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Essentially, all models are wrong, but
some are useful.

— George E. P. Box





Abstract

In wastewater treatment plants (WWTPs), much effort and money is invested in operating
and maintaining dense plant-wide measuring networks. The network primarily serves as input
for the advanced control scenarios that are implemented in the supervisory control and data
acquisition (SCADA) system to satisfy the stringent effluent quality constraints. Due to new
developments in information technology, long-term archiving has become practicable, and
specialized process information systems are now available. The steadily growing amount of
plant data available, however, is not systematically exploited for plant optimization because
of the lack of specialized tools that allow operators and engineers alike to extract meaningful
and valuable information efficiently from the massive amount of high-dimensional data. As
a result, most information contained in the data is eventually lost.

In the past few years, many data mining techniques have emerged that are capable of an-
alyzing massive amounts of data. Available processing power allowed the development of
efficient data-driven modeling techniques especially suited to situations in which the speed
of data acquisition surpasses the time available for data analysis. However, although these
methods are promising ways to provide valuable information to the operator and engineer,
there is currently no fully developed interest in the application of these techniques to support
WWTP operation.

In this thesis, the applicability of data mining and data-driven modeling techniques in the
context of WWTP operation is investigated. This context, however, implies specific charac-
teristics that the adapted and developed techniques must satisfy to be practicable: On the
one hand, the deployment of a given technique on a plant must be fast, simple and cost-
effective. As a consequence, it must consider data that are already available or that can be
gathered easily. On the other hand, the application must be safe, i.e., the extracted infor-
mation must be reliable and communicated clearly. This thesis presents the results of four
knowledge discovery projects that adapted data mining and data-driven modeling techniques
to tackle problems relevant to either the operator or the process engineer.

First, the extent to which data-driven modeling techniques are suitable for the automatic
generation of software sensors exclusively based on measured data available in the SCADA
system of the plant is investigated. These software sensors are meant to be substitutes
for failure-prone and maintenance-intensive sensors and to diagnose hardware sensors. In
two full-scale experiments, four modeling techniques for software-sensor development are
compared and the role of expert knowledge is investigated. The investigations show that the
non-linear modeling techniques outperform the linear technique and that a higher degree of
expert knowledge is beneficial for long term accuracy, but can lead to reduced performance
in the short term. Consequently, if frequent model recalibration is possible, as is the case
for sensor diagnosis applications, automatic development given limited expert knowledge is
feasible. In contrast, optimum use of expert knowledge requires model transparency, which
is only given for two of the investigated techniques: generalized least squares regression and
self-organizing maps.
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In the second project, WWTP operators are provided with additional information on charac-
teristic sewage compositions arriving at their plant from clustered UV/Vis spectra measured
at the influent. A two-staged clustering approach is considered that copes well with high-
dimensional and noisy data. If it is possible to assign a characteristic cluster to a sewage
producer in the catchment, detailed analysis of the temporal discharging pattern is possible
without the need for additional measurements at the production site. In a full-scale experi-
ment, one of five detected clusters could by assigned to an industrial laundry by analyzing the
cluster centroids. In a validation experiment, 93 out of 95 discharging events were classified
correctly. Successful detection depends on the uniqueness of the producer’s UV/Vis pattern,
the dilution at the influent and the size and complexity of the catchment.

In WWTPs, asymmetric feeding of reactors operating in parallel lanes can lead to operational
issues and significant performance losses. A new method based on dynamic time warping
is presented that makes the quantification of the discharge distribution at hydraulic flow
dividers practicable. The method estimates the discharge distribution as a function of total
discharge at the divider given influent and effluent measurements of some measured signal
in the downstream reactors. The function can not only serve as the basis for structural
modification, but it can also be used to calculate the flow to the individual lanes given the
total influent, and thus avoid the assumption of equal distribution (this assumption must
often be made by process engineers and scientists). Theoretical analysis reveals that the
accuracy of the function depends on the hydraulic residence time, the dispersion and the
reactions in the reactors downstream of the divider, in addition to the variability of the
signal. A systematic application on a wide range of synthetic systems that may be found
on WWTPs shows that the error is at least half that when an equal distribution is assumed
if the function is used to obtain a better estimate for the flow to a reactor. In a full scale
validation experiment, the discharge distribution could be accurately estimated.

The fourth application presented shows that optimal hydraulic reactor models can be searched
automatically using grammar-based genetic programming. This method is especially relevant
for engineers who want to model the hydraulic processes of the plant and, because of the
limited applicability of existing approaches, must rely solely on their experience and intuition
for further insights into the reactor hydraulics. With a tree encoding that can decode program
trees into hydraulic reactor models compatible with common software and with influent and
effluent measurements, a palette of equally performing models can be generated. Of these
the modeler then picks the most suitable one as starting point. The methodology is applied
to reverse-engineer synthetic systems, and because of theoretical and practical identifiability
issues, several searches yield different models, which emphasizes the need for an expert to
choose the most appropriate model. The method is applied to generate reactor models of a
primary clarifier with unknown exact volume. The volume of the resulting models corresponds
to the expectation and virtual tracer experiment performed on the synthetic models generally
confirms with an experiment performed on-site.

The knowledge discovery projects show that optimal model choice and complexity greatly
depend on the specific problem and on the degree of available expert knowledge. In general,
safe deployment on-site requires transparent models that can be interpreted even with limited
knowledge and intuitive and understandable communication of the model results.

Because the effluent quality constraints will further tighten and progress in the fields of
information technology and data analysis will continue, it is necessary to use the available
data to fully exploit the plants. Data mining and data-driven modeling are suitable tools.



Zusammenfassung

In Kläranlagen wird viel Aufwand und Geld in den Betrieb und die Wartung eines anla-
genweiten Messnetzes gesteckt. Dieses Messnetz dient in erster Linie als Input für die Rege-
lungsvorgänge, die im Prozessleitsystem definiert sind, um die strengen Grenzwerte bezüglich
der Ablaufqualität zu erfüllen. Neue Errungenschaften im Bereich der Informationstechno-
logie ermöglichen nun eine wirtschaftliche Langzeitarchivierung und es stehen mittlerwei-
le sogar spezialisierte Prozessinformationssysteme zur Verfügung. Allerdings wird die stetig
wachsende Menge an verfügbaren Anlagedaten nicht systematisch ausgenutzt und zur Opti-
mierung der Anlagen herangezogen. Dies ist auf das Fehlen von spezialisierten Instrumenten
zurückzuführen, die es sowohl Betreibern als auch Ingenieuren ermöglichten, aussagekräftige
und wertvolle Informationen aus der gewaltigen Menge hochdimensionaler Daten zu extra-
hieren. Folglich geht ein Grossteil der in den Daten enthaltenen Informationen verloren.

In den letzten Jahren wurden zahlreiche Data-Mining-Verfahren entwickelt, die zur Analyse
massiver Datenmengen geeignet sind. Die verfügbare Rechenleistung ermöglicht die Entwick-
lung effizienter, datenbasierter Modellierungstechniken, die sich besonders dann eignen, wenn
sich Daten schneller anhäufen, als dass sie analysiert werden können. Obwohl diese Methoden
geeignet wären, um Betreiber und Ingenieure mit wertvollen Informationen zur Unterstützung
des Kläranlagenbetriebs zu versorgen, ist ihre Anwendung noch nicht etabliert.

Die vorliegende Arbeit untersucht die Verwendbarkeit von Data-Mining und datenbasierter
Modellierung zur Unterstützung des Kläranlagenbetriebs. Dieser Anwendungsbereich setzt
allerdings besondere Eigenschaften an die entwickelten Methoden voraus, damit sie prakti-
kabel sind. Dies bedeutet zum einen, dass der Einsatz auf einer Anlage schnell, einfach und
kostengünstig durchführbar ist. Daraus folgt, dass mit Vorteil Daten berücksichtigt werden,
die entweder bereits zur Verfügung stehen oder die leicht gesammelt werden können. Ande-
rerseits muss die Anwendung sicher sein, d. h. die gewonnenen Erkenntnisse sollten verlässlich
sein und verständlich kommuniziert werden. In dieser Arbeit werden die Ergebnisse aus vier
Forschungsprojekten präsentiert, bei denen angepasste Data-Mining und datenbasierte Mo-
dellierungstechniken zur Anwendung kommen, um für Betreiber und Ingenieure relevante
Probleme zu lösen.

Zunächst wird untersucht, in welchem Ausmass sich die datenbasierte Modellierung für die
automatische Generierung von Software-Sensoren, die ausschliesslich auf den im Prozessleit-
system verfügbaren Daten basieren, eignet. Diese Software-Sensoren sollen fehleranfällige und
wartungsintensive Sensoren ersetzen und ausserdem zur Diagnose der Hardware-Sensoren ver-
wendet werden können. In zwei grosstechnischen Experimenten wurden vier Modellierungs-
methoden für die Entwicklung von Software-Sensoren miteinander verglichen und die Be-
deutung von Expertenwissen untersucht. Die Untersuchung zeigt, dass bezüglich Genauigkeit
die nicht-linearen Methoden die linearen übertreffen, sowie dass hochgradiges Expertenwissen
langfristig eine grössere Genauigkeit gewährleistet, während es die Genauigkeit kurzfristig ge-
sehen reduziert. Ist also eine laufende Rekalibrierung möglich, wie z.B. bei Anwendungen zur
Sensordiagnose, ist die automatische Generierung auch bei begrenztem Expertenwissen reali-
sierbar. Im Gegenzug erfordert die optimale Ausnutzung von Expertenwissen Modelltranspa-
renz. Diese ist nur für zwei der untersuchten Methoden gegeben, nämlich für verallgemeinerte
Kleinste-Quadrate-Modelle und selbstorganisierende Karten.
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Im zweiten Projekt wird aufgezeigt, wie Kläranlagenbetreiber durch Clustering von im Zu-
lauf gemessenen UV/Vis-Spektren zusätzliche Informationen zu charakteristischen Abwas-
serzusammensetzungen gewinnen können. Dabei wird eine zweistufige Clustering-Methode
eingesetzt, die sich besonders für hochdimensionale und verrauschte Daten eignet. Sofern ein
Abwasserproduzent im Einzugsgebiet einem Cluster zugeordnet werden kann, ist eine detail-
lierte Analyse der Einleitvorgänge auch ohne zusätzliche Messung beim Produzenten möglich.
Im Rahmen eines grosstechnischen Experiments ist es gelungen, einen von fünf entdeckten
Clustern durch Analyse der Clusterschwerpunkte und Einleitungsmuster einer Grosswäscherei
zuzuordnen. Bei einem Validierungsexperiment wurden 93 von 95 Einleitungen richtig zuge-
ordnet. Die erfolgreiche Zuordnung hängt von der Besonderheit des UV/Vis-Spektrums des
Produzenten, seiner Verdünnung im Zulauf und der Komplexität des Einzugsgebiets ab.

In Kläranlagen kann die ungleichmässige Beschickung mehrerer parallel betriebener Stras-
sen zu Betriebsproblemen und Leistungseinbussen führen. Im dritten Projekt wird deshalb
eine neue Methode vorgestellt, die auf Dynamic Time Warping basiert, und die die Quantifi-
zierung der Durchflussverteilung in hydraulischen Trennbauwerken praktikabel macht. Diese
Methode schätzt eine Funktion, die die Verteilung in Abhängigkeit zum gesamten Durch-
fluss beschreibt. Sie setzt lediglich die Messung eines fast beliebigen Signals in den Zu- und
Abläufen der nachgeschalteten Reaktoren voraus. Die geschätzte Funktion kann einerseits
als Grundlage für bauliche Anpassungen dienen. Andererseits kann sie aber auch verwendet
werden, um den Durchfluss in die einzelnen Reaktoren bei bekanntem Gesamtdurchfluss zu
bestimmen und so die Annahme gleichmässiger Beschickung zu vermeiden. Eine theoretische
Analyse zeigt, dass die Genauigkeit von der hydraulischen Verweilzeit, der Dispersion und
den Reaktionen in den Reaktoren sowie von der Variabilität des gemessenen Signals abhängt.
Die Anwendung in verschiedenen synthetischen Systemen zeigt, dass der Fehler im Vergleich
zur Annahme gleichmässiger Beschickung mindestens halbiert werden kann, wenn der Durch-
fluss mit der geschätzten Funktion bestimmt wird. Die Durchflussverteilung konnte in einem
Validierungsexperiment mithilfe der beschriebenen Methode genau bestimmt werden.

Die vierte Anwendung schliesslich zeigt, dass mithilfe grammatikbasierter genetischer Pro-
grammierung automatisch hydraulische Reaktormodelle realer Reaktoren gefunden werden
können. Dies ist besonders für Ingenieure relevant, die die hydraulischen Prozesse einer
Kläranlage modellieren möchten und sich oft auf ihre Erfahrung und Intuition verlassen
müssen, da existierende Verfahren zur Bestimmung der Reaktorhydraulik zu aufwändig wären.
Mit einer Kodierung, die Programme in Reaktormodelle übersetzt sowie Messungen im Zu-
und Ablauf des zu modellierenden Reaktors kann in mehreren Läufen eine Auswahl an passen-
den Modellen erzeugt werden. Aus dieser wählt der Modellierer anschliessend das am besten
geeignete Modell aus. Die Anwendung der Methode zum Nachbau künstlicher Systeme zeigt,
dass in mehreren Läufen erzeugte Modelle aufgrund theoretischer und praktischer Identifi-
zierbarkeitsgrenzen unterschiedlich sein können. Deshalb ist Expertenwissen zur Wahl des
passendsten Modells unverzichtbar. In einem Experiment ist die Methode zur Modellierung
eines Vorklärbeckens mit nicht genau bekanntem Volumen erfolgreich angewendet worden.

Die Forschungsprojekte verdeutlichen, dass die optimale Modellierungstechnik und Modell-
komplexität von der jeweiligen Anwendung und dem verfügbaren Expertenwissen abhängen.
Allgemein erfordert ein sicherer Einsatz am Standort transparente Modelle, die auch mit
wenig Wissen interpretiert werden können und die Ergebnisse verständliche kommunizieren.

Weil die Auflagen für die Abwasserqualität in Zukunft weiter verschärft werden und in den
Bereichen Informationstechnologie und Datenanalyse mit weiteren Fortschritten gerechnet
werden kann, ist es lohnenswert, die verfügbaren Daten in Kombination mit Data-Mining
und datenbasierte Modellierung zur Anlagenoptimierung zu nutzen.
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Introduction

Increasing effluent quality requirements and fiscal restraints force wastewater treatment plant
(WWTP) operators to fully exploit the available facilities. For this reason, advanced process
control strategies are implemented that require the availability of a dense plant-wide measur-
ing network that consists of a multitude of online and offline sensors. Sensor measurements
are primarily used for control. Due to new developments in the field of information tech-
nology, however, it is now possible to archive the measured data for an indefinite time in
the supervisory control and data acquisition system (SCADA system) of the plant, or in a
dedicated process information system.

Although there is a steadily growing amount of historical data at the operator’s and engineer’s
disposal, most information contained in the data will remain unused. From the operator’s
point of view, the primary reason for this lies in the high dimensionality of the data with which
available traditional statistical tools and visualization techniques cannot cope. Consequently,
the information contained in the data is lost. The availability of methods and tools that enable
systematic extraction of information hidden in the data, however, would assist the operator
in further optimization of his or her plant, eventually helping, e.g., to further increase the
effluent quality, to reduce the consumption of energy and other resources and to foster the
operator’s knowledge on the plant processes.

From the engineer’s point of view, available historic data collected during routine operation
is not sufficient for plant modeling (Dold et al., 2010). Because supplementary sampling
is costly and time consuming, additional measuring campaigns are often not realized (Dold
et al., 2010). It is often claimed that data collection is one of the main obstacles in the
modeling procedure (Hauduc et al., 2009). The application of modern methods and tools for
data analysis, however, could not only help to maximize the use of the available data but
also help design inexpensive and simple measuring campaigns.

In the last several decades, as a response to the general trend that the amount and complexity
of available data are growing faster than the ability to analyze it, data mining and data-
driven modeling techniques have been developed. Both techniques are based on data and
are aimed at information extraction and, ultimately, knowledge generation; they rely on the
availability of computational power. Within an appropriate framework, model generation and
deployment can widely be automated and thus provide a cost-effective alternative to prevalent
approaches, motivating the further use of the data. In the field of urban water engineering,
there is currently no fully developed interest in data mining and data-driven modeling to
support WWTP operation. Hence, there exists a niche for automated and modular modeling
techniques that are based on either easy-to-measure data or routine data already available
that can be deployed easily and reliably and to support WWTP operation.

In this introductory chapter, a short description of data mining and data-driven modeling
is first given. Then, common data mining techniques are described, a process model that
serves as a guideline for knowledge discovery projects is presented and major challenges are
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addressed. The state of the application of data mining and data-driven modeling in the
context of wastewater treatment operation is discussed, followed by the definition of the
goals and general research questions. An outline of this thesis is included as well.

1.1 Data mining and data-driven modeling

Briefly, data mining is the application of specific algorithms to extract patterns from data
(Fayyad et al., 1996).

In the last several decades, data accumulation has become easier, and storage has become
inexpensive, while the human processing level has stayed almost constant (Maimon and
Rokach, 2005). Traditional methods applied to turn data into knowledge heavily rely on
manual analysis and interpretation and are therefore impractical for massive data sets (Fayyad
et al., 1996).

Data mining is the response to this technological gap and has an interdisciplinary nature:
it encompasses a variety of methods from the overlapping fields of, e.g., statistics, machine
learning, pattern recognition and artificial intelligence. Although there is no precise definition
of the term “data mining”, there is some sort of common understanding of its purpose, which
is the use of (novel) methods to analyze large amounts of data (Fayyad et al., 1996). Two
additional characteristics are distinguishing for data mining. First, instead of collecting data
for the purpose of a particular experiment, the focus is on data that is already available
in, e.g., spreadsheets, databases and process information systems. Second, data mining is
data-driven. Thus, instead of finding the smallest data set that yields sufficiently confident
estimates given a model, it is intended to find a good model that is still easy to understand
given a large amount of data (Cios et al., 2007b).

Data mining is viewed as the key phase in the broader KDD process (knowledge discovery
in databases). The phrase KDD explicitly emphasizes that the end product of data-driven
discovery is knowledge (Fayyad et al., 1996). By defining the main tasks of a knowledge
discovery project, KDD ensures that meaningful knowledge is derived. A process model that
implements the particular steps of the KDD will be given in Section 1.1.2.

In data-driven modeling, data characterizing a system are analyzed to look for connections
between the system state variables without taking into account explicit knowledge of the phys-
ical behavior of the system. This approach is in contrast to physically based (or knowledge-
driven) modeling, where the aim is to describe the mechanistic behavior of the system (Solo-
matine and Ostfeld, 2008; Solomatine et al., 2008). Data-driven modeling intersects with the
interdisciplinary areas of the fields of data mining, machine learning, statistics, etc. and has
a similar focus. However, in contrast to data mining, data-driven modeling does not focus on
large data bases and the analysis of secondary data, i.e., data that are already available and
thus have not been acquired for a particular experiment. Rather, data-driven modeling is
best implemented when it can be based on the use of inexpensive, basic measurement signals
to produce parsimonious models that have good generalization ability (Chan, 2003; Dewasme
et al., 2009). Obviously, the given discrimination is fuzzy, and often, the same methods can
be applied for either data mining or data-driven modeling.
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1.1.1 Overview of the data mining techniques

The classification of the data mining techniques given in this section closely follows the
suggestions of Fayyad et al. (1996). Although there are several suggestions on how to classify
the available methods, they generally agree with that publication.

First, it is distinguished whether the primary goal is prediction or description. “Prediction
problems” encompass the group of problems whose goal is the development of a mathematical
model that is used to predict the expected output, given the input. The performance of such
a model can be assessed by evaluating its predictive power. “Description problems”, on the
other hand, try to find human interpretable patterns that describe the data. The quality
of a discovered pattern is assessed by analyzing the descriptive accuracy of a pattern. The
boundaries between prediction and description problems, however, are not sharp.

Classification is a predictive method. A learned function is applied to a data item to assign it
one of several predefined classes. A typical classification problem could read as follows: given
a set of (influent) measurements and the information about whether the effluent concentration
constraints are violated or not, is it possible to design a function (given the available data)
that can predict the right class for a new measurement? To assess the performance of the
function, the classification error can be assessed (i.e., the ratio of false positives (type I error)
and false negatives (type II error)).

Regression is a popular predictive method that maps a data item to a real-valued prediction
variable, given a learned function. Software sensors, i.e., a piece of software that outputs a
quantitative signal based on a model and one or more input signals, for instance, perform a
regression task. The quality of the fit is often assessed as a function of the deviations of the
model output from measurements.

Clustering, a descriptive task, tries to identify a set of clusters that describe the data. Clus-
tering is an unsupervised method, i.e., no class membership is assumed to be known. As an
example, given a set of vectors vt = (m1,mn,mN )T that contain N measurements of sensors
n = 1 . . . N at different times t, are there clusters that are typical for certain process states
or environmental conditions?

Summarization aims at finding a compact description for the data. Simple examples of
summarization include the computation of the mean and standard deviation of the variables.

In dependency modeling, one attempts to find a model that describes the significant relation-
ships between variables. Given a set of discharge and rainfall measurements, for instance,
dependency modeling could reveal that rainfall coincidences with high discharge values with
a certain confidence.

Change and deviation detection tries to discover significant changes in data when compared
with previous values. A simple example is the detection of a shift of the mean of a data
series.

Obviously, some predictive models can also be descriptive, and vice versa. In Chapter 3, for
instance, a two-staged clustering algorithm is first applied to cluster noisy UV/Vis spectra.
Then, the resulting clusters are labeled and afterwards used to classify new spectra.
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Figure 1.1: Knowledge discovery process model based on the model of Cios et al. (2007a).

1.1.2 Workflow of a knowledge discovery process

For a strategic, target-oriented proceeding and to ensure a high chance of the best outcome, it
is important to understand the overall approach. For this reason, frameworks that formalize
the knowledge discovery process have been introduced (Cios et al., 2007a). These process
models define the life cycle of the knowledge discovery project and provide a roadmap that
can be followed to execute a project in an arbitrary domain.

The process model applied to the projects presented in this thesis is depicted in Figure 1.1. It
is based on the model defined by Cios et al. (2007a), which is a hybrid between the industry-
oriented CRISP-DM (CRoss-Industry Standard Process for Data Mining) introduced by a
consortium of four large European companies (Chapman et al., 2000) and the academic
research model provided by Fayyad et al. (1996). It consists of the following six connected
highly interactive and iterative phases:

i) Understanding of the problem. This step includes the definition of the problem and the
determination of the objectives. The tools that will be used for data mining are chosen.
Important factors that can influence the outcome will be uncovered here. Neglecting
this step may result in spending a great deal of effort obtaining the right answers to the
wrong question.

ii) Data understanding. Here, the data are collected, checked and integrated, possibly by
taking into account background knowledge. The usefulness of the data with regard to
the objectives is verified.

iii) Data preparation. In this phase, which data will be used and in what form is determined.
Consequently, significance testing, data cleaning, deriving new attributes and feature
selection and extraction are part of this phase. The data are now available in a form
that is compatible with the tools selected in the first step.

iv) Data mining. Various methods are applied to extract knowledge from the preprocessed
data. Extracted knowledge can be of arbitrary form, e.g., a set of rules or a model.
Accuracy and generality are assessed in this phase.

v) Evaluation of the discovered knowledge. The results are interpreted. It is noted whether
there are novel and interesting patterns. Taking into consideration the domain knowl-
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edge, the impact of the new knowledge is evaluated. It is determined whether the initially
stated goals have been met.

vi) Deployment. This step deals with the determination of a deployment strategy: Where
and how should the acquired knowledge be used?

Considering the relative effort required for each of these phases, several estimates have been
proposed by both researchers and practitioners (Cios et al., 2007a). Roughly 50% of the time
is spent on data preparation, which is thus the costliest phase. The other phases demand
approximately the same amount of effort.

1.1.3 Application issues

Selecting potential applications depends on practical and technical criteria (Fayyad et al.,
1996). Practical criteria include the possible impact of the application, the absence of simpler
alternative solutions and organizational support for using a technology. Technical criteria
include the availability of sufficient data with relevant attributes (i.e., they must be relevant
to the discovery task). An indispensable criterion, however, is the availability of sufficient
domain knowledge.

During a knowledge discovery project, the data miner must cope with various application
challenges. In Fayyad et al. (1996), in a nonexhaustive list, the authors enumerate typical
problems that practitioners must deal with. Those that apply to a high degree to the systems
considered in this thesis are:

i) Databases are becoming larger, not only in terms of the number of records but also in
terms of attributes1. Hence, there is a need for more efficient algorithms, sampling,
approximation and parallel processing.

ii) A high-dimensional data set, i.e., a data set with many attributes, on the one hand,
increases the search space for model induction and, on the other hand, leads to a phe-
nomenon referred to as the “curse of dimensionality” (Verleysen and François, 2005): The
higher the dimensionality, the more equidistant the data points are. Mitigation strate-
gies include the reduction of the dimensionality and the inclusion of prior knowledge to
remove irrelevant variables.

iii) Non-stationary data can make previously discovered patterns (or models) invalid. This
is particularly an issue for the considered systems because the processes and the environ-
mental conditions are constantly subject to change. Possible solutions include frequent
updating of the patterns or the consideration of adaptive models.

iv) Missing and noisy data can be cleaned with filtering and outlier detection strategies.

v) Overfitting, thus the lack of generalization ability of a model, results in poor performance
if the model is applied to new data. Cross-validation and other (model-dependent)
strategies can be applied to prevent overfitting.

1In a database table, a record (also called row) represents a single data item that has a set of attributes (stored
in the data table columns).
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vi) Discovered patterns must be made understandable by humans and effectively communi-
cated. A plethora of data and visualization methods are available for this purpose.

vii) The inclusion of prior knowledge in a simple way is not possible for many current methods
and tools, although consideration of this knowledge is important for the success of the
project.

viii) Integration with other systems, such as existing process control systems, is crucial; a
stand-alone discovery system is not desired in most cases.

With regard to the knowledge discovery process, list items (i)–(iv) are connected to input
data, item (v) is connected primarily to data mining and items (vi)–(viii) are linked to
evaluation and deployment.

Basically, the same challenges apply to data-driven modeling except, for list items (i) and
(ii) due to the exclusion of large databases from the scope of data-driven modeling.

1.2 Data mining, data-driven modeling and wastewater treatment

Of the papers indexed by the ISI Web of Knowledge, a mere 0.05%2 that deal with wastewater
explicitly use the term “data-driven modeling” or “data mining” in their title, abstract or
keywords. If only the papers that were published in the last five years are considered, the ratio
is 0.1%3. Although this simple analysis neglects the publications that deal with a particular
data mining or data-driven modeling technique without mentioning one of these two general
terms, it still indicates, that the ratio of work that considers data mining and data-driven
modeling techniques is relatively small. However, the growing number of publications in the
last several years indicates a growing interest.

There are two explicit constraints for the methods developed and researched in this thesis;
they define the niche to which the methods belong. First, the methods must target practical
applicability. Second, they should neither require time-consuming nor costly measuring cam-
paigns. The request for practical applicability is not restricted to the application of a given
method on-site. Rather, adaptation to a specific plant and deployment on-site are equally im-
portant goals. Therefore, careful selection of the methods is crucial and consequently, aspects
such as complexity, interpretability, robustness and reliability must be considered to allow
safe use on-site. The avoidance of complex measuring campaigns is, from a practical point of
view, essential. As recent publications state, because the possibility to carry out measuring
campaigns on-site is very limited due to time and cost constraints, it is often necessary to
rely on assumptions (Daigger, 2011; Dold et al., 2010; Hauduc et al., 2009).

2The query {Topic=(“wastewater” AND (“data driven modeling” OR “data mining”)), Timespan=“All
Years”} listed 51 entries, whereas the query {Topic=(“wastewater”), Timespan=“All Years”} listed 97,823
entries; queried on June 26th 2011.

3Same queries as above, however, the timespan was set to “Latest 5 years”. The entry counts were 44 and
41,681, respectively; queried on June 26th 2011.
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1.3 Goals and general research questions

Novel data mining and data-driven modeling techniques have great potential to support op-
erators and engineers alike when applied to WWTP data. On the one hand, they can extract
information valuable for plant operation and control from data available in the process infor-
mation system of the plant. On the other hand, these methods can provide information from
easy-to-measure data for which conventionally time-consuming experiments are required.

The following hypothesis can be formulated:

� WWTP data contain much more information valuable to support plant operation than
is used today. Data mining and data-driven modeling methods can be used to extract
this information.

The goal of this thesis is therefore to investigate the applicability and suitability of data
mining and data-driven modeling techniques to support WWTP operation. Because the
intended use of the resulting models is to apply them in practice, strategies must be developed
to ascertain that the models can be adapted to new plants, that they can reliably be deployed
and that their outputs can easily be interpreted.

The primary research questions that will be addressed in this thesis are:

� How can data mining and data-driven modeling techniques be applied to provide the
operator information on past events (Chapter 3), to give him or her insights into the
current state of the plant (Chapters 2 and 3) and to provide information helpful for the
optimization of plant control (Chapters 2, 3 and 4)?

� How can the considered techniques be applied to provide the engineer more informa-
tion on plant processes given the process data already available (Chapter 5), or by
performing measuring campaigns that are easy to carry out (Chapters 4 and 5)?

� Can the complexity of the models be reduced in such a way that they can either be
applied by non-experts or that non-experts can draw reliable conclusions from the
results (Chapters 2 and 5)?

� To which extent can the modeling be automated and what is the role of available expert
knowledge (Chapter 2 and 5)?

� Environmental conditions as well as WWTP processes are subject to change. How can
these changes be detected, and how can they be considered (Chapters 2 and 3)?

1.4 Thesis outline

Chapter 2 Data-driven modeling approaches to support WWTP operation

Data-driven modeling techniques are evaluated for the set-up of software sensors. The meth-
ods rely on process data already available in the process information system and are tested
considering three different levels of expert knowledge. It is shown that automatic software-
sensor generation is possible. Because of the data-driven nature of the sensors, however,
deployment must be performed carefully.
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Chapter 3 Identification of industrial wastewater by clustering UV/Vis spectra

It is shown how information about industrial dischargers and their discharge patterns can be
gained by clustering UV/Vis absorption spectra measured at the WWTP inlet. The cluster
approach combines a self-organizing map with Ward clustering and could, in a full scale
application, reliably detect the discharge events of an industrial laundry.

Chapter 4 Discharge distribution at hydraulic flow dividers

Neglecting the fact that most hydraulic flow dividers do not split the flows equally may have
severe consequences not only for WWTP operation but also for modeling when even splitting
is assumed. Up to now, there was no simple method available to check for and to quantify
unequal distribution. In this chapter, a new method is introduced that applies dynamic time
warping to compare the reactor influent and effluent signals of parallel reactors and thereby
quantifies the discharge distribution among these reactors.

Chapter 5 Automatic reactor model synthesis with genetic programming

Successful WWTP modeling depends on the accurate description of the hydraulic processes.
The accurate description, however, depends on information that cannot conveniently be ob-
tained; hence, modeling is mostly based on experience and intuition. In this chapter, it is
shown how genetic programming, a machine learning technique, can be used to synthesize
reactor models based on already available or easy-to-measure data.

Please note that the simulation software for Chapters 3, 4 and 5 is available; see Appendix
A on page 95.
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Abstract Data-driven modeling techniques are applied to process data from wastewater
treatment plants to provide valuable additional information for optimal plant control. The
application of data-driven modeling techniques, however, bears some risk because the gener-
ated models are of non-mechanistic nature and they thus do not always describe the plant
processes appropriately. In this study, a procedure to build software sensors based on sen-
sor data available in the process information system is defined and used to compare several
techniques suitable for data-driven modeling, including generalized least squares regression,
artificial neural networks, self-organizing maps and random forests. Three different degrees
of expert knowledge are defined and considered mainly for optimum input signal selection
and model interpretation. In two full-scale experiments, software sensors are created. The
experiments reveal that even with linear modeling techniques, it is possible to automatically
generate accurate software sensors. Hence, this justifies the selection of the most parsimonious
and transparent models and to motivate their investigation by taking into account available
expert knowledge. A high degree of expert knowledge is valuable for long-term accuracy,
but can lead to performance decreases in short-term predictions. With regard to safe on-site
deployment, the consideration of uncertainty measures is crucial to prevent misinterpretation
of software-sensor outputs in the cases of rare events or model input failures.

Keywords Data-driven modeling; wastewater treatment plant; supervisory control and data
acquisition; software sensor; generalized least squares; self-organizing map

2.1 Introduction

Increasing effluent quality requirements and fiscal restraints force wastewater treatment plant
(WWTP) operators to fully exploit the available facilities. For optimal plant control, ad-
vanced control strategies must be implemented. These strategies require a plant-wide mon-
itoring network of on- and off-line sensors, which are costly to acquire and maintain. It is
in the operator’s interest to both optimize the number of sensors installed and minimize
the need for sensor maintenance. In this context, there is a need for cost-effective methods
to provide the required information, ideally by directly extracting it from the data already
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available in the supervisory control and data acquisition system (SCADA) and without the
installation of additional instrumentation.

The deployment of software sensors is an alternative to the installation of hardware sensors
(Cecil and Kozlowska, 2010). A software sensor is a piece of software that outputs a signal
based on an internal model and several other (measured) input signals. Software sensors can
be divided into three classes according to their underlying model, i.e., mechanistic, black-box
and hybrid (gray-box) models (James, 2000). Because mechanistic models, such as the acti-
vated sludge model family (Henze et al., 2000), often lack statistical identifiability, gray-box
modeling approaches are preferred over mechanistic ones for the design of software sensors
(Carstensen et al., 1996). Gray-box modeling approaches include models with a reduced
number of parameters that can be estimated by statistical or mathematical techniques. Nu-
merous implementations based on state observers (e.g., Aubrun, 2001; Benazzi et al., 2007;
Lindberg and Carlsson, 1996; Sotomayor et al., 2002), or stochastic models that incorporate
process knowledge (e.g., Carstensen et al., 1994) are available.

Software sensors based on black-box models are likewise popular because they do not require
detailed prior understanding of the system (James, 2000). With data-driven modeling (DDM)
techniques, it is cost-effective to set up software sensors based on black-box models. These
techniques attempt to automatically capture the dominant processes and to relate input to
output variables and can consequently be seen as an alternative when mechanistic models
are not available or not valid (Gernaey et al., 2004; Masson et al., 1999). Popular techniques
include multivariate statistical methods, such as multiple linear regression, principal compo-
nent regression, partial least squares regression and artificial neural networks. Multivariate
statistical methods can be used for, e.g., process monitoring (Lee et al., 2006; Rosen et al.,
2003; Yoo et al., 2004) and software-sensor design (Jansson et al., 2002; Masson et al., 1999),
while artificial neural networks can be used for, e.g., prediction (Belanche et al., 1999; Dellana
and West, 2009; Kim et al., 2009; Raduly et al., 2007) and monitoring and control (Baeza
et al., 2002; Luccarini et al., 2010).

From a practical point of view, successful deployment of a software sensor based on DDM
depends on two critical aspects. First, to be competitive with hardware sensors, the setup
must be fast and straightforward, while the quality of the sensor output must be comparable.
In the optimal case, the sensor generation is widely automated, and the generated sensors
rely only on data already available in the SCADA system. Second, for safe, long-term opera-
tion, it must be robust, i.e., it must reflect changing environmental conditions (e.g., changes
in the wastewater composition, seasonal patterns) and changes in process control. This may
be achieved with an adaptive underlying modeling technique or automatic periodical recal-
ibration (Hill and Minsker, 2010; Rosen and Lennox, 2001), but at the very least, a sensor
must provide a means of self-diagnosis to indicate critical changes. In addition, sensor input
failures must be detected and isolated.

This paper investigates the applicability of four different modeling techniques for the deriva-
tion of cost-effective software sensors for use in a data-driven manner and with a strong
focus on deployment. The techniques evaluated included generalized least squares regression
(GLSR), artificial neural networks (ANNs), self-organizing maps (SOMs) and random forests
(RFs). For sensor generation, three levels of expert knowledge are defined, ranging from
the sparse knowledge of the types and locations of the sensors mounted in the WWTP to
detailed knowledge of the hydraulic and biological processes. For comparability, a widely au-
tomated procedure is further introduced that allows the generation of software sensors based
on available data and that takes into consideration the available knowledge.
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The procedure is applied in two full-scale experiments carried out on a mid-sized nitrifying-
denitrifying Swiss WWTP (65,000 people-equivalents). The only data source for the ex-
periments is the SCADA system of the plant. In the first experiment, a software-sensor is
generated to provide a redundant measurement of a hardware sensor measuring the concen-
tration of the total chemical oxygen demand (COD) at the effluent of the primary clarifier.
In the second experiment, a virtual on-online sensor that estimates the ammonia concentra-
tion in an activated sludge tank is developed for sensor diagnosis. The software sensors are
compared in terms of accuracy and interpretability. The latter is important in this context
because there is a risk that the models do not capture the dominant processes appropriately,
which can only be detected in a transparent and interpretable model. Because the software
sensors are targeted for on-site deployment, aspects such as robustness and long-term stability
crucial to the operator will also be discussed.

2.2 Material and methods

2.2.1 Data-driven modeling

DDM is a legitimate alternative when mechanistic models cannot be applied. In DDM,
data characterizing a system is analyzed to look for connections between the system state
variables without taking into account explicit knowledge of the system’s physical behavior.
Methods used in DDM have developed from the fields of computational intelligence and
machine learning (Solomatine et al., 2008). Although DDM appears to be a cheap but limited
technique, its simplicity of implementation, particularly when based on inexpensive, basic
on-line measurement signals, is a compelling advantage (Dewasme et al., 2009). Data-driven
models are especially suitable whenever the rate of data acquisition surpasses the ability to
analyze the data (Karim et al., 2003), which is particularly true for WWTP operations. The
main limitation of DDM is its inability to deal with changing conditions (e.g., modifications
in process control, changing environmental conditions) when they are not included in the
model and the lack of interpretability for some modeling techniques. If the data quality is
poor or if there are no correlations between the response variable and the other variables,
DDM will not be successful.

Because there is a risk that data-driven models do not capture the dominant processes appro-
priately, generated models must be carefully investigated, which requires expert-knowledge.
The investigation, however, can be facilitated if transparent models are preferred and if the
modeling is guided by the principle of parsimony, which recommends choosing the simplest
possible explanation of a phenomenon (i.e. to prefer simple over complex models).

Selecting the most-suitable modeling technique for software-sensor generation is not triv-
ial. Considering the dynamic nature of the WWTP processes, powerful non-linear modeling
techniques may be preferred. However, taking into account the requirement that models,
particularly those based on little expert knowledge, must be as transparent and interpretable
as possible, parsimonious linear models may still be reasonable choices.

The best modeling techniques should not only predict a software-sensor value but also assign
some measure of probability to it.
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2.2.2 Procedure

A procedure was developed to systematically build software sensors, taking into account
data available in the SCADA system. The procedure consists of the following six steps:
i) requirement definition, ii) signal selection, iii) data preparation, iv) modeling, v) model
evaluation and vi) deployment. This procedure will later be used to generate comparable
software sensors based on the different levels of expert knowledge and using varying modeling
techniques.

For this study, three different levels of expert knowledge are defined, as described in Table
2.1. Please note that the available knowledge is considered primarily for signal selection and
model evaluation.

Step 1: Requirements definition

In this initial step, the requirements are formulated based on the planned use of the software
sensor. This task is independent of the available expert knowledge and intends to define the
desired properties of the software sensor, including the selection of the sensor to model, the
type of analysis (on- or off-line), the required accuracy and the desired sampling rate. The
latter is particularly dependent on the intended use. The upper bound is set by the sampling
rate of the stored signals and the lower bound by the processes of interest. While signals
with low sampling rates may exhibit less noise, they may not be suitable for plant control
anymore.

Step 2: Signal selection

Signal selection depends on the desired sampling rate of the software sensor as well as on
the level of expert knowledge available and the signals stored in the SCADA system. For
the derivation of an on-line software sensor, only the hardware sensors located upstream of
the software-sensor location are meaningful input signals unless there are recycled flows, or
if the sensor measures a quantity that propagates fast (e.g., wastewater discharge). Off-line
sensors, i.e., those used for retrospective analyses, can include both downstream and upstream
sensors. Because even the Basic Knowledge scenario includes information about the sensor
locations, signal selection can always be made. In addition, knowledge of the sensor types
can be used to exclude knowingly unreliable input sensors.

Table 2.1: Characteristics of three levels of expert knowledge a priori available for software-sensor develop-
ment.

Type Knowledge

Basic Knowledge (BK) Types and locations of existing sensors

Intermediate Knowledge (IK) Basic Knowledge plus approximate hydraulic delays between the sen-
sors

Advanced Knowledge (AK) Intermediate Knowledge plus detailed information on reactor hydraulics
and biological processes
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Step 3: Data preparation

All selected signals are first preprocessed by the robust regression-based trimmed repeated
median (TRM) filter for outlier removal (Bernholt et al., 2006). The window width, which
should be at least three times the length of the outlier patches, was fixed in this study at 31
time steps.

Afterwards, all variables in the dataset are down-sampled to the desired sampling interval
∆t.

Lagged variables are then introduced to reflect values at the present time t of previous times,
t − α∆t, with lag α. Lagging is applied to account for the hydraulic delays between the
locations of the software sensor and each input variable and to take into account the dynamics
of the process (Masson et al., 1999). For the generation of on-line sensors, only positive
lags (α ≥ 0) are considered. We suggest adding lagged variables rather generously if the
available knowledge is limited. However, if Intermediate Knowledge or Advanced Knowledge
is available, the lagging should be limited to specific, physically meaningful lags.

Log-transformed versions of the variables (including the lagged variables) are appended to
the dataset. The motivation of the log transformation is threefold: i) to convert between
multiplicative and additive relationships, i.e., linearization (e.g., log (QC) = log(Q)+log(C));
ii) to alleviate possible issues due to heteroscedasticity, i.e., to stabilize the variance in the
residuals and iii) to dampen exponential growth patterns (e.g., log(ab) = b log(a)). Other
transformations that would also be conducive to modeling are abandoned for the following
several reasons: each transform doubles the number of variables in the data set, they are
sometimes difficult to interpret and some can be automatically built during modeling anyway
(e.g., n-th order differences in a linear model by subtracting lagged variables).

The nonspecific inclusion of input sensor candidates, the large number of lags and the applied
transformations lead to high-dimensional data sets with highly correlated variables, which
can be challenging for many methods (Rosen and Lennox, 2001). A method often applied
to reduce the dimensionality is principal components analysis (PCA) (Hastie et al., 2009;
Montgomery et al., 2006). PCA projects the data space onto a space spanned by princi-
pal components, which are linear combinations of the variables of the data space and are
chosen as follows. The first component has the direction of the largest variance. The next
components are chosen orthogonal to the previous components in the direction of the largest
remaining variance. The dimensionality is then reduced by only considering the components
that describe a defined amount of the total variance. Due to the orthogonality of the principal
components, they are uncorrelated.

Depending on the type of analysis performed, the data set is divided. To assess the prediction
error of a particular model, split-sample validation is used. That is, the data are divided
into a training set to fit the model and a validation set to calculate the error. On the other
hand, to compare several modeling techniques, ten-fold cross-validation is applied to compute
the generalization error (Hastie et al., 2009). For this purpose, the dataset is divided into
ten equal-sized subsets. Ten models are built, each time using nine subsets for calibration
and leaving out a different subset to assess the error, i.e. to calculate the residuals. The
generalization error is then calculated given the residuals of all models.
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Step 4: Modeling

In this step, a model is created with the training set. The modeling techniques considered
in this paper are the generalized least squares regression (GLSR), artificial neural networks
(ANN), self-organizing maps (SOM) and random forests (RF), which will be introduced in
Section 2.2.3.

Step 5: Model evaluation

The calibrated model is evaluated with the validation set and it is tested to determine whether
the defined performance criteria are met. If this is the case, the model is accepted and can
be deployed. If not, the previous steps must be repeated. The performance criterion used
in this paper is the coefficient of variation of the root mean square deviation, CV(RMSD),
which is calculated by

CV (RMSD) =
1

yobs

√∑N
i=1 (yobs,i − ymod,i)

2

N
(2.1)

where yobs denotes the series of observations and ymod the series of model predictions for both
vectors with length N .

Step 6: Deployment

The evaluated model can now be deployed as a software sensor to assist WWTP opera-
tion. Software-sensor values are available at the chosen sampling rate. Because of the
non-intelligent data-based nature of the software sensor, it may not automatically adapt
to changes in the process and changes in the catchment, and it may not be able to cope
with rare events. Therefore, supervision of the software sensor during deployment is impor-
tant, and some means for self-diagnosis, depending on the modeling technique, must be made
available to users (Masson et al., 1999).

2.2.3 Modeling techniques

In the section, the considered modeling techniques are briefly introduced. Additional infor-
mation on the techniques, including additional references, can be found in the Supporting
Information.

Generalized least squares regression (GLSR)

Generalized least squares regression is a linear modeling technique. In contrast with the ordi-
nary least squares (OLS) estimation method, GLS estimation does not rely on the assumption
that the residuals are uncorrelated and have constant variance. This is an important fea-
ture because auto-correlated residuals typically occur when dealing with time series data and
incomplete models (Dellana and West, 2009).
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Backward-elimination is applied to find the best subset of regressor variables by taking into
account the BIC (Bayesian information criterion), which not only considers the quality of the
fit, but also penalizes complex models (Hastie et al., 2009).

Artificial neural network (ANN)

The artificial neural network is a popular supervised non-linear statistical data modeling
tool. In this paper, a multilayer perceptron with one hidden layer is considered, which is a
feed-forward ANN. All neurons are given a sigmoidal activation function, except the neurons
in the output layer, which have a linear activation function. The network is trained with a
back-propagation learning (Hastie et al., 2009) and early-stopping is applied to prevent over-
fitting. The optimal number of hidden units is problem-dependent and therefore assessed
for each data set by training several networks with a varying number of hidden neurons,
eventually selecting the network with lowest generalization error.

Self-organizing maps (SOM)

Self-organizing maps are a noise-tolerant variant of artificial neural networks based on unsu-
pervised learning, originally proposed by Kohonen (2001). They learn to project input data
in a non-linear fashion from a high-dimensional data-space onto a lower-dimensional discrete
lattice of neurons on an output layer, called feature map (Céréghino and Park, 2009; Kalteh
et al., 2008). This is done in a topology-preserving way, which means that neurons physically
located close to each other have similar input patterns.

Each neuron has assigned a prototype vector having the same dimensionality as the input
data. The quantification error, q.e., expresses how well an input vector is represented in the
SOM and can be considered as a means for software-sensor self-diagnosis (i.e., the higher the
q.e., the more uncertain the prediction).

The models presented in this paper all have a two-dimensional, hexagonal feature map. The
number of neurons and the ratio of the side lengths are determined taking into consideration
the size of the data set (Park et al., 2006; Vesanto and Alhoniemi, 2000). The measure of
topological relevance (MTR) is considered to rank the importance of the variables (Corona
et al., 2008).

Random forests (RF)

Random forest is an increasingly popular machine-learning technique (Mouton et al., 2011;
Verikas et al., 2011). RFs are non-linear ensemble classifiers that build on a large collection
of classification or regression trees that are aggregated (Breiman, 2001). The RF technique
has the advantage that it performs remarkably well with very little tuning required (Hastie
et al., 2009) and is not prone to over-fitting (Breiman, 2001; Hastie et al., 2009); hence, it is
suitable for highly automated data-driven modeling approaches.

If RF is applied for regression, the response of the RF is the averaged response of all trees.
The relative importance of the regressor variables can be measured with samples not selected
in the bootstrap sub-samples used to construct a tree (Hastie et al., 2009; Verikas et al.,
2011).
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2.3 Results and discussion

2.3.1 Full-scale experiments

The given procedure was applied to create software sensors in two full-scale experiments. The
modeling technique as well as the degree of expert knowledge available was varied to assess the
suitability of each method and the role of expert knowledge. The experiments were carried out
on a nitrifying-denitrifying WWTP which treats the wastewater of 65,000 people-equivalents.
It is composed of two activated sludge treatment stages (cf. Figure 2.1). The first, older,
fully aerated “BB” stage consists of two parallel lanes and is used to pre-treat approximately
50% of the wastewater leaving the primary clarifier. The newer “NB” stage consists of four
lanes operated in parallel, with the first zone of each reactor operated anoxically or oxically,
depending on the ammonia load. The only data source for the experiments was the SCADA
system of the plant; all signal data were stored with a sampling interval of three minutes.

In the first experiment, an on-line software sensor was designed to provide a redundant
measurement of a hardware sensor measuring the concentration of the total COD at the
effluent of the primary clarifier, CCOD. The hardware sensor, a submersible spectrometer
probe (spectro::lyzer by s::can Messtechnik GmbH, Vienna, Austria) with 5 mm optical path
length, estimates the COD based the absorption at different wavelengths using an internal
model calibrated to the local situation (cf. Langergraber et al., 2003). The availability of
a redundant measurement that can be used for sensor diagnosis is valuable because the
hardware sensor is mounted in heavily polluted wastewater and therefore subject to fouling.
In the optimal case, the software sensor would replace the hardware sensor. For this purpose,
it must be reliable and exhibit long-term accuracy. A sampling interval of 15 minutes was
chosen, which reduces noise while still enabling the use of the sensor for process control and
trend detection.

The signals selected for this experiment are listed in Table 2.2. The accuracy of the software
sensors generated with different modeling techniques and under consideration of a varying
degree of expert knowledge is given in Table 2.3. The accuracy was estimated with ten-fold
cross-validation using a 21-day data set (1st– 21stOctober 2009).
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Figure 2.1: Simplified layout of the nitrifying-denitrifying WWTP. The locations of the signals selected for
the experiments are indicated, the sensors modeled by software sensors are marked in boldface (CCOD for the
first and SNH4N,NB3/1 for the second experiment). QO2 relates to airflow.
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Table 2.2: Signals selected for both full-scale experiments. For each degree of expert knowledge (BK = Basic
Knowledge, IK = Intermediate Knowledge, AK = Advanced Knowledge), it is indicated whether a sensor was
considered (“Use”) and which lags were added to the dataset (“Lags”). For every sensor the log transform
was calculated. The sensor locations are given in Figure 2.1. Mean and standard deviation were calculated
for the periods given in the text. (Q: discharge, S: concentration of soluble matter, C: concentration of soluble
and particulate matter, T: temperature; Qexs: excess sludge removal, rrain: rainfall intensity).

BK IK AK

Signal Unit Mean ± Std. Dev. Use Lags Use Lags Use Lags

Experiment 1 (Response: CCOD, 530 ± 150 g/m3)

Qin1 m33/s 65 ± 39 X 0-10 X 0-10 X 0, 1

pHin1 – 8.3 ± 0.16 X 0-10 X 0-10

Tin1 °C 19 ± 1.1 X 0-10 X 0-10

Qin2 m3/s 72 ± 39 X 0-10 X 0-10 X 0, 1

pHin2 – 7.8 ± 0.18 X 0-10 X 0-10

Tin2 °C 20 ± 1.0 X 0-10 X 0-10

Qin3 m3/s 56 ± 29 X 0-10 X 0-10 X 0, 1

pHin3 – 7.5 ± 1.1 X 0-10 X 0-10

Tin3 °C 19 ± 2.6 X 0-10 X 0-10

TPW °C 20 ± 1.1 X 0-10 X 0

SO2,BB1/1 g/m3 1.2 ± 0.85 X 0-10 X 0, 1, 2 X 0, 1, 2

SO2,BB1/3 g/m3 2.4 ± 2.1 X 0-10 X 0, 1, 2 X 0, 1, 2

SNH4N,NB2/1 g/m3 10.2 ± 2.5 X 0-10 X 0, 1, 2 X 0, 1, 2

Tamb °C 12 ± 5.3 X 0-10 X 0-10

Experiment 2 (Response: SNH4N,NB3/1, 8.7 ± 2.6 g/m3)

Qtot
a m3/s 180 ± 120 X 0-10 X 0, 1, 2 X 0, 1, 2

TPW °C 16 ± 0.91 X 0-10

QNB2 m3/s 41 ± 33 X 0-10 X 0, 1, 2 X 0, 1, 2

QEXS,NB2 m3/hr 0.21 ± 0.12 X 0-10 X 0-10 X 0-10

QO2,NB2/1 m3/hr 130 ± 190 X 0-10 X 0, 1 X 0, 1

SNH4N,NB2/1 g/m3 12 ± 7.0 X 0-10 X 0 X 0

SNO3N,NB2/1 g/m3 6.0 ± 5.0 X 0-10 X 0 X 0

QO2,NB2/2 m3/hr 470 ± 210 X 0-10 X 0, 1 X 0, 1

SO2,NB2/2 g/m3 1.3 ± 0.60 X 0-10 X 0, 1 X 0, 1

QO2,NB2/3 m3/hr 410 ± 170 X 0-10

SO2,NB2/3 g/m3 1.8 ± 0.93 X 0-10

QO2,NB2/4 m3/hr 310 ± 180 X 0-10 X 0, 1 X 0, 1

SO2,NB2/4 g/m3 2.8 ± 1.6 X 0-10 X 0, 1 X 0, 1

QNB3 m3/s 55 ± 28 X 0-10 X 0, 1, 2 X 0, 1, 2

QEXS,NB3 m3/hr 0.31 ± 0.10 X 0-10 X 0-10 X 0-10

QO2,NB3/1 m3/hr 16 ± 82 X 0-10 X 0, 1 X 0, 1

SNO3N,NB3/1 g/m3 4.7 ± 6.1 X 0-10 X 0 X 0

QO2,NB3/2 m3/hr 580 ± 210 X 0-10 X 0, 1 X 0, 1

SO2,NB3/2 g/m3 1.1 ± 0.51 X 0-10 X 0, 1 X 0, 1

QO2,NB3/3 m3/hr 470 ± 170 X 0-10

SO2,NB3/3 g/m3 1.8 ± 0.81 X 0-10

QO2,NB3/4 m3/hr 290 ± 120 X 0-10 X 0, 1 X 0, 1

SO2,NB3/4 g/m3 2.31 ± 0.83 X 0-10 X 0, 1 X 0, 1

Tamb °C 14 ± 4.4 X X 0-10 X 0

rrain mm/min 0.0023 ± 0.010 X 0-10 X 0-10 X 0-10

a Qtot = Qin1 + Qin2
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Table 2.3: Comparison of the performance achieved by the different modeling techniques with varying levels
of expert knowledge. The performance is expressed as CV (RMSD), cf. Eq. (2.1) and evaluated with ten-fold
cross-validation over 21 days. (BK = Basic Knowledge, IK = Intermediate Knowledge, AK = Advanced
Knowledge; see Table 2.1).

Modeling Technique Dimensionality Reduction Experiment 1: CCOD Experiment 2: SNH4N,NB3/1

BK IK AK BK IK AK

GLSR None 0.12 0.13 0.19 0.10 0.10 0.11

GLSR PCA 0.15 0.16 0.22 0.11 0.12 0.12

ANNa None 0.03 0.03 0.11 0.06 0.08 0.10

ANN a PCA 0.03 0.03 0.14 0.08 0.09 0.10

SOM None 0.06 0.06 0.16 0.08 0.09 0.09

SOM PCA 0.07 0.07 0.16 0.14 0.15 0.16

RF None 0.04 0.04 0.09 0.06 0.06 0.07

RF PCA 0.04 0.05 0.11 0.06 0.08 0.08

a Number of hidden neurons. Exp 1: a) BK: 59, IK: 62, AK: 81, b) BK: 55, IK: 57, AK: 80; Exp 2: a) BK:
25, IK: 55, AK: 38, b) BK: 9, IK: 11, AK: 16

In the second experiment, a virtual on-line sensor that estimates the NH4-N concentration in
the anoxic zone of an activated sludge tank (AST) was designed with the purpose of sensor
diagnosis. The sensors to be diagnosed are in-situ ion-selective electrodes (Nadler Chemische
Analysetechnik AG, Zuzwil, Switzerland); their membranes have a lifetime of three months
in activated sludge (for further information, cf. Rieger et al., 2002). In two of the four ASTs
operated in parallel, a sensor is installed and considered for the control of the aeration in the
first zone of two ASTs (sensor in NB2 for NB1 and NB2, sensor in NB3 for NB3 and NB4;
cf. Figure 2.1). The zones are anoxically operated, unless the ammonium load surpasses
a certain limit, which causes continuous aeration to assure sufficient nitrification. Sensor
failures can have a fatal impact on overall plant performance. Therefore, careful maintenance
and monitoring are important. For brevity, only the generation of a redundant sensor for
SNH4N,NB3/1 mounted in NB3 is discussed.

The software sensor designed for sensor diagnosis must be accurate but does not necessarily
need to have a long lifetime because frequent recalibration is possible. It should have a
sampling interval of 15 minutes.

The signals selected for sensor generation are indicated in Figure 2.1 and described in Table
2.2. The accuracy of the resulting sensors based on different modeling techniques and levels
of expert knowledge, with and without dimensionality reduction, is given in Table 2.3. They
were calculated with ten-fold cross-validation using a 21-day data set (15thApril – 5thMay
2010).

2.3.2 Comparison of the modeling techniques

Performance

The results in Table 2.3 show that for both experiments, models can be set up that are able
to reproduce the behavior of the selected signal.

Generally, the performance of the non-linear models (ANN, SOM and RF) is superior to the
performance of the linear GLSR model, independently of the knowledge available. This is not
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surprising because both hydraulic and biological processes are known to be highly non-linear
and dynamic (Belanche et al., 1999; Dellana and West, 2009).

Models applying PCA for dimensionality reduction perform worse than those without. This is
due to the information loss caused by only considering the principle components that describe
95% of the variance of the regressor variables. This is unaffected by the response variable
(Jackson, 1991). The effect of PCA seems particularly severe when considering the SOM
models. This, however, is partially attributed to another effect. Because the size of the SOM
has been made dependent on shape of the data set, significantly smaller maps with limited
modeling capabilities result for the data sets reduced in dimensionality.

Increasing expert knowledge is correlated with decreasing accuracy. Higher levels of expert
knowledge lead to smaller data sets with more physically sound variables, but fewer variables
which might show some local correlations and lead to better model accuracy. As will be shown
later, not considering these correlations is beneficial for the application in the long-run.

Transparency

Because there is a risk that data-driven models do not capture the dominant processes ap-
propriately, the models should be carefully checked. Model checking requires transparency of
the model and expert knowledge to distinguish a meaningful from a not-so-meaningful model.
However, even when expert knowledge is lacking, good interpretability is important because
it adds to the available knowledge.

Model transparency will be discussed using the models of Experiment 1 with Advanced
Knowledge.

The GLSR models are highly transparent; their linear model can be expressed as a single
equation. The formula for the GLSR model (without dimensionality reduction) is

CCOD = 5Qin1 − 6 lag1(Qin1)− 417 log(Qin1) + 403 lag1 (log (Qin1))

+3Qin2 − 464 log(Qin2) + 537 lag1(log(Qin2))

−18SO2,BB1/3 + 16 lag2(SO2,BB1/3)

−814 log(SNH4N,NB1/1) + 808 lag2(log(SNH4N,NB1/1)) + 217

(2.2)

where the functions lagα(·) denote the signal shifted in the time domain by α time steps. Of
many variables, there are differently lagged pairs with similar coefficients subtracted from each
other in the formula. This indicates that the gradient, i.e., the change of a variable over time,
is important rather than the absolute value. If the export had only added one single lag of the
given variables, however, it would not have been possible to take into account these gradients.
The significance of the selected variables evaluated with an F-test reveals that all variables
are significant at the 99% significance level. The interpretation of the regression coefficients,
however, can be misleading because they might be skewed by collinearity. Although one
sees that, roughly, high CCOD corresponds with low Qin1, high Qin2, low SO2,BB1/3 and low
SNH4N,NB1/1, further interpretation would require more information on the catchment.

Applying PCA for dimensionality reduction prevents collinearity issues because the principal
components are orthogonal, but then the interpretation of the original model variables and
their importance are less obvious (Jackson, 1991).
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Figure 2.2: SOM content planes of CCOD (response) and the three regressor variables with the highest
topological relevance (MTR). Properties of the regions (1)-(3) are discussed in the text.

The ANN models have better performance but, in contrast, cannot easily be interpreted,
they are essentially opaque. This is also the primary reason for which they are criticized
(Paliwal and Kumar, 2011) and why their use is limited in fields where model interpretation
is important (Hastie et al., 2009).

The non-linear mappings of the SOM can conveniently be assessed by plotting the content
planes, which are basically cross-sections through the prototype vectors of the feature map.
The planes of the three variables with the highest MTR are plotted together with CCOD in
Figure 2.2, three regions are marked. The analysis indicates that the highest values of CCOD

occur at rather high SNH4N,NB2/1 and medium to low SO2,BB1/3 (region 1). This corresponds
to the interpretation of the GLSR model, given in Eq. (2.2). However, medium CCOD values
can occur at high SO2,BB1/3 with low Qin1 and vice versa (regions 2 and 3).

If PCA is applied to reduce the dimensionality of the SOM, however, the advantage of the
high interpretability is lost.

The performance of the models generated with RF without dimensionality reduction is compa-
rable to the ANN. The interpretability, however, is likewise limited (Mouton et al., 2011). The
variable importance measure reveals that the most important variables are Qin1, SO2,BB1/3

and SNH4N,NB2/1 (in decreasing order) and thereby suggests the same variables as GLSR
and SOM. Similar to the other modeling techniques, applying PCA dimensionality reduction
worsens interpretability of even the variable importance measures.

Even though the modeling techniques are very different, the generated models consistently
consider the same input signals important. With regard to the interpretability, however,
only the GLSR and SOM models without dimensionality reduction by PCA are sufficiently
interpretable.

2.3.3 Role of expert knowledge

The role of expert knowledge is not directly evident from the performance measures given
in Table 2.3. On the contrary, it seems that a higher degree of knowledge leads to lower
accuracy. The role of expert knowledge becomes clear when the models are applied for longer
term predictions. In Figure 2.3, the cumulated absolute residuals for a long-term prediction
of CCOD with the GLSR are plotted. A calibration period of seven days was used to calibrate
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Figure 2.3: Cumulative absolute residuals for a long-term prediction of CCOD using a GLSR model.

the models. During the first 1.5 days of the prediction, the increase is linear and similar for all
of the levels of knowledge. A linear increase means that the residuals remain approximately
constant for the time considered. After this, while the cumulative absolute residual of the
sensor based on Advanced Knowledge still increases almost linearly, the cumulated absolute
residuals of the others exhibit faster increases. This indicates that models based on a higher
degree of knowledge give more consideration to the true physical processes and have a lower
tendency to over-fit local correlations that are valid for short time spans only. The sensor
based on Advanced Knowledge is given in Eq. (2.2).

As a result, long-term accuracy is sensitive to the available degree of expert knowledge.
Expert knowledge is therefore important if long-term accuracy is a key goal and if frequent
recalibration is not possible.

2.3.4 Deployment aspects

For clarity and brevity, the deployment aspects are discussed considering the two modeling
techniques with the highest interpretability only, namely GLSR and SOM without dimen-
sionality reduction by PCA.

Long-term accuracy

Long-term accuracy is an important feature to ensure cost-effectiveness, particularly if the
setup of the software sensor has required additional measuring campaigns, and also with
regard to reliable application. However, the automatically generated software sensors based
on empirical models will only have a limited lifetime. Some measures, such as prediction
intervals or quantification errors, can be applied as indicators for decreasing accuracy, but
comparing grab samples with the software-sensor outputs is also appropriate for software-
sensor diagnosis. The latter is a common task for sensor diagnosis and fault detection, and
highly optimized procedures are available (e.g., Corominas et al., 2011; Rieger et al., 2004).

In Section 2.3.3, it was shown that a high degree of expert knowledge can have a positive effect
on long-term stability because the expert excludes sensors known to be either inaccurate or
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Figure 2.4: CV (RMSD) of GLSR and SOM models (without PCA) for Experiment 1. The models were
calibrated with variable length calibration sets and validated with a one-day validation set.

to obey a trend. Trends, such as weekly and seasonal patterns, however, are not an issue if
the software sensor is designed to have a lifetime shorter than that of the respective pattern
or if the software sensor is adaptive (Rosen and Lennox, 2001). If long-term applicability is a
principal goal, the input data must be checked for trends and non-stationarity, e.g., by visual
inspection and statistical tests (Montgomery et al., 2006), for which a high degree of expert
knowledge is helpful.

The length of the time series used to calibrate the sensors has an impact on their stability
and can, to some extent, substitute for expert knowledge. Short calibration periods tend not
to properly catch the relevant processes, as shown in Figure 2.4. In a cross-validation process,
the CV (RMSD) was calculated for the GLSR and SOM models built for Experiment 1. The
calibration sets had varying lengths, while the length of the validation period was set to one
day.

For GLSR, models calibrated with short calibration periods and with Basic and Intermediate
Knowledge result in high deviations. This indicates not only that the relevant processes
cannot be identified with short calibration periods, but also that the model is over-fitted.
The CV (RMSD) converges after a calibration set length of approximately 10 days. Only
the model with Advanced Knowledge performs equally well for any investigated length of the
calibration period. Similar effects can be identified for the SOM model. However, severe over-
fitting is prevented by the connection of the SOM-map size and the size of the calibration set
(the smaller the set, the smaller the map). The CV (RMSD) of the SOM model is generally
lower than that of the GLSR model because of its ability to model non-linear processes to
a greater extent. For Advanced Knowledge, however, a significantly higher CV (RMSD) is
observed, which indicates that some sensors and lags were removed from the data set that
would have been potentially useful.
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Figure 2.5: CCOD Software sensor responses to a rainfall event. The software sensors are based on the GLSR
(left column) and SOM models (right column). The measured (bold grey line) and calculated (solid black
line) CCOD are plotted. For the GLSR, the 95% prediction interval (dotted line) and the ∆PI (dashed line,
right axis) are indicated, and for the SOM, the quantification error, q.e. (dashed line, right axis) is plotted.

Rare events

To be of use to the operator, rare events should either be correctly modeled by the software
sensor, or the software sensor should indicate that some unknown event has happened. The
output of the software sensors with a GLSR or SOM model for Experiment 1, both without
dimensionality reduction by PCA, were tested against a rainfall event. As indicators for the
probability of a prediction, the 95% prediction intervals, PI, and the difference between the
upper and the lower PI, ∆PI, were calculated for the GLSR model. For the SOM model
the quantification error, q.e., was calculated considering 33% of the most important variables
(ranked by the MTR measure). The results are plotted in Figure 2.5.

During the rainfall event (the influent discharge rose from ∼ 0.1m3/s to ∼ 0.6m3/s from hour
20 to hour 22), both ∆PI and q.e. markedly increase and thereby reliably signal the rare
event. The software-sensor responses during the event can be classified into two groups. The
sensors that correlate high CCOD values to high temperature under-estimate CCOD due to
the rather cold temperature of the rainfall. This is the case for the GLSR models based on
Basic and Intermediate Knowledge. The other models correlate high CCOD to high influent
discharge and over-estimate CCOD.
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The monitoring of ∆PI and q.e. is a valuable tool and essential for safe software-sensor
deployment.

Model transferability

The purpose of Experiment 2 is to generate a software sensor to predict the NH4-N con-
centration in lane 3 (Figure 2.1) based on other measurements for sensor diagnosis. It is a
legitimate question whether it would be possible to calibrate a model for lane 2 because there
is a NH4-N probe permanently mounted and to transfer that model to the other lanes.

The transferability was assessed as follows, with a data set of one year and by taking into
account Advanced Knowledge. First, a model was calibrated for lane 2 using data from days
1-14 (all signals except the measurements in the other lanes), and the generalization error
was calculated using data from day 15. Then the model was transferred to lane 3, i.e., all
signals measured in lane 2 were replaced by the corresponding signal in lane 3, and the error
was calculated using the data from day 15. Another model was then calibrated with data
from days 2-15 and validated with data from day 16. This was repeated until day 365 was
used for validation. The average CV (RMSD)s are given in Table 2.4.

The performance of the transferred models is worse than the performance of the original
model, independent of the applied modeling technique. The reasons for this discrepancy
can be manifold, e.g., unequal distribution of the wastewater streams or different aerator
efficiencies. The decision whether the transferability is enough, however, depends on the
required accuracy of the sensor and therefore cannot be generally answered here.

Model input failure

Until now it was assumed that the software-sensor inputs were not subject to failure. Al-
though the failure rate may be considerably reduced if robust sensors are selected as inputs,
there must be a way to identify potential failures. This is of particular importance if the
software sensor is used for sensor diagnosis because failures of sensors to diagnose must be
distinguished from failures of sensors considered as software-sensor inputs.

A straight forward procedure to identify whether an input sensor has failed is to create a
primary software sensor using the full data set and to create secondary software sensors using
reduced data sets. That is, each reduced data set contains the signal data of all but one
sensor (including its transformed and lagged variables). During deployment, if the primary
software sensor changes behavior, the secondary sensors can be checked. If all but one sensor
show similar changes, the signal left out for that individual secondary sensor is probably the

Table 2.4: Assessment of the model transferability. A GLSR model and a SOM model were calibrated for
lane 2 and then transferred to lane 3. The generalization error expressed as CV (RMSD) is given for lane 2
and lane 3.

Lane GLSR SOM

Lane 2 (Original model) 0.16 0.17

Lane 3 (Transferred model) 0.31 0.28
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Figure 2.6: Results of the validation period for a software sensor to model SNH4N,NB3/1. The input sensor
SO2,NB3/2 fails after one day. In subplot a), the measured NH4-N concentration (thick grey line) and the
output of the primary model based on the full data set (solid line for the prediction, dotted lines for the 95%
prediction intervals) are shown. In subplots b) to i), the outputs of the secondary models based on reduced
data sets are shown, ∆PI is indicated (dashed lines).

one that failed and should be further investigated. However, a requirement for this procedure
is the availability of sufficient signals that correlate with the sensor to model.

An example is given in Figure 2.6. A software sensor to estimate SNH4N,NB2/1 was built with
a GLSR model and Advanced Knowledge. The model included eight sensors and 79 variables
(with transformations and lags). After 24 hours of validation, the oxygen sensor CO2,NB2/2

was set to measure a constant concentration of 0.5 g/m3. Considering the estimates of the
secondary sensors plotted in Figure 2.6, the sensor that failed can be identified. Only the
model which was calibrated without using data of sensor CO2,NB2/2 neither exhibits a change
in the width of the prediction interval, ∆PI, nor noticeable changes in the prediction after
the failure was introduced.

Computations have shown that the same procedure can be applied if CO2,NB2/2 was subject
to drift. However, the decrease of the accuracy and the increase of ∆PI is not abrupt as in
the example above. As consequence, the detection of a drift can be slightly delayed.
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2.4 Conclusions

This work investigated the applicability of data-driven modeling techniques to support WWTP
operation. A simple procedure was introduced to systematically generate software sensors
based on data available in the SCADA system of the plant. Practical deployment scenarios
for software sensors include the creation of redundant measurements for sensor diagnosis and
the replacement of existing sensors.

The procedure was tested with four different modeling techniques (GLSR, ANN, SOM and
RF) with and without dimensionality reduction by PCA and by taking into account three
different levels of expert knowledge in two full-scale experiments. Even with linear modeling
techniques, it was possible to automatically generate accurate software sensors, despite the
highly dynamic and non-linear hydraulic and biological WWTP processes.

Expert knowledge was important not only for the interpretation of generated software sensors
but also for the reduction of the data set used for software-sensor generation to meaningful and
reliable sensors. For the former, the models must be transparent and favorably parsimonious,
which is satisfied only for SOM and GLSR models. without the application of PCA. For GLSR
models, it was shown that software sensors have improved long-term accuracy with higher
degrees of available expert knowledge and for longer calibration periods.

For safe deployment on-site, it is crucial that the sensors provide some measure of uncertainty
for their predictions. By investigating the prediction intervals of the GLSR models or the
quantification error of the SOMs, rare events and the failure of model input sensors for which
the software-sensor prediction was unreliable could be identified.

Despite the fact that the data-driven models are not intelligent, with the right tools, they can
reliably provide the operator with valuable information extracted from data already available
in the SCADA system in a cost-effective way. In addition, the active exploration of the
automatically generated models can increase understanding of in-plant processes.

2.5 Supporting information

Supporting content associated with this article can be found in Appendix B (page 99 ff.)
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Rosen, C., Röttorp, J., Jeppsson, U., 2003. Multivariate on-line monitoring: challenges
and solutions for modern wastewater treatment operation. Water Science and Technology
47 (2), 171–179.

Solomatine, D., See, L. M., Abrahart, R. J., 2008. Data-Driven Modelling: Concepts, Ap-
proaches and Experiences. In: Abrahart, R. J., See, L. M., Solomatine, D. P. (Eds.),
Practical Hydroinformatics. Vol. 68. Springer, Berlin, Heidelberg, pp. 17–30.

Sotomayor, O. A., Park, S. W., Garcia, C., 2002. Software sensor for on-line estimation of
the microbial activity in activated sludge systems. ISA Transactions 41 (2), 127–143.

Verikas, A., Gelzinis, A., Bacauskiene, M., 2011. Mining data with random forests: A survey
and results of new tests. Pattern Recognition 44 (2), 330–349.

Vesanto, J., Alhoniemi, E., 2000. Clustering of the self-organizing map. IEEE Transactions
on Neural Networks 11 (3), 586–600.

Yoo, C. K., Lee, J.-M., Lee, I.-B., Vanrolleghem, P. A., 2004. Dynamic monitoring system for
full-scale wastewater treatment plants. Water Science and Technology 50 (11), 163–171.



Chapter 3

Identification of industrial wastewater by

clustering wastewater treatment plant influent

ultraviolet visible spectra

Water Science and Technology, 2011, 63(6), 1153-1159

David J. Dürrenmatt and Willi Gujer

33



34 3 Identification of industrial wastewater by clustering UV/Vis spectra

Identification of industrial wastewater by
clustering wastewater treatment plant influent
ultraviolet visible spectra

David J. Dürrenmatt* and Willi Gujer*

* Institute of Environmental Engineering, ETH Zurich, 8093 Zurich, Switzerland and
Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland
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Abstract A procedure is proposed which allows the detection of industrial discharge events
at the inlet of a wastewater treatment plant without the need for measurements performed
at the industry, for special equipment and for exact knowledge of the industrial sewage.
By performing UV/Vis measurements at the inlet of a plant and analyzing them with a
two-staged clustering method consisting of the self-organizing map algorithm and the Ward
clustering method, typical sewage clusters can be found. In an experiment performed at a
mid-sized Swiss plant, one cluster of a cluster model with five clusters could be attributed to
an industrial laundry. Out of 95 laundry discharging events measured in a validation period,
93 were correctly detected by the proposed algorithm, two were false positives and five were
false negatives.

Keywords data mining; industrial wastewater; self-organizing maps; UV/Vis photospec-
trometry; Ward clustering

3.1 Introduction

Industrial wastewater can have a significant impact on the performance of a wastewater
treatment plant (WWTP). Discharged at times when the plant is running at full capacity,
e.g. during peak hours, industrial sewage can cause overloading and thus exceeding effluent
concentration constraints.

WWTP operators are generally not provided relevant information by the industrial sites in
the catchment area, neither on the type of sewage, the temporal pattern of discharging, nor on
the exact load which is released to the sewer system, although this information is important
for optimal plant control. Analyzing WWTP inflow with focus on the detection of industrial
dischargers and the attribution of a discharge event to its producer, on the other hand, is
difficult.

Methods for the detection of unusual changes in the wastewater composition and abnormal
influent characteristics can be found in the literature. Langergraber et al. (2004), for example,
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present a method to generate alarm parameters from measured influent UV/Vis absorption
spectra. Although their method can be used for early warning, it does not directly provide
information on the discharger. A method to search the sources of wastewater which inhibits
nitrification is given by Kroiss et al. (1992); the method however requires sampling of the
industrial sewages. This paper, in contrast, proposes a two-staged clustering approach which
uses influent UV/Vis absorption spectra only to reveal information on the wastewater pro-
ducers in a catchment area and on the pattern of their discharging, which is novel. Clustering
is a fundamental task in data mining and aims at grouping data instances into subsets such
that similar instances are grouped together (Rokach and Maimon, 2005). Using a different
approach to cluster UV/Vis spectra measured at a fuel park WWTP, Lourenço et al. (2006)
show that information can be extracted from the spectra and can be used for qualitative
monitoring. However, their sample size was small and the spectra were sampled at several
locations within the plant, thus exhibiting clear differences.

The proposed approach consists of a self-organizing map (SOM) which is used to generate a
smaller but still representative data set using preprocessed UV/Vis absorption spectra. In the
second step, the reduced data set is clustered by Ward’s hierarchical agglomerative clustering
algorithm and the clusters are manually labeled. The installation of an UV/Vis sensor at the
WWTP inlet is sufficient (and may serve other purposes) and there is no need for the industry
to install special measuring equipment, data storage and transmission infrastructure. The
deployed clustering model detects and distinguishes different sewages and attributes them to
producers.

3.2 Material and methods

3.2.1 In-situ UV/Vis photospectrometry

UV/Vis photospectrometry measures the absorption of light from the ultraviolet to the visible
range. Although there are methods which allow the extraction of quantitative information
on concentrations of chemical compounds which absorb in the given wavelength range, they
cannot directly be applied for wastewater analysis because of physical or chemical interference
(Thomas and Cerda, 2007). However, taking into account that a UV/Vis absorption spectrum
is unique for a certain sewage composition, it can be considered as a fingerprint and be used
for further analysis.

The spectra for this study were recorded with a submersible spectrometer probe (spec-
tro::lyzer by s::can Messtechnik GmbH, Vienna, Austria) with 5 mm optical path length
which measures the turbidity compensated absorbance between the wavelengths of 200 and
742.5 nm in 2.5 nm steps (for more information on the sensor, see e.g. Langergraber et al.,
2003).

3.2.2 Site description

This experiment is performed in a Swiss community with about 20’000 population equivalents.
The average discharge originating from the catchment at the WWTP inlet is 80 L/s. An
industrial laundry is situated in the catchment approximately 1 km upstream of the plant,
which corresponds to an estimated sewer flow time of 26 minutes. During the irregularly
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Table 3.1: Characterization of domestic and laundry wastewater (sampled on 25thMay 2010 12:00).

Parameter Laundry Domestic

CODeq [mg/L] 1970 800

Soluble CODeq [mg/L] 1556 290

NH4-N [mg/L] 1.1 25

NO3-N [mg/L] 2.8 0.3

NO2-N [mg/L] 0.45 0.04

PO4-P [mg/L] 0.5 2.8

pH [-] 8.1 7.2

Conductivity [mS/cm] 1.5 1.3

occurring discharge events, 10 L/s of laundry sewage are pumped into the sewer system for
a variable amount of time (18 minutes on average). The composition of laundry wastewater
is compared to domestic wastewater in Table 3.1.

In the process information system of the plant, data of common operating parameters are
readily available. In a measuring campaign from 1st June 2009 00:00 to 30th June 2009 24:00,
a total of 31,614 UV/Vis absorption spectra were recorded after the fine screen (6 mm) with
a sampling interval of 1 minute.

At the laundry, the discharge events were recorded in a measuring campaign from 2nd June
2009 00:00 to 12th June 2009 12:00. To be used for model validation, the events measured
at the laundry must be synchronized with the events detected at the WWTP by taking into
account the flow in the sewer. This is done by adding the estimated mean sewer flow time to
the recorded events.

3.2.3 Two-stage clustering approach: self-organizing maps and Ward clustering

UV/Vis data has high dimensionality, is subject to significant noise and suffers from outliers,
this makes clustering difficult. Thus we have chosen a two-staged approach which has proven
powerful especially when dealing with “noisy and messy” data (Canetta et al., 2005; Vesanto
and Alhoniemi, 2000). The approach is illustrated in Figure 3.1.

Data preparation

Because the concentrations of the domestic sewage and the laundry wastewater vary over
time, a preprocessing method has been developed which reduces dilution phenomena of a
UV/Vis fingerprint while emphasizing its characteristic shape. This is achieved by normal-
izing the absorption spectra a(λ) (absorbance a at wavelength λ) to have zero mean and
unit variance and shifting it so that all measured absorption rates of wavelengths greater
than a wavelength λc are aligned. Mathematically speaking, spectra are transformed by the
non-intuitive equation

ã(λ) =
1√

var(a)

(
a(λ)−

∫∞
λc

a(λ)dλ∫∞
λc

dλ

)
. (3.1)

After transformation, all ã(λ) with λ ≥ λc are cropped.
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Figure 3.1: Scheme illustrating the two-staged clustering approach: Preprocessed UV/Vis spectra (one
spectrum corresponds to one input vector) which form a high-dimensional input space are mapped to a two
dimensional SOM feature map in the map space. To train the SOM, i.e. to find the optimum prototype
vectors for all neurons, a learning rate function (e.g. inverse where α0 denotes the initial learning rate and
T the training length) and a neighborhood function (e.g. Gaussian where dij denotes the distance between
neurons i and j on the feature map and σt the neighborhood radius) are applied. The trained feature map is
clustered by the Ward Clustering algorithm and cluster labels are manually assigned.

The preprocessed spectra are split into a calibration set, which contains the UV/Vis data
from 13th to 30th June 2009 (no laundry data available) and a validation set, which contains
the UV/Vis data and laundry discharge data from 2nd to 12th June 2009: The former is used
to build the model and to detect and label the clusters (see below), the latter to assess the
model performance.

Self-organizing maps

The self-organizing maps are a variant of artificial neural networks based on unsupervised
learning, originally proposed by Kohonen (2001). They learn to cluster groups of similar input
data in a non-linear projection from a high-dimensional data-space onto a lower-dimensional
discrete lattice of neurons on an output layer (feature map, cf. Figure 3.1) in an orderly
fashion (Kalteh et al., 2008). This is done in a topology preserving way which means that
neurons physically located close the each other have similar input patterns. Additionally,
the SOM is tolerant to noise which is especially helpful when dealing with experimental
measurements.
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Each neuron has assigned a prototype vector having the same dimensionality as the input
data. During training, these vectors are optimized in order to represent the whole input data;
the set of prototype vectors is therefore representative for the data set. The optimization
of the prototype vectors is proportional to a learning rate and a neighborhood function,
both monotonically decreasing during the ordering process. The former is a scalar; the latter
forms a smoothing kernel around the prototype vector and makes sure that only input vectors
within a certain neighborhood affect the prototype vector. Both are important to allow a
regular smoothing.

The prototype vector wi of neuron i which has minimum distance to an input vector ãt is
the winning neuron for this input vector and is called the best-matching unit (BMU). The
distance between the input vector and its BMU is called quantification error and given by
the following Euclidian distance:

q.e. = ∥ãt − wi∥ (3.2)

In this study, the software SOM toolbox for Matlab (Vesanto et al., 2000) was used to train
and evaluate the SOMs.

Ward clustering

When applying the hierarchical agglomerative Ward clustering method (Ward, 1963) on the
SOM prototype vectors, each vector first forms its own cluster. Then, subsequently, the two
clusters with minimum Ward distance are merged (the Ward distance between two clusters
is defined as amount of variance added when two clusters are merged). The aim is to have
small variance within a cluster and high variance between the clusters.

The optimum number of clusters is estimated by taking into account the Davies-Bouldin index
(db-index; Davies and Bouldin, 1979), which is the averaged similarity between each cluster
and its most similar one (Halkidi et al., 2002). Because clusters with minimum similarity are
aimed, the db-index is minimized.

The task of the expert is it now to identify the cluster in which the UV/Vis spectra of
laundry/domestic wastewater mixtures lie (hereafter named qlaundry cluster).

3.3 Results and discussion

3.3.1 Clustering model

The clustering model given in Figure 3.2 was trained following the approach illustrated in
Figure 3.1 using the preprocessed spectra of the calibration set (17,215 measurements, 54%
of the data set, cropped at λc = 324nm). A SOM with a two dimensional feature map
(the neurons are arranged in a hexagonal grid) with map size 50x13 was trained using a
Gaussian neighborhood function with σt linearly decreasing with time from 7 to 1 and an
inverse learning rate function with α0 = 0.5 (see Figure 3.1). Please note that for all distance
measures, the Euclidian distance was used.
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Figure 3.2: Feature maps of the trained SOM are presented in (a) and (b). The colorization of the feature
map in (a) indicates the average distance of a neuron to its neighbors (the logarithm of the so-called U-Matrix).
In (b), the colored areas represent the clusters found by Ward clustering and the size of the black hexagons
within the neurons the count of input vectors for which the neuron is the BMU. In (c), the Ward cluster
centroids are plotted; the percentages of spectra in each cluster are given in the legend.

The topographic error (the proportion of all data vectors whose first and second BMUs are
not adjacent vectors, cf. Kohonen, 2001) of the SOM is 0.064 and the average quantization
error 0.153. The Ward algorithm was applied for a cluster size of five, which had the lowest
db-index of 0.67.

3.3.2 Laundry cluster detection

In order to find the cluster which contains BMUs for the UV/Vis spectra measured when
laundry wastewater is being discharged, the use of three visualizations was advantageous:

i) The plot of the cluster centroids (cf. Figure 3.2c) is helpful to detect clusters significantly
deviating from the others and having a shape consistent with available prior knowledge.
Cluster 2 deviates from the others.

ii) Considering a time series plot showing the particular cluster overlaid with the measured
inflow parameters (Figure 3.3a), one would again select Cluster 2 (higher temperature,
slightly elevated discharge).

iii) A ring map revealing the periodicity of the discharging (Figure 3.3b) exhibits an obvious,
albeit irregular, operational schedule of Monday-Friday 7:00 to 23:00 and frequently of
Saturday 7:00 to 12:00 for Cluster 2, which corresponds to the production schedule of
the laundry.

As a result, one can say that laundry discharging events are contained in Cluster 2 with
high probability. It is important to notice that the quantification error plotted in Figure
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Figure 3.3: (a) Discharging events measured at the industrial site shifted by the mean residence time in the
sewer (filled rectangles), clusters assigned to the UV/Vis measurements, operating data measured at the inlet
and the quantification error (q.e.) of the SOM for the period of one day. (b) Ring map indicating the weekly
periodicity of the clusters (1stJune: Holiday).

3.3a remains small during most of the detected events which shows that the UV/Vis spectra
measured during an event are appropriately represented on the SOM.

To set up the model and select the associated cluster no quantitative information on the time
and duration of the discharging events is needed. In the next section, the clustering model
will be validated using quantitative information recorded at the industrial site.

Given the case that the cluster cannot be identified, heavy dilution effects, insufficient absorp-
tion of characteristic compounds or interference due to mixtures of several similar sewages
could be hindering reasons. In bigger catchment areas where there are many industries with
interfering spectra the integration of other operating data or mounting the measuring devices
upstream of the plant might help.

3.3.3 Model performance

The model performance is assessed by evaluating the clustering model with the validation
data set (14,399 spectra, 46% of the data set) and comparing the time periods when Cluster
2 is detected with the measured discharging events at the laundry shifted by the mean flow
time in the sewer.

The clustering model predicts a total of 95 events. Comparing these to the 98 events mea-
sured, 93 were assigned correctly, two were false positives and five were false negatives (cf.
Figure 3.4a). This corresponds to a failure rate of 7%.

The average duration is 18.0 minutes for the measured and 20.8 minutes for the predicted
events. The error of the predicted event duration is thus 2.8 ± 3.9 minutes (mean ± standard
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Figure 3.4: (a) Measured and predicted events for the validation period (the width of the bar corresponds
to the duration of the event; bold circles indicate false positives, triangles false negatives). (b) Distribution of
the error when comparing the predicted with the measured events.

deviation); the error of the predicted event start is 0.9 ± 2.0 minutes and 3.7 ± 3.6 minutes
of the event end (the distribution is given in Figure 3.4b). Some of this error may be caused
by neglecting the variable flow velocity and dispersion in the sewer when shifting by the mean
sewer flow time.

3.3.4 Detection limit

The detection limit of the clustering model for the detection of laundry discharge events
depends on the dilution of laundry and domestic sewage at the WWTP inlet.

The maximum dilution of laundry sewage which can still be detected by the clustering model
was experimentally estimated by measuring and clustering the UV/Vis spectra of different
dilutions of domestic and laundry sewage (both grab-sampled on 25thMay 2010 12:00). Di-
lutions which contained more than 7% laundry sewage were detectable. This corresponds
to a minimum fraction of the COD load of 12%. Comparing the discharge of 10 L/s of the
laundry with the discharge at the inlet of the WWTP which is 124 L/s (85% percentile), one
can conclude that the majority of the discharging events are detectable.

It was observed that dilution caused by rainfall events only has minor effects on the model
performance. This can be explained: Although pollutant concentrations are lower during
rainfall events, the ratio between domestic and laundry sewage approximately remains the
same. Five laundry discharging events out of six which occurred during three rainfall events
(WWTP inflow greater than 200 L/s) in the validation period were detected correctly.

3.3.5 Long term validity

To ensure long term validity, it must be ascertained that the conditions under which the
clustering model was calibrated remain constant. That is, the quality of the laundry sewage
does not change, e.g. due to changed processes, and that there is no other interfering sewage
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originating from the catchment area which exhibits a similar UV/Vis fingerprint and activates
a BMU in the same cluster on the feature map of the SOM.

To detect possible changes, it is advisable to i) track the quantification error during clus-
tering (high quantification errors indicate novel / abnormal patterns) and to ii) recompute
the cluster model regularly and check whether the number of clusters remains the same and
the clustering results are similar (disappearing and appearing clusters indicate changes in the
catchment area). Recomputing can be highly automated and does not need additional mea-
surements to be performed. However, when changes are detected and validation is advisable,
additional measurements are required.

3.4 Potential applications

The authors see four practical tasks for which the proposed method is helpful: i) The local-
ization of an unknown sewage producer (by inferring rules from the clustered time series and
by estimating sewer flow distance by analyzing the trajectories on the feature map), ii) the
verification of legal compliance (i.e. if a producer violates agreed discharging loads), iii) the
implementation of source related cost-allocation relying on detected events and iv) the use
of the SOM to detect abnormal sewage compositions (by analyzing the quantification error).

3.5 Conclusions

Using a robust and reliable UV/Vis sensor mounted at the inlet of a WWTP in combination
with the proposed two-staged clustering approach (SOM in combination with Ward’s clus-
tering algorithm), it is possible to detect and distinguish different sewage compositions, thus
reveal information about the catchment area. If the sewage types can further be linked to
their producers the temporal pattern of discharging can be visualized and used for further
investigations. In the given example, the approach generated a SOM with five characteristic
clusters, of which one could be assigned to an industrial laundry. Model validation revealed
that out of 95 events of variable duration which occurred in 12 days, 93 could be detected
with two false positives and five false negatives only.

It has to be stressed that some of the simplifications and assumptions which were justified in
this example do not hold in more complex catchments. For instance, having two industrial
sites A and B in the catchment which produce sewages whose UV/Vis spectra do not interfere,
thus whose discharging can be differentiated by the SOM, one already has to identify four
clusters: “A”, “B”, “A and B” and “none”.
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Abstract This paper introduces a simple and practical method that can quantify the dis-
charge distribution at flow dividers commonly implemented in wastewater treatment plants
(WWTPs) to evenly feed reactor units of treatment steps operated in parallel. Although the
flow dividers are designed to split the flow evenly, they often fail to do so. Uneven distribu-
tion can have severe consequences on plant performance but also poses a problem for WWTP
modeling when even splitting has to be assumed due to the lack of detailed information on
the discharge distribution. The presented method compares any signal measured at the flow
divider that shows variability to other signals of the same type measured in the effluents of
the reactor units operated directly downstream of the divider. By assigning patterns found
in the influent to the corresponding patterns in the effluents using a dynamic time warping
algorithm, the discharge distribution can be determined. A theoretical analysis reveals that
the accuracy of the method increases with decreasing dispersion and with decreasing reac-
tions that affect the measured signal in the reactors downstream of the flow divider; it also
shows that the method has a wide area of application for WWTPs. For both synthetic and
real experiments, it is shown that the relative systematic error in the discharge signal under
the assumption of equal distribution could be reduced by more than 50% in average when
correcting the assumption of equal discharge distribution.

Keywords discharge distribution; flow divider; plant performance; reactor hydraulics; mod-
eling; dynamic time warping

Nomenclature

C0 Signal measured in the influent (M L−3, ◦C)

Cj Signal measured in reactor j, 0 < j ≤ N (M L−3, ◦C)

D Distance matrix

Erel,θ Theoretical relative error of θ

Erel,ξ Theoretical relative error of ξ

f Frequency (T−1)

fcut Cut-off frequency of low-pass filter (T−1)
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k Reaction constant (T−1)

L Data length (T )

N Number of reactors in a tanks-in-series model (dimensionless)

P Number of parallel lanes (dimensionless)

Qa Flowrate assuming uniform distribution (L3 T−1)

Qi Flowrate to lane i (L3 T−1)

Qtot Total influent discharge (L3 T−1)

R Number of runs (dimensionless)

r Reaction rate (M L−3 T−1, ◦C T−1)

T0 Influent temperature (◦C)

Ti Effluent temperature of lane i (◦C)

V Reactor volume (one lane) (L3)

W Warping path (dimensionless)

W̄ Averaged warping path (dimensionless)

Z Order of polynomial (dimensionless)

∆t Time step (T )

σm Standard deviation of measurement error

θ Hydraulic residence time (T )

θmean Mean hydraulic residence time (T )

θ̂ Estimated hydraulic residence time (T )

θmax,est Estimated maximum hydraulic residence time (T )

ξi Relative deviation of Qi from Qa

ξ̂i Relative deviation of Qi from Qa as polynomial function

4.1 Introduction

In many wastewater treatment plants (WWTPs), several treatment steps are implemented by
multiple identical reactor units operated in parallel; this system offers optimal efficiency and
the ability to disconnect individual reactors for maintenance. The flow is split by hydraulic
flow dividers that are intended to provide equalized charging of the subsequent units.

However, these devices are often inaccurate (Patel et al., 2008), which leads to uneven load-
ing that can result in performance losses, especially at peak loads. The causes of unequal
discharge distribution include the design of the flow divider, installation that is not exactly
level and bends upstream of the device (Dutta et al., 2010; Patel et al., 2008). Even though
the effects are often visible to the human eye, their quantitative assessment is not trivial;
only in special cases are there flow measurements at each of the branches.

The operational problems associated with asymmetric distribution include the following: i)
effluent constraint violations, which occur when activated sludge tanks are unevenly fed and
the flow to one or more exceeds the maximum specifications; and ii) inefficient plant control,
which can occur when a sensor is mounted in only one of the several reactors that are operated
in parallel.
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In addition to the operational issues, the effects of asymmetric splitting can also be of signifi-
cance for scientists and engineers. When performing measurements on WWTPs for modeling,
it is often assumed that the discharge is evenly distributed among the different lanes oper-
ated in parallel. This assumption is necessary due to the lack of methods for a practical
quantitative assessment of the discharge distribution. Considering that commonly used flow
measurement techniques are already erroneous (see Harremoes et al., 1993), another signifi-
cant error is introduced when uniform distribution is assumed. This error poses a problem for
successful modeling because an appropriate description of the hydraulic processes is crucial,
as shown in Orhon et al. (1989).

Thus, coping with asymmetric distributions requires a feasible and cost-efficient method of
determining the quantitative relationship between the discharge distribution and the total
inflow.

4.1.1 Commonly used methods

Although there are established methods for discharge measurement and for investigation
of the hydraulic behavior of a reactor that can be used for the determination of discharge
distribution, their applicability in practice is often hindered.

A common method for the ad-hoc assessment of inequality in splitting is the mobile dis-
charge measurement (see, for example, Hager, 1999). However, the accuracy of a chosen
measurement method depends strongly on the constructional constraints and hydraulic con-
ditions (Quevauviller et al., 2006). The systematic measurement error of the flow rate in 18
WWTPs was evaluated by Port (1994), and an average error of -8.6% was found.

The conventional tracer experiment is a popular tool for providing insights into aspects of
reactor hydraulics such as the residence time distribution (Gujer, 2008). Given the mean
hydraulic residence time (HRT), θmean, and the volume of the reactor, V , the mean discharge
can be calculated by

Qmean =
V

θmean
(4.1)

In practice, tracer experiments are costly and labor-intensive (Ahnert et al., 2010). Further
difficulties arise by high flow variability, required mixing lengths and density flow. Even
under optimal conditions, a residence time distribution is only valid for a specific discharge.
Reactors that exhibit different behaviors for low and high flows require performing tracer
experiments for each specific discharge.

More recent publications suggest the use of (naturally occurring) reactive tracers (Ahnert
et al., 2010; Gresch et al., 2010). In Ahnert et al. (2010), the authors show that the use of
temperature as a natural tracer, combined with a temperature model, allows the estimation
of HRT distributions and provides a viable alternative to conventional tracer experiments.
Keeping the flowrate constant by using storage basins and focusing on temperature peaks
from cold stormwater events has been suggested. However, this method is not suitable for
the quantification of discharge distributions as a function of the total discharge.

A third approach to determining the extent of the inequalities lies in the use of computational
fluid dynamics (CFD) simulations to analyze the flow divider (Dutta et al., 2010). Because
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CFD requires a detailed geometrical representation and because already minor and possibly
unknown effects can lead to asymmetries, the applicability of this method is limited.

In practice, what often remains is the assumption of an equal distribution.

4.1.2 Objective of this paper

This paper presents a novel procedure for estimating the discharge distribution of hydraulic
flow dividers by comparing the influent and effluent measurements of the reactors directly
downstream of a device using dynamic time warping (DTW), a dynamic programming method.
The procedure requires easily measurable data that can be gathered with generally available
low-maintenance sensors (e.g., temperature probes). The information on the discharge dis-
tribution that can be obtained using this method is valuable for the scientist, the engineer
and the plant operator in the following situations:

� The flow divider is seen to be asymmetric. There is a gate valve at each branch that may
be manually adjusted. By first assessing the discharge distribution and then iteratively
adjusting the valve and re-assessing the situation, the valve position leading to the most
uniform discharge distribution can be found.

� The plant is running at full capacity. Assessing the discharge distribution of a flow
divider reveals that a more uniform distribution would more evenly utilize the available
resources.

� A treatment step needs to be modeled for optimization studies. The modeler is aware
of the unequal distribution among the parallel lanes. He or she applies the discharge
distribution to get an estimate for the reactor inflow that is more accurate than the
equal distribution assumption.

This paper is organized in the following manner. First, the physical background of the method
is presented, and the area of application is specified by considering a theoretical system that
has a closed-form solution. Next, a detailed procedure for performing a discharge distribution
analysis in practice is presented. Finally, the results of applying the procedure to a wide range
of synthetic systems and a real mid-sized Swiss WWTP are presented and discussed.

4.2 Method

Assume a treatment step operated in P parallel lanes and a flow divider that splits the total
influent discharge Qtot into P parts. The i-th lane is fed a discharge of

Qi(t) =
1 + ξi
P

Qtot(t) (4.2)

as a function of time t, where ξi is a factor quantifying the relative deviation from the uniform
distribution that is defined by

ξi =
PQi −Qtot

Qtot
. (4.3)
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Figure 4.1: Hydraulic distribution device (black circle) followed by two reactors, each having a volume V .
The total influent discharge is split into two parts, QA and QB . Three measuring locations are indicated: C0

(influent), CA (effluent A) and CB (effluent B).

The mass balance equation, Qtot =
∑P

i=1Qi (and consequently
∑

ξi = 0), also applies. Let
Qa be the discharge to every branch when a uniform distribution is assumed (i.e., when all
the branches of the distribution box receive the same discharge). Thus, with ξi = 0 ∀ i,

Qa(t) =
1

P
Qtot(t). (4.4)

In principle, the objective of this paper is to find ξi, which can be expressed as a function of
t or of Qtot.

For simplicity, we will only consider treatment steps operated in two identical parallel lanes
(P = 2), as illustrated in Figure 4.1. However, all the equations can be generalized for the
case of P ≥ 2. For the two branching flows, QA and QB, Eq. (4.3) can be written as

ξA = −ξB =
QA −QB

QA +QB
=

θB − θA
θB + θA

(4.5)

by taking into account Eq. (4.1) and assuming that the reactor volumes are identical. θA
and θB are the current mean hydraulic residence times in the respective reactor.

To estimate θA and θB, a method that has similarities to a tracer experiment is applied.
However, instead of requiring injection of a known mass of a tracer substance at the influent
of an observed system and measurement of its concentration at the effluent of each of the
lanes, this method tracks the characteristic patterns that naturally occur in an influent signal
C0(t) and assigns these patterns to the associated patterns in the two effluent series CA(t)
and CB(t). The method further assumes that there is a relationship between θA and θB with
the travel time between the observation of a pattern in the influent and in the effluent.

This principle is illustrated in Figure 4.2 by means of an ideal plug-flow reactor. “Water
packet” I is observed in the influent at time t0 and two time steps ∆t later in the effluent.
Hence, the observed travel time is θ̂A = 2∆t. Similarly, the travel time is 2∆t for packet
II, 3∆t for packet III and 4∆t for packet IV. The discharge through the reactor varies with
time and is not known. Let Q = (Q0, Q1, . . . , Qk, . . . , QL) be the discharge at time t =
(t0, t1, . . . , tk, . . . , tL). For each observed travel time θ̂, a mass balance can be formulated as
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III: 3 ∆t
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Figure 4.2: Illustration of the time required for water packets I-IV to flow through an ideal plug-flow reactor.
The flow rate is unknown, but it can be calculated given the observed travel times and the volume of the
reactor.

follows:

V = ∆tQ0 +∆tQ1 (4.6)

V = ∆tQ1 +∆tQ2 (4.7)

V = ∆tQ2 +∆tQ3 +∆tQ4 (4.8)

V = ∆tQ3 +∆tQ4 +∆tQ5 +∆tQ6 (4.9)

V = . . . (4.10)

Given enough observations, this equation system can theoretically be solved for the unknown
discharges Q. If the response times are relatively short compared to the variation in Q, it is
feasible to set Qk = V

θ̂k
and, equivalently, to set θk = θ̂k.

As seen in this relatively simple example of an ideal plug-flow reactor, it is possible to deter-
mine the discharge through the reactor given a method which observes the shift of patterns
in the time domain. This conclusion is only valid for ideal plug-flow reactors, however. In
a tracer experiment, the time that elapses between the addition of a tracer substance to the
reactor influent and the statistical mode of its response at the effluent corresponds to the θ̂
observed following the rules detailed above. However, the true θ for the tracer experiment is
the time span between the tracer addition and the mean of the response at the effluent which
means that the method is principally only valid for symmetrical residence time distributions;
reactor systems that induce dispersion and those in which reactions take place have skewed
distributions. The magnitude of the systematic error associated with applying this method
to a system with dispersion and reactions is investigated in the next section.
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C0
C1 C2 C3 CN...

CN

Figure 4.3: A tanks-in-series model consisting of a cascade of N continuous stirred-tank reactors.

4.2.1 Theoretical analysis

The relation between the HRT in the reactor and the tracked travel time for the situation
depicted in Figure 4.1 is mathematically modeled by two parallel tanks-in-series models that
have a closed-form solution; each of the two models consists of a cascade of N continuous
stirred-tank reactors (CSTRs), as shown in Figure 4.3. The closed-form solution simplifies
the evaluation of the relation and helps in assessing the extent of the systematic error that
was introduced in the section above. It is further assumed that both cascades have the same
properties; thus, they are modeled by the same number of reactors N , have the same total
volume V and in both cascades there is a first-order degradation reaction, r, taking place. Al-
though this theoretical analysis only holds for compounds for which the mass balance applies,
the derivation for temperatures T , thus by formulating a heat balance, is straightforward.

The mass balance of compound C over reactor j in a tanks-in-series model with 1 ≤ j ≤ N
equal reactors assuming constant reactor volume Vj =

V
N , is

dCj

dt
=

1

θj
(Cj−1(t)− Cj(t)) + rj(t) (4.11)

where the HRT in the reactor is denoted by θj =
Vj

Q = θ
N . The HRT of the entire cascade is

θ, and rj is the first-order reaction defined by rj = −kCj(t) with the reaction constant k.

Let the influent discharge, Q, be constant while the influent concentration, C0, periodically
oscillates according to

C0(t) = a sin (2πft+ b) + c (4.12)

where a is the amplitude, f is the frequency, b is the relative phase shift and c is an offset.

The set of ordinary differential equations (dC1
dt , dC2

dt , ...,
dCN
dt ) that defines the tanks-in-series

model has a closed-form solution for the given influent discharge and influent concentration.
The asymptotic solution (independent of the initial conditions) for the effluent concentration
of reactor N is

CN (t) = a

(
1√

(1+kθ/N)2+(2πfθ/N)2

)N

·

sin
(
2πft+ b−N · arctan

(
2πfθ
N+kθ

))
+

c
(

1
1+kθ/N

)N (4.13)

Similar to the influent series in Eq. (4.12) (which is, in fact, the special case of N = 0), Eq.
(4.13) too is a harmonic oscillation. However, if N > 0, the amplitude is lower, and when
k > 0, the offset c decreases (and increases for k < 0). In addition, the effluent series exhibits
an additional phase shift compared to the influent signal. The difference in the relative phase
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Figure 4.4: The deviation of the observed travel time θ̂ from the HRT θ for nine different tanks-in-series
models (full lines) calculated from Eq. (4.14). For each system, the mean (dotted lines) and the mode (dashed
lines) of the response of a reactive tracer addition are plotted. The influent function had a frequency of f = 0.2
hr−1.

shift between the influent and the effluent signal divided by 2πf corresponds to the observed
travel time and is given by

θ̂ =
N

2πf
arctan

(
2πfθ

N + kθ

)
(4.14)

It is clear that θ̂ = θ is only valid as N → ∞, in which case the cascade approximates plug-
flow behavior (Gujer, 2008). The inversion of the equation system as given in Eqs. (4.6–4.10)
is not needed here because of the constant flowrate, Q.

In Figure 4.4, the deviation of θ̂ from θ is plotted for several systems with a finite number of
CSTRs. In general, the lower the dispersion in the system (the amount of dispersion decreases
with increasing N) and the lower the reaction constant k, the better the conformance.

Systematic error for a single tanks-in-series model

If θ is approximated by θ̂ when N ≪ ∞ and k ̸= 0, a systematic error is introduced. The
relative error Eθ,rel is defined as

Eθ,rel =
1

θ

(
θ − θ̂

)
(4.15)

and, when applying Eq. (4.14) it is given by

Eθ,rel = 1− N

2πfθ
arctan

(
2πfθ

N + kθ

)
. (4.16)
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Table 4.1: Relative error of θ and of ξA calculated using Eq. (4.16) and (4.19) for typical configurations of
different WWTP treatment steps. The volume V and discharge QA are given for lane A (P = 2); the values
for N and k were estimated from measured temperature data of a WWTP with 65,000 people equivalents.
The frequency f was set to 0.3 hr−1 for the grit chamber and the pipeline and 0.1 hr−1 otherwise. ξA = 0.05
was chosen for the calculation of EξA,rel.

System θA N k EθA,rel EξA,rel

[hr] [-] [hr−1] [-] [-]

Grit chamber 0.25 4 0.1 0.01 0.02

(V = 90 m3, QA = 0.1 m3/s)

Primary clarifier 2 2 0.02 0.12 0.22

(V = 750 m3, QA = 0.1 m3/s)

Anoxic zone (AST) 1.5 2 ≈ 0 0.03 0.06

(V = 450 m3, QA = 0.1 m3/s)

Pipeline 0.1 12 0 < 0.01 < 0.01

(V = 35 m3, QA = 0.1 m3/s)

Generally, the error increases with increasing dispersion and increasing reaction rate. The
first-order Taylor series approximation tan (ε) ≈ ε, which is valid for small ε and thus applies
for high N , is

Eθ,rel,ε = 1− N

N + kθ
≈ 0, (4.17)

again showing that the error diminishes with decreasing dispersion. Letting f → ∞ and
noting that limφ→∞ tan (φ) = π

2 , we obtain

Eθ,rel,φ = 1− N

4fθ
. (4.18)

This result shows that high influent signal frequency increases the systematic error.

To summarize, the systematic error in the approximation of θ with θ̂ is acceptable for systems
with low dispersion, a low reaction rate and a lack of high-frequency parts in the influent
signal. For comparison, the relative error, Eθ,rel for four different systems commonly found
on WWTPs are listed in Table 4.1.

Systematic error for two parallel tanks-in-series models

The discharge distribution is described by the coefficients ξA and ξB (ξA = −ξB for P = 2),
as seen from Eq. (4.5). Let EξA,rel be the systematic error of ξA:

EξA,rel = 1− θ̂B − θ̂A

θ̂B + θ̂A

θB + θA
θB − θA

(4.19)

The conclusions are the same as for the systematic error of a single tanks-in-series model.
The error EξA,rel for common systems is listed in Table 4.1 and is compared to Eθ,rel.
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Figure 4.5: Procedure consisting of five successive steps to estimate the discharge distribution at a flow
divider.

4.2.2 Procedure

This paper suggests a procedure of five successive steps to estimate the discharge distribution
from WWTP measurements (cf. Figure 4.5).

Data requirements and acquisition

The procedure is rather parsimonious in terms of data requirements: Basically, any kind
of signal which naturally shows variability can be considered. For the situation illustrated
in Figure 4.1, three measurements, C0, CA and CB, are required. Appropriate measuring
equipment and location will exhibit the following properties:

� an accurate sensor and a data logger with high resolution, both of which are low in
maintenance and inexpensive;

� little (or no) influence of the reactions on the measured variable; and

� variability in the influent and effluent signals.

Temperature and conductivity signals are appropriate choices, among others. The sampling
interval, ∆t, should be small and the data length L long. For reference, a sampling interval
of 30 seconds and a data length of 3 days was appropriate in the case study.

Reasonable choices for the measuring location are the flow divider (influent measurement)
and the effluent of each of the branching lanes. Hydraulic residence times and dispersion
should be kept to a minimum. This goal can sometimes be achieved by mounting the probe
at the opening of a dividing wall or a similar structure instead of the reactor effluent.
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Preprocessing

In systems with dispersion, high-frequency noise in the influent is absorbed and is not visible
in the effluent. Because high-frequency input signals tend to have high systematic errors (cf.
Section 4.2.1) and because they hinder the tracking algorithm that will be introduced in the
next section, they must be filtered out.

A finite impulse response low-pass filter with a Hamming window (Hamming, 1998) is recom-
mended. A good choice for the cut-off frequency is fcut = (θmax,est)

−1, which is the inverse
of the estimated maximum hydraulic residence time in the reactor. The sensitivity of this
parameter on the performance is low, as it will be shown later in Section 4.4.5.

Subsequently, the data is normalized to have zero mean and unit variance and down-sampled
to a sampling interval of ∆t = 1-2 minutes. It must be ascertained that all three series have
the same time axis.

Tracking algorithm

Dynamic time warping (DTW) is used to find the correspondents of characteristic influent
patterns in the effluent signal. DTW assigns each effluent data point a corresponding data
point in the influent. DTW is applied twice, once to find θ̂A by comparing C0 with CA and
once to find θ̂B by comparing C0 with CB. Given θ̂A and θ̂B, ξA and ξB can be computed
using Eq. (4.5).

Basically, the derivation of ξA and ξB is also possible by comparing the effluents CA and
CB. However, this derivation requires the total inflow, Qtot, to be known and is therefore not
investigated further.

Dynamic Time Warping DTW is a particular implementation of dynamic programming
(Bellman, 1957); it is used to optimally align two sequences by non-linearly warping the
time-axis of the sequences until their dissimilarity is minimized. In other words, it identifies
a warping path that contains information on how to translate, compress and expand patterns
so that similar features are matched (Jun, 2011).

Originally, DTW was applied in the field of speech recognition (Sakoe, 1978), but it is now
also used in other fields for sequence alignment and as dissimilarity measure.

In contrast to common applications of DTW, not the aligned sequences and the dissimilarity
measures are of interest here but rather the warping path itself. The path contains a mapping
of all the points of an influent series to the points of an effluent series, which makes it, as
stated above, an estimate for the hydraulic residence time.

To align the two sequences X = (x1, x2, . . . , xn, . . . , xN ) and Y = (y1, y2, . . . , ym, . . . , yM )
with DTW, a distance matrix D ∈ RN×M with the Euclidian distance between all points of
the two series

Dn,m =

√
(xn − ym)2 (4.20)

is first computed.
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A warping path, W = (w1, w2, . . . , wk, . . . , wK), is then a sequence of continuous matrix
elements that define a mapping between A and B with the k-th element being wk = (n,m)k.
The warping path must satisfy the following conditions (Müller, 2007):

� Boundary condition: The warping path starts at w1 = (1, 1) and ends at wK = (N,M)
(i.e., the path starts and ends in diagonally opposite corners of the matrix).

� Step size condition: wk−wk−1 ∈ {(0, 1), (1, 0), (1, 1)} (i.e., allowed steps are restricted).

and additionally for this application the constraint:

� Flow direction condition: Given wk = (n,m) m ≥ n (i.e., a pattern appears first in
sequence X and then in sequence Y).

As a consequence of the first condition, the algorithm needs some “running-in” time to achieve
an appropriate alignment. The affected parts can easily be excluded, however. Please note
that the “step size condition” implies that the path is continuous.

While many warping paths that satisfy these conditions exist, the interest lies in the particular
path that minimizes the total distance, d, defined by

d(X,Y ) =
∑
wk

Dn,m. (4.21)

This path can be efficiently found by evaluating the recurrence

p(n,m) = Dn,m +min (pn−1,m−1, pn−1,m, pn,m−1) , (4.22)

where the cumulative distance, pn,m, is defined as the distance in the cell (n,m) and pn−1,m−1,
pn−1,m, and pn,m−1 are the minimal cumulative distances of the neighboring cells obtained
through dynamic programming (Keogh and Pazzani, 1999). The algorithm is illustrated in
Figure 4.6.

Stochasticity DTW does not consider the absolute value of the differences in the distances
between neighboring cells; it always finds the path with the minimum cumulative distance.
When using noisy and erroneous input signals however, nonrealistic warping paths may result
when the distances are below the accuracy of the measuring device.

To generate smoother warping paths, the computation of the warping path is repeated R
times. In each run, a random term, ε = N (0, σm), which is normally distributed with zero
mean and a standard deviation σm set to the accuracy of the measuring device, is added to
each data point of the influent and effluent series.

The R individual warping paths are then combined into an averaged warping path W̄ by
calculating the mode along the diagonal axis (1, 1)− (M,N), as shown in Figure 4.6.

Residence Time Calculation Given the time series C0 and CA, each element in the com-
puted averaged W̄A represents the mapping of the i-th point in time series C0, c0,i at ti to
the j-th point in series CA, cA,j at tj . Recall that the mapping is the result of tracking an
imaginary water packet through a reactor. The difference tj − ti is thus the travel time of
the packet in the reactor. If the travel time is short compared to the variability of Q, then
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Figure 4.6: Illustration of the DTW algorithm. Given two time series, X and Y , the distance matrix, D, for
m ≥ n is first calculated (Eq. 4.20). The cumulative distance matrix is computed by solving Eq. (4.22) and
is applied to find the warping path, W , with the smallest cumulative distance. This is repeated R times and
yields R warping paths, which are averaged to warping path W̄ .

θ̂A ≈ tj − ti. Otherwise, a linear equation system, as given in Eq. (4.6), can be set up and

solved. The same procedure applies to the calculation of θ̂B using C0 and CB.

Special attention must be given to mappings for which tj − ti = 0. These occur if DTW
selects matrix elements for the warping path that lie on the diagonal of the cumulative
distance matrix. They are physically not meaningful and must be dropped.

Postprocessing

So far, the procedure has supplied two new series, θ̂A(t) and θ̂B(t), both containing approxi-
mations of the current residence time in lanes A and B at time t.

For further analysis, and to correct the assumption of equal distribution following Eq. (4.2),
ξA and ξB must be computed as a function of Qtot. This is possible using the approximations
θ̂A and θ̂B as follows:

Qtot(t) ≈
V

θ̂A(t)
+

V

θ̂B(t)
(4.23)

To get a smooth function ξ̂(Qtot), a polynomial of degree Z,

ξ̂A(Qtot) = −ξ̂B(Qtot) = c0 + c1Qtot + c2Q
2
tot + . . .+ cZQ

Z
tot, (4.24)

is fitted using the least-squares method. The optimal choice of Z is facilitated by considering
an information criterion, such as the Akaike information criterion (AIC), that describes the
tradeoff between accuracy and model complexity and helps to prevent over-fitting. The
computation of confidence bounds is also recommended because such bounds are valuable for
diagnostics.



4.3 Software availability 59

Table 4.2: Set of parameter values used to build the synthetic systems. For the influent series (a superposition
of sine-waves and a noise term), the parameter values for the Ornstein-Uhlenbeck-process generating the noise
are specified (specifically the mean value µOU , the volatility σOU and the revision rate λOU ).

Parameter Values

Mean HRT θmean 15 min, 30 min, 45 min, 60 min

Number of CSTRs in cascade N 2, 3, 5, 10

Reaction rate constant k 0, 0.01 hr−1, 0.03 hr−1, 0.1 hr−1

Inflow discharge series, Qtot(t)

High noise µOU = 0 m3/s, σOU = 6 · 10−4 m3 s−3/2, λOU = 3 · 10−3 s−1

Medium noise µOU = 0 m3/s, σOU = 2 · 10−4 m3 s−3/2, λOU = 3 · 10−4 s−1

Low noise µOU = 0 m3/s, σOU = 7 · 10−6 m3 s−3/2, λOU = 3 · 10−5 s−1

Inflow temperature series, T0(t)

High noise µOU = 0 ◦C, σOU = 7 · 10−3 ◦C s−1/2, λOU = 3 · 10−3 s−1

Medium noise µOU = 0 ◦C, σOU = 2 · 10−3 ◦C s−1/2, λOU = 2 · 10−4 s−1

Low noise µOU = 0 ◦C, σOU = 7 · 10−4 ◦C s−1/2, λOU = 4 · 10−5 s−1

Discharge distribution ξ = 0.22

Model evaluation

Several tests that give insights into the performance of the model can be carried out. If any
of the following tests fail, the application of the procedure was not successful or there was no
clear relationship between discharge distribution and total inflow.

� If a measurement of Qtot is available, it can be compared to the approximation calcu-
lated with Eq. (4.23). High deviations indicate bad performance.

� If many mappings had to be dropped because tj − ti = 0, there were difficulties finding
the warping path.

� If the polynomial ξ̂(Qtot) has wide confidence bounds, there was no clear trend in the
data.

4.3 Software availability

A MATLAB implementation of the procedure, together with example data, is available (cf.
Appendix A.2, page 96).

4.4 Results and discussion

4.4.1 Synthetic systems

The performance of the proposed method was assessed by calculating the discharge distribu-
tion for synthetic systems consisting of two tanks-in-series models in parallel. The number of
reactors in the models, the mean hydraulic residence times and the reaction constant of the
first order degradation reaction were varied (cf. Table 4.2).

Realistic synthetic discharge and influent temperature series were generated. They exhibited
three different levels of variability that corresponded to different measuring locations within
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Figure 4.7: One day of the synthetic influent discharge and temperature series used as input for the synthetic
systems. The parameters for the series are given in Table 4.3.

Table 4.3: The parameter values used for the calculations presented for the synthetic systems and the system
of the case study.

Parameter Synthetic System Grit Chamber

∆t 2 min 2 min

L 4 days 3 days

fcut Qmin/V 1/0.75 hr−1

σm 0.25 ◦C 0.25 ◦C

R 500 500

Z 5 5

the flow scheme of a WWTP. They consisted of a combination of superimposed sine waves
and a stochastic component generated by an Ornstein-Uhlenbeck process (Uhlenbeck and
Ornstein, 1930). The different influent series are plotted in Figure 4.7, and the parameter
values are given in Table 4.2. The discharge distribution was predefined; the effluent temper-
ature for each of the two models was computed by solving the models with a Runge-Kutta
(4,5)-solver (Shampine, 1994).

With the generated influent temperature series and the two modeled effluent temperature
series, the procedure could be applied. The values of the parameters for the procedure are
listed in Table 4.3.

To assess the performance, the coefficient of variation of the root mean squared deviation,
CV(RMSD), Eq. (4.25), was calculated to measure the deviation of the estimated discharge
distribution ξ̂A(Qtot) from the pre-defined distribution (cf. Table 4.2) and to indicate how
well the discharge QA corresponds to the pre-defined discharge function.
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CV(RMSD) =
RMSD

x̄
(4.25)

with

RMSD =

√∑n
i=1 (x1,i − x2,i)

2

n
. (4.26)

After computing 345 different systems constructed using parameter values from the sets
defined in Table 4.2, the influence of the parameter set on the resulting fit was investigated
with the ReliefF measure. The ReliefF measure is a measure for attribute weighting (Robnik-
Sikonja and Kononenko, 2003). This analysis revealed that for the deviation of both ξ̂A and
QA from their predefined values, the parameters can be grouped into three sets, sorted by
descending influence on the fit: {k}, {N, θmean} and {Qin(t), T0(t)}. This result implies that
the level of noise in the time series Qin(t) and T0(t) has little effect on the fit and that
the reaction coefficient, k, is the most decisive parameter. It is thus important to carefully
check that there is no significant reaction taking place that may influence the signal. The
matrices shown in Figure 4.8 compare the CV(RMSD) for different combinations of N , k and
θmean. The performance measures of all synthetic systems are available in the supporting
information.

Comparing the corrected discharge QA(t) and the uncorrected discharge Qa(t) (which as-
sumes that the flow is equally split) with the pre-defined flow, it is clear that the correc-
tion drastically improves the fit: While the uncorrected discharge Qa leads to an error of
CV(RMSD) = 0.11, the corrected series QA has an error between CV(RMSD) = 0.006 and
0.06.
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4.4.2 Case study: grit chamber and primary clarifier

The practical applicability of the procedure was tested in a mid-sized Swiss WWTP (65,000
people equivalents). Between the fine screen and the grit chamber, there is a hydraulic flow
divider that splits the incoming discharge into two branches, each of which is fed to an aerated
grit chamber followed by a primary clarifier. After the latter, the flows join again.

Although the flow divider was built to provide a uniform distribution, the WWTP staff
suspected it to be irregular. However, because there is no discharge measurement in either
of the two lanes (only the combined flow is known), the magnitude of the inequality could
not be assessed.

The proposed procedure was used to quantify the discharge distribution. The temperature
in the flow divider and in the effluents of the grit chambers (by design θmean = 15 min) was
measured using TMC6-HD temperature probes with an accuracy of 0.25 ◦C in combination
with U12-006 temperature loggers with a data resolution of 0.03 ◦C (both manufactured by
Onset, Bourne, MA, United States). The temperature measurement were chosen because it
can easily and accurately be measured with inexpensive autonomous devices. In addition,
there are no significant reactions that affect the wastewater temperature.

The parameter values for the procedure are given in Table 4.3. The parameter σm was set to
the accuracy of the temperature probe, and fcut was set to the inverse of an estimate of the
maximal hydraulic residence time in the reactor.

To validate the results, the discharge in each branch was measured within the ducts connecting
the grit chambers and the primary clarifiers using a mobile Venturi flume (Hager, 1999).

The measured temperature series and the measured and estimated discharge distribution
function ξ(Qtot) are plotted in Figure 4.9. In addition, the measured discharge is compared
to the discharge Qa, which assumes a uniform distribution, and the discharge QA which is
corrected using Eq. (4.2).

It is visually clear that the discharge is not uniformly distributed; there is always a higher
flow in branch A, especially at low and high total discharges. To guarantee efficient grit
removal, the given grit chamber is designed to have an HRT of 15 minutes at a discharge of
Qtot = 0.2 m3/s (V = 90 m3 per lane). Assuming that for ξA = 0.2 the HRT is reduced to
12.5 minutes, performance losses are possible at high influent discharges.

Considering the tasks enumerated in the Introduction, the operator on the one hand can now,
iteratively, adjust a gate valve upstream of the grit chamber or perform other constructional
modifications and reassess the situation until the unevenness is no longer significant.

The scientist or engineer on the other hand now possesses a function that he or she can
use to obtain a more appropriate discharge series for reactor modeling. Assuming uniform
distribution, the CV(RMSD) of the discharge series is 0.14; when using the corrected discharge
series instead, the error is reduced to 0.06.

4.4.3 Validation

There are several means of judging the quality of the outcome when the given procedure is
applied. Three quick tests to check whether the procedure has successfully found the function
ξ̂(Qtot) have already been described in Section 4.2.2. In addition to these, the distribution of
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Figure 4.9: Determination of the discharge distribution at a grit chamber operated in two parallel lanes.
Temperature measurements at the flow divider and the lane effluents (top left); estimated (procedure) and
measured (mobile Venturi flume) discharge distribution with 99% confidence bounds (right); comparison of the
measured discharge (mobile Venturi flume), the discharge assuming uniform distribution (based on WWTP
total influent measurements) and the corrected discharge (bottom left). Please note that on the left, only a
section of the validation time series are plotted (total length: three days).

the individual points ξ(Qtot), as shown in Figure 4.9 (right) as a point density cloud, gives
further insight into the quality of the outcome and is discussed below.

A cloud showing a clear trend and a fitted polynomial with narrow confidence bounds indicate
success. A cloud that is scattered and almost has the form of a circle, however, may indicate
inappropriately chosen parameter values (data length L too short, ∆t too high), significant
reactions that influence the measured signal, or high dispersion. The latter can sometimes
be circumvented by choosing a better measuring location.

A forking cloud may indicate two different “regimes”. Intermittent lateral inflows that are
added before the flow divider and that influence the flow are a possible reason for this. It is
sometimes possible to disconnect these flows during the experiment. Otherwise, if the times
when lateral inflows occur are known, the corresponding sequences can be removed from the
measured time series and the individual windows can be analyzed.

If these suggestions do not help and the quality of the outcome remains unclear, it is advisable
to consider an alternative approach. However, it is worth mentioning that there is little
risk that the discharge Qi(t), calculated by Eq. (4.2), is a worse estimate than the flow
Qa(t) under the assumption of equal distribution. From the theoretical analysis, θ̂A and θ̂B

are underestimated in case of dispersion and reaction (k > 0) and
∣∣∣θ̂A − θ̂B

∣∣∣ < |θA − θB|;
therefore the estimates of ξA and ξB using θ̂A and θ̂B following Eq. (4.5) approach zero for
increasing reaction and dispersion, and thus Qi(t) goes towards Qa(t).
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Figure 4.10: Effect of the parameters for the procedure on the fit of QA, calculated for the “case study”
experiment.

4.4.4 Optimal input data

The use of temperature measurements for quantifying discharge distribution has proven to
be a sound choice. Autonomous, highly accurate temperature probes with high-resolution
loggers are readily available. Temperature usually exhibits sufficient variability and is often
barely affected by reactions (cf. Table 4.1). In aerated basins, however, the temperature may
change substantially, and an alternative must be found.

Conductivity measurements are a possible alternative that the authors have evaluated. They
have the following deficiencies, however:

� conductivity sensors are rather maintenance-intensive and costly; and

� there are large conductivity changes due to biological reactions, particularly in the
activated sludge tanks.

Nevertheless, conductivity measurements exhibit good variability and may be considered for
the calculation of the discharge distribution when the use of temperature measurements fail.

4.4.5 Choice of parameter values for the procedure

The effect of the choice of parameter values for the procedure on the goodness of the discharge
QA was investigated for the “case study” experiment. For this purpose, one parameter was
varied at a time within a range while the others were left unchanged, and the fit of the
estimated ξA was calculated. The results are illustrated in Figure 4.10.

It is clear that the fit shows little sensitivity to the choice of parameter values for ∆t, fcut
and σm. The length of the measured series L should be at least three days. For the number
of runs R, the variability of the error is very high for a low R but converges as the value or
R increases.

4.4.6 Further applications

The application of the procedure introduced in this paper is not limited to the assessment of
discharge distribution at hydraulic flow dividers. Estimation of the flow through a reactor and
the estimation of the flow velocity in a channel were not discussed but are also within the range
of possible applications. These estimates could be used for the diagnosis of flow measurement
devices. In a scenario in which the discharge is known, the delay of the characteristic patterns
may provide insight into the mixing processes and reactions.
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4.5 Conclusions

In this study, a new method was presented that allows estimation of the discharge distribution
at flow dividers used on WWTPs.

� The method requires only measurement of a signal at the flow divider and at the effluent
of each reactor downstream of the divider. The signal must have some variability, and it
should not be heavily affected by the reactions taking place in the reactors. Temperature
sensors have proven to be a good choice because they are robust, commonly available,
almost maintenance-free and they deliver high accuracy.

� The method uses an implementation of the dynamic time warping algorithm to assign
patterns found in an influent signal to patterns in each of the effluent signals. The
time passed between the observation in the influent and in each of the effluents is an
estimate for the travel time of a “water packet” in the reactor and relates to its hydraulic
residence times. Given these estimates, the discharge distribution between the branches
of the dividing structure can be assessed.

� All the parameters for the method can be linked to properties that are generally known
or can easily be estimated.

� It was shown that the method is accurate for reactors that have low dispersion and in
which reactions do not significantly influence the measured signals.

� Synthetic systems and a real flow divider were analyzed and the discharge distribution
was estimated. The relative error in the inflow discharge to a branch of the distribution
device can be reduced by more than 50% in comparison to the the assumption of equal
distribution by estimating the discharge distribution.

4.6 Supporting Information

� MATLAB source code

� Excel table with the configurations of the synthetic systems and the associated perfor-
mance indicators

References

Ahnert, M., Kuehn, V., Krebs, P., 2010. Temperature as an alternative tracer for the de-
termination of the mixing characteristics in wastewater treatment plants. Water Research
44 (6), 1765–1776.

Bellman, R., 1957. Dynamic programming. Princeton Univ. Pr, Princeton, NJ.

Dutta, S., Catano, Y., Liu, X., Garcia, M. H., 2010. Computational Fluid Dynamics (CFD)
modeling of flow into the aerated grit chamber of the MWRD’s north side water reclamation
plant, Illinois. World Environ. Water Resour. Congr.: Chall. Change - Proc. World Environ.
Water Resour. Congr., 1239–1249.



66 4 Discharge distribution at hydraulic flow dividers

Gresch, M., Braun, D., Gujer, W., 2010. The role of the flow pattern in wastewater aeration
tanks. Water Science and Technology 61 (2), 407–414.

Gujer, W., 2008. Systems analysis for water technology. Springer, Berlin.

Hager, W. H., 1999. Wastewater hydraulics: Theory and practice. Springer, Berlin.

Hamming, R. W., 1998. Digital Filters, 3rd Edition. Courier Dover Publications.

Harremoes, P., Capodaglio, A. G., Hellstrom, B. G., Henze, M., Jensen, K. N., Lynggaard-
Jensen, A., Otterpohl, R., Soeberg, H., 1993. Wastewater treatment plants under transient
loading- Performance, modelling and control. Water Science and Technology 27 (12), 71–
115.

Jun, B. H., 2011. Fault detection using dynamic time warping (DTW) algorithm and dis-
criminant analysis for swine wastewater treatment. Journal of Hazardous Materials 185 (1),
262–268.

Keogh, E. J., Pazzani, M. J., 1999. Scaling up dynamic time warping to massive dataset.
Principles of Data Mining and Knowledge Discovery 1704, 1–11.

Müller, M., 2007. Dynamic Time Warping. In: Information Retrieval for Music and Motion.
Springer Berlin Heidelberg, pp. 69–84.

Orhon, D., Soybay, S., Tünay, O., Artan, N., 1989. The Effect of Reactor Hydraulics on the
Performance of Activated-Sludge Systems - 1. The Traditional Modelling Approach. Water
Research 23 (12), 1511–1518.

Patel, T., O’Luanaigh, N., Gill, L. W., 2008. The efficiency of gravity distribution devices for
on-site wastewater treatment systems. Water Science & Technology 58 (2), 459.

Port, E., 1994. Anforderungen an die Eigenüberwachung bei kommunalen Kläranlagen.
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Abstract Successful modeling of wastewater treatment plant (WWTP) processes requires an
accurate description of the plant hydraulics. Common methods such as tracer experiments are
difficult and costly and thus have limited applicability in practice; engineers are often forced
to rely on their experience only. An implementation of grammar-based genetic programming
with an encoding to represent hydraulic reactor models as program trees should fill this gap:
The encoding enables the algorithm to construct arbitrary reactor models compatible with
common software used for WWTP modeling by linking building blocks, such as continuous
stirred-tank reactors. Discharge measurements and influent and effluent concentrations are
the only required inputs. As shown in a synthetic example, the technique can be used
to identify a set of reactor models that perform equally well. Instead of being guided by
experience, the most suitable model can now be chosen by the engineer from the set. In a
second example, temperature measurements at the influent and effluent of a primary clarifier
are used to generate a reactor model. A virtual tracer experiment performed on the reactor
model has good agreement with a tracer experiment performed on-site.

Keywords hydraulic reactor systems; modeling; operating data; grammar-based genetic
programming

5.1 Introduction

A key element for successful wastewater treatment plant (WWTP) modeling is an accurate
description of the hydraulic processes. In water technology, transport and mixing phenomena
can often be approximated sufficiently by cascading ideal reactors such as the continuous-
stirred tank reactor (CSTR) and plug-flow reactor (PFR) models (Alex et al., 2002; Gujer,
2008).

The construction of an appropriate model given influent and effluent observations is a widely
studied system identification problem and many techniques exist (see, e.g., Ljung, 1987;
Keesman, 2011). However, system identification remains a difficult task particularly when
the structure of the system is unknown (Flores and Graff, 2005). In systems analysis for water
technology, two methods for model identification prevail (Gujer, 2008): The first method
consists of the analysis of an experimentally determined impulse response (e.g., by a tracer
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experiment) that gives insights into mixing phenomena and that can, for some few ideal
reactor systems, also give insights into model structure (Keesman and Stigter, 2002; Gujer,
2008). From a practical point of view, however, tracer experiments are labor-intensive and
are hindered by high flow variability, required mixing lengths and density effects; therefore
they are often omitted.

The second method consists of the process of manually adjusting model structure and param-
eters until a pre-defined objective function is minimized. Although this procedure is widely
accepted, it bears some problems. Still, extensive measuring campaigns may be required and
manual search by trial and error is inefficient as it only covers a small part of the model and
parameter spaces, thus the most appropriate model is not guaranteed to be found.

As a consequence, engineers often rely on experience and intuition only, which is dissatisfying
because inappropriate hydraulic modeling can have a significant impact on predicted effluent
concentrations (Tchobanoglous, 2003). In this paper, a highly practical method is presented
that provides the engineer a small set of hydraulic reactor models that perform equally
well; the most suitable model can then be selected by taking expert knowledge into account.
The set of models is generated using genetic programming (GP), an advancement of genetic
algorithms.

GP is an evolutionary computational technique used for optimization and particularly suited
for complex problems with high-dimensional search spaces (Koza, 1992) and has previously
been considered for system identification, mainly for symbolic regression of sets of ordinary
differential equations (for an overview, see Flores and Graff, 2005). For the implementation
presented in this paper, in contrast, a special GP tree encoding was defined that encodes
hydraulic reactor models. The encoded models consist of the building blocks CSTR and
PFR and are therefore compatible with common software used for WWTP modeling. As
input, the method requires easily measured signals only (e.g., temperature data), even if they
are influenced by physical and chemical reactions, in addition to discharge data.

Two alternative approaches for the direct generation of reactor models worth mentioning
have used genetic algorithms (Laquerbe et al., 2001) or found a model by simplifying ini-
tially complex super-structures (Hocine et al., 2008). Both approaches, however, require the
measurement of the residence time distribution.

5.2 Material and methods

5.2.1 Reactor modeling

The reactor types commonly used to model hydraulic characteristics are the CSTR and PFR.
By linking these basic reactors serially or in parallel, even complex situations can be modeled.
Each reactor has one or more in- and outflows. (A reactor with more than one outflow can
be imagined as reactor with a subsequent flow divider.)

In this study, only one compound is considered and its concentration is calculated for each
reactor. The relevant elements for the construction of arbitrary reactor models are the inflow
and outflow nodes, CSTRs, PFRs, reactions and fluxes. An example is given in Figure 5.1.
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CSTR 2 C2(t)

V2, r2

CSTR 1 C1(t)

V1, r1
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QL1 QL2
QL3

QL5 QL4

wL4
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Figure 5.1: An example system consisting of three connected CSTRs.

Inflow and outflow node

Each hydraulic reactor system has an inflow node that acts as a junction node to combine
the system influent (with flow Qin and concentration Cin) with zero or more return flows.
Similarly, the outflow node collects fluxes and releases them from the system. Between the
inflow and outflow nodes, there is any number of arbitrarily linked reactors.

CSTRs and PFRs

The CSTR, probably the most important building block, is implemented as an ordinary
differential equation (ODE). It is assumed that its volume V is constant over time; the mass
balance for compound C in the reactor can therefore be written as

dC

dt
=

1

V

∑
j

QjCj − C
∑
j

Qj

+ r (5.1)

with one or more inflow Qj and a reaction term r. PFRs are implemented as a delay without
reaction (since delays are typically very small), and the effluent concentration at time t is

Ct = C

(
t− V∑

j Qj

)
. (5.2)

Reactions

Reactions taking place in the CSTRs are modeled with zero-order (r = k with reaction
coefficient k), first-order (r = kC with reaction coefficient k) or Monod kinetics (r =
qmaxC/(KS + C)) with maximal activity qmax and half-saturation coefficient KS. Reactions
taking place in the PFRs are not modeled. However, approximating the PFR by a cascade
of n CSTRs is an option because plug-flow behavior is approximated for n → ∞.

Fluxes

Because the reactor volumes are constant, the flow in each link can be calculated by solving a
linear equation system given the total inflow to the system and, if there are any reactors with
more than one effluent, given their flow ratios expressed by the quotient of the weight factors
assigned to each of the links. The system depicted in Figure 5.1, for instance, has unknown
flows QL1, QL2, . . . , QL5 while the total inflow Qin(t) as well as the two weight factors wL4
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and wout are given. This allows writing the following linear equation system consisting of
four mass balance equations

QL1 = Qin (5.3)

QL1 +QL5 = QL2 (5.4)

QL2 = QL3 +QL4 (5.5)

QL4 = QL5 (5.6)

and one equation that expresses the ratio of the effluent flows of reactor “CSTR 2”

QL3/QL4 = wout/wL4 (5.7)

5.2.2 Genetic programming

GP is a search algorithm inspired by nature (Koza, 1992). It aims to evolve mathematical
expressions or computer programs by mimicking biological evolution. Starting with a popu-
lation of individuals (random programs), new generations are bred. During each generation,
the fitness of every individual is evaluated by a fitness function. The fittest ones among the
population are then more likely to survive to the next generation. They can be copied un-
altered (reproduction), they can feature random changes (mutation), or they can be used to
generate new offspring by combining two parents (crossover). This process is repeated until
either a given fitness criterion is met or a maximum number of generations is reached.

The evolved, tree-like computer programs can vary in length, which is a valuable characteristic
of GP. Other advantages include the absence of a tendency for the entire population to
converge and the fact that the form of the solution does not need to be known in advance
(Tsakonas, 2006). A function set and a terminal set from which GP can choose to build the
programs, in addition to a measure of fitness, need to be specified. In this paper, a grammar-
based paradigm is selected with a context-free grammar that consists of a set of terminal
nodes, function nodes, a set of reproduction rules that define for each function the possible
child function(s) and a starting symbol (the root of the tree). The definition of a grammar
avoids the generation of meaningless programs and thereby significantly reduces the search
space.

5.2.3 Tree encoding

A tree encoding was defined to represent hydraulic reactor models as computer programs.
The functions and terminals available for the program are listed in 5.1, and the grammar rules
are given in Table 5.2. Every program starts with a ROOT function, which has two child
nodes, that splits the program into two branches. The left branch (starting from the ADF L
function) encodes the layout of the model (the reactors and their connections), whereas the
right branch encodes the reaction rate, which can be referenced by some of the reactors of the
model. The program tree is recursively decoded starting from the outermost terminals. Once
the decoding reaches the ROOT function, the inflow and outflow nodes are added, resulting
in an object-oriented representation of the hydraulic model. The decoding is illustrated in
Figure 5.2.



72 5 Automatic reactor model synthesis with genetic programming

Table 5.1: The function and terminal sets for encoding the reactor models.

Name Description Num. children (type)

Function set

ROOT Root node (starting node) 2 (Function)

ADF L Automatically defined function encoding the model layout 1 (Function)

ADF R Automatically defined function encoding the reaction 1 (Function)

PAR Parallel arrangement 2 (Function)

SER Serial arrangement 2 (Function)

INV Invert fluxes of child nodes 1 (Function)

CSTR Continuous stirred-tank reactor 4 (Terminal)

PFR Ideal plug flow reactor 3 (Terminal)

VLR Volume-less reactor, used to encode shortcut flows 1 (Terminal)

R ZERO Zero-order reaction kinetics 1 (Terminal)

R FIRST First-order reaction kinetics 1 (Terminal)

R MONOD Mixed-order reaction kinetics (Monod) 2 (Terminal)

Terminal set

REACTION Either NO R (no reaction) or ADF R (reaction defined in ADF R branch)

ERC vol Reactor volume (set of constants)

ERC flow Weight factor for flow distribution (set of constants)

ERC k0 Zero-order reaction constant (set of constants)

ERC k1 First-order reaction constant (set of constants)

ERC q Maximum activity, Monod kinetics (set of constants)

ERC KS Half-saturation coefficient, Monod kinetics (set of constants)

Table 5.2: Grammar rules to ensure meaningfulness of the evolved computer programs.

Function Sets of children available for each descendant of the function

ROOT {ADF L}, {ADF R}
ADF L {PAR, SER, CSTR, PFR, VLR}
ADF R {R ZERO, R FIRST, R MONOD}
PAR {PAR, SER, INV, CSTR, PFR, VLR}, {PAR, SER, INV, CSTR, PFR, VLR}
SER {PAR, SER, CSTR, PFR, VLR}, {PAR, SER, CSTR, PFR, VLR}
INV {PAR, SER, CSTR, PFR, VLR}
CSTR {ERC vol}, {ERC flow}, {ERC flow}, {REACTION}
PFR {ERC vol}, {ERC flow}, {ERC flow}
VLR {ERC flow}
R ZERO {ERC k0}
R FIRST {ERC k1}
R MONOD {ERC mu}, {ERC KS}
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Figure 5.2: An illustration of the decoding of a GP program tree. The tree (left) is recursively traversed from
the outermost nodes in ten steps and the reactor model is successively extended. The extension is graphically
illustrated (right) and the resulting model shown (bottom right). The volumes V are taken from the ERC vol
set, the weight factors wQ from the ERC FLOW set and the reaction coefficients qmax and KS from the ERC q
and ERC KS sets, respectively.

Fitness function

The fitness F of a program tree is a scalar value and is evaluated by a fitness function that
takes into account the error between the actual and predicted effluent and the complexity of
the model. The consideration of model complexity is important because tree sizes tend to
grow during evolution (Koza, 1992; Soule and Foster, 1998), consequently leading to more
complex models that have limited generalization ability, i.e. that cause over-fitting of the
data (McKay et al., 1997). However, over-fitting can be prevented by introducing a term for
“parsimony pressure” that penalizes large tree structures (Soule and Foster, 1998). Thus,
the fitness value for an individual is calculated as

F = CV (RMSD) + αL (5.8)

where CV(RMSD), the coefficient of variation of the root mean square deviation, expresses
the error when comparing the prediction of the numerically solved model with the measured
series, α is the coefficient for parsimony pressure and L the number of links in the model.
Because lower residuals represent better models, the goal is to minimize the value calculated
by the fitness function. If a reactor model cannot be solved, an infinite fitness value is
returned. This discourages its survival into the next generation.

Selection, crossover and mutation

During evolution, the fittest individuals of each generation are selected for the next generation
in tournaments. In each tournament, a number of individuals are picked at random. The
best is chosen with selection probability p, the second best with probability p(1 − p), etc.
Tournament selection allows an easy adjustment of the selective pressure by the tournament
size parameter. Some of the selected individuals experience random mutations, where nodes
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of the program tree are randomly exchanged. Others are affected by random crossovers,
where two individuals exchange parts of their programs. The selection probability and the
rates of crossover, mutation and reproduction remain constant during breeding to avoid the
convergence of the population and thus getting stuck in a local optimum. The maximum
tree depth is constrained to avoid the generation of overly complex models and is therefore
another means to prevent over-fitting, next to parsimony pressure introduced in Eq. (5.8).

Procedure

The search algorithm is run several times in parallel to obtain a palette of equally well-
performing models. Theoretically, the global optimum will always be found. However, breed-
ing is stopped when a pre-defined fitness criterion is satisfied or when the maximum number
of generations has been reached. In addition, due to the noisy nature of measurements,
the use of different input data for the individual runs is encouraged. Eventually, the model
palette can then be presented to the expert, who selects the most appropriate model.

5.3 Results and discussion

5.3.1 Synthetic system: CSTRs in series with and without reaction

The power of the proposed method was first assessed by investigating its ability to identify a
predefined synthetic reactor model in two experiments. The reactor model consisted of two
CSTRs in series (volumes of 400 m3 and 1600 m3). In the first experiment, no reaction took
place in any of the two reactors, whereas in the second experiment, a degradation reaction
occurred in the second reactor. The reaction had first-order kinetics with k = 1.2 hr−1.
Three days of artificial influent flow and concentration data were generated from sine waves
superposed with an Ornstein-Uhlenbeck process (the OU-process can be considered as the
continuous version of the discrete first-order auto-regressive process, AR(1)) (Uhlenbeck and
Ornstein, 1930). No measurement error was assumed. The time series had an average of 0.1
m3/s and 16.7 g/m3, respectively.

For each experiment, three populations were bred, and only the total volume of all reactors
was made available to the algorithm. The parameter values used for the evolution are given
in Table 5.3. The reactor models of the fittest individual of every population are shown in
Figure 5.3. In all breeds of Experiment 1, evolution was stopped because the fitness criterion
was met. Notably, the best individuals share the fitness value although their schemes differ.
In Experiment 2, in all but one case breeding was stop because the fitness criterion was
satisfied. It is now the engineer’s task to select the preferred system, taking into account
the performance of the system while also considering its simplicity in addition to background
knowledge not provided to the GP algorithm.

Lack of identifiability is probably the main challenge when inferring reactor models; both
the arrangement of the reactors and the parameter values might be unidentifiable. Under
certain circumstances (e.g., a lack of reactions), different arrangements can lead to exactly the
same effluent concentrations. This dynamic is visible in the results of the first experiment, in
which the arrangement of the reactors cannot be identified. Possible counter-measures include
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Table 5.3: The genetic programming parameters used for the experiments (RMSE = root mean square error).

Parameter Value Parameter Value

Population size 500 Tournament size 7

Max. generations 100 Selection probability 0.8

Fitness criterion F < 0.001 g/m3 Crossover rate 0.50

Parsimony pressure α = 10−4 Mutation rate 0.49

Min. tree depth 5 Reproduction rate 0.01

Max. tree depth 18

constraining the search space by providing additional knowledge about the system, or using
the concentrations within the reactor to construct a more elaborate fitness evaluation. Due
to the reactions in the second CSTR of Experiment 2, the arrangement of the reactors was
correctly identified.

The fact that in Breed #3 of Experiment 2 breeding was stopped by reaching the maximum
number of generations indicates that the optimal solution has not yet been found. It is
therefore advisable to investigate the population statistics. Figure 5.4 shows that, although
the minimal fitness decreases over time, a significant number of unfit individuals are still being
introduced and a high diversity is maintained. A high diversity in the population increases
the chance that mutations and crossovers lead to new, superior individuals. Consequently, it
would be a matter of time until the global optimum was found if breeding was continued.
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Figure 5.3: Reverse-engineering of two predefined systems (one without and one with reactions). The best
individuals of three different breeds are shown, their generation number and RMSE are indicated.
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Figure 5.4: Population statistics for Breed #3 of Experiment 2 (Figure 5.3). The minimal, average and
maximal fitness is plotted for each generation (left). The evolution of the fitness distribution in the generations
is shown (right), the hatched area contains invalid program trees.

5.3.2 Simulation of a tracer experiment

The proposed technique was used to generate a reactor model for a primary clarifier (V =
750 m3) in a mid-sized Swiss WWTP and to investigate to which extent virtual tracer exper-
iments performed on the generated models agree with a tracer experiment performed on-site.
Influent and effluent temperature was measured for four days, the total WWTP influent flow
data was extracted from the process information system of the plant.

Reactor models were obtained in three breeds without constraining the total reactor volume
and using the temperature time series as well as the parameters given in Table 5.3. The
best-performing models were used to simulate a tracer experiment, the results of which were
compared to a tracer experiment performed on site (Figure 5.5).

The evolved systems model the measured temperature data accurately and generally agree
with the tracer experiment. Hence, they show that the primary clarifier can be modeled
by a relatively simple reactor scheme. Because the modeled total volume corresponds ap-
proximately to the real reactor volume, the non-existence of shortcuts or dead zones can be
assumed; this is important information that would not be available if modeling was based on
experience and intuition only.

5.3.3 Computational time

Although the presented method can easily be run on a modern personal computer with rea-
sonable computational time, there is much room for improvement: i) The structure of the
model and parameters are optimized simultaneously. A random mutation to the structure is
as likely as a change to a parameter value. Because the ERC sets that contain the param-
eter values are rather large, there can be a large lag before a particular structure co-occurs
with a particular parameter value. This lag is a known weakness of GP; ERCs are seen as
“the skeleton in the closet of GP methods” (Evett and Fernandez, 1998). However, several
strategies to overcome this weakness exist (e.g., Evett and Fernandez, 1998). ii) The solution
of the ODE system can be very costly for long time series and systems requiring small step
sizes. Although system evaluation prior to solving or early discarding strategies could be
prescribed, these methods would directly influence the diversity of the population.
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Figure 5.5: The best-performing systems of three populations evolved in parallel for a primary clarifier given
influent and effluent temperature data (top). A section of the simulated and measured temperature time series
are plotted (bottom left) and a tracer experiment (conservative tracer) performed on-site is compared with
tracer responses simulated with the best-performing systems (bottom right).

5.4 Conclusions

In this paper, grammar-based GP was applied to generate hydraulic reactor models. A special
tree encoding that can represent hydraulic reactor models as program trees was introduced.

It was shown that, given influent and effluent measurements from a reactor, GP can evolve
a reactor model that reproduces the measured effluent series without additional information
on the structure of the solution. We suggested evolving several reactor models in different
GP runs and let the modeler choose the most appropriate model after taking additional
information into account. This latter step is important because a lack of identifiability, poor
data quality and limited computing resources all affect the search and can lead to non-optimal
solutions.

Although alternative approaches such as tracer experiments are superior to the approach
presented here, they have limited applicability in practice. The presented approach, however,
is a cost-effective alternative for extracting additional information on transport phenomena
without the need for difficult and costly measuring campaigns and thus allows for more
accurate modeling of hydraulic processes in practice, which is key to the successful modeling
of WWTP.
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General conclusions and outlook

6.1 General conclusions

Wastewater treatment plant (WWTP) operation generates a considerable amount of mea-
surement data. In modern plants, the data are carefully archived in the supervisory control
and data acquisition system (SCADA system) or in a specially acquired process information
system. The data are important for plant control and are used for reporting. However,
the use seldom goes beyond this scope; hence, the data are not used optimally. Systematic
exploitation of the information hidden in the data that is potentially valuable for plant op-
eration, optimization and modeling is not performed. The main reasons for this are the high
dimensionality of the data and, in this context, the lack of appropriate tools for data analysis.

In the past few years, many data mining techniques have emerged that are capable of analyz-
ing massive amounts of data. Efficient data-driven modeling techniques have been developed
that are especially suitable whenever the speed of data acquisition is faster than the speed
of manual analysis and interpretation, which is typically the case with WWTP data. Conse-
quently, adaptation of these techniques to and application with WWTP data are promising
for further exploitation of available data in many potential applications. If practicability and
cost-effectiveness are thoroughly considered, the plant operators and engineers alike can be
provided with suitable tools for improving plant operation, optimization and modeling.

The applications carried out in collaboration with WWTP staff showed that data mining
and data-driven modeling techniques are indeed adequate for the support of WWTP op-
eration if the developed tools can easily be setup and deployed and if their application is
comprehensible.

6.1.1 WWTP influent sewage characterization

Although relevant, WWTP operators are generally provided neither detailed information
about the sewage producers in the catchment nor the composition of their sewage. In Chap-
ter 3, a two-staged clustering approach was presented that can identify typical sewage com-
positions by clustering UV/Vis absorption spectra measured at the WWTP inlet. Because
a spectrum is unique for a certain sewage composition, it can be considered a fingerprint of
that composition. The two-staged clustering approach consists of a self-organizing map (a
type of artificial neural network with unsupervised learning that is noise tolerant and copes
well with high-dimensional data) to generate a smaller but still representative set of UV/Vis
spectra in the first stage. In the second stage, Ward’s hierarchical agglomerative clustering
algorithm yields a small set of clusters of characteristic compositions.

The clustering model is most useful when particular dischargers can be assigned to clusters.
In a full scale experiment, it was possible to assign one of five detected clusters to an industrial
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laundry by analyzing the cluster centroids and temporal discharging patterns, and by inducing
rules from the comparison of cluster occurrences with other influent measurements. Given
the labeled cluster model, newly measured spectra can be classified, and thus, particular
discharging events can be detected. For the industrial laundry, 93 out of 95 discharging
events measured in a validation experiment were classified correctly. A dilution experiment
revealed that successful detection at the plant influent is possible if the dilution contains more
than 7% laundry sewage.

Due to the simple setup of the clustering model and the general availability of photospectrom-
eters that cope with the harsh and varying conditions at the WWTP influent, deployment
on-site for day-to-day use is feasible. The operator can use the clustering models not only to
detect specific discharging events. By monitoring how well the measured spectra fit in the
cluster model, unknown and possibly harmful wastewater compositions can also be detected.
If the model was connected to the process control system, potentially harmful sewage could
immediately be bypassed to a storage basin. In addition, the development of the catchment
area can be visualized by routine calibration of a new clustering model and by comparing its
number of clusters and cluster centroids with previous models.

6.1.2 Sensor diagnosis and sensor substitution

In Chapter 2 it is shown that with automated data-driven modeling, it is possible to provide
the WWTP operator with cost-effective redundant virtual signals of real hardware sensors
that are based on measurement data available in the SCADA system. These software sensors
can be substituted for maintenance-intensive and failure-prone hardware sensors, or they can
be considered for sensor diagnosis.

In two full scale experiments, software sensors were derived with four different data-driven
modeling techniques with and without dimensionality reduction and given varying levels
of expert knowledge. The modeling techniques were generalized least squares regression
(GLSR), artificial neural networks (ANNs), self-organizing maps (SOMs), and random forests
(RFs).

The generalization error of the resulting software sensors depended on the chosen modeling
technique, if dimensionality reduction was applied and on the level of expert knowledge
considered. The non-linear modeling techniques (ANN, SOM and RF) generally performed
better than GLSR; dimensionality reduction worsened the performance. Increasing expert
knowledge correlated with increasing generalization error due to the lack of variables that
might show some local correlations and therefore lead to better accuracy. For long-term
predictions, however, models based on higher degrees of expert knowledge clearly performed
better.

The data-driven software sensors require a careful model check prior to deployment. This
check requires expert knowledge and model transparency, which is only given for GLSR
models and SOMs without dimensionality reduction. Both methods provide convenient means
for inspecting the model internals. In Chapter 2, prediction intervals or quantification errors
that can be considered as indicators for decreasing accuracy, how rare events can be handled
and how failures of software-sensor input signals can be detected are discussed.
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6.1.3 Operational issues caused by asymmetric discharge distributions

In practice, multiple reactor lanes are often operated in parallel. Hydraulic distribution de-
vices are used to split the flow and provide equalized charging of the individual lanes. These
devices, however, are often inaccurate, which leads to uneven loading that can result in per-
formance losses. Quantitative assessment with common methods such as tracer experiments
and mobile discharge measurements is not trivial.

In Chapter 4, a practicable new method was presented that estimates the discharge distri-
bution as a function of the total discharge at the flow divider. Based on this function, the
operator can, iteratively, perform modifications that affect the discharge distribution and
reassess the situation until the distribution is satisfyingly uniform. On the other hand, the
distribution function can be used to better estimate the flows to the individual reactor lanes
than the assumption of an equal distribution.

The new method is based on dynamic time warping, a distance measure often considered
for data mining applications, and has very sparse data requirements. The measurement of
a signal that exhibits some variability at the flow divider and at the effluent of each reactor
downstream of the divider is sufficient. Temperature sensors have proven to be a good choice;
they are commonly available and almost maintenance free. In addition, all parameters for
the method can be linked to properties that are generally known or can easily be estimated.

Theoretical analysis revealed that the method has better accuracy for systems with low
dispersion, if there are no significant reactions that have an effect on the measured signal
and if there are no high-frequency disturbances in the influent signal. The application of
the method to synthetic systems confirmed these findings and showed that the coefficient
of variation of the root mean square deviation, CV(RMSD), of the flow corrected with the
estimated function is between 0.06 and 0.006, whereas the CV(RMSD) of the uncorrected
flow (i.e., assuming equal distribution), was 0.11.

In a validation experiment at a grit chamber operated in two parallel lanes, the distribution
was successfully expressed as a function of total flow. It was further shown that the choice of
the method parameter values is not critical. The measured time series, however, should be
sufficiently long (at least three days for the validation experiment).

6.1.4 Modeling the hydraulic processes

Generally, an appropriate description of the hydraulic processes is a key element for successful
WWTP modeling. In practice, engineers must often rely on their experience or intuition
because conventional methods used to gain insights into reactor hydraulics are labor-intensive
and costly.

The method to quantify the discharge distribution that was discussed above and presented
in Chapter 4 is clearly valuable for the engineer who wants to model a treatment step that is
implemented in parallel lanes. He or she can apply the proposed method to obtain an estimate
for the reactor inflow that is more accurate than the assumption of equal distribution.

The implementation presented in Chapter 5 goes one step further. Grammar-based genetic
programming (GP) is used to search for hydraulic reactor models. The models are encoded
as a program tree with functions to generate continuous stirred-tank reactors, plug flow
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reactors and reaction kinetics, and with functions to link the generated reactors. This allows
the synthesis of almost arbitrary reactor models. The limitations to these generic building
blocks guarantee compatibility with common software for WWTP modeling. To guide the
search process, data of some easy-to-measure signals at the influent and the effluent of the
reactor to model is sufficient.

Although GP is a global optimization algorithm, multiple runs may yield different equally
performing reactor models due to noise and measuring errors in the data, and to theoreti-
cal identifiability issues and some stop criteria that keep the computation time reasonable.
Therefore, a palette of equally performing models was generated in several runs, of which the
modeler can choose the most suitable one. This process is superior to modeling exclusively
based on experience or intuition.

The given algorithm was applied to reverse engineer two synthetic systems. The systems were
correctly identified except for the reactor arrangement of the system without reactions, which
is mathematically unidentifiable. In a second experiment, measured temperature data were
used to find a suitable reactor model for a primary clarifier with an unknown exact volume.
The resulting model was then used to perform a virtual tracer experiment, which is compared
with a tracer experiment performed on-site. GP successfully derived three equally performing
models that all had a total volume that corresponded with the expected reactor volume (i.e.,
shortcuts or dead zone can be excluded). The virtual and real tracer experiments generally
agreed; however, the systems found by GP did not model the initial delay accurately.

6.1.5 Model complexity vs. model accuracy

Appropriate model complexity is crucial for safe deployment on-site. Because of the data-
driven nature of the considered methods, there is a risk that the models do not describe the
important processes appropriately; thus a careful model check is essential. The interpretation
of a rather complex model or a model that is opaque, however, is difficult. Therefore, it
is important that the designed data mining and data-driven modeling techniques generate
models that are transparent and that can be interpreted with limited expert knowledge
available, despite possible performance trade-offs.

In Chapter 2, it was shown that for software-sensor generation, basic linear regression models
are transparent and thus highly interpretable. However, more powerful non-linear modeling
techniques exist that are still interpretable. With the SOMs, such a technique was presented.
When applied for regression in the context of software-sensor generation, not only were they
more accurate than linear equivalents, they also prevented overfitting by coupling the model
structure to calibration data. Moreover, SOMs provided a quality measure for model predic-
tions and allowed convenient visualization of the relations between the regressor variables.
SOMs were also considered in Chapter 3 for clustering UV/Vis absorption spectra because
of their ability to deal with noisy and high-dimensional data.

Another method to control model complexity was chosen in Chapter 5 to synthesize reac-
tor models. The models generated by genetic programming consisted of a set of intercon-
nected building blocks that most environmental and chemical engineers are familiar with
(e.g., continuous stirred-tank reactors and plug-flow reactors). With this foundation, basic
interpretability of the models is a given.
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6.1.6 Role of expert knowledge

Sufficient expert knowledge is decisive for most applications. In Chapter 2, for instance, the
pre-selection of suitable software-sensor input signals is critical for long-term model accu-
racy, and the model check ascertains that the relevant processes are accounted for by the
model; both require expert knowledge. In Chapter 3 the expert must label the clusters of
characteristic sewage to make full use of the clustering model, and in Chapter 5, the modeler
eventually selects the most promising hydraulic reactor model.

The fact that domain knowledge is essential for method development is accounted for in
knowledge discovery process models by the explicit definition of the “Understanding of the
Problem” phase (cf. Figure 1.1, page 5) and by taking domain knowledge into account for
later “Evaluation of the Discovered Knowledge”. However, while method development is
knowledge intensive, reliable application on-site is still feasible with limited knowledge if the
model complexity is adapted and some means for continuous model checks are given (see, for
instance, Chapter 2).

6.1.7 A systematic framework for the exploitation of plant databases

To supply a strategic, target-oriented procedure for a data mining and data-driven modeling
project, a knowledge discovery process model was introduced in Section 1.1.2 (page 5). The
model was based on the model defined by Cios et al. (2007), itself a hybrid of the models
proposed by Chapman et al. (2000) and Fayyad et al. (1996). It consists of six connected
highly interactive and iterative phases.

In this section, the process model is extended into a systematic framework for the exploitation
of WWTP databases with data mining and data-driven modeling techniques. The major
tasks to be performed within each of the six phases and feedback loops are described, and
important decisions are discussed. The lessons learned and the experience obtained from the
projects performed in the context of this thesis are considered to thoroughly construct this
framework. Consequently, relevant text passages that apply to the circumstances discussed
are cited where appropriate. In response to the application issues raised in the introduction
(Section 1.1.3, page 6), the discussion in this section will show where and to what extent the
issues occurred, and it will explain how they could be circumvented or mitigated.

A graphical representation of the framework is given in Figure 6.1; the framework can be
viewed as a guideline for knowledge discovery with data mining and data-driven modeling
projects. Knowledge can be represented in many forms (e.g., as a model and as a set of rules).

Phase 1: Understanding of the problem domain

It is crucial to start any data mining project with this phase, which specifically includes the
exact definition of the project’s goals. At first glance, this consideration seems to be trivial.
Neglecting this phase, however, may result in the expenditure of significant effort to find the
right answers to the wrong question.

The phase can be divided into four main tasks. First, the project goals and success criteria
are defined from the perspective of the problem domain, ideally in collaboration with future



6.1 General conclusions 85

Input Data

Understanding of

the Problem Domain

Data

Understanding

Data Preparation

Data Mining

Evaluation of the

Discovered Knowledge

Deployment

Knowledge

Determining data mining goals

Data collection

Data description and exploration

Quality assurance of data

Additional domain knowledge required?

Definition of project goals and success criteria

Assessment of situation

Initial selection of tools and techniques

Data cleaning and integration

Attribute selection and extraction, 

attribute generation

Data set to meet requirements for selected 

data mining method

Additional knowledge about data required?

Selection of one or more modeling techniques

Test design

Application of techniques to data

Model assessment

Improved data preparation required?

Incorrect method selected due to lack of data understanding?

Unsatisfactory results, modification of project goals required?

Assessment of results w.r.t. project goals

Review of process

Determination of next steps

Invalidity of the discovered knowledge?

Knowledge not novel, interesting or useful?

Planning of deployment

! Integration with other systems

? Knowledge representation

Planning monitoring and maintenance

Review of project

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

Expert knowledge?

Suitable techniques?

! High dimensionality

Optimum preprocessing chain?

! Missing and noisy data

! Non-stationarity

Performance measures?

! Interpretation by non-experts

Knowledge

Data partitioning?

! Overfitting

!

?

Possible issue

Decision / Selection

Phase

Tasks

Input / Output

! Large data sets

! Integration of prior knowledge
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users of the final outcome of the process (i.e., the extracted knowledge). The data miner
must balance competing goals, identify constraints and determine factors possibly influencing
the outcome. The availability of in-depth expert knowledge is beneficial, specifically for
the identification of the WWTP processes involved and the analysis of their dynamics and
time scales. Ultimately, available expert knowledge also has implications for the optimum
complexity of the outcome (cf. Sections 6.1.5 and 6.1.6, and for detailed information Chapter
2).

The situation is then assessed, i.e., the available resources (including data) are itemized
and the assumptions and constraints are investigated in more detail. The consideration of
assumptions and constraints shall include a number of aspects of the situation, such as the
appropriate complexity of the deployed knowledge.

The third task in this phase consists of the determination of the data mining goal. Specifically,
the objectives formulated earlier in the terminology of the problem domain are now translated
into the data mining language.

Finally, an initial selection of data mining tools and techniques is made. An early assessment
is important because the selection may influence the entire project. However, the selection
requires an overview of current data mining techniques, including their field of application,
their advantages, and very importantly, their assumptions and limitations. The data min-
ing methods that were applied within this thesis are listed in Table 6.1. The classification
introduced in Section 1.1.1 (page 4) is used.

Phase 2: Data understanding

The first task of this phase involves the collection of the data specified in the third task of
the previous phase. In the second task of this phase, the collected data are then described
and explored to obtain an overview. Data description includes the examination of the basic
properties of the data set, such as shape, attribute types and basic attribute statistics. Ex-
ploration with the aid of querying and visualization techniques reveals additional information
about the attribute distributions and relationships.

The final task of this phase concerns the assurance of data quality. In this task, the ap-
plicability of the data to the project objectives is determined. The analysis underlying this
determination should consider information on measurement errors, long-term trends, natural
variation and altered conditions.

If the data miner realizes that additional domain knowledge is required to (better) understand
the data, the feedback loop returning to the “understanding of the problem domain” phase
is triggered.

Phase 3: Data preparation

The principal goal of this phase is to make the data available in a form that is compati-
ble with the initially selected data mining tools and techniques. In a data mining project,
the probability that this phase is performed more than once is high because the optimum
characteristics of the preprocessing chain (i.e., the optimal combination of one or several
preprocessing techniques) are not always clear at the outset. Indeed, surveys indicate that
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Table 6.1: Main data mining and data-driven modeling techniques discussed in this thesis. These techniques
are classified according to their use; particular methods can generally be considered for different problem
types. In the rightmost column, section numbers are provided.

Problem type Generic Method Specific Method Reference

Prediction Regression Generalized least squares regression (GLSR) 2.2.3 (p 17)

Linear technique, copes with varying variance and autocorrelated residuals

Prediction Regression Artificial neural network (ANN) 2.2.3 (p 18)

Powerful non-linear technique; optimal set-up, however, is highly problem-dependent and model inter-
pretation hindered

Prediction Regression Self-organizing map (SOM) 2.2.3 (p 18)

Non-linear technique, suitable for high-dimensional noisy data, provides means for visualization of non-
linear dependencies

Prediction Regression Random forest (RF) 2.2.3 (p 18)

Non-linear regression technique, low risk of overfitting

Prediction Classification Labeled cluster model 3.3.2 (p 39)

Labeled cluster model can be applied to classify new data; labeled Ward clusters in this case

Description Clustering Self-organizing map (SOM) 3.2.3 (p 37)

SOMs can be used to cluster groups of high-dimensional data on a lower dimensional discrete lattice,
noise tolerant

Description Clustering Ward clustering 3.2.3 (p 38)

Hierarchical agglomerative clustering algorithm, suitable for non-spherical clusters, does not scale wella

Description Dependency modeling Genetic programming (GP) 5.2.2 (p 71)

GP considered for system identification

Description Dependency modeling Dynamic time warping (DTW) 4.2.2 (p 56)

DTW computes a path that describes the warping required between two time series for the best match

Description Summarization Relief 4.4.1 (p 59)

Relief ranks attributes by information content

aIn Section 3.2.3 (page 36) SOM and Ward clustering are combined to produce a dual clustering approach
that combines the strengths of both methods.

approximately 50% of the time required by a data mining project is invested in this phase
(Cios et al., 2007).

The “data preparation” phase should begin with the cleaning and integration of the data. Sev-
eral algorithms for outlier detection and reconciliation exist for the purpose of data cleaning.
Reconciliation is required if the data originate from different sources and must be combined.
Subsequently, irrelevant attributes are dropped, existing attributes are transformed or new
attributes are generated. Obviously, this process is highly dependent on the specific problem
and the selected data mining technique. Hence, it is not possible to give general advice. In
Table 6.2, an overview on the preprocessing methods considered in this thesis is given, and
the reasons for the utilization of particular methods are briefly explained.

If the selection of the suitable preprocessing methods requires additional or more specific
information on the data, the feedback loop to the “data understanding” loop is triggered.

Four possible application issues may require attention during this phase. Preselected data
mining algorithms may not scale very well for large databases or data sets. Mitigation strate-
gies include sampling, approximation and parallel processing. In addition, more efficient
algorithms might be applied. Large data sets were an issue for software-sensor generation
in Chapter 2 (high number of attributes), for the assessment of the discharge distribution
in Chapter 4 (number of records) and for the synthesis of the hydraulic reactor models in
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Table 6.2: Preprocessing techniques presented in this thesis. In the rightmost column, section numbers are
provided.

Issue Cure Reference

Large data set Down-sampling 2.2.2 (p 16)

Large data set Self-organizing map (SOM) 3.2.3 (p 37)

Noisy data Low-pass filter 4.2.2 (p 56)

Noisy data Self-organizing map (SOM) 3.2.3 (p 37)

Outliers TRM filter 2.2.2 (p 16)

High dimensionality Principal components analysis (PCA) 2.2.2 (p 16)

Dynamics Approximation by lagging 2.2.2 (p 16)

Non-stationarity Differencing 2.2.2 (p 16)

Different scaling Normalization 4.2.2 (p 56)

Misc. Other transformations (log, empirical formulae, etc.) 2.2.2 (p 16), 3.2.3 (p 36)

Chapter 5 (number of records). The mitigation strategies included efficient variable selec-
tion techniques for the first case and parallel processing for the last two. In Chapter 3,
self-organizing maps were applied to generate a smaller, yet still representative data set.

High-dimensional data sets have an increased search space. More importantly, however,
they may generate meaningless results due to the “curse of dimensionality” (the higher the
dimensionality, the more equidistant the data points, cf. Verleysen and François, 2005). This
issue emerged in Chapter 3 in relation to the clustering of UV/Vis spectra. However, due
to the ability of the selected data mining method (self-organizing maps) to process high-
dimensional and noisy data, it was possible to circumvent the “curse of dimensionality”. In
Chapter 2, principal components analysis (PCA) was applied for dimensionality reduction but
was later discarded in favor of stepwise selection due to the limited physical interpretability
of the resulting principal components.

Missing and noisy data can be an issue if the data quality is inferior. In this thesis, however,
no problems resulted from this potential issue due to good data quality as a result of the
use of robust and maintenance-free sensors (Chapters 3, 4 and 5) or due to treatment with
low-pass filters, downsampling or the use of robust trimmed repeated median filters (Chapter
2).

Phase 4: Data mining

As the first step in the “data mining” phase, the actual data mining technique is selected.
Although the initial selection of tools and techniques made at the beginning of the project
was relatively general (for example, hierarchical agglomerative clustering), the selection here
is specific (for example, Ward clustering; cf. Table 6.1).

Before the data mining method is applied, it is first desirable to design tests to assess the
quality and validity of the outcome. The tests are based on the project goals, formulated
in data mining terminology (Phase 1). For supervised techniques, it is possible to define
error measures. For regression problems, the coefficient of variation of the root mean squares
error was generally considered (cf., Section 2.2.2, page 17). For classification problems,
confusion matrices were considered to indicate false positive and false negative rates (Section
3.3.3, page 40). However, for unsupervised techniques such as clustering, alternative indices
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are required. For example, an internal criterion can be defined for clustering models that
compares the average within-cluster variance to the average variance between clusters (e.g.,
the Davies-Boudlin index, cf. Section 3.2.3, page 38). To cite an additional example, the
self-organizing map allows the calculation of the quantification error (Section 3.2.3, page 37),
which says how well a data point is represented in the cluster model, and the calculation
of the topographic error, which provides information on the quality of the map (cf. Section
3.3.1, page 38).

For an independent error estimate, it is important not to train and test the model on the same
dataset. The dataset should be split it into a calibration set and a validation set. Several
data partitioning techniques exist. The choice of techniques depends on the error type of
interest to the data miner (cf. Section 2.2.2 on page 16 for an introduction to split-sample
validation and cross-validation).

Subsequently, the data mining technique is applied to the data. The model is then assessed
with the designed tests. If more than one technique was selected, this tasks would be repeated
separately for each technique.

Several situations can trigger a feedback loop:

� Back to phase 1 if the results obtained with the selected method are not satisfactory or
if the project goals need to be revised

� Back to phase 2 if a lack of understanding of the data caused the selection of an
inappropriate data mining method

� Back to phase 3 if the data preparation needs improvement, often caused by the specific
requirements of a data mining method

Overfitting is a major application issue. It is probable this issue will arise in practice. In this
situation, the model lacks generalization ability and performs poorly if the model is applied
to new data. If the generalization ability of a model is not assessed with an independent test
set, the modeler might not realize that overfitting occurred. In this thesis, overfitting could
successfully be mitigated by controlling the model complexity (cf. Section 6.1.5), by choosing
optimal model structure in cross-validation procedures (cf. Section 2.2.2, page 16) and by
considering modeling techniques that intrinsically prevent overfitting (e.g., random forests).

Another issue is non-stationarity, a common feature of WWTP data caused by changing
environmental conditions and/or process changes. If the data mining task is the detection
of these changes (e.g., UV/Vis clustering to visualize the development of the catchment) or
if the required data length for analysis is shorter than the typical time scales of the changes
(Chapters 4 and 5), non-stationarity is not an issue. For the applications in Chapters 2 and
3, model recalibration was suggested if any significant changes were detected.

The incorporation of prior knowledge in the form of domain knowledge for method develop-
ment is not possible in a simple way for many current methods and tools. In fact, the majority
of data mining methods applied in this thesis, did not allow any extensive systematic inclu-
sion of prior knowledge. As an alternative, domain knowledge can often be considered in a
relatively straightforward way in the “data preparation” phase, as it was done in Chapter 2
with available expert knowledge.
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Phase 5: Evaluation of the discovered knowledge

In contrast to the previous phase where the resulting data mining model was evaluated in
view of the data mining goals, the model is now evaluated in the light of the project goals
formulated in domain terminology in Phase 1. Any novel and interesting patterns discovered
during this phase are noted.

If evaluation is successful, a thorough review of the data mining process is appropriate. This
review ensures that no important factor or task has been omitted. The next steps are then
chosen, particularly if the findings, in whatever form, are to be deployed.

If the discovered knowledge is invalid due to, e.g., lack of domain understanding and lack
of understanding of the problem, the entire project must be repeated. If the discovered
knowledge is neither novel nor interesting, the feedback loop that returns the data miner to
the “Data Mining” phase is triggered.

Making discovered patterns understandable is often nontrivial and can be a legitimate issue.
Making discovered patterns understandable is a principal goal underlying the entire thesis
and is strongly connected with the demand for practical applicability of the methods. In
addition to the visualization of the discovered knowledge, the safe and reliable use of the
knowledge in decision processes requires careful selection of the visualization technique and
the inclusion of quality and uncertainty measures to avoid misinterpretation. However, the
choice of the most suitable means for communication of the discovered knowledge depends
strongly on the specific problem and the method considered.

Phase 6: Deployment

The last phase involves the deployment of the discovered knowledge. First, a strategy for
deploying the outcome within the problem domain should be elaborated, followed by the
planning of monitoring and maintenance. Monitoring and maintenance are important if the
deployed outcome will be part of day-to-day operations and is decisive for the success of
the project if the end users do not have in-depth expert knowledge. Eventually, the overall
project is reviewed and documented.

The discovered knowledge should be integrated with other systems for several reasons. If
knowledge has the form of a predictive model, for instance, and is intended to support the
day-to-day operation of a WWTP, the model should run independently in the background
and retrieve the required data automatically. Otherwise, the results should be fed back to
the SCADA system and visualized within the system’s user interface. Integration with other
systems is not addressed in this thesis (see below).

6.2 Outlook

The rapid progress in information technology and the advancements in data analysis will
continue to unleash the potential for even more advanced and thorough utilization of available
data. For the field of WWTP operation, however, further developments are required to take
full advantage of this potential.
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6.2.1 Data management

On-site data management is the process that ensures storage and accessibility of data, which
is the principal requirement for data mining and data-driven modeling. Unfortunately, even
though the costs for storage have dropped significantly in the last several years, many plants
have not kept up and therefore still store their data either in a compacted form, e.g., as
daily averages, or do not use long-term archiving. The point is to show the operators that
long-term archiving is feasible and that it will, in return, be valuable for plant operation.

Plant operators are experienced addressing various types of incidents that occur during plant
operation. From the data miner’s perspective, the availability of this information would
be helpful for data understanding. At best, these incidents would be recorded in the same
database as the process data, e.g., as metadata describing the process data. These metadata
significantly augment the information content of the data. In this regard, the development
of a simple and well-defined way to record these metadata is envisioned. Here too, the point
is to illustrate that the extra effort for gathering the metadata will, in the long run, pay off.

Standardization of data management would further facilitate the provisioning of data mining
tools. Unified and open interfaces as well as harmonized database schemes would simplify
tool deployment and would encourage benchmarking at a finer level.

6.2.2 Process optimization

The possible further developments for WWTP process optimization are many. Of particular
interest are the reduction of consumed resources (e.g., energy) while maintaining constant
effluent quality and increasing the effluent quality while maintaining the amount of resources
consumed constant. However, with respect to the development of practicable data mining and
data-driven modeling techniques, the following two points are critical. First, the knowledge
discovery process should be extended with the explicit assessment of a baseline that can be
assumed to evaluate the effect of a particular implementation, as part of the “Understanding
of the Problem”-phase (cf. Figure 1.1, page 5). Second, the appropriate way to convey the
extracted information must be decided upon, i.e., whether it is directly fed to the process
control system or visualized to the operator.

Currently available data mining methods have difficulty addressing the non-stationarity and
the high dynamics that vary on different time scales, which is typical for wastewater treatment
processes. Here, the development of novel methods that inherently consider these features
while still being practicable is due.

6.2.3 Deployment strategies

In this thesis, the discussion of deployment strategies focused on technical aspects, such as
robustness and long-term accuracy. Obviously, there are many practical aspects as well that
are decisive for successful deployment. From the operator’s point of view, a seamless integra-
tion in his or her SCADA system is desired. The user interfaces must be simple and intuitive
yet still provide the desired information at a glance. From the tool provider’s perspective, op-
timal commissioning and maintenance are key factors. Choosing SaaS (software as a service;
i.e., the software is hosted on a centralized server platform and is accessible via the internet)



92 6 General conclusions and outlook

as a delivery method may have decisive advantages (e.g., computational resources can be
provided centrally and software maintenance and support is simplified) if the developer is
able to circumvent the issues associated with data transfer and security.

6.2.4 Specific suggestions for further research

The following suggestions are specific to the individual chapters of this thesis.

Chapter 2 Data-driven modeling approaches to support WWTP operation

� To account for the different measuring locations of the software-sensor inputs, time-
lagged variables were introduced. This is a very rough approximation of the hydraulic
processes. The application of the method presented in Chapter 5 to infer hydraulic
reactor models could be a promising extension for software-sensor generation to more
appropriately model plant hydraulics.

� The use of available prior knowledge is limited to the selection of possible input signals
and the restriction of the lags to be considered. A simple way to represent available
knowledge in a form compatible with the modeling methods would help the generation
of software-sensor models that are based on true rather than on arbitrary correlations.

Chapter 3 Identification of industrial wastewater by clustering UV/Vis spectra

� The implementation of a method to induce rules for the occurrence of a specific wastew-
ater composition based on other signals would allow the application of the presented
method in larger catchments where the installation of an UV/Vis probe at the WWTP
influent is no longer sufficient and when it is not feasible to mount a UV/Vis probe
at the effluent of all relevant subcatchments. Consequently, the installation of other
(possibly easier to measure) signals would suffice.

� Trajectories can be plotted on a self-organizing map to visualize temporal transitions.
Given a set of labeled historic transitions, the operator could compare the current
trajectory, anticipate its continuation and possibly intervene. Obviously, this concept
is not limited to clustered UV/Vis spectra.

Chapter 4 Discharge distribution at hydraulic flow dividers

� An approach based on dynamic time warping was presented as a tool to quantify the
discharge distribution in hydraulic flow dividers. An intermediate result is the hydraulic
residence time in the reactors downstream of the divider or their inflows if the volume
is known. Here, it could be tested if the method is viable for estimating the discharge
in reactors or pressure mains and the flow velocity in gravity sewers.

� In brief, dynamic time warping estimates the hydraulic residence time by determining
the delays of characteristic patterns between the reactor influent and the effluent. The-
oretical analysis has shown that dispersion in the reactor and reactions influence the
time shift. If the exact value of the discharge is given, the determined delays might
provide further insight into the mixing processes and reactions in the reactor.
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Chapter 5 Automatic reactor model synthesis with genetic programming

� The current implementation considers one state variable per reactor and one reaction
per reactor model. This has proven sufficient for the considered applications that used
(synthetic) temperature data. However, the introduction of additional state variables
might be required if measuring data of inter-reacting compounds are considered.

� Currently, there are limited possibilities to take into account available prior knowledge
and measuring data. Extensive inclusion of these, however, would not only reduce
identifiability issues but also decrease the computation time. Therefore, ways to, e.g.,
specify partial layouts and given fluxes and consider measurements other than those
from the influent or effluent must be investigated.

References

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., Wirth, R.,
2000. CRISP-DM 1.0: Step-by-Step Data Mining Guide.

Cios, K. J., Swiniarski, R. W., Pedrycz, W., Kurgan, L. A., Cios, K., Swiniarski, R., Kurgan,
L., 2007. The Knowledge Discovery Process. In: Data Mining. Springer, New York, NY,
pp. 9–24.

Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., 1996. From data mining to knowledge discovery
in databases. AI Magazine 17, 37–54.

Verleysen, M., François, D., 2005. The curse of dimensionality in data mining and time
series prediction. In: Computational Intelligence and Bioinspired Systems, Lecture Notes
in Computer Science 3512. Springer, Berlin, Heidelberg, pp. 758–770.





Appendix A

Software availability

95



96 Software availability

Software availability

The software for Chapters 3, 4 and 5 is available for download at the personal homepage of the
author (http://www.eawag.ch/~duerreda) or by request via e-mail (david.duerrenmatt@
eawag.ch). Please note that the software is provided as-is.

A.1 Identification of industrial wastewater by clustering UV/Vis
spectra

In Chapter 3, a two-staged clustering approach was introduced to cluster UV/Vis spectra.
The software was implemented in MATLAB and is available for download. For installation
instructions, please refer to the file INSTALL.TXT in the zip archive. A ready-to-run example
is provided, including a reduced data set of UV/Vis spectra.

Name in cluster

Programming language MATLAB (Version 6.5 or higher required)

Package dependencies Statistics Toolbox, SOMTOOLBOXa), SOMVISb)

Installation cf. INSTALL.TXT

Package description cf. README.TXT

Example computation Open and run file example.m

Download chap3 in cluster.zip

a, b) The open source package SOMVIS can be downloaded from http://www.ifs.tuwien.

ac.at/dm/somvis-matlab/somvis.zip, it includes a patched version of SOMTOOLBOX.

A.2 Discharge distribution at hydraulic flow dividers

The algorithm presented in Chapter 4 to compute the discharge distribution at hydraulic
flow dividers was implemented in MATLAB and is available for download. Example data is
included.



A.3 Automatic reactor model synthesis with genetic programming 97

Name discharge distribution

Programming language MATLAB (Version 7.8 or higher required)

Package dependencies Matlab Toolboxes: Curve Fitting Toolbox, Signal Process-
ing Toolbox, Statistics Toolbox

Installation Not required

Package description cf. README.TXT

Example computation Open and run file main.m

Download chap4 discharge distribution.zip

The software is designed to take advantage of parallel computing. Although not required, it
is recommended to use the parallel processing features of MATLAB for faster computation.
Further details are given in the preamble of file main.m.

A.3 Automatic reactor model synthesis with genetic programming

The use of genetic programming to synthesize hydraulic reactor models was presented in
Chapter 5. The program was implemented in Python and is available for download.

Depending on the reactor system and the length and resolution of the measuring data given,
computation can be resource intensive. Python processes occupy only one core of multicore
processors. Because the user normally wants to breed several populations, it is thus suggested
to run several processes of the program in parallel (e.g., one per core) in order to take full
advantage of the available processing power.

In addition, the program is designed to run on Amazon’s elastic computation cloud (EC2,
http://aws.amazon.com) using StarCluster (http://web.mit.edu/stardev/cluster). The
required plugins are included in the program package.

Name hydra gen

Programming language Python (Version 2.6.x required)

Package dependenciesa) numpy, scipy, matplotlib, mpl toolkit, pysqlite2, psyco,
optparse, configparser, pydot, logging, pystepb)

Installation Instructions given in INSTALL.TXT

Package description cf. README.TXT

Example computation Follow instructions given in README.TXT

Download chap5 hydra gen.zip

a) The packages are available in the Python package index (http://pypi.python.org) and
can mostly be installed with the easy install command of the setuptools package.

b) A patched version of pystep with additional visualization capabilities is already contained
in this package.
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Supporting information for Chapter 2

This appendix contains supporting information for Chapter 2: “Data-driven modeling ap-
proaches to support WWTP operation”.

B.1 Modeling techniques

B.1.1 Generalized least squares regression (GLSR)

Generalized least squares regression is a linear modeling technique. In contrast with the
ordinary least squares (OLS) estimation method, the GLS estimation does not assume that
the variance-covariance matrix of the errors, ε, has the form Cov(ε)OLS = σ2I with the iden-
tity matrix I, but rather allows Cov(ε)GLS = σ2Σε with a known matrix Σε (Montgomery
et al., 2006). This is an important feature that helps cope with the auto-correlated residuals
that typically occur when dealing with time series data and incomplete models (Dellana and
West, 2009). If the OLS was nevertheless applied, the estimator would still be unbiased, but
it is no longer a minimum-variance estimator (Montgomery et al., 2006), which has implica-
tions for standard tests and could lead to misleading test scores. Even if the matrix Σε is
not known directly, it can be estimated given a suitable restrictive parameterization of Σε

(Greene, 2000).

There are good reasons to build the GLS model with only a subset of the available regressor
variables. A parsimonious model structure has higher interpretability, and sometimes the pre-
diction accuracy can be improved by removing some variables (Hastie et al., 2009). Because
best-subset selection, which basically tries all possible combinations of regressor variables,
is not feasible for a high number of variables (Hastie et al., 2009), backward-elimination is
applied: first, a model with all N regressor variables is calibrated and its performance is
computed. Then, the N possible models with N − 1 regressor variables are fitted and the
best performing one is selected. Now starting from the selected model, all possible models
with one regressor variable less are fitted and likewise, the best model is selected. This is
repeated until a model results with only one regressor variable. As a result, the backward-
elimination procedure yields a path through all possible subsets of which the model with best
performance is eventually selected.

The performance criterion applied in this study is the BIC (Bayesian information criterion).
The BIC takes into account the quality of the fit, but penalizes complex models (the BIC
criterion is similar to the Akaike information criterion (AIC), however, the penalization of
model complexity is heavier) (Hastie et al., 2009).
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B.1.2 Artificial neural network (ANN)

Artificial neural network is a popular supervised non-linear statistical data modeling tool.
The term neural network, however, encompasses a large class of models (Hastie et al., 2009).
The feed-forward ANN considered in this paper is a multilayer perceptron (MLP) with one
hidden layer; it has an input, a hidden and an output layer. The input layer has a neuron
for every input variable. Each neuron is connected with every neuron in the hidden layer.
Eventually, each neuron of the hidden layer is connected with the output neuron, whose
output is the model response. A neuron is a computational unit that receives one or more
inputs and produces an output, depending on the activation function of the neuron. Every
input to a neuron is given a weight, and the output of the neuron is the sum of the inputs
multiplied by their weights and passed through an activation function. The weights are
trained with a back-propagation learning algorithm (Hastie et al., 2009) and early-stopping
is applied to prevent over-fitting. In early-stopping, a part of the dataset is not considered
for ANN training, but to monitor the performance during training. Training is continued
unless the performance of the current iteration is permanently lower than the best-so-far
performance over a pre-defined number of iterations. In this study, 15% of the data were
retained and the number of iterations was set to 15.

The choice of the optimal structure of the ANN is rather difficult. While one hidden layer
is sufficient for function approximation (Cybenko, 1989; Hornik et al., 1989), the number
of hidden neurons is problem-dependent and typically in the range of 5-100 (Hastie et al.,
2009). Too many hidden neurons might lead to over-fitting, but too few units might result
in excessive bias in the outputs (Himmelblau, 2008).

In this study, the optimum number of hidden neurons is evaluated for each experiment in-
dividually by training ANNs with varying number of hidden neurons and estimating their
generalization errors in a ten-fold cross validation procedure. Eventually, the model structure
that minimizes the generalization error is selected.

B.1.3 Self-organizing maps (SOM)

Self-organizing maps are a variant of artificial neural networks based on unsupervised learning,
originally proposed by Kohonen (2001). They learn to cluster groups of similar input data in
a non-linear projection from a high-dimensional data-space onto a lower-dimensional discrete
lattice of neurons on an output layer, called feature map, in an orderly fashion (Céréghino
and Park, 2009; Kalteh et al., 2008). This is done in a topology-preserving way, which means
that neurons physically located close to each other have similar input patterns. Addition-
ally, SOMs are tolerant to noise, which is especially helpful when dealing with experimental
measurements.

Each neuron i has assigned a prototype vector wi having the same dimensionality as the input
data. If a SOM is used for prediction, wi is the concatenation of the response variable y and
the K regressor variables xk, wi = (yi, xi,1, . . . , xi,K)T . During training, these vectors are
optimized to represent the complete set of input data; the set of prototype vectors is therefore
representative for the data set. The optimization of the prototype vectors is proportional to
a learning rate and a neighborhood function, both of which decrease monotonically during
the ordering process. The former is a scalar; the latter forms a smoothing kernel around the
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prototype vector and verifies that only input vectors within a certain neighborhood affect the
prototype vector.

For prediction, the first component of the prototype vector of a trained SOM that has min-
imum distance to an input vector with an unknown first component is extracted. The dis-
tance between the input vector and the prototype vector that is closest (the best-matching
unit, BMU) is called the quantification error, q.e. It expresses how well an input vector is
represented in the SOM and can thus later be considered as a means for software-sensor
self-diagnosis (i.e., the higher the q.e., the more uncertain the prediction).

The means to visualize the relations between the variables are the component planes, which
are basically cross-sections through the prototype vectors of the feature map. However, if
there are variables, it is helpful to quantify their importance. The measure of topological
relevance (MTR) is such a measure (Corona et al., 2008).

The models presented in this paper all have a two-dimensional, hexagonal feature map. The
number of neurons is determined as 5

√
N (Vesanto and Alhoniemi, 2000), where N is the

number of samples, and the ratio of the side lengths was set equal to the two maximum
eigenvalues of the data (Park et al., 2006). As a learning rate, a linear function decreasing
from 0.05 to 0.01 over 100 iterations is chosen as well as a linearly decreasing neighborhood
radius from a radius that covers 2/3 of the distances of the map units to only the winning unit
(which is reached after 1/3 of the iterations). Implementation details are given in Wehrens
and Buydens (2007).

B.1.4 Random forest (RF)

Random forests is a widely applied machine-learning technique (Mouton et al., 2011; Verikas
et al., 2011). RFs are non-linear ensemble classifiers that build on a large collection of
B classification or regression trees that are aggregated (Breiman, 2001). To grow a tree,
however, a bootstrap sub-sample of size n of the available samples N is taken. In addition,
nodes are created by selecting the best regressor variable of k randomly chosen variables from
all variables K. In a random forest for regression, the response is the averaged response of
all trees.

The RF technique has the advantage that it performs remarkably well with very little tuning
required (Hastie et al., 2009) and is not prone to over-fitting (Breiman, 2001; Hastie et al.,
2009); hence, it is suitable for highly automated data-driven modeling approaches.

The relative importance of the regressor variables can be measured with samples not selected
in the bootstrap sub-samples used to construct a tree. First, the prediction accuracy is
recorded by passing these samples down the tree. Then the values of the j-th variable in
these samples is permutated and again passed down the tree. The decrease in accuracy,
averaged over all of the B trees, is a measure of the importance of variable j (Hastie et al.,
2009; Verikas et al., 2011).

In this study, the parameter values are B = 500, k = K/3 and n = log2(N) + 1.
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