Evolving Custom Communication Protocols

by Wes Faler of Part-Time Scientists for 28C3, Berlin Germany, 2011 wf@ptscientists.com

- Why
- What
- How
- Code and Details
- Results
- Your turn!

 Part-Time Scientists needed a communication protocol between our Earth stations and our rover on the moon.

• Given:

- A fixed set of hardware components for a packet transmitter and receiver.
- Video and telemetry streams that must go from the moon to Earth.
- A stream of commands that must go from Earth to the rover on the moon.
- Create:
 - A finite state machine that provides the network and application layer control of a transceiver used on both earth and the moon.

- Must be a published open protocol.
- Cannot use encryption.
- Long latency.
- High packet cost and value.
- Bandwidth is limited and saturated.
- May tunnel through another protocol.
- TCP/IP is not an option.

What - Complications

• $Design_N = Debate_N [Design_{N-1}]$ + α $Debate_{N-1} [Design_{N-1}]$

Create parameterized algorithmOne-at-time simulation

Parameter sweep

int driver moves PerTransaction $[] = \{1, 20\};$ int driver_wheelTicksPerCommand[] = { 512, 4096 }; int driver_commandsPerPacket[] = { 1, 25 }; int driver_moveCommandsPerCameraCommand[] = { 0, 10 }; float earth_packetTimeout[] = { 5, 30 }; int earth_maxAllowedBacklogCount[] = { 10 }; float burst_upstreamBurstErrorChance[] = { 0, 0.05 }; float burst_downstreamBurstErrorChance[] = { 0, 0.05 }; float rover_naggleDuration[] = { 0.5 }; int rover_packetQueueSize[] = { 10, 0 }; int rover_shouldFinishMoveQueueBeforeCommRecovery[] = $\{1, 0\}$; float rover_commRecoveryDuration[] = { 5, 30 }; float rover_moveCommandCommOutageChance[] = { 0.01, 0 }; float rover_steerCommandCommOutageChance[] = { 0.01, 0 };

Easy as 1...2...3...

• GPU

Before: 1 simulation/second

- Port unoptimized C++ code to GPU
 - Least programming effort possible
 - Just for parameter sweeps
- After: 700 seconds for 5200 simulations
 - 7.4 simulations/second
- Run a million simulations

Easy as 1...2...3...4.

Results – Distance Travelled

Just a few small changes...

• Given:

- A fixed set of hardware components for a packet transmitter and receiver.
- Video and telemetry streams that must go from the moon to Earth.
- A stream of commands that must go from Earth to the rover on the moon.
- Changing requirements from stakeholders.
- While(!Launched yet)
 - Create:
 - A finite state machine that provides the network and application layer control.

What, rev.2

http://xkcd.com/974/ "The General Problem"

Can you pass the data?

• Given:

A partial existing system structure

- Inputs
- Output(s)
- Formula structure
- Test cases
- Constraints
- Create:
 - The optimal set of parameters
 - An equation or algorithm

Invention – GP

Invention - GP

Cartesian Genetic Programming (CGP)

- Generates equations like circuits.
- Parallelizable results.
- FPGA friendly.
- Operators for simple math and logic.
 - Constant
 - Add, Subtract, Negative
 - Add Constant, Subtract Constant
 - NOP, !, &&, ||,
 - > Constant, >= Constant,== Constant
 - >, >=, ==

How – CGP

Make a random "circuit".

Score: Terrible*3

Make random changes and rescore.

Test #2: Terrible-4 Test #3: Terrible

Score: Terrible*3-4

- Start with 1 parent.
- Make mutant children.
- Score everyone.

- Start with 1 parent.
- Make mutant children.
- Score everyone.
- Promote the best child that isn't worse than the parent.
 - Must promote anything equal to the parent!

- Start with 1 parent.
- Make mutant children.
- Score everyone.
- Promote the best child that isn't worse than the parent.
 - Must promote anything equal to the parent!

Runtime Optimization

Individual

- Executor and Optimizer
- Mutator
- Population
- Support
 - Threadsafe, GPU-friendly random numbers
 - Save, Load
 - Images

Code – CGP Core

Mission Enders

- Make rover execute attacker's commands
- Prevent rover execution of real commands
- Prevent acceptance of video data
- High Risk
 - Make mission control accept false telemetry
 - Delay rover execution of real commands

How – Attacker's Goals

- Discrete Event System simulation
 - Priority queue of events ordered by time
 - Set of Actors creating and handling events
- Packet is control flag array and payload
- Outer Space as random Actor
 - Lose
 - Replay
 - Echo
 - Corrupt

How – Simulation structure

Transceiver as set of Actors

- Data Ready To Transmit
- Data Received
- Packet Expired in Transmit History
- Attacker as Actor

Actors == Chromosomes

- Scored separately
- Promoted separately
- Combines partial solutions for next generation

How – Simulation structure

Coevolved

- Full knowledge of packet structure
- Can crack private keys
- Sees all packets
- Cannot prevent packet delivery
 No "man in the middle" attacks
- Able to send to anyone
- Risk when transmitting

How - Attacker

Stateful and large for complex strategy Single Chromosome in feedback loop

How – Attacker Structure

- Generational fitness
- Best fitness
- Validated fitness
- Penalties/Rewards
 - Accepted bad signature
 - Accepted attacker packet
 - Accepted unknown data
 - Accepted data more than once
 - Never accepted data
 - Accepted data with wrong data type
 - Command packet accepted successfully

How - Fitness

Validated Fitness vs. Fitness

Tip – Validate Fitness

- Can the control logic be automatically created by Cartesian Genetic Programming (CGP)?
- If so, is the logic robust?
 - Can it work with poor signal quality?
 - Can it work with an attacker?
- Should the control logic be created:
 - In isolation?
 - Considering only poor signal quality cases?
 - Considering an attacker?
- Can an attacker's control logic be created at a faster pace than the network logic?

How - Questions to answer

- Experiment
- Worlds
 - Data schedule
 - Actors
- Execution
- Fitness
 - Generational fitness
 - Best fitness
 - Validated fitness

Code – Simulation Core

Can CGP make control logic?

- Randomize everything!
- Reduce randomness in fitness
- Threadsafe random numbers
- Incentivize
 - "Mute" attackers
- Increase population size
- Dust-off your statistics books

More Tips

	Population 4	Population 8
Fitness Evaluations		2x
Run time		3x
Same generations		Much better fitness
Same run time	Equal fitness	Equal fitness

Population Size Effects

Does an attacker's presence produce a better transceiver?

	No attacker	With attacker
Best fitness	18316	23208
Validated fitness	134542	137494
Active genes		+50%
Fitness:Generation correlation	Medium	Near Zero
Other Fitness: Generation	Medium	Medium
Val. Fitness:Gen. Slope		2x

Does an attacker help?

- Can the control logic be automatically created by Cartesian Genetic Programming (CGP)?
- If so, is the logic robust?
 - Can it work with poor signal quality?
 - Can it work with an attacker?
- Should the control logic be created:
 - In isolation?
 - Considering only poor signal quality cases?
 - Considering an attacker?
- Can an attacker's control logic be created at a faster pace than the network logic?

Results - Questions answered

- CGP on GPU
- Worlds on GPU
- Finer-grain Chromosomes
- New "best" selection with an attacker
- Islands
- Freezing transceiver or attacker
- Attacker detection and countermeasures

<shameless recruiting ad> Join us at ptscientists.com! </shameless recruiting ad>

Wes Faler of Part-Time Scientists wf@ptscientists.com

- Code and presentation
 - <u>http://wp.me/pGgFI-V</u>
- Julian Miller (inventor of CGP)
 - <u>http://sites.google.com/site/julianfrancismiller/prof</u> essional

"Cartesian Genetic Programming" book

- <u>http://www.springer.com/computer/theoretical+computer+science/book/978-3-642-17309-7</u>
- "Evolved to Win" e-book
 - <u>http://www.moshesipper.com/etw/</u>
- "Communication Protocol Engineering" book by Miroslav Popovic

Resources