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Abstract: Predication is one of the fundamental tasks of data mining. In recent years, Artificial Intelligence techniques are 
widely being used in data mining applications where conventional statistical methods were used such as Regression and 
classification. The aim of this work is to show the applicability of Gene Expression Programming (GEP), a recently developed 
AI technique, for hydraulic data prediction and to evaluate its performance by comparing it with Multiple Linear Regression
(MLR). Both GEP and MLR were used to model the hydraulic jump over a  roughened bed using very large series of 
experimental data that contain all the important flow and roughness parameters such as the initial Froude number, the height 
of roughness ratio, the length of roughness ratio, the initial length ratio (from the gate) and the roughness density. The results 
show that GEP is a promising AI approach for hydraulic data prediction.
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1. Introduction
Data mining consists of the extraction of novel, useful 
and understandable knowledge from observed data 
[12]. Artificial Intelligence (AI) techniques are being 
used in a wide variety of data mining applications.
They are being used in areas where conventional 
statistical methods were used such as regression and 
classification. The problem of regression is usually 
described as a process of induction of a data model of 
the system that will be capable of predicting 
responses of the system that have yet to be observed
[11].
Predictions of some hydraulic variables such as the 

length of the hydraulic jump are highly needed for the 
design of most hydraulic structures [8]. Hydraulic 
jump in open channel flow occurs when the fluid 
passes through a region of critical flow. This region 
marks the transition of flow from super-critical to 
sub-critical flow. The hydraulic jump is defined as an 
abrupt change in the flow depth due to considerable 
energy losses. Practical applications of hydraulic 
jump are many; it is used (1) to dissipate energy in 
water flowing over hydraulic structures and thus 
prevent scouring downstream from the structures; (2) 
to recover head or raise the water level on the 
downstream side of a measuring flume and thus 
maintain high water level in the channel for irrigation 
or other water-distribution purposes; (3) to increase 
weight on an apron and thus reduce uplift pressure 
under a masonry structure by raising the water depth 
on the apron; (4) to increase the discharge of a sluice 
by holding back tailwater; (5) to indicate special flow 

conditions; (6) to mix chemicals used for water 
purification; (7) to aerate water for city water 
supplies; and (8) to remove air pockets from water-
supply lines and thus prevent air locking [1]. Detailed 
description of hydraulic jump is reported elsewhere 
[1, 5, 10].
The aim of this work is to show the applicability 

of Gene Expression Programming (GEP), a recently 
developed AI technique, for hydraulic data prediction
and to evaluate its performance by comparing it with 
Multiple Linear Regression (MLR). Both  MLR and
GEP, were used to model the hydraulic jump over a 
roughened bed using very large series of 
experimental data that contain all the important flow 
and roughness parameters such as the initial Froude 
number, the height of roughness ratio, the length of 
roughness ratio, the initial length ratio (from the gate) 
and the roughness density.

2. Theoretical Background
Figure 1 shows a definition sketch of a hydraulic jump 
over roughened bed and the typical arrangement of the 
roughness on the bed. Practically, it is difficult to 
derive a theoretical equation for the length of jump [7].
Therefore, the dimensional analysis will be utilized to 
define the basic factors affecting the length of jump 
and/or the depth of the hydraulic jump. Equation 1 
defines the involved variables in the phenomenon.
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in which ρ is the density of water, V1 is the average 
velocity at the beginning of jump where the depth of 
flow is y1, g is the gravitational acceleration, µ is the 
dynamic viscosity of water, Lj is the length of hydraulic 
jump over rough bed, LR, is the length of roughened 
bed, I is the roughness concentration (I=100aN/bLR, 
with a being the plan projected area of one roughness
element, N is the number of roughness elements and b
is the width of the flume), xo =10+Lb is the distance 
from the gate to the beginning of the roughness below 
the jump.
Using the principles of the dimensional analysis, the 

following relationship is obtained:
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In which F1 is the approaching flow Froude number 
at the beginning of the jump, R is the Reynolds number 
based on y1 which could be neglected as its effect is 
minor because the viscosity was almost constant. 
Equation 2 becomes:
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Equation 3 is used to develop the regression model.  

3. Experimental Data
The experimental data of the present study were 
conducted using a horizontal bed flume of rectangular 
cross section. The flume which is of a recirculation 
system type has the dimensions of 0.53 m wide, 0.7 m 
deep and 16.7 overall operating length with 13.92 m 
working glass walled section. Experimental data were 
collected from four different experimental setup. 
Artificial roughness elements were used to roughen the 
bed in all cases.  The cross section of the roughness 
element is 1.6 cm by 1.6 cm.
In the first experimental setup the roughness height, 

hb, and the roughness length, LR was kept constant to 
1.6 cm and 200 cm. Also, Lb is zero and xo is about 10 
cm. Five different roughness intensities were tested in 

this case, viz I=0, 1.5625, 6.25, 25 and 100%. Figure 2 
shows the variation of Lj/y1 with F1 for this data set.
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Figure 2. Variation of Lj/y1 with F1 for first experimental setup 
(LR=200cm, Lb=0, xo=10cm, hb=1.6 cm).

While in the second experimental setup, the 
roughness length is kept constant at 66 cm. Also the 
roughness intensity, I is fixed to 10 cm, Lb is taken zero 
and xo is about 10 cm. The roughness height hb, was
varying viz 0.8, 1.2, 1.6 and 2 cm. Figure 3 shows the 
variation of Lj/y1 with F1 for these data set.
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Figure 3. Variation of Lj/y1 with F1 for second experimental setup 
(LR=66cm, I=10% cm, Lb=0, xo=10cm).

The third experimental setup consisted of varying LR
to 142, 81.1, 49.3, 33.4, 17.5 and 1.6 cm. For each LR, 
Lb is varying viz 7, 15, 30, 55, 85 and 140 cm. The 
roughness height and the roughness intensity were kept 
constants to 1.6 cm and 10%. Figure 4 shows the 
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Figure 1. (a) Definition sketch for hydraulic jump over roughened bed  (b) Staggered arrangement of roughness patterns.
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variation of Lj/y1 with F1 for the data set where LR
equals 142 cm for different Lb.
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Figure 4. Variation of Lj/y1 with F1 for one set of the third 
experimental setup (LR=142cm, I=10% cm, hb=1.6cm and 
xo=10cm).

The fourth experimental arrangement consisted of 
testing the effect of LR and keeping all other 
independent variables constants. LR varies from 200.66 
to 28.5 cm, I is 10%, hb is 1.6 cm, Lb is zero and xo is 
10 cm. Figure 5 shows the variation of Lj/y1 with F1 for 
this data set. The discharge, (Q), was measured using a 
precalibrated orifice meter to the nearest of ± 0.01 
lit/sec. It ranged from about 16 lit/sec to about 60 
lit/sec. The water depths of the jump were measured 
using a point gauge of accuracy of ± 0.01 mm. The 
length of jump was measured to the nearest of 1 cm. 
The jump begins at about 10 cm downstream from the 
sluice gate. The end of the hydraulic jump was taken to 
be the section at which the sequent depth became equal 
to the tailwater depth. More details on the experimental 
investigations of the present study are reported 
elsewhere in [7].
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Figure 5. Variation of Lj/y1 with F1 for one set of the fourth 
experimental setup (I=10% cm, hb=1.6 cm, Lb=0, and xo=10cm).

4. Modeling Hydraulic Jump Using MLR
Many applications of regression analysis involve 
situations in which there are more than one regressor 
variable. A regression model that contains more than 
one regressor variable is called a multiple regression 
model. MLR makes two critical assumptions. The 

first is that the outputs and the inputs are linearly 
related. The second is that there is no interaction 
between the input variables or attributes and the 
output. Once this relationship is found, a predicted 
output for a new set of input variables, not in the 
original training set, can be computed. Detailed 
description of MLR is reported elsewhere [6, 9].
In order to develop a general equation for the length 

of hydraulic jump under various roughness conditions, 
several trials are attempted employing the multiple 
linear regression analysis tool of the Neural 
Connection® 2.1 software package. About 65% of the 
collected experimental data (about 821 observations) 
are utilized to build the proposed regression model in 
the light of equation 3. The rest of the observations 
(442 observations) are used to validate and test the built 
model.  The following model is obtained.
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5. Modelling Hydraulic Jump using GEP
Gene expression programming, an artificial problem
solver inspired in natural genotype/ phenotype 
system, was invented by Ferreria in 1999 [2], and 
incorporates both the simple, linear chromosomes of 
fixed length similar to the ones used in genetic 
algorithms and the ramified structures of different 
sizes and shapes similar to the parse trees of genetic 
programming. Thus, the phenotype of GEP consists 
of the same kind of ramified structure used in genetic 
programming. But the ramified structures created by 
GEP (expression trees) are the expression of a totally 
autonomous genome [4].
There are two main players in gene expression 

programming: the chromosomes and the Expression 
Trees (ETs) or programs, being the latter the 
expression of the genetic information encoded in the 
former. As in nature, the process of information 
decoding is called translation and this translation 
implies obviously a kind of code and a set of rules. 
The genetic code of gene expression programming is 
very simple: a one-to-one relationship between the 
symbols of the chromosome and the nodes they 
represent in the trees. The rules are also very simple: 
they determine the spatial organization of nodes in 
the expression trees and the type of interaction 
between sub-ETs. Therefore, there are two languages 
in GEP: the language of the genes and the language 
of expression trees and, thanks to the simple rules 
that determine the structure of ETs and their 
interactions, it is possible to infer immediately the 
expression tree given the sequence of a gene, and 
vice versa. This unequivocal bilingual notation is 
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called Karva language.  Figure 6 shows an example 
of expression trees and Karva language [3].
The fundamental steps of gene expression 

programming are schematically represented in Figure 
7. The process begins with the random generation of 
the chromosomes of a certain number of individuals 
(the initial population). Then these chromosomes are 
expressed and the fitness of each individual is 
evaluated against a set of fitness cases (also called 
selection environment). The individuals are then 
selected according to their fitness (their performance 
in that particular environment) to reproduce with 
modification, leaving progeny with new traits. These 
new individuals are, in their turn, subjected to the 
same developmental process: expression of the 
genomes, confrontation of the selection environment, 
selection, and reproduction with modification. The 
process is repeated for a certain number of 
generations or until a good solution has been found 
[4].
The basis for the novelty of GEP resides on the 

revolutionary structure of GEP genes. The simple but 
plastic structure of these genes not only allows the 
encoding of any conceivable program but also allows 
their efficient evolution. Due to this versatile 
structural organization, a very powerful set of genetic 
operators can be easily implemented and used to 
search very efficiently the solution space. As in 
nature, the search operators of gene expression 
programming always produce valid structures and 
therefore are remarkably suited to creating genetic 
diversity [3].

( ) ( )dc*ba +−  

Figure 6. An example of expression trees and Karva language,
adapted from [3].

Figure 7. The flowchart of GEP, adapted from [4].

Automatic Problem Solver ® - APS 3.0 -
(www.gepsoft.com), GEP software package, is used 
in modeling the hydraulic jump. About 65% of the 
collected experimental data (about 821 observations) 
are utilized to build the proposed GEP model in the 
light of Equation 3. The rest of the observations (442 
observations) are used to test the built model.Table 1 
shows the settings of the different genetic operators 
used in deriving the model while Table 2 shows the 
statistics obtained during the training and the testing 
phases of the model. APS 3.0 have the ability to 
automatically translates the models evolved in its 
native Karva code into a wide set of programming 
languages such as C, C++, C#, Visual Basic, VB.Net, 
Java, Java Script, and Fortran  through the use of 
built-in grammars [3]. The Karva code of the 
obtained hydraulic jump model is shown in Figure 8
and the C# code of the same model is shown in 
Figure 9. 

Figure 8. Karva code of the hydraulic jump model.
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Table 1. Genetic settings. Table 2.  Statistics of the derived model.

Figure 9. The C# code of the hydraulic jump model.

6. Model Comparison 
After MLR and GEP calculations were performed, 
results obtained from MLR and GEP, models were 
compared with measured values for both training and 
testing and validation data sets. Though various 
measures can be used for comparison purposes, for 
simplicity, only R-square and Root Mean Square 
Error (RMSE) are considered here. The performance

of the MLR and GEP models are given in Table 3.

Table 3. The performance of the MLR and GEP models.

Training Data Testing and Validating 
Data

R^2 RMSE R^2 RMSE
LJ/Y1-MLR 0.874 3.65 0.873 3.66
LJ/Y1-GEP 0.938 2.56 0.914 3.005

General

Chromosomes: 30 

Genes: 6

Head Size: 8

Gene Size: 17

Linking Function: Addition

Genetic Operators

Mutation Rate: 0.044

Inversion Rate: 0.1

IS Transposition Rate: 0.1

RIS Transposition Rate: 0.1
One-Point Recombination 
Rate: 0.3

Two-Point Recombination 
Rate: 0.3

Gene Recombination Rate: 0.1

Gene Transposition Rate: 0.1

Training Testing
Best Fitness: 132.097717883727 99.654689137223
Max. Fitness: 1000 1000

R-square: 0.938649917599482 0.914259359612276

Outliers: -- --
Calc. Errors: 0 0
Correlation 
Coefficient (CC): 0.96883946946822 0.95616910617959

Mean Squared Error 
(MSE): 6.57015348955692 9.03465073904365

Root Mean Squared 
Error (RMSE): 2.56323106441010 3.00576957517433

Relative Absolute 
Error (RAE): 0.23522615900274 0.26305610654876

Mean Absolute Error 
(MAE): 1.81426189597787 2.04167307710747

Relative Squared 
Error (RSE): 0.06176698293869 0.08874924599674

Root Relative 
Squared Error 
(RRSE):

0.24852964197192 0.29790811670168
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7. Conclusion
In the present study, about 1263 observations on 
hydraulic jumps formed in horizontal rectangular 
roughened bed are utilized to build a hydraulic jump 
model using two different modeling techniques. The 
first model was built using MLR and the second one 
is built using GEP. Two measures, R-square and 
RMSE, were used for comparing the performance of 
both models. The results indicate that GEP gives 
higher regression coefficient than MLR but the 
obtained GEP model is more complicated than the 
MLR model. It is concluded that GEP is a promising 
AI approach for hydraulic data modeling.  
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