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Executive Summary 
 

This report, prepared for the Hawke’s Bay Regional Council, describes a tailored statistical seasonal 

forecasting scheme developed for the Hawke’s Bay region. This forecasting scheme is based upon 

tercile probabilities i.e. what is the chance that rainfall/temperature over the next 3 months will be 

below normal, normal or above normal. 

The dataset used in this study is an extension of the dataset used in a previous report - Relationship 

between Climate Modes and Hawke’s Bay Seasonal Rainfall and Temperature (Fedaeff & Fauchereau, 

2015). This follow up study builds upon knowledge already established and explores different 

methodologies for producing seasonal forecasts tailored to the region.  

To develop the experimental forecasting scheme, methods borrowed from the field of Machine 
Learning (ML) were utilised (Simon, 2013). The idea was to derive a general formal relationship (a 
‘model’ in the largest sense of the term), usually in the form of a mathematical transformation or set 
of rules, linking the predictors (climate drivers) to the predictands (seasonal rainfall and temperature 
forecasts), such as when presented with new observations of the predictors, the model would be 
able to successfully predict the value of the predictand.  
 

Regression approaches were briefly tested in the initial stages of the study. As the ultimate goal was 

to produce categorical probabilistic forecasts, classification algorithms were found to be the most 

suited method. 

After carrying out various analyses, it was established that the best classification pipeline involved 

using Sea Surface Temperature anomalies over a large Pacific domain (60°S, 40°N, 120°E, 70°W) as 

inputs. It was found that the accuracy of a forecast using this method for temperature was about 

61% for the region as a whole and varied between 62% and 67% for individual stations. For rainfall 

the forecast accuracy was about 60% for the region as a whole and varied between 56% and 63% for 

individual stations. It should be noted that as this forecasting scheme is based on tercile probabilities, 

the theoretical accuracy of a random forecast (i.e. if you were to guess at random) is 33%. 

The results of this study show that there is significant potential to operationally implement a tailored 

seasonal climate forecast for the Hawke’s Bay region. Tercile probabilities can be calculated for the 

whole region (based on the VCSN regional index) and/or for 12 rainfall stations and 3 temperature 

stations. Such a forecast could be evaluated alongside global dynamical models and the Seasonal 

Climate Outlook issued by NIWA (https://www.niwa.co.nz/climate/sco) to improve the management 

of climate sensitive activities in the region. The forecasting template developed in this study has the 

potential to be applied to other regions once it has been operationally validated. 

 

 

 

 

 

https://www.niwa.co.nz/climate/sco
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1 Introduction 
 

NIWA recently completed an Envirolink-funded study which identified a number of climate 
oscillations that influence seasonal rainfall and temperature in Hawke’s Bay (Fedaeff & Fauchereau, 
2015).  The South Pacific Subtropical Dipole (SPSD), the El Niño /Southern Oscillation (ENSO) and the 
Indian Ocean Dipole (IOD) were found to have statistically significant relationships with Hawke’s 
Bay’s climate. Having established that there is a relationship between these climate cycles and 
temperature and rainfall in the Hawke’s Bay, a follow up study was commissioned to explore the 
efficacy of a tailored seasonal forecasting scheme for the region.  

While short-term weather forecasts now have a high degree of reliability, probabilities associated 

with climate forecasts (long-range estimates of what will happen over the coming three months) are 

generally not as high. Despite this, seasonal climate forecasting is a rapidly developing area of 

science, and forecasts are becoming increasingly more accurate. In particular, when there is a strong 

driver present such El Niño, there is generally higher seasonal forecast accuracy. Seasonal climate 

forecasting has the potential to enable managers in climate affected sectors to reduce unwanted 

impacts or take advantage of favourable conditions. In New Zealand long-range forecasts are valued 

by many sectors, such as farmers, emergency services, regional planners and policymakers. The 

Hawke’s Bay Regional Council (HBRC) has identified weather and climate as having a far reaching 

effect on the Council’s operations in areas such as civil defence, flood protection work, land 

management and water allocation.   

There are several approaches to seasonal forecasting. Statistical predictions are based on regional 

historical relationships between physical variables such as temperature and precipitation with 

statistical models of varying degrees of sophistication. Dynamical prediction methods are a relatively 

recent endeavour and use complex dynamical numerical models of the main Earth system 

components (Troccoli, 2010). As dynamical models are very sophisticated and currently operate on 

coarse spatial scales, this report explores a range of statistical methodologies to produce seasonal 

forecasts for the Hawke’s Bay region and evaluates the performance of the best performing solution. 

The forecasting scheme presented in this study could be evaluated alongside global dynamical 

models and the Seasonal Climate Outlook issued by NIWA (https://www.niwa.co.nz/climate/sco) to 

improve the management of climate sensitive activities in the region. 

This report describes a tailored seasonal forecasting scheme for the Hawke’s Bay, including the 

components contributing to the forecasts and the methodologies which were explored to produce 

them. Additionally, the operational system requirements for forecast generation and delivery are 

described. 

 

https://www.niwa.co.nz/climate/sco
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2 Methodology 

2.1 Data availability and homogenisation 

The dataset used in this study is an extension of the dataset used in the initial report - Relationship 

between Climate Modes and Hawke’s Bay Seasonal Rainfall and Temperature (Fedaeff & Fauchereau, 

2015). Full details of data availability, quality control and homogenisation applied is detailed in the 

earlier report. 

Homogeneity tests carried out for the initial report identified 15 rainfall and 7 temperature sites 

which had records suitable for further analysis. For the purposes of the follow-up research, some of 

the homogenised records did not meet requirements for analysis. For rainfall, Hasting was excluded 

as 32% of data was missing. The Whanawhana, Te Wairere and the Tuai composite record was also 

not used as the data did not cover the 1981-2010 climatology period. For temperature, only Napier, 

Kopua and Wairoa had records with sufficient data. The sites chosen for analysis are displayed 

spatially in Figure 1 and listed in Tables 1 and 2. For several sites, composite climate records were 

created to extend the record length and fill missing gaps. Further information on data availability is 

included in Appendix A.  

 

Figure 1: Rainfall and temperature sites used for analysis. 
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Table 1: Rainfall records selected for analysis (shown in grey shading). 

Rainfall records 

Station Location Records 
Years of 
record Status 

Altitude 
(m) Notes 

    Begin End         

D87731 Erepeti 1/05/1928 31/03/2007 78 closed 405   

D87712 Onepoto 1/09/1890 31/05/1935 45 closed -   

D87812 Tuai 1/09/1923 28/02/2005 81 closed 274   

  Tuai composite 1/09/1923 31/03/2007 83       

                

D97031 
Wairoa, Waiputaputa 
Station 

1/04/1911 31/10/2015 104 open 29  Base period 1981-2010 

                

D96081 
Te Rangi 
Maungaharuru 

1/01/1919 31/12/1983 65 closed 335   

                

D96251 Te Wairere 1/01/1932 31/12/2007 76 closed 564 Daily record starts in April 1932.  

                

D96281 Tutira 1/11/1894 31/08/2004 110 closed 201   

D96282 Tareha 3/11/1949 31/03/2016 65 open 430   

  Tutira composite 1/11/1894 31/03/2016 122      Base period 1981-2010 

                

D96541 Whanawhana 1/01/1906 30/04/1984 78 closed 293   

                

D96653 Rose Hill 1/01/1954 31/03/2016 62   171 
Daily rainfall record starts in 1954. 
Base period 1981-2010 

                

D96591 Napier Nelson Park 1/01/1870 29/02/2016 146 open 2   

D96484 Napier Aero Aws 1/10/1990 31/03/2016 26 open 3   

  Napier composite 1/01/1870 29/02/2016 146      Base period 1981-2010. 

                

D96691 
Havelock Nth, Te 
Mata 

1/09/1889 28/02/1985 95 closed 140 Daily rainfall record starts in 1917 

- Kopanga Homestead 1/02/1938 29/02/2016 78 open -   

D96681 Hastings 1/01/1928 31/08/1966 38 closed 14   

  
Havelock North 
composite 

1/09/1889 29/02/2016 127     
Daily rainfall record starts in 1917. 
Base period 1981-2010. 

                

D96882 Anawai 1/07/1925 30/04/2014 88 open 442  Base period 1981-2010. 

                

D96741 Gwavas 1/09/1889 31/03/2016 124 open 244   

D96731 Smedley 1/11/1964 31/03/2015 50 open 457   

  Gwavas composite 1/09/1889 31/03/2016 127      Base period 1981-2010. 

                

D96951 Mt Vernon 2 1/02/1886 31/03/2016 130 open 155   

D06051 Waipukurau Aero 1/01/1945 31/07/1994 49 closed 137   

D96962 Waipawa EWS 28/07/2007 30/04/2016 7 open 130   

  Mt Vernon composite 1/02/1886 31/03/2016 130     Base period 1981-2010. 
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D06181 Aramoana 1/01/1907 29/02/2016 109 open 27 
Daily record begins in March 1907. 
Base period 1981-2010. 

                

D96891 Waimarama 1/08/1888 30/11/1989 100 closed 3   

                

D06452 
Tawadale, 
Wimbledon 

1/01/1946 30/09/1999 53 closed 107   

                

B96051 Tarawera 1/07/1908 31/08/1975 67 closed 497   

                

D96483 Eskdale Hedgeley 1/08/1894 31/03/2016 122 open 34  Base period 1981-2010. 

                

D96771 Koparakore 1/01/1902 30/04/2011 109 closed 48   

D96861 
Pukehou, Te Aute 
Station 

1/10/1892 31/07/1997 103 closed 107   

  
Koparakore 
composite 

1/01/1902 30/04/2011 109      Base period 1981-2010. 

                

D96925 Makaretu North 1/01/1960 31/12/2014 54 open 396   

                

D06062 Waiwhero Station 1/03/1951 31/12/2014 63 open 194   

                

D06142 Flemington 1/12/1958 31/03/2016 57 open 174   

D06151 Motuotaria 1/09/1910 1/06/1962 51 closed 62   

  
Flemington 
composite 

1/09/1910 31/03/2016 106      Base period 1981-2010. 

                

D96680 Hastings Aws 1/10/1981 30/04/2016 35 open 16   

D96688 Hastings Fire Station 1/09/1965 31/10/1981 16 closed 12   

  Hastings composite 1/09/1965 30/04/2016 51       

Table 2: Temperature records selected for analysis (shown in grey shading).

Temperature records 

Station Location Records 
Years of 
record Status 

Altitude 
(m) Notes 

    Begin End         

D87811 
Waikaremoana 
Onepoto 

1/06/1935 30/06/1990 18 closed 643 
Daily data not digitised prior to 
1972.  

                

D87812 Tuai 1/01/1982 8/07/1990 8 closed 274   

                

D97045 
Wairoa, North Clyde 
Ews 

31/07/1991 30/04/2016 25 open 15   

D97043 Wairoa Hospital 31/12/1971 31/07/1991 19 closed 20   

D97042 Wairoa, Frasertown 1/01/1964 31/10/1989 25 closed   Daily data not digitised prior to 1972 

  Wairoa composite 1/01/1964 30/04/2016 52     
Daily data not digitised prior to 
1972. Base period 1981-2010. 

                

D96591 Napier Nelson Pk 1/1/1870 29/02/2016 146 open 2   
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D96484 Napier Aero Aws 30/09/1990 30/04/2016 24 open 3   

D96481 Napier Aero 31/10/1973 20/03/1990 16 closed 2   

  Napier composite 1/01/1870 29/02/2016 146      Base period 1981-2010. 

                

D06051 Waipukurau Aero 20/12/1944 31/07/1994 49 closed 137  Base period 1961-1990. 

                

D96962 Waipawa Ews 28/06/1907 31/12/2014 7 open 130   

                

D96743 Gwavas Forest 1/01/1948 30/08/1989 40 closed 335 
Daily data not digitised prior to 
1972.  

                

D06022 Kopua 1/07/1962 31/03/2016 54 open 311 
Daily data not digitised prior to 
1972. Base period 1981-2010. 

                

D96680 Hastings Aws 1/10/1981 30/04/2016 35 open 16   

D96688 Hastings Fire Station 1/09/1965 31/10/1981 16 closed 12 Daily data not digitised prior to 1972 

  Hastings composite 1/09/1965 30/04/2016 50     
Daily data not digitised prior to 
1972. 

 

 

In addition to climate station data, NIWA also has access to the Virtual Climate Station Network 
(VCSN, see Tait et al., 2006, 2008). Temperature and rainfall indices for the Hawke’s Bay region as a 
whole were derived from the VCSN dataset. This was done by averaging the 533 VCSN agents (virtual 
stations) falling into the Hawke’s Bay region, i.e. including the Hastings, Central Hawke's Bay and 
Wairoa districts as well as Napier City (see Figure 2). 
 
Once the regional VCSN index was obtained, the same processing methodology that was applied to 
the station data was used. Compared to climate station data, the regional index offers the advantage 
of presenting a continuous record, and is also updated regularly by NIWA. The disadvantage is that 
the VCSN dataset only starts in 1972 which reduces the time period available for training statistical 
models.  
 
Correlations were calculated between time-series of seasonal rainfall anomalies, temperature 
anomalies and the respective regional index derived from the VCSN dataset over the overlapping 
time periods (See Figures 3 and 4). The results show that most stations are well correlated to each 
other as well as to the VCSN-derived regional index, indicating that interannual variability of seasonal 
rainfall tends to be homogeneous over the whole region. It is however to be noted that there are 
exceptions to this rule, i.e. some stations (e.g. Wairoa and Flemington) are relatively weakly 
correlated (R ~ 0.5, i.e. only 25% of common variance), but are still reasonably well-correlated to the 
Regional Index. 
 
As expected (but with the caveat that most stations present a large proportion of missing values), the 
spatial homogeneity is greater for temperature than for rainfall, with most correlation values 
exceeding 0.8. This also means that the Hawke’s Bay regional index for seasonal temperature is 
representative of all stations’ interannual variability. 
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Figure 2: Virtual Climate Stations in the Hawke's Bay Region 

 

 

Figure 3: Correlation matrix of seasonal rainfall anomlaies between climate stations (virtual and real) within the 
Hawke's Bay. 
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Figure 4: Correlation matrix of seasonal temperature anomlaies between climate stations (virtual and real) 
within the Hawke's Bay. 

 

2.2 Data Processing 

2.2.1 Calculation of anomalies 

For all stations and regional indices, the 3-month running mean (for temperature) or 3-month 
running accumulation (for rainfall) was first calculated to obtain overlapping 3-month ‘seasons’, i.e. 
JFM (January–March), FMA (February–April), etc. The anomalies were then calculated with respect to 
the 1981–2010 climatology (or ‘normal’).  
 
Note that the actual time-series of seasonal anomalies were only used in regression models for initial 
exploration and for some ancillary diagnostics (e.g. creating correlation matrices between stations 
time-series and with the respective Hawke’s Bay regional index from the VCSN, Figures 3 and 4). 
Time-series of anomalies were not used in the development of probabilistic categorical forecasts (see 
section 3.2).   
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2.2.2 Derivation of tercile categories 

Tercile categories (i.e. value of the 33rd and 66th percentile) were calculated over the climatology 
period of 1981–2010 using the time-series of 3-month means (temperatures) or accumulations 
(rainfall). The terciles were calculated independently for each 3-month ‘season’. 
 
Each season (3-month period) was classified into a category: 'below normal’ (below the 33rd 
percentile), ‘normal’ (between the 33rd and 66th percentile) or ‘above normal’ (above the 66th 
percentile). An integer flag (i.e. -1 for ‘below normal’, 0 for ‘normal’, 1 for ‘above normal’) was also 
assigned to the season for classification purposes.  
 

2.2.3 Derivation of the potential predictors 

In the previous report (Relationship between Climate Modes and Hawke’s Bay Seasonal Rainfall and 
Temperature) five large-scale climate oscillations (Interdecadal Pacific Oscillation (IPO), El Niño 
Southern Oscillation (ENSO), Southern Annular Mode (SAM), Indian Ocean Dipole (IOD) and the 
South Pacific Tropical Dipole (SPSD)) were reviewed and their relationship to rainfall and 
temperature in New Zealand and the Hawke’s Bay region was summarised. The indices 
representative of these main climate modes affecting the Southern Hemisphere were considered, 
and some potential for predictability was inferred from the statistical relationships that were 
analysed (Fedaeff & Fauchereau, 2015).  
 
While this approach shed light on the potential climate processes and modes affecting Hawkes Bay 
regional climate, it has some limitations when it comes to developing a statistical forecasting 
scheme, in particular:  
 

 The climate indices analysed in the initial report are in some cases correlated to each 

other. This is a problem for many statistical learning algorithms, which require 

statistical independence of the features (predictor time-series).  Figure 5 presents the 

correlation matrix between the SOI, the NINO3.4 SST index, the SPSD and the SAM 

monthly anomalies over the 1950-2014 period. Besides the obvious strong negative 

correlation between the SOI and NINO3.4, note that the SPSD also appears to not be 

independent from ENSO (correlation of 0.38 with the SOI, and -0.47 with NINO3.4). 

Based on previous work, it is also known that the SAM is partly correlated to ENSO 

during the Southern Hemisphere summer.  
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Figure 5: Correlation matrix between the SOI, the NINO3.4 SST index, the SPSD and the SAM monthly 
anomalies over the 1950-2014 period. 

 

 They only account for a limited subset of the potential modes of interannual variability 

suspected to operate in the climate system. 

In other words, the ‘ideal’ predictors need to be time-series that are both statistically independent 
and, taken together, represent a large part of the variance of the global or regional coupled ocean-
atmosphere system.  
 
Taking these requirements into consideration, Empirical Orthogonal Function decomposition (EOF, 
also known as Principal Component Analysis or PCA) was the preferred method of analysis. Hannachi 
et al. (2007) provides further information about the use of Empirical Orthogonal Function 
decomposition. In short, EOF analysis decomposes (in this particular case) the time-evolution of a 
climate field (varying along dimensions of time, latitude and longitude) in a set of statistically 
independent modes, each combining a spatial pattern (the ‘EOF’) and a time-series (the Principal 
Component - ‘PC’) describing the evolution over time of this pattern in sign and amplitude.  
 
The use of this method reduces the dimensionality of the original dataset (which is the size of the 
number of latitudes times the number of longitudes in this case) to a set of PCs, which can then be 
viewed as ‘synthetic variables’. Usually about 10–20 PCs are sufficient to explain more than 80% of 
the original field’s total variance. In this study we considered the PCs associated with EOF analyses 
performed on Sea Surface Temperature (SST) alone or SSTs combined with Geopotential height at 
850 hPa (i.e. the height of the 850hPa isobar, noted as ‘Z850’ hereafter) over several spatial domains 
as potential predictors. In all cases enough PCs were kept to explain > 80% of the original variance, 
i.e. capturing the essential spatial-temporal signals contained in the SST field or the combined SST–
Z850 fields.  
 
The SST data used in this analysis come from the NOAA ERSST V4 dataset (Huang et al., 2015, 2016). 
The NOAA Extended Reconstruction Sea Surface Temperature (ERSST) provides global, spatially 
complete SST data at a monthly time step and a 2 degree spatial resolution for the period 1854–
present. In this study, only the post 1950 high quality data period has been considered.  
 
The Z850 data come from the NCEP/NCAR Reanalysis dataset (aka NCEP R1, see e.g. Kalnay et al., 
1996). A reanalysis is a meteorological data assimilation project which aims to assimilate historical 
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observational data spanning an extended period, using a single consistent assimilation (or "analysis") 
scheme throughout. It provides physically-consistent gridded atmospheric variables, and – in the 
case of the NCEP R1 dataset – it is updated regularly, making it suitable to use for operational 
purposes. Most variables are available on a 2.5 degree grid, from 1948 to present. Again we selected 
the high quality data period post 1950. 
 
For the SST and SST-Z850 analyses, three spatial domains were considered (Figure 6):  
 

 The Tropical Pacific domain (40°S, 40°N, 120°E, 70°W) 

 The New Zealand domain (65°S, 10°S, 145°E, 160°W) 

 The large-scale Pacific domain (which includes the NZ domain) (60°S, 40°N, 120°E, 

70°W) 

 

Figure 6: Spatial domains used for Principal Component Analysis. 

 
For both SSTs and Z850, the following processing was applied:  
 

 The high quality observational period January 1950 – March 2016 was selected. 

 Monthly anomalies were calculated relative to the 1981–2010 climatology.  

 The long-term trend was removed. This step was particularly important in the case of 

the SSTs, which present a significant long-term warming trend over the period 

considered. An example of this can be seen in Figure 7, which presents the time-series 

of SSTs averaged over the larger Pacific domain (60°S, 40°N, 120°E, 70°W) respectively 

with and without the linear trend removed from the individual grid-points time-series. 

 The time-series of monthly detrended anomalies were standardised (mean = 0, 

standard deviation=1) 

 The resulting matrix was weighted by the square root of the cosine of the latitude, to 

account for the varying area represented by each grid-point.  
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 The EOF analysis was performed, and the number of PCs sufficient to explain at least 

80% of the variance in the analysed field were kept. 

A selection of figures showing the EOFs (spatial patterns) and PCs (time-series) coming from the EOF 

analyses performed respectively on SST monthly anomalies over the larger Pacific domain, the 

combined SST- Z850 monthly anomalies over the larger Pacific domain, and the combined SST-Z850 

monthly anomalies over the regional New Zealand domain can be seen in Appendix B. 

In addition, for some of the experiments, the set of PCs was extended to include lagged versions of 
themselves, i.e. PCs are lagged in time so that all PCs up from 1 to 6 months prior to the month of the 
observation are included into the predictor set in addition to the original PCs. 

 

 

Figure 7: Sea surface temperature anomalies (°C) over the larger Pacific domain with and without long-term 
trend removed. 

 

2.3 Developing a statistical forecasting scheme for Hawke’s Bay 

2.3.1 General approach 

To develop this experimental forecasting scheme, methods borrowed from the field of Machine 

Learning (ML) were utilised (Simon, 2013). In our case the predictand (also called ‘target variable’ in 

ML, or ‘dependent variable’ in statistics) consists of an individual time-series of seasonal precipitation 

or temperature anomalies or tercile categories (‘below normal’, ’normal’, ’above normal’) at an in-

situ climate station or derived from a regional index calculated from the VCSN dataset. The 

predictors (usually called ‘features’ in ML, or ‘independent variables’ in statistics) are either the time 

series of climate mode indices as described in the initial Hawke’s Bay climate modes report (Fedaeff 

and Fauchereau, 2015) or the PCs coming from the EOF analyses summarized in Section 2.2.3, lagged 

in time so that the predictors lead the predictands by 0 or 1 months.  

The idea was to derive a general formal relationship (a ‘model’ in the largest sense of the term), 

usually in the form of a mathematical transformation or set of rules, linking the predictors to the 

predictands, such as when presented with new observations of the predictors, the model would be 

able to successfully predict the value of the predictand.  

This very general problem is amenable to two broad approaches: regression and classification, both 

fall into the class of supervised learning algorithms. 
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In regression, for a predictand y and (a set of) predictors X the goal is to find a function y’ = f(X) such 

as the difference (measured usually in terms of sum of squared differences) between y’and y is 

minimized. In regression the forecast value is a continuous variable (i.e. in this particular case, 

temperature anomaly in °C, or rainfall anomaly in mm). 

In classification, a learning algorithm is presented with a set of features (the predictors) and 

corresponding labels or classes (the predictand; i.e. here the observed categories: ‘below normal’, 

‘normal’, ‘above normal’). Given a new vector of features, the goal is to predict the new class, or – 

more interestingly – the probabilities that the new observation belongs to each class. In the context 

of seasonal climate prediction, the classes are categories, bounded by real values, resulting from the 

continuous values of the predictand (seasonal values). Such a transformation (from continuous to 

categorical variable) yielding distinct classes can be performed based on the distribution of the 

predictand (e.g. percentiles scores) or determined a priori. Here the categories are defined according 

to terciles determined over the climatological period (1981–2010), this definition is adopted by NIWA 

for the New Zealand Seasonal Climate Outlook (https://www.niwa.co.nz/climate/sco); more details 

are given in Section 2.2.  

Regression approaches were only briefly tested in the initial stages of the study. As the ultimate goal 

is to produce categorical probabilistic forecasts, classification algorithms was the most suited 

method. To some extent, the results of regression models can be cast back into the corresponding 

terciles categories, but obtaining terciles probabilities from regression results is not straightforward 

and requires a number of assumptions. For these reasons, the results of the regressions approaches 

are explored only briefly in the study. 

 

2.3.2 ‘Evolving’ the best forecasting pipeline  

Many different ML algorithms exist for the classification problem we are faced with (predicting a 

probability to belong to a class given a set of predictors).  

It is beyond the scope of this report to describe at length the specificities of each algorithm that we 

have tested.  In short, both single classifiers, as well as some so-called ‘ensemble’ methods were 

tested. In ensemble methods, several simple classifiers are trained on different subsets of the data, 

and the resulting class prediction is obtained via e.g. a majority rule or the average prediction of the 

individual classifiers. Ensemble methods aim at improving the generalizability and the robustness 

over single classifiers. 

Below is a list of the different ML algorithms that we have considered and tested in this study: 

 Single classifiers  

− Support Vector Machine (SVM) – Cortes & Vapnik, (1995) 

− Decision tree – Quinlan, (1987) 

− k-nearest neighbor – Altman, (1992) 

− Logistic regression (which despite its name is a classification method) – James et 

al. (2014) 

 Ensemble methods –  based on randomized decision trees (Breiman, 1998) 
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− Random Forest – see e.g. Ho, (1998), Breiman, (2001) 

− Extremely Randomized Trees (or extra-tree) classifier (Geurts et al, 2006) 

Both of these methods use decision trees as their base classifier and combine the individual 

classifiers by averaging their probabilistic prediction, but differ in the details of how the splits on 

which the single decision trees are trained are computed. 

We invite the reader to refer to the excellent documentation of the Python Machine Learning library 

‘scikit-learn’, which provides high-level interfaces to most Machine Learning algorithms (Pedregosa, 

2011). We especially refer the reader to the section on Supervised Learning, available at: 

http://scikit-learn.org/stable/supervised_learning.html#supervised-learning. 

Beyond the choice of the potential predictor set and the choice of the algorithms, other choices need 

to be made, and therefore tested, notably:  

 The choice between different options for scaling the predictors: i.e. in ML, for many 

models (especially linear estimators) it is usually a good idea to scale the predictors, 

but many different types of scalers are available, i.e. a standard scaler (mean 0, stdev 

to 1) or a min-max scaler, etc. 

 The potential processing of the features (predictors): i.e. features combination via e.g. 

polynomial functions, pruning via features selection, etc. 

 The choice of different tuning parameters (or hyperparameters), which are the 

parameters of the model that are not learned from the data, but must be set a priori 

by the user, (i.e. the regularization parameter in Logistic Regression, the depth 

parameter in a Decision Tree, the kernel type (e.g., linear, Radial Basis Functions) in 

Support Vector Machine).  

It then becomes obvious that the space of all available ‘pipelines’ (i.e. set of combinations of 

predictor sets, predictors scaling and processing, classification algorithms, multi-dimensional vector 

of hyper-parameters) becomes extremely large and mostly intractable computationally, precluding a 

systematic evaluation of all the possible combinations to determine the ‘optimal’ pipeline.  

In this study, we used genetic programming methods (Olson et al., 2016) to essentially ‘evolve’ the 

best prediction pipelines. A comprehensive treatment of this approach is also beyond the scope of 

this document, but in a nutshell genetic programming belongs to the larger class of evolutionary 

algorithms (EA), which generate solutions to optimization problems using techniques inspired by 

natural evolution, such as inheritance, mutation, selection and crossover. In this particular case, the 

possible choices for all the components of a prediction pipeline can be considered as individuals in a 

population, allowed to ‘mutate’ and ‘reproduce’, with the ‘fitness’ of a solution evaluated according 

to a criteria, in this case the forecast accuracy. 

 

2.3.3 Evaluation of the prediction pipeline’s accuracy  

Once the best prediction pipeline was evolved, the performance of the latter was evaluated 

independently using stratified k-fold cross-validation in order to have a more robust estimation of 

the true predictive power of the pipeline. 

http://scikit-learn.org/stable/supervised_learning.html#supervised-learning
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In stratified k-fold cross validation, the dataset, consisting of the features (predictors) and the target 

(predictand) restricted to January 1950 – December 2014, is divided N times (in this particular 

instance, we’ve chosen N=1000) into a training set and a testing set. Here the training set is chosen 

to represent 80% of the data, and the testing set the remaining 20%. The particular instances 

(samples, observations) in the training and testing sets are chosen at random with the constraint that 

the random draw respects as much as possible the class distribution: i.e. in the case of tercile 

categories as considered here, the proportion of each class (target) in the training and testing sets 

should be approximately 33%, to ensure that the algorithm is trained using a balanced dataset. 

For each of the 1000 iterations, the evolved pipeline (potentially including scaling, features selection 

or combination, algorithm fitting with optimized hyperparameters) is trained using only the 

observations in the training set, then evaluated independently over the testing set. 

The evaluation metric used here is simply the accuracy (i.e. the proportion of samples in the testing 

set that have been correctly classified). A forecast was deemed correct if the tercile with the highest 

probability of occurrence eventuated. The accuracy can vary between 0 (i.e. all samples are mis-

classified) to 1 (all samples are correctly classified, a perfect forecast) and usually expressed in 

percentage. We must remember that the accuracy needs to be compared to what would be a 

‘climatological’ forecast, obtained by guessing randomly the class attribution of each sample. Given 

the class distribution, such a ‘random’ forecast would give (when numerous samples are considered) 

a mean accuracy of ~ 0.33 (33%) as we have – by construction – three equiprobable classes (‘below 

normal’, ‘normal’, ‘above normal’). Because the climate system is a complex dynamical system, it is 

theoretically impossible to obtain 100% forecast accuracy, but a reasonable forecast accuracy would 

need to exceed 33% to be of any practical use for decision-making and risk management. 

In order to represent the potential variations in forecast accuracy, the results show not only the 

average forecast accuracy across the 1000 iterations of the stratified k-fold cross-validation exercise 

but also its distribution and a non-parametric fit using Gaussian Kernel Density Estimation (KDE).  

2.3.4 Independent evaluation of the prediction pipelines over the recent period (January – 
December 2015)  

In addition to the evaluation of the forecast accuracy using stratified k-fold cross validation over the 

1950–2014 period (for the climate station data) or the 1972–2014 (for the VCSN-based regional 

indices) period, we also evaluated the accuracy of the prediction pipelines independently for the 

January–March 2015 to October–December 2015 seasons for the VCSN-based regional indices.  

 

3 Results 
Prior to the results on the classification pipelines, we present very briefly below the methods and 

results from the initial analyses using regression approaches: i.e. whereby the predictand is the time-

series of seasonal temperatures anomalies (in °C) and precipitation (in mm).  

3.1 Some results from regression modelling 

For the regression analyses, we used both the climate indices that were investigated in the initial 

Hawke’s Bay climate report (ENSO, IOD, SAM, SPSD (The IPO was not considred due to the long time-

scale of this cycle); Fedaeff and Fauchereau, 2015) and the PCs coming from the EOF analyses on SST 

and combined SST-Z850 fields (Section 2.3) as potential predictors.  
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The indices were considered individually rather than in combination as they are, to some extent, 

correlated to each other (see Figure 5), a property undesirable for the independent variables of many 

regression algorithms. In contrast, the PCs coming from the EOFs on SSTs or joint SST-Z850,  are by 

construction orthogonal to each other and therefore uncorrelated (at 0 lag, some complex lead-lag 

linear relationships between PCs maybe observed, but will be of no concern here). 

The results of the regression analyses have been evaluated using Leave One Out cross-validation (i.e 

the regression model is successively fitted using all but one observation, and predicts the left-out 

sample) and the metric used is simply the correlation coefficient between the vectors of observed 

and predicted values.  

In all cases presented here, seasonal averages were calculated from the monthly anomalies, and a lag 

of 0 month was applied, e.g. the prediction of the seasonal rainfall or temperature for the June-July-

August period is carried out using the climate mode indices or the PCs up to and including May. 

3.1.1 Regression using climate modes indices as predictors 

In all cases (i.e. either Hawke’s Bay regional VCSN-based indices or climate station rainfall and 

temperatures), the correlation coefficients between observed and predicted values barely exceeded 

0.4. This confirmed our initial assessment that indices of climate modes are not necessarily the best 

choice in building a forecasting model. While they reveal potential mechanisms at play, they most 

likely do not represent a large enough part of the total variance of the climate system to be used as 

predictors operationally. 

3.1.2 Regressions using SST or SST-Z850 PCs as predictors 

We tested several regression methods using, successively, the available sets of PCs coming from the 

EOF analyses on SST or joint SST-Z850 fields as potential predictors. We excluded the sets that 

included the lagged (i.e. from -1 to -6 months) versions of the PCs, as in this case the variables 

included in the predictor set are not statistically independent (i.e. a PC is significantly correlated to 

itself at lag of 1 – 6 months).  

Because the number of features can be large for some sets (generally > 10 PCs), we also tested two 

methods that penalise for the complexity of the model: the so-called ‘Ridge-regression’ (or Tikhonov 

regularization) method tries to reduce the size of the coefficients (Hoerl & Kennard, 1970), while the 

LASSO (Least Absolute Shrinkage and Selection Operator) method also tries to reduce the size of the 

coefficients and/or return sparse coefficients (Kukreja et al., 2006). 

In addition to these linear methods (Linear Regression and its penalised versions: Ridge Regression 

and LASSO) we also tested Random Forest Regression; an extension of the Random Forest 

classification method to regression problems. 

Of all the regression methods and the sets of PCs, a Random Forest Regression model using the set of 

PCs coming from the EOF on monthly SST anomalies over the larger Pacific domain (60°S, 40°N, 

120°E, 70°W) performed the best. The mean correlation coefficient (between predicted and 

observed values, using Leave One Out cross-validation) was 0.78 for seasonal temperatures and 0.7 

for seasonal rainfall when the Hawke’s Bay regional indices (VCSN based) were considered as 

predictands. Figures 8 and 9 present respectively the corresponding scatterplots of predicted vs. 

observed seasonal temperature and rainfall anomalies.  
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Figure 8: Predicted vs. observed seasonal temperature anomalies (using Leave-One-out cross validation) for the 
Hawke’s Bay regional VCSN-based index. 

 

Figure 9: Predicted vs. observed seasonal rainfall anomalies (using Leave-One-out cross validation) for the 
Hawke’s Bay regional VCSN-based index. 
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For individual stations, regression models generally yield slightly lower correlations (note that to 

allow for comparison with the Hawke’s Bay VCSN-based regional indexes, the station time-series 

were truncated to consider only data from 1972).  

Correlation coefficients between predicted and observed station seasonal rainfall ranged from 0.64 

(Aramoana) to 0.69 (Anawai). 

For seasonal temperatures, correlation coefficients varied between 0.75 (Wairoa and Kopua) and 

0.77 (Napier). As an illustration, Figures 10 and 11 show the scatterplots of predicted vs. observed 

seasonal rainfall and temperature anomalies (using Leave-One-out cross validation) for Napier.  

 

 

Figure 10:  Predicted vs. observed seasonal rainfall anomalies (using Leave-One-out cross validation) for Napier. 
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Figure 11: Predicted vs. observed seasonal temperature anomalies (using Leave-One-out cross validation) for 
Napier 

 

While these results are encouraging, one must keep in mind that Random Forest Regressors are 
known for overfitting when used for regression. Moreover, while the transformation from a 
continuous forecast into terciles categories (‘below normal’, ‘normal’, ‘above normal’) is trivial, 
estimating the probabilities associated with each category is not straightforward. 

 

3.2 Results using classification pipelines 

A detailed exposition of all the results for all the combinations of potential predictors and 

predictands would be too lengthy, so only the best results are presented here. 

For classification, we first considered the Hawke’s Bay regional indexes from the VCSN dataset, and 

then the climate station data (as was done for regression analysis). 

Different pipelines were optimized by use of genetic programming using the PCs coming from the 

EOF analyses on SST monthly anomalies and joint SST- Z850 monthly anomalies as predictor sets. In 

all cases presented here, seasonal averages were calculated from the monthly PC values, and a lag of 

0 months was applied, e.g. the prediction of the seasonal rainfall or temperature category for the 

June-July-August period was carried out using the PCs up to and including May. 

From an operational perspective, this means that forecasts can be made available within the first 5 

days of the first month of the forecast, allowing for the lag to real-time of the SST and/or Z850 

datasets (e.g. in the case of SST, the ERSST dataset is usually updated on the 5th day of each month).  



Towards the Development of Tailored Seasonal Forecasts for the Hawke’s Bay Region - 23 - 

3.2.1 Hawke’s Bay regional rainfall index results 

The best prediction pipeline for the Hawke’s Bay region VCSN-derived rainfall index was obtained 
using the lagged PCs from the EOF analysis of monthly SST anomalies in the larger Pacific domain 
(60°S, 40°N, 120°E, 70°W). The mean accuracy over the 1000 folds was ~61%. Figure 12 presents the 
full distribution of the accuracy scores, as well as a Kerned Density Estimation of the true 
distribution.  
 

 

Figure 12: Full distribution of the accuracy scores, as well as a Kerned Density Estimation of the true 
distribution for the best prediction pipeline for the Hawke’s Bay region VCSN-derived rainfall index. This was 
obtained using the lagged PCs from the EOF analysis of monthly SST anomalies in the larger Pacific domain 
(60°S, 40°N, 120°E, 70°W). 

 

The independent validation of the same classification model over the period January–March 2015 to 
October–December 2015 however gave an accuracy score of ~50%. This is below the average of the 
forecast accuracy that was obtained over the development set (1972–2014). 
 

3.2.2 Hawke’s Bay station rainfall results 

For the 12 selected rainfall stations (Table 1) all seasons available after January–March 1950 to 

present were considered in building and testing the classification pipelines.  
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In order to reduce the computational requirements, 100 iterations for the cross-validation procedure 

were used instead of 1000. Comparisons indicated that this did not significantly affect the validity of 

the results. 

The mean accuracy of seasonal rainfall forecasts varied between ~56% and ~63% depending on the 

station. Figure 13 shows the distribution of the accuracy scores for Napier (Nelson Park) (lowest 

accuracy at 56.22%) and Anawai (highest accuracy at 63.28%). Table 3 gives the mean accuracy 

obtained for each of the rainfall stations. 

 

Figure 13 Full distribution of the accuracy scores, as well as a Kerned Density Estimation of the true distribution 
for the best prediction pipeline for the Napier and Anawai rainfall stations. This was obtained using the lagged 
PCs from the EOF analysis of monthly SST anomalies in the larger Pacific domain (60°S, 40°N, 120°E, 70°W). 

 

Table 3: Mean accuracy obtained for each of the rainfall stations using the lagged PCs from the EOF analysis of 
monthly SST anomalies in the larger Pacific domain (60°S, 40°N, 120°E, 70°W). 

Station (rainfall) Mean accuracy (%) 

Anawai 63.28 

Aramoana 58.77 

Eskdale Hedgeley 58.28 

Flemington composite 59.14 

Gwavas composite 57.68 

Havelock North composite 59.09 

Koparakore Patangata 58.03 

Mt Vernon composite 56.55 

Napier composite 56.22 

Rose Hill 57.26 

Tutira composite 56.86 

Wairoa,Waiputaputa Stn 58.20 
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3.2.3 Hawke’s Bay regional temperature index results 

As was the case for rainfall, the best prediction pipeline for the Hawke’s Bay region VCSN-derived 
temperature index was obtained using the lagged PCs from the EOF analysis of monthly SST 
anomalies in the larger Pacific domain. The mean accuracy of seasonal temperature forecasts over 
the 1000 folds was ~61%. Figure 14 presents the full distribution of the accuracy scores, as well as a 
Kerned Density Estimation of the true distribution. Note that the accuracy scores are less widely 
distributed than for the Hawke’s Bay region VCSN-derived rainfall index (see Figure 12). This indicates 
that it is reasonable to expect the seasonal mean temperature forecasts to be more consistent (i.e. 
the accuracy can be expected to present less variability) than the rainfall forecasts when 
operationalised.  

 

 

Figure 14: Full distribution of the accuracy scores, as well as a Kerned Density Estimation of the true 
distribution for the best prediction pipeline for the Hawke’s Bay region VCSN-derived temperature index. This 
was obtained using the lagged PCs from the EOF analysis of monthly SST anomalies in the larger Pacific domain 
(60°S, 40°N, 120°E, 70°W). 

 
The independent validation of the classification model over the period January–March 2015 to 
October–December 2015 gave an accuracy score of 72%. This is above the average accuracy obtained 
by cross-validation over the development set (1972–2014). 

 

3.2.4 Hawke’s Bay station temperature results 

The same methodology was applied to analyse station temperature records as was done for rainfall 

in Section 3.2.2. Only 3 stations could be considered for seasonal mean temperatures: Kopua, Napier 

and Wairoa. 
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Figure 15 presents the distributions of the accuracy scores for the three temperature stations and 

Table 4 gives the mean accuracy obtained at each site. 

 

 

 

 

 

 

 

 

 

Figure 15: Full distribution of the accuracy scores, as well as a Kerned Density Estimation of the true 
distribution for the best prediction pipeline for the Kopua, Wairoa and Napier temperature stations. This was 
obtained using the lagged PCs from the EOF analysis of monthly SST anomalies in the larger Pacific domain 
domain (60°S, 40°N, 120°E, 70°W). 

 

Table 4 Mean accuracy obtained for each of the temperature stations using the lagged PCs from the EOF 
analysis of monthly SST anomalies in the larger Pacific domain domain (60°S, 40°N, 120°E, 70°W). 

Station (TMean) Mean accuracy (%) 

Kopua 66.75 

Napier composite 64.25 

Wairoa composite 62.72 

 

4 Conclusions 
 
After carrying out various analyses, the results show that there is significant potential to implement 
an operationally tailored seasonal climate forecast for the Hawke’s Bay region. 
 
For seasonal mean temperature, a reasonable accuracy was obtained when the set of lagged PCs 
associated with an EOF analysis on SST anomalies over the larger Pacific domain was used as a set of 
predictors, and the extra-tree classifier (extremely randomized Trees) was used as the prediction 
algorithm. The accuracy was about 61% for the Hawke’s Bay region VCSN-derived temperature index, 
and varied between ~62 and ~67% for individual stations (with the caveat that only three stations 
were available for temperatures). It should be noted that as this forecasting scheme is based on 
tercile probabilities, the theoretical accuracy of a random forecast (i.e. if you were to guess at 
random) is 33%. 
 
For seasonal cumulative rainfall, the best selected pipeline included the same classification algorithm 
(extra-trees classifier) and set of predictors as for temperature. The accuracy was slightly lower than 
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for seasonal temperatures (~60 % for the Hawke’s Bay regional index, and varying between 56% and 
63% for the station rainfall), it also shows a larger variability between the iterations of the cross-
validation procedure, and the model did not perform as well for the post-2015 independent 
validation period. 
 
We carried out a quick comparison of these results and the NIWA Seasonal Climate Outlook (SCO). 
The NIWA SCO provides a forecast for 6 regions in New Zealand. Hawke’s Bay falls into the “East of 
the North Island” region (which also includes Gisborne and Wairarapa). From May 1999 to present, 
the forecast provided by NIWA’s SCO for the East of the North Island was correct 46% of the time for 
temperature and 52% of the time for rainfall when applied to the Hawke’s Bay region (using the 
VCSN index for validation). The methodology used to calculate the accuracy of the SCO differs slightly 
to how the accuracy was calculated for the forecasting scheme in this report. The comparison 
presented here is provided as a quick guideline and a more thorough validation may be required. 
 
If the scheme presented developed in this study was operationalised, forecasts would be expressed 
as tercile probabilities (i.e. probability of seasonal cumulative rainfall and seasonal mean 
temperatures falling in the ‘below normal’, ‘normal’ or ‘above normal’ categories) for the whole 
region (based on the VCSN index) and/or for 12 rainfall stations and three temperature stations. 
 
These forecasts could be made available on the 5th day of each first month of the 3-month ‘season’ 
(i.e. forecast for July-August-September could be made available on the 5th of July). An earlier (e.g. 
towards the end of June) release could possibly be implemented if deemed necessary by using 
preliminary Sea Surface Temperature data derived from available daily near-realtime datasets.  
 
A simple operationalisation of this statistical forecasting schemes would involve:  
 

i) Scheduled download and processing of the SST data, and updating of the PCs values;  
ii) Processing of the updated PC set (i.e. calculation of the last 3-months anomalies, 
standardization); 
iii) Feeding the updated PC values into the classification models: one model is trained for 
each variable (Rainfall, Temperature) and each station as well as each Hawke’s Bay regional 
index (one for rainfall and one for temperature), i.e. a total of 12+1 models for rainfall, and 
3+1 models for temperature; 
iv) Delivering the tercile probabilistic forecasts for the Hawke’s Bay region and for the 
individual stations: this could take the form of tables, pie-charts, and – in the case of 
station-based forecasts – could possibly be visualised as an interactive map (an example of 
interactive map, developed for Samoa for another project, is available at: 
https://rawgit.com/nicolasfauchereau/drought_risk/master/notebooks/map.html)  

 
Ideally, and for the purpose of continuous ‘real-time’ validation of the forecasts, the time-series of 
observed temperatures and rainfall also need to be updated on a regular basis. This could be easily 
achieved for the VSCN rainfall and temperature index but not for station data as the majority of 
climate stations in the region are manual. Because of this it takes at least two months for it to be 
entered in the National Climate Database (http://cliflo.niwa.co.nz/). 
 
We propose that upon reaching a suitable agreement between NIWA and HBRC, an experimental 
operational scheme could be implemented as early as September 2016, and delivery of the forecasts 
to the Hawke’s Bay regional council to start from October 2016. We would recommend that release 
of forecasts to the public is delayed until value (i.e. reasonable forecast accuracy) is demonstrated 
over a period of six months. The accuracy of this forecast could also be evaluated against the 
performance of the NIWA Seasonal Climate Outlook.  

https://rawgit.com/nicolasfauchereau/drought_risk/master/notebooks/map.html
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Appendix A Climate station data availability 
 
 
For rainfall, the Hastings record was excluded for further analysis as 32% of data was missing. The Whanawhana, 
Te Wairere and the Taui Erepeti composite records were also not used as data did not cover the 1981–2010 
climatology period. For temperature only Napier, Kopua and Wairoa had records with sufficient data. 
 
 
 

Rainfall data availability Temperature data availability 
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Appendix B Selection of outputs from EOF analyses 
 
Below is a selection of Figures showing the EOFs (spatial patterns) and PCs (time-series) coming from the EOF 
analyses performed respectively on SST monthly anomalies over the larger Pacific domain, the combined SST-
Z850 monthly anomalies over the larger Pacific domain, and the combined SST-Z850 monthly anomalies over the 
regional New Zealand domain. In all cases the EOF (spatial patterns) are expressed as correlations between the 
corresponding PC and the original field, and the PCs are expressed in standardized units.  
 

 
 
 
The Figure above presents the 1st EOF / PCs coming from the EOF analysis of monthly SST anomalies over the 
larger Pacific domain (60°S, 40°N, 120°E, 70°W). The oceanic component of the El Niño Southern Oscillation 
pattern is clearly recognizable. This mode explains more than 22% of the original variance contained in the 
original field of detrended monthly SST anomalies. 
 

 
 
The Figure above presents the spatial patterns (EOFs, respectively for SST on the left and Z850 on the right) and 
time-series (PC, bottom) from the EOF analysis performed on the combined SST and Z850 fields for the larger 
Pacific domain. The SST pattern is indistinguishable from the EOF on SSTs alone (see above), while the spatial 
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pattern for Z850 represents the Southern Oscillation, i.e. the atmospheric component of the El Niño Southern 
Oscillation, usually monitored by the Southern Oscillation Index (standardized difference between MSLP in Tahiti 
and Darwin).  
 

 
 

The Figure above presents the spatial patterns (EOFs, respectively for SST on the left and Z850 on the right) and 

time-series (PC, bottom) from the EOF analysis performed on the combined SST and Z850 fields for the regional 

New Zealand domain. The EOF pattern for SST shows negative  SST anomalies to the north and around NZ and 

positive SST anomalies to the southeast of the domain. These SST anomalies are associated with higher pressures 

than normal over Australia and north Tasman and negative pressure anomalies to the SE. Together these patterns 

mainly consist in the regional expression of the ENSO signal. The corresponding PC is correlated at +0.73 with the 

1st PC of the combined SST-Z850 fields in the Pacific region (i.e. the coupled ENSO signal) and +0.58 with the 

standard NINO 3.4 SST index. 

 
 


