Skip to main content

Advertisement

Log in

Comparison of ensemble learning methods for creating ensembles of dispatching rules for the unrelated machines environment

  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

Dispatching rules are often the method of choice for solving various scheduling problems, especially since they are applicable in dynamic scheduling environments. Unfortunately, dispatching rules are hard to design and are also unable to deliver results which are of equal quality as results achieved by different metaheuristic methods. As a consequence, genetic programming is commonly used in order to automatically design dispatching rules. Furthermore, a great amount of research with different genetic programming methods is done to increase the performance of the generated dispatching rules. In order to additionally improve the effectiveness of the evolved dispatching rules, in this paper the use of several different ensemble learning algorithms is proposed to create ensembles of dispatching rules for the dynamic scheduling problem in the unrelated machines environment. Four different ensemble learning approaches will be considered, which will be used in order to create ensembles of dispatching rules: simple ensemble combination (proposed in this paper), BagGP, BoostGP and cooperative coevolution. Additionally, the effectiveness of these algorithms is analysed based on some ensemble learning parameters. Finally, an additional search method, which finds the optimal combinations of dispatching rules to form the ensembles, is proposed and applied. The obtained results show that by using the aforementioned ensemble learning approaches it is possible to significantly increase the performance of the generated dispatching rules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Allahverdi, J.N.D. Gupta, T. Aldowaisan, A review of scheduling research involving setup considerations. Omega 27(2), 219–239 (1999). doi:10.1016/S0305-0483(98)00042-5

    Article  Google Scholar 

  2. A. Allahverdi, C.T. Ng, T.C.E. Cheng, M.Y. Kovalyov, A survey of scheduling problems with setup times or costs. Eur. J. Oper. Res. 187(3), 985–1032 (2008). doi:10.1016/j.ejor.2006.06.060

    Article  MathSciNet  MATH  Google Scholar 

  3. U. Bhowan, M. Johnston, M. Zhang, X. Yao, Reusing genetic programming for ensemble selection in classification of unbalanced data. IEEE Trans. Evolut. Comput. 18, 893–908 (2013)

    Article  Google Scholar 

  4. U. Bhowan, M. Johnston, M. Zhang, X. Yao, Evolving diverse ensembles using genetic programming for classification with unbalanced data. IEEE Trans. Evolut. Comput. 17(3), 368–386 (2013)

    Article  Google Scholar 

  5. J. Branke, S. Nguyen, C. Pickardt, M. Zhang, Automated design of production scheduling heuristics: a review. IEEE Trans. Evolut. Comput. (2015). doi:10.1109/TEVC.2015.2429314

    Google Scholar 

  6. L. Breiman, Bagging predictors. Mach. Learn. 24(2), 123–140 (1996). doi:10.1007/BF00058655

    MATH  Google Scholar 

  7. E.K. Burke, M.R. Hyde, G. Kendall, G. Ochoa, E. Ozcan, J.R. Woodward, Exploring hyper-heuristic methodologies with genetic programming. Comput. Intell. 1, 177–201 (2009). doi:10.1007/978-3-642-01799-5_6

    Article  MATH  Google Scholar 

  8. E.K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, J.R. Woodward, A classification of hyper-heuristics approaches. Handb. Metaheuristics 57, 449–468 (2010). doi:10.1007/978-1-4419-1665-5_15

    Article  Google Scholar 

  9. C. Dimopoulos, A.M.S. Zalzala, A genetic programming heuristic for the one-machine total tardiness problem, in Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999, vol. 3, no. 1 (1999), pp. 2207–2214. doi:10.1109/CEC.1999.785549

  10. M. Đurasević, D. Jakobović, K. Knežević, Adaptive scheduling on unrelated machines with genetic programming. Appl. Soft Comput. 48, 419–430 (2016). doi:10.1016/j.asoc.2016.07.025

    Article  Google Scholar 

  11. C. Ferreira, Gene expression programming : a new adaptive algorithm for solving problems. Complex Syst. 13(2), 1–22 (2001)

    MathSciNet  MATH  Google Scholar 

  12. G. Folino, C. Pizzuti, G. Spezzano, GP Ensemble for Distributed Intrusion Detection Systems (Springer, Berlin, 2005), pp. 54–62

    Google Scholar 

  13. G. Folino, C. Pizzuti, G. Spezzano, Training distributed GP ensemble with a selective algorithm based on clustering and pruning for pattern classification. IEEE Trans. Evolut. Comput. 12(4), 458–468 (2008)

    Article  Google Scholar 

  14. Y. Freund, R.E. Schapire, A desicion-theoretic generalization of on-line learning and an application to boosting, in European Conference on Computational Learning Theory (Springer, 1995), pp. 23–37

  15. E. Hart, K. Sim, A hyper-heuristic ensemble method for static job-shop scheduling. Evolut. Comput. 24(4), 609–635 (2016)

    Article  Google Scholar 

  16. T. Hildebrandt, J. Heger, B. Scholz-Reiter, Towards improved dispatching rules for complex shop floor scenarios: a genetic programming approach, in GECCO ’10: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation (2010), pp. 257–264. doi:10.1145/1830483.1830530

  17. L. Hong, S.E. Page, Groups of diverse problem solvers can outperform groups of high-ability problem solvers. Proc. Natl. Acad. Sci. USA 101(46), 16385–16389 (2004)

  18. R. Hunt, M. Johnston, R. Hunt, M. Johnston, Evolving “Less-myopic ” Scheduling Rules for Dynamic Job Shop Scheduling with Genetic Programming, pp. 927–934

  19. H. Iba, Bagging, boosting, and bloating in genetic programming, in Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation—Volume 2, GECCO’99 (Morgan Kaufmann Publishers Inc., 1999), pp. 1053–1060

  20. D. Jakobović, Evolutionary computation framework. http://gp.zemris.fer.hr/ecf

  21. D. Jakobović, Project site. http://gp.zemris.fer.hr/scheduling/

  22. D. Jakobović, L. Jelenković, L. Budin, Genetic programming heuristics for multiple machine scheduling, in Proceedings of the 10th European Conference on Genetic Programming, vol. 4445 (2007), pp. 321–330. doi:10.1007/978-3-540-71605-1_30

  23. D. Jakobović, K. Marasović, Evolving priority scheduling heuristics with genetic programming. Appl. Soft Comput. J. 12(9), 2781–2789 (2012). doi:10.1016/j.asoc.2012.03.065

    Article  Google Scholar 

  24. J.R. Koza, Human-competitive results produced by genetic programming. Genet. Program. Evolvable Mach. 11(3–4), 251–284 (2010). doi:10.1007/s10710-010-9112-3

    Article  Google Scholar 

  25. K. Miyashita, Job-shop scheduling with genetic programming, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000) (2000), pp. 505–512

  26. S. Nguyen, K.C. Tan, A Dispatching Rule Based Genetic Algorithm for Order Acceptance and Scheduling (2015), pp. 433–440

  27. S. Nguyen, M. Zhang, M. Johnston, A Sequential Genetic Programming Method to Learn Forward Construction Heuristics for Order Acceptance and Scheduling (2014), pp. 1824–1831. doi:10.1109/CEC.2014.6900347

  28. S. Nguyen, M. Zhang, M. Johnston, K.C. Tan, A coevolution genetic programming method to evolve scheduling policies for dynamic multi-objective job shop scheduling problems, in 2012 IEEE Congress on Evolutionary Computation, CEC 2012 (i) (2012), pp. 10–15. doi:10.1109/CEC.2012.6252968

  29. S. Nguyen, M. Zhang, K.C. Tan, Enhancing genetic programming based hyper-heuristics for dynamic multi-objective job shop scheduling problems, in 2015 IEEE Congress on Evolutionary Computation (CEC) (2015), pp. 2781–2788. doi:10.1109/CEC.2015.7257234

  30. S. Nguyen, M. Zhang, M. Johnston, K.C. Tan, A computational study of representations in genetic programming to evolve dispatching rules for the job shop scheduling problem. IEEE Trans. Evolut. Comput. 17(5), 621–639 (2013). doi:10.1109/TEVC.2012.2227326

    Article  Google Scholar 

  31. S. Nguyen, M. Zhang, M. Johnston, K.C. Tan, Dynamic multi-objective job shop scheduling: a genetic programming approach, in Automated Scheduling and Planning, Studies in Computational Intelligence, vol. 505, ed. by A.S. Uyar, E. Ozcan, N. Urquhart (Springer, Berlin, 2013), pp. 251–282

    Chapter  Google Scholar 

  32. S. Nguyen, M. Zhang, M. Johnston, K.C. Tan, Learning iterative dispatching rules for job shop scheduling with genetic programming. Int. J. Adv. Manuf. Technol. 67(1–4), 85–100 (2013). doi:10.1007/s00170-013-4756-9

    Article  Google Scholar 

  33. S. Nguyen, M. Zhang, M. Johnston, K.C. Tan, Automatic design of scheduling policies for dynamic multi-objective job shop scheduling via cooperative coevolution genetic programming. IEEE Trans. Evolut. Comput. 18(2), 193–208 (2014). doi:10.1109/TEVC.2013.2248159

    Article  Google Scholar 

  34. L. Nie, L. Gao, P. Li, L. Zhang, Application of gene expression programming on dynamic job shop scheduling problem, in Proceedings of the 2011 15th International Conference on Computer Supported Cooperative Work in Design (CSCWD) (2011), pp. 291–295. doi:10.1109/CSCWD.2011.5960088

  35. L. Nie, X. Shao, L. Gao, W. Li, Evolving scheduling rules with gene expression programming for dynamic single-machine scheduling problems. Int. J. Adv. Manuf. Technol. 50(5–8), 729–747 (2010). doi:10.1007/s00170-010-2518-5

    Article  Google Scholar 

  36. G. Paris, D. Robilliard, C. Fonlupt, Applying boosting techniques to genetic programming, in Artificial Evolution 5th International Conference, Evolution Artificielle, EA 2001, vol. 2310 (2001), pp. 267–278. doi:10.1007/3-540-46033-0_22

  37. J. Park, S. Nguyen, M. Zhang, M. Johnston, Genetic programming for order acceptance and scheduling, in 2013 IEEE Congress on Evolutionary Computation, CEC 2013, vol. 3 (2013), pp. 1005–1012. doi:10.1109/CEC.2013.6557677

  38. J. Park, S. Nguyen, M. Zhang, M. Johnston, Evolving ensembles of dispatching rules using genetic programming for job shop scheduling. EuroGP 1, 92–104 (2015)

    Google Scholar 

  39. F. Peng, K. Tang, G. Chen, X. Yao, Population-based algorithm portfolios for numerical optimization. IEEE Trans. Evolut. Comput. 14(5), 782–800 (2010)

    Article  Google Scholar 

  40. M. Pinedo, Scheduling Theory, Algorithms and Systems, 4th edn. (Springer US, Boston, 2012)

    MATH  Google Scholar 

  41. R. Poli, W.B. Langdon, N.F. McPhee, A field guide to genetic programming. Published via http://lulu.com and freely available at http://www.gp-field-guide.org.uk (2008). (With contributions by J. R. Koza)

  42. R. Polikar, Ensemble Learn. 4(1), 2776 (2009)

    Google Scholar 

  43. M.A. Potter, K.A.D. Jong, A cooperative coevolutionary approach to function optimization, in Proceedings of the International Conference on Evolutionary Computation. The Third Conference on Parallel Problem Solving from Nature: Parallel Problem Solving from Nature, PPSN III (Springer, London, 1994), pp. 249–257. http://dl.acm.org/citation.cfm?id=645822.670374

  44. L.V.D. Souza, A.T.R. Pozo, A.C. Neto, J.M.C. Rosa, Genetic Programming and Boosting Technique to Improve Time Series Forecasting, in Evolutionary Computation (2009). doi:10.5772/9617

  45. J.C. Tay, N.B. Ho, Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems. Comput. Ind. Eng. 54(3), 453–473 (2008). doi:10.1016/j.cie.2007.08.008

    Article  Google Scholar 

  46. S.Y. Yuen, X. Zhang, On composing an algorithm portfolio. Memet. Comput. 7(3), 203–214 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Ɖurasević.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ɖurasević, M., Jakobović, D. Comparison of ensemble learning methods for creating ensembles of dispatching rules for the unrelated machines environment. Genet Program Evolvable Mach 19, 53–92 (2018). https://doi.org/10.1007/s10710-017-9302-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10710-017-9302-3

Keywords

Navigation