
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

 707

Exploring Open-Ended Design Space of
Mechatronic Systems

Zhun Fan, Jiachuan Wang & Erik Goodman

1. Introduction

In general, design of mechatronic systems includes two steps: conceptual design and
detailed design. In the conceptual design phase, the following questions should be
answered (Tay et al., 1998): 1) what is the exact design problem to be solved? (This
requires a complete and consistent listing of the requirements), and 2) what are the key
problem areas in the solution? (This requires the identification of critical parts of the
solution that will determine the performance).

Then the process of detailed design can be undertaken, identifying those candidate
solutions that meet the requirements and provide the level of performance needed. The
research in this paper focuses on the detailed design of mechatronic systems. The strategy
is to develop an automated procedure capable of exploring the search space of candidate
mechatronic systems and providing design variants that meet desired design
specifications or dynamical characteristics.
The method must be able to explore the design space in a topologically open-ended
manner, yet still find appropriate configurations efficiently enough to be useful.

Much research has been done on design automation of single domain systems using
evolutionary computation approach.
For example, automated design of analog circuits has attracted much attention in recent
years (Grimbleby, 1995) (Lohn, 1999)(Koza, 1999)(Fan, 2000). They could be classified into
two categories: GA-based and GP-based. Most GA-based approaches realize topology
optimization via a GA and parameter optimization with numerical optimization methods
(Grimbleby, 1995).

Some GA approaches also evolve both topology and component parameters; however,
they typically allow only a limited amount of components to be evolved (Lohn, 1999).
Although their work basically achieve good results in analog circuit design, they are not
easily extendable to interdisciplinary systems like mechatronic systems.
Design of interdisciplinary (multi-domain) dynamic engineering systems, such as
mechatronic systems, differs from design of single-domain systems, such as electronic
circuits, mechanisms, and fluid power systems, in part because of the need to integrate the
several distinct domain characteristics in predicting system behavior (Coelingh. et al.,
1998).

Source: Cutting Edge Robotics, ISBN 3-86611-038-3, pp. 784, ARS/plV, Germany, July 2005 Edited by: Kordic, V.; Lazinica, A. & Merdan, M.

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

 708

However, most current modeling and simulation tools that provide for representation at a
schematic, or topological, level have been optimized for a single domain. The bond graph
provides a unified model representation across inter-disciplinary system domains. Tay
uses bond graphs and GA to generate and analyze dynamic system designs automatically
(Tay et al., 1998). He uses nested GA to evolve both topology and parameters for dynamic
systems. However, the efficiency of his approach is hampered by the weak ability of GA to
search in both topology and parameter spaces simultaneously.

Genetic programming is an effective way to generate design candidates in an open-ended,
but statistically structured, manner. There have been a number of research efforts aimed at
exploring the combination of genetic programming with physical modeling to find good
engineering designs.

Perhaps most notable is the work of Koza et al.. He presents a single uniform approach
using genetic programming for the automatic synthesis of both the topology and sizing of
a suite of various prototypical analog circuits, including low-pass filters, operational
amplifiers, and controllers.
This approach appears to be very promising, having produced a number of patentable
designs for useful artefacts. It is closely related to our approach, except that it searches in a
single energy domain.

To develop an integrated mechatronic design environment, we investigate an approach
combining genetic programming and bond graphs to automate the process of design of
mechatronic systems to a significant degree.
To improve the topology search capability of GP and enable it to provide a diversity of
choices to the designer, a special form of parallel GP, the Hierarchical Fair Competition GP
(HFC-GP), is used in this paper (Hu, et al., 2002).

The efficiency and effectiveness of the approach are illustrated in an interesting redesign
example involving the drive mechanism for an electric typewriter. Several design
alternatives for the typewriter drive are derived through exploring open-topologies in
bond graph space.

2. Design Domain and Methodology

2.1 Mechatronic Systems and Bond Graph Representations

The reason we used bond graphs in research on mechatronic system synthesis is because
mechatronic systems are intrinsically multi-domain systems. We need a uniform
representation of mechatronic systems so that designers can not only shift among different
hierarchies of design abstractions but also can move around design partitions in different
physical domains without difficulty.

The bond graph is a modeling tool that provides a unified approach to the modeling and
analysis of dynamic systems, especially hybrid multi-domain systems including
mechanical, electrical, pneumatic, hydraulic components, etc. It is the explicit
representation of model topology that makes the bond graph a good candidate for use in
open-ended design search.

 709

Fig. 1. shows an example of a single bond graph model that represents a resonator unit in
both mechanical domain and electrical domain.

In addition to appropriate “drivers” (sources), the left part of Fig. 1. shows a lumped-
parameter dynamical mechanical system model typically including a mass, spring and
damper while the right part of Fig.1. shows an “RLC” electric circuit including a resistor,
inductor and capacitor. However, they could both be expressed in the same bond graph
shown in the middle of Fig.1 because both the mechanical and electrical subsystem share
the same dynamic behavior and governed by the same dynamic equations.

Figure 1. Bond graph representation of dynamic systems

It is also very natural to use bond graphs to represent a dynamic system, such as a
mechatronic system, with cross-disciplinary physical domains and even controller
subsystems (Fig. 2.)

Figure 2. Bond graph representing a mechatronic system with mixed energy domains and a controller
subsystem

 710

2.2 Bond Graph

The bond graph is a modeling tool that provides a unified approach to the modeling and
analysis of dynamic systems, especially hybrid multi-domain systems including
mechanical, electrical, pneumatic, hydraulic, etc. (Karnopp et al., 2000). It is the explicit
representation of model topology that makes the bond graph a good candidate for use in
open-ended design searching.

For notation details and methods of system analysis related to the bond graph
representation see Karnopp et al. and Rosenberg (Rosenberg et al., 1992). Much recent
research has explored the bond graph as a tool for design (Sharpe & Bracewell, 1995, Tay
et al., 1998, Youcef-Toumi, 1999, Redfield R., 1999).

In our research, the bond graph has additional desirable characteristics for selection as the
tool for system representation and simulation. The evaluation efficiency of the bond graph
model can be improved because analysis of causal relationships and power flow between
elements and subsystems can be done quickly and easily, and reveals certain important
system properties and inherent characteristics.

This makes it possible to discard infeasible design candidates even before numerically
evaluating them, thus reducing time of evaluation to a large degree. Because virtually all
of the circuit topologies passing causal analysis are simulatable, our system does not need
to check validity conditions of individual circuits to avoid singular situations that could
interrupt the running of a program evaluating them.

Another characteristic of bond graphs is their ease of mapping to the engineering design
process (Xia et al., 1991). Because each component of the system can be represented
correspondingly in a bond graphs, junctions and elements can be added to or deleted
from a model without causing dramatic changes.

This emulates the engineering process of modifying systems, refining simple designs
discovered initially, adding size and complexity as needed to meet more complicated
design demands step by step. As genetic programming usually shows a weak causality of
structure evolution (Rosca, 1995), this potential strong causality of the bond graph
modification process also makes bond graph representation an attractive technique to use
in genetic programming to explore the open-ended mechatronic system design space in an
evolutionary process.

2.3 Combining Genetic Programming and Bond Graph

The most common form of genetic programming (Koza, 1994) uses trees to represent the
entities to be evolved. The tree representation on GP chromosomes, as compared with the
string representation typically used in GA, gives GP more flexibility to encode solution
representations for many real-world design applications.

The bond graph, which can contain cycles, is not represented directly on the GP tree—
instead, the function set (nodes of the tree) encode a constructor for a bond graph. We
define the GP functions and terminals for bond graph construction as follows.

 711

There are four types of functions:

- first, add functions that can be applied only to a junction and which add a C, I, or R
element; -

- second, insert functions that can be applied to a bond and which insert a 0-junction
or 1-junction into the bond;

- third, replace functions that can be applied to a node and which can change the
type of element and corresponding parameter values for C, I, or R elements; and

- fourth, arithmetic functions that perform arithmetic operations and can be used to
determine the numerical values associated with components (Table 1). Details of
function definitions are illustrated in Seo et al. (2001).

Table 1. Function and terminal set for bond graph evolution

Defining a proper function set is one of the most significant steps in using genetic
programming. It may affect both the search efficiency and validity of evolved results and
is closely related to the selection of building blocks for the system being designed. In this
work, the genotypes assembled from the function sets are constructors which, upon
execution, specify a bond graph.

In other words, when the genotype is executed, it generates the phenotype in a
developmental manner. In this research, we have an additional dimension of flexibility in
generating phenotypes, because bond graphs are used as modeling representations for
multi-domain systems, serving as an intermediate representation between the mapping of
genotype and phenotype, and those bond graphs can be interpreted as systems in different
physical domains, chosen as appropriate to the circumstances.

Fig. 3 gives a particular example in the domain of electrical circuits and Fig. 4 illustrates
the role of bond graphs in the mappings from genotypes to phenotypes (Fan et al., 2001)

Name Description
add_C
add_I
add_R
insert_J0
insert_J1
replace_C
replace_ I
replace_ R
+
-
endn
endb
endr
erc

Add a C element to junctions
Add an I element to junctions
Add an R element to junctions
Insert a 0-junction in bond
Insert a 1-junction in bond
Replace current element with C element
Replace current element with I element
Replace current element with R element
Add two ERCs
Subtract two ERCs
End terminal for add element operation
End terminal for insert junction operation
End terminal for replace element operation
Ephemeral random constant (ERC)

 712

Figure 3. Example of Genotype-Phenotype Mapping in the Electrical Circuit Domain

EMBRYO

insert_J1add_C9

insert_J0 add_C27add_J0

add_J1

add_C7

add_C8

add_C6

add_C16

add_C14

add_C15

add_C13

insert_J1 add_I29

insert_J0

add_C32 add_J1

add_C34 add_C33 add_C34

add_C38

add_I31

add_C45

add_R46

add_I44

end

erc

R2(RS)

GND

Su

2v

1k

C9

9E-6 9E-6

C8

9E-6

C7

9E-6

C16 C6

9E-6

C14

9E-6 9E-6

C15

101993

R13

9E-69E-6

C32 C34

9E-69E-6

C38

9E-6

C39

C33

I31

3.077226

C27

0.128915

I29
0.035574 0.000011

C45
0.034505

I44R46
0.372055

R5(RL)
1k

1

0

1 1

0

1 0 1 0S e 0

9C

C 6

C 3 2

7C C 8

C 1 6

C 1 4

C 1 5

R 1 3

R 2

3 4C

C 3 3

I 3 1

C 3 8

C 3 9

I 2 9 C 2 7

C 4 5

R 4 6

I 4 4

R 5

S f 4:

u S

R S

: LR

Phenotype

Bond Graph Model

Genotype

 713

Figure 4. Genotype-Phenotype mapping

2.4 Design Procedure

The flow of the entire algorithm is shown in Fig. 5. Based on a preliminary analysis, the
user specifies the embryonic physical model for the target system (i.e., its interface to the
external world, in terms of which the desired performance is specified) After that, an
initial population of GP trees is randomly generated. Each GP tree maps to a bond graph
tree.

Analysis is then performed on each bond graph tree. This analysis consists of two steps –
causal analysis and state equation analysis. After the (vector) state equation is obtained,
the important dynamic characteristics of the system are sent to the fitness evaluation
module and the fitness of each tree is evaluated.

For each evaluated and sorted population, genetic operations – selection, crossover,
mutation and reproduction – are carried out to seek design candidates with improved
quality. The loop of bond graph analysis and GP operation is iterated until a termination
condition is satisfied or specified number of iterations is performed. The final step is to
instantiate a physical design, replacing the bond graphs with physical components it
represents.

 714

Figure 5. Flow chart of the design procedure

2.5 Integrated Evolutionary Mechatronics Synthesis

Because the final target of this research is to improve the quality of strategic and early
design decisions, enhance human-computer cooperation, and ultimately reduce product
and overall system life cycle cost, an integrated design and synthesis framework for
mechatronic systems is presented and to be investigated, to cover a full spectrum of
customer needs and product life considerations.
Fig. 6. provides a graphical overview of the integrated design environment (Wang, 2004).
Evolutionary computation techniques, including genetic programming, are utilized to
explore the open-ended design space for mechatronic systems as the core high-
performance computing algorithm. Bond Graphs are used to unify representations of
mechatronic subsystems from different domains. Design performances can be evaluated
both through time domain simulation and via frequency domain analysis.

s p e c ify p h y s ic a l s c h e m a t ic e m b ry o

s p e c ify e m b ry o b o n d g ra p h

c re a te in it ia l p o p u la t io n o f G P t re e

f itn e s s e v a lu a t io n fo r e a c h
in d iv id u a l

s e le c t io n fo r e a c h p o p u la t io n

re p ro d u c t io n , c ro s s o v e r , m u ta t io n

p h y s ic a l re a liz a t io n

te rm in a t io n
c r ite r ia ?

Y E S

N O

 715

The design primitives at both conceptual and physical realization levels are stored in the
design repository so that designers can retrieve them either manually or through
classifying schemes. The Graphical User Interface (GUI) is designed to better understand
customer needs, through the specification of design representation, requirements and
constraints interactively. It can also incorporate user preferences under different trade-off
strategies. The process of synthesis and analysis are iterative until design process
converges to satisfactory design solutions.

Figure 6. Integrated mechatronics design environment

3. Case Study

3.1 Problem Formulation

The original problem was presented by C. Denny and W. Oates of IBM, Lexington, KY, in
1972. Fig. 7. shows a closed-loop control system to position a rotational load (inertia)
denoted as JL.
The system includes electric voltage source, motor and mechanical parts. As it is a multi-
domain mechatronic system, a bond graph is convenient to use for modelling (see Fig. 8a).
The problem with the design is the position output of the load JL has intense vibrations
(see Fig. 8b).
The design specification is to reduce the vibration of the load to an acceptable level, given
certain command conditions for rotational position. We want the settling time to be less
than 70ms when the input voltage is stepped from zero to one. Note that the settling time
of the original system is about 2000ms. The time scale in Fig. 8b is 4000 ms.

 716

Figure 7. Schematic of the typewriter drive system

(a)

(b)

Figure 8. a) Bond graph model b) Positional vibration of the load

I R

R

I

C IS R C
IL R C

(pq rr /)

(

)(qr)(pr

)/1(r)(r

R

Sf

TF 0 GY
I

1

GY

TF

I R

1 TF

C

0 TF

I R C

0

R I

1

C

0

TF TF

1

TF 1/

 717

3.2 Embryo of Design

By analysing the model, we conclude that the critical part for the design is a subsystem
that involves the drive shaft and the load (see Fig. 9). The input is the driving torque, Td,
generated through the belt coupling back to the motor (not shown).

Figure 9. The embryo subsystem

This subsystem was deemed a logical place to begin the design problem. The questions left
to the designer now are: 1) at which exact spots of the subsystem new components should
be inserted, 2) which types of components and how many of them should be inserted, in
which manner, and 3) what should be the values of the parameters for the components to
be added? The approach reported in this paper is able to answer these three questions in
one stroke in an automated manner, once the embryo system has been defined.
To search for a new design using the BG/GP design tool, an embryo model is required.
The embryo model is the fixed part of the system and the starting point for GP to generate
candidates of system designs by adding new components in a developmental manner. The
embryo used for this example, expressed in bond graph language, is shown in Fig. 10,
with the modifiable sites highlighted. The modifiable sites are places that new components
can be added. The choice of modifiable sites is typically easy for the designer to decide.
Note that modifiable sites are only possible spots for insertion of new components; the
search may not use all of them. In this particular example, designers need have no idea
whether assemblies of new components will be inserted at modifiable site (1), or at
modifiable site (2), at site (3), or at any combinations of them. Instead, the algorithm will
answer these questions in an automatic way, without intervention by the human designer.

Figure 10. The embryo subsystem

S RLR
C

C

JS J
S

L

r 1

S2C

r1

Td

 718

The parameters for the embryo model are:

sI
 :

26107.6 mkg ⋅× −

sR
 :

radmN sec10013.0 3 ⋅⋅× −

1sC
:

radmN ⋅⋅208.0

2sC
:

radmN ⋅⋅208.0

LR
 :

radmN sec1058.0 3 ⋅⋅× −

LI
 :

26103.84 mkg ⋅× −

LC :
radmN ⋅⋅× 6100.1

1TF
: 0.1,

2TF
: 10

For simplicity and without loss of generality, both gains of K and MSe are set to be unit.

3.3 The Hierarchical Fair Competition (HFC) Model

A special form of genetic programming is applied in this research. In HFC (Hierarchical
Fair Competing) model (Fig. 11), multiple subpopulations are organized in a hierarchy, in
which each subpopulation can only accommodate individuals within a specified range of
fitnesses (Hu et al., 2002). New individuals are created continuously in the bottom layer.
Use of HFC model balances exploration and exploitation of GP effectively. Our experience
shows that using the HFC model can also substantially increase the topology diversity of
the whole population and help to provide the designer a diverse set of competing design
candidates for further trade-offs.

Figure 11. Hierarchical Fair Compete model of GP

In HFC model, subpopulations are organized in a hierarchy with
ascending fitness level. Each subpopulation accomodates
individuals within a certaiin fitness range determined by the
admission thresholds

fitness

fmin

fmax
subpop5

subpop4

subpop3

subpop2

subpop1

subpop0

Admission
threshold 1

Admission
threshold 2

Admission
threshold 3

Admission
lthreshold 4

Admission
threshold 5

Admission
Buffers

 719

3.4 Definition of Fitness Function

The fitness function of individual design is defined according to the position output
response of the load JL as follows.
Within the time range of interest (0~500ms in this example), uniformly sample 1000 points
of the output response (yielding a time interval between two adjacent sampling points of
0.5ms). Compare the magnitudes of the position output of the load JL at the sample points
with target magnitudes (unity in this example), compute their difference and get a squared

sum of difference as raw fitness, defined as rawFitness . Then normalized fitness is

calculated according to:

()rawnorm FitnessFitness ++= 200010005.0

It can be assumed approximately that the higher the normal fitness, the better the design.
Two reasons make the fitness definition an approximate one. 1) it does not reflect directly
the strict definition of settling time, and 2) it does not include other considerations in
design of the system except output response.
A modified fitness function could be defined later if required. However, in this research,
the definition is enough to manifest the feasibility and efficiency of the approach reported.
The achieved design results (Fig. 12-18) show performances satisfying the design
specification presented in this research.

3.5 Experimental Setup

We used a strongly-typed version (Luke, 1997) of lilgp (Zongker & Punch, 1996) to
generate bond graph models.

The major GP parameters were as shown below:

 Number of generations: 100
 Population sizes: 200 in each of 15 subpopulations
 Initial population: half_and_half
 Initial depth: 3-6 Max depth: 17
 Selection: Tournament (size=7)
 Crossover: 0.9
 Mutation: 0.1

Three major code modules were created in our work. The algorithm kernel of HFC-GP
was a modified version of an open software package developed in our research group --
lilgp. A bond graph class was implemented in C++. The fitness evaluation package is C++
code converted from Matlab code, with hand-coded functions used to interface with the
other modules of the project. The commercial software package 20Sim was used to verify
the dynamic characteristics of the evolved design.

3.6 Experimental Observations

The GP program obtains satisfactory results on a Pentium-IV 1GHz in 5~15 minutes,
which shows the efficiency of our approach in finding good design candidates.

 720

Ten runs of this problem have been done and most of the runs produced satisfactory
solutions.
The fitness history of a typical run is shown in Fig. 12. Two competing design candidates
with different topologies, as well as their performances, are provided in Fig. 13 to Fig. 18
(evolved components are circled). We can see from the output rotational position
responses that they all satisfy the design specification of settling time less than 70ms. Note
that the time scale of the plots is 100 ms.
One of the designs is shown in Fig. 13. It is generated in only 20 generations with 200
designs in each of 15 subpopulations, and has a very simple structure. Three elements, one
each of 0-junction, C, and R, are added to modifiable site 1 of the embryo model (Fig. 13).
Dashed circles highlight the newly evolved components in the bond graph figures. The
performance of this model is shown in Fig. 14.
The position response for step function input quickly converges in about 50msec, which
was an acceptable timeframe. One possible physical realization of the bond graphs model
is shown in Fig. 13. A spring and a damper are added and coupled to the original printer
subsystem as shown in Fig. 14. Another design is shown in Fig. 16.
Four elements, 0-junction with C, 1-junction with R are added to modifiable site 2 and one
R is added to modifiable site 3. One possible physical realization of the design is shown in
Fig. 17. Fig. 18 displays the performance of this model.Table 2 represents the statistical
results of 10 runs for the printer drive.
It is clear that the approach reported in this research is both efficient and effective, capable
of providing designers with a variety of design alternatives. This gives designers
considerable flexibility to generate and to compare a large variety of design schemes.

Figure 12. Fitness history for a typical typewriter drive redesign run

Fi
t

A Typical Fitness Improvement Curve

for Typewriter Redesign Problem

Number of Generation

Fi
tn

es
s

V
al

ue

 721

1

WS

0 1

WL

I
IS

R
RS

0

C
CS1

C
CL I

IL

R
RL

C
CS2

R
RA

MSe
MSe1Constant1

K

Gain1

TF

TF1

TF

TF2

0

C
CA

RA: 12.6957E-03 N m sec / rad
CA: 0.1962 N m / rad

Figure 13. The evolved bond graph model I

CS2
C

R LRS

LSJ
C

J
S1

r r1 1

CA

AR

Figure 14. The physical realization of evolved bond graph model I

 722

Title

0 20 40 60 80 100
time(ms)

sta
te

0

0.5

1

1.5

Settling time is about

Position Output of the Load

0 20 40 60 80 100

Time (ms)

P
os

iti
on

 (
cm

)

0

5

10

15

Settling time is about 50ms

Figure 15. Simulation result of evolved bond graph model I

1

WS

0 1

WL

I
IS

R
RS

C
CS1

C
CL

I
IL

R
RL

C
CS2

MSe
MSe1Constant1

K

Gain1

TF

TF2

TF

TF1

0

C

C17

1

R

R15

0

R
R20

R20: 75.101E-03 N m sec / rad
R15: 0.142E-03 N m sec / rad C17: 10.000 N m / rad

Figure 16. The evolved bond graph model II

 723

RRS

JS
CS1

r 1

17C

1

C
J

L

L

S2
R20

15R

r

Figure 17. The physical realization of evolved bond graph model II

Position Output of the Load

0 20 40 60 80 100

Time (ms)

O
ut

pu
t (

cm
)

0

5

10

15

Figure 18. Simulation result of evolved bond graph model II

Settling time is about 40ms

 724

Table 2. Summary results of fitness for printer

4. Conclusions

This research has explored a new automated approach for synthesizing designs for
mechatronic systems. By taking advantage of genetic programming as a search method for
competent designs and the bond graph as a representation for mechatronic systems, we
have created a design environment in which open-ended topological search can be
accomplished in a semi-automated and efficient manner and the design process thereby
facilitated. By incorporating specific design considerations the method can be used to
explore design space of special types of mechatronic systems such as robotic systems.

The paper illustrates the process of using this approach in detail through a typewriter
redesign problem. Bond graphs have proven to be an effective tool for both modeling and
design in this problem. Also a special form of GP, Hierarchical Fair Competition-GP, has
been shown to be capable of providing a diversity of competing designs with great
efficiency.

Our long-term target in this research is to design an integrated and interactive synthesis
framework for mechatronic systems that covers the full spectrum of design processes,
including customer needs analysis, product development, design requirements and
constraints, automated synthesis, design verification, and life-cycle considerations.

Acknowledgments
The authors gratefully acknowledge the support of the National Science Foundation
through grant DMI 0084934.

Fitness of Printer Run
No. Distance Fitness

1 15.076 0.985
2 15.818 0.984
3 15.188 0.985
4 16.720 0.983
5 15.053 0.985
6 14.085 0.986
7 15.122 0.985
8 15.502 0.985
9 15.132 0.985

10 15.881 0.984
Best 14.085 0.986

Worst 16.720 0.984
Average 15.358 0.985
Standard
Deviation

0.6903 0.000669

 725

5. References

Coelingh H. ; T.J.A. de Vries & van Amerongen J. (1998). Automated Performance
Assessment of Mechatronic Motion Systems during the Conceptual Design Stage.
Proc. 3rd Int’l Conf. on Adv. Mechatronics, pp. 472-477, Okayama, Japan.

Fan Z., Hu J., Seo K., Goodman E., Rosenberg R., and Zhang B. (2001). Bond Graph
Representation and GP for Automated Analog Filter Design, Proceedings of the
Genetic and Evolutionary Computation Conference, pp. 81-86.

Grimbleby J. (2000). Automatic analogue circuit synthesis using genetic algoriths.
IEE Proc. – Circuits Devices Syst, pp. 319-323.

Hu J., Goodman E. D., Seo K., Pei M., (2002). Adaptive Hierarchical Fair Competition
Model for Parallel Evolutionary Algorithms, Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO-2002, New York, pp. 772-779.

Karnopp D., Margolis D. & Rosenberg R. (2000). System Mechatronics: Modelling and
Simulation of Mechatronic Systems. Third Edition. New York: John Wiley & Sons,
Inc.

Koza J. (1992). Genetic Programming: On the Programming of Computers by Means of
Natural Selection, The MIT Press.

Koza J., Bennett F. III, Andre D. & Keane M. (1999b). The design of analogue circuits by
means of genetic programming. In P. J. Bentley (ed.), Evolutionary Design by
Computers, 365-385. London: John Wiley & Sons Ltd.

Lohn J., Colombano S. (1999). A circuit representation techniques for automated circuit
design. IEEE Transactions on Evolutionary Computation: 205-219.

Luke S., 1997, Strongly-Typed, Multithreaded C Genetic Programming Kernel, available
from http://cs.gmu.edu/~sean/research/lil-gp-patch/ . Accessed: 2005-01-15

Paynter H. (1991). An epistemic prehistory of bond graphs. In P. C. Breedveld and G.
Dauphin-Tanguy (ed.), Bond Graphs for Engineers, 3-17. Amsterdam, The
Netherlands: Elsevier Science Publishers.

Redfield R. (1999). Bond Graphs in Mechatronic Systems Designs: Concepts for a
Continuously Variable Transmission. International Conference on Bond Graph
Modeling and Simulation, pp. 225-230.

Rosca J. , Ballard D. (1995) Causality in genetic programming. In L. Eshelman (ed.),
Genetic Algorithms: Proceedings of the Sixth International Conference (ICGA95), pp.
256-263. San Francisco, CA: Morgan Kaufmann.

Rosenberg R., Whitesell J., & Reid J. (1992). Extendable Simulation Software for
Mechatronic Systems. Simulation Vol. 58, pp. 175-183.

Seo K., Goodman E. & Rosenberg R. (2001). First steps toward automated design of
mechatronic systems using bond graphs and genetic programming. Proceedings of
the Genetic and Evolutionary Computation Conference, pp. 189.

Sharpe J., and Bracewell R. (1995). The Use of Bond Graph Reasoning for the Design of
Interdisciplinary Schemes. International Conference on Bond Graph Modeling and
Simulation, pp. 116-121.

Tay E., Flowers W. & Barrus J. (1998). Automated Genration and Analysis of Mechatronic
System Designs. Research in Engineering Design, Vol. 10, pp. 15-29.

Wang J. (2004). Integrated Coevolutionary Synthesis of Mechatronic Systems Using Bond
Graphs. PhD dissertation, Department of Mechanical and Industrial Engineering,
University of Massachusetts, Amherst

Xia S., Linkens D. and Bennett S. (1991). Integration of qualitative reasoning and bond
graphs: an engineering approach. In P. C. Breedveld and G. Dauphin-Tanguy(ed.),

 726

Bond Graphs for Engineers, pp. 323-332. Amsterdam, The Netherlands: Elsevier
Science Publishers.

Youcef-Toumi K., Ye Y., Glaviano A., & Anderson P. (1999). Automated Zero
Mechatronics: Derivation from Bond Graph Models. International Conference on
Bond Graph Modeling and Simulation, pp. 39-44.

Zongker D. and Punch W., III, (1998), lil-gp 1.1 User’s Manual, GARAGe, College of
Engineering, Michigan State University, available from http://garage.cps.msu.edu/.
Accessed: 2005-01-15

Cutting Edge Robotics

Edited by Vedran Kordic, Aleksandar Lazinica and Munir Merdan

ISBN 3-86611-038-3

Hard cover, 784 pages

Publisher Pro Literatur Verlag, Germany

Published online 01, July, 2005

Published in print edition July, 2005

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book is the result of inspirations and contributions from many researchers worldwide. It presents a

collection of wide range research results of robotics scientific community. Various aspects of current research

in robotics area are explored and discussed. The book begins with researches in robot modelling & design, in

which different approaches in kinematical, dynamical and other design issues of mobile robots are discussed.

Second chapter deals with various sensor systems, but the major part of the chapter is devoted to robotic

vision systems. Chapter III is devoted to robot navigation and presents different navigation architectures. The

chapter IV is devoted to research on adaptive and learning systems in mobile robots area. The chapter V

speaks about different application areas of multi-robot systems. Other emerging field is discussed in chapter VI

- the human- robot interaction. Chapter VII gives a great tutorial on legged robot systems and one research

overview on design of a humanoid robot.The different examples of service robots are showed in chapter VIII.

Chapter IX is oriented to industrial robots, i.e. robot manipulators. Different mechatronic systems oriented on

robotics are explored in the last chapter of the book.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Zhun Fan, Jiachuan Wang and Erik Goodman (2005). Exploring Open-Ended Design Space of Mechatronic

Systems, Cutting Edge Robotics, Vedran Kordic, Aleksandar Lazinica and Munir Merdan (Ed.), ISBN: 3-86611-

038-3, InTech, Available from: http://www.intechopen.com/books/cutting_edge_robotics/exploring_open-

ended_design_space_of_mechatronic_systems

© 2005 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.

