skip to main content
10.1145/1743384.1743434acmconferencesArticle/Chapter ViewAbstractPublication PagesmmConference Proceedingsconference-collections
poster

Learning to rank for content-based image retrieval

Authors Info & Claims
Published:29 March 2010Publication History

ABSTRACT

In Content-based Image Retrieval (CBIR), accurately ranking the returned images is of paramount importance, since users consider mostly the topmost results. The typical ranking strategy used by many CBIR systems is to employ image content descriptors, so that returned images that are most similar to the query image are placed higher in the rank. While this strategy is well accepted and widely used, improved results may be obtained by combining multiple image descriptors. In this paper we explore this idea, and introduce algorithms that learn to combine information coming from different descriptors. The proposed learning to rank algorithms are based on three diverse learning techniques: Support Vector Machines (CBIR-SVM), Genetic Programming (CBIR-GP), and Association Rules (CBIR-AR). Eighteen image content descriptors(color, texture, and shape information) are used as input and provided as training to the learning algorithms. We performed a systematic evaluation involving two complex and heterogeneous image databases (Corel e Caltech) and two evaluation measures (Precision and MAP). The empirical results show that all learning algorithms provide significant gains when compared to the typical ranking strategy in which descriptors are used in isolation. We concluded that, in general, CBIR-AR and CBIR-GP outperforms CBIR-SVM. A fine-grained analysis revealed the lack of correlation between the results provided by CBIR-AR and the results provided by the other two algorithms, which indicates the opportunity of an advantageous hybrid approach.

References

  1. R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. In SIGMOD, pages 207--216, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. H. M. Almeida, M. Gonçalves, M. Cristo, and P. Calado. A combined component approach for finding collection-adapted ranking functions based on genetic programming. In SIGIR '07, pages 399--406, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In COLT, pages 144--152. Springer, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Y. Cao, X. Jun, T. Liu, H. Li, Y. Huang, and H. Hon. Adapting ranking svm to document retrieval. In SIGIR '06, pages 186--193, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. warkacioglu and F. Yarman-Vural. Sasi: a generic texture descriptor for image retrieval. Pattern Recognition, 36(11):2615--2633, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  6. R. da S. Torres and A. X. Falcão. Content-based image retrieval: Theory and applications. Revista de Informática Teórica e Aplicada, 13(2):161--185, 2006.Google ScholarGoogle Scholar
  7. R. da S. Torres, A. X. Falcão, M. A. Goncalves, J. P. Papa, B. Zhang, W. Fan, and E. A. Fox. A genetic programming framework for content-based image retrieval. Pattern Recognition, 42(2):283--292, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. W. Fan, M. D. Gordon, and P. Pathak. Genetic programming-based discovery of ranking functions for effective web search. J. Manage. Inf. Syst., 21(4):37--56, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. U. Fayyad and K. Irani. Multi interval discretization of continuous-valued attributes for classification learning. In IJCAI., pages 1022--1027, 1993.Google ScholarGoogle Scholar
  10. C. D. Ferreira, R. da S. Torres, M. A. Goncalves, and W. Fan. Image Retrieval with Relevance Feedback based on Genetic Programming. In SBBD, pages 120--134, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. A. Frome, Y. Singer, and J. Malik. Image retrieval and classification using local distance functions. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems 19, pages 417--424, Cambridge, MA, 2007. MIT Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. R. Gonzalez and R. Woods. Digital Image Processing. Addison-Wesley, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. P. Gosselin and M. Cord. Active learning methods for interactive image retrieval. IEEE Transactions on Image Processing, 17(7):1200--1211, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. Han, S. J. McKenna, and R. Wang. Learning query-dependent distance metrics for interactive image retrieval. In M. Fritz, B. Schiele, and J. H. Piater, editors, ICVS, volume 5815 of Lecture Notes in Computer Science, pages 374--383. Springer, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regression. In A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 115--132, Cambridge, MA, 2000. MIT Press.Google ScholarGoogle Scholar
  16. P. Hong, Q. Tian, and T. S. Huang. Incorporate support vector machines to content-based image retrieval with relevant feedback. In In Proc. IEEE International Conference on Image Processing (ICIP), pages 750--753, 2000.Google ScholarGoogle Scholar
  17. Y. Hu, M. Li, and N. Yu. Multiple-instance ranking: Learning to rank images for image retrieval. Computer Vision and Pattern Recognition, IEEE Computer Society Conference on, pages 1--8, 2008.Google ScholarGoogle Scholar
  18. C. Huang and Q. Liu. An orientation independent texture descriptor for image retireval. In ICCCS, pages 772--776, 2007.Google ScholarGoogle Scholar
  19. J. Huang, R. Kumar, M. Mitra, W. Zhu, and R. Zabih. Image indexing using color correlograms. In CVPR, pages 762--768, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. T. Joachims. Optimizing search engines using clickthrough data. In SIGKDD, pages 133--142, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. T. Joachims. Training linear SVMs in linear time. In SIGKDD, pages 217--226, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. V. Kovalev and S. Volmer. Color co-occurence descriptors for querying-by-example. In MMM, pages 32--38, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. J. Koza. Genetic Programming: On the programming of computers by natural selection. MIT Press, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. D. Lee and H. Kim. A fast content-based indexing and retrieval technique by the shape information in large image database. Journal of Systems and Software, 56(2):165--182, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. E. Levina and P. Bickel. The earth movers distance is the mallows distance: Some insights from statistics. In Eighth IEEE International Conference on In Computer Vision, volume 2, pages 251--256, 2001.Google ScholarGoogle Scholar
  26. F. Li, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. Computer Vision and Image Understanding, 106(1):59--70, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. LETOR: Benchmark dataset for research on learning to rank for information retrieval. In Learning to Rank Workshop in conjuntion with SIGIR, 2007.Google ScholarGoogle Scholar
  28. T. Lu and C. Chang. Color image retrieval technique based on color features and image bitmap. Inf. Processing and Management, 43(2):461--472, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. S. D. MacArthur, C. E. Brodley, A. C. Kak, and L. S. Broderick. Interactive content-based image retrieval using relevance feedback. Comput. Vis. Image Underst., 88(2):55--75, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. F. Mahmoudi, J. Shanbehzadeh, A. Eftekhari-Moghadam, and H. Soltanian-Zadeh. Image retrieval based on shape similarity by edge orientation autocorrelogram. Pattern Recognition, 36(8):1725--1736, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  31. B. Manjunath, J. Ohm, V. Vasudevan, and A. Yamada. Color and texture descriptors. IEEE Trans. Circuits Syst. Video Techn., 11(6):703--715, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. T. Ojala, M. Pietikäinen, and T. Mäenpää. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell., 24(7):971--987, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. G. Pass, R. Zabih, and J. Miller. Comparing images using color coherence vectors. In ACM Multimedia, pages 65--73, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. D. Ritendra, J. Dhiraj, L. Jia, and Z. W. James. Image retrieval: Ideas, influences, and trends of the new age. ACM Comput. Surv., 40(2):1--60, April 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. H. Shao, J. W. Zhang, W. C. Cui, and H. Zhao. Automatic Feature Weight Assignment based on Genetic Algorithm for Image Retrieval. In IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, pages 731--735, 2003.Google ScholarGoogle Scholar
  36. R. Stehling, M. Nascimento, and A. Falcão. A compact and efficient image retrieval approach based on border/interior pixel classification. In CIKM, pages 102--109, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. M. Stricker and M. Orengo. Similarity of color images. In Storage and Retrieval for Image and Video Databases (SPIE), pages 381--392, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  38. M. Swain and D. Ballard. Color indexing. International Journal of Computer Vision, 7(1):11--32, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. B. Tao and B. Dickinson. Texture recognition and image retrieval using gradient indexing. Journal of Visual Communication and Image Representation, 11(3):327--342, 2000.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. M. Unser. Sum and difference histograms for texture classification. IEEE Trans. on Pattern Analysis and Machine Intelligence, 8(1):118--125, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. A. Veloso, H. M. Almeida, M. Gon¸calves, and W. Meira. Learning to rank at query-time using association rules. In SIGIR, pages 267--274, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. A. Veloso, W. M. Jr., and M. J. Zaki. Lazy associative classification. In ICDM, pages 645--654, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. A. Williams and P. Yoon. Content-based image retrieval using joint correlograms. Multimedia Tools Appl., 34(2):239--248, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support vector method for optimizing average precision. In SIGIR '07: Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, pages 271--278, New York, NY, USA, 2007. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. J. A. M. Zegarra, N. J. Leite, and R. da S. Torres. Wavelet-based Feature Extraction for Fingerprint Image Retrieval. Journal of Computational and Applied Mathematics, 227(2):294--307, May 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. L. Zhang, F. Lin, and B. Zhang. Support vector machine learning for image retrieval. In ICIP (2), pages 721--724, 2001.Google ScholarGoogle Scholar
  47. J. Zobel and A. Moffat. Exploring the similarity space. SIGIR Forum, 32(1):18--34, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Learning to rank for content-based image retrieval

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader