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ABSTRACT

Novel approaches for dynamic modelling of E. coli and their application in

Metabolic Engineering

One of the trends of modern societies is the replacement of chemical pro-

cesses by biochemical ones, with new compounds being synthesized by engi-

neered microorganisms, while some waste products are also being degraded by

biotechnological means. Biotechnology holds the promise of creating a more

profitable and environmental friendly industry, with a reduced number of waste

products, when contrasted with the traditional chemical industry.

However, in an era in which genomes are sequenced at a faster pace than

ever before, and with the advent omic measurements, this information is not

directly translated into the targeted design of new microorganisms, or biological

processes. These experimental data in isolation do not explain how the different

cell constituents interact. Reductionist approaches that dominated science in

the last century study cellular entities in isolation as separate chunks, without

taking into consideration interactions with other molecules. This leads to an

incomplete view of biological processes, which compromises the development

of new knowledge.

To overcome these hurdles, a formal systems approach to Biology has been

surging in the last thirty years. Systems biology can be defined as the conju-

gation of different fields (such as Mathematics, Computer Science, Biology),
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to describe formally and non-ambiguously the behavior of the different cellular

systems and their interactions, using to models and simulations. Metabolic En-

gineering takes advantage of these formal specifications, using mathematically

based methods to derive strategies to optimize the microbial metabolism, in or-

der to achieve a desired goal, such as the increase of the production of a relevant

industrial compound. In this work, we develop a mechanistic dynamic model

based on ordinary differential equations, comprised by elementary mass action

descriptions of each reaction, from an existing model of Escherichia coli in the

literature. We also explore different calibration processes for these reaction de-

scriptions.

We also contribute to the field of strain design by utilizing evolutionary al-

gorithms with a new representation scheme that allows to search for enzyme

modulations, in continuous or discrete scales, as well as reaction knockouts,

in existing dynamic metabolic models, aiming at the maximization of product

yields.

In the bioprocess optimization field, we extended the Dynamic Flux Bal-

ance Analysis formulation to incorporate the possibility to simulate fed-batch

bioprocesses. This formulation is also enhanced with methods that possess the

capacity to design feed profiles to attain a specific goal, such as maximizing the

bioprocess yield or productivity.

All the developed methods involved some form of sensitivity and identifia-

bility analysis, to identify how model outputs are affected by their parameters.

All the work was constructed under a modular software framework (devel-

oped during this thesis), that permits the interaction of distinct algorithms and

languages, being a flexible tool to utilize in a cluster environment. The frame-

work is available as an open-source software package, and has appeal to systems

biologists describing biological processes with ordinary differential equations.
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RESUMO

Novel approaches for dynamic modelling of E. coli and their application in

Metabolic Engineering

Uma das tendências na nossa sociedade actual é a substituição de processos

químicos por processos bioquímicos, e a síntese de novos compostos por mi-

crorganismos, bem como a degradação de resíduos por meios biotecnológicos.

A Biotecnologia tem, assim, a promessa de criar uma indústria mais rentavél e

mais amiga do ambiente, com um número reduzido de resíduos, contrastando

com a indústria química.

No entanto, numa era em que os genomas são sequenciados a um ritmo

nunca visto, assim como as medições de dados ómicos, esta informação não é

diretamente traduzida no desenho de estirpes microbianas ou processos biológi-

cos. Estes dados experimentais em isolamento não explicam como os diferentes

componentes celulares interagem. As abordagens reducionistas que dominaram

a ciência no século passado, estudam os constituintes celulares em isolamento,

como pedaços isolados, sem tomar em consideração as interacções com outras

moléculas, o que traduz uma visão incompleta do mundo, que compromete o

desenvolvimento de novo conhecimento.

Para superar estes obstáculos, uma nova abordagem à Biologia tem emergido

nos últimos trinta anos. A Biologia de Sistemas pode ser definida como a con-

jugação de diferentes áreas (como a Matemática, Ciência da Computação, Bi-
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ologia), para descrever formalmente e de forma não ambígua o comportamento

dos diferentes sistemas celulares e as suas interações utilizando a modelação.

A Engenharia Metabólica tira partido destas especificações formais, utilizando

métodos matemáticos para derivar estratégias tendo em vista a optimização do

metabolismo de microrganismos, de forma a atingir um objetivo definido como

por exemplo o aumento da produção de um composto relevante a nível industrial.

Neste trabalho, desenvolvemos um modelo dinâmico mecanístico baseado

em equações diferenciais ordinárias, composto por descrições ação de massas el-

ementares para cada reacção, partindo de um modelo já existente da Escherichia

coli na literatura.

Utilizamos também algoritmos evolucionários com um novo esquema de

representação que permite pesquisar por modulações enzimáticas, numa escala

contínua ou discreta, assim como eliminar reações em modelos metabólicos ex-

istentes de forma a maximizar o rendimento ou a produtividade.

Todos os métodos desenvolvidos envolveram alguma forma de análise de

sensibilidade ou identifiabilidade, de forma a verificar como as saídas do modelo

são afetados pelos parâmetros.

Todo o trabalho foi construído de acordo com uma plataforma de software

modular (desenvolvida durante esta tese) que permite a interação de algoritmos

e linguagens distintos, sendo uma ferramenta flexível para utilizar em ambientes

de cluster. A plataforma encontra-se disponível como um pacote de software de

código aberto e tem utilidade para biólogos de sistemas que pretendam descrever

processos com equações diferencias ordinárias.
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chapter 1

INTRODUCTION

Dynamic metabolic models play an increasing role, in the crafting of engineering

strategies to redirect microorganism metabolic necessities, for the production of

pertinent industrial compounds. Nonetheless, there is the need to construct finer

grain mechanistic representations of metabolism, able to capture a wide range of

microorganisms physiological behavior.

This thesis, is focused on the development of a mechanistic model of cen-

tral carbon metabolism of Escherichia coli and the respective calibration and

identifiability procedures, having as basis mass-action elementary reaction de-

scriptions for all enzymatic mechanisms. Within the same context, the design

of Metabolic Engineering strategies utilizing Evolutionary Algorithms, is also

explored. Extensions to other existing formalisms, like Dynamic Flux Balance

Analysis, that integrate the bioprocess models with microorganism stoichiomet-

ric models, are also formulated. The software developed during this work, is

made available as an open-source package for the Systems Biology community.

The chapter provides an overview of the work, as well as its motivation, goals

and structure of this thesis.
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1.1 Context

One of the main goals of Bioengineering has been the engineering of biological

systems at microbial level to construct cell factories to produce relevant com-

pounds, or to degrade undesirable products, as other man engineered complex

systems, such as cars, planes, buildings or industrial facilities. In this context,

Biotechnology can be defined as the utilization of living systems (often microor-

ganisms) or their parts to attain specific goals. This field has a wide range of

applications and to help categorize the main areas of operation, a color scheme

was conceived (becoming a de facto standard in the community) [1]:

• White biotechnology, also known as industrial biotechnology, involves all

the bioprocesses utilizing microorganisms to produce relevant compounds

that are not possible to produce by chemical routes alone or replacing

chemical synthesis. This type of biotechnology also incorporates indus-

trial processes that utilize enzymes to catalyze a reaction as part of the

production process.

• Green biotechnology is connected with the use of bioengineering in agri-

cultural processes;

• Red biotechnology also known as medical related biotechnology utilizes

biological systems to produce or process pharmaceutical products.

On the other hand, Systems Biology (SB) advocates the comprehension of

biological systems, recurring to mathematical modeling, to elucidate the func-

tion and interactions of distinct cellular entities. Only with precise and formal

descriptions of a system inner workings, it is possible to craft engineering strate-

gies to attain specific goals [2]. In industrial biotechnology players, one major

Novel approaches for dynamic modelling of E. coli and their application in
Metabolic Engineering
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question is how to improve production yields of relevant compounds in an ef-

ficient engineering way. In this context, efficient can be defined as utilizing

existing knowledge about microbes and the bioprocess to devise a mathematical

formulation that is prone to the creation of rational metabolic and bioprocess en-

gineering strategies. These methods should enable the conjugation of cell phys-

iological needs with the devised goals, like the synthesis of new compounds or

the overproduction of existing ones.

Mathematical models representing microoganisms try to capture the behav-

ior of cell constituents and the complexity of their interactions (many times in a

non-linear fashion). It is important to bear in mind that different types of mod-

els assemble information differently and are usually focused in a partial sub-

system of the cell. Models possess distinct granularities and depth concerning

the scenario being studied. In this work we are interested in modeling the cell

metabolism at meso scale for devising ME strategies.

These types of metabolic models can be described recurring only to metabolic

topological information (ignoring regulatory and kinetic information), assuming

that the system is at steady-state or, if more detailed information about enzy-

matic kinetics is available, a dynamic version of the system can be constructed.

Steady-state models provide useful information concerning the possible states of

a biochemical network at steady-state but, if the system is under-determined, it

is not possible to identify the true cell state without making strong assumptions

(such as the maximization of a biomass flux) that can compromise the result.

On the other hand, dynamic metabolic models are commonly modeled as dif-

ferential equation systems assuming cells behave like small bioreactors due to

homogeneity in the cytoplasm and high number of interacting molecules. If

these assumptions do not hold, then another formalism has to be applied instead.

These models possess a smaller number of steady-states than steady-state under-
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determined models and do not require the assumption of an underlying cellular

objective.

Nonetheless, the main factors affecting negatively the construction of large

scale dynamic models are the lack of mechanistic information concerning bio-

chemical reactions and experimental hindrances such as the incapacity to mea-

sure all important metabolites for the parameter calibration. Besides the topo-

logical description of the reaction network, initial system concentrations, exper-

imental data regarding fluxes or concentrations, as well as partial knowledge of

the kinetics are necessary to build and calibrate a dynamic model.

Broadly, this type of models contains reaction rate laws that can be sub-

divided in data based approaches and in mechanistic approaches. Data based

approaches require data over the whole range of physiological concentrations

being studied, although they do not account explicitly for the mechanisms re-

sponsible for the observed phenomena. On the other hand, mechanistic based

representations require knowledge of the underlying reaction physical process

but need less data to perform a calibration of the system. Usually, a model will

be a mixture of these types of rate laws depending on the underlying assump-

tions and information available. It is important to bear in mind that there are no

hard boundaries within this categorization.

Reaction rates can be described by aggregated rate laws (ARLs) that encap-

sulate specific elementary rates in the parameters. Examples of such models in-

clude the Central Carbon metabolism of Escherichia coli [3], the Central Carbon

metabolism of Saccaromyces cerevisae [4] or the TCA cycle of Dictyostelium

discoideum [5].

A more complete version of these rate laws can be constructed by consid-

ering all the mechanistic steps and enzymatic complexes formed among all the

participating species in the reaction and describing the system by mass-action el-

Novel approaches for dynamic modelling of E. coli and their application in
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ementary reactions called Mass-Action Rate Laws (MARLs). This formalization

produces a system with more parameters but, in theory, will require less exper-

imental data in a smaller range of physiological values, possessing the capacity

to extrapolate outside of this range. In this context, to reduce the overparame-

terization caused by the explicit representation of the elementary rate reactions,

assumptions can be made regarding the behavior of the enzymatic system. Of-

ten, it is presumed that certain reaction steps are at rapid equilibrium conditions,

or that participating enzyme complexes are at steady-state. Nonetheless, it is im-

portant to test their applicability against available experimental data. The rapid

equilibrium assumption introduces tighter constraints concerning the reaction

mechanism and it may be less applicable in practice.

Another approach is to ignore the underlying reaction mechanism and to

utilize an approximate rate laws. Despite of usually possessing a smaller number

of parameters than ARLs, these reaction rates are often only valid in the vicinity

of the operational state they were calibrated to. The prowess of these rate laws to

extrapolation is limited and is dependent on the existence of experimental data.

However, regardless the rate law syntactic format, it is important to assess

parameters identifiability, defined as the capacity to regress their values based

on perfect data (structural identifiability) and from data corrupted with noise

(practical identifiability). If a parameter has structural identifiability problems,

it will not be possible to estimate its value from experimental data. On the other

hand, practical identifiability issues arise when there is insufficient (in the sense

of non-informative) experimental data to calibrate a parameter to a desired level

of uncertainty. In the first case, the issue can be overcome by changing the

functional structure of enzymatic mechanism representation or fixing some of

the parameters if correlated (utilizing domain specific knowledge), while in the

second scenario a more well crafted set of experiments may mitigate this hurdle.
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Parameter identifiability is tightly linked to sensitivity and uncertainty analy-

ses. More sensitive parameters are easier to estimate, while less sensitive (often

coined robust) may possess a negligible impact on the output variable being

characterized. These analyses should be performed before regressing the pa-

rameters and collecting experimental data (called a priori sensitivity analyses)

and antecedently to collecting experimental data (experimental design). It is

also possible to use existing information and compute these analysis a posteri-

ori to characterize the parameters sensitivity/uncertainty and delineate the next

research steps.

Robust (in the sense of non-influential) and correlated parameters should be

fixed before the regression process. Failure to do so may lead to abortion or lack

of convergence in optimization algorithms.

After this process, the goodness of fit should be assessed within the research

context as well as the parameter uncertainty levels.

Of particular interest in the scope of this work is the production of amino-

acids, namely serine, at industrial biotechnology level [6] from a ME perspec-

tive. Serine has industrial interest as a flavor enhancer [7], and in pharmaceutical

industry as a potential new drug for Amyotrophic lateral sclerosis [8].

E. coli is one of the most utilized microbial strains at the bio-industrial level

due to the cultivation simplicity, low experimental expenses, ease of genetic

modification and academic study focus in the past decades. There is a wide

range of publicly available databases concentrating relevant biological infor-

mation for the construction of models such as Eccocy [9] and EcoGene [10].

This microorganism is a prokaryote and therefore has a simpler structure and no

cellular compartmentalization, contrarily to eukaryotes (such as Saccaromyces

cerevisiae). Several industrially relevant compounds are produced by E. coli

such as biofuels [11], bulk chemicals [12] and amino-acids [13] such as succinic

Novel approaches for dynamic modelling of E. coli and their application in
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acid [14].

1.2 Motivation

Systems Biology Metabolic Engineering

Biology ∪ Biochemistry

Systems

Network Topology

Kinetic Models

Design of Experiments

Systems

Metabolic modifications

Reaction Deletions

Enzyme Modulation

Predictive Hypothesis

Metabolic modifications

Cellular Entities

Reaction

Enzyme Mechanisms

Experimentation

Cellular Entities

Figure 1.1: Y-Chart of the main domains addressed in this work.

The main domains that will be addressed in this work are represented on the

radial axes of the y-chart in Figure 1.1. The concentric rings illustrate the distinct

degrees of abstraction. The outer layer, as well as the central inner circle, rep-

resents how Systems Biology (SB), Metabolic Engineering (ME), and Biology

utilize the available biological information interchangeably.

The second outer layer encompasses the usage of reaction structural informa-

tion to construct reaction network models where kinetic information is absent.

Under certain assumptions and conditions, it is possible to determine the net-

work flux distribution or thermodynamically feasible concentration ranges and
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to simulate the effect of gene deletions. The third outer layer refers to the usage

of kinetic models containing topological and enzymatic kinetic mechanisms able

to capture regulatory interactions in the cell. This information permits to devise

new enzyme modulation strategies from a ME perspective.

In the following layer these models can serve as basis for the design of ex-

periments to calibrate the model, differentiate among distinct model alternatives,

or make new predictive hypothesis about changes in the system.

Current models of metabolism tend to utilize ARLs or semi-mechanistic de-

scriptions of the central carbon metabolism of Escherichia coli. The main goal

of this work is to construct a larger scale mechanistic model of Escherichia coli

utilizing current available information in the literature. From an industrial point

of view, this model can serve as basis for the optimization of the production of

relevant compounds.

The standardization effort and unified model representation constructed in

[15] by the Kronecker formulation allows to represent larger models than cur-

rently is possible, with a more generic representation scheme that utilizes rate

laws with any symbolic format. This framework takes advantage of the bio-

chemical system structure to store it in sparse matrices and allows to use specific

numerical methods.

Another related goal is the development of methods that permit rational mi-

crobial strain design by modifying specific cellular entities based on guidance

provided by devised quantitative dynamic models in conjunction with optimiza-

tion methods and experimental validation.

Novel approaches for dynamic modelling of E. coli and their application in
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1.3 Objectives

The work developed during this thesis spans across different areas of knowl-

edge namely, SB, ME, and Computer Science, being focused on developing new

methods to create improved microbial strains.

This work encompassed the following specific objectives:

• To modify the existing Escherichia coli kroneckerized model with more

complete enzyme mechanisms and with new reactions;

• To augment the existing Escherichia coli kroneckerized model with new

pathways;

• To engineer a software tool for the simulation and optimization of metabolic

models based on an extended kronecker formalism;

• To adopt the previous tool in the in silico design of an overproducing serine

strain of Escherichia coli, utilizing suitable optimization algorithms;

• To use existing stoichiometric models in conjunction with dynamic models

of bioprocesses to enhance and define feeding strategies;

This work entails the extension and development of the kroneckerized mech-

anistic model of Escherichia coli developed by Joshua Apgar [15] in his PhD.

work. The model comprehends the central carbon metabolism. An open source

software that will enable the simulation, optimization and sensitivity analysis of

these types of models and the corresponding ME tasks will be built.

1.4 Thesis Outline

The thesis is organized as follows. In the current chapter Chapter 1 an introduc-

tion of the research problem being addressed, in conjunction with the main goals
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of this work are described, along with a summary of the employed bioengineer-

ing and mathematical formalisms.

Next, in Chapter 2 a thorough review of existing selected mathematical

formalisms utilized during this work in association with the existing dynamic

metabolic models of central carbon metabolism, is made. The models are con-

trasted and related regarding the employed kinetic descriptions as well as the

metabolic engineering applications.

Chapter Chapter 3 details the expansion of the Escherichia coli model de-

vised by Joshua Apgar [15] and is broadly divided into three parts: (i) model as-

sumptions and formalism - where the general assumptions and extensions made

to kronecker formalism are explained (ii) model assembly, where the simplifying

assumptions are explained within the context of the Escherichia coli model (iii)

model calibration and identifiability analysis - where the devised and utilized

methods for the calibration of reaction mechanisms are explained.

Afterwards, in Chapter 4, a new method for the simulation of fed-batch

systems when substrate is near zero, employing a new Dynamic Flux Balance

Analysis formulation is characterized.

In Chapter 5 a new genetic algorithm representation is characterized and

tested using as basis the central carbon metabolism model of Chassagnole [3]

using as case study serine maximization. This case study was chosen to contrast

with previous results described in the literature employing different optimization

methods.

After, in Chapter 6 the software developed during this work is presented

from an user perspective. The developed file formats, as well as the integration

an communication of different methods is explained.

Concluding, Chapter 7 presents the conclusions and the future work.

Novel approaches for dynamic modelling of E. coli and their application in
Metabolic Engineering
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chapter 2

FROM METABOLIC DATA TO DYNAMIC MODELS OF

METABOLISM

Escherichia coli is one the most well studied prokaroytes, being a factotum or-

ganism in the biotechnology world, utilized in the production of bulk chemicals,

biofuels and drugs. This microorganism has been engineered successfully for

the overproduction of biotechnological relevant compounds and can be cultured

easily utilizing inexpensive media.

Systems Biology aims to characterize the functioning of cellular systems by

describing the interrelated behavior of their cellular constituents. The construc-

tion of detailed whole cell metabolic models has been hampered by the lack of

experimental data, detailed biological knowledge, as well as, the existence of a

diverse set of methods spread trough different disciplines that are needed to as-

semble large scale models. The development of such large scale representations

have particular interest in a Metabolic Engineering (ME) perspective. These

models can serve as basis for the prediction of modifications targeting specific

cellular entities to gear cell metabolism to the production of desired compounds.

In this chapter methods for the representation, calibration, sensitivity analy-

sis, identifiability, optimization and Metabolic Engineering of such models are

reviewed, together with ME applications. Existing metabolic models with spe-

cial emphasis in Escherichia coli will also be explored.
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2.1 Introduction

The emerging field of Systems Biology (SB) interconnects data from distinct

omics sources, in the form of models with distinct abstraction and quantification

levels [1]. Semi-quantitative approaches, despite creating more refined models,

may not be able to be validated against quantitative data. On the other hand,

quantitative approaches are verifiable against experimental observations but re-

quire more effort for systematizing knowledge in a formal way. These distinct

model granularities represent distinct levels of knowledge that capture part of

the inner workings of a cellular system [2].

Cells can be abstracted as a set of interconnected layers of a network of

components, namely: (i) gene regulatory networks, (ii) metabolic networks, (iii)

protein-protein interactions. Depending on the problem at hand, distinct parts of

these networks may be combined and formalized as a mathematical model or a

set of adjoint models. These abstractions may capture the steady-state behavior

of the system [3], as well as its transient dynamics [4].

Metabolic models usually describe the interactions between metabolites and

enzymes, although they may also include entities like genes or even regula-

tory proteins. Several formulations have been employed in the past to model

metabolism, such as cellular automata [5], agent based modeling [6] and differ-

ential equations [7] [8] [9]. Ordinary Differential equations models prevail as

the most used formalism due to the maturity of methods and will be the scope of

the following review, given their contribution in this thesis.

Commonly, metabolic dynamics are modeled as a set of differential equa-

tions, assuming that cell contents are homogeneous and each component has a

large number of units (often hundreds). If it is not possible to assure these as-

sumptions, the system has to be modeled stochastically (due to the low number

of molecules) or recurring to Partial Derivative Equations (PDEs) (if the system

Novel approaches for dynamic modelling of E. coli and their application in
Metabolic Engineering



18 | Chapter 2

is not spatially homogeneous). These models do not require a description of a

biomass equation and allow to simulate non steady-state processes. The main

disadvantage is the larger amount of experimental data needed to calibrate the

model, due to the number of parameters. It is important to bear in mind that

the necessary level of mechanistic information may also vary due to the level of

detail required by the modeler and the problem being tackled.

In a metabolic model (regarding biochemical reactions), the level of detail is

often related with the kinetic representations utilized. Reactions can be decom-

posed in atomic elementary steps containing all interactions between the enzyme

and participating compounds in the reaction (often characterized by mass-action

kinetics called Mass Action Rate Laws (MARLs)). Semi-mechanistic rate laws,

such as Michaelis-Menten [10] [11], make simplifying assumptions to merge

parts of the full elementary description of the reaction mechanism. For instance,

the enzyme and the respective complexes may be deemed in equilibrium. These

assumptions lead to simpler functional expressions with fewer parameters that

aggregate several elementary rates. These type of reaction rates are deemed ag-

gregated rate laws (ARLs).

In the other end of the spectrum are black box kinetics, such as lin-log [12]

or neural networks [13] that may require a large amount of data to train and may

not extrapolate well in unseen scenarios. It is often believed that the higher the

level of the mechanistic representation of rate laws employed, the narrower the

physiological range of training data needed to successfully calibrate and extrapo-

late (due to the fact of encapsulating physical principles of the reaction process).

However, it may not be feasible to stimulate reaction participating species or in-

puts (compounds that affect directly the reaction rate) to identify the values of

the parameters. As pointed out in [14] and [15] large mechanistic descriptions

of biochemical reactions are hard to interpret in the sense of identifying which
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enzyme complexes are connected to a specific system response.

After the modeler has delineated and assembled the representation of the

biological system under study, he/she has to calibrate its parameters utilizing

a Frequentist or Bayesian approach, that can follow a panoply of strategies as

illustrated in [16] [17] [18] [19].

After assembling the model, the "simple" act of regressing the model param-

eters, based solely on experimental data without taking into account uncertainty

and identifiability issues may produce dreadful results, namely the inability to

regresss the parameter values successfully (leading to the production of mean-

ingless results) [20].

Identifiability analysis is highly associated with Sensitivity Analysis (SA), in

the sense that SA methods classify model parameters as fragile or sensitive, due

to the fact of affecting the model ouputs, while robust or insensitive parameters

are the ones that do not disturb the model states.

The model building process should be preceded by an analysis of the struc-

tural identifiability of the system. This scrutiny should be carried employing

perfect data (noise free) to verify if it is possible to pinpoint which parame-

ters can be identified uniquely/non uniquely and which ones do not impact the

model output variability - parameters with this characteristic are often deemed

non-influential.

A similar analysis should be carried out after the calibration process. Param-

eters classified as non-identifiable or non-influential can be fixed to their nominal

value or removed from the system by altering its structure if suitable. Failure to

do so may lead to instabilities in the calibration process, or in other words, pro-

duce parameter estimates with high variability [21].

Often modelers have to work with already existing experimental data and/or

cannot perform more experiments. Thus, it becomes vital to know which pa-

Novel approaches for dynamic modelling of E. coli and their application in
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rameters drive the calibration process and which can be distinguished from one

another. Most of the times there are more parameters than data points avail-

able. Thus, several sets of parameters may fit the data equally well. The prob-

lem is generally exacerbated with higher levels of mechanistic description of

the reaction rate laws (that often contain more parameters and are called over-

parametrized).

Another issue the modeler should take into consideration is the numerical

representation of the system. To design large scale systems with thousands of

variables, special matrix representations should be employed and intertwined

with symbolic representations, taking advantage of special codes for faster com-

putation.

After calibrating and validating the model, the modeler may wish to study

a set of modifications to attain a specific goal, such as maximizing the flux

through a target reaction [2]. This requires specialized optimization algorithms

depending on the type of modification allowed (discrete optimization in reaction

knock-outs or continuous in enzyme modulation or both types of optimization

when tweaking continuous and discrete variables). In [22], it was shown that

the dynamic model of central carbon metabolism of Escherichia coli could be

mapped to the same solution space as the stoichiometric counterpart by modify-

ing (a single) parameter. Dynamic models contain a small number of achievable

steady states, due to the constraints imposed by the rate laws contemplating the

calibrated parameter values. In contrast, methods that ignore these restrictions,

employ only mass conservation and flux boundary conditions for solving under-

determined systems coupled with a specific cellular goal, may possess an infinite

number of possible solutions. This result is important from an ME point of view

and dictates that a reaction flux may be tuned by tweaking the enzyme concen-

trations on the cell.
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In this chapter, we address all of the aforementioned steps in the model con-

struction process, as well as regarding model optimization. In the following

section, an overview of the model building process is given. Next, a set of ki-

netic rate laws often employed in the construction of such models is described.

Afterwards, the system representation regarding its numerical and symbolic por-

trayal are illustrated. Subsequently, sensitivity and identifiability analysis are

explained giving an overview of the most important methods. After, the cali-

bration process is also explained from the frequentist and bayesian perspectives,

together with possible validation schemes. Next, an overview of the optimization

methods and their application is the ME follows. To close, a discussion about

existing metabolic models with special focus in Escherichia coli is presented.

Most of these topics will not be explored in full detail due to the ample scope of

this review. The most important methods for this work will be delineated more

thoroughly.
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2.2 Model Building Cycle

Research

Question
Hypothesis

Experiment

Model

Exp. Data

Vs.

Model

Predictions

Loop

Figure 2.1: Model building cycle diagram.

Biological systems are often inherently complex due to the vast amount of inter-

actions (often of non-linear nature) among the cellular entities. To understand the

behavior of such systems and shed new insights, many times it is insufficient to

perform experiments, acquire data and analyse the results. Due to the complexity

of biological systems, this process has to be complemented with mathematical

modeling to elucidate its behavior. In Figure 2.1, a diagram denoting possible

paths for the model building cycle are shown. The first step in the process is

indicated by the dashed box. This node represents the question of interest about

a particular biological system that has to be translated to a particular hypothesis

being investigated. This hypothesis is tested by experimentation, modeling and

a comparison of model predictions against available data, thus leading to a de-

cision regarding which step in the cycle should be taken after. This cycle may
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lead to modifications in the experiments, the modeling process, redefinition of

the hypotheses or the definition of new research questions. In this process, it is

desirable, if possible, that the modeling stage should precede experimentation to

allow the optimization of experimental data collection and the calibration of the

model.

The first step in the model development process should be the unambiguous

definition of the system under study. This characterization enables the defini-

tion of boundaries to confront the hypotheses being tested. The structure and

mathematical formalization utilized are defined based on the model purpose.

For instance, in certain cases, it may be more important to capture faithfully the

biological process than to estimate accurately a specific parameter.

Next, the devised model should be calibrated against existing experimental

data in conjunction, if necessary, with data from a set of designed experiments.

Specific data to validate and test the hypothesis should be acquired by another

set of designed experiments. Thus, these data serve as basis for comparison

against model predictions. Deviations from the observed data should be care-

fully analysed due to the possibility of leading to new insights about the system

functioning (not being modeled). It is also important to analyse model uncer-

tainties during the distinct stages of model construction. These uncertainties can

be broadly categorized as (definitions taken from [20]):

• Random uncertainty - This type of incertitude cannot be reduced further

trough experimentation or the generation of new knowledge. However it

does not possess bias and can be characterized by an adequate probabilistic

framework;

• Systemic uncertainty - It is outlined by biased predictions caused by

wrong assumptions (such as the utilization of a wrong modeling frame-
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work, for a given situation, e.g. an ODE model to represent a small number

of molecules), lack of specific knowledge and/or numerical errors (such

as round-off errors, bugs in software, hardware failures). These errors are

harder to describe by an appropriate probabilistic framework;

However, both types of incertitudes arise in several stages of the model con-

struction cycle, namely in experimentation, simulation and model definition. For

instance, errors in the model formalization are due to the physical approximation

of the process or lack of knowledge concerning the system functioning.

Experimental errors ensue from equipment and human limitations concern-

ing data acquisition and accuracy. Often, in biological systems, it is not possible

to observe all the variables of interest and certain phenomena occur at very dis-

tinct time scales that may be difficult to capture in the laboratory.

Model parameters also possess uncertainties and many times can only be set

by adjusting the model response to observed experimental data. When a system

has a large number of parameters only a small subset will be identifiable, in the

sense that only a specific parameter value will cause a determined output value.

Parameters that do not correspond to this definition are called unidentifiable and

can be subdivided into two groups:(i) non-influential parameters - are those that

over their range produce the same model output; (ii) non-identifiable parame-

ters - are those that possess over several alternative values that cause the same

output response. These non-identifiable parameter types often pose problems to

calibration algorithms leading to poor results. The identification of these param-

eters is often made utilizing local or global sensitivity analyses. Local sensitiv-

ity analyses are often obtained by performing infinitesimal small perturbations

of a specific parameter at a given operational point (often computed recurring

to derivatives or numerical approximations). Global sensitivity analysis, on the

other hand, focus on the effect of varying a set of parameters on their respective
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ranges. First order sensitivities are defined as [21]:

S i =
Vθi(Eθ∼i(Y |θi))

V(Y)
(2.1)

where S i stands for first order sensitivity index of parameter, Eθ∼i(Y |θi)) repre-

sents the expected value of the output Y when θi is fixed in the parameter set

(to a specific value), Vθi(Eθ∼i(Y |θi) is the first order effect of θi on the output Y

(Vθi symbolizes the variance over all values of θi),V(Y) is the variance of the

output Y . This sensitivity indexes contained in the range [0, 1]. Higher order

sensitivities can be computed by considering:

S i, j =
Vθi, j(Eθ∼i, j(Y |θi, j))

V(Y)
(2.2)

where the variables have an analogous meaning to the previously mentioned

expression however, the variance is computed concerning the parameters θi, and

θ j. This variance corresponds to the interaction between those parameters. In a

comparable form, expressions for higher order sensitivities can be computed.

The sum of all sensitivity indexes, gives origin to the total sensitivity index,

or the total order effect of a parameter, given by the expression [21]:

S Ti = 1 − E(V(Y |θ ∼ i)
V(Y)

(2.3)

where S Ti is total sensitivity index of parameter i,E(V(Y |θ ∼ i)) is the expected

value of the variance of output Y , when θi is fixed to a predefined value. This

analysis permits to classify and subdivide parameter sets as identifiable or not.

In [23], Saltelli identifies four scenarios for the use of global sensitivity analysis

(often based on variance based methods - described in the following sections):

• Factors Prioritisation: Asks the question of which parameters should be
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fixed to reduce most the variability in the output. Often this analysis is

carried to identify which factors should be further researched. This is

achieved by using the first order sensitivities to rank the factors. It is im-

portant to note that higher order interactions are not taken into account;

• Factors Fixing: This analysis is carried out to identify which factors have

no influence in the output. The rank of the parameters is made recurring

to the total sensitivity indexes;

• Variance Cutting: Determine which factors should be fixed to reduce the

variability in the output to a pre-defined value;

• Factors Mapping: Identify which factors are responsible for a certain type

of observed behaviour in the model output. This type of analysis is carried

during the calibration process to establish which parameters are significant

to drive this process.

Model calibration pertains the computation of the model parameter value or

density distribution depending on the underlying framework. The frequentist ap-

proach to model calibration ascertains the existence of an unknown true fixed set

of model parameter values. The purpose of this type of calibration is to estimate

the set of parameter values under specified optimality criteria for f (θ). In prac-

tice, a least-squares of maximum likelihood estimators are employed (described

in the following sections). In this task, the factor mapping scenario described

above for global sensitivity analysis has particular importance in the identifica-

tion of which parameters drive the calibration process.

It may be possible that the distribution of estimated parameter values is di-

rectly connected to the respective parameter density distribution in a probabilis-

tic sense. If a Bayesian perspective is utilized instead (assuming that the param-

eters are random variables), current information regarding parameter values is
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described by a priori probability distributions (an uniform distribution is often

utilized if such information about a parameter is unavailable). These a priori

distributions are utilized in conjunction with the observed data to update the cur-

rent beliefs about the system and generate an a posteriori distribution of each

model parameter that takes into account the current knowledge and the informa-

tion provided by the experiment.

The variability of the parameter estimations, as well as its mean, can be com-

puted based on the sampling distribution (the estimator is considered a random

variable, thus possessing mean and covariance). The confidence intervals of this

distribution can serve as a basis to quantify the precision of the calibration pro-

cess.

After the calibration, the model should be validated or verified against new

experimental data (not used in the calibration process) or, if such data are not

available, utilizing methods such as cross validation.

2.3 Dynamic Metabolic Model Representation

Assuming the aforementioned assumptions regarding the number of molecules

being model and the homogeneity in system stated in the introduction hold, dy-

namic models of metabolism can be generically represented by:

dxxx

dt
= f (xxx,uuu, θ) (2.4)

xxx(0) = xxx0 (2.5)

where x represents metabolite concentration vector or amounts regarding the

system state, u inputs controlled by the experimenter and θ the system parame-
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ters (often f is a non-linear function detailing the effects of system components

in the rate of formation or consumption of x along time).

The model output is represented by:

y = Cxxx (2.6)

where y is the model output, and C is a matrix (often is the identity matrix) con-

taining the aggregation (linear combination) of the model states. In the following

subsections it is assumed that C is the identity matrix, (unless stated otherwise),

thus xxx will be used to refer to the outputs of the system.

In these models, the internal metabolite change rates are often represented

by:

dxxx

dt
=

∑

Vcreation(xxx, θ) −
∑

Vconsumption(xxx, θ) − µxxx (2.7)

where the first term
∑

Vcreation(xxx, θ) represents the sum of all the reaction rates

that lead to the production of the compound and analogously,
∑

Vconsumption(xxx, θ)

stands for the reaction rates for the consumption of that metabolite, µ is the spe-

cific growth rate, while µxxx is the dilution term due to growth. The rate equations

for a particular reaction may be modeled based on mechanistic physical princi-

ples, underlying the enzymatic mechanism (like for instance Michaelis-Menten),

or in a black box approach relating certain species concentrations with the rate of

a reaction, without taking into consideration the underlying physical processes.

Usually, a dynamic model will contain reactions modeled with different mech-

anistic levels, due to the limited knowledge of some enzymes (a fully complete

mechanistic description of a complex enzyme can be constructed). There is a

trade-off between the mechanistic level of a reaction, and the amount of data

needed to calibrate the reaction rate. Often, purely mechanist reaction rates will
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possess more parameters than their black-box reaction rate counterparts. On the

other hand, mechanistic rate laws may be regressed on limited concentration

physiological ranges maintaining extrapolation capabilities outside of these val-

ues. Purely data-driven approaches are unable to extrapolate outside of the range

of values utilized in the calibration due to the lack of information concerning the

enzymatic reaction physical process to help constraint and guide the prediction

process [24] [25].

From an engineering and research stand point, fully mechanistic descrip-

tions of reaction laws are appealing, due to the fact that they allow interventions

and the study of enzymatic mechanisms without encasing information regard-

ing each atomic elementary reaction step. However, the amount of experimental

data, along with the signals needed to excite the system parameters, may be

prohibitive.

Approximate Kinetics encapsulate partially or fully the mechanistic details

of a reaction rate law, using physical assumptions (such as the rapid-equilibrium

state of specific elementary reaction steps), or mathematical abstractions (to cap-

ture the Input-Output relations of a specific rate law disregarding biophysical

details). These approximations serve an important role when constructing bio-

chemical systems models, when enzyme mechanisms are not fully understood

and the modeler wishes to simplify the representation of a specific reaction

mechanism or to apply a specific mathematical analysis.

Models constructed with a specific approximate kinetic structure, like for in-

stance S-Systems [26] (where rate laws are represented by power-laws) or Lin-

log [27], have been exploited due to the fact that certain mathematical analyses

are easily carried out, sometimes providing analytical results as the computation

of the steady-state. It has been shown that these descriptions may be used suc-

cessfully as a first step in the construction of large scale models of metabolism,
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requiring in some cases the same data employed in the construction of stoichio-

metric models. However, it is important to bear in mind that, despite being a very

crude approximation, they may provide valuable information, such as which re-

action steps are controlling certain parts of the metabolism.

Some of these representations also possess the capacity to incorporate inhi-

bition and activation features of enzyme mechanisms in a qualitative way.

Typically, these representations possess a smaller number of parameters than

fully elementary reaction descriptions, though they may also pose calibration

and identifiability problems.

2.3.1 Fully Mechanistic Description of Enzymatic Reaction

Rates

Reaction kinetics describe how a set of entities affects a reaction rate without

considering the chemical changes taking effect. The basis for the kinetic mecha-

nistic description of biochemical reactions is the law of mass-action, devised by

Guldberg and Wage in 1867 [28].

This law states that the reaction flux will be proportional to the concentration

of reactants raised to the stoichiometry (or number of molecules) of that com-

pound taking part in the reaction. The concept of reaction order was based in

this law. A zeroth order reaction occurs at a rate independent of any reaction

component, while a first order reaction has a rate proportional to one reactant. A

reaction is deemed of second order if its rate is proportional to the concentration

of two reactants or has a single reactant with stoichiometry two.

An enzymatic mechanism may be described by an ODE system where the

states contain all the species participating in a reaction, including the enzyme

and all its complexes. For instance, the following reaction:
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S → P (2.8)

may be represented by a Michaelis-Menten type of kinetics, and the elementary

reaction system may be given by:

E + S
k0

⇄
k1

ES
k2→ E + P (2.9)

The ODE system representing this reaction mechanism assumes that each

elementary reaction has Mass-action kinetics and is represented by:

f (x, θ, u(t)) =























































Ṡ = −k0(E × S ) + k1ES

Ṗ = k2ES

Ė = −k0(E × S ) + k1ES

ĖS = −k1ES − k2ES + k0(E × S )

(2.10)

where f (x, θ, u(t)) represents the derivatives of the mass action system described

in 6.1, and the ki embodies a specific elementary rate from the elementary reac-

tion mechanism.

The ARL of the Michaelis-Menten can be deduced, considering two distinct

types of assumptions that produce equivalent syntactic expressions [10] [11].

However, the parameters possess a distinct semantics. It can be assumed that

all the enzyme complexes are at steady-state and the total enzyme concentration

remains constant over time.

Etotal = E + ES (2.11)

Thus, the enzyme complex derivative becomes:

ĖS = 0 (2.12)

Novel approaches for dynamic modelling of E. coli and their application in
Metabolic Engineering



32 | Chapter 2

after the algebric manipulation of the previous expression we obtain that:

ES =
S × k0 × Etotal

k1 + k2 + S × k0
(2.13)

replacing this expression (dividing the numerator and denominator by k0) in Ṗ,

we attain the Michaelis-Menten expression:

Ṗ =
k3 × Etotal × S

k1+k2
k0
+ S

(2.14)

Often the elementary rates and Enzyme terms are grouped as follows:

Vmax = k3 × Etotal (2.15)

Km =
k1 + k2

k0
(2.16)

where Vmax depicts the maximum reaction rate value, and Km the amount of

substrate needed to achieve half of the Vmax value.

Nonetheless, we may arrive at a syntactic similar expression, by considering

that the first step of the reaction is at rapid-equilibrium, instead of considering

that enzyme complexes at steady-state. The dissociation constant of this step is

given by:

Ks =
S eqEeq

ES eq

(2.17)

utilizing the expression 2.11 we obtain

ES =
S × k3 × Etotal

Ks + S
(2.18)

analogously to the last derivation, we replace this expression in Ṗ:
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Ṗ =
k3 × Etotal × S

Ks + S
(2.19)

The Vmax parameter is equal to the first derivation 2.16, while Ks corre-

sponds to the dissociation constant of the first reaction step, instead of the half

saturation constant Km.

2.3.2 From MARLs to ARLs

The King-Altman (KA) method permits to derive an ARL expression from the

corresponding MARL description, by assuming that enzyme complexes are at

steady-state [29]. To derive this expression, the KA method starts by construct-

ing a graph with all the enzyme species as nodes, and the reactions and respec-

tive reactants as edges. For each of these edges, a minimum spanning tree is

constructed, and serves as basis to define the patterns (as they are named in the

original paper, or "the rate constants (and appropriate concentrations) associated

with reaction steps which individually or in sequence lead to EX, the enzyme

containing species in question"), to compute each enzyme complex fractional

concentration. This fractional enzyme concentration is given by the sum of all

the patterns leading to the target enzyme, divided by the sum of all the patterns

corresponding to all the enzymes. The ARL is derived by replacing these en-

zyme fractional representations, in product rate derivative expressions with each

fractional enzyme concentration multiplied by the total enzyme concentration.

The complexity of the KA method grows combinatorially, as the number of cy-

cles in the reaction graph increases.

The Cha method [30], on the other hand, simplifies the KA method (of-

ten lowering its computational complexity to manageable levels), by presuming

that specific reaction steps are at rapid-equilibrium, while specific reactions are
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slower than the dissociation rate constants (ko f f - deemed as slow reaction steps).

If the slow reaction steps form cliques (containing only rapid equilibrium

steps, or single enzyme species), then each of the cliques acts as a new enzyme

species (that are equal to the sum of the enzyme species concentrations partic-

ipating in the clique). These species outline a graph, whose edges are the slow

reaction steps. This graph can serve as input for the KA method described above.

The fractional enzyme concentration is given by divided by the path inside a

clique.

If the graph is a single clique, then the denominator term corresponds to all

the enzyme species participating in the reaction.

The derivative of the reaction product derivative is changed considering only

enzyme species directly linked to slow reactions (the catalyst rate constants or

kcat rates). The ARL is constructed analogously to the KA method, by replac-

ing these enzyme species by the corresponding fractional enzyme concentration

expression multiplied by the participating enzyme species concentrations in the

specific enzyme definition. Both of these methods are amenable to computa-

tional implementations [31] [32].

In the following subsections, the overall structure of approximate ARLs will

be presented. All the rate laws will have the following high-level structure

dxxxi

dt
= v f oward(xxx,uuu, θ) − vbackward(xxx,uuu, θ) = rxxxi

(2.20)

where xxxi is the specie i of the system, v f oward(xxx,uuu, θ) is the forward rate expres-

sion function, analogously vbackward(xxx,uuu, θ) is the backward rate function, and ri

corresponds to the time derivative of compound xxxi.
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2.3.3 Power-Law and Generalized Mass Action Kinetics

A power-law rate can be described by the following expression:

dxi

dt
= α

nS ubstrates
∏

i=1

(

S i

S i0

)gi

− β
nProducts
∏

j=1













P j

P j0













hi

(2.21)

where α is the aggregation of the forward-rates interacting with compound S i,

analogously β is an aggregation of reverse reactions interacting with product

Pi. The terms h and j represent the kinetic orders of the respective compound.

These kinetic orders are the effects of a specific compound in the reaction. If

they have a positive number, the compound has a positive effect, otherwise it

may have no effect (if zero) or a negative impact (if less than zero). Typically, in

metabolic models, reactants and products have kinetic orders corresponding to

their stoichiometry, while modifier species have values denoting their effect on

the reaction.

A biochemical description of a network utilizing power-law kinetics with a

forward and a reverse rate is referred to as an S-System (considered as a canon-

ical description). This formalism was conceived four decades ago by Saveg-

eau [26] with the goal of describing biological processes and providing an inter-

pretation of systems behavior. This representation captures the non-linearities of

biological processes at a local state, and allows the easy computation of system

characteristics, like for instance local sensitivities, steady-state or eigenvalues.

In steady-state, S-Systems are represented by a linear system. This linearity can

be exploited in the optimization of the system, like it is done in [33] where is

treated like a linear-programming problem, or even in the calibration process.

Generalized mass-action (GMA) rate laws are a generalization of the power-

laws kinetics, where the rates are unfolded by each reaction interacting with the

participating species in the reaction (equivalent to the mass-action description)
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dxi

dt
=

nProducingReactions
∑

w=1

αw

nS ubstrates
∏

i=1

(

S i

S i0

)gw,i

−
nConsumingReactions

∑

z=1

βz

nProducts
∏

j=1

(

Pi

Pi0

)hz, j

(2.22)

where w is the index of reactions that lead directly to the production of com-

pound xi, αw is the corresponding reaction rate, z represents the index of the

reactions consuming compound xi, and βz the reaction rate of the zth reaction.

The exponents have a similar meaning as presented for power-law rate expres-

sion, however are indexed by the corresponding reaction.

It is important to bear in mind that a GMA system can be converted to the cor-

responding S-System representation, notwithstanding the converse recast pro-

cess cannot be done directly, due to the loss of information if the systems are not

fully equivalent, or stated in another way, the GMA is already an S-system in this

case. The GMA rate laws are equivalent to the elementary reaction description

when utilized to describe elementary reaction steps.

2.3.4 Lin-log Kinetics

The Lin-log rate law is a black-box functional representation of an enzyme

mechanism assuming that the thermodynamic driving force of a reaction is pro-

portional to its rate. A system represented only by this type of rate laws is also

in the canonical form. This canonical form allows the analytical computation

of steady-states and also offers a closed form solution for the dynamics of the

system [27].

The Lin-log rate law expression for flux i, in a network of M fluxes and N

metabolites, is represented by:
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rxi
= J0 e

e0





















1 +
N

∑

j=1

ε0
i, j ln

Mi, j

M0
i, j





















(2.23)

The superscripts represent the reference steady-state, where
e

e0
is the relative

enzyme activity, ε0
i, j is the elasticity and

M

M0
represents the relative concentra-

tions of metabolites that participate in the reaction i.

The elasticities possess the same interpretation as kinetic orders, the effect of

a specific compound on the reaction rate (the local sensitivity).

This formalism is more appropriate for representing large concentrations of

species, while power-laws are more suitable for characterizing smaller concen-

tration ranges [34].

2.3.5 Modular Approximate Kinetics

Modular rate laws [35] encapsulate the representation of a family of semi-mechanistic

rate equations in a standardized way, being described by the expression:

rxi
=

E0 × fr × T

D + Dreg
(2.24)

where rxi
represents a modular rate equation, E0 is the initial enzyme concentration, fr

represents complete or partial regulation, D is the denominator term for each spe-

cific rate law, Dreg the specific regulation terms and T represents an expression

of stoichiometric parametrization often given by

rxi
= k f

∏

(

S i

Kmsi

)msi

− kr

∏

(

Pi

Kmpi

mpi

)

(2.25)

where k f is the reaction forward rate, kr is the reverse reaction rate, S i is the
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substrate i,msi
the stoichiometric value that can be multiplied by a constant h co-

operative factor,Pi represents the product i, mpi
the stoichiometric value that can

also be multiplied by h, and the Km parameters that possess the same meaning

as the MM ones (half the concentration of specific compound necessary to reach

half the enzyme velocity).

2.4 Model Representation - Kronecker Formalism

Biochemical mechanistic models can be converted to a biomolecular mass ac-

tion representation by decomposing the mechanistic rate law in the respective

mass action reaction scheme that originated it. One problem that can arise is the

fact that the original reaction scheme possesses more elementary rates than the

parameters in the aggregated rate law. Thus, it is not possible to do a one-to-one

mapping of elementary rates and parameters due to the fact of this system being

under-determined.

This issue can be attenuated by fixing rate reactions. For instance, we can

assume that the kon rate reactions have a 1E6mMs−1 rate [36] due to the physical

principles regarding protein diffusion. However, these values should be updated

if there are experimental data available. The remaining rates can be calculated

by using non-linear least squares and the KA method [29] to compute the cor-

responding mass action rate law for the reaction mechanism. This rate law is

comparable to the mechanistic one, with the exception of carrying every rate

explicitly. It is important to bear in mind that, due to the non-linear nature of

some rate laws there might be distinct sets of rates that produce the same re-

sult. However, this algorithm may become impractical due to the computational

cost in reaction mechanism with a large number of cycles between elementary

reactions [29].
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Biochemical models can be represented computationally in distinct forms.

Often, a specific matrix representation takes advantage of the structural patterns

of the system equations, thus allowing to design special computer codes as pre-

sented in the next section in the context of Kronecker formalism [36]. However,

it is also possible to represent the model equations symbolically, for example as

abstract syntax trees (ASTs), that can be directly manipulated allowing symbolic

derivation and simplification of expressions.

Often in software packages, such as MATLAB, the user can explicitly de-

fine the system expressions symbolically (utilizing the adequate package) or by

typing the system equations in the respective function file (implicitly, unable to

do symbolic computations). In the scope of this work, two methods of depict-

ing metabolic dynamic models take particular relevance: the Kronecker formal-

ism [36] and symbolic model representation [37].

2.4.1 Kronecker Formalism

The interactions between different species in a biological model can be decom-

posed into bimolecular mass action reactions [36] [38]. These models can be

represented as a system of differential equations as:

dxxx

dt
= f (xxx,uuu, θ) (2.26)

where f is a function f |Rn → Rm, n is the number of species and m the number

of rate equations, with xxx as concentration vector, u is a vectorial function of time

and the parameter set θ as [xxx0, k]T (a vector initial concentrations and elementary

rate parameters k). Due to the low connectivity between each species (each com-

pound participates in average in 3.5 to 7.0 reaction as referred in [36]), and the

bimolecular nature of the interactions, the function f (xxx,uuu, θ) can be expressed
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as:

f (xxx,uuu, θ) = A1xxx + A2xxx ⊗ xxx + B1xxx + B2xxx ⊗ xxx + k (2.27)

where A1 (nX × nX) is the matrix of first order interactions, A2 (nX × (nX × nX))

is the matrix of second order interactions, Analogously, B1 (nX × nU) and B2

(nX × (nU × nX)) represent the first and second order interactions concerning

the inputs, and k (nX × 1) describes the zeroth order reactions. Each of these

matrices is stored in a sparse format, due to the low connectivity between each

species. The Kronecker formalism lends its name from the Kronecker product

[39] present in the expression.

The matrices A2 and B2 possess ambiguity in the representation of a bio-

logical network due to the fact of expressing explicitly all the possible interac-

tions between two species. Thus, this idempotency permits three distinct ways

of expressing second order reactions:(i) by stating that species A interacts with

species B; (ii)species B interacts with A; (iii) that flux is divided in half by the

two previous situations.

The matrices representing the derivative concerning the parameters of A1,

A2, B1, B2 are constructed by stacking the matrix (generically called M) deriva-

tive regarding each parameter. This is done for each matrix independently. The

derivative matrices possess a subscript θ. More formally, these matrices can be

represented as:

∂Mi

dθ
=







































∂Mi

dθ1

...

∂Mi

dθn







































(2.28)

where Mi represents one of the aforementioned matrices for specie i. To speed

up the simulation of these type systems, the Kronecker products should be pre-
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computed and the multiplication with A2 and B2 matrices should only occur

explicitly with the non-zero terms.

Flux matrices for elementary reactions can also be decomposed in a similar

fashion to the previously described mass-action representation matrices. The

fluxes are a function of species concentrations, inputs, and the model parameters

being described by:

r(xxx,uuu, θ) = RA1xxx + RA2xxx ⊗ xxx + RB1xxx + RB2xxx ⊗ xxx + rk (2.29)

where RA1 (nr×nX) is the matrix of first order fluxes, RA2 (nr× (nX ×nX)) is the

matrix of second order fluxes, similarly RB1 (nr × nU) and RB2 (nr × (nU × nX))

represent the first and second order fluxes respectively concerning the inputs,

and rk describes the zeroth order flux reactions. Derivative matrices are also

computed by stacking the matrix derivative concerning each parameter.

This format also allows to express the following partial derivatives (where

the under script denotes the derivative variables) as:

fxxx = A1 + A2(I ⊗ xxx + xxx ⊗ I) + B2(I ⊗ u) (2.30)

fθ = A1,θxxx + A2,θ(xxx ⊗ xxx) + B1,θuuu + B2,θ(xxx ⊗ uuu) + kθ (2.31)

fxxxxxx = 2A2 (2.32)

fθxxx = A1,θ + A2,θ(xxx ⊗ I + I ⊗ xxx) + B2,θ(Ixxx ⊗ uuu) (2.33)

fθθ = 0 (2.34)
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rxxx = RA1 + RA2(I ⊗ xxx + xxx ⊗ I) + RB2(I ⊗ uuu) (2.35)

rθ = RA1,thetaxxx + RA2,θ(xxx ⊗ xxx) + RB1,θuuu + RB2,θ(xxx ⊗ uuu) + rkθ (2.36)

2.4.2 Kronecker Example

To enhance the comprehension let us illustrate a small example concerning the

construction of the Kronecker formalism matrices. We will utilize a Uni-Uni

reversible reaction mechanism with 5 species as basis for the example:

E + S
k0

⇄
k1

ES
k2

⇄
k3

EP
k4

⇄
k5

E + P (2.37)

The ODE system representing this equation, assuming Mass-action kinetics-

for each elementary reaction, is given by:

f (xxx, θ,uuu(t)) =







































































Ṡ = −k0(E × S ) + k1ES

Ṗ = −k5(E × P) + k4EP

Ė = −k0(E × S ) − k5(E × P) + k1ES + k4EP

ĖS = −k1ES − k2ES + k0(E × S ) + k3EP

ĖP = −k3EP − k4EP + k5(E × P) + k2ES

(2.38)

It is important to notice that the order of the rows and columns can be

swapped as long as it is consistent among the distinct matrices.Lets consider

that there are no inputs in the system. The following matrices (zeros are not

explicitly expressed) represent the species matrices:
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A1 =







































































S P E ES EP

S k1

P k4

E k1 k4

ES −k1 k3

EP k2 −k3







































































(2.39)

A2 =







































































S .S S .P S .E S .ES P.S P.P P.E P.ES ... EP.ES

S −k0 ...

P −k5 ...

E −k0 −k5 ...

ES k0 ...

EP k5 ...







































































(2.40)
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A1,p =





































































































































































































































































































S P E ES EP

S .k0

S .k1 −1
...

S .k5

...

P.k4 1
...

E.k1 1
...

E.k4 1
...

ES .k1 −1
...

ES .k3 1
...

EP.k2 1

EP.k3 −1
...

EP.k5





































































































































































































































































































(2.41)
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A2,p =







































































































































S .S S .P S .E S .ES P.S P.P P.E P.ES ... EP.ES

S .k0 −1 ...
... ...

P.k5 −1 ...

E.k0 −1 ...
... ...

E.k5 −1 ...

ES .k0 1 ...
... ...

EP.k5 1 ...







































































































































(2.42)

In this scenario matrices B1, B1,p,B2 and B2,p would not possess any columns

and would not be considered. If it is assumed that species S is an input then all

the corresponding rows and columns of matrices A1, A1,p,A2 and A2,p would be

removed and the following set of matrices B would be created:

B1 =























































S

P

E

ES

EP























































(2.43)

B1,p =







































S

P.k0

...

EP.k5







































(2.44)
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B2 =























































S .P S .E S .ES

P

E −k0

ES k0

EP























































(2.45)

B2,p =





















































































































































































S .P S .E S .ES

P.k0

...

P.k5

E.k0 −1
...

E.k5

ES .k0 1
...

ES .k5

EP.k0

...

EP.k5





















































































































































































(2.46)

If the following zeroth order reaction is added to the system

k6→ P (2.47)

The previously described matrices would have to be modified accordingly

and the following vectors would be created:
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K =























































P k6

E

ES

EP























































(2.48)

Kp =






















































































































































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(2.49)

2.5 Identifiability and Sensitivity Analysis

Identifiability concerns the capability of a parameter causing a unique response

in the model output being considered. If the same response is attained with dis-

tinct values of the parameter, it is classified as unidentifiable. This categorization

can also be subdivided into structural identifiability, the capacity to recover the

parameter’s value from data free of noise and practical identifiability, the ability
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to recover of the parameter’s true value from data with noise [20] [21] [23].

Another important concept are non-influential parameters (a subset of non-

identifiable parameters), classified in this way if the output of a model is not

altered by their distinct values in a defined range.

It is important to classify the identifiability status of a parameter. The non

identifiable parameters can be fixed to a baseline value reducing the overall

parameter dimensionality, thus reducing the complexity of the calibration pro-

cesses.

The identifiability is associated with sensitivity analysis in the sense of the

analyses of the influence of the model parameters on the outputs. Sensitivity

Analysis can be broadly categorized into three distinct types:

• Local Sensitivity: Based on the derivatives of outputs regarding the pa-

rameters (∂xxx
∂θ

). The analysis is carried considering the system at a specified

operational point and the effect of an infinitesimal change in a single pa-

rameter in the model output;

• Hybrid Global-Local Sensitivity: Utilizes the local derivatives scaled by

σθ/σY . In this scenario, global trends given by these scaling factors (theσθ

and σY - the variability over the range of the parameter) are also included

in the analysis;

• Global Sensitivity Analysis (GSA): Considers the effect of the parameters

on the output over the parameter ranges. These methods allow the simul-

taneous variation of the parameter values, and can be subdivided into:

– Variance-based methods: decompose the variation of the output by

the different model parameters. These methods allow to rank the pa-

rameters quantitatively, and identify the interactions between them;
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– Screening methods: Allow to identify and rank qualitatively the pa-

rameter influence;

– Pseudo Local-global methods: utilize a sample of local derivatives

over the parameter space to identify the parameters that cause the

variations in the output.

Local parameter sensitivities can be computed in three distinct ways:(i) nu-

merically, by approximating the value of ∂xxx(ti)

∂θ
by forward, backward or centered

finite differences, or complex step differentiation. The step chosen in these meth-

ods can have a high impact in the quality of the derivative (also affected by

numerical errors) leading to errors in the search directions of the optimization

problem ; (ii) The model equations can be solved in conjunction with the sensi-

tivity equations:

∂xxx(t)

∂θ
=
∂ f

∂xxx

∂xxx

∂θ
+
∂ f

∂θ
(2.50)

utilizing a method to integrate these equations such as the Adjoint [40] and the

Green method [41]. All these methods require the computation of the Jacobian

and the parametric Jacobian; (iii) The equation 2.50 can be solved a posteriori

by approximating the system solution by a polynomial. In this case, it is not

necessary to compute the system Jacobian (of equation 2.50).

In this work, the Polynomial Approximation Method (PAM) is utilized to

compute the sensitivities. In the PAM, the time interval of interest concerning

the sensitivity of the parameters is divided into a set of sub-intervals. In each of

these sub-intervals, the participating species concentrations are interpolated by

a low order polynomial.

These interpolants approximate the parametric dependence of the original

system. This permits the transformation of sensitivity differential equations into
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a set of algebraic ones. The computational complexity of the method scales with

the number of species being independent of the number of parameters. This con-

trasts with the direct and adjoint methods whose complexity grows with the in-

creasing number of parameters. The complexity of PAM is for each sub-interval

O((nx × l) + O((nx × l)3), where l represents the interpolant polynomial degree.

Considering a valid time interval defined in [c, d], and presuming that an Nth

order Lagrange interpolation polynomial is able to describe the time behavior of

ith species concentration, then ∂x(t)
∂θi

can be represented as [42], [43]:

∂x(t)
∂θi

=

L
∑

k=0

lk(t)
∂x(tk)
∂θi

, i = 1, 2, . . . , nθ (2.51)

Replacing ∂x(t)
∂θi

in 2.51, we obtain

h−1
L

∑

k=0

l′k(ul)wi(uk) −
N

∑

j=1

∂ f

∂x j

(ul)w j(ul) =
∂ f

∂θi

(ul)

i = 1, 2, . . . , nx, l = 0, 1, . . . , L

(2.52)

This expression can be transformed into

A
∂x

∂θi

= g (2.53)

where A is a sparse matrix composed by nx × nx block matrices Bp,q with p =

1, 2, . . . , nx, q = 1, 2, . . . , nx. Each of these blocks is an l × l matrix represented

by

(Bp,p)(i, j) = h−1l′j(ui) − δi, j

∂ f

∂x
(ui)

(Bp,q)(i, j) = −δi, j

∂ f

∂x
(ui) with p , q

(2.54)
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where δi, j is the kronecker delta (corresponding to the Lagrange polynomial

derivative). By definition a Lagrange polynomial is described by:

lk(t) =
L

∏

j=0

t − t j

tk − t j

j , k

(2.55)

Based on this expression, it is easily verifiable that

lk(tk) = 1

lk(t j) = 0

j , k

(2.56)

The vector g regarding parameter θi in equation 2.53, corresponds to

[∂x1

∂θi

(u1),
∂x1

∂θi

(u2), . . . ,
∂x1

∂θi

(ul),
∂x2

∂θi

(u1),
∂x2

∂θi

(u2), . . . ,
∂x2

∂θi

(ul), . . . , ,
∂xnx

∂θi

(ul)

−h−1
[

l′0(u1)
∂x1

∂θi

(0), l′0(u2)
∂x1

∂θi

(0), . . . l′0(ul)
∂x1

∂θi

(0),

l′0(u1)
∂x2

∂θi

(0), l′0(u2)
∂x2

∂θi

(0), . . . l′0(ul)
∂x2

∂θi

(0),

. . . l′0(ul)
∂xnx

∂θi

]]

(2.57)

By solving equation 2.57, the sensitivities concerning the parameter θi are

computed. As stated in [42] vector z is computed by a matrix-vector multiplica-

tion A−1g, when A is inverted. It is important to note that, there is only one A−1 in

any given time interval, independently of the number of parameters. After com-
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puting first-order sensitivity coefficients is possible to compute the remaining

high order sensitivity coefficients by iteratively computing matrix-vector multi-

plications - namely, A−1g for different g.

The interpolation points in each sub-interval should be chosen as the ze-

ros of proper orthogonal polynomials, as stated and observed in [42] due to

the even more spreading of the error values across the interval. For third de-

gree polynomials, one possible choice are the zeros of the third order Legen-

dre polynomial (the roots of the polynomial are shifted to the interval [0, 1] are

{0.5 − (0.5)0.5, 0.5, 0.5 + (0.5)0.5}). The PAM may be utilized to calculate higher

order sensitivities coefficients by recomputing vector g (for more information

refer to [43]).

2.5.1 Local Sensitivities - Parameter Ranking

Both local and global SA approaches permit to rank parameters by order of im-

portance (based on a measure of the sensitivity measure that may be quantitative

or semi-quantitative in nature). In this subsection, we present several metrics to

rank parameters based on derivatives (and their approximations).

• Sensitivity Matrix: The squared matrix nθ × nθ given by
(

∂y

∂θ

)T (

∂y

∂θ

)

or

weighted by the data variance
(

∂y

∂θ

)T
W−1

(

∂y

∂θ

)

(where W is the data vari-

ance weight matrix) serves as basis for the computation of criterion to

analyse if a set of parameters is identifiable and is often called the Fisher

Information Matrix (FIM). For instance, if the FIM is invertible then the

parameter set is said to be structural identifiable. Often, structural identi-

fiable parameters will be badly estimated (possessing high variance) when

regressed from experimental data (thus being non-identifiable in practice).

The inverse of FIM serves as basis for the unbiased lower bound estimate

for the asymptotic covariance matrix of the parameter set by the Cramer
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Rao theorem. Cov ≥ FIM−1. Where Cov is the system parameters covari-

ance matrix.

In dynamical time systems the FIM is often constructed based on a sample

of specified time points, and is given by:

∂yyy

∂θθθ
=







































∂y1(t)
∂θ1

. . .
∂y1(t)
∂θn

...
...

∂ym(t)
∂θ1

. . .
∂ym(t)
∂θn







































(2.58)

where ∂yyy

∂θθθ
is the matrix of system outputs derivatives regarding the param-

eter set θ, it is assumed that the system has m outputs and n parameters.

If this matrix has full rank, it implies that the system is structurally iden-

tifiable. Independent columns of the matrix are perpendicular, while de-

pendent columns form a zero degree angle. All the remaining columns are

partially colinear being the degree of dependence measured by the cosine

angle between them [44].

• Sum Of Relative Sensitivities:

S xxxθ =

nTimePoints
∑

t=1

(

dlnxxx(t)
dlnθ

)2

=

nTimePoints
∑

t=1

(

dxxx(t)
dθ
× θ

xxx(t)

)2

(2.59)

where t is an index starting at one, nTimePoints is the number of time

points considered, S xxxθ represents a relative sensitivity, computed by sum-

ming all the relative sensitivity terms for each time point ( dln(x)
dln(θ) ) of specific

system output xxx. Parameters with a higher mean relative sensitivity tend

to affect more on average the model output [44].

• Approximate Relative Sensitivities:
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S
f (xxx)
θ j
=

∆ f (xxx,θ)
f (xxx,θ)

∆θ j

θ j

(2.60)

where f (xxx, θ) is a scalar function of the output xxx and the nominal parameter

vector θ, and θ j is a specific parameter. Contrarily to relative derivatives ∆θ

can be as large as the modeler wishes. However, it is important to bear in

mind that this measure is an approximation. These sensitivities measures

can be averaged out along a set of time trajectories [44].

• Relative sensitivity matrix parameter correlation

One pertinent issue, concerning the parameter ranking is the identification

of parameter sets, whose parameters are correlated and cannot be distin-

guished (their effects are compensated) and a infinite number of solutions

exist, causing hurdles to optimization algorithms. These sets can be iden-

tified by computing the cosine of the angle of each pair of columns of

the relative sensitivity matrix given by
(

dxxx(t)
dθ
× θ
xxx(t)

)

. Near parallel columns

pairs are deemed unidentifiable, due to the previously stated reason [44].

2.5.2 Morrris Method - Parameter Screening

The Morris Method is a GSA that employs a one-factor-at-the-time (AOT) sam-

pling scheme to reveal whose variables are not influential, where each parameter

has a discrete set of values (called levels) and is changed a single time in a set

of experiments comprehending all the parameters. This process is repeated for a

predefined number of re-samples r. The method estimates the overall effect of a

parameter in the output (µ) and its standard deviation that indicates the presence

of higher order interactions. It is important to bear in mind that these measures

are qualitative in nature.
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This method has a low computational burden when compared with other

GSA methods requiring r × (#θ + 1) simulations, where r is the number of re-

samples and #θ is the number of parameters under study.

The method consists in the selection of a random initial parameter set located

in a grid spaced by a predefined value δ (often a multiple of 1
(n#θ−1) ) and the

subsequent realization of k experiments where in each a parameter is varied by

δ . This allows to access the effect of changing a value at a time (called an

elementary effect ):

EEi(θ) =
y(θ1, ..., θi−1, θi + δ, ..., θk) − y(θ)

δ
(2.61)

where θ = (θ1, θ2, ..., θn) represents a parameter value in the parameter range

in the space of the parameters containing also θ+δ. Elementary Effects (EEs) can

be seen as coarser granularity approximation of a derivative utilizing numeric ra-

tios. µ is computed by taking the average of this distribution for each parameter,

while σ is the standard deviation of the respective distribution of elementary

effects.

By random sampling the input space utilizing the OAT described scheme, is

possible to construct a distribution of EEi(θ) that serves as basis for the compu-

tation of µ and the respective standard deviation σ to rank the parameters.

Several extensions of the method have been created to deal with some of its

limitations. In [45] it was assessed that mean of the absolute elementary effects

distribution is a good variable in order to rank the parameters. This value is not

affected by the non-monotonicity of Y , contrarily to EEs that can be cancelled

out or distorted by these effects (change of signs of the function).

In [46], the EE definition was scaled by σθ
σY

creating a semi-hybrid local mea-

sure of sensitivity, due to the fact of contemplating a coarse approximation of

a derivative with the variability of the outputs and the parameter under study).
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This formulation has also the advantage of creating a dimensionless measure of

sensitivity that can be compared among the different outputs in a multi-variate

model.

Normally, the number of resample trajectories is chosen by trial and error.

In [47] a metric was created allowing to automate the setting of the r parame-

ter. The method consists in executing the Morris method with distinct values

of r (in a ascending sequence with a fixed or variable step). Between each two

experiments, the following expression (of a numerical rank giving a metric of

parameter ranking between two distinct runs of the method) is computed:

PFri→ r j
=

nθ
∑

k=1

|Pk,i − Pk, j|
Pk,i+Pk, j

2

(2.62)

where Pk,i is the ranking of parameter k in resample i, similarly Pk, j is the

ranking of parameter k in resample j (with i = j + 1). After computing all

the distinct r-experiments and computing the parameter index metrics, the r-

experiment with the lowest value is chosen.

In [45] it was suggested to generate M = 500 to 1000 sample distributions

and estimating the distance between them utilizing the expression (assuming the

sample distributions are distinct, otherwise the distance is zero):

dm,l =

k+1
∑

i=1

k+1
∑

j=1

√

√

√

k
∑

z=1

[Xi
z(m) − X

j
z (l)]2 (2.63)

where k is the number of inputs (or parameters under study), Xi
z(m) represents the

point z of the m trajectory concerning input i, X
j
z (l) represents the point z of m

trajectory regarding input j. Afterwards, the combinations of r trajectories with

the highest spread (or distance) would be selected. The drawback of this method

is the combinatorial explosion of possible cases that make it infeasible even for

low values of r such as 50. In [47], this problem was addressed by deriving a
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method that computes only a fraction of the spreads between the trajectories.

This reduces the computational time, but it may return sub-optimal solutions.

2.6 Sobol and High Dimension Model

Representation - Variance Based

Decomposition

High-dimensional model representation (HDMR) is a formalism that enables to

capture the input-output system behaviour quantitatively shedding light on the

interaction between the different variables and inputs of the system. The model

output is represented by an hierarchical function expansion concerning the input

variables as (often called HDMR or Sobol expansion):

f (θ) = f0 +

n
∑

i=1

fi(θi) +
∑

1≤i≤ j≤n

fi j(θi, θ j) + · · · + f12...n(θ1, θ2, . . . , θn) (2.64)

where f0 represents the mean response to f (θ) and each successive order function

gives the respective parameter set contribution θ to f (θ). For instance fi j contains

the contribution of θi and θ j for the output function f (θ). It has been shown

empirically that often physical phenomena can be described by an expansion up

to the second order [20], given by:

f (θ) ≈ f0 +

n
∑

i=1

fi(θi) +
∑

1≤i≤ j≤n

fi j(θi, θ j) (2.65)

assuming that all parameters are defined in a interval [0, 1], the parameter

space is the n-dimensional unit hypercube (θ), where (the following explanation

was borrowed from [20])
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f0 =

∫

θ

f (θ)dθ (2.66)

fi(θi) =
∫ #θ−1

θ

f (θ)dθ i − f0 (2.67)

fi, j(θi, θ j) =
∫ #θ−2

θ

f (θ)dθ i j j − fi(θi) − f j(θ j) − f0 (2.68)

The variance of the output (Y ≈ f (θ)) is given by

D =

∫

θ

= f 2(θ)dθ − f 2
0 (2.69)

and the partial variances

Di =

∫ 1

0
f 2
i dθi (2.70)

Di, j =

∫ 1

0

∫ 1

0
f 2
i jidθidθ j (2.71)

2.6.1 RS-HDMR

The order functions (also called component functions) for the construction of

the HDMR output f (θ) can be built by utilizing empirical functions fulfilling or-

thogonality conditions such as Legendre polynomials. This reduces the number

of samples needed when contrasted with the Sobol method.

A sampling scheme (such as Latin Hyper Cube Sampling called Quasi Ran-

dom Sampling HDMR, or by Random Sampling (RS) called RS-HDMR) is nec-

essary to sample the input space (or model parameter space) and respective sys-

tem response. Often, the parameters are rescaled to the interval [0, 1] being the
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range of f (θ) contained in a unit hypercube. These data serve as basis for cali-

brating the underlying empirical functions utilized by each order function.

RS-HDMR often requires less runs than a pure Monte Carlo approach to

compute each order function. Nonetheless, it is not known a priori which is

the best polynomial degree for each component function, as well as which func-

tions should be discarded when evaluating f (θ) (some functions may cause an

increase in the output error due to the lack of information content - low Total

Sobol Sensitivity).

Commonly, RS-HDMR order functions are constructed utilizing Legendre

Polynomials given by:

ψ1(θ) =
√

3(2θ − 1) (2.72)

ψ2(θ) = 6
√

5(θ2 − θ + 1
6

) (2.73)

ψ3(θ) = 20
√

7(θ3 − 3
2
θ2 +

3
5
θ − 1

20
) (2.74)

Utilizing these orthonormal polynomials, f (θ) can be written as:

f (θ) ≈ f0 +

n
∑

i=1

k
∑

r=1

αi
rψ(θi) +

∑

1≤i≤ j≤n

l
∑

p=1

w
∑

l=1

βi j
pqψpq(θi)ψq(θ j) (2.75)

As shown in [48], αr
i and βi j

pq can be approximated by the expressions, re-

spectively:

αi
r ≈

1
N

N
∑

s=1

f (θ(s))ψr(θ j) (2.76)
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βi j
pq ≈

1
N

f (θ(s))ψp(θ(s)
i

)ψq(θ(s)
j

) (2.77)

In [49] and [50] these hurdles were addressed. First, each component func-

tion is built iteratively by computing a set of polynomials increasing degrees and

selecting the one that produces the least squared error on the output. After, com-

ponent order functions are discarded if they produce an increase in the ouput

error over a certain threshold. Thus, identifying the influential parameters of the

system.

It is important to bear in mind that the Sobol first and second order indices

can be computed by calculating:

Dθi
=

α2
i

V(Y)
(2.78)

Dθiθ j
=

β2
pq

V(Y)
(2.79)

where V(Y) represents the total variance of model output Y .

2.6.2 Sensitivity Analysis of Time Series

In [51], a new method was developed to evaluate the global sensitivity values

of time dependent series. The first step is to simulate the system utilizing the

sampling scheme of the GSA being utilized. Next, functional Principal Compo-

nent Analysis (fPCA) is applied to identify the set of most relevant modes (that

explain the larger amount of observed variation and thus, should be selected).

Each principal component (PC) has a weight associated. This value replaces

the output curve computed in the model integration. Thus, the sensitivity method

estimates the sensitivity of the parameter set under study to the PC weight. Each
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considered PC will have a distinct weight associated and a set of sensitivity mea-

sures (one for each parameter).

These sensitivity values (corresponding to each parameter and PC) are ag-

gregated by summing each parameter PC score weighted by the respective PC

variability value (note that this a qualitative measure). Contrary to often utilized

analysis that compute the sensitivity values at distinct time points followed by

their integration, this method does not weight the sensitivity of each time point

equally (avoiding type I and type II errors).

2.6.3 Assessing Parameter Ranking After Screening

After ranking the parameter importance (global sensitivity indices computation

or a proxy of these values), it is important to assess the correctness of the sub-

group of parameters deemed as important.

The sensitivity methods do not provide a cut-off value to determine param-

eter importance (it may be problem dependent) and some of the methods return

qualitative measures (such as the Morris method). In several works, the cut-off

values are decided based on visual inspection and comparison of the measured

values for the output and the respective parameters.

In [52], an elegant solution was proposed with a quantitative judgement.

After ranking the parameters, the modeler would sample all parameters of the

model randomly or utilizing a sampling scheme such as Latin Hyper Cube Sam-

pling (LHCS) or Sobal random sequences [53]. Next, the modeler would define a

threshold for deciding which parameters are important and non-important based

on the measure returned by the sensitivity measure employed. Utilizing the pre-

vious computed samples as the basis, two new sample sets would be generated

by varying randomly first the non-important parameters and then the important

parameters. Subsequently, the correlation of both of the previous sets against the
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first created set would be compared. This process can be iterated several times

utilizing different thresholds to classify significant parameters. In the end, the

threshold that produces the higer correlation with the important parameters and

the lowest with non-important parameter should be used to divide and classify

the parameter set. The higher correlation coefficient (assuming Pearson Corre-

lation) should be near one, while the non-important coefficient should be near

zero. If it is not the case, the analysis should be repeated with another threshold

value.

2.7 Model Calibration

In the model building cycle, the problem of regressing the parameters can be

often framed as a non-linear optimization problem (assuming that x(θ, t) is non-

linear as in most biological systems) that contemplates a metric to evaluate the

distance from the data to the devised model predictions (often utilizing Euclidean

distance), assuming that the parameter values are unique. This approach is called

frequentist [20]. Another approach is to consider that parameters are random

variables, characterized by a probability distribution (and inherently its hyper-

parameters, for instance a parameter characterized by a normal distribution will

be associated with the mean and standard deviation of the distribution), and the

calibration problem amounts to the computation of the posterior density func-

tion, making use of prior density functions that incorporate existing informa-

tion about the parameters (such as past experiments, or information from liter-

ature). The definitions and nomenclature utilized in this section were borrowed

from [20].

In the case of metabolic modeling, it is generally assumed that experimen-

tal errors (deviations between the model and measurements) are unbiased and
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independent and identically distributed (iid) leading to the use of the model:

ψi = fxi
(θ) + εi, i = 1, . . . , n, (2.80)

where ψi is a random variable representing a measurement of the model variable

i, fxi
(θ) is model output for variable xi and ε is a random variable representing

measurement errors. In a frequentist approach, the set of parameters θ is unique,

while in a Bayesian approach this set is characterized by an a posteriori density

function.

The particular methods for the estimation of the parameters will be presented

in the following sections.

2.7.1 Frequentist Parameter Estimation

If it is assumed that errors are unbiased and iid, their expected values will be

zero with an unknown variance σ2, then the following ordinary least squares

estimators can be used [20]:

min

T
∫

0

(y(x(θ, t)) − ydata(t))2dt (2.81)

or in a discrete scenario as:

min

nTime
∑

n=0

(y(x(θ, t)) − ydata(t))2 (2.82)

Maximum likelihood estimators can also be employed to estimate the param-

eter set θ.

L(θ) = L(θ|y) (2.83)

The likelihood L(θ|y) in this context is a function of θ and is not a probability
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density function (pdf). For n iid random variables the likelihood function is

given by

L(θ|y) =
n

∏

i=1

L(θ|y) (2.84)

The maximum likelihood of parameter set θ (the unique set of parameter

values that maximizes the likelihood function) is calculated by maximizing the

likelihood function:

max L(θ|y) (2.85)

In this work, the errors are assumed to be characterized by N (0, σ2). In this

scenario, θ and σ are parameters being calibrated with the likelihood function:

L(θ, σ2|y) =
n

∏

i=1

1

σ
√

2π
e

(y(x(θ,t))−ydata(t))2

2σ2 (2.86)

Due to its monotonicity, the logarithm of likelihood function can be em-

ployed instead:

ln(L(θ, σ2|y)) = −n

2
ln(2π) − n

2
ln(σ2) − 1

2σ2

n
∑

i=1

(y(x(θ, t)) − ydata)2 (2.87)

The assumption of ε described by N (0, σ2) makes the solutions of maximum

likelihood estimation and ordinary least-squares equal.

In the context of regressing biological models most of the variables will be

constrained by bounds lowerBound ≤ xi ≤ upperBound. Other constraints

may also be imposed depending on the problem at hand. When dealing with

non-linear optimization it is not possible to guarantee the global nature of the

optimum.
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2.7.2 Bayesian Parameter Estimation

On the other hand, if it is assumed that parameters are described by a random

variable, it may be asked what set of parameters are more likely to given the

observed data. This question may be performed under a Bayesian perspective,

by considering [20]:

p(θ|y) =
p(y|θ)p(θ)

p(y)
(2.88)

where y is the observed data, θ is the parameter set, p(y) is the probability of

the observed data, p(y|θ) is the maximum likelihood function of the parameter set

θ and p(θ) often called the prior probability distribution encapsulates the current

knowledge about the parameter set θ. The term p(y) functions as a normalizing

constant, and can be dropped out giving rise to the proportional relation

p(θ|y) ∝ p(y|θ)p(θ) (2.89)

Assuming that experimental errors, and the parameter set θ are represented

by normally distributed random variables, it is plausible to contemplate p(θ)

as a normal distribution. In this context, this distribution is called a conjugate

prior due to the fact of being of the same type as the posterior distribution. The

multiplication of the terms in equation 2.89 returns a normal distribution that

may be reused as a new priori distribution as new information becomes available.

This fact allows the re-estimation of the parameter set θ, when new experimental

data arises. In absence or in the presence of debatable information regarding the

parameter values, the priori distribution should be represented by an uniform

distribution (called an uninformative priori). It is important to bear in mind that,

if a parameter is unidentifiable and has an uninformative prior, its calibration

will not succeed.
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Often, Markov Chain Monte Carlo Hastings algorithm [54] is employed to

compute the parameters posterior distribution. Other algorithms, such as nested

sampling [55], may also be utilized.

2.7.3 Calibration Hurdles

Over-parametrized models often pose difficulties to quantification methods due

to structural and numerical identifiability issues. Numerical identifiability prob-

lems may be solved by acquiring new measurements on distinct outputs (in

metabolic models these measurements may refer to metabolites or fluxes). How-

ever, a more practical alternative may be the simplification of the model by

fixating the parameters whose values have no influence in the model outputs.

Methods that address this issue are often based in local or global sensitivi-

ties [44] [21] [23]. In this sense, local sensitivities are referred as local in nature

(in the vicinity of an operational point) and characterize an infinitesimal change

(this modification may be given by a ratio of differences) in one of the parame-

ters, while keeping the remaining variables constant. Global sensitivity methods

tend to consider the parameter space range as a whole without being constrained

to a specific operational point. In this scenario the simultaneous change of sev-

eral parameters is accepted. The quantification of the global sensitivities allows

to rank their importance for the observed dynamics of the system.

When the values of parameters are not available, assumptions have to be

made to find suitable values. For instance, if the initial state of the system is in

steady-state, thermodynamic information can be employed [56] [57] to devise

valid metabolite bounds. In [58], the same constraints are taken in consideration

with cell optimal management of enzyme levels.

Another approach to alleviate the calibration problem is to scale the rate pa-

rameters, as well as the initial concentration values, allowing to extricate the
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system from the units defined by the modeler without altering the system dy-

namics. Often this strategy facilitates the optimization convergence [59].

2.8 Optimization

In SB, some research questions can be formulated as optimization problems from

areas such as model calibration, optimal design of experiments or ME.

These approaches allow to validate, query the models and create new hy-

potheses. In an optimization context, these are formulated as the maximization

or minimization of a cost function, possibly subject to a set of constraints (that

can be linear or non-linear depending on the problem at hand). These constraints

may also bound the valid range of inputs to the cost function. The methods uti-

lized to solve these problems can be categorized broadly into the following cate-

gories: deterministic or stochastic, continuous or discrete, local or global. There

are no hard boundaries and a method may belong to several of those classes.

Continuous optimization is characterized by the maximization or minimiza-

tion of a cost function that accepts as input a set of real variables. In continu-

ous optimization, local methods tend to employ gradient information to guide

the search process towards an optimum. If the search space is convex, any lo-

cal method that takes advantage on gradient information will suffice to find the

global optimum. In non-convex search spaces, these algorithms converge to

an optimum, but there are no guarantees of being the global one. Often these

methods are executed in a multi-start fashion (generation of multiple initial ran-

dom points for the algorithm initialization). Meta-heuristics can also be utilized

and/or combined with local methods (giving origin to hybrid methods). The goal

of these methods is to try to avoid getting trapped in local optima. Nevertheless,

none of these methods provides any guarantee of reaching the global optima in
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non-convex search spaces.

In combinatorial optimization the variables being manipulated are discrete

in nature, thus not allowing the use of gradient information. If the number of

variables is small enough to permit a brute force approach (testing all possible

combinations of the target variables), then there is the guarantee of finding the

global optima. The absence of the gradient information leads to the definition of

neighbor solutions. This definition is given by the user and can have a big im-

pact in the behavior of the optimization methods. Local combinatorial methods

such as Tabu Search [60] [61], Hill Climbing or the stochastic version of these

algorithms (often employed when the number of variables is large or the time

to evaluate the objective function is prohibitive) tend to test all or part of the

neighboring set of solutions regarding the current solution being investigated.

Global methods in combinatorial optimization are often analogous to the

ones employed in continuous optimization often taking inspiration of physical

or biological processes (such as biological evolution [62], the annealing of crys-

tals [63]) to generate new solutions for the optimization problem.

In this work, continuous optimization problems regarding model calibra-

tion are solved utilizing local and global optimization methods (detailed below,

namely Differential Evolution and gradient based methods such as active-set).

Discrete optimization problems regarding ME strategies (reaction knockouts and

enzyme level modulation) were solved utilizing meta-heuristics.

In the following subsections, a brief description of the algorithms utilized in

this work is provided.

2.8.1 Gradient Descent

Gradient descent is a local method for continuous optimization problems that

takes advantage the derivatives of the cost function J(θ) over parameters to reach
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the optima. This method has a parameter α, often called the learning rate, that

modulates the relative step taken in the direction of the optimum (as defined by

the respective derivative value).

At each iteration of the algorithm, the derivative of the objective function

concerning the parameters
∂J(θ)
∂θ

is computed. The parameter values are updated

according to (considering a minimization problem):

θi = θi − α
∂J(θ)
∂θi

(2.90)

The algorithm stops when a user defined criterion such as solution conver-

gence or a maximum number of iterations is reached.

2.8.2 Evolutionary Algorithms

Evolutionary Algorithms (EAs) and Genetic Algorithms (GAs) are optimiza-

tion methods based on the principles that guide biological evolution, namely,

selective pressure, exchange of genetic material between individuals, and ge-

netic mutations. Computationally, these principles are emulated utilizing special

function mappings (called operators) that mutate or recombine solutions. These

algorithms return a solution set of evolved solutions (often the fittest individuals

or the best solutions) based on a cost function supplied by the user. To apply

these methods, an encoding scheme has to be defined, as well as a fitness func-

tion.

Typically, in literature, EAs contemplate a broader set of solution encoding

schemes, while GAs often refer to binary representations. In this type of al-

gorithms, solutions are often called individuals or genomes. The term gene is

utilized to specify a particular position of a vector encoding a particular solu-

tion or individual or a building block of specific abstraction representing part of
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a solution. In this work, these terms are utilized interchangeably.Evolutionary

algorithms are composed by the following stages (Figure 2.2):

Initialize
Population

Select
Solutions

Apply
Operators

Update
Population

Next
Iteration

Is Stop
Criterion
Met?

Stop

no

yes

Figure 2.2: Evolutionary Algorithm schematic depiction.

1. Initialization: A set of solutions is generated representing the first gen-

eration of individuals of the algorithm. Often, these are generated by an

uniform random sampling of search space variables. If specific domain

knowledge is available, this process can take advantage of this informa-

tion to generate the individuals;
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2. Evaluation: The fitness of each solution is computed through an user de-

fined objective function;

3. Selection: A method to select a set of solutions for the following steps

of the algorithm is applied. The main goal of this procedure is to select

the best solutions in detriment of the worst ones, although the process is

stochastic;

4. Crossover: A set of selected individuals (solutions) are recombined, gen-

erating new individuals labelled as offspring. It is expected that the newly

created solutions retain some conserved building blocks from the parents;

5. Mutation: Solutions/individuals are modified following a predefined pro-

cedure to generate new solutions;

6. The progeny created by selection, crossover and mutation replaces the an-

cestors in the population according to certain criteria.

The steps from 2 to 6 are repeated until a user defined stop criterion is met.

The update population node in the Figure contemplates the evaluation step

as well as the replacement of the respective individuals in the population. Often,

this type of algorithm is applied to problems whose optimal solutions cannot be

found computationally in tractable time.

2.8.3 Differential Evolution

Differential Evolution (DE) is a population based derivative free method for con-

tinuous optimization problems with linear and non-linear constraints [64]. The

population is composed by a set of real valued vectors. Each of these vectors is

mapped to the set of parameters of the optimization problem being tackled.
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The algorithm evolves a population of solutions to the optimization problem

by perturbing each solution with the weighted difference of n distinct solutions

(often n = 2) at each iteration.

The following is an outline of the algorithm called DE/rand/1 (utilized in this

work depicted in Figure 2.3):

Initialize
Population

Mutation

Crossover

Selection
Next

Iteration

Is Stop
Criterion
Met?

Stop

no

yes

Figure 2.3: Differential Evolution Algorithm schematic depiction.

):

1. Initialization: The first step of the algorithm corresponds to the initial-
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ization step (analogously to the EA). If domain specific knowledge is not

available, solutions should be uniformly initialized throughout the search

space.

2. Produce a new population by perturbing each solution utilizing the follow-

ing steps:

a) Select a random individual from the population; (xrandom)

b) Two distinct solutions (x1, x2) are randomly selected to produce a

trial solution xtrial;

c) Generate the trial solution xtrial by summing the weighted difference

of two of the previously selected solutions, ( The difference is multi-

plied by a scale factor F):

xtrial = xrandom + F(x1 − x2) (2.91)

d) Recombine the trial vector and the respective solution in the popu-

lation utilizing uniform crossover with a predefined probability CR,

giving rise to a candidate solution (xcandidate). In a uniform crossover,

two individuals serve as basis (often called parents) for the creation a

new offspring individual. The parent vectors are compared position

wise and for each position a value to pass the new offspring vector is

selected based on CR value;

e) If the newly generated solution possesses invalid positions, their val-

ues should be reset to the closest bounds;

f) If the candidate solution (xcandidate) has a worse fitness value than the

corresponding solution that originated it, the candidate solution is
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discarded; otherwise, it replaces the original solution in the popula-

tion;

3. Repeat this process starting from step 2, until a user defined termination

criteria is met

DE algorithms can be utilized with different schemes [64], varying the num-

ber of individuals utilized in the construction of the trial vector, as well as the

selection procedure of the individual to be the basis of the perturbation. Often

the nomenclature of the DE scheme is given by DE/selection Procedure/number

of individuals as basis of the perturbation.

2.8.4 Hybrid Differential Evolution

Adaptations have been made to the previously mentioned method, to reduce the

population size, as well as to overcome the loss of genetic diversity in the indi-

viduals as the algorithm starts to converge. Of particular interest, in the scope

of this work, is the adaptation made in [65] called Hybrid Differential Evolution

(HDE).

The original algorithm is enhanced by the addition of two new stages after

the selection procedure:

• Acceleration, in which a new solution is generated, if the previous stages

(mutation, crossover and selection) did not give rise to a better solution

than the previous iteration. A new solution is generated by executing a

gradient descent algorithm, having as basis the best solution in the popu-

lation. If the new solution has better fitness than the best solution, than it

replaces it;
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• Migration: To combat the loss of diversity in the population as the algo-

rithm progresses (due to the convergence of individuals around a similar

area of the search space), this stage was introduced to disperse part of the

population through the search space, using as template the best individual

present in the population. This stage is only activated if a metric of popu-

lation diversity does not match a predefined threshold. In the description

of HDE, this metric is defined in two parts. First, for each gene in the

population, a genetic diversity index is computed by the expression:

ηi, j =































1, if
∣

∣

∣

∣

zi, j−zbest, j

zbest, j

∣

∣

∣

∣

< εgenes

0, otherwise
(2.92)

where ηi, j is the gene diversity metric of gene j from individual i, zi, j cor-

responds to the gene j of individual i, and analogously zbest, j is the gene

j of the best individual in the population, εgenes is the threshold tolerance

(if the diversity ηi, j is lower than this value, than ηi, j equals 1 ,otherwise

0). ηi, j is computed for all individuals in the population, except the best

one. Afterwards, the population diversity is computed utilizing the previ-

ous calculated indexes:

ρ =

∑Nindividuals−1
i=1

∑nGenes
j=1 ηi, j

n × (Nindividuals − 1)
(2.93)

where ρ is the metric of population diversity, Nindividuals is the number

of individuals in the population and nGenes is the individual size. If this

metric is over a predefined threshold, the population is regenerated em-

ploying a strategy that has as basis the best individual in the population.

In [65] the following schemes are utilized as examples:
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Z
putative

i
= Zbest +N(0, σ), i = 1 , . . . ,Nindividuals, i , best (2.94)

where Z
putative

i
is a new putative solution to replace individual i in the popu-

lation,N(0, σ) represents a vector of random generated normal distributed

values with mean 0 and σ standard deviation. Another scheme is exempli-

fied as:

Z
putative

i, j =































zbest, j + δ(zi,min − zbest, j), if δ̃ < zbest, j−zi,min

zi,max−zbest, j

zbest, j + δ(zmax, j − zbest, j), otherwise
(2.95)

where Z
putative

i, j is a the value of gene j of new putative individual i, zi,min is

the lower bound of gene at position i, likewise zi,max is the upper bound of

gene at position i, δ̃ and δ are random numbers.

The HDE method possesses at least two hyper-parameters more than the DE

algorithm, namely, the genetic diversity threshold and the population genetic

diversity threshold (without taking into consideration the gradient descent pa-

rameters).

2.8.5 Grammatical Evolution

Grammatical Evolution [66] is an EA possessing the capacity to evolve codes

in a defined language, using a set of rules defined formally in a grammar. The

grammar allows to express the structure of complex abstractions, such as neural

networks, symbolic expressions or atomic configurations. From an algorithmic

point of view, a grammar constrains what may be created, while the search algo-

rithm explores explicit solutions to the optimization problem.
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In this sense, a grammar is a set of rules describing how a complex structure

is built up - each rule functions as a small building block. A valid derivation is

created by chaining together a set of rules that reference each other in a partic-

ular order and give rise to a valid sentence in the target language (describing a

particular abstraction).

The GE evolves solutions represented by a vector of numbers (often inte-

gers), which are utilized to select a particular rule in the derivation process. The

solutions generated during this process are then translated/compiled or inter-

preted to a problem specific representation, and evaluated by a suitable objective

function. The process may be divided into two stages: Firstly, the evolution and

generation of solutions (utilizing the same operators and methods as an EA); sec-

ondly, the translation and evaluation of the abstractions generated by following

the grammar rules (assuming the grammar and the translation are well defined).

Often, grammar rules are represented using the Backus Naur form (BNF)

notation [67]. It is assumed that, the grammar possesses a terminal symbol set

(T), contemplating all the elements that can appear in the language, and a non-

terminal symbol set (NT) that contains all the rules in the grammar. Each rule

is composed by head or identification string and a body with possible alterna-

tive derivations. Each derivation describes how the terminal and non-terminal

symbol sets are conjugated to generate a building block of the abstraction. One

of the rules is called the start rule, and is the one where the derivation process

begins.

For instance, assuming we have a grammar representing simple arithmetic

expressions with the following terminal and non-terminal sets:

T = {+,−, /, ∗, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0}
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NT = {S ,Op, BinOp,Value}

and the following grammar rules:

S F < Op >

Op F < Value >< BinOp >< Op > | < Value >

BinOp F +| − |/|∗

Value F 1|2|3|4|5|6|7|8|9|0
where S is the starting rule containing one derivation with the non-terminal sym-

bol <Op>. The rule Op contains two possible derivations, one composed by the

non-terminal symbols <Value> <BinOp> <Op> and another one with the non-

terminal symbol <Value>. For example, the expression ’1 + 2’ can be generated

by chaining the following rules:

1. S -> <Op>

2. Op -> <Value> <BinOp> <Op>

3. Value -> 1

4. BinOp -> +

5. Op -> <Value>

6. Value -> 2

The GE algorithm follows the same pattern as described for EAs in the pre-

vious section. However, the GE possesses a pre-defined decoding scheme that

takes advantage of the grammar structure (defined by the user) to produce a valid

mapping from the grammar rules and produce a valid textual code that will be

translated to a problem specific abstraction. For example, assuming that an indi-

vidual is represented by the following integer valued vector:
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1 2 4 0 1 8

The method starts by the grammar start rule and chooses the current produc-

tion by computing the modulus of the number in the first position of the vector

by the number of productions in the rule. For each non-terminal symbol the re-

spective rule is unfolded and the following position of the vector is utilized like

in the start rule. The method is repeated until there are no more non-terminals

to visit. Thus, a valid code or textual representation is generated (assuming the

grammar is well defined).

In this example, the derivation process would be described by the following

steps:

1. rule: S

number Of Derivations: 1

individual vector value:1

chosen production index: 1 Mod 1 = 0

chosen production: <Op>

2. rule: Op

number Of Derivations: 2

individual vector value:2

chosen production index: 2 Mod 2 = 0

chosen production: <Value><BinOp><Op>

3. rule: Value

number Of Derivations: 10

individual vector value:4

chosen production index: 4 Mod 10 = 4
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chosen production: 5

4. rule: BinOp

number Of Derivations: 4

individual vector value:0

chosen production index: 0 Mod 4 = 0

chosen production: +

5. rule: Op

number Of Derivations: 2

individual vector value:1

chosen production index: 1 Mod 2 = 1

chosen production: <Value>

6. rule: Value

number Of Derivations: 10

individual vector value:8

chosen production index: 8 Mod 10 = 8

chosen production: 9

It may happen that the length of the vector does not allow to form a code

without non-terminal symbols. In this case, the solution may be deemed invalid

or the vector may be wrapped around like in a circular vector and the process

repeated until a valid code is generated or a maximum number of non-terminal

symbols is visited. The depicted vector would produce the expression 5 + 9,

utilizing the previously algorithm.
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Variants of the canonical GE have been proposed in the literature, where the

EA is replaced by other search algorithm with non-integer representations, such

as a DE. The overall philosophy of the algorithm is the same as explained in this

section.

GE is appealing in problems of inferring functions such as symbolic regres-

sion, due to the avoidance of explicit defining collocation points as it happens

with traditional interpolation schemes. These algorithms may also capitalize on

the hierarchical nature of grammars by the implicit discovery of the size and

topology of a solution.

2.9 Large Scale Dynamic Models Of Metabolism

Dynamic models of metabolism present the general form of equation 2.7. Nonethe-

less, the discrete structure of the system (the biochemical reaction graph repre-

sentation) and the symbolic representation of the rate equations are chosen based

on the research question, as pointed in section 2.2. Often, non-important reac-

tions (in the sense that they not affect the outputs being studied) may not be

explicitly modelled or be represented by approximate kinetics. Notwithstand-

ing, most of the rate laws only portray a part of the interactions with the enzyme

mechanisms, mostly due to the lack of experimental data or knowledge about a

particular interaction. For instance, in [68], a macroscopic model of HIV infec-

tion is presented without taking into consideration the finer-grain details of the

infection (such as a mesocale representation of interaction of the viral proteins

and the host T-Cell proteins).

It is important not to loose sight that a mechanistic model is a mere hy-

pothesis to be tested, validated, modified or discredited, and whose assumptions

are always open to be questioned. The risk of trying to represent too much
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information about mechanistic details without evidence has to be taken into con-

sideration, when other approximate methods may be used instead (and may be

regressed equally well).

Most of the dynamic models of Escherichia coli tend to focus on the repre-

sentation of the main pathways connected to the central carbon metabolism, due

to the availability of information in the literature regarding the enzyme mecha-

nisms and the high influence of metabolic regulation on the system behavior (ge-

netic regulation plays a secondary role in the central carbon metabolism [69]).

The construction process of large scale dynamic models can contemplate

a spectrum of experimental data, from the complete absence of experimental

data regarding metabolites and fluxes measurements (the model is only based on

stoichiometric information), up to the other extreme where data is collected fol-

lowing optimal design of experiments to attain parameter values within certain

variability.

The following subsections will focus on the description and contextualization

of the use of distinct rate laws for dynamic models of Escherichia coli portraying

part of the central carbon metabolism.

In Table 2.1, a set of dynamic models regarding the Escherichia coli central

carbon metabolism are listed. For each model, the type of data utilized during

the calibration process, the identifiability methods and reaction rate detail level

are catalogued.

All the listed abstractions portray part of the central carbon metabolism net-

work. When devising a model of metabolism one of the first questions asked

is what part of the biochemical network should be represented. In Escherichia

coli most of the enzymes of the central carbon metabolism are well character-

ized, thus allowing to devise rate expressions to mimic their functioning. It is

also important to bear in mind that the central carbon metabolism is well con-
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Table 2.1: Dynamic Models of Escherichia coli metabolism

Model Calibration Data Identifiability Analysis Rate Law Detail Level
Chassagnole [9] [70] Concentrations None Semi-Mechanistic (ARL)
Peskov [71] Concentrations None Semi-Mechanistic
Kronecker Chassagnole [36] ARLs None Mechanistic (MARL)
Kronecker Chassagnole Extended [72] ARLs None Mechanistic (MARL)
Zhao Approximate Chassagnole [73] Concentrations and Fluxes Coefficients of Variation Mechanistic (ARL) and

Semi-Mechanistic (MARL)
SmallBone I [74] None None Approximate
SmallBone II [75] Fluxes and Concentration None Approximate
Costa [76] Fluxes and Concentration None Approximate
Usuda [77] Fluxes and Concentrations None Approximate
Degenring [78] Concentrations FIM Based Semi-Mechanistic (ARL)
Kotte [69] Fluxes and Concentrations None Approximate
Standford [79] Flux Distribuition and Parameter data None Semi-Mechanistic (ARL)

served across distinct microbial strains, with variations in some enzyme mecha-

nisms [69], permitting to utilize information from different species, when neces-

sary with explicit assumptions.

Most of the models in Table 2.1 recur to semi-mechanistic rate laws, often

utilized in the same spirit as black box kinetics (like in [77]). These ARLs are

employed due to uncertainty regarding the full enzyme mechanism specification.

All of these models lack any specific representation of the genetic regula-

tion due to central carbon metabolism being regulated at enzyme level (except

for [69], that contemplates the genetic regulation needed for mimicking the con-

sumption of acetate and the switch of carbon sources).

However, most of the indexed models lack any type of identifiability analy-

sis. Thus, some of the calibrated parameters may possess high variability, with-

out having any biological meaning. These hurdles may arise due to structural or

numerical identifiability issues, and should be taken into account when utilizing

these models to answer research questions.
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2.9.1 Rate Laws

One important aspect of the dynamic modeling of metabolism is how to capture

the rate of change of each participating reaction in the system. Several levels

of detail may be utilized under distinct assumptions, such as how enzyme com-

plexes behave and the rates of specific elementary reactions, or certain species

concentrations. These granularities should also take into account the importance

of a reaction rate in the system outputs. Reactions whose effect is negligible may

be modelled by simpler rate expressions (often simpler in the sense of possessing

smaller number of parameters).

However, the accrue of these trade-offs between rate laws of different gran-

ularity levels should be taken into account, when studying system perturbations.

Simpler rate expressions may represent well a nominal state of a system, but

due to simplifications may lose extrapolation capabilities when simulating spe-

cific system perturbations due to the non-linearities, that exist in the biological

system not being captured by the approximate rate law representation.

Often, the Occam razor principle is advised as the “more correct” way to

model a system. However, when modelling complex biological systems it may

be not the best strategy, due to the multitude of states and interactions that may

affect the system impacting the final outcome of a simulation. One should strive

to balance the required level of exactitude with the available experimental data

and importance of the reaction on the phenomena being researched.

In most models in Table 2.1, the authors chose to utilize semi-mechanistic

rate laws that mimic partially the interactions of the observed reaction enzymes

Another approach is to model the most important reactions of the system

using more complex rate laws. However, assumptions such as rapid-equilibrium

and steady-state regarding enzyme complexes should also be considered when

selecting an appropriate rate law.
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In the other extreme of the model construction is the application of approxi-

mate kinetics that utilize rate laws with a generic structure, that capture partially

the behavior (often only around a nominal state) of the reaction rate of change. A

particular example of such approach is [74], that constructed the network based

on stoichiometric structure and parametrized the model based on stoichiomentric

information without taking into account modifier species.

A full black box approach to model the rate of change of a reaction is only

feasible (utilizing abstractions such as Neural Networks) if a large amount of

experimental data is available. However, currently there is lack of information to

model reaction kinetics under all physiological states of interest, what hampers

the application of these approaches.

In 2002, Chassagnole developed (what as considered at the time) a large scale

dynamic model of Escherichia coli central carbon metabolism [9]. The model

was composed by semi-mechanistic rate equations and encompassed the phos-

photransferase system, glycolysis and the pentose-phosphate pathway. When in-

formation was not available regarding certain reaction mechanisms, other more

well studied mechanisms from other organisms were employed and modified

instead. For instance, PFK was modeled based on the knowledge from Sac-

charomyces cerevisiae and adapted to the existing information concerning Es-

cherichia coli described in literature and other available public data bases (such

as Ecocyc [80]).

The reaction parameters were fitted to transient (metabolite measurements

were taken at second and sub-second time scales) and to steady-state data. The

Vmax parameters were calibrated first, having as basis the flux distribution com-

puted utilizing a simplified stoichiometric model and the assumption that cell

maximizes its growth rate.

Some of the initial concentration values had to be estimated, assuming that
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specific reactions operated at near-equilibrium conditions, due to the absence of

measurements concerning some metabolites. The remaining parameters, were

calibrated to the transient data generated by a glucose pulse experiment, initially

set to literature reported values.

In [70], authors approached the fitting of model parameters utilizing Differ-

ential Evolution [64]. The calibrated model represented similar results to the

previously mentioned one. The absence of derivatives regarding the calibration

is pointed out as the main advantage of the method. Deviations from experimen-

tal course experiments and the model can be explained by experimental errors

and lack of representation of all the factors affecting cellular constituency.

Co-metabolites are unbalanced in this model and were modeled as time de-

pendent functions. This approach hampers the capability of representing other

transient states of the system, due to the fact of model simulation being de-

pendent on those inputs. One way to avoid this issue, loosing the capacity to

represent their evolution along time is to consider that these metabolites do not

deviate from the equilibrium state. However, most of ME approaches utilizing

this model follow this assumption [81] [82] [83].

In [73], the calibration of MARL was approached, by converting part of the

ARL from the reactions of the Chassagnole central carbon metabolism model [9]

to the equivalent MARLs. The enzyme total concentrations were determined,

based on existing protein gel measurements, while their initial concentrations

were determined based on KA method computations [29]. Some of the reaction

mechanisms were updated, based on literature data, while others were simplified

utilizing the CHA method [30] such as pyruvate kinase (PK), and phosphofruc-

tokinase (PFK) . In both cases, the tense and relaxed forms of the enzymes are

deemed in rapid-equilibrium and constitute a new species, while the remaining

reactions are not under this assumption.
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In this work, the authors also recur to elementary reactions with non-integer

orders [84], to represent enzyme conformational changes when a certain com-

pound binds to it. This approximation violates a pure bi-molecular mass-action

approach, but simplifies the mechanistic representation, avoiding the need to

explicitly include all the elementary reactions to describe the behavior of the en-

zyme, for example to represent substrate activation. To calibrate the reactions,

the authors utilize a weighted least-squares approach, to minimize the distance

to the original model time series, utilizing Simulated Annealing [63] as the opti-

mization algorithm. A calibration is discarded, if the objective function value is

not below a predefined threshold.

The successful calibrations, serve as basis to compute the coefficients of vari-

ation of each elementary rate. Reactions whose rate laws are mechanistically

based (and support KA method assumptions) are re-optimized, by having their

less identifiable parameters constrained, by the expressions derived by the Cle-

land method [85].

In [36], the Escherichia coli model developed in [9] was extended by replac-

ing the semi-mechanistic rate laws by the corresponding elementary reaction

description MARL (represented by a set of ODEs per reaction). All the reac-

tion mechanisms were decomposed in unitary reaction steps, with all enzyme

intermediates, being the system represented by mass-action equations encoded

in matrix form in the Kronecker Formalism. Co-metabolites were assumed to

be at equilibrium and were not represented explicitly. This fact simplified the

representation of enzymatic mechanisms where these compounds participated -

(these compound were not explicitly represented, as well as the specific enzyme

complexes).

The calibration of the elementary reaction rates was made by computing, for

each mechanism, the steady-state rate law representation by utilizing the King-
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Altman method [29]. Therefore, the calibration problem becomes to find the

rate values for each reaction expression that minimize the least squares based

distance to the original aggregated rate law in the participating species physi-

ological domain. This method avoids the use of integration. The model was

constructed only by fitting each reaction individually with no need of global ad-

justments. Murine Synthesis reaction (murSynth) in the original model [9] was

changed to Michaelis-Menten kinetics without affecting the final steady-state.

This reaction was originally modeled as a zeroth order reaction, thus it could

lead to negative concentration when the fructose-6-phosphate was already de-

pleted.

Another approach to modeling biochemical systems and alleviate the need

for complete mechanistic information is to reduce the complexity of enzymatic

workings by utilizing rate laws that approximate to a degree the true system.

These approximations vary in the level of detail, and can contemplate some

mechanistic aspects of the reaction or can be a full black box model that only

maps the concentration values to the respective rate value without any physical

connection. The main inconvenience of these rate laws is the need for a wide

range of metabolite measurements along all the valid physiological states of in-

terest, and the limited capacity of extrapolation outside this domain. This may

hamper the capacity to predict certain metabolic engineering perturbations, such

as reaction deletions.

In [77], a dynamic model of metabolism was created, encompassing glycol-

ysis and TCA, with mechanistic regulation mechanisms. All the reactions were

modeled as Michaelis-Menten, some with more than one binding site per com-

pound incorporating a Hill coefficient. Enzymatic levels were also converted to

reaction rates based in a linear relationship. After manual adaptations, the model

was able to reproduce the in-vivo behavior of diauxic growth with glucose and
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acetate as carbon sources. Nonetheless, there are divergences with observed ex-

ternal metabolites. The model was fitted using as basis 13C data and external

metabolite measurements.

In [69], a simplified network (with some macro reactions, that encapsulate

several non-regulated reactions), also containing glycolysis, TCA and mecha-

nistic regulation mechanisms was created, while special attention was given to

the isolated fitting of each reaction. The authors describe what they called a flux

distributed sensing mechanism, where the interactions of fluxes, through specific

metabolites in conjunction with transcription factors, explain the shifts in the

metabolism autonomously, due to the presence of distinct carbon sources (glu-

cose or acetate), without the presence of another higher level regulation mecha-

nism, like signalling . As noted, stoichiometric models, with boolean regulatory

networks are not able to capture this phenomena, due to their inability to incor-

porate enzymatic regulation, and capture the feedback loop between the distinct

cellular networks (for instance, in these types of models concentrations are not

modelled directly).

It was shown that the Lin-Log formalism concerning the Central Carbon

metabolism of Escherichia coli could approach satisfactorily the concentration

changes of metabolites up until 10 fold and that enzyme changes could be mapped

until two fold [86]. Nonetheless, extreme values of concentrations of certain

metabolites with allosteric interactions cannot be captured properly by the model.

For instance, it is shown that Phosphoenolpyruvate carboxylase (PEPC) due to

the fact of the system being calibrated in steady-state where the effects of the ef-

fector, are not noticeable, thus they are not reproduced by the Lin-log rate equa-

tion. However, if extra data (concerning system perturbations) were utilized in

the calibration of the elasticities, maybe this effect would be better captured, by

the Lin-log model.
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In [76], the previously mentioned Chassagnole model [9] is extended to in-

corporate the TCA cycle, as well as acetate production. Several assumptions had

to be made concerning the metabolite concentrations at steady-state, when ex-

perimental data was not available, such as assuming that certain reactions were

at near equilibrium levels, to create a linear system of equations that allowed

to solve for these missing variables. Fluxes at steady-state lacking experimen-

tal data or values were computed based in results, returned by FBA simulations

with maximization of the biomass flux as objective function.

In [71], a central carbon metabolism model is presented extended with TCA

utilizing aggregated rate laws encompassing four distinct levels of detail, from

simple Michaelis-Menten kinetics for reactions with limited availability of in-

formation, until full mechanistic descriptions based on information in literature

mostly concerning enzymes with allosteric effectors. Some of these interactions

are hypothesized based on previous experimental work but even so good agree-

ment is obtained with experimental data. This model is also used to verify the

possibility of PGDH in PP pathway being regulated by PEP by constructing a

similar model with this reaction modelled distinctly. This model produces a

more likely agreement with observed data than the first one. This model also

includes gluconeogenesis enzymes that may not be active during growth in a

glucose limited media chemostat. Further experimental validation is needed to

validate these hypothesis.

2.9.2 Calibration Data

There is a debate on how models should be calibrated regarding the origin of the

data. It is generally agreed that in vivo data should be utilized to calibrate the

rate laws to capture the true cellular state. In vitro data should only be used in

last resort due to the distinct conditions of the experiment and the in vivo cellular
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state, that may affect the behavior of the entities being measured [87].

Most of the models are calibrated utilizing data from pulse experiments, pi-

oneered in the work of Chassagnole [9]. These experiments are characterized

by a pulse of substrate when the system is at steady-state, followed by a sam-

ple of cellular states at different time points after the pulse, utilizing elaborate

quenching techniques to measure metabolite concentrations. Often, there is data

about the biological system at steady-state produced by distinct omics experi-

mental techniques such as the data set produced in Keio collection [88], where

steady-state data for proteomics, metabolomics and fluxomics for Escherichia

coli at distinct dilution rates and reaction deletions are provided. Contrarily to

pulse experiments, steady-state data does not provide information regarding the

transient behavior of the system.

However, generally it is not possible to measure all of the system state vari-

ables, and assumptions have to be made. For instance, in Chasssagnole [9], it

is assumed that for reactions in equilibrium that (near equilibrium) constant is

given by (like in [89]):

K j = δKeq, j = δ

nReactionJCompounds
∏

i

x
S i, j

ss,i (2.96)

0 ≤ δ ≤ 1 (2.97)

K j is the near equilibrium constant for reaction j, δ is a value in the range [0, 1],

Keq, j is the near equilibrium constant for reaction j, and x
S i, j

ss,i is the steady-state

concentration of metabolite i with exponent equal to S i, j the stoichiometric co-

efficient of metabolite xi in reaction j.

δ is set to 0.9 to simulate a deviation of 10% regarding the thermodynamic

equilibrium. This constant is utilized in the computation (by the definition of
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equilibrium constant) of a missing metabolite initial concentration, when a near

equilibrium reaction possesses all species with a initial state defined except one.

If the reaction is not at near equilibrium, this assumption does not hold and

should not be used.

Another hindrance to take into consideration is the fact that the original sys-

tem’s steady-state flux distribution is often an accrue of existing experimental

data and stoichiometric flux distribution computation methods (such as least-

squares, or other optimization based approaches such as FBA depending on the

system state). Generally, information about all network fluxes will be unavail-

able.

In [9] a reduced genome scale model is used in conjunction with rate fluxes

measurements to estimate a least squares solution for the flux distribution. Based

on these values, and the remaining system parameters and the Vmax values are

estimated by rearranging the expression:

Vi = Vmaxi fi(xss, θ) (2.98)

Vmaxi =
Vi

fi(xss, θ)
(2.99)

where Vi is the steady-state flux for reaction i, analogously Vmaxi is the max-

imum attainable flux in reaction i, and fi(xss, θ) rate function with metabolite

concentrations at steady given by xss and the parameter set θ. This computa-

tion may be coupled with the calibration of parameter set θ by computing first

the Vmax values, followed by the calibration of the remaining parameters, and

iterating this process until a termination criteria is met (such as the parameter

convergence).

However, it is important to note that these Vmax values in [9] may be under-
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estimated, due to the fact of this particular system being at steady-state with a

dilution rate of 0.1h−1. Thus, the system may lose extrapolation capabilities at

different dilution rates. One possible way to overcome this hurdle would be to

utilize data at different dilution rates and compute the maximum attainable Vmax

parameter value.

When the assumptions do not hold, it may be possible to utilize more data

from other authors or redefine the model structure. This fact poses another inter-

esting question on how to integrate data from distinct experimental sources. One

hypothesis is to normalize the available data around a specific state and re-fit

the model utilizing a multi-objective optimization (where each distinct dataset

is calibrated utilizing its own objective weighted by a specific factor) like it was

done in [72] (more detailed in Section 2.9.5).

Other approaches to merge distinct data sources may comprehend one of the

following strategies (such methods are not the focus of this state of the art):

• Naive pooling: where all the distinct objectives for each data source are

weighted equally. It is like all the data came from the same data source

and the distinct variabilities of each data source had been aggregated;

• Bayesian based methods: where previous knowledge is utilized as a priori

distribution and updated by current experimental data given rise to a pos-

teriori distribution that reflects this update in the knowledge of the system

parameters (see Section 2.7.2);

• Another set of methods calibrate a model to each experimental data set

computing a distinct parameter set and estimating the effect of the inde-

pendent components of variance (often these methods are called two stage,

due to first the individual calibration of the model for each data set, fol-
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lowed by the analysis of variance individual components), while other set

of approaches is only focused on the estimation of the effects;

• Data based approaches: take existing data about specific parameters such

as enzyme’s Kms for different organisms in distinct conditions and try to

predict new values for missing parameter values and adjust existing ones

with the available information.

2.9.3 Large Scale Metabolic Model Construction Automation

Another set of approaches try to automate the construction of large scale models

of metabolism utilizing existing genome scale models, public available infor-

mation in enzyme databases, literature and experimental data conjugated with

computational methods for the construction, calibration and filling in of missing

information. Most of these procedures resort to kinetic expressions with pre-

defined structure that are applied to models at genome-scale. These approaches

contemplate the possibility of constructing large scale models in the presence

of only stoichiometric information or to utilize any available experimental data

sources.

In [74], the authors describe a process of constructing a dynamic metabolic

model employing only stoichiometric information with fluxes characterized by

Lin-log kinetics and an underlying flux distribution (that can be computed by

any stoichiometric based method). The elasticities were set to the negative of

the stoichiometric value, as done in [90] with tendency kinetics.

Smallbone and colleagues applied this method to the construction of a model

of Saccharomyces cerevisae glycolysis, based on the semi mechanistic model de-

veloped in [87]. The authors derived two Lin-log models: one calibrated based

on the original semi-mechanistic model, and another one utilizing only the sto-
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ichiometric information. Near the steady-state, both these models predicted the

accurate values.

Indeed, the model constructed with only stoichiometric information pre-

sented an error of 25%, while the model calibrated to the semi-mechanistic pre-

sented an error inferior to 1% when considering all the approximations.

Contrarily to pure stoichiometric models, these dynamic models allow to

verify the stability of the steady-state, as well as to identify which parameters,

fluxes or metabolites exert the largest control over the observed flux distribution

(in a range near the steady-state compound concentrations and flux values).

In a related work, Smallbone and co-authors [75], utilize a genome-scale sto-

ichiometric description of the Saccharomyces cerevisae network, with a biomass

equation from iND750 model [91] a set of reference fluxes (extracted from the

literature), a set of metabolite concentrations, and elasticities to build a Lin-

log genome-scale representation. The metabolite concentrations were extracted

from models present in the BioModels database, by averaging these values for

each distinct metabolite. Metabolite concentrations from other organism were

utilized when not present in the yeast models. The remaining missing metabo-

lites were given the median concentration value of the previously devised set.

Elasticities were computed (when available rate laws were present in the mod-

els) by symbolic integration of the respective kinetic equation. Otherwise, the

same strategy utilized in the previously mentioned work was followed.

The authors also applied Geometric FBA [75], that overcomes the hurdle of

stoichiometric based methods that return a possible flux distribution from a set

of possible hypotheses (many times this set is infinite), by returning a unique

unbiased solution (no preference is given to how to distribute the fluxes, e.g.

in a pathway with two branches the flux will be equally divided between the

two branches) with no thermodynamically infeasible cycles. Another advantage
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of the method is reproducibility and independence from the underlying linear

programming solver.

After estimating these parameters, the model was utilized to compute the

control coefficients of the fluxes over the glucose transport and the biomass. It

was found in this model that L-asparginase may have an important role in con-

trolling the glucose uptake. Also, it is noted in this work that reactions that have

a negative impact in glucose uptake have a positive effect on the biomass flux.

Without the utilization of genome scale models, with these type of methodolo-

gies, such hypothesis would hardly be generated. Notwithstanding, this model

is only valid near the reference steady-state it was calibrated to. These approx-

imative kinetics formalisms assume that cells are at specified state constrained

by small variations in the environment. Thus, large perturbations to the system

may not be well captured.

In [79], a similar procedure was utilized to construct genome scale metabolic

model using semi-mechanistic rate laws. The computation of a basic flux distri-

bution is similar to the previously described process in [75]. For each reaction,

it was assessed which rate law would describe its behaviour based on literature

and transcribed to a corresponding modular rate law [35]. The equilibrium con-

stants for these rate equations were computed based on a method called param-

eter balancing [92], that contemplates thermodynamic information generating a

compatible set of parameters.

The previously computed parameter values are used in the rate law constants

and the value of Vmax parameter for each kinetic equation has to be adjusted to

match the flux value computed in the Geometric FBA computation. The authors

suggest utilizing Metabolic Control Analysis [93] (MCA) control coefficients to

identify the most important reactions in the dynamic behavior of the network (at

that particular steady-state).
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All the described approaches highlight the possibility of automating the pro-

cess of constructing such models. These modeling processes also highlight a

trade off between accuracy and predictive capability of the models given the

available information to construct them.

2.9.4 Identifiability Analysis

Identifiability analysis plays an important role in model quality assessment of

existing models, while being an indispensable tool for the construction of large

scale dynamic models with the currently available data. It may not possible to

characterize every single state of enzyme’s reactions with complex mechanisms

due to the high number of possible interactions between compounds and enzyme

complexes, but we may aim to construct useful detailed sub-representations that

do not include all interactions, but are as close as possible to the physical pro-

cess. In [78], two distinct sensitivity methods are tested to fix model parameters

and reduce model complexity. A set of roughly 200 hundred models (with small

differences in structure and regulatory effectors) were calibrated to experimental

data, and 13 were selected, due to their goodness of fit. The models contained

Michaelis Menten based ARLs with distinct regulatory hypothesis. The first,

sensitivity method consisted in ranking the parameters by their relative sensitiv-

ities, regarding the model squared relative error. However, the authors note that,

even parameters possessing a low sensitivity may bear a non-negligible effect on

the calibration process. Thus, after fixing a parameter, its effect shall be inferred.

The second sensitivity method is the conjugation of three methods, that op-

erate on the eigenvalues of the FIM of the system (without considering a weight

matrix). After selecting the number of parameters to be reduced, the first two

methods are focused in selecting the least important parameters, by using strate-

gies to select FIM columns corresponding to low eigenvalues. On the other
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hand, at the end of the procedure, the last applied method selects the most im-

portant eigenvectors and chooses the less important parameters associated with

that vector, to be reduced (or fixed). Both methods tend to select a similar set of

parameters to fix. However, the second approach can be utilized automatically,

until a certain error threshold is passed.

The literature describes several methods for the identifiability analysis of

dynamic model parameters, with distinct trade-offs concerning computational

requirements and assumptions regarding the model parameters. However, most

of these methods have not been applied in the construction of Escherichia coli

models of metabolism, leading to parameter calibrations whose values are bio-

logical meaningless (due to high variability of the parameter values). In Table

2.2 several identifiability methods described in the literature are listed.

Table 2.2: Identifiability methods

Method Type Computational
Requirements

FIM based Methods [44] Local Low
Sobol method [94] Global High
Weighted Average of Relative Sensitivities (WAR) [44] Global High
Multi-Parametric Sensitivity Analysis (MPSA) [44] Global Medium
High Dimensional Model Representation (with sampling scheme) [94] [95] [48] Global Medium
Morris Method [96] Global Low
Fourier amplitude sensitivity testing [97] [98] Global Low

2.9.5 Local and Global Methods in the Design Of

Experiments

Model calibration may require a large set of data to fit parameters to a desired

degree of confidence. It has been shown in [25] that by performing a specific set

of informative experiments that try to complement each other, it is possible to

calibrate a model to a desired level of accuracy. The accuracy of the experiment
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design is computed by calculating a metric (such as D-Optimality) based on the

FIM of the experiment.

Nonetheless, experimental constraints may hamper the ability to perform the

most informative set of experiments, or even then distinct sets of parameters

can describe the observed data equally well. It is important to bear in mind,

that parameter sets with worse fitting may be closer to the true value of the

parameters, and due to noise in the experimental setting are not portrayed as the

true set.

One way to deal with this uncertainty in the parameters is to construct a

model ensemble that captures the system behavior under distinct sets of param-

eters. The selection of these sets is dependent on a criteria set defined by the

modeler. When new experimental data becomes available, it may possible to dis-

card some sets of parameters that do not corroborate the observations. In [72],

the model developed by Joshua Apgar in [36] was extended to include the EMF

pathway, the enzyme isomers of glycolysis, and PP pathways, to fit a model

to experimental data from different sources including the Keiko collection of

steady-state knockout data concerning Escherichia coli and Chassagnole model

ARL reaction information. The fitting was constructed as a multi-objective prob-

lem by minimizing the following objective function:

J(p) = w

nARLchassagnole
∑

n=1













rMA,i(x, θ) − rARL,chassagnole,i(x)

σchassagnole,i













2

+

nxishii
∑

j=1

(

y(xi(p, tss)) − xdata,ishii,i

σdata,ishii

)2

(2.100)

where w is weighting factor, nARLchassagnole is the number of Chassagnole model

ratelaws ,rMA,i(x, θ) is the MARL, rARL,chassagnole,i(x) is the Chassagnole model

ARL, σchassagnole,i is the standard deviation of the Chassagnole ARL, nxishii is

the number of Keiko collection metabolites measurements that are present in the
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MARL (and may correspond to different system perturbations, such as knock-

outs), y(xi(θ, tss) is the MARL model output (metabolite concentration at steady-

state at time tss), xdata,ishii,i is a metabolite measurement at steady-state, concern-

ing Keiko collection data set, rescaled to MARL model steady-state.

The weight factor (w) affecting the Chassagnole fitting (the first sum in the

expression) of the ARLs serves as the measure of emphasis given to fitting in

detriment of the other goal. This problem was solved on a range of different pre-

defined weight values returning in the end a Pareto front. Any solution in this

set is optimal in a Pareto sense. From this set of solutions, one was chosen, and

afterwards a sampling of the parameters was performed utilizing Latin Hyper

Cube Sampling (LHCS). This scheme gave rise to sets of solutions and those

that did not conform to a defined tolerance value for the calibration to Ishii and

Chasagnole data were discarded. All parameters were presumed to be part of

a multivariate Gaussian distribution with mean at each parameter best fit value

and a covariance matrix computed based in the inverse of the FIM for the best

fit model. These models were employed to find metabolic engineering strategies

for the modulation of enzyme expression levels. All the remaining models in the

Pareto solution were also included in the ensemble to reduce the bias.

2.10 Metabolic Engineering Utilizing Dynamic

Models of Metabolism

The ME of dynamic models of cellular systems may be posed as an optimization

problem, or a sensitivity problem (global or local), depending on the question

being asked. Typically, these ME problems may be divided into two groups:

• System at steady-state: Often the goal is to maximize or minimize a cer-
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tain reaction flux or metabolite concentration. For instance, at an indus-

trial level, one pertinent question is how to maximize the target compound

yield;

• System at transient state: Tries to answer questions such as what signal

should some input have to increase volumetric productivity, or how to

transit from one steady-state to another with the minimum cellular dis-

ruption.

The optimization of a dynamic metabolic model at steady-state, generally

comprises two types of modifications: reaction deletions (discrete variables)

and/or enzyme levels modulation (that can be represented by continuous or dis-

crete variables). However, any system parameter may be modified, depending

on the question being answered and the model used in the process.

On the other hand, the optimization of a transient signal is attained by reg-

ulating specific model and inputs can be formulated as a continuous (the signal

or signals are given by functional representations) or a discrete problem (if the

signal is represented by a set of discrete points o be interpolated).

The sensitivity analysis from a ME standpoint is concerned with the iden-

tification of the system entities who possess a larger effect on a desired target

output (or a function of system outputs). Analogously, to the optimization case,

SA can also be applied in steady-state or transient systems.

All those ME questions may be posed as a Multi-Objective Optimization

problems, where several ME objective functions are conjugated simultaneously

[99]. Nonetheless, the non-linear essence of biochemical systems may pose hur-

dles for these methods [100].

In Table 2.3, the main types of strategies that can be employed to attain a

ME goal are listed. It is important to bear in mind that a dynamic model in this
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Table 2.3: Metabolic Engineering of Dynamic Models of Metabolism - Overall
Strategies

Modification Modification Type Applicable Methods System State
Enzyme Modulation Kinetic Parameters

• Discrete level change OPT/SA SS/Trans
• Continuous level change OPT/SA SS/Trans

Reaction Deletion Rate Law Present in Model
• Discrete level (boolean) OPT/SA SS/Trans

OPT Global or local optimization methods
SA Global or local Sensitivity analysis methods
SS Dynamic system at steady-state
Trans Dynamic system in a transient state

scenario may be utilized in conjunction with global or local optimization or sen-

sitivity methods. Usually, reaction deletion ME strategies employ optimization

methods, whose purpose is to find a discrete set o reaction deletions to optimize

an objective function. However, a criterion may be defined to delete a reaction

based on the results from SA method or even a continuous optimization method.

The reaction deletion modification can be viewed as subset of the enzyme modu-

lation problem. The reaction deletion approach can be tackled from a continuous

or discrete stand-point (with proper modifications, such as considering discrete

enzyme levels).

For instance, in [82], the problem of finding the best set of enzyme expres-

sion levels and reaction knockouts using a dynamic model of central carbon

metabolism of Escherichia coli [9] was addressed. A Mixed Integer Linear

Programming (MILP) formulation and a generalized linearization of the kinetic

model were used to find a ME strategy. However, like in Optknock [101], the

effort to solve a MILP problem increases exponentially with the size of the prob-

lem at hand. This method also assumes flux and concentration bounds around

the reference state, to control the error of the linerarized model regarding the
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original model.

In [81], the problem of finding the best set of enzyme expression levels us-

ing the aforementioned model was addressed. Simulated Annealing [63] was

used to search the enzyme set space, while a sequential quadratic programming

method estimated the respective enzyme expression levels, forcing the objec-

tive function and the constraints to be continuous in the considered ranges and

of class C2. This method assumes a value for the overall maximum allowed

metabolite changes at steady-state, and also that overall system enzyme levels

remain constant within a constant value proportional to the number of modifica-

tions. In both these ME problems, co-metabolites were considered to be fixed at

steady-state.

Another approach that does not utilize optimization methods is, after the

model calibration process, to utilize local methods, such as Metabolic Control

Analysis (MCA), to gauge the systemic sensitivity of the parameter, to indicate

the effectors that should be tweaked.

It is important to bear in mind that MCA [93] serves as basis for studying

how an infinitesimal change in a component of biochemical system will affect

the other entities. It is not obvious how to extend these results to larger pertur-

bations without recurring to simulations of these disturbances, since they may

produce a complete different set of effects. Nonetheless, this method may be

used to pinpoint in a particular metabolic flux state which reactions may be the

bottleneck of the system in a local sense.

In [102], Chassagnole constructed a model of threonine synthesis pathway of

Escherichia coli utilizing an initial condition set chosen to be biologically perti-

nent. The ARLs were designed to be the simplest as possible but contemplating

all the effector interactions for metabolites included in the model.
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An altered version of this model served as basis for the study of the dis-

tribution of control fluxes of threonine by applying MCA [103] to identify the

more prone reactions to adjustments. It was shown, under distinct metabolic

conditions in the physiological range that the control of the enzymes remains

in the first three reactions of the network. However, the aspartate concentration

can affect the flux through the pathway. It is also demonstrated that feedback-

inhibition mechanisms can occur on near-equilibrium steps, and it also provides

two instances of enzymes that are close to equilibrium yet have finite flux control

coefficients.

In [104], the MCA approach is extended by a Monte Carlo (MC) sampling of

the control coefficients around the operational state of the model. This approach

allows to account for the variability of the control coefficients and overcome the

local nature of the original MCA method. This fact allows to pin-point which

reactions exert more control on the biochemical network under uncertainty.

Another strategy to modulate enzyme expression is to utilize meta-heuristics

to define the best strategy to attain a specific goal such as maximizing a pro-

duction yield. In [83], the enzyme expression level was modulated utilizing an

ensemble of dynamic models containing glycolysis and the TCA cyle of Es-

cherichia coli. In this work, an ensemble was built by constructing a set of

models that fitted equally well within a range to each experimental steady-state

measurement. Enzyme expression levels were divided a in discrete interval. A

Genetic Algorithm was used to systematically predict which enzyme level modi-

fications should be carried out to maximize the production of a compound based

in experimental measurements of some metabolites. The employed model con-

sisted of the mass-action model describing the reaction mechanisms. First, an

ensemble of models was calibrated to experimental data concerning steady-state

metabolite measurements. Next, an optimization problem was formulated to pre-
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dict which models should be removed from the ensemble for each modification

based in experimental measurements. After these screening tests, a set of models

is obtained with predictive capabilities and utilized in the remaining part of the

algorithm.

The solutions were encoded by defining an array of integers with the double

number of positions as the number of modifications. Each odd position codi-

fied the enzyme index, while the even position defined the enzyme modulation.

Two objectives functions were utilized against a set of experimental steady-state

measurements: (i) The maximization of variability of the target flux; (ii) The

maximization of steady-state and average ensemble prediction distance. At each

round of modifications, the models that were outside a predefined range were

discarded. The best modifications were the ones that discarded the larger num-

ber of models. It was found, based in experimental data, that the first objective

function leads to better prediction of the experimental results.

Another approach for the optimization of ME problems is to recast a model

as one with a more suitable mathematical structure for the optimization process.

In [100], a method where a model is first recast (if it is not already an S-system)

into the corresponding S-system abstraction, followed by a linear programming

optimization of the steady-state system is formulated. The result of this LP prob-

lem is then tested on the original model. If the result is satisfactory, the solution

is kept, otherwise a new constraint is added to the previously LP problem and

the process is repeated. This method has advantages concerning stoichiometric

based due to the fact of considering metabolite and flux levels and computa-

tional has a similar cost when compared with other LP methods of genome-scale

methods, utilizing only stoichiometric information.

Generally, different optimization formulations with distinct models should be

tested utilizing distinct search algorithms to answer the research problem being
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tackled. There is no predefined answer for each research question and several

approaches should be tested. One formulation may behave well under certain

circumstances and fail with a complete different question.

Ongoing critical questions for the industrial design of microbial strains are

related with the extension of existing models and the integration of other cellu-

lar components that affect the regulation of metabolism and the integration of

information from different omic sources in a coherent way, and how to use these

abstractions to improve bio-industrial processes.
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chapter 3

CONSTRUCTION OF DETAILED MASS-ACTION

ENZYMATIC REACTION SYSTEMS AND CONVERSION OF

EXISTING CENTRAL CARBON METABOLISM MODEL OF

ESCHERICHIA COLI

Novel technological advances in high-throughput experimental methods yielded

new quantitative understandings of the phenomena occurring in a cellular sys-

tem. These data, in conjunction with the increasing availability of mechanistic

kinetic descriptions of biological reactions in publicly available databases, has

allowed to elucidate and construct more complete mathematical models describ-

ing enzymatic reactions mechanistically.

Such descriptions are usually modelled using rate laws that encapsulate and

make simplifying assumptions regarding the full set of elementary reaction steps

that compose a specific enzymatic reaction. A fully mass-action description of

the mechanism accounting for all enzyme complexes may portray better the sys-

tem under all physiological ranges of participating metabolites in the reaction.

However, such characterizations may possess several parameters with a high

level of uncertainty due to the lack of experimental data to calibrate them sat-

isfactorily or structural identifiability issues. These levels of uncertainty should

be characterized to identify non-influential parameters, as well as the ones which

are non-identifiable due to the lack of experimental data to excite the system in

a specific way, or the underlying mathematical structure of the system.

In this study we devise a set of methods to regress the parameters of Mass
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Action (MA) system based on existing information such as aggregated rate law

(ARL) equations, experimental data or existing metabolic models in conjunction

with sensitivity analysis to assess the parameters identifiability.

We also describe the construction of a mechanistic model of Eschericha

coli based in the extension of the existing Kronecker version of central carbon

metabolism with more detailed mechanisms and currency metabolites.

This knowledge possesses industrial relevance in the rational design and

engineering of microbial strains for the production of industrial relevant com-

pounds.
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3.1 Introduction

Until recently, technological limitations made impractical to research cellular

processes at a molecular level, making a system wide approach to cell metabolism

infeasible. Systems Biology advocates a systems view to model cellular sys-

tems [1] by employing quantitative information from reductionist approaches to

complement the knowledge of cellular constituents. This creates the possibility

of generating, testing and validating new hypothesis using predictive models and

experimentation.

Generally, in Bioengineering, cellular systems were modeled as black-boxes

hiding the relationships between the different encapsulated systems within the

cells. These models try to capture at a higher level the macromolecular reaction

scheme occurring in a bioreactor (for instance, in [2] a model of a batch fermen-

tation of baker yeast is presented and in [3] an Ovarian cancer cell in a batch

fermentation model is described). These models are geared towards the descrip-

tion of the behavior of the bioreactor operation and macroscopic interaction of

the cells.

If one aims at identifying targeted metabolic modifications to combine cell

physiology necessities with the desired outputs, then these models are not suit-

able. Thus, a formalized description of the entities and factors influencing the

cellular components of interest is needed.

This problem has been addressed by simulating metabolic models using

steady state assumptions, utilizing formalisms that require only stoichiometric

information. Due to the limited amount of information to determine the state

of the system, simplifying assumptions have to be made. Erroneous results are

obtained if these assumptions do not hold in reality (eg. the overall goal of the

cell). One of the most widely used methods is Flux Balance Analysis [4] that is

expressed as a linear optimization problem where it is assumed that the cell has

Novel approaches for dynamic modelling of E. coli and their application in
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a specific goal such as maximizing the growth rate. However, after altering the

cellular metabolism it is not guaranteed that the cell will have the same cellular

objective as in the wild-type strain. These methods also tend to return a specific

flux distribution, while there may be an infinite set of optimal solutions.

Nonetheless, these models have shown good prediction capabilities (e.g.

finding essential sets of genes), but often do not enforce enzymatic regulatory

restrictions or utilize more limited descriptions such as Boolean models. Thus,

some solutions may present discrepancies with reality, due to the incapacity of

incorporating non-modeled effects, such as genetic regulation. Other modelling

approaches utilize experimental data, such as Metabolic Flux Analysis [5] or

Thermodynamic FBA [6] (such as fluxomic and thermodynamic data, respec-

tively) to constrain the possible solution space.

Dynamic models offer a better perspective of the cellular phenomena oc-

curring in vivo by allowing to incorporate enzyme regulatory activity besides

describing the state of the system temporally and returning a single solution at

steady state (without making explicit assumptions about the cellular overall ob-

jective).

When contrasted with the aforementioned methods, the system is no longer

under-determined. Ordinary differential equation systems (ODEs) are often uti-

lized to model cellular metabolism assuming the intra cellular compartments are

in a homogeneous state (thus avoiding the need to track the position of each com-

pound explicitly) and that each specie being modeled possesses a high number

of molecules (at least hundreds of units to avert stochastic effects by averaging

the compound behavior). On the down side, these models may require detailed

enzyme kinetic information and the acquisition of experimental data.

Experimental data acquisition poses distinct levels of difficulty and complex-

ity depending on the type of information being captured. For instance, glucose
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pulse experiments (with the collection of samples to characterize a set of metabo-

lite profiles at distinct times) try to acquire a snapshot of metabolism behavior,

requiring the use of convoluted experimental techniques with complex exper-

imental protocols that capture data with large experimental errors and the as-

sumption that cells in the sample are in the same metabolic state. Despite these

hurdles, several dynamic models of metabolism have been built utilizing glucose

pulse experiments [7] [8].

Enzyme kinetics are often represented by recurring to mathematical expres-

sions that give the reaction rate based on the interaction of the distinct com-

pounds participating in the reaction. These expressions can capture different

levels of detail concerning the underlying reaction mechanism.

One may divide rate laws into two broad overlapping categories: (i) data

base rate laws; (ii) mechanistic rate laws:

• Pure data based reaction rate expressions require a large set of measure-

ments for the full range of metabolite concentrations at distinct conditions,

making them infeasible for a large scale model of metabolism. Besides,

these types of models do not capture a detailed physical explanation for

the observed phenomena, loosing extrapolation capabilities (such as feed

foward neural networks [9] and Extreme Learning Machines [10]).

Other approximations avoid all mechanistic details like linear approxima-

tion, power law [11] and Lin-log [12]. However, most of these methods are

only applicable in the vicinity of a specific steady state /operational state

due to local approximation assumptions. Thus, these approximations are

not feasible to study and extrapolate rate changes due to large variations

in the metabolite or enzyme concentrations;

• Mechanistic based rate laws are more attractive due to the fact of being

Novel approaches for dynamic modelling of E. coli and their application in
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based on the distinct enzymatic reaction steps and possess better extrapo-

lation capabilities. Nevertheless, most mechanistic based kinetic expres-

sions are an aggregation that abridges some of the parameters of the full

mechanism, loosing extrapolation capabilities. These type of rate laws are

called Aggregated rate laws (ARLs), such as Michaelis-Menten kinetics,

Modular rate laws [13].

Fully mass action based rate laws describing the full enzymatic mecha-

nism may not present these issues, but carry more parameters and may

need more information to do parameter estimation (taking into account

parameter identifiability issues).

These modeling approaches are not mutually exclusive and can be combined.

Data based rate laws are usually employed when there is missing mechanistic in-

formation regarding certain reactions of interest in the model or there is a specific

need to reduce model complexity.

The main fact hampering the construction of detailed dynamic biological

models is the insufficiency of data concerning the mechanistic description of en-

zymatic reactions. Another issue is the fact that in vivo and in vitro conditions

affect acquired experimental data due to distinct conditions inside the cell and

the experimental assay (e.g. pH, temperature, etc), that may influence param-

eter regression. Enzyme kinetic databases [14] [15] often reflect information

(e.g. enzymatic reaction mechanisms and parameter values such as Km values)

acquired under distinct experimental conditions. Occasionally, this information

can be contradictory in the sense that the same enzyme in the same organism may

be portrayed as having distinct enzymatic mechanisms. These discrepancies may

indicate lack of experimental data to constrain the enzyme behavior (two distinct

rate laws may behave similarly in the same region of the concentration space),

experimental errors, and identifiability issues concerning the parameters.
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The parameters in complex models of metabolism (describing sets of con-

nected reactions) may not be identifiable due to the lack of experimental data

availability. The effect of these parameters should be assessed, to characterize

with finer granularity reactions that have a large effect on the calibration process

and possibly simplify unimportant enzymatic processes, although it is impor-

tant to note that, under a distinct set of experimental data, a previously deemed

unimportant reaction may be classified as important.

It is also crucial to bear in mind that models with distinct structures, assump-

tions and parametrizations may describe identically the available experimental

data.

In this work, we develop several alternative methods to calibrate mass-action

descriptions of enzymatic reactions to existing ARL equations, and experimental

data. We apply these methods to convert an existing ARL based model of central

carbon metabolism of Escherichia coli to a mass action format.

These processes were complemented with global sensitivity analysis to iden-

tify the reactions that affected the most the calibration process, as well as the

individual reaction parameters.

In computational terms, a framework was developed in [16] to take advan-

tage of the underlying characteristics of biochemical systems, represented by

mass-action kinetics, called Kronecker. This framework takes advantage of the

underlying topological properties of biological networks, namely the low con-

nectivity among interacting components, as well as the mass-action description

of reaction kinetics, represented as bimolecular interactions. This allows to rep-

resent a biochemical system with sparse matrices that take advantage of special

numerical codes. This formalism unifies and standardizes the description of bio-

chemical systems allowing the scalable incorporation of cellular processes for

which data is available and the modeler wishes to take into account. In this work
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we also extend this formalism to deal with free form symbolic expressions.

3.2 Methods

The goal of this work is to develop a mechanistic model of central carbon metabolism

of E. coli based on the dynamic model developed by Chassagnole [8] and the

existing Kronecker version of the same model [16]. This process rests upon the

connection of several identifiability and calibration procedures. In the follow-

ing subsections the main methods created and utilized during this work for the

identifiability analysis and parameter regression are explained.

3.2.1 Calibration Procedures

Several methods can be applied to calibrate the elementary rate laws of mass

action rate law (MARL) systems described by ODEs. In this work we treat each

reaction calibration independently, taking an divide and conquer approach, to

simplify the process. It is assumed that, for each MARL system being regressed

there is a corresponding ARL. These regression approaches can be further subdi-

vided, concerning the use of the MARL system integration as part of the method.

The following procedures were utilized in the calibration process of each

reaction of the MARL model:

(A) King Altman Method: The base calibration procedure was developed in

[16]. The method consists in the conversion of the target reaction MARL

reaction being calibrated to an ARL expression by King-Altman (KA)

method (following the process described in [17]). Afterwards, the input

spaces (concerning the species participating in the reaction) of the MARL

system and the corresponding ARL are sampled uniformly within a range
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of user defined bounds. The goal of the calibration procedure is to min-

imize the distance between the rate surfaces of the MARL and the ARL

system. In other words, the fitting problem consists in finding the set of

elementary rate parameters, such that ARL and MARL produce the same

values under distinct metabolite concentration states.

The problem may be described as:

min

∫

x

(rma(x, θ) − rarl(x))2dx

where x is the metabolite state, θ is a set of elementary rate parameters ,

rma(x, θ) represents the MARL expression being calibrated and rarl(x) the

ARL. The main advantage of this method is the fact of not requiring the

integration of the reaction system. For more complex enzyme systems

(with a large number of cycles), it is not possible to calculate the KA rate

law, since the computation of all minimum spanning trees in a graph is a

NP-Hard problem.

It is important to note that, in the KA ARL the enzyme complexes are as-

sumed to be in steady-state. In this work we take advantage of existing

information of the ARLs that are mechanistic based and possess the same

assumptions as the KA ARL, by computing the symbolic expression of el-

ementary rate constants corresponding aggregated parameters of the ARL

(such as Vmaxs, Kms, Kis, Keqs). These expressions are computed utiliz-

ing the Cleland method [18]. Each of these expressions can be utilized as

an extra constraint (fixing an elementary rate law) in the calibration pro-

cess and permits to utilize existing available information. The parameters

are fixed based on their degree of identifiability, where the least important

parameters are constrained by the values of the aforementioned expres-

Novel approaches for dynamic modelling of E. coli and their application in
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sions. The process is explained in the following subsections.

In this work, we utilized two distinct representation formats for the KA

ARL depiction (they are equivalent, if the assumptions for the enzyme

steady-state hold):

• Symbolic KA ARL: The rate law is derived and the enzyme complex

steady state concentrations are implicitly included in the formula.

• Symbolic Derivative Representation: In this scenario, instead of con-

structing the KA ARL, we represent explicitly the derivative of a

product compound of the reaction MARL being calibrated. The en-

zyme steady-state concentration expressions are derived utilizing the

KA method. In this scenario, the calibration problem becomes the

minimization of the distance between the product derivative repre-

sented by the ARL and the symbolically derived expression for the

same compound. More formally, the ARL derivative regarding the

product may be described as:

˙Parl = Arl(x, θarl) (3.1)

where ˙Parl expresses the derivative of a product of a reaction with an

ARL rate law as a function of species concentration of the system x

and a set of parameters θarl. Analogously, the elementary description

of the product derivative is given by:

˙Pma = MA(x, θma, en(x, thetama)) (3.2)

where ˙Pma defines the derivative of the previously mentioned com-

pound, assuming mass action kinetic description of the system, given
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by MA dependent on compound concentrations x with elementary

rate parameters θma, and a set of functions representing enzyme con-

centrations (dependent on compound concentrations x and elemen-

tary rate parameters θma) portrayed by en(X, thetama).

Like in the previous methods the calibration problem is given by the

minimization of distance. In this particular problem, this is described

as:

min

∫

x

( ˙Pma(x, θma, en(x, thetama)) − ˙Parl(x, θarl))
2dx (3.3)

This method has the same caveats as the KA method (when it is

assumed that enzyme complex concentrations are at steady-state).

(B) Local Simulation (Naive Approach): The MARL system and the ARL are

integrated in a predefined time interval within a set of initial conditions

(defined by a sampling strategy or by the user), sampled at specific times.

The goal in this procedure is to minimize the least squared distance be-

tween the original ARL system trajectories metabolites and the MARL

system.

(C) Optimal Design of Experiments in conjunction with local sensitivities and

hybrid derivative free simulation methods:

The naive approach for calibrating MARL system rate laws utilizing a set

of empirically chosen simulations may produce unsatisfactory results due

to the lack of informative data to calibrate the model parameters (reducing

the MA parameter variability). First, one has to know the number of exper-

iments to perform and the set of initial conditions to stimulate the system

in a meaningful way. If such care is not taken into consideration, the cal-

Novel approaches for dynamic modelling of E. coli and their application in
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ibration process may produce a good fit but, the rate law will not display

the desired behavior when inserted into the original model (by replacing

the ARL counterpart and repeating the original experiments in [8]).

To avoid these hurdles, a method based in Design Of Experiments was

constructed. The method takes an Evolutionary Computation approach in

the design of the experiments, employing Grammatical Evolution (GE)

to devise a functional form for an input to excite the system in the most

informative way. These ARL systems are often expressed as non-linear

functions, thus, it is not known a priori how the utilized input signals and

their magnitudes will affect the identifiability of the parameters.

The first step in this procedure is to simulate the MARL system utiliz-

ing an initial set of parameter values (that may be computed using other

calibration methods). Afterwards, the next step is the definition of possi-

ble inputs in the MARL model and the values these inputs can take. These

inputs are generated by GE as symbolic functional representations. Gener-

ally, the inputs of those functions correspond to system variables (species)

and time. The GE algorithm evolves the input signal utilizing a context-

free grammar in Back-Narus form [19].

These inputs serve as basis to stimulate the original system, the one rep-

resented by the ARL rate law. An experiment is designed in the follow-

ing way: the time interval of the experiment is discretized at pre-defined

points; subsequently, for each time point, a relative sensitivity matrix is

computed. The global sensitivity of each model parameter is ranked (in

descending order), by computing the squared root of the mean squared

relative sensitivities. This rank orders the way the columns (that corre-

spond to an ARL model parameter) of the relative sensitivity matrices are

utilized iteratively to compute the Fisher Information Matrix (FIM) of the
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experiment. It is important to note that the FIM of the experiment is com-

puted by summing the FIMs computed at each discretized time point. The

FIM at a specific time point is given by the following expression:

FIM =

(

∂x

∂θ

)T (

∂x

∂θ

)

(3.4)

The derivative terms ∂x
∂θ

are computed recurring to the sensitivity polyno-

mial approximation (explained in chapter 2). These relative sensitivity

matrices may only contain the observable species in the experiment (rows

of the sensitivity matrix) and the set of identifiable parameters (columns

of the sensitivity matrix). The ranking of the parameters serves as basis

for a local identifiability analysis to construct the experiment FIM. The

most sensitive parameter is chosen and the experiment FIM is computed

utilizing this parameter, the process is repeated by adding the next highest

ranked parameter. When a column (corresponding to a parameter) is added

to the FIM construction process and the matrix becomes singular, the pa-

rameter is discarded (it is correlated with other parameters already present

in the FIM matrix). The FIM is scored based on a optimality criteria. In

this work, we utilize the following metric also utilized in [20]:

goali =



































1, if λ > 1/σ2
threshold

.

λi
1

σ2
threshold

× nθ, otherwise.
(3.5)

Goal =

nθ
∑

i=1

goali (3.6)

where Goal represents the number of parameters, that are under a prede-

fined uncertainty value, λi is the eigen value i of the FIM, and σthreshold the
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threshold value, to partition parameter counts based on their uncertainty

as shown on equation 3.5.

After designing and selecting the best experiment (using GE), a calibration

process is carried out utilizing the MARL system and previously designed

experiments. Thereafter, the previously designing process is repeated (tak-

ing into consideration previously designed experiments), until a termina-

tion criterion is met.

(D) Global Simulation: In this method, the target reaction ARL is replaced in

the original model by the corresponding MARL ODE system. The ele-

mentary rate parameters are then calibrated to the available experimental

data by integrating the system and utilizing a weighted least squares ap-

proach to minimize the distance between the behavior of the system and

the available data. A similar method was used in [21] and the objective

function was characterized by least squares weighted by the maximum

value of the specified metabolite during the time course.

In the MARL system, the enzyme concentrations can be computed by uti-

lizing expressions like the ones derived by the KA method, if it is assumed

that all the enzyme complexes are at steady-state. Another approach for

this steady-state assumption is to integrate the system for a "long" time un-

til it reaches the steady-state, and to utilize this state instead as the initial

condition.

(E) Direct Partial Global Simulation: To avoid the integration of the full sys-

tem, only reactions in a predefined radius from the target reaction are con-

sidered. The target reaction ARL is replaced in this system representation

by the corresponding MARL. Metabolites that interact directly in the tar-

get reaction are considered species (except for modifiers - activators and
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inhibitors) while the remaining compounds are modelled as inputs (this re-

quires the previous simulation of the original system to represent the inputs

in the distinct states). The calibration problem is similar to the previous

one but utilizing an abridged model representation. However, if the prob-

lem requires the initial conditions to be at steady-state after changing the

original system parameters, then the original system has to be simulated

first and the state of the system passed to the abridged model representa-

tion.

(F) Cha Method: This regression method is analogous to the previous pre-

sented global simulation approaches. However, instead of the MARL sys-

tem, the CHA ARL representation (derived by the Cha method) is uti-

lized [22]. This method can serve as an alternative to KA method to gen-

erate ARL representations. The Cha method produces simpler ARLs than

the KA method, but it requires the assumption that a set of elementary

reaction steps are in rapid equilibrium, while another group of reactions

occurs at lower rates (often named slow steps). The rapid-equilibrium

assumption is more limiting to enzyme representation than the premise

of KA of the steady-state of enzyme compounds, thus losing prediction

capabilities when the rapid equilibrium assumptions do not hold. These

CHA ARL expressions have to be calibrated to existing experimental data

or to pseudo-experimental data using a similar method to the previously

described global calibration procedures.

It is important to note that the first method is derivative free, the DOE based

approach integrates the original system during the DOE phase, but may avoid

the integration of the MARL system by utilizing a collocation point strategy (an

algebraic system that captures de simulation like in [23]), while the remaining
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methods require the full simulation of the system.

The KA and DOE based methods try to approximate the rate surface de-

scribed by the elementary mass action system, assuming that the ARL is the

true characterization of enzyme rate behavior, while the remaining procedures

minimize the distance to the available experimental data. If the amount of infor-

mation in these data is not sufficient to discriminate among distinct ARLs, then

multiple descriptions may be utilized to describe the enzymatic reaction activity,

which may affect significantly the extrapolation capabilities.

3.2.1.1 Objective Functions

For each of the aforementioned procedures, one of the following objective func-

tion is considered:

• When data is noise-free:

J1(θ) =
nTimePoints

∑

i=1

( f (x, θ, ti) − f (x, ti)arl)2

(max( f (x, ti)arl))2
+

nTimePoints
∑

i=1

( f (x, θ) − f (x, ti)arl)2

(max(1, f (x, ti)arl))2

(3.7)

where f (x, θ, t) corresponds to a function of metabolite x concentrations

that can either be the concentration itself or flux values, θ parameter val-

ues, and possibly time t if the problem is time dependent. The first summa-

tion in time dependent problems describes the sum of the two terms over

all experimental time points (including different experiments). In non time

dependent problems the summation is over all the cases considered in the

specific procedure - For instance, in the KA calibration method, the sum-

mation corresponds to all distinct metabolite states considered.
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The first term in J1(θ) treats all values equally in their own scale regarding

the specific metabolite concentration or flux error due to the division by

the corresponding squared maximum value. The second term corresponds

to a relative squared error, except when the measured values are below 1,

where the squared error is considered instead.

• When data is not perfect (contains noise):

J2(θ) =
nTimePoints

∑

i=1

( f (x, θ, ti) − f (x, ti)measured)2

(σx(ti))2
(3.8)

The symbolic specification is analogous to the previous objective func-

tion, except for (σ f (ti))
2 that represents the variance of fmeasured(x, ti). This

objective function is similar to Maximum Likelihood estimation when the

errors are normally distributed.

In both cases, symbolic derivatives are utilized by the MATLAB [24] fmin-

con optimization function.

3.2.1.2 Calibration Data

The previously described calibration procedures that require the use of experi-

mental data were executed in two distinct settings: (i) calibration against only

available experimental data; (ii) calibration against pseudo experimental data

generated by the original model. The simulated data mimics the original pulse

experiment, but captures all the metabolite profiles at equally spaced time inter-

vals (defined at 0.1 seconds during the 40 seconds of the pulse experiment). In

this work reaction rate mechanisms were calibrated using pseudo experimental

data generated from strategy (ii).

Novel approaches for dynamic modelling of E. coli and their application in
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3.2.2 Optimization Algorithms

The aforementioned regression problems were solved utilizing an hybrid global

optimization approach. Empirically, the first main goal is to set the parameters

in a good region of the search space. Thus, a global optimization algorithm is

utilized. In this work, Hybrid Differential Evolution as described in [23] was

used (and explained in Chapter 2). This algorithm is based on DE, however it

employs derivative information and a smaller population to alleviate the com-

putational burden. Afterwards, a multi-start process is carried with Matlab [24]

fmincon with active-set algorithm to find a local optimal solution. When it was

infeasible to utilize fmicon, fminsearch was utilized instead. The algorithms

parametrization are given in appendix.

3.2.3 Parameter Identifiability

Different identifiability strategies were followed for distinct calibration proce-

dures due to the computational burden associated with each method. The De-

sign Of Experiments process already possesses an incorporated identifiability

scheme.

3.2.3.1 King Altman Method

The first step corresponds to the calibration of the King-Altman rate law, uti-

lizing the previously described optimization algorithms. Afterwards, the stan-

dardized Morris method [25] was utilized to rank the parameter total sensitivity,

assuming a deviation of 50% for each elementary rate concerning the first cal-

ibration. The number of r-levels employed was chosen based on the method

developed by [26]. The parameters deemed as more robust where fixed based on

the previously computed ARL coefficient expression computed using Cleland
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method [18]. It is important to note that, if more sensitive parameters are fixed

instead, the calibration process may fail.

3.2.4 Remaining Calibration Methods

A similar strategy to the one employed in [21] was utilized in this work. For

each of the MARL regressed using this method, 10 runs where executed using

the aforementioned optimization algorithms. For the best solutions of each run,

a local sensitivity analysis based on the construction of the FIM was carried

(analogous to the a priori sensitivity analysis explained in the previous sections).

The parameters of these solutions with higher sensitivity were regressed, while

the remaining were fixed based on literature values or ARL coefficients com-

puted utilizing the Cleland method. It may not be possible to compute these

expressions if the ARL does not have a mechanistic representation or the en-

zyme complexes are not under the steady-state assumption.

It is important to note that unidentifiable elementary rates may be sensitive

in a narrower finite interval than the physiological range originally considered.

3.2.5 MARL Model Composition

After regressing a MARL reaction the calibration is tested by replacing the orig-

inal ARL in the Chassagnole model [8] and computing the Mean Squared Av-

erage error against the experimental data concerning the pulse experiment used

originally to calibrate that model. If the value of this goodness of fit metric is

above a threshold, the calibration is discarded. Otherwise, the result is kept.

Novel approaches for dynamic modelling of E. coli and their application in
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3.3 Results and Discussion

In this work, we developed a model of Escherichia coli central carbon metabolism

based on previously developed models, namely the one in [8] and the Kronecker

version of the same model with constant co-metabolites [16].

The approaches and corresponding results developed in this chapter are pre-

sented in the following subsections. First, the Kronecker symbolic extension

is described. Afterwards, the model construction is characterized. Next, we

analyse the local parameter sensitivity of the original model, as well as the ro-

bustness of a set of parameters connected to the rate law of each reaction. These

analyses served as basis to delineate model simplifications, and are described in

the following subsection. Subsequently, the calibration and identifiability anal-

ysis of the MARL representations for each reaction are outlined. Next, the dif-

ferences between the aforementioned regression procedures are contrasted and

highlighted.

3.3.1 Kronecker Symbolic Extension

The Kronecker formalism serves as the low-level representation of the systems

developed during this work. This abstraction was extended to contemplate the

utilization of free form symbolic expressions, thus permitting the incorporation

of other types of rate equations, such as ARLs. This expansion was achieved

by introducing functions that given the state of the system, the parameters and

the inputs return the respective matrix based on symbolic rate expressions. In

the scope of this expansion a new model format (and the respective conversion

tool for existing file formats) was created to allow the development of cellular

models in a modular fashion like in an imperative programming language (more

details about this file format are given in Chapter 7). It is important to note
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that a similar extension was developed simultaneously at MIT by David Hagen

(member of Tidor’s Lab) utilizing Matlab symbolic representation. In this work

an interpreter and abstract symbolic representation were built from ground up in

Scala. The Kronecker formalism is explained thoroughly in Chapter 2 (consult

this chapter for the definitions).

The function f (x, u, θ) becomes:

f (x, u, θ) = A1x + A2x ⊗ x + B1x + B2x ⊗ x + k + AS (x, u, θ) (3.9)

where AS (x, u, θ) is a function that receives as input the system species concen-

trations, the inputs, the parameters and returns a matrix (nX × 1). The result for

each position in this vector is symbolically computed. Identically, the reaction

rate is given by:

r(x, u, θ) = RA1x + RA2x ⊗ x + RB1x + RB2x ⊗ x + rk + RS (x, u, θ) (3.10)

where RS (x, u, θ) is a function that receives as input the system species concen-

trations, the inputs, the parameters and returns a matrix of fluxes (nr × 1). For

each derivative of mass-action and flux matrices, a function exists that returns

the adequate vector.

The symbolic part of these functions can be precomputed. To reduce the

computation time of the derivative matrices, only expressions containing the

species or parameters being part of the derivative should be processed. In this

work, these computations were performed by implementing a symbolic expres-

sion tree and respective methods for derivation and symbolic expression simpli-

fication [27].
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This format also allows to express the following partial derivatives (where

the under script denote the derivative variables) as:

fx = A1 + A2(I ⊗ x + x ⊗ I) + B2(I ⊗ u) + AS x(x, u, θ) (3.11)

fθ = A1,θx + A2,θ(x ⊗ x) + B1,θu + B2,θ(x ⊗ u) + kθ + AS θ(x, u, θ) (3.12)

fxx = 2A2 + AS xx(x, u, θ) (3.13)

fθx = A1,θ + A2,θ(x ⊗ I + I ⊗ x) + B2,θ(Ix ⊗ u) + AS xp(x, u, θ) (3.14)

fθθ = AS θθ(x, u, θ) (3.15)

rx = RA1 + RA2(I ⊗ x + x ⊗ I) + RB2(I ⊗ u) + RS x(x, u, θ) (3.16)

rθ = RA1,θx + RA2,θ(x ⊗ x) + RB1,θu + RB2,θ(x ⊗ u) + rkθ + RS θ(x, u, θ) (3.17)

3.3.2 Model Description

The MARL version of the Chassagnole model of the Central Carbon Metabolism

of Escherichia coli [8] devised in this work is composed by the Phosphotrans-
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Figure 3.1: Escherichia coli Central Carbon Metabolism Model Graphical Rep-
resentation.

ferase system, Glycolysis and the Penthose-phostphate pathway, possessing the

same reactions as the original model, delineated by mass-action descriptions, as

shown on Table 3.1. In this version of the model, co-metabolites are represented

explicitly, while their behavior is depicted by time dependent functions like in

the original model. In Figure 3.1 a graphical description of the system is shown.
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Table 3.1: Model Reactions

Reaction EC Number Reaction Activators Inhibitors Mechanism
PTSa - glc + pep→ g6p + pyr g6p bi-bi irreversible
PGIa 5.3.1.9 g6p↔ f 6p pg revesible uni-uni
PFKd 2.7.1.11/44 f 6p + atp→ f dp + adp pep/adp allosteric model (n = 4)
ALDOa 4.1.2.13 f dp↔ gap + dhap ordered uni-bi
TISa 5.3.1.1 dhap↔ gap reversible uni-uni
GAPDHa 1.2.1.12 gap + nad ↔ pgp + nadh reversible bi-bi
PGKa 2.7.2.3 pgp + adp↔ pg3 + atp reversible bi-bi
PGluMua 5.4.2.1 pg3↔ pg2 reversible uni-uni
ENOa 4.2.1.11 pg2↔ pep reversible uni-uni
PKd 2.7.1.40 pep + adp→ pyr + atp fdp allosteric regulation
PDHa 1.2.4.1 pyr → ∅ hill equation (n = 3)
PEPCxylasea 4.1.1.31 pep→ oaa fdp hill equation (n = 4)
PGMa 5.4.2.2 g6p↔ g1p reversible uni-uni
G1PATa 2.7.7.27 g1p + atp→ polysac + adp irreversible bi-bi
G3PDHa 1.1.1.94 dhap→ glycerol irreversible bi-bi
SerSyntha - pg3→ ser irreversible uni-uni
MurSyntha - f 6p→ murine irreversible uni-uni
DAHPSa 2.5.1.54 pep + e4p→ aromaticaminoacids irreversible bi-uni
TrpSyntha - ∅ → pyr + gap steady-state flux
MetSyntha - ∅ → pyr steady-state flux
G6PDHb,c 1.1.1.49 / 3.1.1.31 g6p + nadp→ pg + nadph Irreversible uni-uni
PGDHb,c 1.1.1.44 pg + nadp↔ rib5p + nadph reversible bi-bi
Ru5p a 5.1.3.1 ribu5p↔ xyl5p reversible uni-uni
R5P1a 5.3.1.6 ribu5p↔ rib5p reversible uni-uni
Tkaa 2.2.1.1 xyl5p + rib5p↔ gap + sed7p reversible bi-bi
TKba 2.2.1.1 e4p + xyl5p↔ f 6p + gap reversible reversible bi-bi
TAa 2.2.1.2 sed7p + gap↔ f 6p + e4p reversible bi-bi
Synth1a - pep→ ∅ irreversible uni-uni
Synth2a - pyr → ∅ irreversible uni-uni
RPPKa 2.7.6.1 rib5p→ nucleotide irreversible uni-uni
a Chassagnole et al. (2002) [8]
c Ecocyc database [28] (as consulted in 2013)
d Zhao et al. (2008) [21]

The ARLs of the original model can be converted to a bimolecular mass ac-

tion representation by decomposing the mechanistic rate law in the respective

mass action reaction scheme that originated it. One problem that can arise is the

fact that the original reaction scheme may possess more elementary rate param-

eters than the parameters in the mechanistic rate law. Thus, it is not possible to

do a one-to-one mapping of elementary rates and parameters due to the fact of

this system being under-determined. Thus, several sets of parameters may pro-

duce similar results. This issue may be mitigated by fixing parameters based on

domain knowledge.
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For instance, it can be assumed that the kon elementary rate of a reaction

mechanism has a fixed rate 1E6s−1 value [16] due to the physical principles

regarding protein diffusion limits. However, this value may have to be mod-

ified on a reaction mechanism basis. These values should also be updated if

there is experimental data available to calibrate them. Another assumption that

has to be taken into account is the enzyme complexes concentration. It can be

assumed, depending on the modeling task, that total enzyme concentration (in-

cluiding the free enzyme and the bound complexes) remain constant over time.

In [16], the total enzyme concentration concerning one reaction was assumed to

be 0.001mM based in the average enzyme concentration in a bacterial cell.

If the system is under-determined the remaining rates can be calculated by

using non-linear least squares in conjunction with one of the aforementioned

methods to compute the corresponding elementary rates of the mass action reac-

tion mechanism. It is important to bear in mind that due to the non-linear nature

of some rate laws there might be distinct sets of rates that produce the same

output.

3.3.3 Prior Sensitivity Analysis

We executed a local sensitivity analysis of the Chassagnole model, by comput-

ing the square root of the sum of the squared relative sensitivity values for each

parameter at the time points of the pulse experiment described in [8]. This sen-

sitivity metric can be expressed as:

δmsqr =
1

nS pecies

nS pecies
∑

j=0

√

√

1
ntimePoints

ntimePoints
∑

i=0

(

dln(xi, j)

dln(θ)

)2

(3.18)

where ntimePoints represents the total number of time points considered, x j the

specie j concentration at time i. The parameters are ranked in descending order
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Table 3.2: Model Parameter Ranking - δmsqr

Rate Equation Parameter δmsqr

rPts nPTSg6p 98.76
rPfk nPFK 97.86
rPfk KPFKf6ps 74.06
rPgi KPGIeq 73.68
rPfk KPFKpep 24.24
rPdh nPDH 23.99
rRpglumu KPGluMueq 18.44
rEno KENOeq 18.40
rPts rmaxPTS 17.04
rPts KPTSg6p 16.92
rGapdh rmaxGAPDH 16.86
rGapdh KGAPDHgap 16.83
rGapdh KGAPDHpgp 16.78
rPgk KPGKeq 15.63
rPts KPTSa1 15.18

rMursynth rmaxMurSynth 0.0307
rRpglumu KPGluMupg2 0.029
rTa rmaxTA 0.0288
rTkb rmaxTKb 0.0252
rPgi KPGIf6p 0.0243
rPgi KPGIf6ppginh 0.0203
rTka rmaxTKa 0.0110
rDahps nDAHPSpep 5.857E-4
rPk nPK 4.27E-4
rDahps KDAHPSpep 2.83E-4
rPk KPKamp 6.390E-5
rPts KPTSa2 3.517E-5
rPk KPKfdp 2.841E-5
rPk LPK 2.685E-5
rPk KPKatp 1.241E-5

based on the value of this metric.

In Table 3.2, the fifteen most important, and the fifteen least important pa-

rameters of the model (classified by the sum of relative sensitivities) are shown.

The top two most important parameters are related with the number of subunits
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in the PTS reaction as well as in the PFK reaction.

The bottom five parameter set in Table 3.2 contemplates four parameters

from the PK reaction. It is important to bear in mind that these results are related

to the experimental data utilized to calibrate the model extracted from [8]. With

other stimuli the PK rate law parameters may have higher relative sensitivities

values. As noted in [29], a parameter with low overall relative sensitivity value

may possess an impact in the calibration process and may not be discarded.

Another relevant question in this context is which parameters may effectively

be estimated from the available data, considering the original parameter set as

the nominal parameter set. It is important to note that the method used to per-

form this analysis devised in [30] is a local method that returns a near optimal

distinguishable parameter set based on available information (the least correlated

parameter set up to a cut-off value - in this work the method was applied with

the most stringent cut-off value described in the article of 0.3).

From Table 3.3, it can be seen that six out of the fifteen classified as most

important parameters can be estimated from the data (namely the two most im-

portant parameters), while no parameters from the least important parameter set

can be classified as estimable by the aforementioned method.

A global sensitivity analysis was also applied to identify which reactions

influence the most the calibration process (Maximum Likelihood estimation).

The reaction global sensitivity was assessed by executing Morris method with

groups as explained in [31]. Each group consisted of the particular set of param-

eters corresponding the a specific reaction ARL. Each parameter was allowed to

vary 50% relative to its nominal value. In Figure 3.2 a bar chart is shown, where

each bar corresponds to the mean absolute elementary group value for each re-

action. The three most important reaction parameter groups correspond to four

of the most important parameters in the Table 3.2. The grouping of parameters
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Table 3.3: Model Estimable Parameters

Rate Equation Parameter
rAldo kALDOeq
rTis kTISeq
rPgk KPGKeq
rPfk nPFK
rEno KENOeq
rPts nPTSg6p
rPepcxylase rmaxpepCxylase
rG1pat rmaxG1PAT
rSersynth rmaxSerSynth
rSynth1 rmaxSynth1
rG3pdh rmaxG3PDH
rPpk rmaxRPPK
rMursynth rmaxMurSynth
rSynth2 rmaxSynth2
rRpglumu KPGluMueq
rPgi KPGIeq
rDahps nDAHPSe4p
rTkb KTKbeq
rPdh nPDH
rRu5p KRu5Peq
rTka KTKaeq
rG1pat nG1PATfdp
rR5pi KR5PIeq
rGapdh rmaxGAPDH
rG6pdh rmaxG6PDH
rPepcxylase KpepCxylasefdp
rPgm KPGMeq
rPfk KPFKpep
rPepcxylase npepCxylasefdp
rTa KTAeq
rPgdh rmaxPGDH
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shadows the importance of each parameter individually, nonetheless it requires

less computation power (the number of simulations required is equal to a con-

stant multiplied by number of groups instead of constant multiplied by number

of parameters).
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Figure 3.2: Morris Method with groups - Chassagnole model.
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Figure 3.3: Morris Method with groups analysis regarding equivalent topologi-
cal LinLog model.

To evaluate the effects of the absence of enzymatic regulation and simpler ki-

netic representation, an equivalent Lin-log model in terms of topology and initial

state was built using default parameters (without calibration), with elasticities

equal to the negative value of the corresponding stoichiometric coefficient like

in [12] [32] [33]. The previous Morris method by group analysis was carried in

this model. In Figure 3.3, the results are shown. The two most important reac-

tions are classified as in the original model leading to the question if this effect
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is solely caused by the topology of the network.

However, it is important to note that these results are only concerned with

the pulse experiment data. In this analysis, the co-metabolites are modeled like

in the original model as time dependent functions.

3.3.4 MARL Model Simplifications

In Table 3.1, the MARL utilized for each reaction are shown. The reaction mech-

anisms where updated based on the work described in [21] and on the previous

a priori sensitivity analysis.

Several simplifications were adopted, such as the representation of Monod-

Wyman-Changeux model (MWC) reactions with Cha method, where the relaxed

free enzyme and the tense state forms are treated as a single species - with the

tense transitions assumed to be in rapid equilibrium. Enzyme conformational

changes were also modelled by assuming non-elementary rate equations with

non-integer coefficients [21] for PK and PFK reactions.

The PDH MARL was represented as a mass-action elementary reaction with

fourth order in the first elementary reaction (when pyr binds to the PDH free

enzyme).

These simplifications were made to reduce the model complexity and ease

the calibration of the model parameters.
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3.3.5 Calibration Methods

Table 3.4: Model Calibration Procedure

Reaction Calibration Procedure
PTS KA;GS;CHAGs
PGI KA;GS;CHAGs
PFK KA;GS;CHAGs
ALDO KA;GS;CHAGs
TIS KA;GS;CHAGs
GAPDH KA;GS;CHAGs
PGK KA;GS;CHAGs
PGluMu KA;GS;CHAGs
ENO KA;GS;CHAGs;FIMGE
PK KA;GS;CHAGs
PDH KA;GS;CHAGs
PEPCxylase KA;GS;CHAGs
PGM KA;GS;CHAGs
G1PAT KA;GS;CHAGs
G3PDH KA;GS;CHAGs
SerSynth KA;GS;CHAGs
MurSynth KA;GS;CHAGs
DAHPS KA;GS;CHAGs
TrpSynth -
MetSynth -
G6PDH KA;GS;CHAGs
PGDH KA;GS;CHAGs
Ru5p KA;GS;CHAGs
R5P1 KA;GS;CHAGs
Tka KA;GS;CHAGs
TKb KA;GS;CHAGs
TA KA;GS;CHAGs
Synth1 KA;GS;CHAGs
Synth2 KA;GS;CHAGs
RPPK KA;GS;CHAGs

The nomenclature utilized in this table to de-
scribe the utilized calibration procedure is
the following: KA - King-Altman method;
CHAGs - Cha Method with original model
simulated data; GSExp - Global Simula-
tion Method with Experimental Data; GS
- Global Simulation Method with original
model simulated data; DOEGE - FIM based
method executed with Grammatical Evolu-
tion

In Table 3.4 the employed calibration methods for each reaction are shown. In

all the calibration processes except for the DOE simulation, a hybrid approach

was followed. First, HDE (described in chapter 2) would be utilized to kick-start

the optimization process followed by Fmincon with active-set algorithm (with
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explicit usage of parameter derivatives). Such choice of algorithms is purely

empirically, pursuing the rational that the global optimization algorithm will be

used to explore the search space and possibly guide the search near optima,

followed by a gradient based method to reach the optima.

We focused our work in the construction of MA descriptions of the reac-

tions (including co-metabolites) in the Escherichia coli model of Central Carbon

Metabolism delineated by Chassagnole [8]. The devised MA model contains pa-

rameters, many of those unidentifiable due to the limited amount of data utilized

in the calibration process, as shown in the next subsection.

The internal kronecker structure of the system had to be modified, to speed

up the computation of the system derivatives. All the derivatives were expressed

as symbolic expressions to avoid the computation overhead of re-constructing

Matlab matrices.

3.3.5.1 Calibration Procedures Applied to One Reaction

In this subsection a distinct set of calibrations utilizing distinct procedures pre-

sented previously, regarding the ENO reaction (due to its simplicity it is mod-

elled as a uni-uni reaction without any modifiers) are displayed. The calibration

result for the remaining reactions is in appendix A.0.1. In the following figures

the results obtained with the distinct methods are shown:

In Figure 3.4 the rate vs subtrate for the ENO reaction is shown. The dashed

red line represents the MARL mechanism and is on top of the ARL mechanism

represented by the solid blue line.

In Figure 3.5 the CHA rate parameters were regressed utilizing CHA ARL

rate equations against the experimental data. Afterwards, a similar process to

KA method was utilized to calibrate the derived MARL system based on the

previously regressed CHA ARL. In Figure 3.6 the effect of replacing the original
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Figure 3.4: KA Calibatration -Rate vs Specie plot of regression of ENO MARL
to the respective ARL.

Figure 3.5: CHA ARL ENO Calibration - Simulation of the full system with
ENO ARL replaced by the CHA equivalent against experimental data.
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Figure 3.6: CHA ENO MARL Calibration - Simulation of the full system with
ENO ARL replaced in the original model by the CHA equivalent against exper-
imental data.

ENO ARL by the calibrated ENO CHA MARL system is shown. In Figure 3.7

the result of the Global ENO MARL calibration without recurring to the previous

calibration of the respective CHA ARL is displayed.

The Grammar in Back-Narus form utilized by the GE algorithm is shown

below:

Start {’[’<SpecieList>’]’};

SpecieList { ’(pep:’<Value>’)[(pg2::’<OperationPep>’)]’|

’(pg2:’<Value>’)[(pep::’<OperationPg2>’)]’};

OperationPep { <OperationPep> <BinOp> <OperationPep>

| <UniOpPep> |<ValuePep> };

OperationPg2 { <OperationPg2> <BinOp> <OperationPg2>

Novel approaches for dynamic modelling of E. coli and their application in
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Figure 3.7: Global ENO MARL Calibration - Simulation of the full system with
ENO ARL replaced by the CHA equivalent against experimental data.

| <UniOpPg2> |<ValuePg2> };

ValuePep {<Number> | <Number>’.’<Number> | ’pep’ | ’time’ };

ValuePg2 {<Number> | <Number>’.’<Number> | ’pg2’ | ’time’ };

UniOpPep {’cos(’<OperationPep>’)’| ’sin(’<OperationPep>’)’

|’ln(’<OperationPep>’)’ | ’(’<OperationPep>’)^(’<OperationPep>’)’ };

UniOpPg2 {’cos(’<OperationPg2>’)’ | ’sin(’<OperationPg2>’)’

|’ln(’<OperationPg2>’)’ | ’(’<OperationPg2>’)^(’<OperationPg2>’)’ };

BinOp {’+’ | ’-’ | ’/’ | ’*’ };

Value {<Number> | <Number>’.’<Number> };

InitialValue {’0.’<Number>|’1.’<Number>|’2.’<Number>

|’3.’<Number>|’4.’<Number>|’5.’<Number>};

Number {’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’ | ’0’ | <Number>}
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One of the species of the reaction is utilized as input of the experiment as it can

be seen in the rule SpecieList. The other specie serves as input function that can have

any valid mathematical form composed from the pre-specified operations and the other

specie as input as well as the time.

The initial ENO mechanism was calibrated against a simulation of the original sys-

tem with both specie values set to the double of their respective Km from the original

ARL. The inputs devised by GE in the calibration process (in chronological order for

each experiment):

1.

pep = 2.4mM

2.

pg2 = 7.6mM

3.

pg2 = cos(sin(3.0))timemM

The goal function threshold was set to consider a parameter as estimated when the

parameter estimated value had less than 50% variation regarding the original nominal

value.

In the Figures 3.8 and 3.9 the influence of the calibration process can be seen as it

the MARL converges to the ARL surface. In Figure 3.10 the simulation of the MARL

system from steady-state against the original model is shown. The solid lines represent

the ARL, the x represent the devised KA rate law, and the circles the MARL model.

The devised regression methods can be utilized in the following order to calibrate

an arbitrary MARL expression:

• KA/Derivative: Both are equivalent methods, with distinct symbolic representa-

tions, that require the computation of all the minimum spanning trees from the
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Figure 3.8: DOE Calibatration -Rate vs Specie plot of regression of ENO MARL
to the respective ARL, using data from the first and second inputs devised by GE
in the calibration process in conjunction with the initial simulation data.
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Figure 3.9: DOE Calibration - Rate vs Specie plot of regression of ENO MARL
to the respective ARL using data from the all experiments and simulations.
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Figure 3.10: ENO simulation from initial conditions after the calibration process
of DOE.

graph representation of the enzyme mechanism, what is a np-hard problem. For

more complex enzyme mechanisms, these methods are not suitable;

• Cha(Global Calibration): To overcome the issues with KA, further assumptions

can be made, such as the existence of rapid-equilibrium elementary reaction steps

what gives origin to simplified KA mechanisms and simpler rate expressions.

However, care must be taken in the applicability of those assumptions. The en-

zyme fractional expressions (consult [22]) generated by this method can also be

applied in the derivative method but if the previously mentioned assumptions are

not met, the calibration process tends to converge to worse values;

• DOE: The DOE based calibration method has incorporated an identifiability pro-

cess based on a local sensitivity approach. The devised process may also avoid

the integration of the MARL system by utilizing a collocation method that corre-

sponds to a algebraic problem (with lower computational burden). However, if the

ARL being utilized in the calibration process assumes the steady-state for enzyme
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complexes, then it is necessary to compute the same expression that is computed

in the KA method, becoming as computational intensive as the KA method. Any

of the previous calibration methods that supports integration of the MARL can be

utilized to calibrate the elementary rate parameters to the experimental data.

The global and partial global regression methods may also be utilized to take ad-

vantage of existing models (constructed with ARLs) and existing experimental data.

However, the surface of the original ARL and the MARL system may diverge outside

the concentration input space utilized in the calibration process. This also makes these

calibration problems easier than the approximation of the full ARL and MARL model

rate surfaces like the aforementioned strategies. It is also important to note that, the par-

tial calibration process may require the simulation of the full model, if the initial system

state, such as a steady-state concentration of enzyme complexes is not known a priori.

3.3.6 MARL Model and Identifiability Analysis

The MARL reaction descriptions were calibrated utilizing the previously described op-

timization methods in conjunction with one of the calibration procedures (describe in

Section 3.2.1). Subsequently, the parameter identifiability was assessed by first, ranking

the parameters based on the relative sensitivity metric described in the previous section

in equation 3.18, followed by iterative construction of the experiment FIM (adding first

more fragile parameters). Only the relative sensitivity matrices, corresponding to the

available experimental points, were considered in this analysis. In this process, if the

FIM matrix becomes singular after the addition of a certain parameter, the parameter

is discarded (due to the fact of being correlated to an other parameter already present

in the matrix). Afterwards, the calibration process is repeated with the non-identifiable

parameters fixed to their first calibration value.

This approach is analogous to the one presented in DOE calibration procedure to

compute the FIM. Still, reactions whose MARL can be described by a KA rate law,

permit to constrain their more robust parameters, utilizing the equality of the ARL con-
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stants (such as Kms, Vmaxs, Kis, Keqs) to the elementary rate parameter expressions

derived by the Cleland method [18]. Setting up, these equality constraints targeting

non-identifiable parameters tends to accelerate the calibration process and allows the

utilization of extra information from the original ARL. However, if fragile parameters

are chosen as targets of these constraints, the regression process may fail or be hampered.

Non-identifiable parameters may not be able to alter the target output significantly, or

possess the same output with distinct values. If these parameters are correlated, then

there is the possibility of distinct parameters compensating their changes in value dur-

ing the optimization (producing an infinite set of parameter combinations that produce

the same output).

In Table 3.5, the reactions are characterized regarding their calibration and identifi-

ability profile. Most of the reactions possess a limited number of identifiable parameters

(in the sense of not being correlated with other reaction rate law parameters, often two

or three parameters are non-correlated). It is also possible to observe that most of these

non-correlated parameters cannot be estimated with good accuracy, due to the small

amount of experimental data utilized in the calibration process. Due to the local nature

of the employed identifiability procedure, it is also observable that reactions with differ-

ent parametrizations may become more identifiable, like in the case of reaction Synth2.

However, this phenomenon is independent of the calibration process. It all depends on

how the optimization algorithm converges in the search space. Nonetheless, distinct

calibration methods may create different search landscapes.

All calibration procedures tend to converge to solutions with the same level of Mean

square average error (MSAE). Notwithstanding, most of reaction parameters may be

fixed to their nominal values, due to their non identifiable profile in this analysis. Re-

actions with a limited number of parameters (up to 10) can be calibrated with any of

the presented procedures. More complex reaction mechanisms (with higher number of

parameters) may require less regression effort (in the sense of time to converge to a

solution) if other methods besides KA are utilized.

KA based methods are limited in scope due to the increase in complexity in rate ex-
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Table 3.5: MARL Reaction Identifiability Against Available Experimental Data

Reaction Initial Calibration Method #Parameters #Estimable Parameters MAE experimental data
ALDO KA 8 3 0.06
ALDO GS 8 3 0.06

DHAPS GS 25 2 0.06
ENO KA 6 2 0.06
ENO GS 6 2 0.06
ENO DOE 6 1 0.06

G1PAT KA 46 Integration Error 0.06
G3PDH GS 3 0 0.06
G6PDH GS 25 3 0.06
GAPDH GS 18 2 0.06

Murine Synth KA 3 0 0.06
PDH GS 3 0 0.06
PEPC KA 23 0 0.06
PEPC GS 23 3 0.06
PFK GS 12 0 0.06

PDGH GS 21 2 0.06
PGI KA 16 3 0.06
PGI GS 16 3 0.06
PGK GS 18 0.06

PGluMu KA 6 0 0.06
PGluMu GS 6 0 0.06

PGM KA 6 2 0.06
PGM GS 6 2 0.06
PK GS 7 1 0.06

PPC GS 23 Singular FIM 0.06
PPK GS 3 0 0.06
PTS GS 40 4 0.06
R5PI KA 6 0 0.06
R5PI GS 6 0 0.06
RU5P KA 6 0 0.06
RU5P GS 6 0 0.06

Serine Synth KA 3 0 0.06
Synth1 KA 3 2 0.06
Synth1 GS 3 2 0.06
Synth2 KA 3 3 0.06
Synth2 GS 3 0 0.06

TA GS 10 2 0.06
TIS KA 6 2 0.06
TIS GS 6 2 0.06

TKA KA 10 2 0.06
TKA GS 10 2 0.06
TKB KA 10 2 0.06
TKB GS 10 2 0.06
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pressions (concerning the number of terms), and the computational tractability of com-

puting all the minimum spanning trees in the reaction graph representing a reaction (for

more details about the method consult KA original article [17]). Another hurdle is the

increase in the required sampling effort of the input space as the number of participat-

ing species in a reaction increases. A crude comparison of the complexity of the ARL

generated by KA can be made by contrasting the difference in bytes between the ARLs.

For instance, the KA of G1PAT reaction occupies 103 MBytes, while the PGK KA ARL

has 26.8 KBytes.

Furthermore, all the calibration methods based on previously devised ARLs are

bounded by their quality (concerning the identifiability of their parameters and the good-

ness of the fit to the available experimental data).

All the procedures consider a divide and conquer strategy, where each reaction is

calibrated individually, before being plugged into the final model.
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3.3.6.1 Model Assembly
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Figure 3.11: Experimental data versus MARL calibrated model (containing orig-
inal PFK reaction).
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Figure 3.12: Chassagnole model versus MARL Calibrated model containing
original PFK reaction. The blue line represents the MARL metabolite trajecto-
ries, while the red line represents the Chassagnole model metabolite profiles.
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Figure 3.13: Experimental data versus MARL calibrated model.
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Figure 3.14: Chassagnole model versus MARL Calibrated model. The blue line
represents the MARL metabolite trajectories, while the red line represents the
Chassagnole model metabolite profiles.
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It can be seen in Figures 3.11 and 3.12 that the MARL model containing the origi-

nal PFK reaction and the Chassagnole model behave similarly in the pulse experiment

and that both models possess a similar steady-state. The behavior of these models is

constrained by the co-metabolites time dependent functional description. In other ex-

perimental contexts, these co-metabolites behavior would have to be acquired experi-

mentally and fed to the model as time dependent functions. This limits the applicability

of the model, despite having being utilized considering co-metabolites as constants.

When the updated version of PFK reaction devised by Zhao in [21] replaces the

original PFK ARL in the previous MARL model, the system behaves as portrayed in

Figures 3.13, and 3.14. The constructed models are in Appendix A.0.1.

3.4 Conclusions

In this work, the reactions of an existing model of central carbon metabolism of Es-

cherichia coli were converted to the respective MARL ODE systems (by devising each

interaction of the enzyme complexes and participating metabolites in the reaction).

However, based on a sensitivity analysis of the original model (regarding individual

parameters and reactions), it was decided to simplify some of the more complex full

MA mechanisms, such as PFK, PK, among others.

The parameters of those systems were regressed to match the behavior of the cor-

responding ARL reaction equations of the original model, utilizing existing methods as

well as new approaches devised in this work.

The MARL level of description may require less calibration data than other more

data based, formalizations of kinetics, which incorporate little or no information about

the underlying mechanism. Notwithstanding, these detailed descriptions possess a high

number of parameters (are over-parametrized) and, therefore, the utilized optimization

procedures should be coupled with identifiability analysis. Parameters whose impact

is negligible or are correlated with other parameters should be fixed, to avoid failure

of the optimization procedures (due to lack of convergence) or high variability in the
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parameters (due to infinite sets of equally likely parameters).

All the devised calibration methods were connected with an identifiability analysis

to pinpoint which parameters affected the most the regression process, and those that

should be kept fixed. Existing strategies for estimating elementary rate values were also

extended . The first strategy consisted in using the KA rate expression of the MARL

system as proxy and regressing the parameters values in a least square setting against

the reaction ARL equation.

The second strategy swapped the original ARL equation in the original model by

the MARL ODE system and calibrated elementary rate equations using a Maximum

Likehood estimation approach. This approach was followed in two distinct settings:

(i) calibration against only available experimental data; (ii) calibration against pseudo

experimental data generated by the original model. The simulated data mimicked the

original pulse experiment, but captured all the metabolite profiles at equally spaced time

intervals. In the first scenario, reaction rates often behaved differently (concerning the

transient behavior) from the original model. In the second scenario, rates were able to

present the same profiles as the original model, due to the larger constraints imposed by

a higher density of experimental data.

The third approach is similar to the second one, but each reaction is represented by

the CHA ARL of the mechanism. It is assumed that the the only slow steps of a reaction

are the interconversion between enzyme complexes of substrate and products.

The fourth approach utilizes GE to define input functions to excite an enzyme mech-

anism, to provide more information about its parameters. Contrary to the other methods,

this approach requires the fine tunning of experimental sampling times . In this process,

integration of the MARL system may be avoided by utilizing a collocation method like

defined in [23].

Simpler reaction mechanisms can be calibrated with any of these methods. How-

ever, more complex enzymatic mechanisms may be easier to calibrate with methods that

require the computation of enzyme complexes expressions at steady state. These expres-

sions can be very complex and possess a higher computational burden to compute and
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evaluate (as shown on this chapter).

All these methods were coupled with an identifiability analysis, to fix robust param-

eters.

The Kronecker formalism served as low level representation of the system and was

also extended to incorporate reactions with free form symbolic expressions. The con-

structed model can serve as basis to design new Metabolic Engineering strategies or to

build a new set of experiments based on Optimal Design of Experiments to improve pa-

rameter accuracy [34]. This model captures a higher level of detail than the ARL model

counterpart. Thus, it is expected to be valid in a larger physiological range. Nonetheless,

this version of the model is coupled with the same time dependent functional descrip-

tions of co-metabolite behavior as the original model. To utilize this model in other

contexts the time profiles have to re-estimated and included into the model.

Abbreviations

ARL Aggregated rate law

ARL Mass action rate law

ALDO aldolase

DAHPS DAHP synthases

ENO Enolase

G1PAT Glucose-1-phosphate adenyl-

transferase

G3PDH Glycerol-3-phosphate dehydro-

genase

G6PDH Glucose-6-phosphate dehydro-

genase

GAPDH Glyceraldehyde-3-phosphate

dehydrogenase

IleSynth Isoleucine synthesis

MetSynth Methionine synthesis

MurSynth Mureine synthesis

PFK Phosphofructokinase

PGDH 6-phosphogluconate dehydroge-

nase

PGI Glucose-6-phosphate isomerase

PGK Phosphoglycerate kinase

PGluMu Phosphoglycerate mutase
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PDH Pyruvate dehydrogenase

PEPCxylase PEP carboxylase

PGM Phosphoglucomutase

PK Pyruvate kinase

PTS Phosphotransferase system

R5PI Ribose-phosphate isomerase

PPK Ribose-phosphate pyrophosphoki-

nase

Ru5P Ribulose-phosphate epimerase

Synth1 Synthesis 1

Synth2 Synthesis 2

TA Transaldolase

TIS Triosephosphate isomerase

TKA Transketolase, reaction a

TKB Transketolase, reaction a

pg2 2-phosphoglycerate

pg3 3-phosphoglycerate

g6p Glucose-6-phosphate

rib5p Ribulose-5-phosphate

f6p Fructose-6-phosphate

g1p Glucose-1-phosphate

fdp Fructose-1,6-bisphosphate

dhap Dihydroxyacetone phosphate

pyr Pyruvate

pep Phosphoenolpyruvate

gap Glyceraldehyde-3-phosphate

mur Mureine

pg 6-phosphogluconate

sed7p Sedoheptulose-7-phosphate

e4p Erythrose-4-phosphate

xyl5p Xylulose-5-phosphate

pgp 1,3-diphosphosphoglycerate

ribu5p Ribose-5-phosphate
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chapter 4

EXTENSION OF DYNAMIC FLUX BALANCE ANALYSIS

Increases in computational power in conjunction with the evolution of high-throughput

sequencing technologies lead to an explosion of biological data, that accompany the cre-

ation of computational methods for the semi-automatic curation of this information. As

consequence the number of genome scale models of metabolism published in the litera-

ture has been steadily increasing. Several methods allow to predict a possible homoeo-

static cell state (under certain assumptions) utilizing the metabolic network topology as

input, as well as, the mass exchanges with the environment. These abstraction are often

employed as part of optimization problems to find suitable strategies to modify or study

organisms behavior under different experimental conditions. Bioprocess models (for a

well mixed processes) on the other hand are often described by a set of differential equa-

tions, where the cells are depicted as a black-box entities responsible for transforming

specific substrates into products. This simplified representation hampers the capability

of representing all the cellular states due to the simplified representation.

Dynamic Flux Balance Analysis (DFBA) was designed to tackle this issue allowing

to couple these two distinct formalisms. The link is made by coupling the cellular ex-

change fluxes (often updated at regular time intervals) with the bioprocess differential

equations. However, DFBA only permits the simulation of batch and fed-batch systems

when substrate is present in the bioreactor.

In the past, these models had already been linked to bioprocess systems by replacing

the black-box representation of cells in the bioprocess model by the uptake/excretion re-

actions related to the target microorganism genome scale model. However, these models

possess some shortcomings such as the incapacity to model the absence of substrates in

the bioreactor.

In this work, an extension to DFBA allowing the simulation of the system in the
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absence of substrates in the bio-reactor is elaborated. The method is applied in the

construction of a bacth/fed-batch model of Escherichia coli, as well as, in the optimiza-

tion of a feeding strategy. The system also permits the simultaneous arrangement of

Metabolic Engineering strategies.

As a case study, Escherichia coli core stoichiometric model was utilized in conjunc-

tion with a standard bioprocess model describing a fed-batch process.

The model was calibrated with in vivo fermentation data, after a global sensitivity

analysis to fix unimportant or non-influential parameters was carried out. Afterwards,

the delineated model served as basis for the design of near optimal flux feed functions

under the goal of maximizing the production of the target product at the end of the batch,

while minimizing the consumption of substrate.
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4.1 Introduction

In the last decades, one of the major trends of the biochemical industry has been the re-

placement of chemical synthesis methods by biotechnological ones. In these processes,

the capacity to model the interactions of the cell with its environment plays a crucial role.

Several methods have been described in the literature to address this problem. One of

the most common methodologies is the description of the model by a system of ordinary

differential equations (ODEs). Most of these models utilize a simplified representation

of a cell (as simple black-box converter of substrates into products) without accounting

for its inner workings [1].

More detailed cellular models require a more thorough description of the cellular

processes and data, depending on the level of abstraction adopted.

Recently, due to the increasing availability of omics data, the number of genome

scale models available in the literature has been increasing. Those models are composed

by a topological and stoichiometric description of the metabolic network of a specific

microorganism. Many mathematical methods take advantage of these models by as-

suming that the cell is in an equilibrium state. Flux Balance Analysis (FBA) casts the

problem of finding one of those equilibrium states as a linear programming optimization

problem, where the cell (or the system) has a specific goal (often the maximization of

the biomass growth) and the reaction fluxes are within limited bounds [2].

However, these methods may not return a unique steady-state (and the set of valid

steady-states satisfying optimality may be infinite). Another hurdle is the definition

of the objective functions of these methods and their match to the state of the cell.

Nonetheless, these methods have been used successfully to predict lethal phenotypes

and cellular states in a variety of conditions including in reaction knock-out studies [3].

The conjunction of FBA with the ODE description of a bioprocess has led to the

creation of Dynamic Flux Balance Analysis (DFBA) [4]. This method allows the sim-

ulation of the bioprocess system assuming the cell is always in steady-state and may

change its state after a certain amount of time (often a discrete number of time inter-

Novel approaches for dynamic modelling of E. coli and their application in
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vals). The FBA method is often executed in the DFBA process with the biomass growth

as the objective function. Contrarily to the bioprocess ODE models, that utilize black-

box descriptions of the cell, these DFBA models may be able to portray a vast number

of cellular states without the need of re-fitting or even updating the model structure to

represent new bioprocess states.

Understanding how cells interact with their environment and how extra cellular

variations affect their state has industrial interest in conceiving strategies to simulate

and optimize biological processes. Microorganisms try to keep homoeostasis and react

to external environmental modifications through a web of components encompassing

metabolic, genetic and enzymatic networks. The prowess to model this behavior inte-

grated with a formal bioprocess abstraction can lead to the development of new feeding

profiles in a fed-batch context, as well as the design of targeted Metabolic Engineering

(ME) strategies during transient stages of the culture.

The initial DFBA formulation [4] assumed the discretization of the simulation at

fixed length time intervals. Each time interval was simulated by first computing the

model uptake rates based on the available compounds in the bioreactor. After fixing

the uptake fluxes, FBA was utilized to maximize the cell growth rate and to predict the

biochemical flux distribution. Uptake and excretion fluxes were then set in the ODE

bioprocess system. Finally, the ODE system would be simulated up to the end of the

defined time interval. The process would be repeated until the end of the simulation or

would stop if the FBA method was infeasible. This formulation assumes a linear model

and does not require any previous calibration.

In [5], the authors presented a DFBA approach called static optimization approach,

with the same premises as [4], but with the possibility of utilizing non-linear rate equa-

tions for the uptake reactions.

One important limitation of DFBA is the fact that existing formulations cannot be

directly applied to fed-batch fermentations. Although a few examples of this adaptation

have been described ( [6]), those are not applicable in situations where substrate reaches

concentrations close to zero (which is often the case).
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The DFBA approach presented in [5] requires the calibration of the utilized rate

equation parameters. One important part of this process should incorporate identifia-

bility analysis, to fix non-influential or non-identifiable parameters to default values.

Identifiability analysis often utilizes techniques from two intertwined distinct areas: (i)

Uncertainty analysis (UA) methods aim to quantify these parameters uncertainties; (ii)

Sensitivity Analysis (SA) to characterize the source of parameters’ volatility [7] [8];

Some of these model parameters in their defined ranges do not influence the model

outputs or are non-identifiable posing problems to optimization methods when calibrat-

ing the model. Thus, it is important to apply techniques to identify and those that drive

the calibration process [7].

Sensitivity methods can broadly be divided into three categories: Local methods

are based in the derivatives of parameters regarding the target output variable. These

values are local in nature due to the fact of being related to specific system states and

contemplate only a change in a parameter at the time. Global methods, on the other

hand, take into consideration the simultaneous variation of a set of model parameters,

reducing nevertheless the applicability, of some techniques [8] [7] (check Chapter 2).

Contrarily to ODE systems, DFBA based systems do not allow the computation of

analytical parameter derivatives regarding compounds along time. Even if these deriva-

tives are computed numerically, they should be used judiciously due to the possibility

of discontinuities in fluxes caused by the flux determination method utilized in between

time intervals (such as FBA).

Thus, one approach to infer the parameter sensitivities is to utilize Global Sensitiv-

ity Analysis based methods, that utilize data from the sampling of the parameter space

(considering the simultaneous variation of all of the model parameters and not being

constrained by a nominal parameter set as in the previous methods), and often do not re-

quire the use of derivatives. These techniques tend to be computationally more intensive;

however, they offer a global overview of the parameter sensitivity, possibly accounting

for the non-linear interactions between parameters. In the scope of this work, methods

such as High Dimensional Model Representation (HDMR) [9], Fourier amplitude sen-
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sitivity test (FAST) [10], or the Morris Method [11] are of extreme importance (check

Chapter 2 for a more detailed explanation).

HDMR is a black-box functional mapping of the input-output behavior of a system

(for more information see Chapter 2) requiring low sampling effort (with polynomial

complexity regarding the number of variables considered) [12]. This permits to con-

struct Input-Ouput representations often called fully equivalent representations of a sys-

tem - concerning the input space where they were calibrated. This abstraction allows

to decompose the interaction and the main effects of each input on the output variables,

thus giving global quantitative sensitivity measures.

The Morris Method, on the other hand, is a GSA method that allows to estimate

a facade value for the global sensitivity of a model parameter. These values permit to

rank parameters and to identify which parameters are non-influential for the observed

behavior. Contrarily to HDMR based techniques this method does not allow to infer the

interaction structure of the parameters.

This work encompasses the creation of new method based on DFBA with the prowess

of simulating a bioprocess system in fed-batch conditions (even in the absence of sub-

strate in the medium). The model is composed by a ODE based description of the

bioprocess connected to a stoichiometric model. This method was applied to an Es-

cherichia coli bioprocess. The ODE model parameters were regressed against available

experimental data and their uncertainty was assessed by utilizing GSA methods before

and after the calibration process. These analyses served to identify non-important pa-

rameters (whose value may be fixed to a base value without affecting the model output)

and the interactions between parameters and variables that influence the observed vari-

ables trajectories. This model also served as basis for the delineation of (near) optimal

feeding strategies.
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4.2 Methodology

In this work, a novel extension of DFBA is proposed allowing the simulation of the

system (the bioprocess and the participating microbial strains). As a case study, a bio-

process model of Escherichia coli regarding batch and fed-batch fermentations was built

and linked to a stoichiometric core model [13] through exchange fluxes.

The uptake fluxes present in the bioprocess model were represented by kinetic equa-

tions portraying known information about the system. For instance, the glucose uptake

rate was shaped taking into consideration possible inhibition caused by ethanol.

The influence of model parameters on the calibration process was assessed by uti-

lizing the Morris method prior to the model calibration and afterwards. However, viable

ranges for the parameters (rate equation parameters and initial concentrations of the

participating species) were defined before this process began. The first application of

the Morris method application served to pin-point non-influential parameters with large

uncertainty. Next, the model was regressed utilizing the available experimental data,

followed by a second application of the Morris method with stricter parameter bounds.

After the calibration process and the Morris method application, the identifiability

of the parameters regarding these rate equations was studied at the system’s level. The

parameter spaces were sampled using Latin Hyper Cube Sampling Scheme and the re-

spective system simulations were saved. The impact of each parameter in a simulation

was assessed utilizing functional Pricinpal Component Analysis (PCA) weight scores

as described in [14] (see Chapter 2). These scores, alongside with the simulated con-

centrations served as outputs and inputs, respectively, for the construction of a HDMR

model. The HDMR model provides a direct way of computing the sensitivity indexes

and, consequently, the total sensitivity indexes. The last metric allows to pin-point if

a parameter may be deemed non-influential - a parameter is non-influential if distinct

values of a parameter within a range produce the same output. Subsequently, parame-

ters deemed non-influential by the respective total sensitivity index were fixed to their

original value.

Novel approaches for dynamic modelling of E. coli and their application in
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The delineated model was applied in a (near) optimal feeding design problem, whose

goal is to maximize the production of a target compound along side with biomass pro-

duction, while minimizing the consumption of substrate during the fed-batch fermen-

tation. Two distinct algorithms were utilized for defining the feeding profile: (i) Dif-

ferential Evolution Based: where the main goal of the algorithm is to find the feeding

value at a set of interpolation points supplied by the user; (ii) Grammatical Evolution

Based: whose main goal is to encounter a symbolic expression for the overall feeding

profile. Due to the versatility of the method, this approach also permits to search simul-

taneously for ME strategies, although it is important to bear in mind that this increases

the complexity of the problem.

The case study utilized for the validation of the feeding design method was the

maximization of the microorganism’s biomass.

4.2.1 Model Description

The bioprocess model was developed assuming an homogeneous bioreactor system with

glucose, acetate, ethanol, formate, lactate, oxygen and biomass, having as basis the

following ODE system:
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Ẋ = µX − fin

V
X

Ġlc = FluxglcX − fin

V
Glc + in f low ∗ X

Ȧc = FluxacX − fin

V
Ac

˙Eth = FluxethX − fin

V
Eth

˙Form = Flux f ormX − fin

V
Form

˙Lac = FluxlacX − fin

V
Lac

V̇ = fin

Ȯ2 = 0

(4.1)

where X is the biomass concentration, Glc is glucose, Ac is acetate, Eth is ethanol, Form
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is formate, O2 is oxygen, concentrations; V is the bioreactor volume, µ (flux associated

to the stoichiometric model) is the biomass specific growth rate and terms starting with

the string Flux are fluxes connected to the stoichiometric model, fin is the volumetric

flow rate entering the bioreactor. This model represents an aerobic process where typical

anaerobic fermentation products are allowed to accumulate assuming that limitations in

oxygen transfer may cause periods of time of anaerobiosis.

The uptake fluxes, namely Fluxglc, Fluxac, FluxO2 are applied as upper bounds in

the respective uptake flux constraints and set based on the following expressions:

• Fluxglc = qs (its computation is explained below);

• Fluxac =
qacmaxAc

Ac+acks
, where qacmax is the maximum uptake rate and acks is the

half saturation constant. The kinetic expression was chosen assuming that acetate

maximum consumption flux varies following a Michaelis-Menten like curve;

• FluxO2 = qmaxo2 , where qmaxo2 is the maximum oxygen uptake rate by the cell.

This expression is not directly utilized in the ODE model, but just as a constraint

in the stoichiometric model. Assuming that the bioprocess oxygen concentration

does not fluctuate, the oxygen maximum consumption flux was set to a constant

value;

Each expression in the ODE system can be described generically by:

Ċi =

nJ
∑

j=1

V j(x, θ)X −
nW
∑

w=1

Vw(x, θ)X −
∑nZ

z=1 Finz

V
Ci +

nY
∑

y=1

pumpFunctiony(x, θ) (4.2)

where Ci represents the concentration of variable i, X is the biomass variable, V j(x, θ)

is a rate expression concerning the excretion fluxes (taking as input the system state x

and the respective parameters θ), analogously Vw(x, θ) is a rate equation contemplating

the uptake fluxes, nJ is the number of excretion rate expressions (that lead to the cre-

ation of Ci), analogously nW is the number of uptake rate expressions (that lead to the

consumption of Ci),
∑nZ

z=1 Finz

V
represents the dilution term (

∑nZ
z=1 Finz is the sum of all
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the pumps input fluxes - this sum is equal to zero if the bioreactor volume is exceeded)

and pumpFunctiony(x, θ) represents the amount of Ci added to the medium by pump y,

while nY is the total number of pumps present in the system.

4.2.1.1 Uptake Rate Equation Expression Connected to a Feeding Pump

Considering the feeding of the compound i into the bioreactor by a feeding pump, the

respective uptake rate equation qs(x, θ) will have to be modified. Firstly, expressions

utilized to construct qs(x, θ) will be presented - as an example the effect of modifier

compounds in the rate expression will also be shown assuming monod like kinetics.

Other type of kinetic equations may also be employed with the proper modifications.

fin represents the volumetric flux rate of the feeding pump regarding the compound

Ci. If the current volume of the bioreactor exceeds its capacity, the feeding flux is set to

zero and, consequently, the volumetric flux rate is also zero.

fin =































f , if V ≤ VupperLimit.

0, otherwise.
(4.3)

Assuming the uptake of compound Ci is inhibited by compound I, the inhibition

term can be described by:

qsITerm =
1

1 +
I

qski

(4.4)

The qsCiOnly expression gives the consumption rate of compound Ci, considering

only the monod kinetics.

qsCiOnly =
qsmaxCi

qsks +Ci

(4.5)

The in f low accounts for the flux being fed into the bioreactor. sin represents the

concentration of Ci in the flux feed.
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in f low =
f in

V

1
X

sin (4.6)

where in f lowQs is the sum of the in f low with qsGlcOnly, representing the maximum

flux value that is available for the cells, corresponding to the amount of glucose entering

the reactor plus what is already there.

in f lowQs = in f low + qsCiOnly (4.7)

If Ci is not present in in f lowQs the bioreactor (its concentration is zero), then

qs(x, θ) uptake rate equation is given by:

qs =































−1 × in f low × qsITerm, if qsmax ≥ in f low.

−1 × qsmaxCi × qsITerm, otherwise.
(4.8)

In the scenario in which Ci is available in the medium, qs(x, θ) is given by:

qs =































−1 × (in f low × qsITerm + qsCiOnly × qsITerm), if qsmax ≥ in f lowQs.

−1 × qsmaxCi × qsITerm, otherwise.

(4.9)

In this model, it is assumed that the microorganism(s) consume the substrates present

in the bioreactor, and simultaneously consume what is being provided instantaneously

at that time by the feed pump until a given limit (qsmax) given by the maximum uptake

of the cells. It is also assumed, that if there is enough substrate quantity to support the

maximum Ci consumption rate, the microorganism will try to consume it, affected by

the respective modifiers (activators or inhibitors of the phenomena). The system would

have to be modified accordingly to support new activation or inhibition effects from

other effectors.

Novel approaches for dynamic modelling of E. coli and their application in
Metabolic Engineering



184 | Chapter 4

4.2.1.2 Stoichiometric Model and Data

In this work, we utilize Escherichia coli core stoichiometric model [13]. The model en-

compasses glycolysis, penthose phosphate pathway, tricarboxylic acid cycle, glycoxy-

late cycle, gluconeogenesis, oxidative phosphorilation and transfer of reducing equiva-

lents, nitrogen metabolism, and anaplerotic reactions. This model was chosen, due to its

simplicity (thus, it has a lower computational burden when simulating, when contrasted

with genome scale stoichiometric models), and the capability to represent the central

carbon metabolism, that is linked with the bioprocess model, by the exchange fluxes.

This model is also employed, instead of more complex models, due to the necessity of

only estimating the metabolic fluxes in the central carbon metabolism.

Model Initial Conditions and Parameter Values

The model initial conditions are defined based on the available experimental conditions

(consult section 4.2.1.2). In the feeding design problems, all the compound concentra-

tions in the medium are set to zero (except for oxygen), while the remaining variables

mimic the values of the batch experiment utilized in the calibration process.

The nominal parameter set was defined after an initial calibration of the model.

Originally, all the parameters in the model, were allowed to vary between -3 and 3 in

log-scale. These wide ranges were chosen to depict the uncertainty of these parameter

values.

Experimental Data

Data from a 20 hours batch fermentation of wild-type Escherichia coli were utilized in

the calibration process. The data are from [15] and were ceded by the authors. These

data describes a bioprocess in aerobiosis, where the following compounds were mea-

sured: glucose, acetate and biomass (through optical density). The initial conditions of

the system on these experimental data were:

• glucose : 31 mMol
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• biomass : 0.1 gDw/l

• acetate : 0 mMol

• formate : 0 mMol (assumed)

• ethanol : 0 mMol (assumed)

These conditions are applied in the calibration process.

4.2.1.3 Model Simulation

The DFBA model is simulated in a similar way to the static optimization algorithm

(SOA) [5] with the introduction of an extra step in the flux value computation, allow-

ing to describe new scenarios concerning the consumption patterns of microorganisms.

Assuming that the fermentation process has been described by an ODE system, whose

variables are also linked to the exchange fluxes of at least one genome scale model, the

system is simulated in the following way:

1. The simulation time is divided into equally spaced time steps. The length of

these steps is defined by the user and is problem dependent. It is assumed in the

beginning of the time step that the cell arrives at a new steady-state;

2. At each time step, firstly the uptake rate equation values are computed taking

into consideration any conditional behavior or rules and the state of the system

(concentrations and parameter values). These rate equation values are then fixed

in the stoichiometric model.

3. The stoichiometric model is utilized in a method to predict a flux distribution. In

this work we utilize Parsimonious Flux Balance Analysis (PFBA) [16]. Another

method that produces flux distributions at steady-state could be employed instead;

4. The values of the unbound rates (not computed previously in step 2) are set based

in the previous computation by PFBA;
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5. The model is simulated utilizing a suitable ODE solver for the length of the time

step. The fluxes computed in step 3 are kept constant during the execution of the

time step;

Figure 4.1: Flux diagram, representing the DFBA extension simulation process.

System
State

Evaluation

Genome
Scale
Flux

Distribuition

Set
Unbound
Variables

Simulate
Bioprocess

ODE

End
Time?

Next
Iteration

Stop

no

start

yes

The process is repeated until a termination criterion is met (often the end time of the

simulation) as illustrated in Figure 4.1.

4.2.2 Identifiability Analysis

The identifiability analysis performed here is divided into distinct stages: (i) identifica-

tion of non-influential parameters in the original model, by utilizing the Morris method

with scaled elementary effects [17]; (ii) description of the interaction structure of the pa-

rameters based on the available experimental data to calibrate the model, as well model

simulations, utilizing a Quasi Random Sampling HDMR (QRS-HDMR) [18].
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4.2.2.1 Calibration Parameter Global Sensitivity - Morris Method With

Scaled Elementary Effects

In this work, the global sensitivity indexes (the effect of a parameter on an output, in-

cluding interaction effects with other parameters), were assessed by using the Morris

method. The Morris method allows to identify and rank which parameters of a function

y, defined in a unit hypercube divided into p equal parts (called levels) may affect the

output of a system by computing a set of measures (called elementary effects (EE)), and

their statistics utilizing one-step-at-a-time (OAT) sampling scheme, repeated r times.

In the context of this work, the Morris Method is utilized to infer the impact of each

model parameter (without contemplating the model initial conditions explicitly), in the

objective function J(θ) defined for the calibration process. The scaled elementary effects

utilized in this work are defined as:

S caledEEi(θ) =

∣

∣

∣

∣

∣

∣

J(θ1, ..., θi−1, θi + δ, ..., θk) − J(θ)
δ

∣

∣

∣

∣

∣

∣

σθi

σJ

(4.10)

where J(θ) is the calibration objective function with input parameter set θ, J(θ1, ..., θi−1, θi+

δ, ..., θk) designates the output value, where parameter θi was perturbed by δ (perturba-

tion constant), σθi is the standard deviation of parameter θi, σJ is the standard deviation

of the calibration function over the whole range of parameters. For each parameter r,

scaledEEs are estimated (for information on the parameter ranking procedure refer to

Chapter 2).

The Morris method with scaled elementary effects was applied to the depicted DFBA

system, before the calibration procedure in a batch fermentation for a period of 20 hours,

where the microorganism internal flux state was updated at every 0.125 hours. The

method was executed with r equal to 140 and p (number of levels) equal to 10. This

value was selected based on the method developed by [19] to identify the optimal r

value. All the parameters were allowed to vary within the interval -3 to 3 in log-scale

(in their respective units). This range was selected to include a wide range of values,

some outside of biological feasibility, due to the fact of not utilizing literature based val-
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ues as starting parameter values. After the calibration process, the Morris method was

reapplied to the system, allowing the system parameters to vary 50% regarding the best

parameter set found. It is important to bear in mind that this method was employed to

identify which parameters drive the calibration process and their relative influence.

4.2.2.2 Time Series Global Sensitivities

There are several techniques to assess the sensitivity measures of time series trajecto-

ries, such as the area under the curve of relative sensitivities, derivatives or sensitivity

indexes. However, most of these methods are based on the computation of the average

value of a discrete set of sensitivity measures computed at specific time intervals. These

procedures correspond to weighting each sensitivity index equally, what may distort the

overall sensitivity index.

In this work we utilize the approach developed in [14] that weights each sensitivity

index according to their importance, utilizing equidistant time points (the ones utilized

in the extended DFBA formulation).

The sensitivity of each model parameter concerning each output variable was as-

sessed by using functional Principal Component Analysis (fPCA) scores in conjunc-

tion with Quasi Random Sampling High Dimensional Model Reduction (QRS-HDMR).

Both techniques are detailed in Chapter 2. In this work, these methods were utilized

to identify which parameters influence the most the aforementioned DFBA time series

trajectories (e.g biomass, glucose and all the remaining system variables), after the cali-

bration process.

The sensitivity indexes were computed assuming that each parameter may change

its value one order of magnitude, concerning the best parameter set found in the initial

calibration process. The parameter space was sampled utilizing Latin Hyper Cube Sam-

pling (LHCS), obtaining as outputs the variable trajectories at equidistant time points

from the simulation process. Next, the set of simulations corresponding to each variable

were approximated through the computation of the functional principal components and

the respective scores. The principal components describe the modes of variation (vari-
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ability) in the data in decreasing order. Thus, only a subset is needed to represent the

data (and its variability), by a user defined threshold, thus reducing data dimensional-

ity. As explained in [14] (using the same notation), a model output yi, described by

functional principal components ξ(t) = (ξ1(t), ξ2(t), . . . , ξq(t)) can be defined as:

yi(t) =
nPCs
∑

j

ωi, jξ j(t) (4.11)

where nPCs is the number of functional principal components considered by the user,

the output yi(t), represents the sum of each of the functional principal components ξ j(t),

times the principal component score ωi, j, for model output i on component j. The score

indicates the amount of principal component j contained in the output i (for details on

the computation of the functional principal components consult [14]). These scores re-

place the output simulations, as the output of the system (the output becomes a vector

of scores, one for each PC). Thus, global sensitivity methods are utilized to identify

which parameters affect the selected functional principal component scores. It is impor-

tant to note that each PC score has a sensitivity measure associated. These values are

aggregated to generate a single sensitivity index, given by:

S Overall
i =

nPCs
∑

n=1

S n
i Vn

PC (4.12)

where S Overall
i

is the weighted sensitivity index of parameter i, nPCs is the number of se-

lected functional principal components, S n
i

is the sensitivity index value (or fPCA score

sensitivity) for functional principal component n, and Vn
PC

is the part of the variance

explained by the fPC n.

If a parameter is considered influential, then it has an effect on the score of at least

one of the fPCs, thus on the observed behaviour of the output. Functional principal

components were utilized in conjunction with RS-HDMR to compute the sensitivity

indexes of the model parameters for each output. The HDMR computations include the

extensions described in Chapter 2. The HDMR model for a fPC z score, concerning one

model output is given by:

Novel approaches for dynamic modelling of E. coli and their application in
Metabolic Engineering



190 | Chapter 4

f (θ)z ≈ f z
0 +

n
∑

i=1

f z
i
(θi) +

∑

1≤i≤ j≤n

f z
i j

(θi, θ j) (4.13)

where θ are a set of selected model parameters under study affecting the DFBA model

output i, f (θ)z is the score value for fPC z (for one model variable), f0 is the mean value

of the scores for fPC z under all f (θ) and each successive order function represents the

parameter set contribution θ to f z(θ). For instance, f z
i j

contains the contribution of θi and

θ j for the output score of fPC z in f z(θ). These f (θ)z are computed for all the utilized

fPCs. For each fPC the sensitivity indexes are computed (as explained in chapter 2), and

their overall sensitivities values aggregated as explained in equation 4.12.

Model Regression

The goal of the regression procedure is to find a set of parameter values that make the

model reproduce the experimental data. The goodness of this reproduction is assessed

by a cost function J(θ). In this work, we utilize a weighted least squares, whose weight

corresponds to the variance of the measurement, at a specific time. This is equivalent to

maximum likelihood estimation, when it is assumed that errors are normally distributed.

The weighted least squares is given by:

J(θ) =
t

∑

t=1

n
∑

i=1



















(C(t)i −C(t)i,exp)2

σC2
i,exp



















(4.14)

where J(θ) is the cost function, C(t)i is the simulation value of variable Ci at time t,

C(t)i,exp is the experimental measurement of variable Ci,exp. After, fixing the parameters

classified as non-influential by the Morris method, the calibration process was carried

utilizing an Evolutionary Computation approach. The previously presented model pa-

rameters were regressed using the Differential Evolution algorithm and the minimization

of the aforementioned function J(θ).
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4.2.3 Optimization Algorithms

In this work, two distinct types of evolutionary algorithms are employed: (i) Differential

Evolution (DE) [20]; (ii) Grammatical Evolution (GE) [21].

4.2.3.1 Differential Evolution Configuration

The calibration process employed a variant of the DE algorithm called DE/rand/1 that

uses a binomial crossover [20]. In this case, the following scheme is followed, in every

generation, for each individual i in the population:

1. Randomly select 3 individuals r1, r2, r3 distinct from i;

2. Generate a trial vector based on: ~t = ~r1 + F · (~r2 − ~r3), where F is a weighting

factor;

3. Incorporate coordinates of this vector with probability CR;

4. Evaluate the candidate and use it in the new generation, if it is at least as good as

the current individual.

The DE was ran for 500 iterations with a population of 20 individuals. The F pa-

rameter was set to 0.5 and CR to 0.6.

In the context of this work, a solution represents a parametrization of a subset of

model parameters defined by the user. A solution is evaluated by computing the objec-

tive function described previously in the calibration subsection.

4.2.3.2 Grammatical Evolution Configuration

The GE [21] algorithm behaves similarly to a Genetic Algorithm with an integer vector

representation, as explained in Chapter 2. In this work the population is composed of

100 individuals, iterated for 500 generations and the following modification operators:

• Cut and Splice cross over: Two individuals are utilized as parents and a distinct

crossover point is selected in each solution. The genes before and after that point
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are swapped between those individuals, giving rise to two new solutions. This

operator may give raise to individuals with distinct sizes from their ancestors.

• Random Mutation: An individual gene from a solution is swapped by a randomly

chosen value (within allowed range of values defined by the user for that gene).

The individuals for the modification operation are chosen based on the Tournament

selection procedure, with two individuals selected randomly with repetition from the

population. The algorithm possesses elitism, thus the best individual of a generation is

automatically part of the next generation population.

4.2.3.3 Feeding Strategy Design For Fed-Batch Bioprocesses

After the batch model has been calibrated it can be extended to support the simulation

of a feeding strategy of a fed-batch fermentation by incorporating the in f low term as

previously explained.

These terms can be added to the respective compounds of the equation being fed

into the bioreactor. Each individual added term represents the amount of a substance fed

to the bioreactor by a pump. It is possible to add more pumps by adjoining the respective

number of terms. In this work, a pump capable of providing glucose to the bioreactor

will be added to the system by changing the glucose equation to:

Ġlc = qs(x, θ) × X − fGlcin

V
×Glc + in f low (4.15)

The pump will also affect the bioreactor volume equation in the following way:

V̇ =

numberO f Pumps
∑

n=1

fcompoundPump (4.16)

The summation
∑numberO f Pumps

n=1 fcompoundPump equals the total flux being added to the

bioreactor. In the definition of this problem, it is assumed that the volume is bounded

and that a pump cannot feed the system if the volume variable is in its upper bound.
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The feeding profile design problem consists in finding an optimal/near optimal feed-

ing strategy that optimizes a given objective function. In this work, it was assumed as

the main goal the maximization of the bioprocess yield defined as:

∑nProducts
i=1 (Pi,t f − Pi,t0)
∑nS ubstrates

j=1

∫ t f

t0
S dt

(4.17)

where the term
∑nProducts

i=1 (Pi,t f − Pi,t0) represents the summation of all target products

i concentration in the bioreactor at the end of the experiment and
∑nS ubstrates

j=1

∫ t f

t0
S dt is

total substrate concentration consumed during the simulation (represented by the sum-

mation of the nS ubstrates in the bioreactor).

A test case was utilized to devise the feeding strategy: the maximization of the

biomass yield. This test serves as a assessment to verify the exponential growth pattern

of biomass. The feed strategy will be defined by a function of time that returns the pump

flux rate. Two distinct EC techniques will be used to infer this function: (i) Grammatical

Evolution [21]: by searching for an explicit expression for the feed expression; (ii) DE

by optimizing a set of time point values that serve as basis for linear interpolation of the

function;

Grammatical Evolution

The application of GE in this problem consists in finding a symbolic expression for the

rate profile of glucose to maximize the objective function (for more information about

the GE algorithm consult 2). When the rate value of the expression goes beyond the

operational range of the feeding pump, the maximum or the minimum value of this scope

are returned based on the nearest distance to the upper or lower bound, respectively.

The context free grammar (in Backus-Naur form [22]), utilized in this problem is

given by:
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S F f =< Op >

Op F < Value >< BinOp >< Op > | < UniOp > | < Value >

BinOp F +| − |/|∗

UniOp F cos(< Value >)|sin(< Value >)|ln(< Value >)

Value F < Number > | < Number > . < Number > |Glc|X

Number F 1|2|3|4|5|6|7|8|9|0| < Number >

The individual solution representation is allowed to wrap around and possess a max-

imum depth of 1000. The algorithm configuration is found on Section 4.2.3.2.

Differential Evolution

The feeding profile optimization utilizing DE in this context corresponds to finding a set

of interpolation points having as independent variables a set of time points defined by

the user. The function value is given by linear interpolation.

The same variant of the DE algorithm used before (with the same parametrization)

was utilized for this problem.

4.3 Results and Discussion

In Figure 4.2, the time series trajectories of the participating species on the system after

the calibrations are shown. The lines represent the system simulation predictions, while

the dots correspond to experimental data. Lactate and formate were not measured in

this experiment. However, the system predicts the excretion of formate. The same

procedure was also tried out with distinct genome-scale models of Escherichia coli,

such as IJO1360 [23] IJR904 [24] and similar results were observed.

Per contra, if these fermentative products (present in the model like, lactacte, for-

mate, ethanol) are forced to zero (in the training data at each experimental point), the

model becomes unable to reproduce the acetate production and consumption curve (re-

sults not shown).
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Figure 4.2: System species concentration trajectories against training data

Figure 4.3: System flux trajectories

In Figure 4.3, the flux time series are shown. The system enters an dormant state

around the 10th hour due to the insufficient amount of substrate in the bioreactor to sup-
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port growth. This assumption has the disadvantage of forcing the complete simulation of

every in silico experiment. In the DFBA presented in [5], the in silico experiment would

be stopped, when the flux prediction method was infeasible (in this scenario FBA). This

feature or relaxation of the problem has important consequences in the design of (near)

optimal feeding profiles. Another important factor in the devised simulation method is

the usage of PFBA. It was observed (results not shown) that FBA can produce abrupt

changes in the flux distributions due to the high number (may be infinite) of possible

valid states. When using PFBA these brusque changes tend to occur less often.

4.3.1 Calibration and Identifiability Analysis

Table 4.1: Parameter Ranking utilizing Morris Method with scaled elementary
effects and r= 140 p = 10 before the calibration process

ParameterId Rank Value
qsmax 2 0.56
qski 4 0.14
qsks 3 0.18

qsmaxo2 1 0.73
qacmax 5 0.025
qacks 6 0.0025

Table 4.2: Parameter Ranking utilizing Morris Method with scaled elementary
effects and r= 140 p = 10 after the calibration process

ParameterId Rank Value
qsmax 2 0.37
qski 3 0.017
qsks 6 6.9E-5

qsmaxo2 1 0.49
qacmax 5 0.0030
qacks 4 0.0023
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Table 4.3: Parameter first order sensitivity indexes utilizing QRS-HDMR with
simulation data, after calibration

ParameterId X Ac Glc Form
qsmax 0.41 0.36 0.77 0.81
qski 1.5E-4 5.1E-4 1.6E-5 3.4E-5

qsmaxo2 0.43 0.40 0.081 0.37
qsks 0.0010 0.0011 3.77E-5 6.74E-4

qacmax 0.0078 0.0073 0.0024 0.0030
qacks 0.0024 0.0022 3.87E-5 0.0015

Table 4.4: Most Relevant parameter second order interactions sensitivity indexes
utilizing QRS-HDMR with simulation data, after calibration

ParameterId ParameterId X Ac Glc Form
qsmax qsmaxo2 0.0071 0.014 0.037 0.0
qski qsks 0.0010 0.0014 5.74E-4 0.0

qsmaxo2 qacmax 0.069 0.054 0.0 0.0

The analysis of the calibration process regarding the model parameters was assessed

utilizing the Morris method with scaled elementary effects. All the parameters were

deemed as significant for the production of the model behavior within the bounds de-

fined for each parameter. In Table 4.1, the scaled elementary effects and the parameter

ranking before the calibration process are shown. The Morris method was executed

with parameters having a larger sample space, due to uncertainty regarding their values

(all the parameters were allowed to vary between -3 and 3 in log-scale). In Table 4.2,

the scaled Morris elementary effects, after the calibration process (with parameters pos-

sessing 50% variability regarding the best solution found in the calibration process) are

shown.

It can be seen, in both tables, that the most important parameters driving the calibra-

tion process are qsmax and qo2max. Nonetheless, in the first analysis (before the cali-

bration process) qsks was ranked as the third most important parameter,while after the
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calibration it was less important. In the first scenario, this parameter could take a wide

range of values, while after the calibration the value was fixed to a small value that had

a small impact on the calibration cost function. The a priori screening analysis (Mor-

ris method before the calibration), was followed by a correlation analysis (explained in

the methods) to identify non-influential parameters. Notwithstanding, all the parameters

were deemed as influential. It is important to note that parameters may be deemed less

important due to the reduced number of times a phenomena occurs in a set of in silico

experiments such as the consumption of acetate when contrasted with the consumption

of glucose.

Afterwards,the factors driving the model output trajectories were assessed by utiliz-

ing the first and second order sensitivity indexes (utilizing QRS-HDMR for this compu-

tation). This method allows to designate how the factors interact and affect the output, as

well as, the identifiability characteristics of the system (without distinguishing between

structural or practical identifiability). A sample of system simulations were computed

utilizing Latin Hyper Cube Sampling (LHCS) to sample the parameter space with 1

order magnitude variability, regarding the best parameter set found in the calibration

process. Next, the solutions that were less than 12% worse, when compared to the best

solution were kept. This threshold was chosen empirically, due to the capability of the

system with this error level to represent the experimental behavior in training data. Sub-

sequently, the sensitivity indexes were computed utilizing QRS-HDMR.

The sensitivity indexes computed in this problem are shown in Tables 4.3 and 4.4.

We can conclude the following from the GSA analysis of the calibration process:

• The least important parameter driving the distinct ouputs profiles is qski. This pa-

rameter has the lowest first sensitivity index value in all output variables. Nonethe-

less, it is confounded for biomass and acetate with qsks, as it can be observed in

Table 4.4.

• The parameters that drive the estimation procedure are the ones that also define

the behavior the outputs after the calibration as it can be seen in Tables 4.1, 4.3
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and 4.4. It is important to take into account the selection procedure, utilized in

the sampling process for the computation of the global sensitivity indexes (as

explained previously);

• Analysis of the second order sensitivity indexes in the first three output variables

in the Table 4.4, reveals that there is an interaction between qsmax, qsmaxo2 and

qacmax;

• Formate profile is only affected by first order effects. However, the sum of the first

order sensitivities has a value larger than one (thus, the sensitivity index value

has not converged). This can be explained due to the small subset of selected

simulations covering the excretion of formate.

It also is important to bear in mind that the utilized objective function for the cali-

bration process is not monotone regarding the model parameters and only methods such

as the ones utilized (variance based methods) should be employed to characterize its

parameter structure.

Lactate and ethanol do not appear in the table due to fact of their concentrations

being always zero in all the carried simulations.

From the data in the previous tables, we can conclude that parameters (assuming we

can measure all variables at equidistant time points at 0.125 hours) qsmax and qo2max

can be computed from the available experimental data due to the small differences con-

cerning the respective first and total sensitivity indices.

The parameter set composed by qacks, qski and qacmax may not be successfully

identified due to the presence of higher order interactions of the same magnitude or

larger than the main effects, that confound the parameter values. These parameters may

become identifiable with suitable experimental data that excites the system in specific

ways.

After the identifiability analysis and the calibration of the model parameters, the

feeding profile design algorithms with the purpose of maximizing the micro-organism

biomass, while minimizing the amount of substrate utilized in the process,were exe-
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cuted. Both optimization algorithms (DE and GE) described in the methods section

were utilized. In this work, the original DFBA formulation was relaxed to allow the

absence of growth in the cell (almost like setting the microorganism in a dormant state,

where all the fluxes have the value zero). It is curious to note that the cell will often

tend to feeding profiles where the absence of growth is not present. Without this relax-

ation when the flux distribution algorithm returns an infeasible result, the optimization

algorithms tend to get stuck in local optima (or at least in a worse solution than the one

found considering the relaxation). Typically, the algorithm will pass through interme-

diary states (that may compromise the absence of growth) until they arrive to the best

solution found.

Figure 4.4: Best Differential Evolution Solution Found - Concentrations
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Figure 4.5: Best Differential Evolution Solution Found - Fluxes

Figure 4.6: Best Differential Evolution Solution Found - Feed Profile with ob-
jective function value of 0.063

In Figures 4.4, 4.5, and 4.6 the feeding profiles generated by DE, are shown. This
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algorithm has several difficulties in converging to a good solution (only with iterative

tuning of the best solution found, it is possible to reach to a solution as good as GE).

Often, the algorithm will find a local optimum, where the problem is treated almost like

a batch fermentation, as it can be seen in Figure 4.4. In this solution, the algorithm

chooses to introduce a large amount of substrate in the bioreactor, at the beginning of

the simulation, followed by a period where only a small amount of flux feed is added to

the bioreactor. This feeding profile, leads to the excretion of by-products, such as acetate

and formate, what indicates a waste of carbon that could be directly to biomass, if the

cell had the metabolic capacity to deal with the amount of glucose in the bioreactor at

those times (excretion of by-products). Acetate is also consumed at the end part of the

simulation, what is least efficient (growth wise), than the consumption of glucose.

Figure 4.7: Best Grammatical Evolution Solution Found - Concentrations
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Figure 4.8: Best Grammatical Evolution Solution Found - Fluxes

Figure 4.9: Best Grammatical Evolution Solution Found - Feed Profile with
objective function value of 0.067
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In Figures 4.7, 4.8, and 4.9, the time series of the concentrations, fluxes and feed

profile, regarding the best GE solution found, are shown. In equation 4.18 the best

symbolic expression devised by the GE algorithm is presented.

f = Glc +
X
7

e3.0

(4.18)

In this solution (due to the feed profile), the cell is redirecting all available carbon to

biomass, in the most efficient way possible, by setting the value of the glucose flux near

its critical point (defined as flux bound , where excess carbon has to redirected to other

exchange fluxes, such as acetate). Contrarily to the DE the GE feed profile is continuous

over the simulation time. This affects the ODE simulation part of the method, where

DE may possess several discontinuous flux feed levels,and cannot adjust the flux feed

to the exact cell needs. Thus, GE does not have to deal with the number of collocation

points of interpolation, what alleviates the convergence of the method (often leading to

better solutions). On the other hand, DE possesses difficulties in converging to a good

solution, and has to be iteratively fine tuned (often leading to poorer quality solutions

than GE).

The method possesses a caveat, when the distribution calculation method returns

a flux distribution from a set of possible valid flux distributions - the obtained result

becomes solver dependent. One way to alleviate this hurdle is to utilize a method, such

as Geometric FBA [25], that returns the same flux distribution independently from the

solver.

4.4 Conclusion

This work contemplated the extension of Dynamic Flux Balance Analysis supporting

the absence of substrate in the bioreactor by relaxing the need of a valid result when

computing the cell flux distribution and by incorporating a new formulation regarding

the substrate consumption by the cells.
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The method was tested by first calibrating a model describing a bioprocess ODE

system and the interaction with an Escherichia coli stoichiometric model. The calibra-

tion process was preceded by two global sensitivity analysis: firstly, the influence of

the model parameters in the calibration cost function was assessed by ranking the pa-

rameters utilizing the Morris Method and several extensions described in the literature

(described in the methods section), before and the after the calibration process; next, the

identification of the underlying identifiability structure was computed by constructing

the first and second order sensitivity indexes using QRS-HDMR as base model.

Afterwards, the proposed method was utilized to design fed-batch feeding profiles

to attain maximum yields utilizing GE or DE. DE tends, to converge to sub-optimal

solutions, contrarily to GE.

This method allows to improve and design new feed strategies, thus having implica-

tions at improving current industrial bioprocesses that can be described mathematically

by this formulation. The GSA methods allow to pinpoint possible future modifications

to the model as well identifying the parameters driving the calibration process (before

executing the model calibration). This method also allows to take advantage of the

growing number of genome-scale models described in the literature.

However, when employing the devised method it is important to bear in mind that,

if the method used to compute the flux distribution possesses several possible solutions,

the obtained results will be solver dependent.
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chapter 5

EVOLUTIONARY COMPUTATION FOR PREDICTING

OPTIMAL REACTION KNOCKOUTS AND ENZYME

MODULATION STRATEGIES

One of the main purposes of Metabolic Engineering is the quantitative prediction of

cell behaviour under selected genetic modifications. These methods can then be used

to support adequate strain optimization algorithms in a outer layer. The purpose of the

present study is to explore methods in which dynamical models provide for phenotype

simulation methods, that will be used as a basis for strain optimization algorithms to

indicate enzyme under/over expression or deletion of a few reactions as to maximize the

production of compounds with industrial interest. This work details the developed op-

timization algorithms, based on Evolutionary Computation approaches, to enhance the

production of a target metabolite by finding an adequate set of reaction deletions or by

changing the levels of expression of a set of enzymes. To properly evaluate the strains,

the ratio of the flux value associated with the target metabolite divided by the wild-type

counterpart was employed as a fitness function. The devised algorithms were applied

to the maximization of Serine production by Escherichia coli, using a dynamic kinetic

model of the central carbon metabolism. In this case study, the proposed algorithms

reached a set of solutions with higher quality, as compared to the ones described in the

literature using distinct optimization techniques
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5.1 Introduction

Progress in molecular biology technologies permitted uncovering new molecular in-

teractions aiding in the better characterization of cells. Modeling a cell based on the

understanding of the interplay of its constituents, in connection with information from

different omics, is the purpose of Systems Biology (SB) as advocated by Kitano [1].

The application of engineering concepts to SB provides valuable insights, helping

to consolidate ongoing efforts in Biotechnology. Of particular interest, in the scope of

this work, is Metabolic Engineering (ME). This discipline is concerned with the under-

standing and use of metabolic pathway modifications, using biological models under an

engineering perspective to attain a specific industrial objective [2].

There has been a trend in industry to replace chemical synthesis techniques by

biotechnological processes, due to environmental and sustainability concerns. Opti-

mization of microbial strains has an important role in this scenario, due to increases in

bioprocess productivity and, consequently, in profitability. Generally, the metabolism

of wild-type microorganisms is geared to its survival and reproduction, without engag-

ing in the production of compounds outside this scope. Thus, the metabolism has to be

modified in order to meet the desired industrial outcome, typically the overproduction

of a target compound.

Until recently, in bioprocess engineering, cells were modeled as black box entities

responsible for consuming substrates and producing certain compounds, ignoring the

underlying biological mechanisms. The genetic improvement of microorganisms has

been driven by selective pressure based on empirical principles to obtain organisms with

desired characteristics.

More recently, rational approaches for ME have been proposed, where researchers

attempt to build mechanistic whole cell models to elucidate and provide tools for study-

ing metabolic responses under different environments and perturbations. However, these

still face hurdles such as the lack of knowledge about the reaction kinetics and the cel-

lular responses to specific external perturbations. Nonetheless, ME has paved the way

Novel approaches for dynamic modelling of E. coli and their application in
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to induce cells to over-synthesize target products, to engineer new metabolic pathways

and to control the production of a set of metabolites of interest.

The prediction of metabolic states has been accomplished mainly by the use of

genome-scale stoichiometric models and constraint based phenotype simulation meth-

ods. These are developed based on a microorganism’s specific biochemical network,

using mass balances and reaction flux constraints derived from biophysical principles or

empirical observations

Several stoichiometric genome scale models have been published in the literature for

microorganisms such as Escherichia coli [3] and Saccharomyces cerevisiae [4]. Typi-

cally, these models do not contain kinetic and/or regulatory information. Even so, it

is possible to predict cellular behavior under certain assumptions (e.g. pseudo steady-

state). From a ME point of view, these models allow to investigate the response of a

metabolic network to specific genetic manipulations and/or environmental conditions.

There are several simulation methods that can be employed to estimate the mi-

croorganism flux distribution such as Flux Balance Analysis (FBA) [5], minimization

of metabolic adjustment (MOMA) [6] and Regulatory on/off minimization of metabolic

flux changes(ROOM) [7]. Each of these methods returns a unique optimal solution from

the solution space, but in many cases several optimal solutions may exist and there is

no information concerning which of those is indeed used by the cell. Thus, it is hard to

identify the cell’s true state [8]. Also, the employed objective functions may not repre-

sent the biological reality and other objectives for the cell can be considered instead [9].

Despite the described limitations, these methods can provide useful insights for ME.

Several tools have been developed in the last years to calculate the best set of reaction

(or gene) deletions or levels of expression of enzyme sets to attain a specific objective.

Within this context, the problem of finding a gene/ reaction knockout set belongs to the

class of combinatorial optimization [10], while the reaction down/up regulation task is

included in the numerical optimization class. It is not feasible to test all gene/ reaction

deletion combinations or enzyme expression level values using a brute force approach

in a reasonable amount of time.
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OptKnock [11] provides an alternative for the reaction deletion task, based on a

MILP formulation, finding an optimal set of reactions to delete. However, it is con-

strained to linear objective functions and it cannot be applied with large networks due to

the NP complexity of the problem [12].

OptGene [10] tackles this problem using Evolutionary Algorithms (EAs), where so-

lutions are encoded in a specific representation scheme, in conjunction with FBA to

estimate the effect of certain sets of reaction deletions. This method gives no guarantees

of finding the best global reaction deletion set, but often provides (near) optimal solu-

tions in a reasonable time being also more flexible in terms of the definition of the fitness

functions. In recent work, other variants of Evolutionary Computation (EC) approaches

such as set-based representation EAs and Simulated Annealing have been proposed and

evaluated [13]. Also, methods that try to estimate the best under/over expression levels

for a set of enzymes have been proposed, namely OptReg [14] that is based on a MILP

formulation and more recently EAs [15].

An important shortcoming of all these methods based on constraint-based approaches

is the absence of dynamic features concerning the metabolic state, not allowing to cope

with enzyme kinetics and regulation. Therefore, the obtained results do not portray these

effects and are bound to be incomplete.

One approach to overcome these hurdles is to use dynamic models. These models

are usually based in ordinary differential equations and produce a more detailed descrip-

tion of cellular systems by capturing transient behavior. This type of models mimic

better the phenomena observed in vivo in microbial strains than its purely stoichiomet-

ric counterparts. These mathematical abstractions may also allow obtaining a specific

steady state from an initial set of conditions.

On the down side, they require detailed enzyme kinetic information that is often

incomplete and spread across several databases. This gives rise to inconsistencies due

to the unavailability of experimental data and methodology standardization concerning

the estimation of kinetic parameters. Another hurdle is the imprecise knowledge of the

mechanistic rate laws underlying several reactions. It is important to bear in mind that
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it is not usually possible to measure all cellular compounds precisely in order to build

the respective kinetics. On the whole, these models account for a small part of the

metabolism. These obstacles can be attenuated by utilizing kinetic law approximations

[16].

Despite the limitations, and due to the use of kinetic information, dynamic models

are able to represent enzyme interactions not possible with steady-state models, such

as metabolic inhibition. These models are also better suited to simulate the effects of

enzyme expression level changes.

Therefore, and in spite of the lack of information to build large-scale dynamic mod-

els, a few attempts have been made regarding their use in ME applications. In [17] a

Mixed Integer Non-Linear Progamming (MINLP) method for finding optimal modula-

tion strategies was developed. The main limitations of this method are computational

tractability and the generation of optimal sets of modifications [18].

In [19] the problem of finding the best set of enzyme expression levels and reaction

knockouts using a dynamic model of central carbon metabolism of Eschericia coli [20]

was addressed. A MILP formulation and a generalized linearization of the kinetic model

were used to find a ME strategy. However, like in Optknock [11] the effort to solve

a MILP problem increases exponentially with the size of the problem at hand. This

method also assumes flux and concentration bounds around the reference state, to con-

trol the error of the linerarized model regarding the original model.

In [21], the problem of finding the best set of enzyme expression levels using the

aforementioned model was addressed. Simulated Annealing [22] was used to search

the enzyme set space, while a sequential quadratic programming method estimated the

respective enzyme expression levels, forcing the objective function and the constraints

to be continuous in the considered ranges and of class C2. This method assumes a

value for the overall maximum allowed metabolite changes at steady-state and also that

overall system enzyme levels remain constant within a constant value proportional to

the number of modifications. In this work this constraint will not be used due to its

specificity and lack of experimental data to corroborate it in Escherichia coli. This
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restriction may also limit the algorithm generalization capabilities.

5.1.1 Aims and overview of the approach

This work entails the development of EC approaches to find a set of metabolic modifica-

tions, such as reactions knockouts and reaction up/down regulation that will optimize the

production of a metabolite with an industrial interest, utilizing as a basis for simulation

dynamic models composed of ordinary differential equations (ODEs).

One aim of this method is to provide a proof of concept of a scalable approach

able to deal with larger scale dynamic metabolic models than the ones that currently

exist. The existing methods are not able to cope with the definition of ME strategies in

larger dynamic metabolic models, due to the combinatorial increase in the number of

possible strategies. Also, they do not take into consideration invalid solutions that may

contain valid building blocks for the optimal solution. It is important to bear in mind

that it is impossible to scan the whole state space, when it has a high dimensionality. A

brute force approach is not feasible for the enzyme level modulation task and it becomes

unpractical in the reaction deletion scenario as the number of modifications increases.

Also, most of the current methods deal with the parallel optimization of enzyme and

knockout expressions by employing a Mixed Integer Non-Linear Programming meth-

ods [17] that are unable to solve problems with hundreds of equations, or rely on the ap-

proximation of the non-linear dynamic model around a reference state (usually a steady

state) and a posteriori use a MILP formulation [19]. The approximation of the non-linear

dynamic model around a reference state also enforces the use of reaction and metabolite

ranges around the reference state that may exclude valid solutions of interest.

The present approach deals with these shortfalls by using the original non-linear

model without doing any approximation and by searching ME strategies by means of

EAs that adapt the solution size. Thus, this method does not need to assume a range of

flux and metabolite values where solutions are considered valid. The assumptions in the

current method are made in a reaction basis when defining the discrete or continuous
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range for modifiable reactions.

In this situation, dynamic models are used to generate a single steady-state solution

without the need of specifying further assumptions such as in the cases of FBA, MOMA,

or ROOM for stoichiometric models. Another advantage of using these models in ME

applications is the straightforward implementation of over/under expression of enzymes

as ME strategies.

Two tasks are used to test the devised optimization techniques, whose purpose is

to maximize the production of a metabolite at steady-state: (i) reaction deletion - the

objective is to discover the best set of reaction deletions (knockouts). The ideal number

of reactions to remove is also determined simultaneously; and, (ii) reaction up/down

regulation - the main goal is to find the best set of enzymes to tweak and the respective

level of expression concerning the base values present in the original model.

In this work, a novel encoding scheme is proposed that will adress both tasks, al-

lowing the algorithm to choose the best ME strategy given a permitted set of constraints,

as well as the number of modifications. The solution decoding affects the simulation

of the dynamic model by multiplying the vmax parameter of the reaction rate law by the

decoded enzyme modulation level contained in the solution’s genome. This corresponds

to a change in the total enzyme concentration assuming that vmax is directly proportional

to it. In the reaction deletion case, the vmax parameter is multiplied by zero, therefore

constraining the reaction’s flux to 0.

The design of the algorithm also allows the discretization of the enzyme modulation

value into a set of pre-defined ranges. In a wet lab setting it is often not possible to fine

tune the exact enzyme expression levels as returned by the algorithm. Thus, this dis-

cretization may allow a more flexible representation of what may be achieved in vitro.

This representation provides for the simultaneous optimization of discrete and contin-

uous enzyme levels. The developed method also allows to incorporate non-modifiable

reactions (reactions that cannot be tweaked by the algorithm or have to respect specific

constraints, like for example directionality or flux intervals).

As a basis for phenotype simulation, a metabolic dynamical model of selected path-
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ways of Eschericia coli will be used, based on ordinary differential equations, namely,

the mechanistic model of the central carbon metabolism [20] consisting of mass balance

equations for glycolysis and for the pentose-phosphate pathway.

The aforementioned tasks are used in a case study related to the maximization of

Serine production, allowing to contrast the obtained results to the ones published in [19].

Co-metabolite concentrations were assumed to be constant as in the previous study.

Nowadays, Serine plays a major role in several industrial applications. Serine is used in

cosmetic and food industries and is produced by fermentative routes [23]. In this case

study, it is not apparent how to find the best set of genetic modifications to enhance the

production of Serine due to the high number of interacting reactions.

5.2 Methods

5.2.1 Mechanistic model of the central carbon metabolism

The mechanistic model of the central carbon metabolism [20] encompasses the phos-

photransferase system, glycolysis and the pentose-phosphate pathway. This model is

curated and available from Biomodels [24]. In Figure 5.1, a schematic representation of

the reaction network is shown. The mass balances take the following form:

dX

dt
= S V − µX (5.1)

where X represents the vector of metabolite concentrations, µ is the specific growth rate,

S is the stoichiometric coefficient matrix and V is the reaction rate vector. The equation

for extra-cellular glucose has the following form:

d[GlcExt]
dt

= D([GlcFeed] − [GlcExt]) + f Pulse − [bio]vPTS

ρbio

(5.2)
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Figure 5.1: Escherichia coli central carbon metabolism network.

where [GlcExt] represents the external glucose concentration, [GlcFeed] is the con-

centration of glucose in the feed, f Pulse is a function allowing to introduce glucose

pulses, [bio] is the biomass concentration, ρbio is the biomass density and vPTS is the

flux through the phosphotransferase system reaction.

The reaction fluxes at steady-state are described by:

v0
i = viMax fi(X

0
i , P

0
i ) (5.3)

where the superscript 0 denotes a variable at steady-state, v0
i

is the rate of reaction i

at steady-state, viMax is the maximum reaction rate and fi(X0
i
, P0

i
) is a function of X0

i
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metabolite concentrations at steady-state that participate in the reaction in conjunction

with a set of parameters P0
i
. Thus, the viMax for each reaction is computed by the fol-

lowing equation (as described in [20]):

viMax =
v0

i

fi(X0
i
, P0

i
)

(5.4)

5.2.2 Objective function formulation

The Reaction deletion and Enzyme over/under expression problems can be stated as the

maximization of
vMutant0

j

vWildType0
j

, where vMutant0
j

and vWildType0
j

represent the flux for

the target reaction j at steady-state in the mutant and in the wild-type strains, respec-

tively.

5.2.3 Solution evaluation

To assign a fitness value for each solution suggested by the evolutionary method, the

following algorithm was used:

1. Perform the model modifications by decoding the solution being evaluated, de-

scribed in the next section;

2. Simulate the modified model, by adding the constraints from the solution decoded

and performing the numerical integration of the ODEs in the model in a given

time range;

3. Verify whether metabolite concentrations do not change significantly in a given

time range encompassing the end of the simulation. If this condition is met, the

system is considered to be in steady-state.

4. If the previous step is completed with success, the ratio of the solution target flux

by the wild-type strain target flux value is returned. Otherwise, zero is returned.
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Figure 5.2: Enzyme expression level solution decoding example. In a) a solution
encoding for a model with reaction set {R1,R2,R3} is shown. In b) the decoding
process for the first two reactions is illustrated.

5.2.4 Solution encoding

In this work, a novel variable size representation for inferring enzyme expression lev-

els was developed. This representation allows searching simultaneously for the set of

enzymes to modify and the respective expression level. The expression level can be a

real number in a specific interval or a set of discrete values defined by the user. In the

proposed representation, solutions are quite simple, being represented as vectors of real

numbers with values between 0 and 1.

When considering enzyme expression levels optimization, the values in an even

position are mapped to a reaction index, while the values in the following odd position

encode the enzyme expression level for that reaction, in a continuous or discrete interval.

Each reaction may have different expression level modulation ranges.

In Figure 5.2, the solution decoding process is illustrated with an example consid-
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ering a very simple model with three reactions R1, R2 and R3. In a), it is possible to

observe that each consecutive pair of elements encodes a reaction index and its enzyme

level modulation. The reaction in position six is discarded because it does not possess

an enzyme modulation part.

In b), the decoding process of the first two reactions is shown. The reaction index

encoded at position zero is mapped to reaction R1, as follows: the interval [0, 1] is

divided into three equal spaced sub-intervals (the number of reactions in the model)

being each interval mapped to a reaction. The interval that contains the encoded value

maps to the specific model reaction. In the example, the value 0.2 is contained in the

interval [0, 1
3 ], that is mapped to reaction R1. Position one encoded the enzyme level for

that reaction (R1). This reaction was defined as varying in the continuous interval [0, 2].

In this scenario, the expression level coding value 0.4 is multiplied by the interval length

2 giving the expression level equal to 0.8. Note that in this case, the lower limit of both

intervals is zero and therefore the mapping is easier; in general, a mapping to an interval

[a, b] is obtained by multiplying the encoded value by b − a and adding a.

The reaction index of the next modulation in position 2 is calculated as in the previ-

ous case, corresponding to the mapping of 0.5 to reaction R2. In this case, it is assumed

that reaction R2 modulation can only vary in a discrete set of values {0, 0.5, 2.5}. In

this case, the mapping of the enzyme modulation level occurs in an analogous way to

the reaction index mapping and, therefore, the value 0.9 at position 3 is mapped to a

modulation of 2.5. If a solution has several occurrences of the same index, only the last

one is considered.

The same representation can be used for representing reaction deletions (knockouts).

In this case, all expression level coding positions encode a discrete set with the value

zero for the modulation level.

5.2.5 Reproduction operators

For reproduction purposes within the EA, the following operators are used:

Novel approaches for dynamic modelling of E. coli and their application in
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• Random mutation: replaces an element of the vector by another, randomly gener-

ated in the allowed range.

• Cut and splice crossover: A distinct crossover point is selected in both parents

and the genes before and after that point are swapped giving rise to two new

individuals. This operator has the capacity to modify the length of the resulting

offspring.

In the proposed EA the operators have the following probabilities of being selected

to generate new solutions from the selected parents: the mutation operator has 10%

probability of being chosen while the crossover operator has 90% probability.

5.2.6 Experimental setup

In the first step of the evaluation function, the time course simulation is computed for the

time interval [0, 1E6] seconds. The system is considered in steady-state if the metabolite

concentration change is inferior to 5% in the interval [1E4, 1E6] seconds.

The enzyme up/down regulation allows reaction fluxes to vary by a multiple in the

linear interval [0, 2]. The upper bound value was chosen based on the employed values

by [19] with the linearized models. This reaction modulation range needs to be imposed

in order to model the experimental capacity and the physiological reality inside the cell.

The algorithms are executed with an incremental number of restricted modifications

from one up to six. In the case study, the algorithms for each problem are executed 30

times. In the knockout task the algorithm is run for 250 iterations, while in the enzyme

over/under expression the algorithm is executed for 500 iterations, values that allow the

convergence of the EA. Both algorithms employ the following configuration:

• Population size: 100 individuals;

• Population initialization: individuals are generated randomly with size varying

between 1 and 100;

• Elitism value: 1 individual (the best) is always kept;
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Table 5.1: Knockout task - best solutions

#Modifications Algorithm Modifications Fitness (v j/v
0
j0) Mean Fitness ±95% Confidence Interval

EAK PEPC 1.149 1.149 ± 8.082 × 10−17

1 VLS DHAPS 1.057 –
VLL PEPC 1.149 –
EAK PEPC DHAPS 1.254 1.254 ± 8.082 × 10−17

2 VLS DHAPS G1PAT 1.073 –
VLL PEPC PK 1.226 –
EAK PEPC DHAPS PGM 1.352 1.352 ± 1.765 × 10−5

3 VLS DHAPS Syn1 Syn2 1.092 –
VLL PEPC PK Syn1 1.250 –
EAK PEPC DHAPS PGM PPK 1.387 1.380 ± 0.00449

4 VLS DHAPS G1PAT PK PGI 1.124 –
VLL PEPC PK G1PAT Syn1 1.273 –
EAK PEPC DHAPS MURS PGM PPK 1.389 1.386 ± 0.00242

5 VLS DHAPS G1PAT PK G3PDH PGI 1.124 –
VLL PEPC PK Syn1 PPK TRPS 1.262 –
EAK PEPC DHAPS Syn1 PK PPK PGI 1.394 1.387 ± 0.00280

6 VLS DHAPS G1PAT PK G3PDH PGI METS 1.124 –
VLL PEPC PK Syn1 PPK TRPS METS 1.262 –

• Number of selected individuals for reproduction: 50 individuals;

• Number of reinserted individuals in the population: 49 individuals;

• Selection operator: Tournament selection with three individuals randomly se-

lected, where the fittest is selected.

5.2.7 Implementation

Regarding the implementation, the software for the proposed tasks was developed using

the Java, Scala, and Matlab languages. The following libraries were utilized: JECoLi, a

library for EAs developed by the authors [25] and JSBML [26] a java library allowing

to parse SBML encoded files. Differential equations were simulated using the solver

ODE15s from Matlab. The source code is released under the GPLv3 license and is

available from http://darwin.di.uminho.pt/Software/EADynamic.

5.3 Results and Discussion

The best solutions obtained with the proposed EA are displayed in Tables 5.1 and 5.2.

These solutions are contrasted to the ones found in the literature [19], namely the ones

Novel approaches for dynamic modelling of E. coli and their application in
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Table 5.2: Enzyme Modulation task - best solutions

#Modifications Algorithm Modifications Fitness Mean Fitness
(v j/v

0
j0) ±95%

Confidence Interval
EAE (2.0)Sersynth 1.876 1.802 ± 0.0761

1 VLS (2.0)Sersynth 1.876 –
VLL (2.0)Sersynth 1.876 –
EAE (1.99)Sersynth (0.0033)PGluMu 2.413 2.189 ± 0.0119

2 VLS (2.0)Sersynth (0)PK 2.115 –
VLL (2.0)Sersynth (2.0)PTS 1.876 –
EAE (1.99)Sersynth (1.92)GAPDH (0.0032)PGluMu 2.582 2.385 ± 0.0251

3 VLS (2.0)Sersynth (1.94)GAPDH (1.57)PFK 2.001 –
VLL (2.0)Sersynth (0)PEPC (1.84)PTS 2.191 –
EAE (1.99)Sersynth (0.043)TKA (0.0032)PGluMu 2.639 2.475 ± 0.0222

4 VLL (2.0)Sersynth (2.0)PTS (0)PEPC (2.0)GAPDH 2.369 –
EAE (1.99)Sersynth (0.015)R5PI (0.015)PEPC

(1.99)GAPDH (0.015)PK 2.661 2.529 ± 0.0254
5 VLL (2.0)Sersynth (1.94)PTS (0)PEPC (2.0)GAPDH (0)PK 2.532 –

EAE (1.99)Sersynth (0.0035)PEPC (1.86)GAPDH
(0.0035)PGluMu (0.0035)R5PI (1.79)TRPS 2.705 2.553 ± 0.0251

6 VLL (2.0)Sersynth (1.38)PTS (0)PEPC
(1.90)GAPDH (0)PK (0)DHAPS 2.671 –

resulting from a linearized approximation of the non-linear model of central carbon

metabolism of Escherichia coli around a steady-state. These solutions are also con-

strained by flux and concentration bounds to reduce the likelihood of not portraying the

behavior of the original model. All the fitness values (v j/v
0
j0) concern the non-linearized

version of the model.

In both tables, EAK and EAE represent the data regarding the solutions found with

devised EA (for knockout and enzyme level optimization, respectively), while VLS and

VLL are related to the application of the method developed in [19]. In VLS, the en-

zyme expression levels (e0
i
) at steady state in the linearized model are restricted by the

inequality 0.5e0
i
≤ e0

i
≤ 2e0

i
, while metabolite concentrations at steady-state (x0

i
) are

constrained by 0.5x0
i
≤ x0

i
≤ 1.5x0

i
. In VLL, the enzyme modulation levels in the lin-

earized model are constrained by 0.5e0
i
≤ e0

i
≤ 2e0

i
and the metabolite concentrations by

0.5x0
i
≤ x0

i
≤ 10x0

i
.

The developed EA overcomes these restrictions by integrating the non-linear model

and by assuming that the model depicts adequately the subjacent reality. Nonetheless,

it is important to note that even the original model may not be valid in all range of

metabolite concentrations due to the absence of data regarding those states when the
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model was fitted. Comparing the results obtained by the proposed EA with the ones

in [19], it is possible to check that they show equal or, in most cases, higher fitness

values.

In all the studied scenarios the first proposed transformation is also part of the un-

derlying proposed modifications. The first modification is the one that implies a larger

flux gain in the Serine synthesis flux. However, reaction knockouts are geared towards

reactions leading to an increase in the concentration of compounds that contribute to

Serine formation, whereas in the enzyme modulation, the algorithm tends to maximize

the flux that leads directly to the production of Serine (in this case the serineSynth reac-

tion). Notwithstanding, as the number of reaction modification increases, the marginal

serine synthesis flux gain usually tends to decrease. This fact can be observed in the

present case studies as well as in [19].

In addition, even without the constraints that restrict most the variation of fluxes and

concentrations, solutions tend to knockout reactions directly related with drains, as it

can be observed in Table 5.1. In VLS and VLL knockout solutions, the first two modi-

fications will normally imply reactions that drain compounds out of the network. These

reactions are selected because they imply a smaller change in the overall metabolite

concentrations, with an increase of the Serine production. Contrarily to what would be

empirically expected, the EA only deletes reactions not directly related with drain reac-

tions (PK, PGI) with 6 modifications. This fact is owed to the absence of constraints in

the EA algorithm regarding flux and metabolite concentration constraints that may limit

what are considered valid solutions.

In all knockout algorithms, as the number of allowed modifications increases, some

of the previously utilized reactions are swapped by a not apparent set of reactions that

cause an increase in the target flux. This fact can be observed in table 5.1. For in-

stance, with five knockouts, the best solution found by the EA is composed by the PEPC,

DHAPS, MURS, PGM and PPK reactions, while with six modifications the PGM and

MURS reactions are changed by Syn1, PGI and PK. This swap of reaction produces an

approximated 0.35% increase in the target flux.

Novel approaches for dynamic modelling of E. coli and their application in
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Figure 5.3: Boxplots concerning the best solutions with six modifications found
in the knock-out and enzyme modulation tasks, regarding the Serine maximiza-
tion case study.

In the devised EA knockout algorithm up until five modifications, the reactions of

the solution tend to converge to the same solution in all runs. With three modifications

there is a twelve-fold change in variability regarding the previous cases. This increase

in variability can be explained by the increase in the search space.

In Figure 5.3, it is possible to observe that the knock-out algorithm tends to converge

to a set of solutions with lower variability than the enzyme over/under expression counter

part. This fact may be explained by the larger search space of the enzyme modulation

task and the number of solutions with similar values. It is also noticeable that the enzyme

over/under expression task requires more iterations to reduce the variability in the best

solutions. These results cannot be extrapolated to other models or scenarios and depend

on the objective function, constraints and the underlying metabolic model.

5.4 Conclusion

This work encompassed the development of algorithms to design in silico improved

microbial strains for the production of industrial relevant compounds. These algorithms
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Figure 5.4: Knock-out and enzyme modulation evolutionary algorithms conver-
gence with 95% confidence bounds, concerning the best solutions found with six
modifications during the 30 runs of the algorithms in the Serine maximization
case study.

achieved these modifications by finding the near/best set of reaction deletions to remove

from a model and/or to infer the optimum expression levels for the enzymes in the

model (or a predefined subset). A dynamic ordinary differential model describing the

central carbon metabolism of Escherichia coli was used as basis for the simulation of

the devised ME strategies. These models are capable of describing regulatory effects in

the metabolism not possible to represent with steady-state models.

The best solutions returned by the devised method outperformed the ones in [19]

due to the fact that no approximations of the model were needed, except in the En-

zyme modulation task with six modifications. Solutions were computed allowing the

metabolite concentrations and the fluxes to vary with no bound restrictions. During the

execution of the algorithms a set of reaction modifications that might lead to an invalid

steady-state were not immediately discarded. Thus, a subset of these reactions could

serve as building blocks for better and valid solutions.

In future work, the remaining issues to be tackled are the validation of the work

with other real-world case studies and also the integration of the developed software in a

Novel approaches for dynamic modelling of E. coli and their application in
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user-friendly software platform such as Optflux [27]. The utilization of multi-objective

optimization algorithms [28] is also an expected extension to the current methods.
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chapter 6

SOFTWARE FOR BIOCHEMICAL MODEL DESIGN AND

OPTIMIZATION

The work developed during the different tasks of this thesis required the construction

of customized software tools, not available as a single software package. In this chap-

ter, the overall functionalities of the constructed software are described, being provided

an overview of the available methods. The developed software contemplates a model

specification language, along with other domain specific languages (DSL) to generate

and transform models based on Mass Action Rate Laws (MARLs) and aggregated rate

laws (ARLs). The implemented methods are also seamlessly integrated by a DSL, that

allows the exchange of information between distinct algorithms, utilizing files as the

communication medium, thus permitting a flexible approach in a cluster computational

setting.
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6.1 Software Overview

BioScala Kronecker

Models

Meta-Modelling

Sensitivity
and

Uncertainty Analysis
Optimal

Experimental
Design

Metabolic
Engineering

Figure 6.1: Main areas covered by the BioScala Kronecker Software.

The developed software can be represented by the layered structure shown in Figure 6.1.

The name of the software is a direct reference to the BioKronecker Matlab package,

created and developed at MIT in Bruce Tidor’s Group by Joshua Apgar and David Ha-

gen. The Kronecker formalism was reimplemented in the Scala programming language,

based on the implementation performed by Joshua Apgar in [1] and David Hagen in [2].

This work provided the extension of the software, to incorporate symbolic expres-

sion derivatives, simplification, as well as the creation of more versatile structured rep-

resentations of the underlying concepts in a software engineering perspective, due to the

higher expressiveness level of the Scala programming language, when contrasted with

Matlab.

This implementation also takes advantage of Matlab toolkits (namely the optimiza-

tion package), by utilizing the JA builder package from [3], to integrate external prim-

Novel approaches for dynamic modelling of E. coli and their application in
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itives. Numerical codes concerning simulation and sensitivity analysis were imple-

mented in Matlab, due to the matrix integration of sparse and dense codes, as well as the

ode15s solver. The Jecoli library [4] was utilized, when evolutionary algorithms were

required. It is important to bear in mind that the central layer is connected to all the

remaining layers, while the remaining layers are often independent from each other.

The core layer encompasses six distinct levels:

• Models - Encapsulates all the information concerning biochemical model repre-

sentations. The developed software has the capability of representing the follow-

ing types of models:

– Stoichiometric models, characterized by the biochemical network structure;

– Dynamic ordinary differential equation (ODE) based systems. The under-

lying representation is based on the Kronecker formalism, extended to ac-

commodate free form symbolic expressions;

– A special representation was also developed to represent S-system based

models.

This layer also encapsulates the following functionalities:

– Reaction Generator - The software package encompasses two domain spe-

cific languages, described more thoroughly in the following sections, to

simplify the generation of mechanistic descriptions of reactions based in

elementary reactions, further into Modular Kinetics.

– Experiment - Contains the necessary configuration information to perform

the available simulation and optimization methods;

– Calibration - Allows the regression of model parameters utilizing frequen-

tist and Bayesian techniques;

• Meta-modeling - Accommodates formalisms that map the input-output relation

of a system, without taking into account its physical description. In the soft-

ware, there are three representations: Quasi Random Sampling High Dimensional
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Model Reduction (QRS-HDMR) [5], feed foward neural networks [6] and Ex-

treme Learning Machines [7] (see Chapter 2);

• Sensitivity and Uncertainty Analysis - Includes global and local methods to assess

the uncertainty associated to model parameters. The Software package includes

the Morris method [8] (with several extensions [9], [10]) for parameter screen-

ing, the Sobol method [11], HDMR based methods (with extensions [12], [13]),

Nested Sampling [14] as alternative to Metropolis-Hastings algorithm [15], and

Local sensitivities (see Chapter 2);

• Optimal Experimental Design - Allows to compute the most informative experi-

ments, often using as basis local methods based on the Fisher Information Matrix

(FIM).

• Optimization Algorithms - Covers all the interfaces needed to execute an opti-

mization problem in Matlab (such as simulated annealing, fmincon, fminsearch,

patternsearch), as well as any Jecoli algorithm based on Evolutionary Computa-

tion;

• Metabolic Engineering Layer - Embraces all the devised methods in the previous

chapters for modulating enzyme expression levels and reaction knock-outs.

6.2 Software Structure

Due to the large computational demands and amounts of data generated by some of the

implemented methods, the distinct procedures communicate using files. This permits

their use in a cluster setting. A domain specific language (DSL) was designed, to con-

figure the cooperation between the implemented methods. This language is structured

as follows:

• Jobs: A job represents a specific method, and the respective configuration options.

Each job returns a floating point value, after finishing up the execution. This value

Novel approaches for dynamic modelling of E. coli and their application in
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may serve as a basis to decide which job will be executed next;

• Script: Represents a state-machine (containing a set of jobs), where jobs are the

nodes, and the directed arcs between jobs represent the jobs that will be executed

next, depending on a user defined boolean condition. Global variables and pre-

processor macros that affect the jobs configurations may also be defined.

6.2.1 Job Definition Language

A DSL was created to connect the outputs and inputs of multiple jobs, in a algorithmic

fashion, based on user defined logic. Each job has a unique identification, and is divided

into at least three mandatory parts:

• Problem Configuration: where the problem specific configurations are specified;

• Job directories: specifies the root directory of the job, as well as the output direc-

tory (where outputs produced during the job execution should be saved);

• Conditions: defines what job should be executed based on a boolean condition.

Optionally, the following blocks can also be defined:

• Optimization Algorithm: if the job defines an optimization problem, the user must

supply the optimization algorithm and the specific configuration in this block;

• Job Writers: entities responsible to save information about the current job (for

instance, to save a model transformation or an algorithm result);

• Optimization Writers: Analogously to Job writers, these objects are responsible

for saving specific information about an optimization algorithm execution.

As an example, in this language, a job to calibrate a model to experimental data

could be defined as:
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Job globalCalibrationSA {

Problem ML «

experimentFile:"experimentalData/timeSeriesFitting.ss"

modelFile:"${partialBaseOutputDir}/mainGlobal${reactionId}.model"

variance:0.2

maxTime:3

useModelParameters:false

useLHCS:true

»

OptimizationAlgorithm SANumeric {

NumberOfIterations:300

NumberOfFunctionEvaluations:300

ObjectiveFunctionTolerance:1E-16

}

baseDirectory:"${baseDir}"

baseOutputDirectory:"${baseOutputDir}"

SolutionWriter MLModelWriter «

baseFilename:"main${reactionId}.OptimizationSA.model"

»

SolutionWriter MLExperimentWriter «

baseFilename:"initialDEExperiment"

modelFile:"initalDEModel"

»

AlgorithmWriter StatisticsWriter «
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baseFilename:"initialDEStatistic"

»

Condition «true::globalCalibrationHDE»

}

In the above job definition, the previously mentioned mandatory and optional blocks

are shown. It is important to note that strings enclosed in ${ } are global variables, and

can take integer, floating point and string values (the language is dynamic and has strong

typing). These variables are defined in the job script file, before any job definitions. A

variable may refer to another variable, if it has already been defined. For example, the

global variables in a script file may be defined as:

reactionId="DAHPS"

baseDir = "/home/jobs/model"

partialBaseOutputDir = "Result/Calibration/${reactionId}"

baseOutputDir = "${baseDir}/${partialBaseOutputDir}"

These variables can also be modified in the Condition block of a job definition. This

block has tree parts: (i) a boolean condition, if true executes the code block (explained

next);(ii) the code block contains assignment instructions, that modify the variable val-

ues;(iii) the identification of the next job to be executed. In the above Job definition,

there is only one boolean condition, without any code block, and a jump to the global-

CalibrationHDE job. An example of a more elaborate condition block is given below:

Condition «cCounter < cCounterLimit:

cCounter = cCounter + 1;

cLevel = cCounter*cLevelStep

:lhsKARegressionCorrelationModelGeneration

true::correlationFixModelParameters»
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In this scenario, the condition block has two possible paths (a job can define any

number of possible execution paths):(i) if the cCounter variable is less than the cCoun-

terLimit, then cCounter will be incremented by one unit, while cLevel is assigned the

value of the expression cCounter ∗ cLevelS tep, and after the execution jumps to job lh-

sKARegressionCorrelationModelGeneration;(ii) if the previous boolean condition fails,

the next job to be executed will be correlationFixModelParameters. In these condition

blocks, value is a reserved keyword that contains a value returned by the Job. These

values serve as termination codes that may influence the job execution flow.

6.2.2 Available Jobs

The following list, represents the main jobs available, on the developed software pack-

age:

• Simulation: Permits the simulation of a defined system during a pre-specified set

of time points;

• King-Altman formula generation: Taking an elementary reaction description of a

system, it generates the corresponding King-Altman formula (check Chapter 2);

• King-Altman calibration: The model parameters are calibrated using a speci-

fied optimization algorithm, the original ARL formula, the corresponding King-

Altman (KA) formula and the grid of points specified by the user. This method

does not use integration (consult Chapter 2);

• King-Altman calibration simulation: When the elementary reaction cannot be

converted to the corresponding King-Altman formula due to its dimension, the

calibration is done against the simulation of the ARL original system. In this

job, the user supplies as inputs the original ARL system, the elementary reaction

system description and the time points for each simulation, as well as the set of

initial conditions (check Chapter 2);

• CHA ARL generation (consult Chapter 2)
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• CHA calibration: Analogous to King-Altman calibration but employing the CHA

method instead (check Chapter 2);

• Calibration of model parameters against experimental data: A system is cali-

brated against experimental data utilizing Maximum Likelihood estimation (as-

suming that all model parameters possess a normal distribution). The program

supports metabolite and flux data. As in the KA calibration scenario, the user

defines the utilized optimization algorithm and options (specific code was im-

plemented allowing the use of derivatives dx
dθ even for systems with hundreds of

parameters);

• Functional PCA of simulations (check Chapter 2);

• Optimal Design of Experiments based on Fisher Information Matrix (check Chap-

ter 2);

• Morris method with extensions - Morris method with extensions proposed in [16]

and [10]. The extensions are related to the use of scaled elementary effects by the

ratio of the output standard deviation by the corresponding parameter standard

deviation, functioning as an approximation of sigma normalized derivatives. This

method allows the ranking of model parameters utilizing low computational time

(when compared to Sobol and HDMR based methods) and works as a proxy for

the Total sensitivity indexes;

• Latin Hyper Cube Sampling;

• Sobol Sequence Sampling;

• Monte Carlo Filter (Regionalized Sensitivity Analysis)

• Sobol method GSA [11];

• Random Sampling High Dimension Model Representation for GSA [17];
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• Neural Networks/Extreme Machine Learning Machines for representing rate equa-

tions;

• Extended DFBA (able to deal with the absence of substrate in the bioreactor) -

Chapter 4;

• Extended DFBA Calibration (check Chapter 4);

• Extended DFBA Feeding signal design (check Chapter 4);

• Metabolic Engineerig (Enzyme Modulation/Reaction Knockouts) utilizing the

techniques of Chapter 5.

6.3 Model Descritption Language

The developed models during this work are specified in a specially designed language,

accommodating the needs for the simulation and the optimization methods. The model

specification file is divided into the following segments:

• Functions: where arbitrary mathematical expressions, such as rate laws are spec-

ified;

• Parameters: where named mathematical expressions are presented. The value

of the parameters may be updated at the ODE solver time step if a mathemati-

cal function that utilizes a species in the model is utilized. The parameters also

permit the optimization of the function argument values. Thus, it is possible to

optimize any mathematical expression. The parameters also support the instan-

tiation of Neural networks or Extreme Learning Machines if the function call

NN(networkConfigurationFile) is supplied ;

• Compartments: This section contains the dimensionality of the compartment, the

set of species and inputs, and the recursive inner compartments definition. The

inputs are defined as the parameters, with the exception of an equal sign between
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the identifier and the expression, as well as the termination of the line with the

character ’;’;

• Reactions: Describes the reaction schemes in terms of the elementary steps or

ARL. Each reaction is characterized by a macro reaction, and the respective de-

composition steps.

For instance, consider a simple model containing a MARL reaction for a Michaelis-

Menten type of reaction:

E + S
k0

⇄
k1

ES
k2→ E + P (6.1)

where E is the enzyme, S the substrate, P the product and the ki represent the elementary

rates. This system could be described in the developed format as:

[Functions]

def k1Fun(a,b):

a*b

end

[GlobalParameters]

rK1 = k1Fun(a = 2,b = 1) (a: (*3),b: [-5,1])

[Compartments]

compartment outside {

dimension = volume

value = 1
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species {

}

inputs {nonUsedInput = 1;}

compartment cell {

dimension = volume

value = 1

species {

S 0.5

P 0.5

}

inputs {}

}

}

[Reactions]

vE: S --- P {

modifiers {}

enzymes {

cell {

E 1 (*1E-3)

ES 0 [-5,-1]

}

}
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S + E <-> ES >@10 <@rK1 (*1E6,) [0,6]---[0.8]

S -> E + P @ 3

}

In the first block [Functions], mathematical functions are defined with the keyword

def, followed by a list of comma separated parameters in parentheses, terminated with

the character ’:’. Afterwards, any valid mathematical expression can be introduced. A

function definition is closed with the keyword end. An unlimited number of function

definitions can be introduced.

The block [GlobalParameters] contains parameter definitions. In the example above,

the parameter rK1 represents a function call to function k1Fun, with arguments a equal

to 1 and b equal to 1. The tuple (a: (*3),b: [-5,1]) states that the parameter a, when

participating in an optimization, should have its value fixed to 3, while parameter b is

allowed to vary between the bounds -5 and 1 in log scale. In the function call, the

arguments are passed by value, and unnamed arguments are also supported.

The block [Compartments], specifies the system compartmentalization. Each com-

partment has a dimension, that can take any of the strings: volume (corresponds to 3D),

area (corresponds to 2D) and point (corresponds to 1D). A compartment may only be

contained inside a higher or equal dimension compartment. The value attribute defines

the value of the corresponding dimension. Species concentrations are rescaled when re-

actions interact between two compartment with distinct dimensions. The compartment

blocks are defined recursively, being the inner compartments defined inside the outer

compartment. Each compartment specifies the species and the inputs, common to all

the reactions. The input with name nonUsedInput, whose value is one, was cast as an

example.

Species are defined by an identifier, and an initial concentration value. Optionally,

bounds and optimization values can be defined, analogously to what was done in the

function parameter block.

Pedro Evangelista University of Minho, 2015



Software For Biochemical Model Design and Optimization| 249

Afterwards, the [Reaction] block is delineated. Each reaction in this block is char-

acterized by a macro reaction, with an identity, reactants, products and the micro level

reaction description. The macro description is given by:

vE: S --- P{...}

while the micro description is defined as:

modifiers {}

enzymes {

cell {

E 1 (*1E-3)

ES 0 [-5,-1]

}

}

S + E <-> ES >@10 <@rK1 (*1E6,) [0,6]---[0.8]

ES -> E + P @ 3

where modifiers are a set of species, separated by space, or a line feed, and represent the

effectors that interact with the reaction, (while their concentrations are not modified by

it), enzymes blocks define a set of species only related to the reaction and the respective

compartment, where they occur. Finally, the elementary reactions are specified.

When a definition characterizes a forward and backward reaction , such as:

S + E <-> ES >@10 <@rK1 (*1E6,) [0,6]---[0.8]

the forward rate is defined after the symbol >@ (in this example, has the value 10),

analogously the backward rate is defined after the symbol <@ (in this example, this rate

Novel approaches for dynamic modelling of E. coli and their application in
Metabolic Engineering



250 | Chapter 6

has the value of the parameter rk1). The term (*1E6,), asserts that in an optimization,

the forward rate should be fixed to the value 1E6, while the backward rate is free to

vary within the predefined bounds. The bound [0,6] defines the forward reaction bounds

in an optimization problem, and similarly the bound [0,8] describes the bounds of the

backward reaction. All the bounds are in log-scale. If a reaction has no bounds defined,

the default value of [0,10], will be assumed.

The function and parameters follow the same naming conventions, regarding param-

eter and function names, as the Java language specification. It is important to bear in

mind that all the entities of the model must possess a distinct name. It is also important

to note that the devised format supports comments similarly to Java code. Thus, strings

in between ’/*’ and ’*/’, or after ’//’, are ignored.

The same reaction scheme represented by an ARL could be described by:

[Functions]

def mmFun(vmax,km):

(vmax*S)/(km + S)

end

[GlobalParameters]

rMM = mmFun(vmax = 2,km = 1)

[Compartments]

compartment outside {

dimension = volume

value = 1

species {
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}

inputs {}

compartment cell {

dimension = volume

value = 1

species {

S 0.5

P 0.5

}

inputs {}

}

}

[Reactions]

vEMM: S --- P {

modifiers {}

enzymes {

cell {

}

}

S -> @rMM

-> P @rMM
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}

6.4 Mechanistic Elementary Reaction Generator

Language

A specific domain language was developed to help to describe in a compact way compli-

cated elementary reaction mechanisms (often containing thousands of elementary reac-

tions). This compact description permits to describe any uni-molecular and bimolecular

elementary reaction system, using a small fraction of the total number of elementary

reactions in the original reaction mechanism.

The devised language divides the reaction scheme into blocks or sets of elementary

reactions (uni or bimolecular reactions). Each block characterizes a specific aspect of

a general reaction mechanism, and often the participating species have a unitary sto-

ichiometry. These blocks serve as generators of more complex schemes by eliciting

which species are formed and up to which stoichiometry. Constraints can be enforced to

limit which reactions that are generated. For example, below is a compressed reaction

scheme or block for a reaction:

[("pep","pep",4),("atp","atp",4)](true){

pep + E <-> E_pep

atp + E <-> E_atp

}

The list [("pep","pep",4)] contains a set of tuples. The first position of each tuple

represents the species in the block reaction scheme; the second position is the new name

given to the species after the generation process; the third position is the maximum

stoichiometry attained by that specific compound. All the possible combinations of

species are generated and applied to each reaction in the scheme. After, in between

Pedro Evangelista University of Minho, 2015



Software For Biochemical Model Design and Optimization| 253

parenthesis are the conditions that may reduce the valid space of elementary reactions.

For instance, the reactions pep + E < − > Epep applying the aforementioned reaction

scheme, would generate the following set of elementary reactions:

pep0 + E -> E_pep1

pep1 + E_pep1 -> E_pep2

pep2 + E_pep2 -> E_pep3

pep3 + E_pep3 -> E_pep4

pep0 + E <- E_pep1

pep1 + E_pep1 <- E_pep2

pep2 + E_pep2 <- E_pep3

pep3 + E_pep3 <- E_pep4

If the enzyme had only four binding sites, for both substrates (pep and atp), the

reaction scheme would be described by:

[("pep","pep",4),("atp","atp",4)](pep + atp < 5){

pep + E <-> E_pep

atp + E <-> E_atp

atp + E_pep <-> E_pep_atp

pep + E_atp <-> E_pep_atp

}

In this scenario, the condition states that the number of bound molecules of pep and

atp has to be less than five. In this case, the reaction pep + Eatp− > Epepatp would

produce the following output:

pep + E_pep0_atp0 -> E_pep1_atp0

pep + E_pep0_atp1 -> E_pep1_atp1

pep + E_pep0_atp2 -> E_pep1_atp2
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pep + E_pep0_atp3 -> E_pep1_atp3

...

pep + E_pep1_atp0 -> E_pep_atp0

...

pep + E_pep2_atp0 -> E_pep3_atp1

...

pep + E_pep3_atp0 -> E_pep4_atp0

6.5 JECoLi Update

The JECoLi library was also updated with new optimization algorithms, such as Hybrid

Differential Evolution [18], and the capability to execute Matlab codes (utilizing JA

Builder coupled with scala code).

6.6 Availability

The described software was developed in Matlab [3], Java [19] and Scala [20] pro-

gramming languages, and is available as an open source package, without including the

proprietary version of the JA builder Matlab package from Mathworks. Some parts were

also written in Python, which will be converted to Scala in the future.
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chapter 7

CONCLUSIONS

In this chapter, a general overview of the work accomplished during this thesis and

the respective contributions are presented. Relevant topics are also explored regarding

possible future work.
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7.1 Thesis Summary

Escherichia coli is one of the most utilized and studied microorganisms in industry, as

well as in academia due to the easiness of cultivation and genetic modification. There

is also a wealth of scientific information available in literature and on the web in public

databases. The systematization of this information in a mathematical formalism con-

cerning mechanistic enzymatic reactions of central carbon metabolism may provide

a blueprint to be utilized for the rational metabolic engineering of new strains. The

main objective of this work was to construct a mechanistic model of central carbon

metabolism, to optimize the production of industrial relevant compounds such as Ser-

ine. Each reaction on this system was modeled based on elementary reaction steps of the

enzymatic reaction. This description allows capturing elementary reaction rates that are

encased in ARL parameters. Not all cellular details could be retained and assumptions

had to be made such as proton concentration. Enzyme concentration and enzyme total

concentrations are kept constant through the experimentation.

Several methods were utilized to calibrate each MARL individually, to the corre-

sponding ARL of the Chassagnole model [1]:(i) The King-Altman based method de-

scribed in [2]; (ii) Cha based method developed in this work;(iii) Design of Experiments

method devised in this work;(iv) Partial calibration developed in this work (v) Global

calibration stategy, based in [3];(vi) Symbolic Derivative formula that is equivalent to

the KA method calibration (however, it can be extended in the future to operate with

non-steady enzyme concentrations, utilizing the method developed by [4]).

These calibration problems were solved utilizing a hybrid optimization approach,

using the Hybrid Differential Evolution followed by the fmincon algorithm from matlab

with active-set algorithm. The idea behind this heuristic is based on the the premise that

the evolutionary based algorithm will guide the optimization to a good area of the search

space, while the gradient based algorithm will reach an optima. Due to the non-linearity

in the model reactions, it is not possible to guarantee that the generated parameters lie in

a global optima. Nonetheless, several runs of the algorithm reached to similar solutions
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concerning the goodness of the fit. These methods were coupled with identifiability

analysis to detect non-influential parameters.

Kronecker formalism was extended to incorporate symbolic free form rate equa-

tions. One application of this extension is the construction of hybrid models that con-

template MARLs with other types of ARLs.

From a ME standpoint, genetic modifications can be searched through a brute force

strategy, when working with discrete modifications (reaction deletions or enzyme ex-

pressions at predefined levels). Another way of roaming the search space is by utilizing

an evolutionary algorithm. In this work a novel variable size encoding scheme per-

mitting the modulation of discrete or continuous enzyme expression levels as well as

reaction deletions were developed. This scheme also allowed the determination of the

number of modifications. During its execution solutions that violated constraints were

not automatically discarded serving as building blocks for valid solutions. The devised

optimization was tested in Chassagnole model [1] with the goal of maximizing the Ser-

ine flux. The obtained results were contrasted against existing published data, obtained

with other algorithms [5], [6].

To take advantage of existing genome scale models of metabolism and the dynamic

descriptions of genome scale models, a novel extension of DFBA was proposed. This

development relaxes the need of the cell being viable during all the simulation period

(viable in the sense of having a valid flux distribution), and the instantaneous consump-

tion of substrates, supplied by n feeding pumps. These extensions to the original method

allow to simulate and optimize feeding profiles. In this work, global sensitivity methods

were utilized to assess the identifiability of the parameters as well as their impact on the

output trajectories of the model variables. The current method also supports the simul-

taneous optimization of metabolic engineering strategies (conjugating the bioprocess

model simultaneously with the genome scale model).

During this thesis an open-source software framework was built using Java [7] and

Scala [8] programming languages interfaced with Matlab [9] (for optimization and sim-

ulation of Kronecker models) and JEcoLi [10] for the utilization of evolutionary algo-
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rithms. This software includes all computational methods described in this work.

A new text model format that allows a convenient description of kronecker models

as well as free form kinetics were conceived. A converter of this format to SBML [11]

and kronecker package model files was also implemented. This model may be extended

in the future to include other cellular sub-systems that regulate enzymatic expression

such as signaling and gene regulatory networks.

7.2 Future Work

In the context of the work developed during this thesis, the author proposes the following

follow-through research paths:

• The utilization of global sensitivity metrics as guiding support for optimization

algorithms to devise new ME strategies. Steps have been taken in this direction

with sampling of Metabolic Control Coefficients, with models with associated pa-

rameter uncertainties [12]. However, sensitivity indexes (computed with variance

based methods) may also be a suitable alternative;

• Application of Indirect optimization methods [12] to construct ME, having as

basis MARL models;

• Construction of hybrid non-parametric models to implicitly incorporate parts of

the metabolism with missing information;

• Application of non-steady enzyme concentration expressions, derived by Chou

[4] in the developed symbolic Derivative method to calibrate MARL;

• Calibration of a model with multiple data sets from different sources.
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appendix a

MECANISTIC MODEL OF ESCHERICHIA COLI
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Figure A.1: Calibration of ALDO Mass action enzymatic system to Aggregated
Rate Law Mechanism.
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Figure A.2: Calibration of DHAPS Mass action enzymatic system to Aggregated
Rate Law Mechanism.
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Figure A.3: Calibration of ENO Mass action enzymatic system to Aggregated
Rate Law Mechanism.
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Figure A.4: Calibration of G3PDH Mass action enzymatic system to Aggregated
Rate Law Mechanism.
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Figure A.5: Calibration of G6PDH Mass action enzymatic system to Aggregated
Rate Law Mechanism.
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Figure A.6: Calibration of GAPDH Mass action enzymatic system to Aggre-
gated Rate Law Mechanism.
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(b) Simulation from system initial conditions.

Figure A.7: Calibration of PEPCxylase Mass action enzymatic system to Ag-
gregated Rate Law Mechanism.
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Figure A.8: Calibration of PGDH Mass action enzymatic system to Aggregated
Rate Law Mechanism. 272
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(b) Simulation from system initial conditions.

Figure A.9: Calibration of PGI Mass action enzymatic system to Aggregated
Rate Law Mechanism.
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(b) Simulation from system initial conditions.

Figure A.10: Calibration of PGK Mass action enzymatic system to Aggregated
Rate Law Mechanism.
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(b) Simulation from system initial conditions.

Figure A.11: Calibration of PGluMu Mass action enzymatic system to Aggre-
gated Rate Law Mechanism.
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(b) Simulation from system initial conditions.

Figure A.12: Calibration of PGM Mass action enzymatic system to Aggregated
Rate Law Mechanism.
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(b) Simulation from system initial conditions.

Figure A.13: Calibration of PPK Mass action enzymatic system to Aggregated
Rate Law Mechanism.
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(b) Simulation from system initial conditions.

Figure A.14: Calibration of PTS Mass action enzymatic system to Aggregated
Rate Law Mechanism.

278



10−3 10−2 10−1 100

−1

0

[rib5p] mM

R
at
e
m
M

.s
−
1

10−3
10−2

10−1
100 10−310

−210
−1
100

0
5

10

[rib5p] [ribu5p]

R
at
e
m
M

.s
−
1

Mass Action

10−3
10−2

10−1
100 10−310

−210
−1
100

0
5

10

[rib5p] [ribu5p]

R
at
e
m
M

.s
−
1

Aggregated Rate Law

10−3 10−2 10−1 100
0
2
4
6
8

[ribu5p] mM

R
at
e
m
M

.s
−
1

(a) Rate vs Compound graph.

10−0.2 100 100.2 100.4 100.6

0.1

0.2

0.3

0.4

Time (s)

C
on

ce
n
tr
at
io
n
(m

M
)

rib5p.ARL
rib5p.MA
rib5p.KA

ribu5p.ARL
ribu5p.MA
ribu5p.KA

(b) Simulation from system initial conditions.

Figure A.15: Calibration of R5PI Mass action enzymatic system to Aggregated
Rate Law Mechanism.
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(b) Simulation from system initial conditions.

Figure A.16: Calibration of RU5P Mass action enzymatic system to Aggregated
Rate Law Mechanism.
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(b) Simulation from system initial conditions.

Figure A.17: Calibration of TA Mass action enzymatic system to Aggregated
Rate Law Mechanism.

281



10−310−210−1 100 101
−5

0

[gap] mM

R
at
e
m
M

.s
−
1

10−2

100 10−2
100

0

50

[dhap] [gap]

R
at
e
m
M

.s
−
1

Mass Action

10−2

100 10−2
100

0

50

[dhap] [gap]

R
at
e
m
M

.s
−
1

Aggregated Rate Law

10−310−210−1 100 101
0

20

40

60

[dhap] mM

R
at
e
m
M

.s
−
1

(a) Rate vs Compound graph.

101 102 103

0.16

0.18

0.2

0.22

Time (s)

C
on

ce
n
tr
at
io
n
(m

M
)

dhap.ARL
dhap.MA
dhap.KA
gap.ARL
gap.MA
gap.KA

(b) Simulation from system initial conditions.

Figure A.18: Calibration of TIS Mass action enzymatic system to Aggregated
Rate Law Mechanism.
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(b) Simulation from system initial conditions.

Figure A.19: Calibration of TKA Mass action enzymatic system to Aggregated
Rate Law Mechanism.
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(a) Rate vs Compound graph.
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(b) Simulation from system initial conditions.

Figure A.20: Calibration of TKB Mass action enzymatic system to Aggregated
Rate Law Mechanism.
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(b) Simulation from system initial conditions.

Figure A.21: Calibration of Synth2 Mass action enzymatic system to Aggregated
Rate Law Mechanism.

A.0.1 Final Marl Model BioKroneckerScala Symbolic

Representation

[Functions]

def muFunFixed():
2.78E−5

end

def adpFun():
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0.582+1.73∗(2.731^(−0.15∗time))∗(0.12∗time+0.000214∗time^3)
end

def ampFun():
0.123+7.25∗(time/(7.25+1.47∗time+0.17∗time^2))+1.073/(1.29+8.05∗time)

end

def atpFun():
4.27−4.163∗(time/(0.657+1.43∗time+0.0364∗time^2))

end

def nadFun():
1.314+1.314∗2.73^(−0.0435∗time−0.342)−(time+7.871)∗(2.73^(−0.0218∗time−0.171)

/(8.481+time))
end

def nadhFun():
0.0934+0.00111∗2.371^(−0.123∗time)∗(0.844∗time+0.104∗time^3)

end

def nadpFun():
0.159−0.00554∗(time/(2.8−0.271∗time+0.01∗time^2))+0.182/(4.82+0.526∗time)

end

def nadphFun():
0.062+0.332∗2.718^(−0.464∗time)∗(0.0166∗time^1.58+0.000166∗time^4.73+0.1312∗10^−9∗time

^7.89+0.1362∗10^−12∗time^11+0.1233∗10^−15∗time^14.2)
end

def pkR0(pkk0,pkKeq):
Epk∗pep∗pkk0∗((1/pkKeq)∗(fdp/atp)^(4))/ ((1+(1/pkKeq))∗(fdp/atp)^(4))

end

def pfkR0(pfkk0,pfkKeq,pfkatpn):
Epfk∗(atp^pfkatpn)∗((1/pfkKeq)∗(adp/pep)^(2))/ ((1+(1/pfkKeq))∗(adp/pep)^(2))

end

def pfkR2(pfkk2,pfkf6pn):
Epfk_atp∗pfkk2∗(f6p^pfkf6pn)

end

def rateLawExter(Dil,cfeed):
((Dil)∗(cfeed−glc))

end

def rateK0K1(k0,k1):
k0∗(pyr^(4))∗Epdh−k1∗Epdh_pyr

end

[GlobalParameters]

rPfk2 = pfkR2(pfkk2=663220.6535256172,pfkf6pn=24.961890932718266) (pfkk2: [0.0,10.0],
pfkf6pn: [0.0,1.0])

rPfk0 = pfkR0(pfkk0=1.0852286927072514,pfkKeq=1.003565508804163,pfkatpn
=6.190400139404164) (pfkk0: [0.0,10.0],pfkKeq: [−3.0,10.0],pfkatpn: [0.0,1.0])
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rPk0 = pkR0(pkk0=7.868569402458109E8,pkKeq=0.007849111186954508) // (pkk0: [0.0,10.0],pkKeq:
[−3.0,10.0])

rRateK0K1 = rateK0K1(k0=42.1,k1=402420.87449511676)

rExter = rateLawExter(Dil=2.78E−5,cfeed=110.96)

[Compartments]

compartment outside {
dimension = volume

value = 65

species {
glc 0.055 (∗0.055)

}

inputs {glcFeed = 110.96;}

compartment cell {
dimension = volume

value = 1
species {
pep 2.67 (∗2.67)
g6p 3.48 (∗3.48)
pyr 2.67 (∗2.67)
f6p 0.6 (∗0.6)
g1p 0.653 (∗0.653)
pg 0.808 (∗0.808)
fdp 0.272 (∗0.272)
sed7p 0.276 (∗0.276)
gap 0.218 (∗0.218)
e4p 0.098 (∗0.098)
xyl5p 0.138 (∗0.138)
rib5p 0.398 (∗0.398)
dhap 0.167 (∗0.167)
pgp 0.00813025 (∗0.00813025)
pg3 2.1185 (∗2.1185)
pg2 0.399 (∗0.399)
ribu5p 0.111 (∗0.111)

ser 0.0 (∗0.0)
polysac 0.0 (∗0.0)
murine 0.0 (∗0.0)
cho_mur 0.0 (∗0.0)
nucleotide 0.0 (∗0.0)
aromaticaminoacids 0.0 (∗0.0)

glycerol 0.0 (∗0.0)
oaa 0.0 (∗0.0)
ile 0.0 (∗0.0)
aca 1.0 (∗0.0) [−3,0.7]
co2 0.0 (∗0.0)

}

inputs {coa = 1E−4;o2 = 16.25;
amp = ampFun();

atp = atpFun();
adp = adpFun();

nad = nadFun();
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nadp = nadpFun();
nadh = nadhFun();

nadph = nadphFun();
}

}
}

[Reactions]

vGLCExt: −−− glc {

modifiers{}

enzymes{
cell{
}

}

−> glc @rExter (∗rExter) [0.0,10.0]

}

vSerineSynth: pg3 −−− ser {

modifiers{}

enzymes{
cell{
ESerSynth 0.001 (∗0.001)
ESerSynth_pg3 0.0 (∗0.0)

}
}

ESerSynth + pg3 <−> ESerSynth_pg3 >@470019.00888823345 <@469993.29659735516
(∗470019.00888823345,∗469993.29659735516) [0.0,8.0]−−−[0.0,10.0]

ESerSynth_pg3 −> ESerSynth + ser @25.712106994173883 (∗25.712106994173883) [0.0,10.0] :slow

}

vPyrIn: −−− pyr {

modifiers{}

enzymes{
cell{
}

}

−> pyr @0.0022627 (∗0.0022627) [0.0,10.0]
−> pyr @0.001037 (∗0.001037) [0.0,10.0]

}

vGapIn: −−− gap {

modifiers{}
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enzymes{
cell{
}

}

−> gap @0.001037 (∗0.001037) [0.0,10.0]

}

vPTS: glc + pep −−− g6p + pyr {

modifiers{}

enzymes{
cell{
Epts 3.783118954706172E−6 (∗3.783118954706172E−6)
Epts_pep 6.029831727659324E−8 (∗6.029831727659324E−8)
Epts_glc_pep 3.827709869433558E−9 (∗3.827709869433558E−9)
Epts_g6p 1.4776985557367516E−11 (∗1.4776985557367516E−11)
Epts_pyr 2.602207010428719E−10 (∗2.602207010428719E−10)
Epts_pyr_I 1.0722546145720718E−9 (∗1.0722546145720718E−9)
Epts_pyr_II 1.8253251218852827E−11 (∗1.8253251218852827E−11)
Epts_pyr_III 9.310341038299109E−7 (∗9.310341038299109E−7)
Epts_pyr_IIII 2.0040433752649492E−16 (∗2.0040433752649492E−16)
Epts_I 1.0607203851607552E−6 (∗1.0607203851607552E−6)
Epts_II 3.1097255799095146E−7 (∗3.1097255799095146E−7)
Epts_III 2.458198146544232E−7 (∗2.458198146544232E−7)
Epts_IIII 8.135500177504968E−7 (∗8.135500177504968E−7)
Epts_pep_I 8.78872039240842E−4 (∗8.78872039240842E−4)
Epts_pep_II 6.003828626432092E−11 (∗6.003828626432092E−11)
Epts_pep_III 1.3037302028355134E−9 (∗1.3037302028355134E−9)
Epts_pep_IIII 7.675016225886025E−13 (∗7.675016225886025E−13)
Epts_glc_pep_I 1.1391563508421109E−4 (∗1.1391563508421109E−4)
Epts_glc_pep_II 1.3326279380138828E−9 (∗1.3326279380138828E−9)
Epts_glc_pep_III 1.0341400738926757E−12 (∗1.0341400738926757E−12)
Epts_glc_pep_IIII 9.219204058555948E−18 (∗9.219204058555948E−18)

}
}

pep + Epts <−> Epts_pep >@19670.059863956474 <@1.0000005916391101
(∗19670.059863956474,∗1.0000005916391101) [0.0,8.0]−−−[0.0,10.0]

Epts_pep + glc <−> Epts_glc_pep >@4.8230260320765525E7 <@200.42249808192256
(∗4.8230260320765525E7,∗200.42249808192256) [0.0,8.0]−−−[0.0,10.0]

Epts_glc_pep −> Epts_g6p + pyr @5.234989615516764E7 (∗5.234989615516764E7) [0.0,10.0] :
slow

Epts_g6p −> g6p + Epts @1.356029031760482E10 (∗1.356029031760482E10) [0.0,10.0]
pyr + Epts <−> Epts_pyr >@3.502970457313827 <@141028.3315536575

(∗3.502970457313827,∗141028.3315536575) [0.0,8.0]−−−[0.0,10.0]
g6p + Epts <−> Epts_I >@7.427434187563649E7 <@9.238013271354692E8 (∗7.427434187563649E7

,∗9.238013271354692E8) [0.0,8.0]−−−[0.0,10.0]
Epts_I + g6p <−> Epts_II >@4.393716621494898 <@52.26387182038075

(∗4.393716621494898,∗52.26387182038075) [0.0,8.0]−−−[0.0,10.0]
Epts_II + g6p <−> Epts_III >@1.0703319659549066E8 <@4.721873659570795E8

(∗1.0703319659549066E8,∗4.721873659570795E8) [0.0,8.0]−−−[0.0,10.0]
Epts_III + g6p <−> Epts_IIII >@6.452386591324015E7 <@6.798978933670603E7

(∗6.452386591324015E7,∗6.798978933670603E7) [0.0,8.0]−−−[0.0,10.0]
Epts_pep + g6p <−> Epts_pep_I >@6.4862777480111115E7 <@15519.072922666499
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(∗6.4862777480111115E7,∗15519.072922666499) [0.0,8.0]−−−[0.0,10.0]
Epts_pep_I + g6p <−> Epts_pep_II >@78.64610877676289 <@4.014812686432811E9

(∗78.64610877676289,∗4.014812686432811E9) [0.0,8.0]−−−[0.0,10.0]
Epts_pep_II + g6p <−> Epts_pep_III >@2072.9173730314906 <@332.8995739884384

(∗2072.9173730314906,∗332.8995739884384) [0.0,8.0]−−−[0.0,10.0]
Epts_pep_III + g6p <−> Epts_pep_IIII >@1.0000002396607397 <@5923.784022364391

(∗1.0000002396607397,∗5923.784022364391) [0.0,8.0]−−−[0.0,10.0]
Epts_pyr + g6p <−> Epts_pyr_I >@6510.195209523406 <@5509.708434868172

(∗6510.195209523406,∗5509.708434868172) [0.0,8.0]−−−[0.0,10.0]
Epts_pyr_I + g6p <−> Epts_pyr_II >@6147.343250147012 <@1259319.2557000252

(∗6147.343250147012,∗1259319.2557000252) [0.0,8.0]−−−[0.0,10.0]
Epts_pyr_II + g6p <−> Epts_pyr_III >@1.142761760482617E8 <@7813.057643335574

(∗1.142761760482617E8,∗7813.057643335574) [0.0,8.0]−−−[0.0,10.0]
Epts_pyr_III + g6p <−> Epts_pyr_IIII >@1.0000003320202309 <@1.620127911560665E10

(∗1.0000003320202309,∗1.620127911560665E10) [0.0,8.0]−−−[0.0,10.0]
Epts_glc_pep + g6p <−> Epts_glc_pep_I >@8541.362786376698 <@1.0008604598598663

(∗8541.362786376698,∗1.0008604598598663) [0.0,8.0]−−−[0.0,10.0]
Epts_glc_pep_I + g6p <−> Epts_glc_pep_II >@8092.292030933562 <@2.4123296589002085E9

(∗8092.292030933562,∗2.4123296589002085E9) [0.0,8.0]−−−[0.0,10.0]
Epts_glc_pep_II + g6p <−> Epts_glc_pep_III >@3.149905447627534 <@14155.256752012448

(∗3.149905447627534,∗14155.256752012448) [0.0,8.0]−−−[0.0,10.0]
Epts_glc_pep_III + g6p <−> Epts_glc_pep_IIII >@46696.2416120958 <@1.8266635169123493

E10 (∗46696.2416120958,∗1.8266635169123493E10) [0.0,8.0]−−−[0.0,10.0]

}

//KA

vPGM: g6p −−− g1p {

modifiers{}

enzymes{
cell{
Epgm 0.001 (∗0.001)
Epgm_g6p 0.0 (∗0.0)
Epgm_g1p 0.0 (∗0.0)

}
}

Epgm + g6p <−> Epgm_g6p >@1160.6532898845637 <@4.3935842398368865E8
(∗1160.6532898845637,∗4.3935842398368865E8) [0.0,8.0]−−−[0.0,10.0]

Epgm_g6p <−> Epgm_g1p >@1.2747978347679474E9 <@219.03091313489912 (∗1.2747978347679474
E9,∗219.03091313489912) [0.0,10.0]−−−[0.0,10.0]

Epgm_g1p <−> Epgm + g1p >@839.8249750171041 <@65879.78391806714
(∗839.8249750171041,∗65879.78391806714) [0.0,10.0]−−−[0.0,8.0]

}

//GlobalSim

vG1PAT: g1p + atp −−− polysac + adp {

modifiers{ fdp}

enzymes{
cell{
Eg1pat_fdp0_adp 2.783077187068133E−17 (∗2.783077187068133E−17)
Eg1pat_fdp0 2.759242009499265E−12 (∗2.759242009499265E−12)
Eg1pat_fdp1_adp 2.6047631700683027E−13 (∗2.6047631700683027E−13)
Eg1pat_fdp1 1.1185927123148551E−7 (∗1.1185927123148551E−7)
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Eg1pat_fdp2_adp 2.6990181913733318E−5 (∗2.6990181913733318E−5)
Eg1pat_fdp2 1.0708204818804828E−6 (∗1.0708204818804828E−6)
Eg1pat_fdp0_polysac 6.011013919014954E−11 (∗6.011013919014954E−11)
Eg1pat_fdp1_polysac 1.8774106054457852E−14 (∗1.8774106054457852E−14)
Eg1pat_fdp2_polysac 6.63001005184783E−7 (∗6.63001005184783E−7)
Eg1pat_fdp0_polysac_adp 6.904843814799606E−20 (∗6.904843814799606E−20)
Eg1pat_fdp1_polysac_adp 1.1341278073581229E−8 (∗1.1341278073581229E−8)
Eg1pat_fdp2_polysac_adp 3.9152068168618993E−10 (∗3.9152068168618993E−10)
Eg1pat_fdp0_g1p_atp 1.924324934414624E−12 (∗1.924324934414624E−12)
Eg1pat_fdp1_g1p_atp 9.147337318394362E−4 (∗9.147337318394362E−4)
Eg1pat_fdp2_g1p_atp 8.374441028070024E−9 (∗8.374441028070024E−9)
Eg1pat_fdp0_atp 2.9205562546105214E−12 (∗2.9205562546105214E−12)
Eg1pat_fdp1_atp 5.760679565983262E−6 (∗5.760679565983262E−6)
Eg1pat_fdp2_atp 3.7506758370159944E−6 (∗3.7506758370159944E−6)
Eg1pat_fdp0_g1p 5.421820753316645E−12 (∗5.421820753316645E−12)
Eg1pat_fdp1_g1p 1.4153821504208194E−7 (∗1.4153821504208194E−7)
Eg1pat_fdp2_g1p 4.676028920484567E−5 (∗4.676028920484567E−5)

}
}

fdp + Eg1pat_fdp1 −> Eg1pat_fdp2 @4087664.386479138 (∗4087664.386479138) [0.0,8.0]
fdp + Eg1pat_fdp0 −> Eg1pat_fdp1 @2808066.9826038526 (∗2808066.9826038526) [0.0,8.0]
Eg1pat_fdp2 −> fdp + Eg1pat_fdp1 @124285.14439600696 (∗124285.14439600696) [0.0,10.0]
Eg1pat_fdp1 −> fdp + Eg1pat_fdp0 @20.161087056435548 (∗20.161087056435548) [0.0,10.0]
g1p + Eg1pat_fdp2 −> Eg1pat_fdp2_g1p @6712052.09587378 (∗6712052.09587378) [0.0,8.0]
g1p + Eg1pat_fdp1 −> Eg1pat_fdp1_g1p @17.55427613871025 (∗17.55427613871025) [0.0,8.0]
g1p + Eg1pat_fdp0 −> Eg1pat_fdp0_g1p @3792.827062052138 (∗3792.827062052138) [0.0,8.0]
Eg1pat_fdp2_g1p −> g1p + Eg1pat_fdp2 @97870.79989101064 (∗97870.79989101064) [0.0,10.0]
Eg1pat_fdp1_g1p −> g1p + Eg1pat_fdp1 @1.2325906011463107E8 (∗1.2325906011463107E8)

[0.0,10.0]
Eg1pat_fdp0_g1p −> g1p + Eg1pat_fdp0 @21202.541700048016 (∗21202.541700048016) [0.0,10.0]
Eg1pat_fdp2 + atp −> Eg1pat_fdp2_atp @80281.44287575649 (∗80281.44287575649) [0.0,8.0]
Eg1pat_fdp1 + atp −> Eg1pat_fdp1_atp @5.058351548149602E7 (∗5.058351548149602E7)

[0.0,8.0]
Eg1pat_fdp0 + atp −> Eg1pat_fdp0_atp @894190.9450849403 (∗894190.9450849403) [0.0,8.0]
Eg1pat_fdp2_atp −> Eg1pat_fdp2 + atp @112781.47906483682 (∗112781.47906483682) [0.0,10.0]
Eg1pat_fdp1_atp −> Eg1pat_fdp1 + atp @1165566.7270742091 (∗1165566.7270742091) [0.0,10.0]
Eg1pat_fdp0_atp −> Eg1pat_fdp0 + atp @3570141.141246303 (∗3570141.141246303) [0.0,10.0]
Eg1pat_fdp2_g1p + atp −> Eg1pat_fdp2_g1p_atp @359.0314131835494 (∗359.0314131835494)

[0.0,8.0]
Eg1pat_fdp1_g1p + atp −> Eg1pat_fdp1_g1p_atp @9481.415935824743 (∗9481.415935824743)

[0.0,8.0]
Eg1pat_fdp0_g1p + atp −> Eg1pat_fdp0_g1p_atp @2347566.8860264793 (∗2347566.8860264793)

[0.0,8.0]
Eg1pat_fdp2_g1p_atp −> Eg1pat_fdp2_g1p + atp @1572550.7870481152 (∗1572550.7870481152)

[0.0,10.0]
Eg1pat_fdp1_g1p_atp −> Eg1pat_fdp1_g1p + atp @19078.334764246825 (∗19078.334764246825)

[0.0,10.0]
Eg1pat_fdp0_g1p_atp −> Eg1pat_fdp0_g1p + atp @2.8299346679881293E7

(∗2.8299346679881293E7) [0.0,10.0]
g1p + Eg1pat_fdp2_atp −> Eg1pat_fdp2_g1p_atp @547216.3297743177 (∗547216.3297743177)

[0.0,8.0]
g1p + Eg1pat_fdp1_atp −> Eg1pat_fdp1_g1p_atp @4697803.196084147 (∗4697803.196084147)

[0.0,8.0]
g1p + Eg1pat_fdp0_atp −> Eg1pat_fdp0_g1p_atp @57674.666350686595 (∗57674.666350686595)

[0.0,8.0]
Eg1pat_fdp2_g1p_atp −> g1p + Eg1pat_fdp2_atp @1.6472637648863724E8

(∗1.6472637648863724E8) [0.0,10.0]
Eg1pat_fdp1_g1p_atp −> g1p + Eg1pat_fdp1_atp @6.314687151688067 (∗6.314687151688067)
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[0.0,10.0]
Eg1pat_fdp0_g1p_atp −> g1p + Eg1pat_fdp0_atp @50.59231233151144 (∗50.59231233151144)

[0.0,10.0]
Eg1pat_fdp2_g1p_atp −> Eg1pat_fdp2_polysac_adp @2.847631566716145E7

(∗2.847631566716145E7) [0.0,10.0]
Eg1pat_fdp1_g1p_atp −> Eg1pat_fdp1_polysac_adp @2.4221341014864057

(∗2.4221341014864057) [0.0,10.0]
Eg1pat_fdp0_g1p_atp −> Eg1pat_fdp0_polysac_adp @168.35388256680358

(∗168.35388256680358) [0.0,10.0]
Eg1pat_fdp2_polysac_adp −> Eg1pat_fdp2_g1p_atp @6.024804569170699E8

(∗6.024804569170699E8) [0.0,10.0]
Eg1pat_fdp1_polysac_adp −> Eg1pat_fdp1_g1p_atp @165229.6041971684

(∗165229.6041971684) [0.0,10.0]
Eg1pat_fdp0_polysac_adp −> Eg1pat_fdp0_g1p_atp @6.630575930902632E7

(∗6.630575930902632E7) [0.0,10.0]
Eg1pat_fdp2_polysac_adp −> Eg1pat_fdp2_adp + polysac @6574276.215014287

(∗6574276.215014287) [0.0,10.0]
Eg1pat_fdp1_polysac_adp −> Eg1pat_fdp1_adp + polysac @30081.83427310842

(∗30081.83427310842) [0.0,10.0]
Eg1pat_fdp0_polysac_adp −> Eg1pat_fdp0_adp + polysac @177128.60377142864

(∗177128.60377142864) [0.0,10.0]
Eg1pat_fdp2_polysac_adp −> Eg1pat_fdp2_polysac + adp @40105.03661853396

(∗40105.03661853396) [0.0,10.0]
Eg1pat_fdp1_polysac_adp −> Eg1pat_fdp1_polysac + adp @46.417257582837316

(∗46.417257582837316) [0.0,10.0]
Eg1pat_fdp0_polysac_adp −> Eg1pat_fdp0_polysac + adp @4.625405628586743E9

(∗4.625405628586743E9) [0.0,10.0]
Eg1pat_fdp2_polysac −> Eg1pat_fdp2 + polysac @23.683148521916145 (∗23.683148521916145)

[0.0,10.0]
Eg1pat_fdp1_polysac −> Eg1pat_fdp1 + polysac @2.8040271218932714E7

(∗2.8040271218932714E7) [0.0,10.0]
Eg1pat_fdp0_polysac −> Eg1pat_fdp0 + polysac @5.313197386559065 (∗5.313197386559065)

[0.0,10.0]
Eg1pat_fdp2_adp −> Eg1pat_fdp2 + adp @95.36671940648668 (∗95.36671940648668) [0.0,10.0]
Eg1pat_fdp1_adp −> Eg1pat_fdp1 + adp @1.309779143743662E9 (∗1.309779143743662E9)

[0.0,10.0]
Eg1pat_fdp0_adp −> Eg1pat_fdp0 + adp @439.4579316226164 (∗439.4579316226164) [0.0,10.0]

}

//KA

vPGI: g6p −−− f6p {

modifiers{ pg}

enzymes{
cell{
Epgi 0.001 (∗0.001)
Epgi_g6p 0.0 (∗0.0)
Epgi_f6p 0.0 (∗0.0)
Epgi_pg 0.0 (∗0.0)
Epgi_pg_pg 0.0 (∗0.0)
Epgi_pg_f6p 0.0 (∗0.0)
Epgi_pg_g6p 0.0 (∗0.0)

}
}

Epgi + g6p <−> Epgi_g6p >@330995.58572141704 <@308898.2586386819
(∗330995.58572141704,∗308898.2586386819) [0.0,8.0]−−−[0.0,10.0]
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Epgi_g6p −> Epgi + f6p @650987.8178089942 (∗650987.8178089942) [0.0,10.0]
Epgi + f6p −> Epgi_f6p @1301350.6923370787 (∗1301350.6923370787) [0.0,8.0]
Epgi_f6p −> Epgi + f6p @6.589336748844003 (∗6.589336748844003) [0.0,10.0]
Epgi_f6p −> Epgi + g6p @346150.6596492528 (∗346150.6596492528) [0.0,10.0]
pg + Epgi <−> Epgi_pg >@1.6235374683748644E7 <@1623413.8684846556 (∗1.6235374683748644

E7,∗1623413.8684846556) [0.0,8.0]−−−[0.0,10.0]
pg + Epgi_pg <−> Epgi_pg_pg >@2.290225850361946E7 <@9160473.679991715

(∗2.290225850361946E7,∗9160473.679991715) [0.0,8.0]−−−[0.0,10.0]
f6p + Epgi_pg <−> Epgi_pg_f6p >@650700.4852738179 <@18.79899026910738

(∗650700.4852738179,∗18.79899026910738) [0.0,8.0]−−−[0.0,10.0]
g6p + Epgi_pg −> Epgi_pg_g6p @112896.27870790965 (∗112896.27870790965) [0.0,8.0]
Epgi_pg_f6p −> g6p + Epgi_pg @9.607012287399351E9 (∗9.607012287399351E9) [0.0,10.0]
Epgi_pg_g6p −> g6p + Epgi_pg @3774.880945544257 (∗3774.880945544257) [0.0,10.0]
Epgi_pg_g6p −> f6p + Epgi_pg @650988.1999683973 (∗650988.1999683973) [0.0,10.0]

}

//KA

vMurSynth: f6p −−− murine {

modifiers{}

enzymes{
cell{
Emur 0.001 (∗0.001)
Emur_f6p 0.0 (∗0.0)

}
}

f6p + Emur <−> Emur_f6p >@9.793623090350708E7 <@1.702214465239815E8 (∗9.793623090350708
E7,∗1.702214465239815E8) [0.0,8.0]−−−[0.0,10.0]

Emur_f6p −> murine + Emur @1.0 (∗1.0) [0.0,10.0]

}

//KA

vALDO: fdp −−− dhap + gap {

modifiers{}

enzymes{
cell{
Ealdo 0.001 (∗0.001) [−3.0,−2.0]
Ealdo_fdp 0.0 (∗0.0) [−3.0,−5.0]
Ealdo_dhap_gap 0.0 (∗0.0) [−3.0,−5.0]
Ealdo_dhap 0.0 (∗0.0) [−3.0,−5.0]

}
}

Ealdo + fdp <−> Ealdo_fdp >@6610381.514684971 <@9179635.500834823
(∗6610381.514684971,∗9179635.500834823) [0.0,12.0]−−−[0.0,10.0]

Ealdo_fdp <−> Ealdo_dhap_gap >@19779.867595307092 <@35731.23585387635
(∗19779.867595307092,∗35731.23585387635) [0.0,10.0]−−−[0.0,10.0]

Ealdo_dhap_gap <−> gap + Ealdo_dhap >@163271.39045632462 <@1984270.402729924
(∗163271.39045632462,∗1984270.402729924) [0.0,10.0]−−−[0.0,12.0]

Ealdo_dhap <−> dhap + Ealdo >@573237.7623436135 <@134228.8815777503
(∗573237.7623436135,∗134228.8815777503) [0.0,10.0]−−−[0.0,12.0]

}
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//KA

vTIS: dhap −−− gap {

modifiers{}

enzymes{
cell{
Etis 0.001 (∗0.001)
Etis_dhap 0.0 (∗0.0)
Etis_gap 0.0 (∗0.0)

}
}

Etis + dhap <−> Etis_dhap >@39462.29077851251 <@4.692960139235987E9
(∗39462.29077851251,∗4.692960139235987E9) [0.0,8.0]−−−[0.0,10.0]

Etis_dhap <−> Etis_gap >@9.503593582872984E9 <@16013.34374260495 (∗9.503593582872984E9
,∗16013.34374260495) [0.0,10.0]−−−[0.0,10.0]

Etis_gap <−> Etis + gap >@68675.35585755992 <@246562.69851666034
(∗68675.35585755992,∗246562.69851666034) [0.0,10.0]−−−[0.0,8.0]

}

//KA

vG3PDH: dhap −−− glycerol {

modifiers{}

enzymes{
cell{
Eg3pdh 0.001 (∗0.001)
Eg3pdh_dhap 0.0 (∗0.0)

}
}

Eg3pdh + dhap <−> Eg3pdh_dhap >@1000000.0 <@999988.3788653208
(∗1000000.0,∗999988.3788653208) [0.0,8.0]−−−[0.0,10.0]

Eg3pdh_dhap −> Eg3pdh + glycerol @11.62042698826148 (∗11.62042698826148) [0.0,10.0]

}

//KA

vGAPDH: gap + nad −−− pgp + nadh {

modifiers{}

enzymes{
cell{
Egapdh 0.001 (∗0.001)
Egapdh_gap 0.0 (∗0.0)
Egapdh_pgp 0.0 (∗0.0)
Egapdh_nad 0.0 (∗0.0)
Egapdh_nadh 0.0 (∗0.0)
Egapdh_gap_nad 0.0 (∗0.0)
Egapdh_pgp_nadh 0.0 (∗0.0)

}
}

Egapdh + gap <−> Egapdh_gap >@1120117.2411207086 <@903070.6133008203
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(∗1120117.2411207086,∗903070.6133008203) [0.0,8.0]−−−[0.0,10.0]
Egapdh + nad <−> Egapdh_nad >@7807.221596387721 <@744246.1068546197

(∗7807.221596387721,∗744246.1068546197) [0.0,8.0]−−−[0.0,10.0]
Egapdh_gap + nad <−> Egapdh_gap_nad >@2825818.0322683873 <@244796.59965101167

(∗2825818.0322683873,∗244796.59965101167) [0.0,8.0]−−−[0.0,10.0]
Egapdh_nad + gap <−> Egapdh_gap_nad >@241588.638482031 <@396.8523135400985

(∗241588.638482031,∗396.8523135400985) [0.0,8.0]−−−[0.0,10.0]
Egapdh_gap_nad <−> Egapdh_pgp_nadh >@4.835694944353578E7 <@9792.280444209222

(∗4.835694944353578E7,∗9792.280444209222) [0.0,10.0]−−−[0.0,10.0]
Egapdh_pgp_nadh <−> pgp + Egapdh_nadh >@5203035.907279214 <@403546.2565682074

(∗5203035.907279214,∗403546.2565682074) [0.0,10.0]−−−[0.0,8.0]
Egapdh_pgp_nadh <−> Egapdh_pgp + nadh >@4955.708975515733 <@1.1123294424598194

(∗4955.708975515733,∗1.1123294424598194) [0.0,10.0]−−−[0.0,8.0]
Egapdh_pgp <−> pgp + Egapdh >@1252.028022562376 <@9.910017542829737E7

(∗1252.028022562376,∗9.910017542829737E7) [0.0,10.0]−−−[0.0,10.0]
Egapdh_nadh <−> Egapdh + nadh >@1.4049752168701185E7 <@22521.51557298744

(∗1.4049752168701185E7,∗22521.51557298744) [0.0,10.0]−−−[0.0,10.0]

}

//KA

vPGK: pgp + adp −−− pg3 + atp {

modifiers{}

enzymes{
cell{
Epgk 0.001 (∗0.001)
Epgk_pgp 0.0 (∗0.0)
Epgk_pg3 0.0 (∗0.0)
Epgk_adp 0.0 (∗0.0)
Epgk_atp 0.0 (∗0.0)
Epgk_pgp_adp 0.0 (∗0.0)
Epgk_pg3_atp 0.0 (∗0.0)

}
}

pgp + Epgk <−> Epgk_pgp >@446.3745240747576 <@630124.2093590024
(∗446.3745240747576,∗630124.2093590024) [−5.0,15.0]−−−[−5.0,15.0]

Epgk + adp <−> Epgk_adp >@1.6400932497744534E7 <@3025228.933135766 (∗1.6400932497744534
E7,∗3025228.933135766) [−5.0,8.0]−−−[−5.0,15.0]

Epgk_pgp + adp <−> Epgk_pgp_adp >@263938.8174733853 <@1.000000046350354
(∗263938.8174733853,∗1.000000046350354) [−5.0,8.0]−−−[−5.0,15.0]

pgp + Epgk_adp <−> Epgk_pgp_adp >@6.623092221632249E7 <@124854.27991871494
(∗6.623092221632249E7,∗124854.27991871494) [−5.0,8.0]−−−[−5.0,15.0]

Epgk_pgp_adp <−> Epgk_pg3_atp >@4184301.836960252 <@1.0632990466729525E8
(∗4184301.836960252,∗1.0632990466729525E8) [−5.0,15.0]−−−[−5.0,15.0]

Epgk_pg3_atp <−> Epgk_atp + pg3 >@1.7833214207442951E9 <@6.812725408320574E7
(∗1.7833214207442951E9,∗6.812725408320574E7) [−5.0,15.0]−−−[−5.0,8.0]

Epgk_pg3_atp <−> Epgk_pg3 + atp >@58.53341319624397 <@577.0415993674669
(∗58.53341319624397,∗577.0415993674669) [−5.0,15.0]−−−[−5.0,15.0]

Epgk_pg3 <−> Epgk + pg3 >@1217713.2083092756 <@1179765.6876562668
(∗1217713.2083092756,∗1179765.6876562668) [−5.0,15.0]−−−[−5.0,8.0]

Epgk_atp <−> Epgk + atp >@1.2990066517530879E7 <@1.9908872271729697E7
(∗1.2990066517530879E7,∗1.9908872271729697E7) [−5.0,15.0]−−−[−5.0,8.0]

}

//KA
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vPGluMu: pg3 −−− pg2 {

modifiers{}

enzymes{
cell{
Epglumu 0.001 (∗0.001)
Epglumu_pg2 0.0 (∗0.0)
Epglumu_pg3 0.0 (∗0.0)

}
}

pg3 + Epglumu <−> Epglumu_pg3 >@5249464.910372856 <@3618684.170141491
(∗5249464.910372856,∗3618684.170141491) [0.0,8.0]−−−[0.0,10.0]

Epglumu_pg3 <−> Epglumu_pg2 >@2.9532936322442837E7 <@1.0555290518934883E7
(∗2.9532936322442837E7,∗1.0555290518934883E7) [0.0,10.0]−−−[0.0,10.0]

Epglumu_pg2 <−> pg2 + Epglumu >@121242.2385785785 <@2617561.4828406023
(∗121242.2385785785,∗2617561.4828406023) [0.0,10.0]−−−[0.0,8.0]

}

//FIMGE

vENO: pg2 −−− pep {

modifiers{}

enzymes{
cell{
Eeno 0.001 (∗0.001)
Eeno_pg2 0.0 (∗0.0)
Eeno_pep 0.0 (∗0.0)

}
}

pg2 + Eeno <−> Eeno_pg2 >@3778819.7663712683 <@66975.9695620004
(3778819.7663712683,66975.9695620004) [0.0,8.0]−−−[0.0,10.0]

Eeno_pg2 <−> Eeno_pep >@352640.20134127594 <@1.7956930428046398E9
(352640.20134127594,1.7956930428046398E9) [0.0,10.0]−−−[0.0,10.0]

Eeno_pep <−> Eeno + pep >@2.481066748781883E10 <@4.081731715136534E7 (2.481066748781883
E10,4.081731715136534E7) [0.0,10.0]−−−[0.0,8.0]

}

//KA

vSynth1: pep −−− cho_mur {

modifiers{}

enzymes{
cell{
Esynth1 0.001 (∗0.001)
Esynth1_pep 0.0 (∗0.0)

}
}

Esynth1 + pep <−> Esynth1_pep >@7441792.888847801 <@7441773.349495178
(∗7441792.888847801,∗7441773.349495178) [0.0,8.0]−−−[0.0,10.0]

Esynth1_pep −> cho_mur + Esynth1 @19.538970029516282 (∗19.538970029516282) [0.0,10.0]
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}

//KA

vPEPCxylase: pep −−− oaa {

modifiers{ fdp}

enzymes{
cell{
Epepcxylase 5.927265718579291E−4 (∗0.001)
Epepcxylase_pep 4.072357221637869E−4 (∗0.0)
Epepcxylase_fdp 5.194095009151411E−13 (∗0.0)
Epepcxylase_fdp_fdp 1.499063483645509E−15 (∗0.0)
Epepcxylase_fdp_fdp_fdp 3.2221485567683185E−17 (∗0.0)
Epepcxylase_fdp_fdp_fdp_fdp 5.770941932453426E−14 (∗0.0)
Epepcxylase_fdp_pep 2.415668789751241E−22 (∗0.0)
Epepcxylase_fdp_fdp_pep 1.7992200207370836E−22 (∗0.0)
Epepcxylase_fdp_fdp_fdp_pep 4.1788456031994374E−21 (∗0.0)
Epepcxylase_fdp_fdp_fdp_fdp_pep 2.8769028127175685E−14 (∗0.0)

}
}

Epepcxylase + fdp <−> Epepcxylase_fdp >@1.0001200873229572 <@3.385461445034598E8
(1000000.0,8.03895069957E9) [0.0,10.0]−−−[0.0,10.0]

Epepcxylase + pep <−> Epepcxylase_pep >@7.034513127507317E8 <@2.766577164348992E9
(1000000.0,4226984.62435) [0.0,10.0]−−−[0.0,10.0]

Epepcxylase_pep −> Epepcxylase + oaa @102.48310910948966 (104.09077487) [0.0,10.0]
Epepcxylase_fdp + fdp −> Epepcxylase_fdp_fdp @57.70358017293963 (1000000.0) [0.0,10.0]
Epepcxylase_fdp_fdp −> Epepcxylase_fdp + fdp @5930.807613027551 (1847545.40574)

[0.0,10.0]
Epepcxylase_fdp + pep −> Epepcxylase_fdp_pep @1.5646115041832669 (1000000.0) [0.0,10.0]
Epepcxylase_fdp_pep −> Epepcxylase_fdp + pep @1065564.372591534 (4226984.62435)

[0.0,10.0]
Epepcxylase_fdp_pep −> Epepcxylase_fdp + oaa @9.089256065011168E9 (15672.0733318)

[0.0,10.0]
Epepcxylase_fdp_fdp + fdp <−> Epepcxylase_fdp_fdp_fdp >@92458.5023005776 <@1275976

.0821785175 (1000000.0,37438.6832035) [0.0,10.0]−−−[0.0,10.0]
Epepcxylase_fdp_fdp + pep <−> Epepcxylase_fdp_fdp_pep >@8.948527937609011 <@2

.014594182254282E8 (1000000.0,4226984.62435) [0.0,10.0]−−−[0.0,10.0]
Epepcxylase_fdp_fdp_pep −> Epepcxylase_fdp_fdp + oaa @0.9999166772881231

(15672.0733318) [0.0,10.0]
Epepcxylase_fdp_fdp_fdp + fdp −> Epepcxylase_fdp_fdp_fdp_fdp @5.931677056744425E9

(1000000.0) [0.0,10.0]
Epepcxylase_fdp_fdp_fdp_fdp −> Epepcxylase_fdp_fdp_fdp + fdp @982420.8432799311

(61748.8549115) [0.0,10.0]
Epepcxylase_fdp_fdp_fdp + pep −> Epepcxylase_fdp_fdp_fdp_pep @81192.44355732527

(1000000.0) [0.0,10.0]
Epepcxylase_fdp_fdp_fdp_pep −> Epepcxylase_fdp_fdp_fdp + pep @1.6916256088012602E9

(4226984.62435) [0.0,10.0]
Epepcxylase_fdp_fdp_fdp_pep −> Epepcxylase_fdp_fdp_fdp + oaa @3210.963950462683

(15672.0733318) [0.0,10.0]
Epepcxylase_fdp_fdp_fdp_fdp + pep <−> Epepcxylase_fdp_fdp_fdp_fdp_pep >@1

.1840591195063017E10 <@36.84597541032951 (1000000.0,4226984.62435)
[0.0,10.0]−−−[0.0,10.0]

Epepcxylase_fdp_fdp_fdp_fdp_pep −> Epepcxylase_fdp_fdp_fdp_fdp + oaa @6
.417932270710723E10 (15672.0733318) [0.0,10.0]

}
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//KA

vSynth2: pyr −−− ile {

modifiers{}

enzymes{
cell{
Esynth2 0.001 (∗0.001)
Esynth2_pyr 0.0 (∗0.0)

}
}

Esynth2 + pyr <−> Esynth2_pyr >@74.61855067344412 <@1.0000001255706157
(∗74.61855067344412,∗1.0000001255706157) [0.0,8.0]−−−[0.0,10.0]

Esynth2_pyr −> Esynth2 + ile @73.61855054981174 (∗73.61855054981174) [0.0,10.0]

}

//GlobalSim

vPDH: pyr −−− {

modifiers{}

enzymes{
cell{
Epdh 0.001 (∗0.001)
Epdh_pyr 0.0 (∗0.0)

}
}

Epdh_pyr −> Epdh @31481.27786878084 (∗31481.27786878084) [0.0,10.0]
pyr −> @rRateK0K1 [0.0,10.0]
−> Epdh_pyr @rRateK0K1 [0.0,10.0]
Epdh −> @rRateK0K1 [0.0,10.0]

}

//Global

vG6PDH: g6p + nadp −−− pg + nadph {

modifiers{}

enzymes{
cell{
Eg6pdh 0.001 (∗0.001)
Eg6pdh_g6p 0.0 (∗0.0)
Eg6pdh_pg 0.0 (∗0.0)
Eg6pdh_nadp 0.0 (∗0.0)
Eg6pdh_nadph 0.0 (∗0.0)
Eg6pdh_pg_nadph 0.0 (∗0.0)
Eg6pdh_g6p_nadp 0.0 (∗0.0)
Eg6pdh_g6p_nadph 0.0 (∗0.0)
Eg6pdh_nadp_nadph 0.0 (∗0.0)
Eg6pdh_g6p_nadp_nadph 0.0 (∗0.0)
Eg6pdh_pg_nadph_nadph 0.0 (∗0.0)

}

298



}

g6p + Eg6pdh <−> Eg6pdh_g6p >@34.84194085548704 <@4165.583133368833
(∗34.84194085548704,∗4165.583133368833) [0.0,6.0]−−−[0.0,10.0]

Eg6pdh + nadp <−> Eg6pdh_nadp >@43368.36780670752 <@997.1022060995822
(∗43368.36780670752,∗997.1022060995822) [0.0,6.0]−−−[0.0,10.0]

Eg6pdh_g6p + nadp <−> Eg6pdh_g6p_nadp >@178111.08743165756 <@1.583664949415936E8
(∗178111.08743165756,∗1.583664949415936E8) [0.0,6.0]−−−[0.0,10.0]

g6p + Eg6pdh_nadp <−> Eg6pdh_g6p_nadp >@96.393133682726 <@5.03509187052355
(∗96.393133682726,∗5.03509187052355) [0.0,6.0]−−−[0.0,10.0]

Eg6pdh_g6p_nadp −> Eg6pdh_pg_nadph @3.440492715874786E8 (∗3.440492715874786E8) [0.0,10.0]
Eg6pdh_pg_nadph −> pg + Eg6pdh_nadph @1.5941588041036442E7 (∗1.5941588041036442E7)

[0.0,10.0]
Eg6pdh_pg_nadph −> Eg6pdh_pg + nadph @1.7484481498608302E7 (∗1.7484481498608302E7)

[0.0,10.0]
Eg6pdh_pg −> Eg6pdh + pg @67149.3983436132 (∗67149.3983436132) [0.0,10.0]
Eg6pdh_nadph <−> Eg6pdh + nadph >@666.6139445700364 <@67022.53579131703

(∗666.6139445700364,∗67022.53579131703) [0.0,10.0]−−−[0.0,6.0]
Eg6pdh_g6p + nadph <−> Eg6pdh_g6p_nadph >@85.23224971307718 <@97360.03886884112

(∗85.23224971307718,∗97360.03886884112) [0.0,6.0]−−−[0.0,10.0]
Eg6pdh_nadp + nadph <−> Eg6pdh_nadp_nadph >@1642.4157646890612 <@4142.251600664168

(∗1642.4157646890612,∗4142.251600664168) [0.0,6.0]−−−[0.0,10.0]
Eg6pdh_g6p_nadp + nadph <−> Eg6pdh_g6p_nadp_nadph >@55.602138398162 <@1

.5245599969655123E8 (∗55.602138398162,∗1.5245599969655123E8) [0.0,6.0]−−−[0.0,10.0]
Eg6pdh_pg_nadph + nadph <−> Eg6pdh_pg_nadph_nadph >@93.95001537782768 <@4034

.014017606999 (∗93.95001537782768,∗4034.014017606999) [0.0,6.0]−−−[0.0,10.0]

}

//Global

vPGDH: pg + nadp −−− ribu5p + nadph {

modifiers{ atp}

enzymes{
cell{
Epgdh 3.628697150773524E−5 (∗3.628697150773524E−5)
Epgdh_pg 2.6475669932371512E−8 (∗2.6475669932371512E−8)
Epgdh_nadp 1.318939490675069E−4 (∗1.318939490675069E−4)
Epgdh_nadph 8.116341916435976E−4 (∗8.116341916435976E−4)
Epgdh_ribu5p 1.6069063510144794E−5 (∗1.6069063510144794E−5)
Epgdh_atp 9.702697046716019E−7 (∗9.702697046716019E−7)
Epgdh_pg_nadp 3.109478743095457E−6 (∗3.109478743095457E−6)
Epgdh_pg_atp 3.118740445600252E−11 (∗3.118740445600252E−11)
Epgdh_ribu5p_nadph 1.033467924688673E−8 (∗1.033467924688673E−8)

}
}

pg + Epgdh <−> Epgdh_pg >@1063681.9756333109 <@1.1251267594407966E9
(∗1063681.9756333109,∗1.1251267594407966E9) [0.0,8.0]−−−[0.0,10.0]

Epgdh + nadp <−> Epgdh_nadp >@1039254.0371311974 <@49544.14744241454
(∗1039254.0371311974,∗49544.14744241454) [0.0,8.0]−−−[0.0,10.0]

Epgdh_pg + nadp <−> Epgdh_pg_nadp >@1064917.9650837632 <@220316.03471341837
(∗1064917.9650837632,∗220316.03471341837) [0.0,8.0]−−−[0.0,10.0]

pg + Epgdh_nadp <−> Epgdh_pg_nadp >@1037408.1894653962 <@3.2922223299665887E7
(∗1037408.1894653962,∗3.2922223299665887E7) [0.0,8.0]−−−[0.0,10.0]

Epgdh_pg_nadp −> Epgdh_ribu5p_nadph @44887.28029799544 (∗44887.28029799544) [0.0,10.0] :
slow

Epgdh_ribu5p_nadph −> Epgdh_nadph + ribu5p @8.8246510777885E9 (∗8.8246510777885E9)
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[0.0,10.0]
Epgdh_nadph + ribu5p −> Epgdh_ribu5p_nadph @1022763.4941811053 (∗1022763.4941811053)

[0.0,8.0]
Epgdh_ribu5p_nadph −> Epgdh_ribu5p + nadph @2.847789832952994E8 (∗2.847789832952994E8)

[0.0,10.0]
Epgdh_ribu5p + nadph −> Epgdh_ribu5p_nadph @987244.6503765623 (∗987244.6503765623)

[0.0,8.0]
Epgdh_nadph −> Epgdh + nadph @476.6652484421763 (∗476.6652484421763) [0.0,10.0]
Epgdh + nadph −> Epgdh_nadph @980902.6683718587 (∗980902.6683718587) [0.0,8.0]
Epgdh_ribu5p −> Epgdh + ribu5p @372993.4928825547 (∗372993.4928825547) [0.0,10.0]
Epgdh + ribu5p −> Epgdh_ribu5p @992108.0676651685 (∗992108.0676651685) [0.0,8.0]
Epgdh + atp −> Epgdh_atp @1013166.5928799342 (∗1013166.5928799342) [0.0,8.0]
Epgdh_atp −> Epgdh + atp @1.617957050145157E8 (∗1.617957050145157E8) [0.0,10.0]
Epgdh_pg + atp −> Epgdh_pg_atp @1049547.791053956 (∗1049547.791053956) [0.0,8.0]
Epgdh_pg_atp −> Epgdh_pg + atp @3.804502025348008E9 (∗3.804502025348008E9) [0.0,10.0]

}

//KA

vR5PI: ribu5p −−− rib5p {

modifiers{}

enzymes{
cell{
Er5p1 0.001 (∗0.001)
Er5p1_ribu5p 0.0 (∗0.0)
Er5p1_rib5p 0.0 (∗0.0)

}
}

Er5p1 + ribu5p <−> Er5p1_ribu5p >@23477.483275094033 <@6.785446906927375E9
(∗23477.483275094033,∗6.785446906927375E9) [0.0,8.0]−−−[0.0,10.0]

Er5p1_ribu5p <−> Er5p1_rib5p >@2.1452692217704463E9 <@1.0138583480692043E9
(∗2.1452692217704463E9,∗1.0138583480692043E9) [0.0,10.0]−−−[0.0,10.0]

Er5p1_rib5p <−> Er5p1 + rib5p >@4.652498351132615E9 <@8515.360250531308
(∗4.652498351132615E9,∗8515.360250531308) [0.0,10.0]−−−[0.0,8.0]

}

//KA

vRU5P: ribu5p −−− xyl5p {

modifiers{}

enzymes{
cell{
Eru5p 0.001 (∗0.001)
Eru5p_ribu5p 0.0 (∗0.0)
Eru5p_xyl5p 0.0 (∗0.0)

}
}

Eru5p + ribu5p <−> Eru5p_ribu5p >@40048.7502383563 <@1.0E10 (∗40048.7502383563,∗1.0E10)
[0.0,10.0]−−−[0.0,10.0]

Eru5p_ribu5p <−> Eru5p_xyl5p >@2.3704803565611067E9 <@9.266350317530496E8
(∗2.3704803565611067E9,∗9.266350317530496E8) [0.0,10.0]−−−[0.0,10.0]
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Eru5p_xyl5p <−> Eru5p + xyl5p >@5.398279145731906E9 <@39504.324854236096
(∗5.398279145731906E9,∗39504.324854236096) [0.0,10.0]−−−[0.0,10.0]

}

//KA

vPPK: rib5p −−− nucleotide {

modifiers{}

enzymes{
cell{
Erppk 0.001 (∗0.001)
Erppk_rib5p 0.0 (∗0.0)

}
}

Erppk + rib5p <−> Erppk_rib5p >@1708.7585245258308 <@157.97540064790883
(∗1708.7585245258308,∗157.97540064790883) [0.0,8.0]−−−[0.0,10.0]

Erppk_rib5p −> nucleotide + Erppk @12.900452250930224 (∗12.900452250930224) [0.0,10.0]

}

//KA

vTKA: xyl5p + rib5p −−− sed7p + gap {

modifiers{}

enzymes{
cell{
Etka 0.001 (∗0.001)
Etka_rib5p 0.0 (∗0.0)
Etka_rib5p_xyl5p 0.0 (∗0.0)
Etka_sed7p_gap 0.0 (∗0.0)
Etka_gap 0.0 (∗0.0)

}
}

Etka + rib5p <−> Etka_rib5p >@9793907.7911523 <@1.0E10 (∗9793907.7911523,∗1.0E10)
[0.0,8.0]−−−[0.0,10.0]

xyl5p + Etka_rib5p <−> Etka_rib5p_xyl5p >@2.937990797469441E7 <@1.0E10
(∗2.937990797469441E7,∗1.0E10) [0.0,8.0]−−−[0.0,10.0]

Etka_rib5p_xyl5p <−> Etka_sed7p_gap >@1.0E10 <@1.0E10 (∗1.0E10,∗1.0E10)
[0.0,10.0]−−−[0.0,10.0]

sed7p + Etka_gap <−> Etka_sed7p_gap >@2.680863603910198E7 <@1.0E10 (∗2.680863603910198
E7,∗1.0E10) [0.0,8.0]−−−[0.0,10.0]

Etka + gap <−> Etka_gap >@8937047.406742867 <@1.0E10 (∗8937047.406742867,∗1.0E10)
[0.0,8.0]−−−[0.0,10.0]

}

//KA

vTA: gap + sed7p −−− f6p + e4p {

modifiers{}

enzymes{
cell{
Eta 4.3242434232992595E−4 (∗0.001)
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Eta_gap 3.018021191721868E−4 (∗0.0)
Eta_gap_sed7p 6.189942785504624E−6 (∗0.0)
Eta_e4p_f6p 8.045588919060367E−9 (∗0.0)
Eta_f6p 2.5957875753861674E−4 (∗0.0)

}
}

gap + Eta <−> Eta_gap >@7793069.098309249 <@2473367.893118087 (1000000.0,3.47783815678E8
) [0.0,8.0]−−−[0.0,10.0]

Eta_gap + sed7p <−> Eta_gap_sed7p >@28539.602545734106 <@366450.3941456761
(8988365.11673,4.76357491187E8) [0.0,8.0]−−−[0.0,10.0]

Eta_gap_sed7p <−> Eta_e4p_f6p >@2395930.591911783 <@1.8376878360119967E9
(3.47038005266E9,3.76094610236E9) [0.0,10.0]−−−[0.0,10.0]

Eta_f6p + e4p <−> Eta_e4p_f6p >@293745.15677329473 <@9.52086887221295E8
(8985104.78013,4.49900668219E8) [0.0,8.0]−−−[0.0,10.0]

f6p + Eta <−> Eta_f6p >@27565.59206641448 <@27690.87907295803 (1000000.0,4.1921580168E8)
[0.0,8.0]−−−[0.0,10.0]

}

//KA

vTKB: xyl5p + e4p −−− f6p + gap {

modifiers{}

enzymes{
cell{
Etkb 0.001 (∗0.001)
Etkb_xyl5p 0.0 (∗0.0)
Etkb_xyl5p_e4p 0.0 (∗0.0)
Etkb_f6p_gap 0.0 (∗0.0)
Etkb_gap 0.0 (∗0.0)

}
}

Etkb + xyl5p <−> Etkb_xyl5p >@2.9767315389565293E7 <@1.0E10 (∗2.9767315389565293E7,∗1.0
E10) [0.0,8.0]−−−[0.0,10.0]

e4p + Etkb_xyl5p <−> Etkb_xyl5p_e4p >@6.5616411795814976E7 <@1.0E10
(∗6.5616411795814976E7,∗1.0E10) [0.0,8.0]−−−[0.0,10.0]

Etkb_xyl5p_e4p <−> Etkb_f6p_gap >@1.0E10 <@2.0457215340563703E9 (∗1.0E10
,∗2.0457215340563703E9) [0.0,10.0]−−−[0.0,10.0]

f6p + Etkb_gap <−> Etkb_f6p_gap >@1.0E8 <@1.0E10 (∗1.0E8,∗1.0E10) [0.0,8.0]−−−[0.0,10.0]
Etkb + gap <−> Etkb_gap >@9547837.252848232 <@1.0E10 (∗9547837.252848232,∗1.0E10)

[0.0,8.0]−−−[0.0,10.0]

}

//KA

vDHAPS: pep + e4p −−− {

modifiers{}

enzymes{
cell{
Edhaps 5.706982565293556E−4 (∗5.706982565293556E−4)
Edhaps_e4p 6.034147930686969E−8 (∗6.034147930686969E−8)
Edhaps_e4p_e4p 1.798490644529588E−10 (∗1.798490644529588E−10)
Edhaps_e4p_pep 7.801714016496681E−7 (∗7.801714016496681E−7)
Edhaps_e4p_pep_pep 5.699029024039884E−6 (∗5.699029024039884E−6)
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Edhaps_e4p_e4p_pep 2.1387974019449E−5 (∗2.1387974019449E−5)
Edhaps_e4p_e4p_pep_pep 1.9507211839928607E−9 (∗1.9507211839928607E−9)
Edhaps_pep 4.0071811539120337E−4 (∗4.0071811539120337E−4)
Edhaps_pep_pep 6.580972180827027E−7 (∗6.580972180827027E−7)

}
}

e4p + Edhaps <−> Edhaps_e4p >@1245539.8540814104 <@1.1793782500178425E9
(∗1245539.8540814104,∗1.1793782500178425E9) [0.0,8.0]−−−[0.0,10.0]

pep + Edhaps <−> Edhaps_pep >@70510.58066931683 <@270477.47414940386
(∗70510.58066931683,∗270477.47414940386) [0.0,8.0]−−−[0.0,10.0]

e4p + Edhaps_pep <−> Edhaps_e4p_pep >@2.9742211875658955E7 <@1.5298302585839407E9
(∗2.9742211875658955E7,∗1.5298302585839407E9) [0.0,8.0]−−−[0.0,10.0]

pep + Edhaps_pep <−> Edhaps_pep_pep >@246.9367276949254 <@64091.75349973866
(∗246.9367276949254,∗64091.75349973866) [0.0,8.0]−−−[0.0,10.0]

e4p + Edhaps_pep_pep <−> Edhaps_e4p_pep_pep >@3410505.1379636535 <@68.7018891811367
(∗3410505.1379636535,∗68.7018891811367) [0.0,8.0]−−−[0.0,10.0]

e4p + Edhaps_e4p <−> Edhaps_e4p_e4p >@1783913.2692835033 <@3.0253854056846093E7
(∗1783913.2692835033,∗3.0253854056846093E7) [0.0,8.0]−−−[0.0,10.0]

pep + Edhaps_e4p <−> Edhaps_e4p_pep >@3.2714152634360576 <@1.2994929103630992
(∗3.2714152634360576,∗1.2994929103630992) [0.0,8.0]−−−[0.0,10.0]

e4p + Edhaps_e4p_pep <−> Edhaps_e4p_e4p_pep >@42273.24450904922 <@62.962921371613675
(∗42273.24450904922,∗62.962921371613675) [0.0,8.0]−−−[0.0,10.0]

pep + Edhaps_e4p_pep <−> Edhaps_e4p_pep_pep >@4.669797239747408E7 <@1
.7257063452013325E7 (∗4.669797239747408E7,∗1.7257063452013325E7) [0.0,8.0]−−−[0.0,10.0]

e4p + Edhaps_e4p_pep_pep <−> Edhaps_e4p_e4p_pep_pep >@75.20751388577412 <@34407
.23795785133 (∗75.20751388577412,∗34407.23795785133) [0.0,8.0]−−−[0.0,10.0]

pep + Edhaps_e4p_e4p <−> Edhaps_e4p_e4p_pep >@1.122550000844095E7 <@4.71910392297437
(∗1.122550000844095E7,∗4.71910392297437) [0.0,8.0]−−−[0.0,10.0]

pep + Edhaps_e4p_e4p_pep <−> Edhaps_e4p_e4p_pep_pep >@158.3754986143872 <@938675
.0600673703 (∗158.3754986143872,∗938675.0600673703) [0.0,10.0]−−−[0.0,8.0]

Edhaps_e4p_e4p_pep_pep −> Edhaps_e4p_pep @3725732.96976031 (∗3725732.96976031)
[0.0,10.0] :slow

}

//GlobalSim

vPFK: f6p + atp −−− fdp + adp {

modifiers{ pep amp}

enzymes{
cell{
Epfk 4.12061534668244E−5 [−5.0,−1.0]
Epfk_atp 0.029901686306988254 (∗0.0)
Epfk_atp_f6p 0.0041121405578154946 (∗0.0)
Epfk_adp 1.2694279008974528E−5 (∗0.0)

}
}

Epfk_atp −> Epfk + atp @0.8136892613257293 [0.0,10.0]
Epfk_atp_f6p −> Epfk_atp + f6p @3.1400096953009937 [0.0,10.0]
Epfk_atp_f6p −> fdp + Epfk_adp @34.049272194152344 [0.0,10.0] :slow
Epfk_adp −> Epfk + adp @11029.802720949023 [0.0,10.0] :slow
Epfk + atp −> Epfk_atp @rPfk0 (∗rPfk0) [0.0,10.0]
Epfk_atp + f6p −> Epfk_atp_f6p @rPfk2 (∗rPfk2) [0.0,10.0]

}
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//GlobalSim

vPK: pep + adp −−− pyr + atp {

modifiers{ fdp}

enzymes{
cell{
Epk 2.9475043117849926E−5 (∗2.9475043117849926E−5)
Epk_pep 1.9890263116954396E−5 (∗1.9890263116954396E−5)
Epk_pep_adp 9.064711832110233E−4 (∗9.064711832110233E−4)
Epk_atp 1.396167514575113E−9 (∗1.396167514575113E−9)

}
}

Epk_pep −> Epk + pep @2.955353679650043E9 (∗2.955353679650043E9) [0.0,10.0]
Epk_pep + adp −> Epk_pep_adp @672761.498098979 (∗672761.498098979) [0.0,7.0]
Epk_pep_adp −> Epk_pep + adp @8595.000879468533 (∗8595.000879468533) [0.0,10.0]
Epk_pep_adp −> pyr + Epk_atp @40.81791333168355 (∗40.81791333168355) [0.0,10.0] :slow
Epk_atp −> Epk + atp @2.6501305758597497E7 (∗2.6501305758597497E7) [0.0,10.0] :slow
Epk + pep −> Epk_pep @rPk0 (∗rpK0) [0.0,7.0]

}
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appendix b

DYNAMIC FLUX BALANCE ANALYSIS EXTENSION

The DFBA model file utilized in Chapter 4:

LpSolver: Gurobi
OdeSolver: CVODE

MethodType{
PFBA

MethodConfig {
}

}

Simulation{
initialTime: 0.0
finalTime: 15.0
stepSize: 0.125

}

SbmlFile:"EcoliCoreModel.xml"

FluxBalanceAnalysis{
ObjectiveFunction{

Max R_Biomass_Ecoli_core_w_GAM

}
}

Fluxes{
R_EX_glc_e qsval

R_EX_ac_e qacval

R_EX_o2_e qosval

}

FreeVariables{
f

}

AlgebricRules {}

Functions {

def glucoseKinetics(S,I,qsmaxglc,kiglc,ksglc):
qsmaxglc∗(1.0/(1.0+(I/kiglc)))∗(S/(S+ksglc))

end

def glucoseKinetics2(S,qsmaxglc,ksglc):
(qsmaxglc∗S)/(S+ksglc)

end

def o2Kinetics(qs,qm,cx,cs,yxs,yos):
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(qs−(qs−qm)∗yxs∗(cx/cs))∗yos
end

def o2Kinetics2(S,qsmaxo2,kso2):
(qsmaxo2∗O2)/(O2+kso2)

end

def o2Kinetics2Backup(S,I,qsmaxo2,kio2,kso2):
qsmaxo2∗(1.0/(1.0+(I/kio2)))∗(S/(S+kso2))

end

def o2Kinetics3(qsmaxo2):
qsmaxo2

end

def acKinetics(S,qsmaxac,ksac):
qsmaxac∗(S/(S+ksac))

end

}

ODESystem{

val kla=7.5
val o2Eq=0.21
val sin = 277.0

val qsmax = 4.10541652735493
val qski = 999.99450445301
val qsks = 0.0010005069647388664
val qsITerm = (1.0/(1.0+(Ac/qski)))
val qsGlcOnly = (qsmax∗Glc)∗(1.0/(qsks+Glc))
val currentqsval = −1.0∗glucoseKinetics(Glc,Ac,qsmax,qski,qsks)

val qsmaxo2 = 5.807948704120516
val qosval = −1.0∗o2Kinetics3(qsmaxo2)

val qacmax = 4.215873755359025
val qacks = 1.2614925738174751

val fin = if V > 20.0 then 0.0 else f end
val fluxTerm = (fin/V)∗(sin)∗(1.0/X)
val fluxTermQs = fluxTerm+qsGlcOnly

val qacval = −1.0∗acKinetics(Ac,qacmax,qacks)

val qsval = if (Glc = 0.0) then
if (qsmax >= fluxTerm) then
−1.0∗fluxTerm∗qsITerm

else

−1.0∗qsmax∗qsITerm
end

else

if (qsmax >= fluxTermQs) then
−1.0∗fluxTerm∗qsITerm+currentqsval

else

−1.0∗qsmax∗qsITerm
end
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end

val fluxDifference = fluxTerm+qsval

val extraGlcFlux = if fluxDifference > 0.0 then fluxDifference else 0.0 end
val addExtraGlc = if extraGlcFlux > 0.0 then extraGlcFlux∗X else 0.0 end

X:0.2:R_Biomass_Ecoli_core_w_GAM = R_Biomass_Ecoli_core_w_GAM∗X−(fin/V)∗X
Glc:0.0:R_EX_glc_e = R_EX_glc_e∗X−(fin/V)∗Glc+addExtraGlc
Ac:0.0:R_EX_ac_e = R_EX_ac_e∗X−(fin/V)∗Ac
O2:0.21:R_EX_o2_e = 0.0
xEth:0.0:R_EX_etoh_e = R_EX_etoh_e∗X−(fin/V)∗xEth
Form:0.0:R_EX_for_e = R_EX_for_e∗X−(fin/V)∗Form
Lac:0.0:R_EX_lac_D_e = R_EX_lac_D_e∗X−(fin/V)∗Lac
V:1.0 = fin

substrate{
Glc

}

product{
Ac

}
}

DFBAVariables{
biomassMetabolite: X
volume: V

}
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