificial Evo-

lution (AE 1999), volume 1829 of LNCS, pages 23–37, Dunkerque, France, 2000.

Springer.

[93] Martin T. Hagan, Howard B. Demuth, and Mark H. Beale. Neural network design.

PWS Publishing, 1996.

171

REFERENCES

[94] Saïd Hanafi and Christophe Wilbaut. Improved convergent heuristics for the

0-1 multidimensional knapsack problem. Annals of Operations Research, 183(1):

125–142, 2011.

[95] Saïd Hanafi, Jasmina Lazic, Nenad Mladenovic, Christophe Wilbaut, and Igor

Crevits. New hybrid matheuristics for solving the multidimensional knapsack

problem. In Maria J. Blesa, Christian Blum, Günther R. Raidl, Andrea Roli,

and Michael Sampels, editors, Proceedings of the International Conference on Hybrid

Metaheuristics (HM 2010), volume 6373 of LNCS, pages 118–132, Vienna, Austria,

2010. Springer.

[96] Pierre Hansen, Nenad Mladenović, and Dionisio Perez-Britos. Variable neigh-

borhood decomposition search. Journal of Heuristics, 7(4):335–350, 2001.

[97] Ami Hauptman, Achiya Elyasaf, and Moshe Sipper. Evolving hyper heuristic-

based solvers for rush hour and freecell. In Ariel Felner and Nathan R. Sturte-

vant, editors, Proceedings of the Third Annual Symposium on Combinatorial Search

(SOCS 2010), pages 149–150, Atlanta, Georgia, USA, 2010. AAAI Press.

[98] Jun He, Feidun He, and Hongbin Dong. Pure strategy or mixed strategy? - an ini-

tial comparison of their asymptotic convergence rate and asymptotic hitting time.

In Jin-Kao Hao and Martin Middendorf, editors, Proceedings of the European Con-

ference on Evolutionary Computation in Combinatorial Optimisation (EvoCOP 2012),

volume 7245 of LNCS, pages 218–229, Malaga, Spain, 2012. Springer.

[99] Jun He, Wei Hou, Hongbin Dong, and Feidun He. Mixed strategy may outper-

form pure strategy: An initial study. In Proceedings of the IEEE Congress on Evo-

lutionary Computation (CEC 2013), pages 562–569, Cancun, Mexico, 2013. IEEE

Press.

[100] Fernanda Hembecker, Heitor S. Lopes, and Walter Godoy, Jr. Particle swarm opti-

mization for the multidimensional knapsack problem. In Bartlomiej Beliczynski,

Andrzej Dzielinski, Marcin Iwanowski, and Bernardete Ribeiro, editors, Proceed-

ings of the International Conference on Adaptive and Natural Computing Algorithms

(ICANNGA 2007), Part I, volume 4431 of LNCS, pages 358–365, Warsaw, Poland,

2007. Springer.

[101] Robert Hinterding. Mapping, order-independent genes and the knapsack prob-

lem. In Proceedings of the IEEE Conference on Evolutionary Computation (ICEC 1994),

pages 13–17, Orlando, Florida, USA, 1994. IEEE Press.

172

REFERENCES

[102] John H. Holland. Adaptation in Natural and Artificial Systems. The University of

Michigan Press, 1975.

[103] Libin Hong, John Robert Woodward, Jingpeng Li, and Ender Özcan. Automated

design of probability distributions as mutation operators for evolutionary pro-

gramming using genetic programming. In Krzysztof Krawiec, Alberto Moraglio,

Ting Hu, A. Sima Etaner-Uyar, and Bin Hu, editors, Genetic Programming - 16th

European Conference (EuroGP 2013), volume 7831 of LNCS, pages 85–96, Vienna,

Austria, 2013. Springer.

[104] Holger H. Hoos and Thomas Stützle. Satlib: An online resource for research on

sat. In I.P.Gent, H.v.Maaren, and T.Walsh, editors, SAT 2000. IOS Press, 2000.

[105] Ping-Che Hsiao, Tsung-Che Chiang, and Li-Chen Fu. A vns-based hyper-

heuristic with adaptive computational budget of local search. In Proceedings of

the IEEE Congress on Evolutionary Computation (CEC 2012), pages 1–8, Brisbane,

Australia, 2012. IEEE Press.

[106] Bernardo A Huberman, Rajan M. Lukose, and Tad Hogg. An economics ap-

proach to hard computational problems. Science, 275(5296):51–54, 1997.

[107] Matthew Hyde. A Genetic Programming Hyper-Heuristic Approach to Automated

Packing. PhD thesis, University of Nottingham, UK, 2010.

[108] Matthew Hyde. One dimensional packing benchmark data sets. Online, 2011.

URL http://www.cs.nott.ac.uk/~mvh/packingresources.shtml.

[109] Matthew Hyde, Ender Özcan, and Edmund. K. Burke. Multilevel search for

evolving the acceptance criteria of a hyper-heuristic. In Proceedings of the Mul-

tidisciplinary International conference on Scheduling: Theory and Applications (MISTA

2009), pages 798–801, 2009.

[110] IBM. Ibm cplex optimizer. Online, 2013. URL www.ibm.com/software/commerce/

optimization/cplex-optimizer/.

[111] Atsuko Ikegami and Akira Niwa. Subproblem-centric model and approach to

the nurse scheduling problem. Mathematical Programming, 97(3):517–541, 2003.

[112] Warren G. Jackson, Ender Özcan, and John H. Drake. Late acceptance-based

selection hyper-heuristics for cross-domain heuristic search. In Yaochu Jin and

Spencer Angus Thomas, editors, Proceedings of the 13th Annual Workshop on Com-

putational Intelligence (UKCI 2013), pages 228–235, Surrey, UK, 2013. IEEE Press.

173

REFERENCES

[113] Thomas Jansen and Ingo Wegener. Real royal road functions - where crossover

provably is essential. Discrete Applied Mathematics, 149(1-3):111–125, 2005.

[114] Terry Jones. Crossover, macromutation, and population-based search. In Larry J.

Eshelman, editor, Proceedings of the International Conference on Genetic Algorithms

(ICGA 1995), pages 73–80, Pittsburgh, PA, USA, 1995. Morgan Kaufmann.

[115] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforce-

ment learning: a survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

[116] Murat Kalender, Ahmed Kheiri, Ender Özcan, and Edmund K. Burke. A greedy

gradient-simulated annealing hyper-heuristic for a curriculum-based course

timetabling problem. In Proceedings of the 12th Annual Workshop on Computational

Intelligence (UKCI 2012), pages 1–8, Edinburgh, UK, 2012.

[117] Murat Kalender, Ahmed Kheiri, Ender Özcan, and Edmund K. Burke. A greedy

gradient-simulated annealing selection hyper-heuristic. Soft Computing, 17(12):

2279–2292, 2013.

[118] Robert E. Keller and Riccardo Poli. Linear genetic programming of metaheuris-

tics. In Hod Lipson, editor, Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO 2007), pages 1753–1753, London, UK, 2007. ACM.

[119] Robert E. Keller and Riccardo Poli. Linear genetic programming of parsimonious

metaheuristics. In Proceedings of the IEEE Congress on Evolutionary Computation

(CEC 2007), pages 4508–4515, Singapore, 2007. IEEE Press.

[120] Graham Kendall and Mazlan Mohamad. Channel assignment optimisation using

a hyper-heuristic. In Proceedings of the IEEE Conference on Cybernetic and Intelligent

Systems (CIS 2004), pages 791–796, Singapore, 2004.

[121] James Kennedy. Encyclopaedia of Machine Learning, chapter Particle swarm opti-

mization, pages 760–766. Springer, 2010.

[122] Ahmed Kheiri and Ender Özcan. A hyper-heuristic with a round robin neigh-

bourhood selection. In Martin Middendorf and Christian Blum, editors, Pro-

ceedings of Evolutionary Computation in Combinatorial Optimization (EvoCOP 2013),

volume 7832 of LNCS, pages 1–12, Vienna, Austria, 2013. Springer.

[123] Sami Khuri, Thomas Bäck, and Jörg Heitkötter. The zero/one multiple knapsack

problem and genetic algorithms. In Proceedings of the ACM Symposium on Applied

Computing (SAC ’94), pages 188–193, Phoenix, AZ, USA, 1994. ACM.

174

REFERENCES

[124] Berna Kiraz, A. Şima Uyar, and Ender Özcan. An investigation of selection

hyper-heuristics in dynamic environments. In Cecilia Di Chio, Stefano Cagnoni,

Carlos Cotta, Marc Ebner, Anikó Ekárt, Anna Esparcia-Alcázar, Juan Julián,

Merelo Guervós, Ferrante Neri, Mike Preuss, Hendrik Richter, Julian Togelius,

and Georgios N. Yannakakis, editors, Proceedings of the International Conference on

the Applications of Evolutionary Computation (EvoApplications 2011), volume 6624

of LNCS, pages 314–323, Torino, Italy, 2011. Springer.

[125] Berna Kiraz, A. Şima Etaner-Uyar, and Ender Özcan. An ant-based selection

hyper-heuristic for dynamic environments. In Anna Isabel Esparcia-Alcázar, ed-

itor, Proceedings of the International Conference on the Applications of Evolutionary

Computation (EvoApplications 2013), volume 7835 of LNCS, pages 626–625, Vienna,

Austria, 2013. Springer.

[126] Berna Kiraz, A. Sima Uyar, and Ender Özcan. Selection hyper-heuristics in dy-

namic environments. Journal of the Operational Research Society, 64(12):1753–1769,

2013.

[127] Scott Kirkpatrick, C. Daniel Gelatt Jr, and Mario P. Vecchi. Optimization by sim-

ulated annealing. Science, 220(4598):671–680, 1983.

[128] Muhammet Köle, Sima Etaner-Uyar, Berna Kiraz, and Ender Özcan. Heuristics

for car setup optimisation in torcs. In Proceedings of the 12th Annual Workshop on

Computational Intelligence (UKCI 2012), pages 1–8, Edinburgh, UK, 2012.

[129] John R. Koza. Genetic programming: on the programming of computers by means of

natural selection. The MIT Press, Cambridge, MA, 1992.

[130] Eduardo Krempser, Alvaro Fialho, and Helio Barbosa. Adaptive operator selec-

tion at the hyper-level. In Carlos A. Coello Coello, Vincenzo Cutello, Kalyanmoy

Deb, Stephanie Forrest, Giuseppe Nicosia, and Mario Pavone, editors, Proceed-

ings of Parallel Problem Solving from Nature (PPSN 2012), Part II, volume 7492 of

LNCS, pages 378–387, Taormina, Italy, 2012. Springer.

[131] Jiri Kubalik. Hyper-heuristic based on iterated local search driven by evolution-

ary algorithm. In Jin-Kao Hao and Martin Middendorf, editors, Proceedings of

Evolutionary Computation in Combinatorial Optimization (EvoCOP 2012), volume

7245 of LNCS, pages 148–159, Malaga, Spain, 2012. Springer.

[132] Gilbert Laporte. The vehicle routing problem: An overview of exact and approx-

imate algorithms. European Journal of Operational Research, 59(3):345–358, 1992.

175

REFERENCES

[133] Andreas Lehrbaum and Nysret Musliu. A new hyperheuristic algorithm for

cross domain search problems. In Youssef Hamadi and Marc Schoenauer, edi-

tors, Proceedings of Learning and Intelligent Optimization (LION 2012), volume 7219

of LNCS, pages 437–442, Paris, France, 2012. Springer.

[134] Per Kristian Lehre and Ender Özcan. A runtime analysis of simple hyper-

heuristics: To mix or not to mix operators. In Proceedings of the 12th workshop

on Foundations of Genetic Algorithms (FOGA XII 2013), pages 97–104, Adelaide,

Australia, 2013. ACM.

[135] Eunice López-Camacho, Hugo Terashima-Marín, and Peter Ross. A hyper-

heuristic for solving one and two-dimensional bin packing problems. In Pier

Luca Lanzi Natalio Krasnogor, editor, Proceedings of the Genetic and Evolution-

ary Computation Conference (GECCO 2011), pages 257–258, Dublin, Ireland, 2011.

ACM.

[136] Manuel López-Ibáñez and Thomas Stützle. The automatic design of multi-

objective ant colony optimisation algorithms. IEEE Transactions on Evolutionary

Computation, 16(6):861–875, 2012.

[137] Manuel López-Ibáñez and Thomas Stützle. An experimental analysis of design

choices of multi-objective ant colony optimization algorithms. Swarm Intelligence,

6(3):207–232, 2012.

[138] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Thomas Stützle, and Mauro Bi-

rattari. The irace package, iterated race for automatic algorithm configuration.

Technical Report TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles,

Belgium, 2011.

[139] James Lorie and Leonard J. Savage. Three problems in capital rationing. Journal

of Business, 28(4):229–239, 1955.

[140] Helena Ramalhino Lourenço, Olivier Martin, and Thomas Stützle. Handbook of

Metaheuristics, chapter Iterated Local Search, pages 321–353. Kluwer Academic

Publishers, 2003.

[141] Helena Ramalhino Lourenço, Olivier Martin, and Thomas Stützle. Handbook of

Metaheuristics 2nd ed., chapter Iterated Local Search: Framework and Applica-

tions, pages 363–397. Springer, 2010.

[142] M. J. Magazine and Osman Oguz. A heuristic algorithm for the multidimensional

176

REFERENCES

zero-one knapsack problem. European Journal of Operational Research, 16(3):319–

326, 1984.

[143] Vittorio Maniezzo, Thomas Stützle, and Stefan Voss, editors. Matheuristics: Hy-

bridizing Metaheuristics and Mathematical Programming, volume 10 of Annals of In-

formation Systems. Springer, Norwell, MA, USA, 2010.

[144] H. B. Mann and D. R. Whitney. On a test of whether one of two random variables

is stochastically larger than the other. The Annals of Mathematical Statistics, 18(1):

50–60, 1947.

[145] Renata Mansini and M. Grazia Speranza. Coral: An exact algorithm for the mul-

tidimensional knapsack problem. INFORMS Journal on Computing, 24(3):399–415,

2012.

[146] Silvano Martello and Paolo Toth. Knapsack Problems: Algorithms and Computer

Implementations. John WIley & Sons, 1990.

[147] Franco Mascia and Thomas Stützle. A non-adaptive stochastic local search algo-

rithm for the chesc 2011 competition. In Youssef Hamadi and Marc Schoenauer,

editors, Proceedings of Learning and Intelligent Optimization (LION 2012), volume

7219 of LNCS, pages 101–114, Paris, France, 2012. Springer.

[148] Jorge Maturana, Álvaro Fialho, Frédéric Saubion, Marc Schoenauer, and Michèle

Sebag. Extreme compass and dynamic multi-armed bandits for adaptive opera-

tor selection. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC

2009), pages 365–372, Trondheim, Norway, 2009. IEEE Press.

[149] Jorge Maturana, Frédéric Lardeux, and Frédéric Saubion. Autonomous opera-

tor management for evolutionary algorithms. Journal of Heuristics, 16(6):881–909,

2010.

[150] Kent McClymont and Edward C. Keedwell. Markov chain hyper-heuristic

(MCHH): an online selective hyper-heuristic for multi-objective continuous

problems. In Pier Luca Lanzi Natalio Krasnogor, editor, Proceedings of the Genetic

and Evolutionary Computation Conference (GECCO 2011), pages 2003–2010, Dublin,

Ireland, 2011. ACM.

[151] M. Misir, K. Verbeeck, P. De Causmaecker, and G. Vanden Berghe. An investiga-

tion on the generality level of selection hyper-heuristics under different empirical

conditions. Applied Soft Computing, 13(7):3335–3353, 2013.

177

REFERENCES

[152] Mustafa Misir. Intelligent Hyper-heuristics: A Tool for Solving Generic Optimisation

Problems. PhD thesis, Department of Computer Science, KU Leuven, 2012.

[153] Mustafa Misir, Wim Vancroonenburg, Katja Verbeeck, and Greet Vanden Berghe.

A selection hyper-heuristic for scheduling deliveries of ready-mixed concrete. In

L. D. Gaspero, A. Schaerf, and T. Stützle, editors, Proceedings of the Metaheuristics

International Conference (MIC 2011), pages 289–298, Udine, Italy, 2011.

[154] Mustafa Misir, Katja Verbeeck, Patrick De Causmaecker, and Greet Vanden

Berghe. A new hyper-heuristic implementation in hyflex: a study on generality.

In Proceedings of the Multidisciplinary International conference on Scheduling: Theory

and Applications (MISTA 2011), pages 374–393, 2011.

[155] Mustafa Misir, Katja Verbeeck, Patrick De Causmaecker, and Greet Vanden

Berghe. An intelligent hyper-heuristic framework for chesc 2011. In Youssef

Hamadi and Marc Schoenauer, editors, Proceedings of Learning and Intelligent Op-

timization (LION 2012), volume 7219 of LNCS, pages 461–466, Paris, France, 2012.

Springer.

[156] Mustafa Misir, Katja Verbeeck, Patrick De Causmaecker, and Greet Vanden

Berghe. The effect of the set of low-level heuristics on the performance of selec-

tion hyper-heuristics. In Carlos A. Coello Coello, Vincenzo Cutello, Kalyanmoy

Deb, Stephanie Forrest, Giuseppe Nicosia, and Mario Pavone, editors, Proceed-

ings of Parallel Problem Solving from Nature (PPSN 2012), Part II, volume 7492 of

LNCS, pages 408–417, Taormina, Italy, 2012. Springer.

[157] Melanie Mitchell, Stephanie Forrest, and John H. Holland. The royal road for

genetic algorithms: Fitness landscapes and ga performance. In Francisco J. Varela

and Paul Bourgine, editors, Proceedings of the First European Conference on Artificial

Life, pages 245–254, Paris, France, 1992. MIT Press.

[158] Elizabeth Montero, Maria-Cristina Riff, and Bertrand Neveu. A beginner’s guide

to tuning methods. Applied Soft Computing, 17(1):39–51, 2014.

[159] Pablo Moscato. On evolution, search, optimization, genetic algorithms and mar-

tial arts: Towards memetic algorithms. Technical report, Caltech concurrent com-

putation program, C3P Report 826, 1989.

[160] Pablo Moscato, Carlos Cotta, and Alexandre Mendes. Memetic algorithms. In

New optimization techniques in engineering. Springer, 2004.

178

REFERENCES

[161] Heinz Mühlenbein. Evolution in time and space - the parallel genetic algorithm.

In Gregory J. E. Rawlins, editor, Proceedings of Foundations of Genetic Algorithms

(FOGA 1990), pages 316–337, Bloomington Campus, Indiana, USA, 1991. Morgan

Kaufmann.

[162] Alexander Nareyek. Metaheuristics: computer decision-making, chapter Choosing

Search Heuristics by Non-Stationary Reinforcement Learning, pages 523–544.

Kluwer Academic Publishers, 2001.

[163] Mladenović Nenad and Hansen Pierre. Variable neighborhood search. Computers

and Operations Research, 24(11):1097–1100, 1997.

[164] Su Nguyen, Mengjie Zhang, and Mark Johnston. A genetic programming based

hyper-heuristic approach for combinatorial optimisation. In Natalio Krasnogor

and Pier Luca Lanzi, editors, Proceedings of the Genetic and Evolutionary Computa-

tion Conference (GECCO 2011), pages 1299–1306, Dublin, Ireland, 2011. ACM.

[165] Gabriela Ochoa and Matthew Hyde. The cross-domain heuristic search chal-

lenge (CHeSC 2011). Online, 2011. URL http://www.asap.cs.nott.ac.uk/

chesc2011/.

[166] Gabriela Ochoa, Matthew Hyde, Tim Curtois, José Antonio Vázquez-Rodríguez,

James D. Walker, Michel Gendreau, Graham Kendall, Barry McCollum, An-

drew J. Parkes, Sanja Petrovic, and Rong Qu. Hyflex: A benchmark framework

for cross-domain heuristic search. In Jin-Kao Hao and Martin Middendorf, ed-

itors, Proceedings of Evolutionary Computation in Combinatorial Optimization (Evo-

COP 2012), volume 7245 of LNCS, pages 136–147, Malaga, Spain, 2012. Springer.

[167] Gabriela Ochoa, James D. Walker, Matthew Hyde, and Tim Curtois. Adaptive

evolutionary algorithms and extensions to the hyflex hyper-heuristic framework.

In Carlos A. Coello Coello, Vincenzo Cutello, Kalyanmoy Deb, Stephanie For-

rest, Giuseppe Nicosia, and Mario Pavone, editors, Proceedings of Parallel Problem

Solving from Nature (PPSN 2012), Part II, volume 7492 of LNCS, pages 418–427,

Taormina, Italy, 2012. Springer.

[168] Mattais Ohlsson, Carsten Peterson, and Bo Söderberg. Neural networks for op-

timization problems with inequality constraints: the knapsack problem. Neural

Computing, 5(2):331–339, 1993. ISSN 0899-7667.

[169] Yew-Soon Ong, Meng-Hiot Lim, and Ning Zhuvand Kok-Wai Wong. Classifica-

tion of adaptive memetic algorithms: a comparative study. IEEE Transactions on

Systems, Man and Cybernetics Part B: Cybernetics, 36(1):141–152, 2006.

179

REFERENCES

[170] Ender Özcan and Can Basaran. A case study of memetic algorithms for constraint

optimization. Soft Computing, 13(8-9):871–882, 2009. ISSN 1432-7643.

[171] Ender Özcan and Ahmed Kheiri. Computer and Information Sciences II: 26th In-

ternational Symposium on Computer and Information Sciences, chapter A Hyper-

heuristic based on Random Gradient, Greedy and Dominance, pages 404–409.

Springer, 2011.

[172] Ender Özcan and Andrew J. Parkes. Policy matrix evolution for generation of

heuristics. In Natalio Krasnogor and Pier Luca Lanzi, editors, Proceedings of the

Genetic and Evolutionary Computation Conference (GECCO 2011), pages 2011–2018,

Dublin, Ireland, 2011. ACM.

[173] Ender Özcan, Burak Bilgin, and Emin Erkan Korkmaz. Hill climbers and mu-

tational heuristics in hyperheuristics. In Thomas Philip Runarsson, Hans-Georg

Beyer, Edmund K. Burke, Juan J. Merelo Guervós, L. Darrell Whitley, and Xin

Yao, editors, Proceedings of the International Conference on Parallel Problem Solving

From Nature (PPSN 2006), volume 4193 of LNCS, pages 202–211, Reykjavik, Ice-

land, 2006. Springer.

[174] Ender Özcan, Burak Bilgin, and Emin Erkan Korkmaz. A comprehensive analysis

of hyper-heuristics. Intelligent Data Analysis, 12(1):3–23, 2008.

[175] Ender Özcan, Yuri Bykov, Murat Birben, and Edmund K. Burke. Examination

timetabling using late acceptance hyper-heuristics. In Proceedings of the IEEE

Congress on Evolutionary Computation (CEC 2009), pages 997–1004, Trondheim,

Norway, 2009. IEEE Press.

[176] Ender Özcan, Mustafa Misir, Gabriela Ochoa, and Edmund K. Burke. A rein-

forcement learning - great-deluge hyper-heuristic for examination timetabling.

International Journal of Applied Metaheuristic Computing, 1(1):39–59, 2010.

[177] Andrew J. Parkes, Ender Özcan, and Matthew Hyde. Matrix analysis of genetic

programming mutation. In Alberto Moraglio, Sara Silva, Krzysztof Krawiec, Pe-

nousal Machado, and Carlos Cotta, editors, Genetic Programming - 15th European

Conference (EuroGP 2012), volume 7244 of LNCS, pages 158–169, Malaga, Spain,

2012. Springer.

[178] Clifford C. Petersen. Computational experience with variants of the balas algo-

rithm applied to the selection of r&d projects. Management Science, 13(9):736–750,

1967.

180

REFERENCES

[179] D. T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim, and M. Zaidi. The bees

algorithmŰa novel tool for complex optimisation problems. In Duc T. Pham,

Eldaw E. Eldukhri, and Anthony J. Soroka, editors, Proceedings of the International

Virtual Conference on Intelligent Production Machines and Systems (IPROMS 2006),

pages 454–461. Elsevier, 2006.

[180] Hasan Pirkul. A heuristic solution procedure for the multiconstraint zero-one

knapsack problem. Naval Research Logistics, 34(2):161–172, 1987.

[181] Jakob Puchinger, Günther R. Raidl, and Ulrich Pferschy. The core concept for the

multidimensional knapsack problem. In J. Gottlieb and G. R. Raidl, editors, Pro-

ceedings of Evolutionary Computation in Combinatorial Optimization (EvoCOP 2006),

volume 3906 of LNCS, pages 195–208, Budapest, Hungary, 2006. Springer.

[182] Jakob Puchinger, Günther R. Raidl, and Ulrich Pferschy. The multidimensional

knapsack problem: Structure and algorithms. INFORMS Journal on Computing,

22(2):250–265, 2010. ISSN 1526-5528.

[183] Fubin Qian and Rui Ding. Simulated annealing for the 0/1 multidimensional

knapsack problem. Numerical Mathematics, 16(4):320–327, 2007.

[184] Günther R. Raidl. An improved genetic algorithm for the multiconstrained 0-1

knapsack problem. In Proceedings of the IEEE Conference on Evolutionary Computa-

tion (CEC 1998), pages 207–211, Anchorage, AK, USA, 1998. IEEE Press.

[185] Günther R. Raidl and Jens R. Gottlieb. Empirical analysis of locality, heritability

and heuristic bias in evolutionary algorithms: A case study for the multidimen-

sional knapsack problem. Evolutionary Computation, 13(4):441–475, 2005.

[186] Günther R. Raidl and Jakob Puchinger. Combining (integer) linear program-

ming techniques and metaheuristics for combinatorial optimization. In Chris-

tian Blum, Maria J. Blesa Aguilera, Andrea Roli, and Michael Sampels, editors,

Hybrid Metaheuristics, volume 114 of Studies in Computational Intelligence, pages

31–62. Springer, 2008.

[187] Gerhard Reinelt. Tsplib, a library of sample instances for the tsp. Online, 2008.

URL http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.

[188] Zhilei Ren, He Jiang, Jifeng Xuan, and Zhongxuan Luo. Hyper-heuristics with

low level parameter adaptation. Evolutionary Computation, 20(2):189–227, 2012.

[189] Andrea Rendl, Matthias Prandtstetter, Gerhard Hiermann, Jakob Puchinger, and

Günther R. Raidl. Hybrid heuristics for multimodal homecare scheduling. In

181

REFERENCES

Nicolas Beldiceanu, Narendra Jussien, and Eric Pinson, editors, Proceedings of

Integration of AI and OR Techniques in Contraint Programming for Combinatorial Op-

timzation Problems (CPAIOR 2012), volume 7298 of LNCS, pages 339–355, Nantes,

France, 2012. Springer.

[190] Peter Ross. Hyper-heuristics. In E. K. Burke and G. Kendall, editors, Search

Methodologies: Introductory Tutorials in Optimization and Decision Support Technolo-

gies, chapter 17, pages 529–556. Springer, 2005.

[191] Conor Ryan, J.J. Collins, and Michael O’Neill. Grammatical evolution: Evolving

programs for an arbitrary language. In Wolfgang Banzhaf, Riccardo Poli, Marc

Schoenauer, and Terence C. Fogarty, editors, Proceedings of the European Workshop

on Genetic Programming (EuroGP 1998), volume 1391 of LNCS, pages 83–95, Paris,

France, 1998. Springer.

[192] Nasser R. Sabar, Masri Ayob, Rong Qu, and Graham Kendall. A graph color-

ing constructive hyper-heuristic for examination timetabling problems. Applied

Intelligence, 37(1):1–11, 2012.

[193] S. S. Shapiro and M. B. Wilk. An analysis of variance test for normality (complete

samples). Biometrika, 52(3-4):591–611, 1965.

[194] Kevin Sim, Emma Hart, and Ben Paechter. Learning to solve bin packing prob-

lems with an immune inspired hyper-heuristic. In Proceedings of the 12th European

Conference on Artificial Life (ECAL 2013). MIT Press, 2013.

[195] Kevin Sim, Emma Hart, and Ben Paechter. A lifelong learning hyper-heuristic

method for bin packing. Evolutionary Computation, 2014. To appear.

[196] SINTEF. Vrptw benchmark problems, on the sintef transport optimisation portal.

Online, 2012. URL http://www.sintef.no/Projectweb/TOP/VRPTW/.

[197] Zilla Sinuany-Stern and Ittai Weiner. The one dimensional cutting stock problem

using two objectives. The Journal of the Operational Research Society, 45(2):231–236,

1994.

[198] Pieter Smet, Burak Bilgin, Patrick De Causmaecker, and Greet Vanden Berghe.

Modelling and evaluation issues in nurse rostering. Annals of Operations Research,

2012. To appear.

[199] Kenneth Sörensen and Fred Glover. Encyclopedia of Operations Research and Man-

agement Science, chapter Metaheuristics, pages 960–970. Springer, 2013.

182

REFERENCES

[200] Jerry Swan, Ender Özcan, and Graham Kendall. Hyperion - a recursive hyper-

heuristic framework. In Carlos A. Coello Coello, editor, Proceedings of Learning

and Intelligent Optimization (LION 2011), volume 6683 of LNCS, pages 616–630,

Rome, Italy, 2011. Springer.

[201] Gilbert Syswerda. Uniform crossover in genetic algorithms. In J. David Schaffer,

editor, Proceedings of the 3rd International Conference on Genetic Algorithms, pages

2–9, Fairfax, Virginia, USA, 1989. Morgan Kaufmann. ISBN 1-55860-006-3.

[202] Eric Taillard. Flow shop benchmark data sets. Online, 2010. URL http:

//mistic.heig-vd.ch/taillard/.

[203] Jorge Tavares, Francisco Baptista Pereira, and Ernesto Costa. Multidimensional

knapsack problem: a fitness landscape analysis. IEEE Transactions on Systems,

Man and Cybernetics Part B: Cybernetics, 38(3):604–616, 2008.

[204] Paolo Toth and Daniele Vigo. Models, relaxations and exact approaches for the

capacitated vehicle routing problem. Discrete Applied Mathematics, 123(1-3):487–

512, 2002.

[205] Michel Vasquez and Jin Hao. A hybrid approach for the 0-1 multidimensional

knapsack problem. In Bernhard Nebel, editor, Proceedings of the International Joint

Conference on Artificial Intelligence (IJCAI 2001), pages 328–333, Seattle, Washing-

ton, USA, 2001. Morgan Kaufmann.

[206] Michel Vasquez and Yannick Vimont. Improved results on the 0-1 multidimen-

sional knapsack problem. European Journal of Operational Research, 165(1):70–81,

2005.

[207] Yannick Vimont, Sylvain Boussier, and Michel Vasquez. Reduced costs propaga-

tion in an efficient implicit enumeration for the 0-1 multidimensional knapsack

problem. Journal of Combinatorial Optimisation, 15(2):165–178, 2008.

[208] A. Volgenant and J. A. Zoon. An improved heuristic for multidimensional 0-

1 knapsack problems. Journal of the Operational Research Society, 41(1):963–970,

1990.

[209] James Walker, Gabriela Ochoa, Michel Gendreau, and Edmund K. Burke. A

vehicle routing domain for the hyflex hyper-heuristics framework. In Youssef

Hamadi and Marc Schoenauer, editors, Proceedings of Learning and Intelligent Op-

timization (LION 2012), volume 7219 of LNCS, pages 265–276, Paris, France, 2012.

Springer.

183

REFERENCES

[210] Richard A. Watson and Thomas Jansen. A building-block royal road where

crossover is provably essential. In Hod Lipson, editor, Proceedings of the Genetic

and Evolutionary Computation Conference (GECCO 2007), pages 1452–1459, Lon-

don, UK, 2007. ACM.

[211] Tony Wauters, Wim Vancroonenburg, and Greet Vanden Berghe. A guide-and-

observe hyper-heuristic approach to the eternity ii puzzle. Journal of Mathematical

Modelling and Algorithms, 11(3):217–233, 2012.

[212] H. Martin Weingartner and David N. Ness. Methods for the solution of the mul-

tidimensional 0/1 knapsack problem. Operations Research, 15(1):83–103, 1967.

[213] Christophe Wilbaut and Saïd Hanafi. New convergent heuristics for 0-1 mixed

integer programming. European Journal of Operational Research, 195(1):62–74, 2009.

[214] David H. Wolpert and William G. Macready. No free lunch theorems for opti-

mization. IEEE Transactions on Evolutionary Computation, 1(1):67–82, 1997.

184

