Skip to main content

An Experimental Study on Fitness Distributions of Tree Shapes in GP with One-Point Crossover

  • Conference paper
Book cover Genetic Programming (EuroGP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5481))

Included in the following conference series:

  • 775 Accesses

Abstract

In Genetic Programming (GP), One-Point Crossover is an alternative to the destructive properties and poor performance of Standard Crossover. One-Point Crossover acts in two phases, first making the population converge to a common tree shape, then looking for the best individual within that shape. So, we understand that One-Point Crossover is making an implicit evolution of tree shapes. We want to know if making this evolution explicit could lead to any improvement in the search power of GP. But we first need to define how this evolution could be performed. In this work we made an exhaustive study of fitness distributions of tree shapes for 6 different GP problems. We were able to identify common properties on distributions, and we propose a method to explicitly evaluate tree shapes. Based on this method, in the future, we want to implement a new genetic operator and a novel representation system for GP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koza, J.R., Andre, D., Bennett III, F.H., Keane, M.: Genetic Programming 3: Darwinian Invention and Problem Solving. Morgan Kaufmann, San Francisco (1999)

    MATH  Google Scholar 

  2. Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G.: Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers, Dordrecht (2003)

    MATH  Google Scholar 

  3. Nordin, P., Banzhaf, W.: Complexity compression and evolution. In: Eshelman, L. (ed.) Genetic Algorithms: Proceedings of the Sixth International Conference (ICGA 1995), pp. 310–317. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  4. Langdon, W.B., Soule, T., Poli, R., Foster, J.A.: The evolution of size and shape. In: Spector, L., Langdon, W.B., O’Reilly, U.-M., Angeline, P.J. (eds.) Advances in Genetic Programming 3, ch. 8, pp. 163–190. MIT Press, Cambridge (1999)

    Google Scholar 

  5. McPhee, N.F., Miller, J.D.: Accurate replication in genetic programming. In: Eshelman, L. (ed.) Genetic Algorithms: Proceedings of the Sixth International Conference (ICGA 1995), Pittsburgh, PA, USA, pp. 303–309. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  6. Blickle, T., Thiele, L.: Genetic programming and redundancy. In: Hopf, J. (ed.) Genetic Algorithms within the Framework of Evolutionary Computation (Workshop at KI 1994, Saarbrücken), pp. 33–38. Im Stadtwald, Building 44, D-66123 Saarbrücken, Germany. Max-Planck-Institut für Informatik, MPI-I-94-241 (1994)

    Google Scholar 

  7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  8. Soule, T.: Code Growth in Genetic Programming. Ph.D thesis, University of Idaho, Moscow, Idaho, USA (May 15, 1998)

    Google Scholar 

  9. Bhattacharya, M., Nath, B.: Genetic programming: A review of some concerns. In: Alexandrov, V.N., Dongarra, J., Juliano, B.A., Renner, R.S., Tan, C.J.K. (eds.) ICCS-ComputSci 2001. LNCS, vol. 2074, pp. 1031–1040. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  11. Poli, R., Langdon, W.B.: On the search properties of different crossover operators in genetic programming. In: Koza, J.R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M.H., Goldberg, D.E., Iba, H., Riolo, R. (eds.) Genetic Programming 1998: Proceedings of the Third Annual Conference, University of Wisconsin, Madison, Wisconsin, USA, pp. 293–301. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  12. Luke, S., Spector, L.: A comparison of crossover and mutation in genetic programming. In: Koza, J.R., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M., Iba, H., Riolo, R.L. (eds.) Genetic Programming 1997: Proceedings of the Second Annual Conference, Stanford University, CA, USA, pp. 240–248. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  13. Angeline, P.J.: Subtree crossover: Building block engine or macromutation? In: Koza, J.R., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M., Iba, H., Riolo, R.L. (eds.) Genetic Programming 1997: Proceedings of the Second Annual Conference, Stanford University, CA, USA, pp. 9–17. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  14. Estebanez, C., Hernandez-Castro, J.C., Ribagorda, A., Isasi, P.: Finding state-of-the-art non-cryptographic hashes with genetic programming. In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervos, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 818–827. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Smith, J.W., Everhart, J.E., Dickson, W.C., Knowler, W.C., Johannes, R.S.: Using the ADAP learning algorithm to forecast the onset of diabetes mellitus. In: Greenes, R.A. (ed.) Proceedings of the Symposium on Computer Applications in Medical Care, pp. 261–265. IEEE Computer Society Press, Los Alamitos (1988)

    Google Scholar 

  16. Kurgan, L.A., Cios, K.J., Tadeusiewicz, R., Ogiela, M.R., Goodenday, L.S.: Knowledge discovery approach to automated cardiac SPECT diagnosis. Artificial Intelligence in Medicine 23(2), 149–169 (2001)

    Article  Google Scholar 

  17. Haberman, S.J.: Generalized residuals for log-linear models. In: Proceedings of the 9th International Biometrics Conference, Boston, pp. 104–122 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Estébanez, C., Aler, R., Valls, J.M., Alonso, P. (2009). An Experimental Study on Fitness Distributions of Tree Shapes in GP with One-Point Crossover. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds) Genetic Programming. EuroGP 2009. Lecture Notes in Computer Science, vol 5481. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01181-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01181-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01180-1

  • Online ISBN: 978-3-642-01181-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics