Skip to main content

Advertisement

Log in

On Prediction of Epileptic Seizures by Means of Genetic Programming Artificial Features

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

A general-purpose, systematic algorithm is presented, consisting of a genetic programming module and a k-nearest neighbor classifier to automatically create artificial features—computer-crafted features possibly without a known physical meaning—directly from the reconstructed state-space trajectory of intracranial EEG signals that reveal predictive patterns of epileptic seizures. The algorithm was evaluated with IEEG data from seven patients, with prediction defined over a horizon of 1–5 min before unequivocal electrographic onset. A total of 59 baseline epochs (nonseizures) and 55 preictal epochs (preseizures) were used for validation purposes. Among the results, it is shown that 12 seizures out of 55 were missed while four baseline epochs were misclassified, yielding 79% sensitivity and 93% specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.
FIGURE 10.
FIGURE 11.
FIGURE 12.
FIGURE 13.
FIGURE 14.
FIGURE 15.
FIGURE 16.

Similar content being viewed by others

REFERENCES

  1. D'Alessandro, M. The Utility of Intracranial EEG Feature and Channel Synergy for Evaluating the Spatial and Temporal Behavior of Seizure Precursors, PhD Dissertation, Georgia Institute of Technology, Atlanta, 2001.

  2. D'Alessandro, M., R. Esteller, G. Vachtsevanos, A. Hinson, J. Echauz, and B. Litt. Epileptic seizures prediction using hybrid feature selection over multiple intracranial EEG electrode contacts: A report of four patients. IEEE Trans. Biomed. Eng. 50(5):603–615, 2003.

    Article  PubMed  Google Scholar 

  3. Duda, R., P. Hart, and D. Stork. Pattern Classification, 2nd ed. New York: Wiley, 2001.

  4. Echauz, J. Wavelet Neural Networks for EEG Modeling and Classification, PhD Dissertation, Georgia Institute of Technology, August 1995.

  5. Elger, C. E., and K. Lehnertz. Seizure prediction by non-linear time series analysis of brain electrical activity. Eur. J. Neurosci. 10:786–789, 1998.

    Article  PubMed  CAS  Google Scholar 

  6. Firpi, H. Genetically Found, Neurally Computed Artificial Features with Applications to Epileptic Seizure Detection and Prediction, Master's Thesis, University of Puerto Rico-Mayagüez, 2001.

  7. Firpi, H. On Prediction and Detection of Epileptic Seizures by Means of Genetic Programming Artificial Features, PhD Dissertation, Michigan State University, 2005.

  8. Gilmore, R., and M. Lefranc. The Topology of Chaos: Alice in the Stretch and Squeezeland. New York: Wiley, 2002.

  9. Haupt, R. L., and S. E. Haupt. Practical Genetic Algorithms. New York: Wiley, 1998.

  10. Iasemidis, L. Epileptic seizure prediction and control. IEEE Trans. Biomed. Eng. 50(5):549–559, 2003.

    Article  PubMed  Google Scholar 

  11. Iasemidis, L., D.-S. Shiau, W. Chaovalitwongse, J. C. Sackellares, P. M. Pardalos, J. C. Principe, P. R. Carney, A. P. Prasad, B. Veeramani, and K. Tsakalis. Adaptive epileptic seizure prediction system. IEEE Trans. Biomed. Eng. 50(5):616–627, 2003.

    Article  PubMed  Google Scholar 

  12. Jansen, B. H. Quantitative analysis of electroencephalograms: Is there chaos in the future? Int. J. Biomed. Comput. 27:95–123, 1991.

    Article  PubMed  CAS  Google Scholar 

  13. Jia, W., N. Kong, F. Li, X. Gao, S. Gao, G. Zhang, Y. Wang, and F. Yang. An epileptic seizure prediction algorithm based on second-order complexity measure. Physiol. Meas. 26:609–625, 2005.

    Article  PubMed  Google Scholar 

  14. Koza, J. R. Genetic Programming: On Programming of Computers by Means of Natural Selection. Cambridge, MA: MIT Press, 1992.

  15. Lee, S. A., D. D. Spencer, and S. S. Spencer. Intracranial EEG seizure-onset patterns in neocortical epilepsy. Epilepsia 41(3):297–307, 2000.

    Article  PubMed  CAS  Google Scholar 

  16. Lehnertz, K., and C. E. Elger. Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss. Electroencephalogr Clin Neurophysiol 95:108–117.

  17. Lehnertz, K., and B. Litt. The First International Collaborative Workshop on Seizure Prediction: Summary and data description. Clin. Neurophysiol. 116(3):493–505, 2005.

    Article  PubMed  Google Scholar 

  18. Litt, B., R. Esteller, J. Echauz, M. D'Alessandro, R. Shor, T. Henry, P. Pennell, C. Epstein, R. Bakay, M. Dichter, and G. Vachtsevanos. Epileptic seizures may begin hours in advance of clinical seizures: A report of five patients. Neuron 29(4):51–64, 2001.

    Article  Google Scholar 

  19. Martinerie, J., C. Adam, M. le van Quyen, M. Baulac, S. Clemenceau, B. Renault, and F. J. Valera.. Epileptic seizures can be anticipated by non-linear analysis. Nat. Med. 4:1176–1176, 1998.

    Article  Google Scholar 

  20. Niederhoefer, C., F. Gollas, A. Chernihovskyi, K. Lehnertz, and R. Tetzlaff. Detection of seizure precursors in the EEG with cellular neural networks. Epilepsia 45(7):245, 2004 (abstract).

    Google Scholar 

  21. Orfanidis, S. J. Optimum Signal Processing: An Introduction, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.

  22. Petrosian, A., D. Prokhorov, R. Homan, R. Dashieff, and D. Wunch. Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG. Neurocomputing 30:201–218, 2000.

    Article  Google Scholar 

  23. Pritchard, W. S., and D. W. Duke. Measuring chaos in the brain: A tutorial review of nonlinear dynamical EEG analysis. Brain Cogn 27(3):353–397, 1995.

    Article  PubMed  CAS  Google Scholar 

  24. Sowa, R., F. Mormann, A. Chernihovskyi, C. Niederhoefer, R. Tetzlaff, C. Elger, and K. Lehnertz. Seizure prediction: Measuring EEG phase synchronization with cellular neural networks. Epilepsia 45(7):244, 2004 (abstract).

    Google Scholar 

  25. Sprott, J. C. Chaos and Time-Series Analysis. New York: Oxford University Press, 2003.

  26. Takens, F. Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence, Warwick 1980 Lecture Notes in Mathematics 898. Berlin: Springer-Verlag, 1981, pp. 336–381.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiram Firpi.

APPENDIX

APPENDIX

This appendix shows the point-basis results for all the epochs available evaluated with the GPAF algorithm, for each patient. Small letters denote baseline epochs, whereas capital letters denote preictal epochs.

Epoch

GPAF

Patient A: Point-basis classification results for patient A

b

61.54

c

57.86

d

57.19

B

80.33

C

69.23

D

73.91

 Overall

66.68%

Patient B: Point-basis classification results for patient B

b

82.61

c

89.63

d

86.96

e

88.29

f

81.61

g

77.26

B

85.62

C

66.56

D

94.65

E

53.17

 Overall

80.64%

Epoch

GPAF

Patient C: Point-basis classification results for patient C

b

100

c

100

d

40.8

e

70.9

f

99.0

g

100

h

100

i

87.63

j

100

k

97.32

A

100

B

99.66

C

87.63

E

81.61

F

99.0

G

97.99

H

96.99

I

99.0

J

96.66

K

100

 Overall

92.71%

Patient D: Point-basis classification results for patient D

a

96.66

b

96.33

d

47.16

f

96.65

g

91.30

h

90.97

i

45.82

j

20.74

k

51.84

l

88.63

B

0.33

C

74.92

D

8.03

E

53.18

F

86.29

G

77.93

H

86.96

I

17.07

J

86.29

K

84.95

 Overall

65.10%

Patient E: Point-basis classification results for patient E

a

26.85

b

72.82

c

100.0

d

100.0

e

70.47

f

100.0

h

100.0

i

100.0

j

57.05

k

100.0

l

100.0

m

100.0

n

100.0

o

53.69

p

74.5

Epoch

GPAF

A

79.53

B

93.29

C

48.99

D

92.95

E

94.63

F

92.28

G

94.3

H

94.97

I

17.11

J

97.32

K

97.32

L

98.32

M

49.66

N

78.52

O

9.4

 Overall

79.8%

Patient F: Point-basis classification results for patient F

b

83.56

c

86.58

d

66.56

e

100.0

f

100.0

g

100.0

h

100.0

B

97.99

C

99.33

D

100.0

E

100.0

F

99.33

 Overall

94.45%

Patient G: Point-basis classification results for patient G

b

60.2

c

9.03

d

26.76

e

71.57

f

59.2

g

79.26

i

94.65

j

96.66

B

29.77

C

79.6

D

90.97

E

84.28

F

51.17

G

90.64

H

89.97

I

51.51

 Overall

66.58%

Rights and permissions

Reprints and permissions

About this article

Cite this article

Firpi, H., Goodman, E. & Echauz, J. On Prediction of Epileptic Seizures by Means of Genetic Programming Artificial Features. Ann Biomed Eng 34, 515–529 (2006). https://doi.org/10.1007/s10439-005-9039-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-9039-7

Keywords

Navigation