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Abstract 

Conventional graphical user interface techniques appear to be ill-suited for the kinds of 

interactive platforms that are required for future generations of computing devices. 3D graphics 

and immersive virtual reality applications require interactive 3D object manipulation and 

navigation. Perceptual user interfaces using speech and gestures are in high demand to provide 

a more natural human-computer interaction modality. The major challenge facing Perceptual 

user interfaces is the lack of a standard application programming interfaces capable of handling 

ambiguity and providing the means to include domain-specific knowledge about the context in 

which the user interface is used. 

In this dissertation, we study dynamic hand gestures, which are defined as a sequence of hand 

postures. We emphasize the generality of our dynamic gesture model, which is capable of 

recognizing essentially any dynamic hand gesture confined in a sequence of postures. Hand 

postures are static poses and are defined by an array of posture attributes. We use a generic 

definition hand postures capable of covering the space of hand postures at different levels of 

granularity and abstraction; and we timely monitor the posture variation as it unfolds within the 

dynamic gesture. 

We also study the role of context in gesture interpretation without making assumptions about a 

specific application. We view the hand-tracking and gesture-recognition subsystems as integral 

parts of a larger distributed and multi-user multi-service application, where gesture 

interpretation plays the role of resolving ambiguity of the recognized gesture. We identify the 

relevant aspects to hand gesture interpretation and we propose agent-based system architecture 

for gesture interpretation. 

We finally propose a framework for gesture-enabled system design, where context is placed in 

a middleware layer that interfaces with all sub modules in the system and plays a dialectic role 

and keeping the overall system stable. 
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Chapter 1 Key Contributions 

Chapter 1 

1. Introduction 
Conventional graphical user interface techniques appear to be ill-suited for the kinds of 

interactive platforms that are required for future generations of computing devices. 

Ubiquitous computing devices having very small or very large displays are breaking out of 

the desktop box and motivate an increasing diversity of user interfaces. Examples of such 

devices include: personal digital assistants, cell phones, pagers, computerized pens, 

computerized notepads, and various kinds of desk and wall-size computers, as well as 

devices in everyday objects such as mounted on refrigerators, or even embedded in vehicles' 

dash boards. Moreover, 3D graphics and immersive virtual reality applications require 

interactive 3D object manipulation and navigation. Perceptual user interfaces using speech 

and gestures are in high demand to provide a more natural human-computer interaction 

modality. The major challenge facing Perceptual user interfaces is, in our opinion, the lack 

of a standard application programming interface capable of handling ambiguity, which is the 

ability to process incomplete or undetermined data, and providing the means to include 

domain-specific knowledge about the context in which the user interface is used. In this 

dissertation we present a framework for hand tracking and gesture recognition suitable for 

generic perceptual user interface applications. Figure 1 shows an overview of the 

framework. 

Figure 1: Overview of the Gesture Information Flow in a Perceptual User Interface 

Raw sensor data, in the form of sensor readings or extracted image features in the case of 

CyberGlove and vision-based tracking systems, is used to acquire 3D hand postures in the 
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Chapter 1 Key Contributions 

hand tracking module. The variation of the hand posture over time is used to recognize 

dynamic gestures. The recognized gestures are then interpreted according to the user's 

context and are delivered to the user interface to perform the required action and display 

the proper feedback. 

Hand gesture recognition lets humans use their most versatile instrument, their hands, in 

more natural and effective ways than currendy possible. The de facto standard in hand 

tracking and posture detection is the data glove. This device is capable of accurately 

recording finger joint motions via flex sensors in a tighdy fitting glove, but it is usually 

cumbersome and expensive for most commercial applications. Computer vision based hand 

gesture recognition has the potential of low prices and more flexibility. The major potential 

of vision-based gesture recognition, in our opinion, is that it integrates naturally with the 

environment in which it is used. In other words, it can act as a rich resource of context 

information, beyond the task of hand tracking and gesture recognition. For example a 

vision-based perceptual user interface can identify the face of the gesture operator and the 

objects in his vicinity and consequently loads his gesture models and identifies the available 

services, which can be effective in the gesture interpretation. 

While most hand gesture recognition research focus on recognizing a set of predefined 

postures, in this dissertation we study generic dynamic gestures. We acknowledge that 

gestures, as any form of communication, is evolving by nature. Thus, an efficient hand 

recognition system must be able to easily modify the gesture set by adding, removing or 

regrouping its elements. This implies that we: firsdy have to use a generic definition of hand 

postures, which is capable of covering the space of hand postures at different levels of 

granularity and abstraction; and, secondly, we should be able to timely monitor the posture 

variation as it unfolds within the dynamic gesture, which means that the time must be 

explicidy visible in the gesture models used for gesture recognition. For that reason, we 

emphasize the fingers posture by using the fingers joint angles as the main descriptor of the 

hand posture, and then derive more meaningful attributes from joint angles to abstract their 

correlation and natural constraints. We also propose a dynamic gesture model based on 

sampling the high dimensional posture attributes at a constant frequency and modeling the 

posture variation using a dynamic Bayesian network. 

3 



Chapter 1 Key Contributions 

We also study the role of context in gesture interpretation without making assumptions 

about a specific application. We view the hand tracking and gesture recognition subsystem 

as an integral part of a larger distributed and multi-user multi-service application, where 

gesture interpretation plays the role of resolving ambiguity of the recognized gesture. We 

identify, in the most generic form, the relevant aspects to hand gesture interpretation and 

we propose an agent based system architecture, which is taking all the relevant aspects of 

gesture interpretation into consideration. We thus propose a framework for gesture-enabled 

system design, where context is placed in a middleware layer that interfaces with all sub 

modules in the system and plays a dialectic role and keeping the overall system stable. By a 

dialectic role we mean that the context information is utilized by all the different subsystems 

to increase its performance and the output of all subsystems is used to modify the context. 

1.1. Thesis Statement 
This dissertation introduces and evaluates an integral framework for 3D hand tracking and 

dynamic gesture recognition. It demonstrates that computer vision is a feasible means to 

provide hand gesture interfaces. We take a pragmatic approach to vision-based hand 

tracking by allowing the human operator to wear a glove with fiducial markers, which are 

used to track the geometry of the hand. The dissertation serves as a proof of concept of the 

first prototype and provides recommendations for future generations of the fiducial glove. 

3D computer games and immersive virtual environments really benefit from such an 

invention. By the reduced cost and the wide spread of web cameras and the progressive 

performance of computing devices, an efficient vision-based hand tracking subsystem can 

become a versatile technique for human-computer interface. 

In comparison with the data glove, computer vision provides less accurate posture estimation 

because of the ambiguity inherent in the scene projection on the 2D image plane and due to 

discontinuity of the scene due to object occlusion. The answer to the accuracy problem, in 

our opinion is to use redundant fiducials and to utilize statistical priors acquired from the 

environment in the form of context information. 

The remainder of this chapter motivates the problem setting even further, states our main 

contributions to overcome those problems, and finally provides an overview of the 

dissertation organization 
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1.2. Problem Statement 
Perceptual user interfaces are an emerging technology that is gaining interest in the 

academic and industrial communities alike. Hand gesture recognition is one the most 

versatile modes of human communication but has not been exploited fully in the human 

computer interaction domain. The challenges facing the technology are diversified among 

all its aspects including hand tracking and posture acquisition, gesture recognition, gesture 

interpretation and the application design and integration process. In the following sections 

we describe the sub-problems we are addressing and objectives we are trying to reach in this 

dissertation in the different aspects of designing a context-aware gesture-enabled ubiquitous 

system. 

1.2.1. Hand Tracking 
Hand tracking is the foundation on which hand gesture recognition applications are built. 

The output of the hand tracking module, in terms of the type of attributes and their 

accuracy, direcdy affects the performance of the gesture recognition subsystem. We focus 

primarily on finger postures combined with 3D hand position and orientation. The de facto 

standard in hand tracking is the data glove and position sensors, but we acknowledge the 

potential of computer vision based hand tracking as an emerging rival for the data glove. To 

the best of our knowledge there are no available benchmarks to measure the accuracy of the 

approach in comparison with the data glove. Such benchmarks are essential for system 

designers of Perceptual user interfaces in utilizing vision-based tracking and gesture 

recognition. 

Our objective is to be able to continuously track the hand in real time in a non constrained 

environment in terms of lighting and background, and to provide the hand posture in terms 

of a vector of attributes defining the hand position and orientation in 3D and the fingers 

joint angles. For that reason, our system undergoes a 2D/3D conversion where the 

detected 2D features of the hand are used to estimate the 3D hand posture as well as 

position and orientation. This transformation is ambiguous due to the loss of depth 

information in the projection process, and for that reason we use visual cues to estimate the 

hand posture. The 2D/3D conversion increases the complexity of the system, but its 

advantage lies in the flexibility of the system to recognize generic gestures and easily 
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building up the gesture set without requiring major system changes. By providing posture 

description in 3D, the posture is viewpoint-independent and thus its model is simplified. 

Stereo vision can be used to acquire 3D information, but we are primarily interested in a 

single camera system, motivated by cheaper prices of the camera and we also believe that 

with adequate modeling and utilization of hand constraints and studying the motion priors 

we can achieve proper estimation of the hand posture using a single camera. 

1.2.2. Dynamic Hand Gesture Recognition 

Gesture and posture recognition have been studied by researchers in the last 20 years with 

variant degrees of success. In most cases, gestures are confined to a discrete set of postures 

recognized in static form. We would like to emphasize the dynamic aspect of the hand 

gestures, and be able to distinguish between different gestures that vary solely in their 

timing aspect. The problem of creating a generative model, capable of generalizing the 

training data to recognize untrained data, is usually based on assumptions about the nature 

of the process we are trying to recognize. Hidden Markov Models, the most commonly 

used approach in hand gesture recognition, makes the assumption that there is a hidden 

state causing the observed postures, and that the transition between such hidden states are 

defined by a static stochastic state transition matrix. The physical meaning of the hidden 

states and the number of such states is not defined in the HMM framework and is either 

determined by trial and error or from experience of the system designer. We would like to 

design a more flexible model, where the hidden states causing the observation are in fact the 

dynamic gestures we are trying to recognize. In this way, there will not be ambiguity about 

the number of states. We also would like to relax the assumption that the state transition 

between hidden states is governed by a static state transition stochastic matrix, because in 

fact gestures are emergent and situation bound depending on the context of the situation. 

We propose a novel dynamic gesture model based on dynamic Bayesian networks. 

Our objective is to be able to recognize dynamic gestures in real time. We emphasize the 

system's latency, which is the time spent between the end of the time the final posture is 

recognized and the time the dynamic gesture is recognized. Hidden Markov Models require 

either Viterbi algorithm or forward-backward algorithm for recognition, which consumes 
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time. A more direct model is required to minimize the overall system latency and enhance 

the system usability. 

1.2.3. Context Awareness 
Context-aware systems are an emergent technology branching from ubiquitous and mobile 

computing. The role of context in gesture recognition and interpretation have not been 

addressed by researchers in the field of hand gesture recognition, but have been studied in 

psychology, linguistics, anthropology, ethno methodology, discourse analysis, and 

conversation analysis. We would like to transfer this knowledge to the information 

technology domain and propose a framework for context-aware gesture-enabled system 

design. 

Context is defined as any information that can be used to characterize the situation of an 

entity, where an entity is a person, place, or object that is considered relevant to the 

interaction between a user and an application, including the user and applications 

themselves. A system is context-aware if it uses context to provide relevant information 

and/or services to the user, where relevancy depends on the user's task. The relevant 

information to a gesture enabled user interface is the information used in posture 

acquisition such as the hand model, the information used in gesture recognition such as the 

gesture models, and the information used in gesture interpretation such as the operator 

identification, the location, the available services or applications, which are supported by the 

gesture recognition subsystem. 

We divide die context information into two types, non-volatile context that represent the 

essential information that must be provided to the system to achieve its basic tasks, such as 

the hand model, the gesture models, and low level features required to estimate the hand 

posture. Volatile context, on the other hand is ambiguous pieces of information that can be 

used to improve the performance of the system, such as visual artifacts, recognized people 

in the neighborhood, the location, the running applications. This information can be used 

to modify the probabilistic priors of the gesture set and gesture interpretation. Our 

framework utilizes stochastic, fuzzy, and agent based approach to be able to utilize the 

ambiguous information of the context. 

7 
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1.3. Key Contributions 
The key contributions of this dissertation are distributed amongst the hand gesture 

recognition system design aspects discussed in the problem statement. 

• The first contribution is that it provides a framework to model and recognise generic dynamic 

gestures in real time. The method does not contain hidden structure and thus does not 

require a domain expert to configure the gesture classifier, but only require a 

segmented example of the dynamic gestures to be recognized, defined in the form of 

a sequence of hand postures sampled at constant frequency. The dynamic gestures 

are modeled using a dynamic Bayesian network, which is used to provide a 

probabilistic measure of the gesture, given the observed posture in real time with 

minimum latency. 

• The second contribution of this dissertation is that it presents the 3D vision-based hand 

tracking and posture estimation as a nonlinear optimisation problem, where the search space is 

the high dimension hand articulation (finger joints) and the objective function is a 

probabilistic observation model derived from generic features in the acquired video. 

The search is guided by domain specific features on the hand defined by colored 

markers. Other means of guiding the posture space are surveyed but, to the best of 

our knowledge, do not provide real time hand tracking. We then analyze the accuracy 

of the vision tracking approach in comparison with the de facto standard data glove 

and provide a valuable benchmark for vision-based hand tracking. We also qualify the 

posture attributes that can be accurately estimated using computer vision and conclude that 

finger-level posture attributes such as curvature provide better accuracy than sub-

finger level attributes, such as the joint angles. 

• The third contribution of this dissertation is a novel method to solve complex and slightly 

under constrained inverse kinematics problems using error model analysis of a rough estimate 

derived from a simpler and direcdy related inverse kinematics problem. This method 

is demonstrated to effectively solve the finger four degrees of freedom inverse 

kinematics, which is slighdy under constrained given the 3D position of the fingertip. 

First, the first two degrees of freedom are solved using the error model of the 

simplified two degrees of freedom problem assuming the finger is not curved, and 
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then the remaining two degrees of freedom are solved given the first two in the same 

way. 

• Finally, the dissertation describes the role of context in vision-based hand tracking and gesture 

recognition, which is in our opinion the main advantage of the vision approach over 

the classical exoskeleton and data glove approaches. It concludes that context must not 

be localised at a particular stage in the system, but should act a dialectic role in all aspects of the 

system. An agent based context-aware gesture interpretation system design is 

proposed and middleware context layer is recommended for future context-aware 

systems design. For example in a gesture-enabled user interface, the identification of 

the active operator can be utilized by the hand tracking subsystem by activating the 

hand model associated with the current operator, on the same token, the gesture 

recognition subsystem can activate the gesture models associated with the current 

operator. All other operator related context such as preference roles played by the 

operator are loaded and are continuously updated at the same time. 

1.4. Publications resulting from this thesis 
• A. El-Sawah, C. Joslin, N.D. Georganas, E.M. Petriu, A Framework for 3D Hand 

Tracking and Gesture Recognition using Elements of Genetic Programming, Proceedings of 

International Workshop on Video Recognition, VideoRecv07, Montreal, May 2007 -

Best Paper Award 

• A. El-Sawah N.D. Georganas, E.M. Petriu, Calibration and Error Model Analysis of 3D 

Monocular Vision Model Based Hand Posture Estimation, IEEE Instrumentation and 

Measurement Technology Conference, IMTC07, Warsaw, Poland, May 2007 - Travel 

Award 

• A. El-Sawah, N.D. Georganas, E.M. Petriu, Finger inverse kinematics using error model 

analysis for gesture enabled navigation in virtual environments, IEEE HAVE06, Ottawa, Oct. 

2006 

• Q. Chen, A.M. Rahman, A. El-Sawah, X. Shen, A. El Saddik and N.D. Georganas, 

Accessing Learning Objects in Virtual Environment by Hand Gestures and Voice, I2LOR-06, 

3rd Annual Scientific Conference, LORNET Research Network, TELUQ-UQAM 

University in Montreal, Canada, Nov. 2006. 
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• C. Joslin, A, El-Sawah, D. Chen, N.D. Georganas, Dynamic Gesture Recognition, Proc. 

IEEE IMTC, Ottawa, May, 2005, pp 1706-1711 

1.5. Dissertation Overview 

This dissertation is divided into three main components, Hand Tracking, Dynamic Gesture 

Recognition and Context-Awareness. In the next chapter we will survey the state of art in 

die different components of this dissertation. Next are dedicated chapters for Hand 

Tracking, Dynamic Gesture Recognition and the Role of Context in Hand Gesture 

Recognition. We will explain our methodology, experimental results and our conclusions 

for each component. Finally we will make our overall conclusion and will make 

recommendations for future work. 
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Chapter 2 

2. Literature Review 
Aspects related to hand tracking and gesture recognition include die tracking technology, 

die output of the tracking process, the attributes used in recognition process, the cardinality 

of the gesture set, the limitation and restriction of tracking environment, and the provision 

of temporal aspects of gesture. Literature surveys about hand tracking and gesture 

recognition include [42] -[47]. 

Ong and Ranganath [42] survey automatic sign language recognition from different aspects 

including useful applications, relevant aspects such as lexical meaning and grammar, vision-

based tracking, feature extraction and parameter estimation, gesture recognition schemes 

and classification methods, gesture segmentation, grammar processing and signer 

independence and integration of hand gesture recognition with other modes such as facial 

expression and speech recognition. 

Mitra and Acharya [43] surveyed research in hand gesture recognition and face and head 

gestures. They surveyed die major metiiods successfully utilized in gesture recognition, e.g. 

Hidden Markov Models, Particle Filtering / Condensation, Functional State Machines, and 

Artificial Neural Networks. Mahmoudi and Parviz [44] survey methods to track visual 

objects, particularly hands, in video images. They focus on color segment region extraction 

algorithms such as CamShift and contour based algoritiims such as Condensation. Pentland 

[45] proposes a mathematical model of social signaling from audio and video feeds. His goal 

is to be able to predict interest, engagement, emphasis from thin slices of conversational 

and/or gesture-full multimedia clips. 

Pavlovic et al. [35] provide a unified approach to modeling, analysis and recognition of 

hand gestures for visual interpretation, taking into account the characteristics of natural 

hand gestures. Starting by defining hand gesture representation as a trajectory in the 

parameter space (posture attributes) over a suitably defined interval (time). Temporarily, 

gestures undergo three main phases, namely preparation, stroke, and retraction. A set of 

rules about these phases suggested by Queck ([46]) include: 

• Hand posture during die stroke follows a classifiable path in the parameter space 
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• Gestures are confined to a restrictive spatial volume 

• Repetitive hand movements are gestures (beats) 

• Manipulative gestures are longer than communicative ones 

The above rules remain the key assumptions utilized by many researchers to justify their 

gesture recognition approaches. Pavlovic classifies the approaches to hand gesture 

recognition into two main categories, namely 3D model based and appearance based techniques. 

The 3D model based category provides a complete description of the hand gesture in the 

parameter and time spaces but it lacks the simplicity and computational efficiency (as per 

1997), the appearance based category, on the other hand, is more restrictive in terms of its 

coverage of the parameter space of gestures, thus provides a simpler alternative. 

La Viola Jr. [34] compares between the direct measure device gloves and vision based hand 

tracking and posture estimation in terms of cost, user comfort, model-to-user adaptation in 

terms of size and anatomy, calibration, and accuracy. He found the vision based tracking 

advantageous in the price, comfort and adaptation aspects and lags in the calibration and 

accuracy aspects. He then survey the algorithmic techniques of recognizing hand postures 

and gestures from three different aspects, namely feature extraction and modeling, learning 

and recognition, and other techniques, e.g. linguistic and grammatical approach, appearance 

based motion, and spatio-temporal analysis. Finally he survey the applications of hand 

gesture recognition including sign language recognition, gesture-to-speech translation, 

presentation aids, virtual environment, 3D modeling, multimodal interaction, and robot 

control. 

Hereafter, we survey the latest research in vision based hand tracking, hand gesture 

recognition and context-aware computing. 

2.1. Hand Tracking 
Examining the work related to hand tracking, Liu et al. [1] evaluate HMM algorithms for 

letter hand gesture recognition, i.e. when the letters are traced in the image plane similar to 

hand writing recognition. They use YUV color space to extract the skin color, 

morphological operations to filter the image noisy artifacts, a modified CamShift algorithm 

[2] — a histogram based region segmentation algorithm — for hand extraction, and a 
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proprietary curve smoothing algorithm to extract the letter contours. A gesture letter is 

defined as a sequence of directional angles which are the observation symbols. Each letter is 

mapped to one hidden Markov model, where Baum-Welch and Viterbi Path Counting 

algorithms were used to train the Hidden Markov Models over a range of model structures 

from Fully-Connected to Left-Right with number of states ranging from 4 to 10. In 

conclusion Baum-Welch algorithm gives generally better recognition than Viterbi Path 

Counting and Left-Right topology is better than Fully-Connected, but is more dependent 

on the number of states. Finally, 9 states give the best results. 

Binh et al. [3] recognize single hand gestures of 36 alphanumeric gestures from the 

American Sign Language (ASL) in real time (25 fps). They use the CamShift algorithm to 

extract the skin color and a Kalman filter to predict the hand region of interest (ROI). A 

pseudo 2D Hidden Markov Model (P2DHMM) is used to recognize the 2D gestures. The 

performance is improved by selecting the distinctive frames from the training sample and 

using the rest for recognition, and by utilizing a probabilistic model to adaptively filter 

gesture patterns from non-gesture patterns. 

Licsar et al. [4], [5] developed a gesture enabled user interface to control a projector system. 

A video camera is used to segment the user's arm and hand using background subtraction, 

the background image is provided from the projector system and undergoes special 

correction to compensate for projection/lens distortion. Gesture contour is classified by the 

nearest neighbor rule and the distance metric is defined using a modified Fourier descriptor. 

9 gestures were recognized from the projected hand silhouette. The user interface is 

adapted for multiple users by an online training process. 

Utsumi et al. [6] use a view-based appearance model to detect the interaction between hand 

and object in video frames. The object's appearance model consists of 4 layers per 

viewpoint; namely texture image, texture reliability map, object/background mask, and the 

reliability of the foreground/background. The hand blob is extracted based on skin color 

and motion filter, which is extracted by inter-frame subtraction. Region of interest of 

objects manipulated by the hand is estimated from the moving region and used to create a 

multiple view object model by subtracting the hand skin color. A similarity measure is used 

to compare the observed objects with the observation model database to estimate the 

object's orientation in 3D - in fact the search is restricted by reducing the dimensionality of 
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the search space. Good estimation of the object's position and orientation is obtained for 

non symmetric objects, where the appearance varies significantly by changing the 

orientation, but symmetric objects failed to provide good estimate of the orientation. 

Lin et al. [7] developed a hand posture estimation system based on searching the feasible 

posture set from a lookup table generated using the CyberGlove [8]. The direct search 

algorithm, namely Nedler-Mead Simplex, starts the search using an arbitrary set of points in 

the search space and systematically drops the worst point and generates a new one based on 

a cost/objective function. All points in the simplex are approximated by the closest points 

from the set of feasible postures — obtained using the CyberGlove. ND-Simplex search 

provides multiple candidate postures, which are then followed by sequential Monte Carlo 

simulation seeded by the latest vertices of simplex, a.k.a. multiple objectives simplex 

algorithm. The search's objective function is derived from an observation model, derived 

from the image edges and model's silhouette. As many as 30 simplexes for each finger 

articulation and 10 simplexes for the global hand orientation are used in the search, and it 

takes 2 sec/frame to run. This approach is similar to ours, but we utilize hand markers to 

direct the search for posture hypotheses and we use a more sophisticated observation 

model. 

Fei et al. [9], [10] propose a hybrid hand tracker using a particle filter to track the rigid 

(global) hand motion and HMM to estimate the intrinsic hand articulation. In other words, 

2D position of the hand is tracked using Monte Carlo (Condensation) estimation and HMM 

is used to learn the timely variation of the hand shape (posture), which is represented by the 

hand silhouette moments. The hand motion is restricted to 2D motion in the camera plane 

and the hand articulations vary from open hand to fist position. The tracker follows the 

hand position and provides an estimate of the current hand shape (a.k.a. articulation). 

Lu et al. [11], [12] use multiple optical cues in the form of edges, optical flow and shading 

to derive 3D forces that are applied to a 26 DOF hand model. They use a forward recursive 

dynamic model to track the motion in response to the 3D derived forces. We consider their 

work complementary to our own as we are both using multiple visual cues and a 26-DOF 

hand model, although there approach used dynamics and forward kinematics concepts 

while ours uses inverse kinematics to track the hand. The main difference is that their 

approach is incremental, i.e. it incrementally updates the state (posture) of the hand based 

14 



Chapter 2 Literature Survey - Hand Tracking 

on differential forces (e.g. edge movement, optical flow, etc.), which means it requires an 

accurate initial estimate of the hand posture and that it is prone to drifting error along the 

tracking process. Our tracking technique is stand alone and does not build on the previous 

posture and can estimate the initial posture. A hybrid approach can definitely improve the 

stability of both tracking systems. 

Stenger et al. [13] use a 27 degrees-of-freedom (DOF) truncated conics-based hand model 

and an unscented Kalman filter to track hand postures in a 3D trajectory. They extract the 

hand model edges, handle occlusion using a simple ray tracing technique, comparing the 

projected model edges with edges extracted from video, and produce a difference vector 

that is used by a Kalman gain matrix to estimate the new posture (state) of the model in an 

attempt to minimize the difference between expected and observed postures. Another 

approach proposed by Stenger et al. [14] uses a hierarchical Bayesian filter to track the hand 

in 3D. The parameter space is divided hierarchically and posterior probability of the central 

posture, within each range, given the hand silhouette and skin color, is derived. Edge 

likelihood is based on the chamfer distance between the extracted hand silhouette and the 

expected silhouette and color likelihood is based on skin color probability distribution and 

background color probability distribution. Highly probable ranges are further divided to 

reach fine resolution/accuracy and low probability regions are used to reject hypotheses 

early in the search process. The algorithm is demonstrated to estimate global hand position 

and orientation in and out of the image plane, given the hand articulation. The method does 

not scale nicely with the observation model, in other words the posterior probability is 

generated separately for every hand posture and can expand exponentially to consider all 

possible postures. 

Nirei et al. [15] track the hand by maximizing the intersection between the extracted hand 

silhouette region and the projected hand model and minimizing the error between the 

detected optical flow vectors and the predicted optical flow vectors from the model. They 

use two optimization algorithms; first a genetic algorithm (GA), a.k.a. random search, is 

used to quickly approach neighborhood of the best answer, and then simulated annealing 

(SA) is used to reach the local optimum. Simulated annealing is a generic probabilistic meta-

algorithm for the global optimization problem, namely locating a good approximation to 

the global optimum of a given function in a large search space. It was independently 
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presented by S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi in 1983 [102], and by V. Cerny 

in 1985 [103]. The method is an adaptation of the Metropolis-Hastings algorithm, a Monte 

Carlo method to generate sample states of a thermodynamic system, invented by N. 

Metropolis et al in 1953 [104]. The method is shown to provide good estimation of hand 

postures from synthetic images with constant background. 

Lee et al. [16] analyze model based hand tracking using a color marked glove in stereo 

images. They state that the challenges facing posture estimation are high level of articulation 

(DOF), self occlusion and shape deformation. They approximate the finger movement 

using a hand model and provide a comprehensive analysis of the fingers motion constraints. 

Seven characteristic points on the hand are identified of great importance in posture 

estimation, including the finger tips and the thumb MCP and wrist intersection with the 

middle finger extension. They utilize the hand natural constraints and provide a set of static 

(independent) and dynamic (inter-dependent) finger joints constraints. They provide a 

model fitting algorithm based on two algorithms, one for fitting the hand and another for 

fitting the fingers. The hand fitting algorithm calculates a rotation axis passing through the 

wrist as the axis of the highest weighted torque, which is generated from the difference 

between the position of the characteristic points expected and their observed positions 

from the image. The hand is rotated incrementally trying to minimize die torque, while in 

every increment the finger fitting algoridim is used to update the corresponding hand 

posture. The finger fitting algorithm is an inverse kinematics module utilizing the fingers 

natural constraints. 

Guan et al. [17] use multi-view appearance based approach to extract 3D hand still-

postures using multiple cameras. They compare the detection results against the single 

camera approach. Skin color represented by a 2D Gaussian model in normalized r - g color 

space. The hand silhouette is extracted using active contours. Synthetic images of 15 

gestures, distributed over the viewpoint sphere were generated for training, and the 

associated hand configuration was used as a reference. A shape context feature descriptor 

[105] of the hand contour is used for matching. The descriptor is based on counting the 

edge pixels in the 8 surrounding partition of the image at every edge point, normalizing the 

number of pixels to add to one, threshold into binary [0,1] value and then encode die result 

into an 8-bit number in the range [0, 256]. The histogram of all encoded numbers provides 
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a shape descriptor, which is translation and scale invariant. The method of nearest-neighbor 

is used to select the recognized hand posture. They compare the success rate of retrieving 

the correct hand posture from the best N matches. The success rate was found to be 

significantly higher using two cameras than using each camera separately. 

Kolsch et al. [18], [19], [20] use a flock of pyramidal KLT features to track the hand in 

variant background and lighting conditions. The candidate features (flock of features) are 

continuously updated using location and color constraints to maintain hand tracking. A 

customized posture recognition based on the Viola-Jones method is used to recognize 5 

gestures. The method is made scale invariant by resizing the hand bounding box to a 

predefined size. The method reported to perform in real-time speed and provide good 

recognition rate. 

Yeasin et al. [21] analyze oscillatory dynamic hand gestures. The gestures are conformed by 

directional hand motions (no articulation) and are segmented at points of directional 

change. The gestures are modeled using state diagrams, where the states are the hand 

motion direction (start, left, right, up, down). A temporal segmentation of image sequences, 

based on Laplacian of Gaussian operator of image sequences in the temporal direction, is 

performed followed by dominant motion estimation, the resulting motion segments are 

then used to travel the corresponding gesture state machine. 

Gui et al. [36] combine energy based segmentation, i.e. segmentation based on static image 

data, with dynamic posture priors derived from observing the behavior of the segmented 

object over time, to segment the hand in clutter and noisy backgrounds. Their work follows 

the school of active contours by adding dynamical statistical shape priors [37]. They show 

that utilizing the behavioral priors can improve the hand segmentation even under 

temporary clutter. The assumption is that the leaned timely shape variation is recurring 

during tracking, i.e. behavioral priors are utilized to assert proper segmentation in the case 

clutter. While behavioral priors are evident in the case of walking or running (gait) motions, 

we find less evidence of such recurrence in the case of hand motion and/or articulation. 

Brethes et al. [63] use the condensation framework to track human faces and hand gestures. 

The gestures consist of a predefined posture set moving in a plane parallel to the camera 
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plane. Multiple cues, such as hand posture silhouettes were fused with the skin color filters 

to provide more robust tracking 

Bryll et al. [99] use an agent-based approach to track a two hands trajectory in 

conversations gesticulation experiments, particularly under trajectory intersection. The 

agents are arranged in a hierarchical architecture, where low level blobs detected are 

assigned an agent each and labeling agents are responsible for keeping track of trajectory of 

the blobs. While this is simple task in the case of non-intersecting blobs, it may cause some 

ambiguity in the case when blobs join and then separate when the hands trajectories 

intersect. The advantage of the agent-based approach is that it provides an abstraction tool 

to solving complex tracking and sensor fusion problems. 

Table 1: Summary of Surveyed Hand Tracking Algorithms 

Index 

[1] 

[3] 

[4][5] 

[6] 

[7] 

[9][10] 

Color 
Space 

YUV 

YUV 

RGB 

RGB 

N/A-
edges 

YUV 

Algorithm 

CamShift(cf.[2]) 

CamShift + Kalman filter 

Background Subtraction 

Motion and skin color 

NM-Simplex and 
Condensation (cf. [56]) 

Condensation and HMM 

Output 

Hand blob centroid (x, y) 

Hand centroid and ROI 

Hand segment and 
silhouette 

Dynamic view-based 
object model 

20-DOF articulated hand 

2D location and hand 
silhouette 

Setting 

Single Camera, 
Planar Movement, 

Marker-less 

Single Camera, 
2D, Marker-less, 
real-time 25 fps 

Single Camera, 2D 
hand projection, 

i.e. shade 

Single Camera, 
2D, Multiple Views, 

Marker-less, 
predefined objects 

Single Camera, 
CyberGlove 

Reference Table, 
Nonlinear 

optimization, 
Observation 

Model, Marker-less 

Single Camera, 
Predefined 

viewpoint (front), 
marker-less 
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[11][12] 

[14] 

[16] 

[17] 

[19] 

[36] 

[63] 

Gray 

RGB* 

HSV 

RGB* 

RGB+ 

Grey 

RGB 

Physics-based 
deformable models (cf. 

[57]) 

Hierarchical Bayesian 
Filter 

Proprietary model fitting 

Maximum a posteriori -
Table lookup 

Flock of features 

Active Contour + 
Dynamic Shape Priors 

Condensation + Multiple 
cues 

20-DOF articulated hand 

Partial estimation of 26-
DOF articulated hand 

and pose 

27-DOF articulated hand 

Best N matches from 
table lookup 

Hand centroid and ROI 

Segmented Hand 

ROI, Motion direction, 
classified Posture 

Single Camera, 
Marker-less, 3D 

motion 

Single Camera, 
Marker-less, 3D 

motion 

Stereo 

Colored Markers 

Multiple Camera, 
Static Postures, 

Synthetic postures 
as reference, 

shape context as 
search index 

Single Camera, 
Predefined 

viewpoint, 2D 
postures, 

unconstrained 
background 

Single Camera, 
predefined hand 
posture priors, 

Marker-less 

Single Camera, 
Predefines 

viewpoint, Marker-
less 

* 2D Gaussian model in r-g space 
+ Dynamically acquired histogram 

Table 1 provides a summary of the surveyed hand tracking technology. It illustrates that 

the vision based hand tracking papers have been mosdy concerned with global position in 

2D plane trajectories. Some attempts to include a simplified articulation falls short from 

providing complete hand articulation estimation. Our interest is primarily focused on hand 

tracking resulting in resolving hand orientation and complete articulation, including finger 

joints. We are also interested in single camera hand tracking and multiple camera sensor 

fusion, but not stereoscopic cameras. 

Researchers investigating hand posture estimation using a single camera use a non-linear 

search in the parameter space directed by an observation model as its objective function. 
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The characteristic function is usually not convex and the search requires multiple hypothesis [24], 

[7]; or they restrict the search in a subset of die posture attribute space [14]. The nonlinear 

optimization problem is usually processing intensive and too slow for real time applications. 

The search space can be restricted by detecting the fingertips but it requires the use of 

colored markers [16]. 

2.2. Gesture Recognition 
Examining the work related to gesture recognition, Xu [41] uses a Back-Propagation 

Neural Network to recognize hand gestures in a virtual environment for a Self-Propelled 

Gun armed vehicle driver training. Hand posture is acquired using the CyberGlove and a 

posture attribute vector is constituted by 18 joint angles. The gestures are in fact static 

postures related to starting the vehicle, steering, changing gears, and chandelling 

instruments. The BP-NN has 18 inputs and 15 outputs, mapped on 15 gestures, and an 

optimal number of neurons in the hidden layer were determined experimentally to be 40. 

Data from five different operators was collected and recognition rate was 98%, but dropped 

to 92% when tried with alien operators. 

Liu and Fujimura [48] use a depth camera to recognize hand gestures; they assume a single 

user and segment the hand based on aspect ratio. The hand gesture is loosely used to mean 

a fixed hand posture with a trajectory in 3D. Hand orientation is based on template 

matching with reference images obtained at different orientation angles. Wachs et al. ([49], 

[50]) use Fuzzy C-Means clustering (FCM) to recognize hand postures and control a robot 

motion. Posture attributes are directly extracted from 2D images using edge detection; 

horizontal and vertical image sub-division was used to generate an attribute vector for 

posture recognition. Min et al. [51] introduce the use of Hidden Markov Models (HMM) to 

recognize gestures. Bretzner el al. [52] use multi-scale color features to extract elliptical 

blobs representing the palm, the 5 fingers, and finger tips at a hierarchical, coarse-to-fine, 

hand model. They also use randomization of the training data to build their model, but they 

use randomization on the training data as well as the observed data, which could slow down 

recognition. Nickel and Stiefelhagen [53] use stereoscopic range information and skin color 

for hand and head segmentation. They also use an HMM to model the three different 

phases of the pointing gesture, namely Begin, Hold, and End. A pointing gesture is detected 
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when the three models are triggered consecutively in order. Marcel et al. [54] use an input-

output HMM architecture [55] to recognize hand gestures in one of two classes of gestures, 

namely deictic and symbolic; it can be used to propagate, backward in time, targets in a 

discrete space of states using a set of input and output state neural networks. 

Starner et al. [62] use HMM to recognize 40 words of the American sign language, 

including pronouns, verbs, nouns, and adjectives. The hands are extracted using region 

growing of skin color. A sixteen-element feature vector is constructed from each hand's x 

and y position, change in x and y between frames, area (in pixels), angle of axis of least 

inertia (found by the first eigenvector of the blob) [5], length of this eigenvector, and 

eccentricity of bounding ellipse. A 4 state HMM with skip was used to model all the sign 

words. Recognition rate of 91% for second person view and 96% for first person view was 

achieved. Note that the hand posture details was de-emphasized as studies of sign readers 

suggest that little hand detail is required for recognition. 

Malima et al. [66] detect hand gestures in the form of a count 1 to 5 by detecting the largest 

skin color in the image and the distant fingertips. A circle with radius of a percentage of the 

finger lengths is drawn and the number of skin colored regions intersecting the circle radius 

is used to recognize the gesture (1, 2... 5) 

Kobayashi and Haruyama [95] use Partly-Hidden Markov Model (PHMM) to recognize six 

hand gestures from the Japanese sign language. They argue that in HMM the relationship 

between the output sequence and the hidden state is probabilistic, i.e. the same state may be 

associated to a variety of output sequences; on one hand this makes the model simple 

because it generalizes based on the training data, but on the other hand the process 

modeled by HMM is restricted to a piecewise stationary process, which does not suit the 

gesture recognition. In a PHMM the state is divided into two types: first the state associated 

with previous observations, and it is assumed probabilistic, second the state associated with 

the current observation, and it is assumed unique (determined). 

Howell el al. [38] use a time-delay radial basis function network (TDRBF) to recognize the 

different phases (pre-, mid-, post-) of two gestures (get, return) using 3D trajectory data 

acquired using magnetic sensors from different subjects seeking (getting) targets in 3D and 

returning back. The RBF is a two-layer hybrid learning network (a.k.a. a special kind of 
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neural networks). It combines a supervised layer from the hidden to the output units with 

an unsupervised layer from the input to the hidden units. The advantage of RBF, over a 

Multi-layer Perceptron (MLP), is that it is supported by a well developed mathematical 

theory; it provides rapid computation and robust generalization, nonlinear decision 

boundary - good functional approximation, and low false-positive classification rates. 

Kahol et al. [116] use an event-driven-coupled HMM (CHMM) to recognize whole body 

mannerism gestures. A 23-state segmental force HMM, where segmental force is the body 

segment (whole body, lower body, upper body, left leg, etc.) acceleration times its mass. 

Segment events are triggered as local minimum in the segmental force. A 14-state joint-

HMM where events are triggered when a specific joint angle is stabilized. Each of the states 

of the segment-HMM is coupled with all of the states in the joint-HMM, based on the work 

ofZhongetal . [117]. 

Table 2: Summary of Surveyed Gesture Recognition Algorithms 

Index 
[41] 
[481 
[49P01 
[621 
[951 
[381 
[116] 

Algorithm 
BP-NN 
Template Matching 
FCM 
HMM 
PHMM 
TDRBF 
CHMM 

S/D 
S 
S* 
S 
D 
D 
D 
D 

Num Gestures 
15 
10 
13 
40 
6 
2 
26 

Rec. Rate 
98% 
95% 
98% 
91%-96% 
98.8%-93.5% 
100%-94% 
90% 

* Static hand posture plus a trajectory in 3D space 

2.3. Context Awareness 

The interest in ubiquitous computing started in the early 90s by Mark Weiser's vision [75] 

of the computers of the 21st century, in which he stated that the current computing 

machines "cannot truly make computing an integral, invisible part of the way people live their lives." He 

also hinted to context-aware computing by stating that "the arcane aura that surrounds personal 

computers is not just a 'user interface' problem-" hinting that the surrounding environment must 

play a bigger role in the human-computer interface process. He set the goal of the new 

generation of computing devices as: "integrating the computers seamlessly into the world at large" by 

filling the world with "invisible widgets". A similar goal with set by Coen [77] in 1998 "to bring 

computers into the real physical world and to allow people to interact with them in a more natural way: by 

talking by moving pointing and gesturing" Gesture-enabled user interfaces aim at providing an 
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alternative mode for human-computer interaction (HCI) that makes human-computer 

interaction more natural and intuitive to humans, forcing computer systems to bridge the 

gap, between human-to-human interaction and human-to-computer interaction, by freeing 

the user from keying in commands using a keyboard or using a standard graphical user 

interface with a pointing device. The notion of context in ubiquitous computing has a dual 

origin [67]. On the one hand, it is a technical notion, one that offers system developers new 

ways to conceptualize human action and the relationship between that action and 

computational systems to support it. On the other hand, it is also a notion drawn from 

social science, drawing analytic attention to certain aspects of social settings. Positivist (or 

Pragmatic) theories derive from the rational, empirical, scientific tradition. By analogy with 

the way that physical scientific theories seek to reduce complex observable phenomena to 

underlying idealized mathematical descriptions, positivist theories seek to reduce social 

phenomena to essences or simplified models that capture underlying patterns. Accordingly, 

positivist theories seek objective, independent descriptions of social phenomena, abstracting 

from the detail of particular occasions or settings, often in favor of broad statistical trends 

and idealized models. Positivist theories are often (although not always) quantitative or 

mathematical in nature. Phenomenological theories are subjective and qualitative in orientation. 

By "subjective" is meant that they regard social facts as having no objective reality beyond 

the ability of individuals and groups to recognize and orient towards them; in this view, 

social facts are emergent properties of interactions, not pre-given or absolute but 

negotiated, contested and subject to continual processes of interpretation and 

reinterpretation. The distinction between positivist and phenomenological theories is 

relevant because engineering approaches inherit a positivist tradition, while many 

approaches to social analysis relevant to HCI design, including the ethno methodological 

position practiced by Suchman [68] and cited by Weiser [76], are related to a 

phenomenological legacy. 

We can think of the positivist account of context as defining the problem as one of 

representation. Software systems are representational, so a concern with context naturally 

leads to a concern with how context can be encoded and represented. In particular, four 

assumptions seem to underlie the notion of "context" as it operates in these systems. Firstly, 

context is a form of information and hence encoded and represented much as other information 
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is encoded and represented in software systems. Secondly, context is delineable. We can, for 

some set of applications or application requirements, define in advance what counts as the context 

of activities that the application supports. Thirdly, context is stable (static), invariant and non­

volatile. Fourthly, and most importantly, context and activity are separable. Activity happens 

"within" a context. The context describes features of the environment within which the 

activity takes place, but which are separate from the activity itself. 

An alternative view takes a different stance of each of the four assumptions mentioned 

above [107], [91]: Firstly, rather than considering context to be information, it instead 

argues that contextuality is a relational property that holds between objects and/ or activities. It is not 

simply the case that something is or is not context; rather, it may or may not be contextually 

relevant to some particular activity. Secondly, rather than considering that context can be 

delineated and defined in advance, the alternative view argues that the scope of contextual 

features is defined dynamically, in other words context can be negotiated and inferred. Thirdly, 

rather than considering that context is stable, it instead argues that context is an emergent 

phenomenon particular to each occasion of activity or action. Context is an occasioned 

property, relevant to particular settings, particular instances of action and particular parties 

to that action. Fourthly, rather than taking context and content to be two separable entities, 

it instead argues that context arises from the activity. Context does not exist by itself, but is 

actively produced, maintained and enacted in the course of the activity at hand. 

From a system designer point of view, it is inevitable that we must define the classes and 

objects that are modeled by our system, these objects include the hand model, which is 

required for modeling the hand kinematics, the dynamic gesture model, which is used in 

gesture training and recognition. We also acknowledge the existence of contextuality and to 

cope with such an ambiguous concept we utilize a stochastic model for posture estimation 

and gesture recognition and an agent-based model for gesture interpretation. 

For a context-aware perceptual user interface, it is inevitable that the trained gesture set 

must be pre-defined, i.e. static, but the active gesture set at any time may be variant based 

on external context. In other words, even though the space of trained gestures may be pre­

defined and statically bounded, the canonical probability of each gesture can be correlated 

with aspects of the surrounding context, such as people and objects in the scene. 
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Schilit et al. [69] introduced the term context-aware computing for the first time in 1994. 

They use the PARCTAB platform to investigate context-aware computing applications. 

PARCTAB is a small hand held device which uses an infrared-based cellular network for 

communication. The Tab acts as a graphics display terminal and most applications run on 

remote servers. It has three buttons and a touch-sensitive screen for input, and 128x64 

pixels screen and a speaker for output. A room becomes a cell in the infrared network when 

it is wired by an infrared transceiver. In the context of mobile distributed computing, it is 

emphasized that a limited amount of information covering a person's proximate 

environment is very important, since "the interesting part of the world around us is what we 

can see, hear, and touch." They highlight three aspects of context useful in context-aware 

computing, namely location, people, and computing resources in proximity. Location plays 

the major role in context with proximity is the only measure used to infer context. They 

present two modes of context use in applications, a context-based browsing mode, and a 

proactive context-triggered action mode. 

Strang and Linnhoff-Popien [70] provide a comprehensive survey for context modeling in 

ubiquitous computing applications and evaluate different context-modeling techniques 

based on the following qualitative measures: 

• The ability for distributed composition, including the ability for partial validation of 

context information 

• Support for quality of context information, including the ability to handle incomplete 

and ambiguous context information and the required level of formality of the 

context specifications 

• Applicability to existing infrastructures, including availability of tools and software 

development trends. 

Modeling approaches studied include Attribute-value pair, Markup schemes such as XML 

based Resource Description Framework and schemas (RDFs), Graphical Models such as 

Unified Modeling Language (UML), Object Oriented (OO) models, Logic Based models, 

and Ontology based models. They conclude that Ontology and Object Oriented models are 

best candidates for context modeling. Markup schemes (RDFs) run a second best but is 

missing handling the quality of context info and incompleteness and/or ambiguity of the 

data. 
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Strang and Linnhoff-Popien [71] motivate the need for a context level interoperability 

between services in a distributed system. They provide a brief history of distributed systems 

level interoperability, which started in the 1980's by the platform interoperability 

represented by the concept of Remote Procedure Call (RPC). An RPC framework allows a 

process to cause process to run on a different system/platform, the calling process 

providing the input parameters and receiving the results in the form of synchronous or 

asynchronous messages. Before and during the usage of a service, the relevance of context 

information is very important. The set of relevant entities is changing rapidly. In contrast, 

the set of the specific aspects determining the relevance of an entity is fixed. Thus, the 

relevant aspects have to be specified a priori in the system, and the relevant entities have to 

be evaluated dynamically at run time. The state of relevant entities is examined periodically 

to evaluate the current context information. For contextual service interoperability the 

terms compatibility and substitutability are defined. Compatibility is a common 

understanding of all relevant aspects, e.g. Ontology. Substitutability is defined as having an 

identical set of relevant aspects. 

Dey et al. [73] provide a conceptual framework and a rapid prototyping toolkit for context-

aware applications. They use the widget model in graphical user interface (GUI) design to 

hide the complexity of acquiring and modeling context in context-aware applications. Dey 

[74] defines context as any information that can be used to characterize the situation of an 

entity, where an entity is a person, place, or object that is considered relevant to the 

interaction between a user and an application, including the user and applications 

themselves. A system is context-aware if it uses context to provide relevant information 

and/or services to the user, where relevancy depends on the user's task. They developed a 

Context Toolkit (CTK) for rapid prototyping of context aware applications. The context 

toolkit provides four levels of abstraction that the context-aware system developer can use 

to isolate the details of context acquisition and aggregation from the core of the application. 

These concepts are namely the context widget, context interpreter, context server 

aggregator, and a context enactor. The Widget is the lowest level of abstraction, which is 

responsible of a specific aspect of context in a particular format, e.g. room temperature in 

degrees Celsius. It encapsulates the details of how the context is acquired from the 

applications that uses them. Context widgets differ from the graphical user interface widgets 
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in that they do not belong to a particular operating system or computer, but exist as a 

persistent process in a distributed system. Context interpreters use historical data of the 

context widget to enable detection of usage patterns and allow context learning. The 

interpreter can be attached to one or more widgets and provides information about a 

specific aspect of context. The context server, or aggregator, is yet another level of 

abstraction, where the output of one or more interpreters is collected to generate the 

context relevant to a specific (physical/abstract) entity. Aggregation is required in 

distributed systems to gather the information about a specific entity across platforms, 

systems, and databases. A context enactor infers an event or a situation from the status of 

one or more entities. It triggers the system to automatically respond to the relevant events 

happening in the environment. 

Meyer et al. [78] present the special requirements for context-aware computing systems 

used at home in contrast to similar systems used at work; they explain that devices used at 

home have to be cheaper, easier to use, safer, more supportive, entertaining, relaxing, 

enjoyable, and pleasant. A special feature about homes is also privacy which is paramount 

there. Therefore, context-aware devices used at homes must pass rigorous test for usability, 

usefulness, social acceptance, privacy protection, low cost, and zero administration. They 

also classified the system design modules of context-aware systems, including the 

instrumentation (hardware) interface, the middleware (hardware abstraction, context 

management, and privacy management), and the application. They also present a survey of 

trends of instrumentation for ubiquitous computing, including: 

• The Tele-cooperation Office (TecO) [79] of the University of Karlsruhe. It has 

developed Smart-Its, small-scale embedded devices equipped with sensing, 

processing, and communication capabilities which can be attached to everyday 

objects to let them establish dynamic digital relationships with their environment and 

users, the best known of which is the MediaCup. 

• The MOTES [80], which have been developed at the University of Berkeley as part 

of the Smart Dust project, with the final goal being to make then as small as a grain of 

sand [81]. 

• The Cricket Indoor Location System [82], developed at MIT. It uses a combination of 

RF and ultrasound technologies. Wall and ceiling-mounted beacons are spread through 
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buildings, publishing information on an RF signal and concurrendy sending an 

ultrasonic pulse. The mobile receivers of these signals can determine their positions 

due to their different propagation times. 

• The AT&T Cambridge Bat location sensor system [83] uses the same technologies, 

though their mobile bats send ultrasound pulses instead of receiving. 

They also present more vertically integrated systems research including: 

• The MIT tangible media group lead by Hiroshi Ishii [84]. 

• Saul Greenberg from the University of Calgary [85] developed physical widgets, 

which he called Phidgets, as building blocks to help developers to construct physical 

user interfaces. 

• Video camera based systems to track people moving around in a room have been 

developed by the Vision Interfaces Group at MIT [86]. 

• Microsoft Easy-Living project [87] research revealed that users prefer to 

communicate with their environment through gestures and speech [88] which could 

be realized by using the cameras in combination with microphones. 
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3. Hand Tracking 
Dynamic gesture recognition applications require continuous provision of hand postures at 

high data rate. Hand postures are completely defined by the global or external geometric 

parameters, namely the hand's position and orientation, and the local or intrinsic 

parameters, namely the finger joint angles. The posture is visualized using a kinematics hand 

model defining the link and joint structure of the hand. Researchers have used models of 

variant degrees of freedom ranging from 19 [23] to 57 [17] DOF, but typically 26~27 DOF 

is mostly used in the literature. 

Traditionally hand tracking is provided by motion capture instruments such as 

exoskeletons and data gloves [22]. Data gloves are capable of accurately recording finger 

joint motions, in real time via flex sensors in a tightly fitting glove. Although the data glove 

is very precise hand posture estimation device, it is very expensive for most commercial 

applications. Moreover, it is cumbersome to wear and potentially obtrusive. Because of its 

fixed setting, the data glove does not adapt to the size of the hand, resulting in variant 

posture data across different users, which is particularly noticeable in multiple user gesture 

recognition applications. Another fundamental problem with the data glove is that, because 

it uses forward kinematics to visualize the hand posture, it is error prone to detect finger 

tips touching one another; whereas inverse kinematics start from the end-effector position, 

which facilitates neighborhood detection. 

Research in vision-based hand tracking started in the mid nineties and has been gaining 

interest ever since; motivated by the cheaper camera peripherals and the increased 

capabilities in terms of memory storage and processing power of modern computers. The 

quest for vision-based hand tracking took diverse approaches to the problem, but the main 

approaches can categorized as appearance-based and model-based hand tracking [35]. 

Appearance based hand tracking utilizes pattern recognition techniques to classify the 

extracted hand features to one of, usually distinct, hand postures. In other words, 

appearance based hand tracking sacrifices the detailed description of the hand posture in 

favor of direct inference of the posture as a member of a discrete posture set. While it 

provides faster tracking and requires less processing than model-based hand tracking, the 
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approach does not scale nicely with a large posture set. As tracking the dynamics of hand 

postures requires detection of small changes of posture overtime, we realize that the 

appearance based approach is not the best approach for this type of application. Model 

based hand tracking aims at finding the best fit of a hand model to the segmented hand 

image, given some extracted image features. In that sense, it represents a multi-dimensional 

optimization in the posture attributes space, given an optimization function in the form of a 

resemblance or fitting metric. 

The questions we are trying to answer in this part of the dissertation are: 

• Can we use vision-based hand tracking as a substitute for the traditionally data glove? 

• What is the accuracy of the vision-based hand tracking in comparison with the data 

glove? 

• What are the best and worst features to track using vision-based hand tracking? 

• What are the potential advantages and limitations of the vision-based hand tracking 

over the data glove? 

• What are the future directions and challenges to realize a usable vision-based hand 

tracking in an unconstrained environment? 

In the next section, we are trying to answer the above questions. 

3.1. Overview 
The overview of the proposed hand tracking and posture estimation framework is shown 

in Figure 2. First, 2D features are extracted from a single camera. The system can be 

extended to utilize multiple cameras by processing the 2D features from each camera 

separately; we do not require stereoscopic processing. 2D features are processed by the 

2D/3D conversion module, which uses perspective geometry to extract the hand 

orientation in 3D and inverse kinematics to detect possible finger postures, and outputs 

multiple possible postures. The tracking algorithm filters the posture hypotheses provided 

by the 2D/3D module using visual cues in the form of proximity between the projected 

fingertips and detected ones, detected hand silhouette and hand color, as well as the 

deviation of the posture hypothesis from expected. Posture expectation is derived from a 

historical repository of estimated postures and an optional canonical probability of posture. 
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Figure 2: System Overview - Hand Tracking Simulation 

The 2D/3D converter module utilizes a 26 degrees-of-freedom (26-DOF) hand model 

used primarily for forward and inverse kinematics. We set to build a hand tracking system 

prototype, including a colored marker glove (Figure 3). 

Figure 3: Marker Glove 

The marker glove contains a palm marker, which is used to estimate the hand position and 

orientation in 3D, and fingertip markers, which are used for finger posture estimation. The 

process of building the hand tracking system went through three phases, namely graphic 

simulation, single camera, and multiple camera tracking. 

This chapter is organized as follows: First, we explain the tracking simulation phase, 

including detailed explanation of the main modules of the tracking system, namely 2D/3D, 

the hand model, posture prediction, posture estimation, and inverse kinematics modules. 

We also compare the simulation results with the CyberGlove, and use the comparison to 

assess the accuracy of the system in estimating the different posture attributes. Then we 

31 



Chapter 3 Hand Tracking 

explain the single camera phase, where we extend the posture estimation module to include 

an observation model providing a probabilistic measure off the posture hypothesis, given 

the acquired image. We also explain how the framework can be extended to accommodate 

multiple cameras. Finally, we show the results of calibrating our model to a Cyber Glove 

and the corresponding error models. 

3.2. Tracking Simulation 
To be able to compare the posture estimated using vision-based hand tracking to postures 

detected using the CyberGlove, we used real-time graphics simulation. The input to the 

simulator was the 2D projection of the hand model's fingertips, and the corners of a 

hypothetical 2 cm x 2 cm square centered at the hand model's root. The CyberGlove was 

used to drive the intrinsic posture attributes (20 DOF in total) of the 26 DOF hand model. 

The extrinsic 6 DOF representing the hand position and orientation were controlled by 

changing the camera viewpoint in the graphics scene by panning, zooming and scaling the 

model. 

The minimum requirements of 2D features, required by the vision-based tracker to be able 

to provide a tangible estimate of the hand posture, are a reference to the palm and the 

fingertips. The palm reference facilitates the estimation of the extrinsic posture attributes 

and the reference to the fingertips facilitates the estimation of the intrinsic posture 

attributes. 

The minimum requirements of image features we are proposing are: 

• The projection of three non-co-linear points on the palm and their corresponding 

location in 3D with respect to the hand model 

• The projection of the finger tips, or equivalent points on the distal phalanx, and their 

corresponding location on the hand model 

Both of the above features were detected from the CyberGlove data. The overview of the 

simulated 3D hand tracking system is shown in Figure 4. 
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Figure 4: System Overview - Hand Tracking Simulation 

The modules, which can be reused in vision based hand tracking as shown in Figure 2, are 

shown in solid lines, whereas the simulation specific modules are shaded in light color and 

dashed lines. The system configuration parameters include the articulated hand model, which may 

vary from one user to another, and the canonical probability distribution of the posture attributes, 

which may vary from one application to another. We consider all external parameters of the 

system as part of the context, which can be defined explicidy or recognized automatically by 

other subsystems. These parameters are manages by a context-management middleware 

layer, as will be explained later. These context parameters are emphasized in Figure 4 by 

data chunk blocks, which can be loaded dynamically using a special software loader and can 

be written in special format, e.g. XML. Context information may vary based on external 

circumstances of the system, for example the hand model may vary based on the system 

operator; it may be specific for each user or loosely dependent on its attributed such as age 

and/or gender. On the same token, the probability distribution of the hand posture may be 

affected by the setting and the application utilizing the hand posture. The processing 

modules are: the 2D-to-3D (2D/3D) transformation, the posture estimation and the 

posture prediction modules. 

The 2D/3D module iterates feasible hand postures, given the simulated (image) features, 

by using perspective projection and inverse kinematics constraints. The posture estimation 

module provides a probabilistic model to estimate the hand posture from the given posture 
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hypothesis, given the previous estimated postures. Posture prediction is a software 

interface, protected by a mutual exclusion (MUTEX), which can be utilized by the tracking 

system and other systems acquiring the estimated hand postures, such as gesture 

recognition modules; it estimates the current hand posture from the previous postures. 

The CyberGlove is also used as a reference for vision-based hand tracking. Both the 

reference postures and the derived simulated 2D features are derived from the same source 

and are perfecdy synchronized. The difference between the two posture-acquisition sources 

is used to validate the accuracy of vision-based posture estimation. Moreover, it is used to 

provide the stimulus for the tracking simulation. Figure 5 shows a visualization of the hand 

model in an Open Scene Graph; the viewpoint can be varied in the scene using the mouse, 

and fingertip projection is calculated using the perspective projection. The projected 

features are then used by the tracking system to estimate the hand posture; the difference 

between the CyberGlove measurement and the estimated posture is recorded and analyzed. 

Figure 5: Hand Model Visualization in Open Scene Graph 

In the following sections we will give a detailed description of the hand model, the 2D/3D 

transformation module, the posture prediction and the posture estimation modules. 

3.2.1. Hand Model 
The human hand is a masterpiece of mechanical complexity, able to perform fine motor 

manipulations and powerful work alike (cf. [25]). Designing an animate-able human hand 

model that features the abilities of the archetype created by Nature requires a great deal of 

anatomical detail. Model based hand tracking utilize an articulated hand model to fit 
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estimated postures to the acquired hand image, whereas hand animation utilize additional 

models for muscle and skin deformation to provide a realistic animation. The anatomy of 

the hand is shown in Figure 6. 

The human hand skeleton consists of 27 bones, divided to three groups: carpals — are eight 

wrist bones, metacarpals — are five palm bones, and phalanges — are fourteen finger bones. 

Joints connecting carpals together and carpals to metacarpals have limited freedom of 

movements and thus are usually ignored in modeling or animating the human hand. Joints 

connecting the finger phalanges contribute the most to finger motion. Hand models of 26 

~ 27 DOF provide realistic animation of the human hand, as we acquired from the 

literature survey. Our 26 DOF hand model provides forward and inverse kinematics 

transformation utilities, which are used extensively by the 2D/3D features to posture 

transformation and the 3D/2D posture projection on the image plane. 

Figure 6: Anatomy of The Human Hand 

Using a hierarchy of coordinate systems, we can model the degrees-of-freedom for each 

joint. The only joints that we ignore are the joints between the individual wrist bones (cf. 

Figure 6). This is justified, since their contribution to the overall movement is negligible. 

The Proximal Interphalangial joint (PIP) and the Distal Interphalangial joint (DIP) joints of 

the fingers and the Interphalangial joint (IP) of the thumb have one DOF each for flexion / 
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extension, while the Metacarpophalangeal joint (MCP) joints of the fingers have a second 

DOF for adduction (towards the middle finger) and abduction (away from the middle 

finger) — see Figure 7 for finger motion terminology. In addition, depending on the current 

amount of flexion or extension, the finger MCP joints exhibit some rotation around their 

long symmetry axis, but we ignore this minute motion. Likewise, the Carpometacarpal joint 

(CMC) joint of the thumb is sometimes modeled with two or three degrees of freedom, 

thus the 26/27 DOF in some hand models. 

Figure 7: Fingers Motion Terminology 

Our hand model (cf. Figure 8) consists of five kinematics chains, modeling the five fingers. 

All fingers, except for the thumb, consist of 4 links representing the fingers' bones; the first 

link, the metacarpal phalanx, is fixed to the root and is part of the palm; the second link, the 

proximal phalanx, is connected to the metacarpal by 2-DOF joint, which is modeled by two 

1-DOF revolute joints connected by an abstract zero-length link for flexion and abduction 

movements. The order of the two joints is not arbitrary, as we will show later when we 

solve the finger inverse kinematics. The flexion joint supersedes the abduction joint for 

more realistic modeling of the finger movement. The outer most two links, the middle and 

distal phalanxes, are connected to the chain through a 1-DOF revolute joint providing 

flexion movement. The thumb has only three links; the first link, the first metacarpal, is 

connected to the root by 2-DOF CMC joint that we model using two 1-DOF revolute 
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joints, for opposition/antiposition and radial abduction movements respectively, which are 

connected to each other by an abstract zero-length link. The other two links, namely the 

proximal and distal phalanxes, are connected to the chain through 1-DOF revolute joint. 

Figure 8: 26 DOF Articulated Hand Model 

Modeling the Finger Constraints 

Constraints play a major role in vision based hand tracking. It is found that even though 

the hand fingers possess 4 degrees-of-freedom, they are practically closer the 3-DOF than 

4-DOF due to physical constraints and joints correlation. Kuch [58] divided the finger 

constraints into two main categories: static and dynamic constraints. 

Table 3: Finger Constraints (cf. [35]) 

Static Constraints 
Finger 

0 < 0MCP < 90° 

-15°<0Abd<15° 

Thumb 

Dynamic Constraints 

0PIP = 3/2 0DIP 

0MCP = Vi 0PIP 

0IP = 0MCP 

0CMC = 1 / 3 0MCP 

0Abd = Vi 0MCP 
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Static constraints are constant and represent the absolute physical limits of the finger joints. 

Dynamic constraints are dynamically imposed depending on other joint angles, and 

represent inter dependency between the finger joints. Table 3 shows the static and dynamic 

constraints proposed by Kuch. 

Experimental measurements performed by Burdea et al. [59] showed that the general 

coupling between ®pn> and ®Dn, can be represented as a quadratic function — equation (1), 

where a, b, and c are constants evaluated by fitting equation (1) to the sampling data.. 

®DIP = a - b O P I P + c e p i P
2 (1) 

Other researchers (e.g. [27], [28]) use the approximation ®DIP = 2/3 ®pn, to reduce the 

finger IK problem complexity from 4-DOF to 3-DOF allowing the IK problem to be 

properly constrained using the finger end-effector. Others, (e.g. [31]) find the ®DIP = 2/3 

®PIP constraint too restrictive for intricate control of the hand, they prefer to use an 

acquired domain of possible hand postures using a data glove or a motion capture device. 

Lee and Kunii [16] introduced a set of constraints when they tried to track a human hand 

using color marker and stereo camera. Firstly the four fingers (except the thumb) are planar 

manipulators with the exception of the MCP joint. Secondly, the joint angles of the PIP and 

DIP joints have dependency represented by ®DIP = 2/3 ®PIP. Thirdly, the joint angle limits 

of the MCP joints depend on those of the neighboring fingers according to equation (2), 

where dyMax, dyMin are the dynamic and static bounds of the joint angles, respectively. 

dyMax(@MCP|index) = min l © ^ ^ . ^ + 25, stMax(©MCP|indcx)} 
dyMin(@MCP|indJ = max {®MCp|middie - 54, stMin(©MCP|indJ} 
dyMax(®MCP|middl£) = min { © M C F , ^ + 54, ®MCP|ring + 20, stMax(©MCP|middJ} 
dyMin(©MCP|middla) = max { © M C P , ^ - 25, ©McP|ri„g - 45, slMin(@MCP|middJ} 
dyMax(©MCP|ring) = min { ©MCP|middle + 45, ©Mcp|pinky + 48, stMax(@MCP|ring)} 
dyMin(©MCP|ring) = max { ©MCp|middie - 20, © H C P ^ - 44, stMin(@MCP|ring)} 
dyMax(©MCP|pinky) = min {©MCP|ring + 44, stMax(@MCP|pinky)} 
dyMin(©MCP|pinky) = max {©MCP|ring - 48, stMin(@MCP|pinky)} 

Fourthly, the middle finger displays limited abduction and adduction movements. Finally, 

the finger abduction bounds are modeled according to equation (3). 

dyMax(®Abd) = k(®MCP) stMax(@Abd), 

k=( l - l / s tMax(@ M C P ) )© M C P ^ 

Wu et al. [56] use principal component analysis (PCA) to capture the correlation between 

finger joints from a large sample set, assumed to cover all possible postures, acquired using 
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a CyberGlove. A parameter space subset of R7 was found to cover 95% of the hand 

postures in the posture set. Moreover, using a set of 28 basis configurations, they found that 

natural hand articulation lies largely in the linear manifolds spanned by any two basis 

configurations. Same results were also confirmed by Stenger [14]. 

Figure 9 shows a pictorial illustration of the finger end-effector positions derived by 

spanning the finger's static constraints. 

(a) (b) 

Figure 9: End-Effector Positions, (a) fingers, (b) thumb 

Figure 9(a) shows the fingers' end-effector positions produced by spanning the MCP, PIP 

and DIP joint angle intervals at 0.1 radians granularity. The finger abduction was ignored 

for clarity purposes, but will be shown later in the inverse kinematics section. Figure 9 (b) 

shows the thumb end effector positions produced by spanning the CMC, Abduction, MCP 

and IP joint angles intervals at 0.1 radians granularity. 

In summary, the two main approaches to define the domain of all possible hand postures 

are: 

• Acquisition of a large sample of all possible postures and then analyze the above set 

using statistical methods (e.g. PCA), or approximation methods (e.g. curve fitting), or 

map the solution to the closest posture in the sample (e.g. Nearest Neighbor). 
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• Utili2ation of the static and dynamic finger constraints to prune the posture 

attributes space (a.k.a. joint angles). 

We prefer the second approach, because it is user independent. I other words, the static 

and dynamic joint constraints provides a closed form solution for the finger constraints 

problem and are independent from the user, although sometimes specific constraints can be 

added for special users. It can also be quickly adapted for new users, whereas the sampling 

data may vary significantly from one user to another, requiring a significant amount of 

preprocessing. 

Interdependency between the finger joints is better studied at the whole fingers level as 

opposed to the sub-finger level, a.k.a. the fingers-joints level. One of the most important 

attributes that can be used to impose dynamic constraint is the finger curvature. The finger 

curvature is derived from the finger joints and can be used as parameter to model the 

fingers' dynamic constraints. Finger curvature is modeled as the reciprocal of the radius of a 

hypothetical circle having the finger as part of its circumference. This is calculated by 

allowing the finger's MCP, DIP and fingertip to lie on the circumference of the curvature 

circle, as shown in Figure 10. Using the finger curvature, we can model the fingers 

constraints as follows: 

First, the finger curvature is always positive, i.e. the finger is allowed to curve in one 

direction in front of the palm, by eliminating finger joint angles combinations resulting in 

negative curvature (a.k.a. by fitting the curvature circle on the back side of the finger). 

Figure 10: Curvature and tilt calculations 
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Second, we define another finger posture attribute, the finger tilt, which is defined as the 

angle between the curvature circle's tangent at the fingers base (MCP joint) and the line 

passing through the finger's proximal phalanx (cf. Figure 10). It compensates the finger's 

MCP joint by the curvature induced component y — equation (4). 

Tilt = MCP - y (4) 

The curvature induced component y is the angle between the circle tangent at the MCP 

joint and the Metacarpal phalanx, as shown in Figure 10. The tilt attribute can be used to 

model finger constraints by maintaining the range of tilt throughout the finger's posture 

space, resulting in constraining the MCP angle, particularly at high curvature. Figure 11 

shows the finger tilt as it varies with the finger curvature for the attribute region bounded 

by the static constraints; it also shows the effect of pruning based on finger tilts at high 

curvatures. 
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Figure 11: Posture pruning based on tilt 

Third, we use the correlation between the finger's PIP and DIP joints as a range bound by 

two quadratic functions, instead of fixing them to a particular relation. We found the above 

constraint model easier to use and not requiring data acquisition using the data glove. In our 

quest for finger inverse kinematics we used both methods of generating the hand posture 

set, namely acquisition based and parametric modeling based, with comparable results. 

3.2.2. 2D/3D Transformation 
The 26 DOF of the hand model are estimated in two stages (as illustrated in Figure 12). In 

the first stage, the 6 DOF associated with the extrinsic posture attributes (the wrist location 

and orientation in 3D) are solved using the perspective geometry of detected 2D palm 
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marker features. In the second stage, finger postures are determined using inverse 

kinematics (IK) from the detected fingertip positions. 

Marle«rs 
"Palm. Mflrtecr 

Comers 

Posture 
Hypothesis 

Position § '"' 
orientation 

Figure 12: Outline of 2D/3D Conversion 

3.2.2.1. H a n d P o s i t i o n and Orientat ion 

A 2cm x 2cm square marker is used to reference the hand position and orientation in 3D. 

We use a pin hole camera model and perspective geometry in our derivation. Hand position 

and orientation in 3D is formally defined by the camera to the hand model coordinate 

transformation T, which is expressed in homogenous coordinates form by a 4x4 matrix that 

includes an ortho-normal 3x3 rotation matrix R, representing the hand orientation in 3D 

and a translation vector h, representing the hand location with respect to the camera (in the 

camera coordinate system). The camera-to model-transformation is calculated as the 

product of the camera to palm marker transformation Tj, which is calculated on a frame by 

frame basis and the palm marker to hand model transformation 7?, which is considered 

constant and is set to the identity matrix in the simulation. 

T = 
R h 

0 1 
= TJ2 (5) 

42 



Chapter 3 Hand Tracking - IK 
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Figure 13: Camera to Marker Coordinate Transformation 

Knowing the palm marker dimensions and the camera's calibrated focal distance 

(associated with pin-hole model), it is possible to determine the camera to marker 

transformation Tj from the location of the marker corners on the image plane [26]. 

The geometry of the hand marker orientation is illustrated in Figure 14. 

C 

Figure 14: Hand Extrinsic Attribute Calculation 

Hereafter, we use the operator <8> to denote a vector cross product operation, and the 

operator • to denote a vector dot product operation. The unit vectors mA, mB, m c called N-

vectors [26] represent the trace of labels corners A, B, C as seen from the camera viewpoint 

and are given by (6) 
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_, _(xAtyAtf) _(xB,yB,f) _(xc,yc,f) 
mA~~\\ TiT'"2*-! 7$'mc~l Tip (6) 

FA»^» / | |pw*>/|| FcVo/fl 
, where f is the camera focal length and (x, j) is the pixel coordinates of the point with 

respect to the camera principal point. The position of the corners A, B, C in 3D is given by 

CO-
OA = mArA, OA = mBrB, OA = mcrc (7) 

The plane normal N is given by the cross product AB ® BC (8). 

N = AB<8>BC = (rBmB-rAmA)®(rcmc-rBmB) (8) 

The orientation problem is solved by determining the depdis rA, rB, rc using the geometrical 

constraints of the marker, given in equations (9) and (10). 

\\ABf = rA + rl ~2rAr
B(mA • ™B) 

\\BCf =r2
B +r2

c -2rBrc(mB.mc) (9) 

\CAf = rC + Yl ~ 2rCrA (mC * mA ) 

cos(y?) = rBrc(mB • mc) + rArB(mA •mB)-rArc(mA •mc)-r
2

B 

cos(«) = rArB(mA •mB) + rcrA(mc •mA)-rcrB(mc •mB)-rA (10) 

cos(^) = rcrA(mc •mA) + rBrc(mB •mc)-rBrA(mB •mA)-rc
2 

The geometry is simplified using a square marker. In this case AB - BC = L and /? = .90°. 

Substituting in (9) and (10) we get: 

^ = rA + rB ~ 2rArB(mA mms) =rB+ rC ~ 2VC(mB * ™C) (U) 

0 = rBrc(mB •mc) + rArB(mA •mB)- rArc(mA •mc)- r2
B (12) 

Two quadratic equations in rAlr& rc/rB can be obtained; and two possible solutions for rA> 

r^ rc are obtained. We can assume, without loss of generality, that AB is the x-axis, BC is 

the y-axis and B is the origin of the features coordinate system, the feature to camera 

transformation T, is given by equations (13), (14).. 

T-r X Y Z OO' 

0 0 0 1 
h = 00'=rBmB, 

(13) 
£=(rBmB-rAmA)i f _{rcmc-rBmB) £ = X ®Y 

\rKmR-r.m.u 
'B'"B 'A'"A\\ 
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T,= 
~RT 

0 
-RToa 

1 
,R = [x Y z] X Y Z[RR' =R'R = I (14) 

The marker to the hand model root transformation T2 is considered the identity matrix 

during the simulation and is determined during the camera system. 

3.2.2.2. Finger Posture 

The detected fingertip markers are used to determine a linear segment reachable by the 

finger, along the camera view direction through 2D feature on the camera plane, as shown 

in Figure 15. 

-N Feature 2D 
projection point 

Valid Range of 
end-effector 

Image Plane 

Figure 15: Detecting Feasible Fingertip Range 

The camera's intrinsic parameters, namely the focal length and the principal point, are used 

to define the hypothesis of the fingertip position in 3D (end-effector E) from the projected 

marker position. The finger length determines the start and end of the linear segment. 

Features which are not reachable by the finger are rejected as noise. The reachable linear 

segment is sampled at constant lengths to calculate a finger posture hypothesis at each 

sample point using inverse kinematics. Inverse kinematics of the thumb is performed by a 

binary search of a lookup table of all feasible end-effector positions using 0.1 radians 

granulation of the thumb 4-DOF, sorted by the distance of the end-effector to the thumb's 

base. The other fingers IK is solved using an error model analysis technique. 

3.2.2.2.1. Finger Inverse kinematics 

The finger inverse kinematics (IK) is a key part of our vision-based hand tracking 

technique. An efficient and highly accurate finger inverse kinematics is required to achieve 

real-time performance. Generic approaches for solving under constrained inverse 

kinematics usually require an iterative optimization technique and an auxiliary objective 
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function [27]. The kinematics of the fingers is defined by equation (15), where X is the 3D 

end-effector and ® is the 4-DOF vector. 

X = F(@) (15) 

A first order approximation of the derivative of X w.r.t. © is given by the Jacobean matrix 

/ , which is the multidimensional extension to differentiation of a single variable. 

8X = J(@)d® (16) 

Since inverse kinematics are solving for ®, given X, they can be solved iteratively using 

(17), given an initial guess ®0 and converging displacement dX. 

m = J-l(®)8X (17) 

In cases where the Jacobean matrix is not square, a pseudo inverse may be required. The 

disadvantage of the Jacobean method is that response time depends on the initial guess, and 

the Jacobean matrix can be singular for some values of ©. 

A more direct approach is to use a table lookup ([30], [31]), where all possible postures are 

stored together with their associated end-effector vector. The table is searched for the 

nearest N end-effector vectors in the table and the average, of the corresponding postures, 

is provided as a solution. The table lookup method is very efficient but it does not scale well 

as the table granulation is decreased. In this case the table size grows exponentially and the 

search time increases accordingly. 

Some researchers utilize the correlation between the PIP and DIP joint values, particularly 

in the free hand motion case, to reduce the finger DOF from 4 to 3, making the finger IK 

problem properly constrained. Initially, a simple factor (@DIP = 2/3 ©PIP) was used, (e.g. 

[27], [28]). Later, a better approximation of the correlation relationship was expressed as an 

implicit function (18), where d denotes the end-effector distance normalized by the finger 

length. 

^ ^ = 0.23 + 1.73</ + 1.5J2 (18) 
vypiP 

Some researchers (e.g. [28]) isolate the finger abduction from the flexion motion, assuming 

that the fingers are flexing in a plane. This assumption requires that all flexion joint are 

arranged consecutively preceded by the abduction DOF in the articulated chain. Our 
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analysis of the finger articulation (cf. Figure 16) showed that a more realistic joint 

configuration will require that the MCP flexion precede the abduction in the articulated 

chain. 

(a) (b) 

Figure 16: MCP joint order, (a) Flexion, Abduction, (b) Abduction, Flexion 

Figure 16(a) shows the case when abduction follows the MCP joint in the link chain. It 

shows that the end-effectors do not lie on the same plane, for a given abduction angle, 

unlike the assumption of most researchers in the literature survey. Figure 16-b shows the 

case when MCP follows the Abduction joint in the link chain. Although the end-effectors 

lie on a plane, for a given abduction angle, the postures are unnatural. This means that the 

abduction and MCP joint angles are coupled and should be determined simultaneously. 

We propose a direct approach for solving finger inverse kinematics by utilizing the domain 

specific constraints of the human fingers. Our approach does not isolate the finger 

abduction from the other 3-DOF of the finger. In other words, it solves the finger's 2-DOF 

MCP joint simultaneously avoiding the unnatural hand model configuration. The 4-DOF 

finger inverse kinematics problem is split into two consecutive and direcdy solvable 2-DOF 

problems. The corresponding error model of the simple problems is analyzed and used to 

compensate for the error. Particularly, we introduce a companion IK problem by assuming 

the finger has only one link with length equal to the end-effector distance and 2-DOF for 

MCP flexion and Abduction. The error due to the above assumption is analyzed a priori 

and the error model is used to provide accurate solutions to the MCP and abduction. The 

PIP and DIP values are then calculated, given the determined MCP and abduction values 
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from the previous step in the same way. In other words, we solve die 2-DOF MCP joint 

using the direction of the end-effector and we parameterize the error of the first estimate by 

the end-effector distance. We use the parameterized error model to correct our first 

estimate. We then solve for PIP and DIP using the direction of their end-effector vector 

and again parameterize the solution error by the end-effector length and use the 

parameterized error model to correct our estimate. Table 4 shows die pseudo code of the 

IK algorithm. 

Table 4: Finger IK Algorithm 

1. Calculate r, the length of the end-effector vector 
2. If r > finger length 

Set ©PIP = 6Dip = 0 
Set r = finger length 
Calculate 0MCp and ©Abd using their Error models 

else if r < min finger reach 
Set ©MCPr ©PIP and ©DIP to their maximum limits 
Set ©Abd = 0 

Otherwise 
Calculate @MCP and ©Abd using their Error models 

3. Let the vector Ri between PIP joint and the fingertip 
4. Calculate ri = length (Ri) 
5. if ri > (finger length - proximal phalanx length) 

Set ri = (finger length - proximal phalanx length) 
Set ©DIP = 0, and calculate @PiP using its Error model 

else if ri < min reach value 
Set ©PIP and ©DIP to their maximum limit 

Otherwise 
Calculate QPiP and ©DiP using their Error models 

The error model is created using all feasible postures obtained using motion capture or by 

using a model for the physical constraints. The MCP and abduction angles, resulting from 

solving the companion problem, are used as an estimate for required MCP and abduction 

angles. The estimation error is calculated by subtracting die estimate from the reference 

values used to generate the end-effector. The estimation error model is created by analyzing 

the relation between the value of the error as a function of the distance between the end-

effector position and MCP joint position. 

In our notation, ©indicate an estimate value, © indicates the corresponding reference 

value, and & indicate die corrected value. Figure 17 shows the MCP error in relation to the 

end-effector distance (r) from die MCP joint. It can be seen diat die error is highly 
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correlated with the distance r and it can be approximated by a function F(r), as shown in 

equation (19). A trend line is used to represent the function F(r). 

^MCP ®MCP * v ) (19) 

Figure 17: Error model of MCP estimate 

Figure 18 shows the error model of the abduction angle for all end-effectors generated at 

different abduction values. It can be seen that the error is highly correlated with the distance 

(r) and we also realized diat it is proportional to the abduction angle. We thus modified the 

error model as shown in equation (20). 

®Abd-®Abd=®A„dG(r) (20) 

0.14 

0.12 

0.1 

9 0.08 
2 

tT 0.06 

U 0.04 

0.02 

0 

-0.02 
3 4 5 6 

End Effector Distance R (cm) 

Figure 18: Error model of Abduction estimate at 3 values of reference abductions 

The calculated statistics of the MCP and Abduction angles are given, from equations (19) 

and (20), by equations (21) and (22). 

^ MCP ~ ^ MCP F \ T ) 

0 = 
^ Abd 

0 
Abd 

1 + G(r) 

(21) 

(22) 
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After applying the above statistics, we get more accurate results. Figure 19 shows the 

probability distribution (histogram) of the MCP error. It can be shown that the error is in 

the range [-.06, 0.4] radians with 90% confidence. Figure 20 shows the probability 

distribution (histogram) of the abduction error. It can be shown that the error is within 

±0.018 radians with 90% confidence. 

-0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 

-50 

Error - (rad) 

0.02 0.04 0.06 

Figure 19: MCP Error Distribution function 

-0.03 0.03 

Error - (rad) 

Figure 20: Abduction Error Distribution function 

The PIP and DIP are calculated using a similar approach by considering the distance rt 

between the PIP joint and the end-effector position. Error models for PIP and DIP are 

derived as a function of r, and used to correct for the estimation error. Figure 21 shows the 

resulting error models for PIP and DIP joints. We noticed an increase in the error as the 

joint gets further in the articulated chain, but this effect is expected since the effect of the 

error on the overall structure decreases in the same way. 
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Figure 21: Error model of PIP & DIP estimates 

The error distribution for the PIP and DIP joints are shown in Figure 22. 
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Figure 22: Error Distribution for PIP and DIP joints 

It can be shown that the error of the PIP and DIP estimation is in the range [-0.26, 0.2] 

and [-0.4, 0.23] radians with 90% confidence, respectively. Observing the error distribution 

of the different joints, we noticed that the error distribution of the MCP and abduction lies 

in a much smaller range than the PIP and DIP joints. This is explained as the later 

calculation inherits the error incurred in the first one. This is, in fact, an efficient error 

distribution since the effect of error in the joints closer to the finger base is higher than die 

joints farther from the finger base. 

We also tested the performance of our algoridim against the trivial table lookup approach. 

We assert that the error model is used only within the valid range of the model parameters 

by asserting that die end-effector distance lies between a maximum and minimum range, 

otherwise the algorithm tries to estimate a suitable value for the joints. 

We used a table joint granulation of 0.1, 0.05, 0.03 radians. 

Table 5: Hash table record format 

MCP PIP DIP u v r 

Table 5 shows the record format of the lookup table. The parameters u and v are the 

planar coordinates of die end-effector with respect to the MCP joint, and the distance r is 

given by the Euclidean distance between the points (0, 0) and (u, v). The abduction angle is 

calculated separately as the angle of rotation of the finger plane. The table is sorted by the 

distance r and is searched, using binary search, for a range of records with in the range of r 

± s, where s is set to 0.2, 0.1, 0.06 cm, respectively. The record providing the minimum 

Euclidean distance from the end-effector is die resolved IK solution. The performance 

measures are summarized in Table 6. 

Table 6: Summary of performance tests 

Granulation 
1 l n i e Average 

TimeMedian 

File Size 

Err Model 
0.015 rad 
104 ms 
100 ms 
0.224 KB 

Table i 
0.1 rad 
38.4 ms 
38.4 ms 
50 KB 

Table2 
0.05 rad 
102.6 ms 
75 ms 
373 KB 

Table3 
0.03 rad 
253 ms 
369 ms 
1640 KB 
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The average and the median processing times, angle granulation or accuracy, and the table 

size are shown. Our method is comparable with Table2 (shown in the third column of Table 

6) in terms of processing times, but it provides better accuracy and a huge storage gain. The 

trade off between processing speed, accuracy/granulation and storage size is evident in the 

table. 

Our finger inverse kinematics method is suitable for applications that require high accuracy 

and limited storage capacity. Figure 23 shows that the error-model based IK algorithm 

outperforms the trivial table lookup. 

10000n 

10001 
Time 
Size 

CD 

I 
0.15 

0.1 J Table Granulation 

Figure 23: Performance Measure of the Error Model Based IK Algorithm 

The solid line shows the average processing time, in milliseconds, of the trivial table lookup 

at different granulation levels. It shows that for the same processing time, our algorithm 

provides better estimates of the solution, and for the same accuracy, our algorithm is much 

faster. The dashed line shows table size in KB as a function of the table granulation. Our 

algorithm does not require storing large amount of table data. 

Although the fingers have 4-DOF, they are in fact closer to 3-DOF than 4-DOF due to the 

static and dynamic constraints. The thumb, on the other hand, has fewer constraints than 

the ordinary finger and can reach farther. The thumb's inverse kinematics is thus under 

constrained and there are many joint configurations reaching the same end-effector 

position. The error model analysis provides an interval bound for the CMC and abduction 

joint angles as function of the end-effector distance from the CMC joint as shown in Figure 

24. As in the case with fingers, the feasible thumb postures can be obtained using motion 
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capture or by modeling its constraints. The error bounds, as function of r, can be used to 

speed up the table lookup for the IK solution. 
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Figure 24: Error model of thumb CMC & ABD estimates 

3.2.3. Posture Prediction 
The prediction of future postures from the previous ones is the main task of the posture 

predictor. This is designed as a critical section in the software system, which means multiple 

processes can access the module asynchronously. It is used particularly by the gesture 

recognition module which may acquire posture data at a higher rate than the tracking speed. 

Pattern based predictors, such as Kalman filters, Hidden Markov Models, Bayesian 

Networks, Linear and Nonlinear Regression, and Neural Networks undergo a training 

phase, where the underlying patterns are learned from the training samples. These methods 

tend to generalize the prediction based on an assumption of an underlying model. For 

example HMM assumes the existence of some hidden states and that the transition from 

one state to another is bound to a fixed probability. The Kalman filter assumes normal 

distribution of the observation noise. But we would like to remain faithful for the measured 

data and be able to predict future ones. Since the hand posture is unpredictable and can 

undergo large variations in small time, we propose a damped polynomial extrapolation to 

estimate future postures from previously calculated ones. The memory of the system is 

modeled using exponential damping factors to avoid unstable extrapolation, especially in 

higher order polynomials. We allow polynomial extrapolation, up to the N* degree, by 

storing the latest (N+l) calculated values for each DOF in a queue. The damped 
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polynomial of i* degree is given recursively, from damped polynomial of lower degree by 

equation (23). 

C-'o) C-'o) 

p,(t) = e T> P,(t) + Q.-e T' )pM(0 (23) 

v0 is the latest value in the queue, which is detected at time t̂ ,. Pj(t) is the extrapolating 

polynomial of the i* degree, and pt(t)is the corresponding damped polynomial of the same 

degree. T; is damping period for the i* degree polynomial. It determined empirically and 

obeys the condition (24). 

T i < T , V i > j (24) 

t_ 

The damping coefficient Sm (t) = eTm satisfies the following characteristics: 

• Sm(0) = l^>pm(0) = v0 V m 

" tf.C00)^-* *>"(«>) = "„ V m 

• 5m{t)<8n(t) V m > n (Asserts that higher order polynomials are damped faster). 

In other words, the damped extrapolating polynomial, of any degree, has the following 

characteristics, respectively: 

• It honors the initial condition set by the last calculated posture, 

• It converges back to the last calculated posture if tracking was terminated, 

• It forgets previous postures faster than more recent ones. 

Utilizing posture prediction in the posture estimation can be error prone in the case when 

erroneous postures find their way into the posture history queue. In other words, an 

erroneous record in the history table could bias the DOF-estimator to generate more 

erroneous values causing the tracking algorithm to diverge. When this happens we call the 

event a "temporary visual illusion". We found that the hand tracker quickly recovers when 

the camera has a better viewpoint to the object. Arguably, visual illusion happens to all 

humans, but they recover from it, given better view point to the observed object. 

Kalman filters traditionally used to filter noise in similar circumstances can be used but is ill 

posed, in our opinion, because we acknowledge that hand gestures, which represent paths in 
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the highly dimensional posture space, are spontaneous and unpredictable. Any attempt to 

predict hand postures based on previous experiences (static) will restrict the posture 

prediction and render spontaneous postures irrelevant. 

3.2.4. Posture Estimation 
The posture estimation module is the final step in the hand tracking system, where the 

most probable posture, from the set of posture hypotheses, is selected. It provides an 

objective function for posture estimation based on three factors, namely the canonical 

probability of the posture, the deviation of the estimated fingertip position from the 

observed feature position, and closeness of the posture estimation to the posture 

prediction. 

In the absence of any artifact to qualify a posture hypothesis, the system must rely on 

intrinsic parameters. The assumption is that the best hypothesis will conform to the 

canonical probability of the postures, which are measured in similar situations. It will also 

conform to the motion dynamics as estimated by the posture prediction module. Finally, it 

will also conform to the only observation available to the system, the projection of the 

fingertip on the image plane. 

Firstly, the canonical probability of the posture is obtained dynamically during simulation. 

It is initialized to equal probability of all postures and dynamically updated using an 

accumulated histogram of the estimated postures. It is considered an external parameter of 

the tracking system that belongs to the context of use of the system. 

Secondly, the inverse kinematics algorithm filters the feasible posture within the Feasible 

Fingertip Range (cf. Figure 15). We allow some tolerance for error in the hand orientation 

calculations. For that reason, we use the distance between the projected fingertip hypothesis 

and the detected marker location as another factor in the hypotheses qualification. It is 

modeled using a Gaussian distribution with zero mean. The variance is set inversely 

proportional to the distance from the camera — to accommodate errors in hand orientation. 

Thirdly, the predicted posture provides a reference to the hand dynamics that ensures 

smooth posture estimation. The closeness of the posture to our prediction, assures that the 

estimated posture timely conforms to the posture dynamics as modeled in the Posture 

56 



Chapter 3 Hand Tracking — Posture Estimation 

Prediction module. It is modeled as a normal distribution with mean at the predicted 

posture and variance as a percentage of the DOF dynamic range. 

Finally, the estimated posture is thus given by equation (25), where p is a posture in the 

hypotheses set, Prob(p) is the canonical probability of the posture, N(d(p),ap) is a normal 

distribution of mean zero and variance ap, evaluated at d(p) — the 2D distance between the 

estimated and detected fingertip locations on the image plane. The deviation of the 

expected posture from the predicted posture is evaluated per attribute using normal 

distribution with mean zero and variance associated with the attribute. 

= argmax\vvob{p)N(d{p),<rp) ]]N((A*yP " 4 » * - W 
peHypotheses ^ AepostureAttributes J 

(25) 

3.2.5. Results of Tracking Simulation 
With reference to Figure 4, the difference between the CyberGlove acquired posture and 

vision-based estimated posture provides an indication about the feasibility of the vision-

based approach using a single camera and a measure of accuracy of the approach in 

comparison to the CyberGlove. 

The posture acquired from the CyberGlove was used to drive the hand model. The 3D 

position of palm marker corners in the model's coordinate system is constant, and the 

fingertips positions were calculated using forward kinematics. The projection of the 3D 

features on the computer display was calculated using the Model View Matrix and the 

(perspective) Projection Matrix, acquired in real-time, and controlled directly by zooming, 

panning, and scaling the model in the scene during the simulation. The histograms of the 

posture estimation error in comparison to the CyberGlove measurements are shown in 

Figure 25 and Figure 26 for the fingers and the thumb, respectively. 
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Figure 25: Statistical Error of Estimated finger DOF 

The MCP flexion joint was the best joint angle estimated, whereas the MCP abduction was 

the worst one. The reason is the MCP joint provides the maximum impact on the fingertip 

position and on the same token abduction can only be reliably estimated when the fingers 

are mot curved when it makes the maximum impact on the fingertip position. 
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Figure 26: Statistical Error of Estimated thumb DOF 
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We argue that posture attributes that correlate multiple finger joints and work on the finger 

level can be better estimated using vision-based posture estimation, as explained in 

modeling the finger constraints. Although finger joint angles uniquely define hand postures, 

they suffer from interdependency and do not provide a direct means of imposing the 

physical constraints of the human hand. 

We propose the finger curvature as an alternative posture attribute to some of the flexion 

finger joints. Finger curvature is defined on the whole finger and is derived implicidy from 

the joint angles. It can be easily visualized or made sense of its measure, and it is less error 

prone than the joints because it correlates multiple joints. We model the finger curvature by 

the reciprocal of the radius of a circle having finger as part of its circumference. 

The derivation resorts to the relationship between the circumference of a circular sector 

and its width, which is given in terms of its radius by equation (26) 

L = e r (26) 

By definition, the curvature C = 1 / r, is the reciprocal of the radius. To relate the 

curvature to the fingertip distance, we calculate the linear segment, representing the distance 

between the fingertip and the finger base as given by equation (27) (cf. Figure 27). 

d = 2 r sin ( 0 / 2) (27) 

We normalize the curvature measure by the finger length L, i.e. we consider C = L / r = © 

— according to equation (26). The ratio between the ends of the circular sector (the end-

effector distance) and the sector's circumference (the finger's length) is given, in terms of 

©, by equation (28). 

d s in(0/2) _. , „ , „ . 
— = — - - = Sinc(© 12) (28) 

L ( 0 / 2 ) K ' 

Thus the normalized curvature is given, in terms of the finger length and fingertip distance, 

by equation (29). 

C = e = - = 2Sinc~l(-) (29) 
r L 

Figure 27 shows two finger curvature measures, that we found to effectively describe the 

finger posture and yet can be accurately estimated in vision-based hand tracking. 
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Figure 27: Fingers Major and Minor Curvatures 

The major curvature (C^ includes the finger and the palm, and the minor curvature (Q) 

includes only the finger. The estimation error of the curvature errors provides better 

estimates than the MCP, as shown in Figure 28 — curvature is normalized by a practical 

maximum of 4.0 radians (vs. the theoretical maximum of 2n). 
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Figure 28: Statistical Error of Finger Curvature vs. MCP 

Similar results for thumb are shown in Figure 29. 
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Figure 29: Statistical Error of Thumb Curvature 

3.2.6. Conclusion of the Tracking Simulation 

The main cause of error in simulation is the loss of depth information due to projection 

and the lack of visual cues to validate the posture hypothesis. The tracking problem is 

ambiguous with multiple possible solutions available, and hypothesis qualifications must 

rely on heuristic inference from previous estimations. This causes an intermittent visual 

illusion when the camera viewpoint is ill posed, but the system recovers quickly when a 

better viewpoint of the hand is provided. 

The input to the tracking simulation is: 

• The 2D projections of the fingertips derived from the 3D model, which is driven by 

the CyberGlove 

• The 2D projection of the corners of a square marker positioned at the hand model's 

root, which is derived from the current transformation matrix, i.e. Model View 

matrix and Projection matrix that is changed by panning, zooming and scaling the 

scene during the simulation. 

From these 2D features an estimate of the 3D hand posture is made. 

The tracking simulation answers some of the questions we were bound to answer at the 

beginning of the chapter. Firstly, it shows that the vision-based hand tracking, using a single 

camera, can provide tangible measurement of the hand posture. Secondly, it provides a sense 

of the accuracy of the vision-based posture estimation, in comparison to the data glove. The 

standard deviation of the different posture attributes estimated using the vision-based hand 

tracking system is given in Table 7. The fingers measurements are found very similar, thus we grouped 

them in one group. The thumb measurement is essentially different and is displayed separately. 
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Notice improvement in the accuracy of the major and minor curvatures over the MCP and 

PIP joints respectively. The finger abduction estimation is not reliable, unless the finger is 

straight and the hand plane is almost parallel to the camera plane. The thumb's attributes 

accuracy is relatively higher than the fingers because its motion is less constrained, better 

accuracy can be obtained using another marker close the thumb's MCP joint. 

Table 7: Posture Attributes Variance 

Finger Type Posture Attribute Standard Deviation 

Fingers 

Abduction 

MCP 

PIP 

DIP 

Major Curvature 

Minor Curvature 

CMC 

Abduction 

MCP 

IP 

Major Curvature 

Minor Curvature 

0.040234 

0.005869 

0.019052 

0.023109 

0.004361 

0.015301 

0.015651 

0.006732 

0.00992 

0.026515 

0.008879 

0.009278 

Thumb 

Tracking simulation provides a proof of concept of the system but suffers from the 

following limitations: 

• Firsdy, the position of the marker features, calculated from the projection of 3D 

features on the graphic scene, is very accurate and assumes a pin hole camera model 

with well defined camera intrinsic parameters; which is different from the real 

situation where the camera parameters are calculated by a calibration procedure and 

suffers from approximation errors. 

• Secondly, the simulation does not include background clutter. 

• Thirdly, the simulation uses the same hand model in forward and inverse kinematics 

and does not test the approximation error of the hand model with a real hand. 

• Fourthly, the simulation does not test for extrinsic parameters such as skew and lens 

distortion. 
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• Finally, the simulation does not require a palm marker to model's root 

transformation, since the marker was centered on the root. In the real tracking this 

transformation must be calculated, during the system calibration, and this 

transformation may vary over time and will cause tracking error. For these reasons, 

we use a video camera in the next phase. 

3.3. Tracking with Real Cameras 
We extend our tracking procedure to the real world. We still use fingertip markers and 

palm markers to derive the posture hypothesis generation. We reviewed the state of the art 

in hand tracking, including marker-less approaches to hand tracking, and we realized that it 

includes a number of constraints that restrict the usability of the tracking approach in 

dynamic gesture recognition. These restrictions include: 

• Wearing special clothes and Long sleeved clothing 

• Using Colored gloves 

• Uniform background 

• Complex but stationary background 

• Restricted movement 

• Continuous movement 

• Vocabulary restriction 

• Unnatural signing 

For example, Wu et al. [24], [98] use a divide and conquer approach , where they use an 

iterative algorithm to estimate the extrinsic posture attributes and then use it to estimate the 

intrinsic attributes and use the estimated intrinsic attributes to enhance the extrinsic 

attributes estimation and so forth. Stenger [14] estimates extrinsic hand attributes, given the 

intrinsic attributes, using a Hierarchical Bayesian Filter and the image silhouette and color 

likelihoods. The two approaches were demonstrated using a marker-less hand, but the 

iterative nature does not provide real-time response. Using color markers, we can decouple 

palm position and orientation estimation from finger joints estimation. Knowledge about 

the fingertip positions can facilitate using kinematics constraints in the posture estimation 
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process. Solving inverse kinematics can be very efficient and requires less processing time 

than using an image based observation model, which requires edge detection and hand 

segmentation, followed by evaluating the probability of the estimated posture given the 

detected features. Since our paramount goal is to reduce the restriction on the hand 

movement, we decided to use the color markers approach as a step in the right direction, 

bearing in mind that many of the algorithms used can be reused in a marker-less 

environment. Figure 30 shows the overview of the single camera based hand tracking and 

posture estimation system. 

Figure 30: Posture Estimation System Overview 

We reused the hand model, 2D/3D, and posture prediction modules. We added a marker 

feature extraction module a 3D-to-2D projection module and replaced the posture 

estimation module by an observation model that utilizes the acquired video frame to 

provide a probability measure of the posture hypothesis, given the hand silhouette and 

color in the image. The following sections will provide a detailed explanation of the new 

modules. 

3.3.1. Feature Extraction 
We use a dark glove with color-coded ring markers to detect the fingertips, and 2 cm 

square markers to derive the palm's position and orientation with respect to the camera (cf. 

Figure 3). We use two palm markers, one for the front and the other for the back of the 

palm, but more markers can be added as required. The palm markers are identical and can 

be distinguished using a color-coded tag. 

Motion tracking systems, such as Vicon, use light emitting or infrared markers to identify 

important features in the image. Multiple cameras are used to detect the location of these 
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markers in 3D space. Light emitting markers are easier to track than color markers, but 

require battery power. On the other hand, marker correspondence between cameras is more 

complicated, thus we prefer working with single cameras independently. The number of 

markers used and the position of the markers used in a motion tracking system like Vicon is 

an open question, and our experiments can provide a clue to the answer to these questions. 

As part of the initial phase, we convert the color-space into the HSV (or Hue, Saturation, 

and Luminosity) space with 255 values for each plane. This provides the best performance 

in terms of identifying a very narrow variance (usually 3 or 4 levels) of color (Hue), with a 

small acceptable variance (larger than Hue, usually around 10) for shading (Saturation), and 

an even larger acceptable variance for the lighting conditions (luminosity). We initially 

identify all the dark colored (black glove) elements in the room. We process the identified 

pixels for noise by counting the number per segment (determining if a mass of pixels exist 

in one place, a segment being 8 by 8 pixels) and segment clustering (determine if segments 

join with each other). We then search for a specific marker color (in this case a specific red), 

passing a pixel if it falls within the specified range. We segment the candidate marker region 

using connectivity analysis and identify the marker using a color ID (blue for front of the 

hand, and yellow for the back of the hand). The aforementioned technique basically 

identifies the tracked hand within the image, and provides information as to its orientation. 

Markers of different color markers are used on the fingers in order to recognize the 

fingertip positions. 

The marker on the back of the hand is 0.02m by 0.02m square, and we search for the 

marker's corners (as shown in Figure 31) in order to pass this information for 

transformation into the 3D domain. As the information pertaining to corner's positions is 

essential for an accurate interpretation of the hands orientation and distance from the 

camera, and as the corners as appreciated by the camera are rather fuzzy, we process this 

information in order to obtain the most accurate positions possible. To do this, we track the 

edge of the corner sequentially in the direction perpendicular to the gradient of the pixel 

illumination [106] (the dark glove and the bright red marker provide very high contrast in 

the illumination channel V). The corner is roughly determined by a pulse in the contour 

curvature, this information here is only used to determine the sides of the marker (i.e. each 

sides start and end point). 
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Figure 31: Hand/Marker Identification 

We then pass each side as a single implicit linear equation (A.X + B.Y + C = 0) using linear 

regression in order to determine A, B, and C (whereby B is fixed to -1 when A ^ 0). Using 

the four linear equations (one for each side) the line intersect points are found (within a 

bounding region, as opposite lines are very rarely parallel) and used to determine the true 

marker corners. The corners are used to calculate the hand position and orientation in 3D 

space using perspective geometry [26]. Five colored ring markers are used to mark the 

finger tips. 

The locations of the finger markers are determined as holes in the segmented hand. The 

holes are derived by a morphological closing operation. First, the holes in the segmented 

hand are closed using a repeated dilate operation; then the hand is restored using a repeated 

erode operation. To avoid using a large kernel size, dilate and erode operations are 

performed iteratively using a 3x3 kernel, where the number of iterations is set in proportion 

to the hand marker size. The holes are detected by masking the original hand segment from 

the closed hand segment. The markers are identified by their colors, where we use Hue-

Saturation-Value (HSV) color space, as it effectively detects the color hue. The 3D color 

histogram is segmented using multiple thresholds to determine overlapping color ranges for 

each marker. The number of pixels of each range, normalized by the palm marker area, is 

used as an attribute vector for the detected color blobs. An SVM classifier is trained and 

used to classify the detected finger tip features using its color attributes. Figure 32 shows an 

example of the detected markers and the overlaid hand model. 
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Figure 32: Tracking Glove 

Table 8 shows the pseudo code of the feature extraction process. 

Table 8: Pseudo Code for Feature Extraction 

1. Segment the candidate hand ROI using the hand/glove color 
2. Segment palm marker region, within the hand region using the marker color 
3. Identify the palm marker using the color ID 
4. Detect the position of palm marker corners, from the marker edge 
5. Determine the expected thickness of the finger markers 
6. Close the holes in the hand region of at most width as the expected thickness 
7. Use unclosed image as a mask to isolate the marker region candidates 
8. Identify the marker regions using the region color and size attributes 

3.3.2. System Calibration 
As part of the real system setup, we had to put palm markers at a location which is least 

deformable on the palm, yet it can provide a large work space from the camera perspective. 

Since the palm location does not confine to the hand model's root, a geometric 

transformation must be derived to translate the marker position and orientation to the hand 

model's position and orientation. A procedure to detect the Marker-to-Model 

transformation is devised using 2 markers, one is the hand marker and the other is placed at 

the root's position. Multiple captures (Figure 33) are used and the camera to model 

transformation is calculated for both markers. 
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Figure 33: Hand Marker-to-Root calibration captures 

At each capture, we evaluate the markers orientation w.r.t. the camera. The marker-to-

marker transformation is then calculated by multiplying the inverse of the first 

transformation matrix by the second transformation matrix. 
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Figure 34: Camera to Marker calibration utility 

While this method is ill posed, because small errors in one transformation can be amplified 

in the resulting transformation, we use visual correction by showing the marker position in 

graphics (Figure 34). Since our method can only provide 2 possible solutions for each 

transformation, there are 4 possible solutions for the combined transformations. Irrelevant 

solutions are rejected visually and multiple consistent solutions are used to filter the errors. 
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3.3.3. Posture Hypothesis Validation — The Observation Model 
In the presence of 2D feature noise and due to the under constrained nature of the finger 

IK, especially the loss of depth due to camera projection, a qualifying process must be used 

to produce the most probable posture. During simulation, the qualification process was 

based primarily on our prediction of the current hand posture and how close the projected 

finger tips are to the detected fingertip locations. Given the images acquired using the 

tracking video camera; we can improve the qualifying process by utilizing color and edge 

features extracted from the image. We propose a probabilistic observation model utilizing 

the segmented hand image and its silhouette. The hand posture hypothesis is applied on the 

hand model using forward kinematics, and then the resulting 3D model is projected on the 

image plane as in Figure 35. The projected model is sampled at N points. 

Figure 35: Projecting the Hand Model and Finger Edges 

At each point, we calculate the probability of the pixel being a correct observation, given 

the color of the pixels in it neighborhood, using the glove color histogram. The 2D 

observation model along N sample points constructs a binomial density function — equation 

(30). 

PyKp'Qi-pf-" (30) 

Where n is the number of pixels projected on skin/glove color and p the probability of 

pixels projecting on skin color (p ~ 1). 

Moreover, the corresponding finger edge, see Figure 35, is qualified using an observation 

functional, adopted from [33], by assuming that clutter is a Poisson process along the 
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direction perpendicular to the edge with spatial density X, that all edges have the same 

probability of being the true observation, and that the projected edge accuracy is a normal 

distribution with standard deviation a. The resulting probability at a sample edge point is 

given by equation (31), where q is the probability that the true edge is not detected and di% 

the distance between the edge hypothesis the detected edge. 

1 ^ 
p(hyp\obs)Kl+ j— Ye2°2 (31) 

The summation in equation (31) is performed for all detected edges along the direction 

perpendicular to the model edge. The fingers are approximated by cylinders with a constant 

diameter and the edges of the fingers are projected parallel to the fingers kinematic links 

with a distance from the links corresponding to the finger thickness. Since the function is 

exponentially decreasing, only a small distance range is considered, beyond which the 

probability is insignificant. The 2D observation model along N sample points is given by 

the product of point probabilities as given by equation (32). 

P2=f[pi{hyp\edge) (32) 

As we may detect multiple possible targets for the end-effector of a finger, and we do not 

know the true target feature, we must include all detected targets in one functional. We use 

a similar functional P3 to equation (31) to determine the probability of the end-effector 

hypothesis, given all the detected 2D end-effector features. In this case, X is the density of 

the 2D feature clutter, a is standard deviation of the detected feature accuracy, q is the 

probability that the true feature is not detected or is occluded, and d is the 2D distance 

between the projected end-effector position and the detected feature position; and the 

summation is performed on all detected features. 

The probability of the posture attribute hypothesis, given the previous estimated posture 

attributes P4 is calculated as a normal distribution with mean at the predicted posture and 

variance as a percentage of the DOF dynamic range, as described earlier in the simulation. 

Since IK is applied on the finger level and the observation features are applied on the pixel 

level, it is essential to include a hand-level multi-dimensional probability distribution of the 
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hand posture P5. This distribution can be determined from the context of use, i.e. from the 

gesture training data in this case, using parametric or non-parametric density estimation. 

Finally, the overall observation model is given by the product of the above mentioned 

factors, namely segmented hand color, hand silhouette, detected end-effector position, previous posture 

estimates, and the context-based posture probability, P = P1P2 P3 P4 P5. The posture which gives 

optimal probability according to the observation model is provided as the best estimate. 

The assumption of mutual independence of the above probability measures is justified, 

since every factor correspond to independent random variable: Firstly, the hand color is 

independent from the detected edges in a cluttered image. Secondly, in case of detecting 

multiple candidate fingertip markers a probabilistic model to measure the closeness of the 

posture hypothesis to the target end-effector is required. Thirdly, the posture history, a.k.a. 

the posture prediction, is independent from the detected features. Finally, the canonical 

probability is an external factor that filters the posture hypothesis. In other words the above 

probabilistic measure is proportional to the following independent variables: 

• The color artifacts 

• The edges and clutter 

• The proximity to the right fingertip marker candidate 

• The proximity to our prediction 

3.3.4. Multiple Cameras 
We extend the observation model to include multiple cameras. Multiple cameras are used 

to improve the reliability of the tracking system. Stereoscopic cameras are used to infer the 

depth by relating the detected features between two cameras with slighdy different fields of 

view. In our case we use multiple cameras to improve the accuracy of the posture 

estimation and to improve our posture hypothesis creation. 

Camera sensor fusion is done at different levels. At the first level, we do not assume 

knowledge of the geometrical transformations between the cameras coordinate systems, 

which is useful when the cameras are moving. In this case, the posture hypothesis generated 

using 2D features from each camera is validated using the observation models of all the 

cameras. The overview of the two camera system is shown in Figure 36. 
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CQ.yAtrP,^ 

Figure 36: Two-camera extension of the observation model 

At the second level of camera sensor fusion, we use the geometrical transformation 

between the camera coordinate frames. In this case, the detected hand position and 

orientation is validated and the best orientation is used by both models. The overview of 

the system is shown in Figure 37. 
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Figure 37: Two-camera system 

3.3.5. Implementation issues 

Figure 38 shows die class diagram of the hand tracker. The main interface is the tracker 

interface, which controls the process of feature extraction and posture estimation. The 

different classes implementing the tracker interface include the single camera tracker, and 

the multiple camera trackers with and without inter-camera geometric transformation. The 

hand model consists of five finger models, which include the finger's joints and kinematic 

links. The palm marker retrieves the coordinate transformation between the camera and the 

hand model and the finger markers are used to retrieve the fingertip position. 
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3.4. Tracking Results 
Global posture attributes include the hand position and orientation in 3D. To test the 

calculation of hand position in 3D we used a Point Grey Dragonfly video camera with 3.5 

mm lens to track the trajectory of an operator hand using a palm marker as shown in Figure 

39. The operator moves his hand in predefined trajectories and the calculated hand 

trajectories matched the input trajectories. 

Figure 39: Hand Tracking Experiment 

Figure 40 - Figure 42 show the results of the calculated trajectories. It starts with the 

marker's 2D corner features in pixels, followed by the 3D trajectories calculated by the tracker in 

centimeters (cm), where x-y is the projection of the trajectory on the horizontal plane 

parallel to the camera plane and z is the distance from the camera plane. 
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Figure 40: Circular trajectory, while moving up and down 
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Figure 41: Rectangular Trajectory 
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Resulting 3D 
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Figure 42: Vertical Trajectory 

Occasionally, the hand orientation calculations fail due to lens distortion or perturbation of 

the location of the extracted features. The system responds by freezing the hand model 

momentarily. The binary signal, termed "valid", in the figures above depicts when happens. 

The associated frames are dropped and do not contribute to the hand tracking. 

The intrinsic posture attributes includes the fingers articulation in the form of joint angles 

associated with the hand model. We acquired 6 video clips using two Point Grey Dragonfly 

cameras. The associated reference hand postures were acquired simultaneously using a 

CyberGlove. The error analysis of the fingers and thumb articulation using the different 

system configurations are shown in Figure 43 and Figure 44 respectively. Please note that all 

errors are shown in radians. 
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- 2 - 1 < 

- 0 . 2 J 

2 

K 

'nil 
> 1 2 3 

Figure 43: Fingers Error Model 
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Figure 44: Thumb Error Model 

All figures show the collective error from simulation, single camera, and two cameras types 

one and two. In general the simulation results provide more accurate posture estimation 

due to accurate detection of the 2D features, and the absence of occlusion, hand model 

approximation and lens distortion artifacts; although in some cases, e.g. the thumb minor 

curvature, the vision based tracking provided better results than the simulation; the reason 

for that is the enhancement of the observation model used in the vision-based tracking, 

which utilizes the hand color and silhouette. Mean error such as in thumb abduction 

estimation can be rectified by system calibration as discussed next. In general finger DOF 

estimation is more accurate than the thumb due the natural constraint of the fingers 

motion. We recommend using a second marker for the thumb positioned close to the base 

for better DOF estimation. 

We noticed an obvious zero-error (offset type error) in thumb abduction calculation. We 

also note that the vision-based posture estimation beat the simulation results in the case of 

the thumb minor curvature; this is explained by analyzing the thumb inverse kinematics. 

The thumb has truly 4 degrees-of-freedom with minimum natural constraints. Thus the 

inverse kinematics of the thumb is obviously under constrained using solely the position of 

the fingertip. In simulation, another objective constraint is the form of the distance between 

the target and actual finger tip position is used. In the vision-based tracking the additional 

objective function is the probability of the posture, given the observed features — as 

explained in the observation model. Thus, the lack of a proper observation model in 

simulation resulted in less accurate estimation, even though the detected 2D features are 

more accurate than in the vision-based tracking. 
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3.5. Vision to Data-Glove Calibration 
To measure the accuracy of the vision-based posture estimation, we gathered several video 

clips of hand postures at different hand orientations while wearing the CyberGlove. 

Although the CyberGlove does not qualify as a true reference because it undergoes a 

calibration phase of its own, it provides a measure of confidence of the vision system 

output. The CyberGlove was covered by the color marker glove and then calibrated. To 

eliminate synchronization errors between the camera and the CyberGlove, each clip 

contains a single hand posture. The joint angles from both CyberGlove and the model 

based posture estimation are statistically analyzed. First the scatter plot of the data acquired 

for each joint is plotted. The histogram generated from every video clip is used to calculate 

the median and the 90%, 70%, and 50% confidence intervals for each DOF, which are then 

interpolated to derive the confidence interval values for the whole DOF dynamic range. 

Figure 45 shows the results we obtained for the thumb and pinky. The median curve can be 

used as a CyberGlove to vision system calibration, and the confidence intervals can be used 

as a measure of signal to noise ratio. Both measures are required to be able to use both 

devices interchangeably for dynamic gesture recognition. The accuracy of the vision system 

is reduced by the following factors: The loss of depth information due to image projection, 

the lens distortion, the feature noise due to the unconstrained background and variable 

lighting conditions, the missing or occlusion of features, the difficulty to extract finger edges 

when they are overlapping, and the under constrained inverse kinematics in solving 4-DOF 

using only 2.5 constraints, particularly in the case of the thumb. 
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Figure 45: Calibration and Error model Analysis 

3.6. Conclusion 
We presented a framework for vision based posture estimation using a single camera, 

which can be extended to multiple cameras. The framework is a two step process, namely 

posture hypothesis generation and validation. We validated the framework by comparing its 

outcome to a CyberGlove and shown that it provides reasonable results. The results are 

systematically enhanced by using multiple cameras at different levels of sensor fusion. The 

results obtained from the simulation provide an upper bound of the system accuracy, 

although this can be improved by using the observation model. Using multiple cameras 

slightly enhanced the accuracy, but mainly improved the continuity of the data by increasing 

the working area. The system handles intermittent occlusion by relying on posture 
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prediction, but it does not handle occlusion for extended periods of time. This must be 

handled, in our opinion, by understanding the context in the form of objects (grasped or 

manipulated) or conversations (hinting to particular gestures). Another challenge is 3D 

hand tracking of a marker-less hand. In this case edge detection can be used to detect the 

fingertips and the hand orientation may be estimated from the palm's silhouette. In all these 

cases, the concept of hypothesis generation and validation using the observation model can 

be reused. 
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4. Hand Gesture Recognition 
Dynamic pattern recognition problems can be stated as an optimization problem of a 

characteristic functional defined over a time sequence of vector attributes. Pattern 

recognition approaches reportedly successful in recognizing dynamic patterns include 

Hidden Markov Models (HMM), Time-delay Neural Networks (TDNN), Time-delay Radial 

Basis Function Networks (TDRBF), and Dynamic Bayesian Networks (DBN). 

Hidden Markov Models are based on the assumption that the observed attribute vector 

sequence is caused by a sequence of states hidden from the observer and conditionally 

dependent on one another in Markov chain form. The assumption is that the transition 

between states, which is described by a stochastic matrix governing the trend of state 

transitions, is stable and time invariant. In our opinion, the stability assumption is too 

generative, i.e. relying on previous experiences that restrict spontaneous motions, thus not 

suitable for the emergent nature of improvised gestures. The structure of the HMM is 

arbitrary and is usually performed experimentally to find the best network topology and 

number of states. 

Time-delay neural networks and time-delay radial basis functions extend the fundamentally 

sound concepts to handle temporal sequences. 

A Bayesian network is a graphical model for representing conditional interdependency 

between a set of random variables. A Dynamic Bayesian Network is simply a Bayesian 

network for modeling time series data [39], where the assumption is that dependency trends 

are in one direction, i.e. states depend on previous states and not vice-versa. The advantage 

of DBN over the foreseen approaches is its flexibility, particularly in terms of relaxing some 

of the assumptions inherent in building the model, and consequently the simplicity of 

learning and recognition, thus achieving minimum recognition latency required for real-time 

human-computer interaction. In particular, in DBN we relax the assumption of time-

invariant state transition; we alternatively consider the state transition matrix as a function 

of time, as opposed to a fixed state transition in HMM. The transition is not expressed in a 

closed form, but is expressed as a time sequence, where every element represents a point in 

time. In other words, the state transitions are evaluated at constant sampling points, 
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emphasizing the dynamic nature of state transition over time. This particular characteristic 

allows our model to distinguish dynamic gestures based on their timing as well as their attributes, which 

is an important factor in the gesture interpretation — as mentioned earlier. 

In this chapter, we are presenting a novel dynamic gesture recognition model. The model 

utilizes sequences of posture attributes, assumed acquired at near constant sampling 

frequency. The postures attributes are generic, but we emphasize the intrinsic hand posture 

attributes in the form of the finger joints and their derivatives. The model also makes the 

timing of the dynamic gesture explicit, and thus it can differentiate between similar gestures 

based solely on timing differences. In the following sections, we first present the derivation 

of the model, and then present a pragmatic model creation method, followed by the gesture 

recognition algorithm. We present software design and development details, that we see 

relevant for discussion. Finally, we present some experimental results. 

4.1 Dynamic Bayesian Model for Dynamic Gesture Recognition 

Let © be a sequence of posture attribute vectors sampled of a time period T, where 0 = 

{ol5 o2... oT} and o is an observed posture attribute vector. And let our gesture recognition 

characteristic function be defined as the probability of the gesture, given the observed 

postures sequence ©, i.e. F = P(gj | ©), where g; is a dynamic gesture and is a member of a 

dynamic gesture set of cardinality N, Q = {gu g2, ... , gN}. The dynamic gesture recognition 

problem can then be described as an optimization of the probability of the gesture, given 

the observed hand postures over the time period T, over the set of possible gestures Q. 

g = argmax{p(g|0)} (33) 

Figure 46 gives a pictorial illustration of equation (33). 

\ 

Hand Postures 

T i m e \ ^ 
G, G2 G3 - » - G, G2 G3 »- G, G2 G3 Gesture Models 

T-Kobabi-Uttj M-l—-1-M *-M 
max max 

T 
max 

T 
Triggered 
Gestures 

Figure 46: D B N Architecture for Gesture Recognition and Segmentation 
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The gesture models (shown in the middle layer between the two dashed lines) operate on a 

sliding window of observed hand postures and the most likely gesture triggers recognition. 

The probability of a gesture, given the observed posture sequence, can be derived using 

Bayes rule [40] in terms of the dynamical observation priors, i.e. the probability of a gesture 

g, given the observed posture sequence © P(g | ©), can be expressed in terms of the 

probability of the observed sequence ©, given the dynamic gesture g P(® | g), as shown in 

equation (34). 

P(g,\®) = P($gt)P(gt)'P(®) (34) 

Analyzing equation (34) closely, we notice that the canonical probability of the posture 

sequence P(©) is a common factor amongst all possible gestures. Similarly, the canonical 

probability of a gesture P(gj) is independent from the observation ® and is likely to be 

dependent on external forces that we will call the context of the application. The dynamic 

gesture model thus mainly depends on the dynamical observation priors P(® | g), which 

can be learned from examples of dynamic gesture observat ion sequences. 

Table 9: Terminology for objects 

Object Name Subscript Subscript Meaning Range 

Gesture set 

Posture set 

Posture Sequence 

Posture Attribute 
Vector sequence 

Stochastic Matrix set 

Stochastic Matrix 

Initial state Probability 

Terminal state 
Probability 

Q 

r 
© 

X 

M,.T 

Mt 

v, 

VT 

8, 

e 
°i 

jt, e9tw 

Mt 

mii(t) 

v0 i 

vTi 

Gesture identification 

Classified Posture identification 

Observed posture at time sample i 

Attribute vector of dimension N, 
observed at time sample i 
Posture transition stochastic matrix at 
time sample t 
The probability of transition from 
posture j to posture i at time sample t 
The probability of posture i at the 
initial sample 0 
The probability of posture i at the last 
sample in the posture 

ie[1...GJ 

ief1...S] 

ie[1...TJ 

ie[1...TJ 

te[1...T] 

ijee [1...MJ, 
te/1...T-1] 

ie[1...M] 

ie[1...M] 

We model the posture attribute vector sequence using a Bayesian network, which is a 

generic model for time series data - Figure 47. 
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Figure 47: D B N model of Posture Sequences 

The conditional dependence of the observed sequence © over the dynamic gesture 

P(© | g) is learned by the gesture models from supervised training sequences associated 

with the dynamic gesture. The model's characteristic function can now be derived using the 

DBN model assumption by equation (35) 

P(®\g) = P(0l,o2,...,oT\g) = P{o\g)P(o2\ol,g)...P{oT\olT_l,g) (35) 

From Nyquist—Shannon sampling theorem, we can derive a proper sampling frequency to 

preserve the dynamic information of the gestures based on the bandwidth of the dynamic 

gestures in question. Assuming that we are using the proper sampling frequency for our 

band limited dynamic gestures; we can assume a first order Markov chain causality model 

for our observed posture sequence, where every posture is solely dependent on the previous 

sample and not on any former posture history - Figure 48. 

Figure 48: Markov Network model of Posture Sequences 

The conditional dependence of the observed posture sequence (&) over the dynamic 

gesture (g) P(© | g) using the first order Markov chain assumption is given by equation (36). 

P(®\g) = P(ol\g)P(o2\ol,g)...P(oT\oT_1,g) (36) 

Without loss of generality, higher order Markov chain causality models can be used, in the 

case when the sampling frequency falls short from the proper sampling frequency, e.g. the 

tracking system is slow, but we did not anticipate the need, particularly in the CyberGlove 

case where the system could be running at 50 Hz sampling frequency. Higher order Markov 

models can provide a smother posture transition, particularly in a highly dynamic system. 

We overcome the need for higher order Markovian dynaics by using high sampling 
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frequency, where the dynsmics of the system is surely captured collectively by the transition 

matrices. 

The right hand side of equation (36) defines the dynamic gesture model. The probability of 

initial posture, given the gesture P(o, | g) is represented by a vector functional V0, and the 

probability of a posture o; at sample /, given posture oM at the previous sample and the 

gesture P(oi|oi.1,g) is represented by a stochastic posture transition matrix functional M; 

whose dimension is equal to the cardinality of the set of all possible postures f. A clustering 

technique is used to transform the domain of possible hand postures from the real RN 

domain, where N is the number of posture attributes, to a discrete set of postures of 

cardinality t. Thus, the gesture model derived from equation (36) is given by a probability 

vector, and a sequence of stochastic matrices representing the attribute variation at every 

sampling point. A terminal probability vector VT, derived from the last posture in the training 

sample, is used to detect posture termination — equation (37). 

G = {V0 ,M1 ,M2 , . . . ,MT 4 ,VT} (37) 

4.2. Gesture Model Creation 
The model creation, or the training process, is the process of model parameter estimation 

using supervised training data. The training data are comprised of a sequence of hand 

postures segmented sampled at a constant frequency and segmented at the beginning and 

the end of the dynamic gesture. The sampling frequency is calculated using the Nyquist— 

Shannon sampling theorem from the estimated target bandwidth of the dynamic hand 

gestures. The training process is shown in Figure 49. 

Figure 49: D B N Model Training 

Similar to the concept of radial basis functions, we generate an ensemble X(t) of gestures 

samples from every training sample sequence x(t). The ensemble X is generated by adding 

two random vectors a and /? corresponding to variations in gesture timing and acuteness 

respectively - equation (38). 
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X(oc, p, t) = x(oct) + |3 (38) 

Figure 50 shows the effect of attribute randomization of a scalar attribute. The 

combination of all mutually independent attributes comprises the randomized attribute 

random vector. 

> 

I 

Randomization 

Time Scaling 
Randomization 

Time 

Figure 50: Example Attribute Randomization 

The random variables a and p are normalized to the random vectors y and 8, with elements 

in the range [-1,1], as given in equation (39). 

a = 1 + A y, 
P = B8, 

a e [1-A, 1+A] 
Pe [-B,B] 

(39) 

Let <E>A and <DB be the probability density function of the normalized random vectors y and 

8 respectively. O A and O B can be represented in the form: <DA = {tp }̂ and <£>B — {tpbi}, 

where tp̂  and tpbi are mutually independent scalar random variables in the range [-1, 1]. The 

corresponding probability distribution function F(p(x) = [ (p{y)dy. 

Table 10: Terminology for Functions 

Function Symbol Mapping Description 

Posture Classifier C(x) nN A mapping of the posture attribute vector 
3c to the hand posture set 

Posture Labeling L(e) [0,S-1] 
A mapping from the posture set to an 
integer in the range [0, S-l] 

Probability Density p(x) [-U] =>« 
Probability density of the posture 
attributes randomizing variables 

Probability Distribution F(x) ft => [0,1] Probability distribution of the posture 
attributes randomizing variables attriputes randomizing vanaoies 

[0,S-l]x[0,T] A mapping from a posture label i 
—> [a,b]c[-l ,1] sample t to an interval in [-1,1 ] 

Posture Domain A(i, t) 
at 
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Let C be the posture clustering function mapping the hand postures from the Cartesian RN 

domain to the discrete space of clustered postures t - equation (40), and let L be a labeling 

function mapping the clustered hand posture Q from the set f to a subset of the 

Nonnegative integers, in the range [0, S], where S is the cardinality o f f - equation (41). 

C(X) = Q e t , X e RN 

L(Q) = n e { 0 ,1 , 2, 3, ... S}, get 
(40) 
(41) 

For the sake of clarity, an example of die radial basis functions, which can be used as a 

probability density function cp, is in the form of equation (42), where n is a parameter used 

to modify the characteristics of the probability density function. 

t \ w + lfi I I'M r 1 n 

ftW = y \ - \ x \ j, xe[-l,l] 

The corresponding probability distribution function F(x) is given in equation (43). 

0 ,x<-l 

(42) 

x 

I 
(l + x) ,n = 0,x e (-1,1) 

1 w + 1 n+ l \ 

H~l^ J 
n+l 1 « + l h i n , , 

2+— W-^TW" 

,0<w<oo,jte(-l,0] 

,0 < n < co,x e [0,1) 
(43) 

0 ,« = oo,jce(-l,0) 
1 ,« = oo,xe[0,l) 

1 ,x>\ 

Table 11 shows the variation of the example probability density function (pdf) <D as the 

parameter n varies from 0 to oo. It can be seen that the density function can be represented 

as a uniform-density where the emphasis is distributed uniformly in the attribute range to an 

impulse, at the limit n —> oo the pdf becomes an impulse, which means that only the training 

sample is used without any randomization. 

Table 11: Parameterized probability density functions 

n Probability Density Function Graph 

0 

1 

<p(x) = -

?(*)=(i-M) 

90 

file:///-/x/


Chapter 4 Gesture Recognition — Model Creation 

2 

3 

9 

00 

p(*)=-(i-M1/2j 

#>(jc) = 2( l - | jc|1 / 3 ) 

#>(JC) = 5(1-|JC| j 

q>(x) = -
00 x = 0 

0 x *0 

4.2.1. Posture Transition Stochastic Matrices Calculation 
The posture transition matrix Mt at time sample /is a square matrix of size S x S, where S is 

the cardinality of the clustered posture set t. Every element m^t) of Mt represents the 

probability of a state transition from the posture labelled j to the posture labelled i, given 

the generalized posture sequence family X(a, (3, t) — equation (44). The posture transition 

matrix Mt is calculated by integrating the pdf of the random variables a and |3 over the 

ranges where the corresponding posture remains constant. It can be defined more formally 

by equation (45). 

P{L{c{x{a,J3,t))) = i,L{c{x{a,p,t-\)))^j) 
m i i ( t ) - P(L(C(x(a,/1,t-l))) = j) 

mJt) = 
{L{C(x{a,pj)))=ir,L(C{X(a,p,t-\)))r:j} 

{L{c(x{a,/),t-\)))=j} 

(44) 

(45) 

We will define A as the interval in the posture attribute vector space RN corresponding to a 

posture label i at time sample t. 

A(i,t) = (Y,8) |L(C(X(a,p,t))) = i 

Substituting from (46) into (45) we get 

(46) 

\\<S>Ar)®B(S)dydS 

m ^ 
A(>V)nAOV-l) 

\\®Ar)®B{3)dld8 

AOV-l) 

A(i, t) can be expressed in terms of the union of disjoint intervals in the (y, 8) space. 

(47) 
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A(/,0 = U(Dwl M J (48) 
J 

Equation (47) can now be written as a product of the difference of the probability 

distribution functions of posture attributes. 

4.2.2. Initial Probability Vector Calculation 

The initial probability vector V0 represents the probability that the gesture starts at a 

particular posture, given the training sample family X(oc, (3, t). Every element v; of V0 

represent the probability that the gesture starts at the posture labelled i. It can be defined by 

an integral of the probability density function over the domain of the random variables over 

which the random vector X(oc, p, 0) correspond to a particular posture, as shown in 

equation (49). 

V 0 = { v 0 i } , v0i = tf<t>A(r)®B(S)dydS, i e { 0 , l , 2 , 3 , . . . S } ( 4 9 ) 

(r,S)\L(C(X(a,fi,0))}=i 

Substituting with time t = 0 in equation (38), we get 

X(a, p, 0) = X(0) + p (50) 

Thus, the initial probability vector is independent of the timing scale factor at time t = 0. 

Therefore, equation (49) can be simplified as in (51). 

V 0 = { v o i } , v0i = \<!>B{8)d8y i e { 0 , 1 , 2 , 3 , . . . S} ( 5 1 ) 

S\L(aX(0)+/3))=i 

From the assumption of scalar attributes mutual independence, we can perform the 

integration of equation (51) on each attribute random variable independently and the 

product of all scalar integrals taken as the resultant value. 

V0={v0i}, v0i = f l K(*y)<tf,, ie{0,l,2,3,...S} (52) 
7=0 S\L(C(X(0)+/3))=i 

Finally, the scalar integral of equation (52) can be expressed in the form of a difference 

between the probability distribution functions F^ evaluated at the interval ends. 

V 0 = { v o i } , v0i =f[(F<Pj(SJ)-F(Sj)), i e { 0 , 1 , 2 , 3 , . . . S} (53) 
7=0 
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The domain of the integration is constrained by (L(C(X(0)+ [3)) = i), which can be 

expressed by the union of disjoint intervals in RN defined by {[3',, Sj ] }. 

4.2.3. Terminal Probability Vector Calculation 
Dynamic gestures terminate with specific postures which may persist over a small period of 

time. These postures are significant to observe and can be used for gesture segmentation. 

The terminal posture probability VT represents the probability that the gesture ends at a 

particular posture, given the training sample family X(oc, (3, t). The ending time of the sample 

X(oc, (3, t) is inversely proportional to the scaling factor a, and is given by (T/a), where T is 

the duration of the training sample X(t). Every element v; of VT represent the probability 

that the gesture starts at the posture labelled i. It can be defined by an integral of the 

probability density function over the domain of the random variables over which the 

random vector X(oc, [3, T/a) correspond to a particular posture. Substituting with time t = 

T /a in equation (38), we get 

X(a,[3,T/a) = X(T) + (3 (54) 

Thus, the terminal probability vector is independent of the timing scale factor, similar to 

the initial probability vector. Therefore, the terminal probability vector can be estimated as 

in initial probability vector case - cf. (51). 

V T = { v T i } , vTi = \®B{8)dS, i e { 0 , 1 , 2 , 3 , . . . S} ( 5 5 ) 

S\L(C(X(T)+fi))=i 

Detection of the terminal posture at any time past a minimum period, defines the end of 

the gesture, even though the gesture model may contain more transition matrices, given that 

the gesture provides a non-zero probability given all the previous postures. For example, 

suppose a dynamic gesture is performed faster than average. It may terminate, while the 

gesture model contains posture transition matrices modeling slower versions of the same 

gesture. The detection of the terminal posture automatically renders the model's transition 

matrices beyond it as invalid. In the gesture recognition section however, the gesture 

probability is calculated, given a fixed sample size. For that reason the gesture recognition is 

divided into two sections, one prior to the detection of the terminal posture and another 

past the detection of the terminal posture. 
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4.2.4. Compound Gesture Models 
It is desirable in gesture recognition and interpretation to be able to regroup the gesture 

models by combining and splitting gestures. Generalizing the training gesture sample as 

discusses above is not sufficient to accommodate for all the variances of the gesture. 

Multiple training samples are acquired and combined to generate a more general model. 

Moreover, dealing with the gesture set as a ring, where the gestures can be grouped and 

subtracted or split, may be advantageous in both the recognition phase where a more 

general gesture model is used to infer a concept, and then the more specific models can add 

specific meaning to the gesture. 

The dynamic gesture model created using a single sequence of hand postures is extended to 

include multiple samples by merging the gesture models into a more general or compound 

model. The merge operator can be used to build a hierarchy of similar gesture models. 

Merging the probability vectors is performed by a weighting average between the 

corresponding models. The gesture model of equation (37) is thus extended to include a 

scalar weight to, which reflects the commonality of the gesture model and the number of 

gesture samples used to generate the gesture model. It is initialized to one and grows as the 

gesture model compounds more gestures. 

G = {co, V0, Ml5 M2 , . . . , MT4, VT} (56) 

The merge operation ® is similar to an ADD operation, as shown in equation (57). 

COj© U2 = COj+ C02 

V0,i © V0>2 = (to! V01 + co2 V02) / (coj+ toj) 

M u © Mij2 = (Wl M u + to2Mi2) / (to,+ 0)2) 

VT>1 © VT_2 = («! VX1 + co2 VT>2) / (cot+ Wj) 

Special attention must be paid to the stochastic matrices M4. According to the model 

creation procedure discussed earlier, the posture transition matrices are not truly stochastic 

matrices, because according to equation (47) if a posture j not encountered at time t-1, the 

elements m^t) are not determined V i (division of 0 -=- 0) and are set by default to zero. 

Merging such a row with a non-zero row will violate the definition of stochastic matrices, 

which indicates that all rows must add to one (definite probability), and will render 

inversion of the merge operation (i.e. split) infeasible. To resolve this issue, we extend the 
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posture set to include a hypothetical null posture, indicating an invalid posture. In this case 

the row corresponding to the transition from an unreachable posture will be represented by 

a transition from the null posture, and will thus have a value of 0 in all elements except 

column corresponding to the null posture will have a value of 1 — conforming to the 

definition of the stochastic matrices. 

The inverse of the merge operation, the split operation (l_) is defined by equation (58). 

COj <~ ( 0 2 = CD, — C02, CO, i=- 0 ) 2 

v o , i •" V0 ; 2 = (to, V0>1 - co2 V0>2) / (<o r ua) (5S) 

M u ' - M i ) 2 = (co1Mu-o)2M i ;2)/((o rco2) ^ ; 

VT>i •" VT ; 2 = ( « ! V T i - co2 VT;2) / ( u r co^ 

4.3. Gesture Recognition 
One of the advantages of our model is the speed by which we can recognize dynamic 

gestures, that is why it is suitable for real-time and interactive applications. The reason is 

that the data required to evaluate the probability of a gesture, given the sequence of 

observed postures, are directly available in the model. The label of the classified posture 

derived from the observed posture attribute vector, i.e. L(C(X(t))), is used as an index in the 

model's probability vectors and stochastic matrices. The product of the elements 

corresponding to these indices, comprise the probability of the gesture given the sequence 

of postures X(t). 

According to equation (36), the probability measure is given by the product of an initial 

probability and a set of conditional probabilities, which is rewritten in equation (59) in terms 

of elements of the gesture model parameters. 

n 0 | g ) = P ( o ) p a ) p £ . . . p S ) ( 5 9 ) 

As mentioned briefly in the gesture model training, equation (59) is valid only as long the 

gesture has not passed its terminal state (i.e. t < x, where x is the last sample prior to leaving 

the terminal posture). We would like to evaluate the probability of posture, given the 

gesture over a fixed period of time for all the gestures, thus normalizing the probability 

w.r.t. time duration. The probability of a gesture given the observed postures is divided into 

two parts, one is prior the terminal posture (t < x) and another is past the terminal posture 

(x < t < tmax), where t ^ > x is the size of the observed posture time window. The first part 
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is within the scope of the gesture model, and the probability coefficients are derived from 

the model parameters, as in equation (59). The second part is outside the scope of the 

model, and is evaluated using a inull-model' stochastic matrix 'Q', which is independent of all 

gestures and sample time. Thus the probability evaluation is normalized with respect to the 

observation period, as shown in equation (60). 

j<,T ;<fmaj 

p(®\g)= CWLIlQo^ (60) 

The segmentation time x is defined as the time sample t > tmin, where the probability of 

terminal state of the corresponding posture is greater than zero and the probability of the 

terminal state of the next posture is zero; this is expressed logically as the event Terminal 

Posture (TP = t > tmin && VT>L(C(X(t))) > 0 && VT>L(C(X(t+1))) = 0). 

The pseudo code for the evaluation of the probability of the gesture, given the observed 

postures, is shown in Table 12. 

Table 12: probability of gesture pseudo code 
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Steps one to four are for initialization; steps five and six represent the first and second parts of 

equation (60), respectively. 
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4.4. Fuzzy Dynamic Bayesian Model 
The dynamic gesture recognition framework described so far works well with noiseless data 

acquired from accurate sensors such as the CyberGlove. But in the presence of noise 

acquired from unconstrained environment using vision-based hand tracking, the framework 

is modified in two ways to handle such noise. First, a larger tolerance for posture attribute 

offsets in the gesture model creation is used. Second, a fuzzy posture set in the form of 

multiple posture candidates and their associated observed probability, is utilized in the 

recognition phase. Figure 51 shows the fuzzy dynamic Bayesian model architecture. 

Hand Tracking 

Gesture Models 

Probability 

Triggered Gestures 

Figure 51: Fuzzy D B N Model architecture 

The dynamic gesture model G = {co, V0, Ml5 M2, ..., MT4, VT}, of equation (56), remains 

the same. The gesture recognition algorithm of equation (36) and (60) and Table 12 is 

modified to process a fuzzy set of postures at every sample point. Borrowing the 

terminology of genetic programming [64], this problem lends itself to the concept of genetic 

crossover. Mixing and matching the detected hand postures prioritized using the probability 

of the observation, provides a candidate population of adequate postures. The posture 

population grows exponentially over the observed posture sequence, but the assumption 

here is that there is only one correct solution and the fitness of any other noisy members of 

the population is negligible. In other words, the probability that a noisy sequence of hand 

postures triggers gesture recognition is close to zero. Thus, instead of processing the 

exponentially increasing posture sequence population individually, a weighted sum of the 

posture population at every sample point is used, where the probability of observation is 

used as the weight. Moreover, the potential postures at the latest sample point, i.e. the 

posture with high fitness to the gesture recognition problem, are maintained in the loop by 

feeding them back in the sample population (Figure 52); insuring their persistence under 

intermittent occlusion or feature extraction failure. 
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Equation (36) is modified for a fuzzy posture set as in Figure 51, which optimizes the 

probability all possible permutations of the fuzzy posture set. 

P(B\g) = argmax{P(on\g)P(oi2\on,g)...P(ojT\oKT_l},g)} (61) 

The processing time for equation (61) is in the order 0 ( TN) , where N is the number of 

postures in the fuzzy posture ensemble. 
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Figure 52: Fuzzy Dynamic Bayesian Model for Gesture Recognition 

To achieve polynomial time processing we modify equation (61) to utilize the fuzzy posture 

set as one entity and we take the waited sum of the probability of all elements in the fuzzy 

posture set, assuming that the noisy postures will not score any gesture over the gesture 

period. The probability of gesture, given the fuzzy posture is thus given by equation (62), 

which has a processing complexity of O (T 2 ) . 

^(0k) = ZP(onk)ZP(o«2ki^)---ZP(°iTkr-i)^) 
h ,M h >JT-I 

(62) 

4.5. Implementation Discussion 

Since response time is a major issue in the success of recognition-based human computer 

interaction, we explain the techniques we used to improve the response time of the dynamic 

gesture recognition algorithm. The algorithm, explained above, utilizes a sliding window of 

hand postures. At each sampling time, the window slides one element allowing a new 
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sample to enter at the end of the window and removing a sample from the beginning. 

Typical implementation of sliding window, or buffer type, applications is set up using the 

maximum window/buffer requirement allowing the algorithm to process the longest 

possible gesture. Aligning the gesture model with the start of the sliding window, will result 

in huge latency in most cases due to buffering unnecessary postures at the end, as shown in 

Figure 53. 

One way to eliminate the latency is to derive the dynamic gesture model traversing 

backwards in time, where the sliding window is always utilized up to the latest sample. Since 

the gesture model is structured symmetrically with respect to time, i.e. it is comprised of an 

initial and terminal probability vectors bounding a sequence of stochastic matrices, it can be 

trained by traversing the training samples in backward direction. Figure 53 shows the 

advantage of reverse time traversal mode over the forward time traversal one., where it is 

evident that in inverse time traversal case the latency due to excess buffer size has been 

eliminated by shifting it to the past side of the time line 
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Figure 53: Forward & backward time traversal dynamic gesture models 

Another way we to reduce latency, due to excess buffer size, is to keep track of the 

effective sample count for each gesture in the gesture set. The effective sample count is a 

state variable associated with every gesture and is initialized to zero. At every sample, the 

state variable is incremented if the probability of the gesture is greater than zero, or reset to 

the greatest value providing non-zero probability, or to zero otherwise. The state variable 

helps align the sliding window with the current time sample, avoiding the latency due to 

aligning the sliding window fully with current sample. 

Figure 54 shows the class diagram of the dynamic gesture recognition library we developed 

to test the performance of the gesture model. The main class in the diagram is the Dynamic 
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Gesture class, which is comprised of the initial and terminal probability vectors and the 

state transition matrices. It also contains the posture classifier. It utilizes other gesture 

models by merging to them, and it utilized the gesture sample by providing the probability 

of the gesture, given the posture sequence. The Gesture Sample class has different variants 

such as the classified-, sliding window-, or the classified sliding window — gesture sample. 
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Figure 54: Dynamic Gesture Model Class Diagram 
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4.5.1. Hand Tracking and Gesture Recognition System Integration 
We described the dynamic gesture recognition framework and the vision based hand 

tracking framework. The data flow in each framework goes through an endless loop of 

processing. The hand tracking framework continuously extracts the hand features from the 

acquired images and updates the hand posture estimation accordingly. The gesture 

recognition framework continuously acquires the hand posture and provides the state of the 

acquired gestures. One problem of integrating the two frameworks is that they may be 

required to run at different cycle rates (frequency). For example, the vision-based hand 

tracking framework can run as fast as the camera frame rate 30 Hz but may be slowed down 

by processing load, so practically it works in a variant frequency in the range [5, 30] Hz. 

Meanwhile, the gesture recognition is required to work in a near constant frequency of 50 

Hz, in case of the CyberGlove, and 10 Hz in case of the vision-based tracking. Figure 55 

shows how we resolved the data rate discrepancy. 

e&tiwaxttd 
Posture 

Ctts-turt 

Figure 55: Hand Tracking and Gesture Recognition Integration 

The solution to this problem is to make the posture prediction interface a re-entrant 

mutual exclusion critical section in the hand tracking framework. The interface is acquired 

periodically by the gesture recognition module to get an updated estimation of the hand 

posture. In other words, the gesture recognition process is running asynchronously with the 

hand tracking process, and it utilizes the predicted posture interface to asynchronously 

acquire the hand posture at high data rate, independently from the hand tracking process, 

which updates the estimated postured at a slower rate. 
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4.6. Posture Attributes and Posture Classification 
The human hand can be modeled using an articulated structure of 19 links and 20 degrees-

of-freedom, plus 6 DOF for the hand position and orientation. Thus, the hand posture 

space can be fully covered using a 26-dimentional space. In practice, the 20 DOF hand 

articulation, also called intrinsic posture attributes in this dissertation, contains a great deal 

of redundancy and can be greatly reduced to a lower dimensional. All hand the posture 

attributes, except for the 3-DOF position, is bounded within fixed bounds, namely the 

static finger constraints. Posture classification is a mapping of the high dimensional posture 

space to a discrete set of postures. By dividing the posture attributes into disjoint sections 

we can divide the multi-dimensional posture space into discrete set of postures represented 

by volumes in the posture attribute domain. The number of postures increases 

exponentially with the number of attributes and the number of sections used to divide each 

attribute. In other words, we can think of the attribute sub-sections as nodes in a tree 

structure, where every attribute represent a level deeper in the tree structure. The postures 

are represented by leaf nodes in the tree. The more levels in the tree, the more number of 

leaf nodes there is, corresponding to more postures in the posture set — an example will 

follow. 

Excluding the hand position, our approach for posture classification is as follows: 

First, use high level posture attributes derived from the finger joint angles, which abstract 

the inter-joint dependency and relate to visual posture attributes; e.g. the finger curvature. 

The major curvature provides a measure of the finger bending around the MCP joint, and 

the minor curvature provides a measure of the finger mending around its PIP joint. 

Together the two curvatures provide a visual interpretation of the fingers posture. 

Second, the posture attributes are divided into groups. The advantage of group-subdivision 

is to be able to use few small DBN models instead of one large model. As described in the 

Gesture Model Creation section, the size of the model's stochastic matrices equals the 

cardinality of the posture set. By grouping the posture attributes into independent groups, 

the cardinality of the resulting sub-groups is much less than the cardinality of a single group. 

For example, suppose we have a total of 15 posture attributes; namely the thumb's 

curvature, abduction and anteposition /opposition, and the fingers' major and minor 
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curvatures and abduction. Suppose also that every attribute is divided into 4 different 

intervals. Thus the total number of postures as a result of the Cartesian product of all 

attribute is equal to 415 = 1,073,741,824. By regrouping the posture attributes into 5 

different groups, one for every finger, the total number of states per finger as a result of the 

split is 43 = 64, and five independent sets of finger postures will sum up to 320 states. The 

grouping schemes are arbitrary, but the following three schemes are found to be more 

meaningful: 

• One group: (all fingers). 

• Five groups: (thumb, index, middle, ring, pinky), 

• Three groups: (thumb, (index, middle), (ring, pinky)) 

Third, we divide the attribute range into as fine granulation as the application requires. This 

requires analyzing the training data and the gesture set. The gesture set dictates the posture 

attribute set and its granulation in order to be able to distinguish the different postures in 

the posture set. Analyzing the histogram of the posture attributes in the training data, 

provide good candidate for the attribute segmentation points. It is advised to use valley 

points in the histogram as segmentation points. 

Finally, the classified attribute vectors are mapped to integers using the labeling function L, 

which is a many to one function, labeling similar postures to the same label and rejecting 

insignificant postures along the way. For example, the fingers abduction (except the thumb) 

is insignificant to the overall posture except when the finger is straight, which means that 

when the finger is curved the abduction variations will be mapped to the same posture 

label. 

4.7. Gesture Recognition Results 
To demonstrate the precision of the dynamic gesture DBN model, the framework was 

tested with three dynamic gestures, namely Grasp, Quote, and Trigger gestures. In the grasp 

gesture, the hand starts from a resting posture and ends up in a fist posture. The quote 

gesture emulates a double quote, using the index and middle fingers. The trigger gesture 

emulates triggering a gun. The gestures were chosen to be visually separable to demonstrate 

the basic capability of the dynamic gesture models. The gestures were acquired using a 
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CyberGlove at a sampling frequency of 25 Hz. The target gesture sampling frequency was 

set to 10 Hz, resulting in over-sampling ratio of 2.5. The posture attribute vector was 

comprised of the five finger minor curvatures. Each finger attribute was divided into four 

intervals comprising a different finger state. Figure 56 shows the posture attribute vector 

used for training the dynamic gestures, where (9, 9, and 8) gestures were used to train the 

dynamic gesture models, respectively. 

Figure 56: Training samples 

The horizontal axis shows the sample number and the vertical axis is normalized curvature 

measure in the range [0, 2n]. 

In the grasp gesture case, all fingers start from low curvature and gain curvature as the 

fingers bend and then move back to resting position. In the case of the Quote gesture all 

fingers except for the index and middle are bent and the later two fingers stretch and bend 

as the gesture is performed. The trigger gesture is similar to the Quote with only the index 

finger stretching and bending. 

The cardinality of the posture set t was reduced from 45 to 5x4 by considering every finger 

separately, i.e. the dynamic gesture model, G = {V0, M1--T, VT}, is replaced by five 

independent sub-models of the fingers G; = {Vi0, M i l T , V i T}, i s [1, 5]. The 

advantage/disadvantage of the compound model is that it may allow some inter-finger 
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timing discrepancies. This may play as an advantage in increasing the generality of the 

model, but can be a disadvantage in reducing the model's ability to distinguish gestures 

solely on inter-finger timing. In the latter case, different attribute grouping may be required. 

For example grouping the index and middle finger attributes to catch the two fingers' 

timing. 

A linear probability density functions (n=l, cf. equation (42) and Table 11) were used for 

both time scaling and attribute acuteness random variables. The maximum time scaling 

factor (cf. equation (39)) was set to ±30%; i.e. gestures of rates 30% faster or slower than 

the training sample are considered valid. The posture attribute tolerance was set to half the 

attribute interval width, which means the attribute probability density function will span the 

whole attribute interval when the attribute value is centered over the interval, but it will 

overlap with the adjacent interval otherwise, as shown in Figure 57. 
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Figure 57: Setting posture attribute tolerance 

The posture sequence sliding window size was set 20% larger than the maximum dynamic 

gesture time period. The posture attributes used in the testing experiment and their 

corresponding gesture probability measure of three gesture models are shown in Figure 58. 

The probability of the observed posture, given each gesture using forward time traversal, 

was evaluated for the three gestures at every sampling period, also shown in Figure 58. 
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Figure 58: Probability of posture, given gestures, and the segmented gestures detected 

A logarithmic scale was used to show the gesture probability for convenience. 

We included an association between the gestures detected and the posture attributes that 

caused the dynamic gesture model to be triggered. The algorithm provided 100% 

recognition of the input gestures. We recognized that our scheme has a high precision, 

indicated by the pulsing gesture triggers. We also did not require a threshold for probability 

measure as the invalid gestures resulted in zero probability. In other words, the gesture 

model is not based on the nearest neighbor where it continuously triggers the most 

probable gesture, but it remains idle except when a gesture is encountered. 

The advantage of backward time-traversal is demonstrated by another test, shown in Figure 

59. 
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Figure 59: Forward and backward time traversal — recognition latency 

Ten gestures were recognized in both forward and reverse time traversal modes. The 

resulting gesture probability measure is shown in logarithmic scale for convenience. The 

position of the forward and backward sliding window at the time of gesture recognition is 

shown, labeled F and B respectively. For convenience, we only show the last six forward 

sliding windows and the initial six backward sliding windows with only two overlapped. The 

latency due to oversized sliding window, in the case of forward time traversal, is shown in 

comparison to the backward traversal case (shaded in gray). 

To test the recognition success rate of our scheme over multiple users, we collected 

dynamic gesture samples from six different operators with different hand sizes — they 

included a football player and a Chinese girl to expand the hand sized range. We conducted 

a test using sample sets of 14 gestures, including 7 dynamic gestures and 7 postures. The 

gesture samples were acquired using a CyberGlove. The gestures trained on the first 

operator were used to recognize the gesture samples from the rest of the operators; we 

estimated the recognition rate at 40%. Then, we progressively trained the gesture models on 

the least successful operator, using the gesture model merge operation described earlier, and 

then re-performed the recognition experiment on all the operators. The results of the 

experiment are shown in Figure 60. 
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Figure 60: D B N Model Recognition Rates 

The success rate progressively increased as we trained on more operators, as expected. We 

realized that the recognition rate is improved dramatically if we use the gestures trained on 

the same operator to recognize his gestures. A plausible explanation is due to the variation 

in the CyberGlove calibration between the operators. 

We tested the integrated vision-based hand tracking and gesture recognition frameworks 

on a set of six dynamic gestures: fist, fan, quote, trigger, prml23, and imrl23. The fist 

gesture is similar to grasp gesture described earlier. The fan posture is similar but the fingers 

flex in sequence - pinky, ring, middle, index and thumb. 

The quote gesture emulates a double quote, using the index and middle fingers. The trigger 

gesture emulates triggering a gun; and the count 1,2,3 gestures are counting using the pinky, 

ring and middle fingers in the first case and using the index, middle and ring fingers in the 

second case. The DBN model was trained using a separate training set acquired using the 

CyberGlove. The posture attribute vector consists of 13 attributes: thumb curvature and 

fingers abduction and major and minor curvatures. The training data were acquired using 

the CyberGlove and were used to create the gesture models. The testing data was acquired 

simultaneously from the CyberGlove and two cameras at a rate of 10 Hz / fps respectively. 

The fuzzy posture set provided by the vision-based hand tracking sub-system was 

configured to include the most probable {1, 5, 10, 20, 40} postures, given the observed 

features. The probability measures provided by the DBN models are shown in Figure 61. 
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Figure 61: Dynamic Gesture Recognition 

The model provided 100% recognition using the CyberGlove data. The vision system 

showed recognition improvement from 25% using a single posture per sample to around 

70% recognition using 40 postures per sample, with 10 postures per sample providing the 

best balance between recognition and false trigger. The corresponding posture probability 

after increasing the posture attributes offset tolerance in shown in Figure 62. 
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Figure 62: Gesture Probability After Increasing the Attributes Offset Tolerance 

The integrated vision-based and gesture recognition system shows promising results but 

indicates that the vision-based tracking requires further enhancement in terms of posture 

estimation integrity and noise reduction. We noticed that in some cases the fist and fan 

gestures provided close probabilities, even in the CyberGlove case. Since the only difference 

between the two gestures is in the inter-finger timing, it is evident that in some cases, 

dividing the gesture model to independent five models can cause errors. We recommend 

dividing the fingers into 3 groups as follows: {thumb, (index, middle), (ring, pinky)}. The 

posture classification scheme is application dependent and may require further testing, but 

we will consider it outside the scope of this dissertation. 

4.8. Conclusion 
We presented a framework for dynamic gesture recognition and segmentation. The 

framework emphasizes the gesture dynamics by timely tracking the acquired gestures within 
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predefined bounds derived form the training samples. The posture attribute bounds are 

learned from a few segmented gesture samples that are used as particle samples in the 

posture attributes space. The framework is similar to HMM but supersedes HMM in two 

main issues. Firsdy, the model does not make an assumption of the existence of some 

hidden states, thus it is easier to build and does not require estimation of the number of 

hidden states or the state interconnection topology. More importandy, it does not make the 

assumption that the state transition probability is constant with respect to time. We argue 

that in our framework, the dependence on the training samples makes it less prone to detect 

false positives. The gesture generalization based on particle training examples and radial 

basis probability density functions is suitable for the intrinsic posture attributes, taking 

advantage of the static constraints of the hand posture. In other words, all attributes are 

bounded by predefined intervals and probability distribution over the intervals at any time 

can be approximated by particles associated with radial basis probability density functions. 

Secondly, since the gesture model is derived directly from the probability functional used in 

the gesture recognition, the gesture recognition is directly determined from the model and 

does not require complex calculation, such as Viterbi algorithm, as in the case of HMM. 

3D hand trajectories referenced to body are bounded by the hand length and can be added 

to the posture attributes. The trajectory space can be divided into circular ring sectors 

around the body. On the other hand, HMM is more suitable for 3D hand trajectory in 

absolute 3D space (cf. [65]), because the position vectors are not bounded to fixed ranges. 

Thus the HMM will generalize the training data better than the radial basis pdf s. To include 

hand trajectory and finger postures to our model, we recommend using a hybrid 

HMM/DBN model. 
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Chapter 5 

5. The Role of Context in Gesture Applications 
Gesture is a form of oral communication and has many similarities to conversations. To 

understand the context of a gesture, we investigate human conversations in general and 

relate them with our research in the context of hand gestures. Human communication has 

been studied by researchers in the fields of psychology, linguistics, anthropology, ethno 

methodology, discourse analysis, and conversation analysis. R. K. Sawyer [89] in his book 

"Creating Conversation" studies conversations as a form of a creative process. More generally, 

human to human communication includes oral communication e.g. conversations and 

gestures, written documents, e.g. memos, letters, emails, newspaper reports etc., technology 

mediated communications, e.g. emails, chatting and video conferencing, radio, television. 

Several influential modern theorists have even argued that all written language — not just 

letters and emails, but even novels and historical records — employ strategies which are 

similar to these employed in conversations. In other words, various forms of 

communication, oral and written, share the same goal but may differ in form. 

The metaphor of all forms of creative communication is a mediated performance in which 

an artist is performing to an audience; but sometimes the audience can just see the end 

result and not the creating process. Interactive communication, including conversation and 

gestures, are an example of a more general characteristic of group behavior called 

emergence, where novel and coherent meanings arise in the process of interaction. A recent 

mathematical study of group decision making [90] has proved that group behavior is 

emergent and thus unpredictable; even if the views of all the participants are known a priori, 

because new ideas can emerge and some may change their opinion as a result of some other 

arguments. 

5.1. Gesture Attributes 
The following attributes of the process of human communication provide hint to the 

relevant context information associated with gesture recognition. Firstly, gestures are 

improvised, i.e. it is spontaneous. The element of improvisation is inversely proportional to 

the time it takes to prepare or anticipate a response. Figure 63 shows some means of 
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communication and their preparation times, the improvisation level is noticeably inversely 

proportional to the preparation time. 
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Figure 63: Improvisation Chart 

Scripted forms of communication are characterized by formality, relatively long period of 

preparation, and slower response time; they also tend to have higher intellectual value and 

may, therefore, require storage and retrieval. Improvised communication, on the other 

hand, is characterized by fast response time and litde preparation time; mythically, they tend 

to have less intellectual value and usually they are neither stored nor retrieved. 

Secondly, gestures are indexical [91], which means they do not have a definitive meaning 

but derive their logical meaning from contextual and co-textual factors, usually called 

context of situation [93]. A gesture is indexical when it is indicative of something about the 

situation beyond the literal meaning of the gesture. Thirdly, sign gestures are not all purely 

symbolic, and some are in fact mimetic or deictic (these are defined by Quek [97] as act 

gestures where the movements performed relate directly to the intended interpretation). 

Mimetic gestures take the form of pantomimes and reflect some aspect of the object or 

activity that is being referred to. These are similar to classifier signs in American Sign 

Language (ASL) which can represent a particular object or person with the hand shape and 

then act out the movements or actions of that object. Gestures may also accompany speech 

and play a meta-talk role, which is an additional form of information about the speech. 

Kendon [94] described one of the roles of hand gesticulations that accompany speech as 

providing images of the shapes of objects, spatial relations between objects or their paths of 

movement through space. These are in fact some of the same functions of classifier signs in 

American Sign Language. Fourthly, a gesture has nuance aspects that may be used to 
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(a) (b) 

Figure 64: Grammatical inflections of the sign ASK- Adopted from [42] 

Fifthly, a gesture is rule based; rules govern turn taking, and engaging and releasing the 

gesturing mode. The rules are usually drawn from external factors, such as the setting 

(objects and relevant services/applications available, location, culture) and people 

(performers, addressees and bystanders, and their status and relationships). Sixthly, a gesture 

is evolving; new gestures may be created as the need emerges, and new meanings may be 

induced from usage. The evolution process may take a long period of time and involves 

many people improvising and collaborating to reach a form of consensus. The creation of 

gestures is similar to the creation of new languages; there must be real need to motivate the 

process and a long evolution period to refine the gesture vocabulary till it reaches a 

complete, comprehensive, and useful gesture set. Moreover, there can be different sets of 

gestures available in different communities, affected by their environment, history of use 

and their communication goals. Those gesture vocabularies, evolve overtime, and can be 

shared among user communities. Finally, a gesture is collaborative. It takes a source 

(gesturer) and a recipient to perform and comprehend a gesture. As a form of creativity 
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gesture is also collaborative and requires a level of intelligence to make it work efficiently. 

Thus, gestures must be studied as a collaborative process, which only works when shared 

effectively with others — including smart machines, in a gesture-enabled user interface. 

Thus, an accurate dynamic gesture recognition system, with high recognition rate and low 

false trigger rate, is an essential part of context-aware gesture enabled user interfaces. 

Table 13: Gesture attributes and the associated requirement for gesture enabled UI 

# 
1 
2 

3 
4 
5 

6 

7 

Attribute 
Improvisation 
Indexical ability 

Meta-talk 

Nuance 
Rule based 

Evolving 

Collaborative 

Functional Requirement in the User Interface 
Gestures emerge unexpectedly, and do not follow statistical norms 
The interpretation of gestures depends on external factors - context of 
the situation 

Some types of gestures are intended to complement speech 
Small variances in gestures may add new meanings, particularly timing 
The rules of engagement into gestures must be defined, the rules may 
vary based on external factors 
The gesture set is dynamic and may change over time an easy way to 
add gestures and combine old and new ones is required 
Low latency and high accuracy gesture recognition is required to 
maintain the flow of collaboration 

Table 13 summarizes the discussed gesture attributes and their associated functional 

requirements for the context aware, gesture enabled system. 

To design a context-aware, gesture-enabled, user interface, we first must identify what is 

relevant to the process of recognizing hand gestures and the successful interpretation of the 

gestures in the form it was intended for. 

When it comes to gesture interpretation, the relevant context can be categorized into three 

main categories: First, the audience, which include the gesture operator and the people 

interacting with her. The audience can be classified on three different levels: 

• Personal Level: Every operator has her special way of performing the gesture. It has 

been shown that the gesture recognition rate is increased by training the gesture 

models using data acquired from the same operator. This context information 

includes the hand model, specific for the user, the gesture models associated with the 

user, and the user preference associated with the applications. 
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• Social Level: It includes frequent interactions with the operator's social network. It 

defines the frequent vocabulary and preferences and can be used to resolve 

ambiguity. 

• Community Level: It includes the cultural factors, and defines the common facts shared 

by people in the same community but may vary from one place to another. 

Second is the available services or active applications supported by the user interface (the 

non-human factor), which define the active gesture set. The available services are usually 

location bound. Third are the gesture intrinsic factors. For example, timing is an essential part 

of gesture intent, variants in the speed and frequency (beat) of gestures can add to the 

meaning intended by the operator. Spatial and acuteness factors are also an intrinsic 

property of a gesture. Intrinsic gesture factors are best recognized at the gesture model 

level. The DBN model we propose can accommodate variants in timing and spatial and 

acuteness, it also provides a means to group related gestures into more generic models. 

5.2. Agent Based Gesture Interpretation 
We are using an agent-based system to abstract the loosely coupled aspects of the gesture 

context. Research on agent and multi-agent systems is a large and quickly growing subfield 

of distributed artificial intelligence (AI). Perhaps the most general way in which the term 

agent is used is to denote a hardware or (more usually) software-based computer system that 

possesses the following properties: Autonomy, being able to operate without direct 

intervention, and having some control on their decisions and internal state; Social ability, 

interacting with other agents and possibly humans; Reactivity, perceiving their environment 

and respond in a timely fashion; and pro-activity, able to exhibit goal-directed behavior. 

Excellent introductions to the agent- and multi-agent- based systems can be found in 

[108]—[110]. More in-depth discussions of multi-agent systems issues are in [111] and [112]. 

Following [113], a tentative definition of an agent can be formulated as follows: "An agent 

is a (computer) system that is situated in some environment and that is capable of 

autonomous action in this environment in order to meet its design objectives." The 

environment in which an agent operates can be either real or simulated. The key advantage 

of agent-based systems is the fact that agents form a new and useful abstraction tool for 

analyzing and solving complex problems. 
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The phrase "agent-based system" can be used in two contexts that are not necessarily 

closely related [99]. One usage of that phrase is to describe systems of autonomous agents, 

usually autonomous robots. The second usage is to refer to systems consisting of software 

agents; loosely coupled software modules collaborating by sharing information to achieve a 

common goal. The former systems deal with all aspects of autonomous robot multi-tasking, 

such as task planning, mobile platform issues, and robot collaboration, whereas the latter 

systems employ an agent-based approach to analyse/ retrieve I process data sequences and do not 

have to be owned by autonomous agents. The most common use of agent-based systems is 

to perform effective task decomposition by employing multiple agents with different 

processing competencies (visual capabilities) at varying levels of abstraction to solve specific 

subtasks and then to synthesize a solution. The agents are therefore usually used as means 

to effectively modularize and/or parallelize the design of a computer vision system. 

Figure 65 shows our agent based approach to gesture interpretation. 

!Community Agents! CA \ ! CA 

Services Agents 
y / 

Srv Srv Srv Srv ... People Agents 

> . - \ x • - ^ 

PA PA PA PA PA 

,T-T. 

... 
, ' I \ 

i l n I ! Status/ i ! Facial \ ! Body ] ! - „ . , „ „ ] 
! I U i | Profession ! | Expression • | Posture • | o u u • 

Figure 65: Relevant Context in Gesture Interpretation - Agent based approach 

The relevant context to the process of gesture interpretation, namely the people and 

services, which are extrinsic to the gesture model, are shown at the bottom, indicating low 

level of abstraction. Context aggregation begins by introducing the community agents, 

relating group specific aspects. The situation aggregators integrate the people and services 
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aspects into more meaningful entity relevant to gesture interpretation, it includes the roles 

played by the gesture participants (operator and audience) and it defines the operator's 

possible gesture communication goals. Intrinsic context, e.g. timing and special variants are 

addressed in the gesture recognition process and are presented as various gesture candidates 

in the form of gesture agents. 

Gesture monitors are created to represent the existence of a gesture in the active gestures 

set. When a gesture monitor detects a gesture it creates a gesture agent, which includes 

information about: 

• The canonical probability of the gesture, given the current situation, 

• The probability of gesture, given the observed posture, and 

• The possible interpretations of the gesture. 

The gesture interpretation module oversees the gesture interpretation process and provides 

the candidate gesture interpretation to the user interface. 

Other abstract entities relevant to process of gesture recognition and interpretation are: 

• Rok: we perform many different characters each day, presenting different facets of 

ourselves to family, friends, and coworkers. We also create different characters to 

new situations, and participate in different kinds of interactions. In gesture enabled 

perceptual user interfaces, one or more persons can play the role of the gesture 

operator (or speaker); the rest of the people may play the role of the audience or a 

bystander. Depending on the situation, the gesture can be used to control a 

computer system, or provide pictorial explanation to her speech (pantomime). 

• Performance: is defined as a session in which the operator played a role to achieve his 

communication goal. A good performance achieves the conversation goals by 

allowing performers to improvise at their comfortable rate, which psychologists call 

'the flow' or 'peak experiences' as called by the psychologist Mike Csikszentmihalyi 

[101]. We experience flow whenever we are doing something where our skills closely 

match the challenges of a situation. You will not experience flow if the situation isn't 

challenging enough, you just get bored, or if a conversation is over your head, for 

example everyone is speaking too fast that you can not understand what is going on, 

then you will not have flow either; instead you will just get frustrated. We experience 
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flow in between these extremes, in conversations where the creative challenges are 

just right for our skills. Performance analogy in user interface design is the usability 

study, where a session is stored and retrieved for evaluation. The performance must 

contain timely (frame-by-frame) retrieval of low level sensor data and high level 

system observations. For training purposes, the intended interpretation and reference 

observation are provided by a domain expert. 

• Rehearsal, is the training process to fine-tune the different parameters of the system. 

Human communication, including conversations and gesture, are their own 

rehearsals. Unsupervised and supervised training of gesture-enable context-aware 

user interface is required to improve the system performance and increase its 

usability. The relevant aspects can be re-evaluated and the probabilistic priors 

embedded in the system must be frequently updated, with the goal of increasing the 

overall system usability. 

The above principles are abstract concepts general enough to fit any gesture-enabled 

perceptual user interface application. In simple applications a single user and a single 

application or service is active at a time, but in complex applications multiple applications 

and multiple users may be operating simultaneously and collaboratively. For example we 

conducted an experiment to recognize alphabet signs from the American Manual Alphabet for 

the Deaf, shown in Figure 66. 

^ ^ H ft H & 

9b & fe ft & 

Figure 66: American Manual Alphabet for the Deaf 
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We utilized the dynamic aspect of the DBN model by modeling the transition between the 

different letters in the alphabet as they are spelled using manual gestures. The gesture set we 

modeled included 347 hand gestures, including 322 dynamic gestures and 25 postures, as 

shown in Table 14. For rehearsal we used CyberGlove data acquired at 50Hz. We collected 

the training data of every couple in pares of alternate orders, e.g. 'ac' and 'ca' were trained 

from the same training sample. The objective was to recognize letter couples as they are 

preformed and to be able to recognize words from a small dictionary provided to the 

application. 

To relate to the context of gesture as previously introduced, the human factor is 

represented by the system operator, who is identified to the system and the corresponding 

gesture models are uploaded, as well as his CyberGlove configuration file. The service 

provided by the system is Alphabet / Word recognition, which mandates the corresponding 

gesture set. 

Table 14: Alphabet Gesture Set 

a b c d e f g h i kl m n o p q r s t u v w x y z 
a 
b 
c 
d 
e 
f 
g 
h 
i 

k 
1 
m 
n 
0 

P 
q 
r 
s 
t 
u 
V 

w 
X 

y 
z 

a ab ac 
ba b 
ca c 
da 
ea eb ec 
fa 
ga 
ha he 
ia ib ic 
ka kc 
la tb Ic 
mamb 
na 
oa ob oc 
pa pb 
qa 
ra rb re 
sa sb sc 
ta tc 
ua ub uc 
va vc 
wa 
xa 

ad 

d 
ed 

id 

od 

rd 
sd 

ud 

ae af 
be 
ce 
de 
e ef 
fe f 
ge 
he 
ie if 
ke 
Ie If 
me 
ne 
oe of 
pe 
qe 
re rf 
se sf 
te 
ue uf 

we 
xe 

ya yb yc yd ye uf 
za zb ze 

ag 

eg 

g 

ah 

eh 

eh 

ai 
bi 
ci 
di 
ei 
fi 

ghgi 
hgh 
ig 

ig 

og 

rg 
sg 

ug 

yg 

ih 

oh 

sh 
th 
uh 

yh 

hi 
i 

ki 
li 
mi 
ni 
oi 

P' 
qi 
ri 
si 
ti 
ui 
vi 
wi 
xi 
yi 
zi 

ak al 
bl 

ck el 

ek el 
fl 
gi 

ik il 
k 

1 

ok ol 

sk si 

ul 

am an ao ap aq 
bm bo bp 

CO 

do 
em en eo ep eq 

fo 
go 
ho 

im in to ip iq 
ko 
lo 

m mrmo 
nm n no 
omon o op 

p o p 
q 

ro rp 
smsn so sp 

tn to 
umun uo up uq 

vo 
wo 
xo 

ytnyn yo yp 
zo 

ar 
br 
cr 
dr 
er 
fr 
gr 

ir 

or 
Pr 

r 
sr 
tr 
ur 

yr 

as at 
bs 
cs ct 
ds 
es et 
fs 
gs 
hs ht 
is it 
ks 
Is 
ms 
ns nt 
os ot 
ps 

rs rt 
s st 
ts t 
us ut 

ws wt 

ys yt 

au av 
bu 
cu cv 
du 
eu 
fu 
gu 
hu 
IU IV 

lu 
mu 
nu 
ou ov 
pu 
qu 
ru 
su sv 
tu 
u uv 
VU V 

wu 
xu 

aw ax 

ewex 

IW IX 

owox 

sw 
tw 
uwux 

w 
x 

ay az 
by bz 
cy 
dy 
ey ez 
fy 
gy 
hy 
iy iz 

my 
ny 
oy oz 

py 

ry 
sy 
ty 
uy uz 
vy 
wy 
xy 

yu yv ywyx y 
zu z 

120 



Chapter 5 The Role of Context 

wFtfiSr^X- - • .Wi t 
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Figure 67: Alphabet/ Word Recognition Application 
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The status widow on the right hand side shows the words detected and the gestures models 

which are loaded. On the right hand side, the hand mod shows a real-time visualization of 

the hand posture. 

The large number of gestures created two types of challenges to the system design process. 

The first challenge is a scaling challenge. The gesture training data is conspired by performing 

186 training sessions, where 25 training session are performed for the 25 character postures 

and 161 training sessions are performed for the 322 gesture transition gestures — as they 

were performed in couples. The segmentation of the gesture training data had to be 

automated to cope with the huge number of training gestures. A Python script was 

developed to recognize the posture attribute transitions, which are recognized as peaks in 

the posture attribute differentials. Segmentation is performed in relatively constant intervals 

around the peaks. A validating algorithm was developed to check the sanity of the proposed 

segments, and an oracle was used to validate the suspicious segmentation. 

The total number of training gestures was 2951, corresponding to an average of 8.5 training 

samples per gesture. Twelve posture attributes were selected as follows: 

• Thumb : Minor Curvature, and CMC 

• Index : Major Curvature, Minor Curvature, and Abduction 

• Middle : Major Curvature, Minor Curvature, and Abduction 

• Ring : Major Curvature, and Minor Curvature 

• Pinky : Major Curvature, and Minor Curvature 

The index and middle fingers abduction were essential to distinguish the letters U and V 

(cf. Figure 66), but was not required in the case of the pinky and ring fingers. 

The total number of posture attributes is 12 attributes, which were divided into 5 groups as 

follows: {thumb: 2, index: 3, middle: 3, ring: 2, and pinky: 2}. The number of dividing 

intervals per attribute was as follows: {(3, 3), (4, 4, 3), (4, 4, 3), (4, 4), (4, 4)}, respectively. 

The nine postures associated with the thumb were labeled by a one-to-one mapping onto the 

integer range [1, 9]. The labeling for the postures associated with the index and a middle 

finger is shown in Figure 68(a) and the labeling for the postures associated with the ring and 

pinky are shown in Figure 68(b). 
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(a) 

Figure 68: Posture Labeling for: 

(a) Index and Middle fingers, (b) Ring and Pinky fingers 

The labeling functions are designed to be symmetrical w.r.t. the order of the curvature 

attributes. In other words, the opposite order of curvature attributes will result in an 

equivalent labeling scheme. Moreover, the finger abduction at high curvature is ignored. 

The second challenge is the high false trigger rate. As the gesture set grows larger, it is possible 

to keep the recognition rate close to 100%. In our experiment the positive trigger rate was 

at 89%, but the false trigger rate was at 84%, which means on average there is 4.58 letters 

are falsely recognized for every correctly recognized letter. 

Table 15 shows the recognition rates in more details. The first column in Table 15 shows 

the words used to evaluate the system performance. The following columns shows the 

number of characters in each word, the number of gestures in each word, the number of 

recognized gestures, the number of missed gestures, and the number of false triggers in 

each word respectively. 
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Word 
xylophone 

work 
word 

....„,**¥. 
wait 

telephone 
source 

optimise 
heat 
head 
game 
fault 
box 
bid 
bid 

back 
act 

Total 

Num Characters 
9 
4 
4 
3 
4 
9 
6 
8 
4 
4 
4 
4 
3 
3 
3 
4 
3 
79 

Num Gestures 
17 
7 
7 
5 
7 
17 
11 
15 
7 
7 
7 
7 
5 
5 
5 
7 
5 

141 

Recognized 
12 
4 
5 
5 
6 
17 
9 
14 
7 
7 
7 
7 
5 
5 
5 
7 
5 

127 

Missed 
5 
3 
2 
0 
1 
0 
2 
1 
0 
0 
0 
2 
0 
0 
0 
0 
0 
16 

False Triggers 
86 
30 
25 
2 
21 
102 
57 
78 
49 
48 
37 
24 
33 
13 
12 
13 
16 
646 
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5.3. The Big Picture 
Intelligent environment researches have been conducted by technology companies, e.g. 

Microsoft Smart Living, Xerox PARC Pare Tab, AT&T Laboratories Active Badge, and 

universities MIT put-this-here, Georgia Tech Cyber-Guide and Classroom 2000, Stick-e-

notes Kent. It mainly focused on device interconnectivity and building operating systems 

and middleware software that support heterogeneous device communication. The main 

components of the context-aware system design according to Meyer and Rakotonirainy [78] 

are shown in Figure 69. 

Figure 69: Basic Components of a context-aware system interacting with users 

The system basic components include: 

• Input hardware and software sub systems such as hand trackers, mouse, keyboard, 

video cameras, etc. 

• Output hardware and software sub systems, such as displays and projectors 

• A context-aware application running on the available networked processing 

platforms 

• A context-aware middleware providing programming abstractions that hide the 

details of and mask the heterogeneity of the underlying networks, hardware, 

operating systems and programming languages. 
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• Privacy Management protecting the people's privacy from being violated by the 

system. 

User identification and localization in context-aware systems is done in several ways, e.g. 

user log in, fingerprint identification, active badges, mobile devices such Pare Tab, and face 

recognition. The recognition devices have varying degree of recognition success that 

prohibits the widespread of its use. Voice and Gesture recognition as an integral part of 

such systems can provide a versatile way of user interaction with the system, but it remains 

in the far future for the reasons of low success rate and slow response time. 

The role of context, in our point of view, should address both the Positivist and the 

Phenomenological views of context. On one hand, from a positivist point of view, the 

relevant aspects of context must be defined for the context-aware system at the time it is 

designed. Low level sensor data such as Data Glove raw data or image features has to be 

identified because the recognition algorithms use it as input. Hand models and kinematics 

must be identified as well as gesture models. On the other hand, from the 

phenomenological point of view, interdependency between these pieces of information can 

vary from one situation to another based on external factors we call the context. The 

current situation of the system must be re-evaluated continuously to allow new situations to 

emerge and old ones to be eliminated. The system must be able to react to new situations, 

by modifying its topology in terms of interconnectivity and interdependency between its 

components. 

Stochastic processes, such as the observation model and the gesture recognition model, 

and agent-based system architecture, such as the gesture interpretation model, are suitable 

for topological variations in response to the context. Context monitors share the low level 

raw sensor data with tracking and gesture recognition modules and provide aggregated 

context information that can affect the performance of the system indirectly by modifying 

configuration parameters of the system, such as the canonical probability of the gestures 

and postures, injecting posture hypothesis, modifying the interpretation agents' behavior by 

modifying its ontology, such as the word dictionary in the word recognition application. 

Context should not be localized to a particular stage of the system (cf. Figure 1). On the 

other hand, the role of context should be distributed in all the modules and utilized to 
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enhance the performance in all aspects of the system. The following figure shows a 

modified perspective of the role of context in gesture recognition. A revised role of context 

in a vision-based hand tracking and gesture recognition system utilized by a context-aware 

user interface is shown in Figure 70. 

Raw 
Sensor 

Data 

Setting 

Hand 
Model 

Observation 
Model 

Gesture 
Models Services 

Context (location, Objects, People, Services, etc.) V- People 

Figure 70: Role of Context in Perceptual User Interfaces 

The figure shows context as a middleware layer utilized by all of the data flow pipeline 

stages. The aspects of context include all the valuable pieces of information to the hand 

tracking, gesture recognition and gesture interpretation. It can be divided into two main 

categories: 

• Persistent context: are the fundamental inputs to the system; namely the low level 

sensor data (e.g. CyberGlove data, or video frames), hand model, gesture models, 

and observation model. The persistent context is an essential part of the system 

design that belongs to the positivist viewpoint of context, and is covered earlier as 

we explain our framework for dynamic gesture recognition. 

• Volatile context: is a collection of relevant information that is emergent in nature and 

can not be solely designed for, thus belongs to the phenomenological viewpoint of 

context, but are used as an enhancement to the system in the form of a better 

response time, better accuracy, or smarter response to the user's gestures. The 

sources of this type of context are a collection of smart sensors that can recognize 

people, objects, and services in the vicinity of the user. 
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5.4. Conclusion 
We presented the role of context in gesture enabled applications. We highlighted the 

relevant aspects of the gestures that should be part of the gesture interpretation process. We 

also presented an agent-based system design for gesture interpretation, where ultimately 

many gesture enabled services can share the interpretation agent. We demonstrated the 

different layers of the agent-based system design on a manual word recognition system, 

utilizing 347 gestures and recognizing words from a dictionary. Finally we presented our 

integral view of the role of context in any application and particularly to gesture enabled 

user interfaces. This view entails a dedicated middleware layer for context, facilitating the 

flow of context information throughout the different stages of the system design. We 

concluded that for a context-aware application to manage the uncertainty of the context 

information, it must be designed with dual origins of context in mind. The positivist 

approach is a bottom-up approach that defines the essential data structures and processing 

modules required for the basic functionality of the system. It provides configurable 

parameters for each module that can indirecdy enhance the system performance or alter the 

system's functionality, e.g. canonical posture and gesture probability, given the context of 

the situation, and the posture hypothesis derived from the context. An agent paradigm is 

used to abstract the outputs of these modules. The phenomenological approach is used to 

glue these agents together in meaningful topology that satisfies the system's objectives. It 

utilizes the configurable parameters defined by the system modules to enhance/alter its 

performance. 
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6. Conclusion and Future Work 
In this dissertation we tried to conquer new frontiers in the field of gesture recognition. 

First, we compared the de facto standard hand tracking system, namely the data glove, to a 

representative of the vision-based hand tracking approach. This experiment helps initiate 

test bench mark comparisons between the two approaches, bearing in mind the maturity 

level of each approach. We recognized that the vision-based approach can provide accurate 

hand posture estimation, but the accuracy is affected by external factors, such as the camera 

viewpoint and the hand self occlusion. In our opinion, more research has to be conducted 

to increase the stability of the hand posture estimation provided by the vision-based 

approach. Collaboration of multiple cameras and the utilization of more markers are 

essential to make the approach survive the inevitable self-occlusion problem. More easily 

detected markers can improve the overall feature extraction performance, light emitting 

diodes, fiber optic cables, or infrared light sources comes to mind. Light sources are easily 

extracted by their intensity and color markers surrounding the light source can be used to 

identify the feature. 

We started with a single camera approach and then extend the approach by fusing the 

output of multiple cameras. We utilize a color marker approach to make the system 

insensitive to noise from the surrounding environment and to reduce the restriction on the 

user's motion. Many state of the art research in hand tracking use marker-less hands but 

insist on wearing long sleeve and dark colors and the background is usually monotone 

white. Moreover, the hand motion and orientation is usually restricted to planar motion 

facing the camera. 

We tried to keep the requirements for the tracking system at the minimum level, because 

this would demonstrate the worst case scenario. Using redundant feature will only enhance 

the performance of the system. We use perspective geometric invariants and inverse 

kinematics to produce posture hypotheses and then validate those hypotheses using 

probabilistic observation models. Hypothesis validation utilizes color and edge artifacts, the 

vicinity of the hypotheses to the targets and to the estimated postures. Posture estimation is 

performed using damped polynomial extrapolation, to compromise estimating the hand 
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dynamics and estimation stability. In our opinion this is a more appropriate approach than 

Kalman filter estimation, because it requires minimum training, fewer parameters to tweak, 

and responds faster to the hand dynamics. 

We developed a probabilistic observation model to validate posture hypotheses, which are 

projected on the image plane. The observation model utilizes hand/glove color and edges 

artifacts, the detected fingertip marker candidates and previous estimated postures. 

In the future, we would like to enhance the glove design by including more redundant 

markers. We would like to use a lighter color glove because the darker (black) color glove 

suppresses inter-finger edge detection. We would like to place the markers on the wrist, all 

round the hand, allowing multiple markers to be visible in all hand orientations, which will 

enhance the accuracy of the hand position and orientation calculations. We would like to 

investigate CRC forward error correction codes to encode the palm markers, which will 

provide easier recognition even under partial occlusion (cf. ARtag [114], [115]). Simple color 

markers can be added on palm and fingers to estimate the hand articulation using inverse 

kinematics as explained in this dissertation. We also would like to utilize a Kalman filter and 

other techniques to reduce the noise of the vision-based hand posture estimation. 

We discovered an efficient method for finger inverse kinematics that utilizes the error 

model of a simpler 2-DOF inverse kinematics problem to solve the 4-DOF of the fingers. 

The new method provides superior accuracy than the trivial table lookup and also does not 

require storage of tables of kinematics data. The method is also very efficient in terms of 

processing time. 

We also presented Dynamic Bayesian Model for Dynamic Gesture recognition. The model 

relaxes some of the inherent assumptions of the HMM models that do not apply to 

dynamic gestures, particularly the assumption of a constant state transition matrix that 

controls the causality of the posture transition. The techniques for model training or 

parameter estimation and the process of gesture recognition were explained in detail. 

Briefly, training is performed from few gesture samples by generating a gesture ensemble 

from each gesture sample by adding random time-scale and acuteness factors. The model's 

parameters are then derived by integrating the probability density of the random variable 

over ranges where the hand posture remains unchanged. The gesture models construct a 
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ring under the merge operation, thus allowing regrouping the gesture set in more 

meaningful ways. Gesture recognition is performed over a sliding sequence of postures by 

first classifying the postures and labeling the postures as elements from a discrete set of 

posture covering the domain of all possible postures, using the posture labels and models 

transition matrices the probability of the observed posture sequence, given the gesture 

hypothesis 

Postures are defined in a multi-dimensional attribute space, usually comprised by position 

and orientation vectors and finger join angles. The posture set is mapped to a discrete set of 

labels in the range [1, N], where N is the total number of posture classes. Posture 

classification is performed by dividing the static constraints of finger joints into disjoint 

intervals, and using the Cartesian product of all the different joint intervals to label the 

posture. We derive finger curvature attributes the finger joints and showed that the 

curvature is more suitable for vision based tracking because it provides better estimation 

and it can be easily visualized. In the future works, we would like to try an unsupervised 

clustering technique to classify the posture set with the dual objective of minimizing the 

posture set and maximizing the discriminating effect of the gesture models. 

The dynamic gesture DBN model triggers potential gestures as it unfolds with minimum 

latency. It also has high recognition rate even between large numbers of gestures. It was 

tested with a high number of gestures and demonstrated high rate of positive triggers. To 

reduce the number of false triggers, more attributes (e.g. hand orientation and position) and 

a larger number attribute classes must be used to distinguish similar gestures. This can 

increase the size of the model's matrices significantly. We would like to try compression 

techniques on the models data structure, since it contains a large number of sparse matrices. 

A high level gesture interpretation layer that takes advantage of syntactical, grammatical and 

other rule-based interpretation techniques can also be used to reject false triggers. 

The DBN model is suitable for the recognition of intrinsic attributes of the hand posture, 

and the hand orientation, we would like to test it in the recognition of the hand trajectory, 

which may require be referenced to operator's body, e.g. torso and may be defined by the 

vector from the body's centroide to the hand and may be classified in circular ring sectors 

around the body. 
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Conclusion and Future Work 

The DBN model is also very sensitive to the noise in the posture data; we tried fuzzy 

gesture with a genetic crossover twist but the posture data was too noisy to provide an 

impressive results. We would like to revisit this issue to get better results. 

Gestures are emergent phenomena that is usually improvised, indexical, nuance and 

collaborative. A limited set of gestures can be use to achieve usable human computer 

interaction. To achieve a flow in the gesture interaction the gestures must be recognized at 

rates close 100% and less than 100 millisecond latency. Pantomime type gestures can be 

used to pictorial images using gestures, provided that the trajectory tracking is very accurate. 

Context awareness is an emerging technology in ubiquitous and mobile computing. We 

investigated the role of context in gesture-enabled user interface design. We demonstrated 

an agent-based system for gesture interpretation, taking into account all the context aspects 

relevant to gestures, as we learned from our survey of research in psychology. Although the 

system is abstract, it is general enough to accommodate any gesture application, up to our 

knowledge. We presented a context middle layer approach where context could play a 

dialectic role in vision based hand tracking. The technology is at its infancy and will develop 

as cheaper sensors are available and more applications utilize hand gestures. We hope our 

glove prototype could play such a role. We would like to develop a perceptual user interface 

in a tangible application. 

The advantage of the vision-based tracking lies in its ability to recognize more aspects of 

the context and to integrate those aspects playing the dialectic role of detecting and utilizing 

the context in the application. Unless this advantage is utilized, the potential of the vision-

based hand tracking approach will remain compromised. 
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