Evolutionary method of Genetic Network Programing
Considering Breadth and Depth

Shinji Eto
Graduate School of
Information, Production and
Systems, Waseda University
Hibikino 2-7, Wakamatsu-ku,
Kitakyushu
Fukuoka, 808-0135, Japan

eto@suou.waseda.jp

ABSTRACT

Many methods of generating behavior sequences of agents by
evolution have been reported. A new evolutionary computa-
tion method named Genetic Network Programming (GNP)
has also been developed recently along with these trends.
In this paper, a new method for evolving GNP considering
Breadth and Depth is proposed. The performance of the
proposed method is shown from simulations using garbage
collector problem.

Categories and Subject Descriptors
1.2.8 [Artificial intelligence]: Ploblem Solving, Control
Methods, and Search—Graph and tree search strategies

General Terms

Evolution performance

Keywords
evolutionary computation, genetic network programming,
artificial intelligence

1. INTRODUCTION

Various research on the planning of agents has been done
in the field of artificial intelligence and robotics[1]. These
research discusses how an agent can achieve a given goal
under a certain environment . When the agent is a living
thing, this corresponds to the design of an artificial brain of
the living thing.

Such an artificial brain has been designed by designers, so
far. However, it is easily understood that the design of such
an artificial brain becomes difficult as the purpose and envi-
ronment of the agent systems become more complex. There-
fore, the artificial brain of the agent system should be ac-
quired by evolution rather than it is given by designers. Ge-
netic Network Programming (GNP) has also been developed
recently along with these trends.

A lot of research on the evolutionary design of agent systems
has been reported. There have been used Genetic Algorithm
(GA)[2], Genetic Programming (GP)[3], and Parallel Algo-
rithm Discovery and Orchestration (PADO)[4] for the above
purpose.

Shingo Mabu
Graduate School of
Information, Production and
Systems, Waseda University
Hibikino 2-7, Wakamatsu-ku,
Kitakyushu
Fukuoka, 808-0135, Japan

mabu@asagi.waseda.jp

Kotaro Hirasawa
Graduate School of
Information, Production and
Systems, Waseda University
Hibikino 2-7, Wakamatsu-ku,
Kitakyushu
Fukuoka, 808-0135, Japan

hirasawa@waseda.jp

Most conventional methods determine the actions of agents
mostly by using the current information on the environment.
But, in this paper, the actions are created by Genetic Net-
work Programming (GNP) [5, 6, 7] using only the necessary
information on the environment.

GNP can generate programs evolutionally by connecting the
nodes in GNP to form a directed graph. Genetic Algorithm
(GA) uses the sequence of bits as the gene of an individual,
while Genetic Programming (GP) uses a tree structure as
the gene of an individual. Generally, it is recognized that the
graph structure has higher expression capability compared
with character sequences or tree structures. Moreover, it
is expected that the graph structure of GNP can improve
the performance by finding appropriate judgment nodes and
processing nodes as needed in evolutionary processes.

Various evolutionary method of GNP could be studied, be-
cause GNP has a directed graph structure. The aim of this
paper is to improve the performance of GNP by extending
the evolutionary method of it. In conventional GNP, the
activated node isn’t compulsorily transferred to the start
node. However, in the proposed method, plural start nodes
are set and the activated node is properly transferred to one
of the start nodes. It is found from the simulations that the
performance of GNP could be improved by the proposed
method.

2. OUTLINEOFGENETICNETWORK PRO-

GRAMMING

In this section, Genetic Network Programming (GNP) is
explained briefly. Basically, GNP is an extension of GP in
terms of gene structures. The original idea is based on the
more general representation ability of directed graphs than
that of trees.

The features of GNP are as follows.

e Only the necessary information is used for the judg-
ment nodes in GNP unlike Finite Automata, so GNP
can be applied to Partially Observable Markov Deci-
sion Processes, which leads to the wide spread use of
GNP.

Pi1

Iezmzzow—<zm|

O:Judgment node O :Processing node
Library

Figure 1: The basic structure of GNP

e The judgment nodes and processing nodes are repeat-
edly used in GNP, so the gene of it becomes compact,
which causes the efficient evolution of GNP.

2.1 Basic Structure of GNP

The basic structure of GNP is shown in Fig.1. As shown in
Fig.1, a directed graph structure is used in GNP to represent
individuals. GNP is composed of plural nodes which are
connected with each other like networks. These nodes are
roughly classified into two kinds of nodes: Judgment node
and Processing node.

Judgment nodes correspond nearly to elementary functions
of GP and processing nodes correspond almost to terminal
symbols of GP. Judgment nodes are the set of J1, Ja,. .., Jm,
which work as some kinds of judging functions. On the other

hand, processing nodes are denoted by the set of Pi, Ps, ..., P,,

which work as some kinds of processing functions. The prac-
tical roles of these nodes are predefined and stored in the
library by supervisors. Additionally, one specific node, start
node S, is included in GNP. Start node indicates the start
point of GNP, which corresponds to GP’s root node. GP’s
elementary functions and terminal symbols are repeatedly
used in a tree structure using Automatically Defined Func-
tions (ADFs)[8]. In the same way, there are some judg-
ment nodes and processing nodes used repeatedly in GNP
as shown in Fig.1 without ADF. An ADF is a function
(i.e., subroutine, subprogram, procedure) that is dynami-
cally evolved during a run of genetic programming and which
may be called by a calling program (or subprogram) that is
concurrently being evolved. These judgment nodes and pro-
cessing nodes are the essential elements of GNP. The number
of these nodes may be determined as a result of evolution
like GP. Actually, GNP can use this strategy, in other words,
GNP can adopt evolving the directed graph with varying the
number of nodes [9], but in this paper GNP evolves only the
directed graph with the prefixed number of nodes. It would
be better to say that GNP here evolves the genotype with
the fixed number per each kind of nodes.

As there are many GP studies using multiple-choice infor-
mation, GNP also uses multiple-choice information in judg-
ment nodes, does not use numerical information. Namely,
judgment nodes here are if — then type decision making
functions.

<4— node gene

node i |NTi iIDi di |Ci1§di1§

ion gene

- [Ci{dif]
wiet [NTHIDI dilCutdut i cpidii =]
node2 INTzi IDzE d2|C21id21E ceee Eczjid2ji s |
node 3 | NT:! IDs! d3|C315d31E e EC3iid3ji .- |
nodei I NTiiIDii dilCilidill ceee ECiiEdijE c |

LRCRCE it AN}

Figure 2: The genotype expression of GNP nodes

Conventional tree based GP starts from their root node,
then evaluate leaf nodes one after another. On the other
hand, once GNP is booted up, the execution starts from the
start node, then the next node to be executed is determined
according to the connection from the current activated node.
If the activated node is judgment node, the next node is de-
termined by the judgment result at the activated judgment
node. When processing node is executed, the next node is
uniquely determined by the single connection from process-
ing node.

It is an important point that the activated node isn’t com-
pulsorily transferred to the start node in GNP, while other
methods do. For instance, GP reinterpret the tree again
from the root node after completing the interpretation of
the tree, and PADOJ[4] (Parallel Algorithm Discovery and
Orchestration) has also directed graphs with some memories
as genes, but it is mainly used for static problems. There is
no end node in GNP, therefore, once GNP is booted up, the
successive activation of GNP system is carried out according
to the network flow until the time limit.

The genotype expression of GNP node is shown in Fig.2.
The upper part of Fig.2 describes the gene of node i, then
the set of these genes represents the genotype of GNP indi-
viduals. All variables in these genes are described by inte-
gers. NT; describes the node type, NT; = 0 denotes START
NODE, NT; = 1 when the node i is judgment node and
NT; = 2 when the node i is processing node.

ID; is an identification number, e.g., NT; =1 and ID; =1
mean node ¢ is Ji. Cj1,Ci2,..., denote the nodes which
are connected from node 4 firstly, secondly, ..., and so on
depending on the arguments of node ¢. The total number of
the elements of the connection genes depends on the arity
of the node’s function. d; and d;; are the delay time. They
are the time required to execute the processing of node ¢
and delay time from node i to node Cj;, respectively. GNP
can become materialized more realistically by setting these
delays.

2.2 Genetic Operations of GNP

The following two genetic operators are used in GNP.

e Mutation operator affects one individual. All the con-
nections of each node are changed randomly by muta-
tion rate of Pp,.

e Crossover operator affects two parent individuals. GNP
evolves the fixed number of nodes as mentioned before,
therefore, all the connections of the uniformly selected
corresponding nodes in two parents are swapped each
other by crossover rate of P..

Note that these genetic operators will not change any node
functions, they only change the connections among the nodes.
Therefore, GNP doesn’t evolve the functions of the nodes,
but evolves the connections between the nodes.

3. THEPROPOSEDMETHOD FOR EVOLV-
ING GNP

In conventional GNP, the activated node isn’t compulsorily
transferred to the start node. The purpose of this is to use
repeatedly most of the judgment nodes and the processing
nodes in GNP as much as possible. However, there is a pos-
sibility that some of the nodes are not used in conventional
GNP.

Therefore, in this paper, GNP with plural start nodes is
proposed (see Fig.3). In GNP with plural start nodes, the
activated node is properly transferred to one of the start
nodes. Here, ”properly” means that the return to the start
nodes is carried out after a certain number of activated pro-
cessing nodes. The number of nodes used in GNP could be
increased by increasing the number of the start nodes. The
performance of each individual GNP improves consequently
because the increase of the number of the start nodes ex-
pands the search space of GNP. The number of the start
nodes can be considered breadth of the search, while the
number of the activated processing nodes can be considered
depth of the search of GNP.

In this paper, the relations of the number of the start nodes
and the activated processing nodes are investigated on the
problem to solve. The proposed method is studied when
there are a lot of connections in each judgment node by
which the structure of GNP becomes complex. Actually, the
number of connections from the judgment node increases as
the problems become complicated ones. In addition, the de-
sign on what kinds of branches the judgment nodes should
have is so important similarly to the design of the processing
nodes in GNP. In this case, the transition or the behavior of
GNP is mainly determined by which branch the judgment
node selects. Therefore, GNP should have the possibility for
selecting every judgment result in GNP. However, the con-
ventional GNP lacks such ability. In order to overcome the
above problem, in this paper, GNP with plural start nodes
is proposed and the basic study is done. The evolution and
performance of GNP are studied by changing the number
of start nodes (S) and the number of executable processing
nodes per stat node (P) as a basic study.

Concretely, the following is studied.

e The performance of GNP with the combination of S
and P is studied, where S*P is total steps of simula-
tions, because carrying out one processing node corre-
sponds to one step.

D Start node O Processing node o Judgment node

Figure 3: The structure of GNP with plural start
nodes

®
&
Qle
® Agent
2 s 1 ® Trash
S
@ {:} Check Point
S |
S

Figure 4: Garbage Collector Problem

e The performance of GNP with the combination of S
and P is studied, where S can take values of 1, 2, 5, 10,
25 and P can take values of 10, 5, 2, 1, respectively.

Table 1: Parameter conditions for evolving GNP

Generation 1000
Number of GNP 100
Number of elite GNP 1

Number of crossover individuals 40
Number of mutation individuals 59

Crossover probability P. 0.1
Mutation probability P, 0.01
Number per each kind of nodes 5

4. SIMULATION CONDITIONS

4.1 Garbage Collector Ploblem

The garbage collector problem used in this paper is the fol-
lowing.

The garbage collector problem consists of one agent, ten
trash, check point 1 and check point 2 on the two dimen-
sional grid like the chessboard (Fig.4). An agent occupies
one cell and can move to the forward cell, turn left or right

in one step. The agent can collects trash by reaching the
cell where trash exists.

Table 1 shows the parameters used in this simulation.

4.2 Fitness Function of GNP

The two dimensional grid is made up of 11 x 11 cells. The
agent can perceive everything in the environment. The agent
aims to collect as many trash as possible in 250 steps.

In this paper, the initial position, direction of the agent
and the initial position of trash are generated at random
at each generation for evolution. The above environment is
especially designed for improving the generalization ability
of the proposed method.

The fitness for evolving GNP is defined by Eq.(1) and the
one for studying generalization is calculated by Eq.(2).

Fitness = 100N — D, (1)

Fitness = 100N. (2)

Here, N is the number of collected trash and D is the dis-
tance between the agent and the nearest trash after 250
steps.

The total evaluation is done by averaging the above Fitness
over ten different environments.

4.3 Judgment Nodes and Processing Nodes
Start nodes, judgment nodes and processing nodes of GNP
are described in Table 2. In Table 2, the symbols of 0, 1 and
2 denote a start node, judgment nodes and processing nodes,
respectively. The figure in () of the table is the number of
connections of each node function. The start node is just a
starting position of GNP.

Judgment nodes have some branches corresponding to each
judgment result. At the node of “check the distance from
the agent to the check point”, one of the three branches (0-
4, 5-7, 8-) is selected depending on the distance from the
agent to the check point. At the node of “check the direc-
tion of the agent to check point” and “check the direction
of the agent to the nearest trash”, there are eight branches
(forward, right forward, left forward, right, left, right back,
left back, back) depending on the direction of the agent to
the check point or the nearest trash. At the node of “check
the direction of the agent to the second nearest trash”, there
is another branch named none, because a case might occur
where there is only one trash remained on the two dimen-
sional grid.

The judgment nodes such as “check the distance from the
agent to the check point” and “check the direction of the
agent to check point” are introduced for the agent to search
for the absolute position in the environment.

10000

9000

oAt Y
T
i

8000 [g
7000 {f
6000

5000 f/

FITNESS

4000 i

3000 }/

/ Mo > N b A Aare
2000 ‘/’MMMW §=1 P=250
1000

0 100 200 300 400 500 600 700 800 900 1000
GENARATION

Figure 5: The best trainning fitness values averaged
over ten independent trials (in case of S*P=250)

Table 3: Generalization ability of evolved GNPs
(Fitness using 1000 environments and 10 best
evolved GNPs in case of S¥P=250)

MAX | AVE | MIN | STDEV
S=1 P=250 | 182.5 | 169.1 | 163.2 6.26
S=2 P=125 | 344.2 | 314.1 | 251.8 25.40
S=5 P=50 648.9 | 524.0 | 326.3 109.08
S=10 P=25 | 859.7 | 864.6 | 800.6 30.97
S=25 P=10 | 921.0 | 864.6 | 800.6 30.97
S=50 P=5 864.6 | 814.7 | 763.2 28.85
S=125 P=2 | 856.9 | 785.8 | 696.5 43.63
S=250 P=1 | 818.5 | 753.6 | 691.5 42.13

5. SIMULATION RESULTS

Simulation results of various cases are compared using the
best fitness values averaged over ten independent trials as
shown in Fig.5 and Fig.6.

In Table 3 and Table 4, MAX, AVE, MIN and STDEV
show the maximum value, average value, minimum value
and standard deviation of the fitness of Eq.(2) using 1000
different environments generated at random and ten best
evolved GNPs. Therefore, Table 3 and Table 4 show the
generalization ability of the evolved GNPs. The general-
ization ability shows if obtained GNPs can deal with vari-
ous inexperienced environments or not. High generaligation
means that the evolved GNP can acquire the general rules
to handle the various environments.

5.1 Resultsin caseof S*P=250

Fig.5 and Table 3 shows that the result of S=25 P=10 is
the best and S=1 P=250 (conventional GNP) cannot solve
the problem at al. It is clear from Fig.5 and Table 3 that
the proposed method is effective even in the problem that
cannot be solved by the conventional method. It is generally
shown that the problem can be solved when there are more
than ten start nodes, while the number of the start nodes
is too few, GNP cannot solve the problem. However, the
results show that it is not effective to increase the number
of start nodes too much.

Table 2: Functions of a start node, processing nodes and judgment nodes

node

0 start node (1)

1 check the distance from the agent to the check point 1 (3)
1 check the distance from the agent to the check point 2 (3)
1 check the direction of the agent to the check point 1 (8)
1 check the direction of the agent to the check point 2 (8)
1 check the direction of the agent to the nearest trash (8)
1 | check the direction of the agent to the second nearest trash (9)
2 move forward

2 turn right

2 turn left

2 stay

10000 ‘ ‘ ‘ : : :
0000 | 44 mﬁ\mﬂm{.wmfj‘Pflo 725?723;%9 i JOji’ig‘ii‘ Table 4: Generalization ability of evolved GNPs
ot (Fitness using 1000 environments and 10 best
8000 ’(‘Mwwmf”*"'wwﬂ*"“ s b evolved GNPs in case of various combination of S
o ’v‘* wﬂvwv-wwuw/MMMW“W“WM\“\W’w’”’””""’”'”MNW‘”@?M{:&% and P)
! ‘mmh
a o MAX [AVE | MIN | STDEV
g 5000) o S—1P=10 | 326.9 | 319.9 | 314.0 5.66
4000,/ ' ' §-1 p-10 S=2P=10 | 642.4 | 584.7 | 535.5 33.15
3000 S=5 P=10 971.3 | 921.1 | 867.1 27.21
2000 1 S=10 P=10 | 946.9 | 902.6 | 859.3 26.08
1000 | S=25 P=10 | 921.0 | 864.6 | 800.6 30.97
S=25 P=5 928.7 | 904.2 | 875.1 13.69
Oo 100 200 300 400 500 600 700 800 900 1000 S=25 P=2 956.5 | 931.4 | 906.6 15.32
GENARATION S=25 P=1 710.3 | 685.1 | 615.7 27.05

Figure 6: The best training fitness values averaged
over ten independent trials (in case of various com-
binations of S and P)

5.2 Resultsin case of various combinations of

S=25 and P=10
Fig.6 and Table 4 shows that the cases with S=5 P=10 and
S=25 P=2 have good performance and the result with few
start nodes is bad. These results show that the proposed
method becomes effective by selecting an appropriate num-
ber of S and P. In other wards, good performance can be
obtained as long as an extremely small number of S and P
is not chosen. However, it takes a great amount of time to
try all cases because there are quite a lot of cases that can be
tried. Therefore, it is preferable that the best combination
of S and P is acquired by evolution. This is a future work.

6. CONCLUSIONS

In this paper, GNP with plural start nodes is proposed to
enhance conventional GNP, and the basic study of it is done.
When the number of the start nodes and activated process-
ing nodes is appropriately determined, the proposed GNP
can solve the garbage collector problem well. It is proved
from simulations that the proposed GNP shows higher per-
formance compared with conventional GNP. However, how
to determine an appropriate number of start nodes and ac-
tivated processing nodes remains to solve in future.

7. ADDITIONAL AUTHORS

Additional author: Jinglu Hu (Graduate School of Informa-
tion, Production and Systems, Waseda University, email:
jinglu@waseda. jp)

8. REFERENCES
[1] R. A. Brooks, “Robust layered control system for a
mobile robot”, IEEE Journal of Robotics and
Automation, Vol.2, No.1, pp. 14-23, 1986.

[2] J. Holland, “Adaptation in Neural and Artificial
Systems - An Introductory Analysis with Applications
to Biology, Control and Artificial Intelligence -”, Ann
Arbor: University of Michigan Press, 1975.

3] J. P. Koza, “Genetic Programming”, Cambridge, MA:
g g g
MIT Press, 1992.

[4] A. Teller and M. Veloso, “PADO, Leaning
Tree-structured Algorithms for Orchestration into an
Object Recognition System”, Carnegie Mellon
University, Technical Report Library, 1995.

[6] T. Eguchi, K. Hirasawa, J. Hu and N. Ota, “A study
of Evolutionary Multiagent Models Based on
Symbiosis”, IEEE Trans. on System, Man and
Cybernetics -Part B-, Vol.35, No.1, pp. 179-193, 2006.

[6] H. Katagiri, K. Hirasawa and J. Hu, “Genetic
Network Programming -Application to Intelligent
Agents-", in Proc. of IEEE International Conference
on System, Man and Cybernetics, pp. 3829-3834, 2000.

[7] K. Hirasawa, M. Okubo, J. Hu and J. Murata,
“Comparison between Genetic Network Programming
(GNP) and Genetic Programming (GP)”, in Proc. of
IEEE CEC International Conference, pp. 12761282,
2001.

[8] John R. Koza, “Genetic Programming II: Automatic
Discovery of Reusable Programs”, MIT Press, 1994.

[9] H. Katagiri, K. Hirasawa, J. Hu and J. Murata,
“Network Structure Oriented Evolutionary Model
-Genetic Network Programming and Its Comparison
with Genetic Programming-", in Proc. of GECCO
International Conference, pp. 219-226, 2001.

