
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Biomimetic Software Engineering

Techniques for Dependability

Robert Feldt

Department of Computer Engineering

School of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, SWEDEN, 2002

Biomimetic Software Engineering Techniques for Dependability
Robert Feldt

ISBN 91-7291-241-3

Copyright © 2002 Robert Feldt, All Rights Reserved

Doktorsavhandlingar vid Chalmers tekniska högskola

Ny serie 1923

ISSN 0346-718X

School of Computer Science and Engineering

Chalmers University of Technology

Technical Report 9D

Department of Computer Engineering

School of Computer Science and Engineering

Chalmers University of Technology

SE-412 96 Göteborg

Tel. +46(0)31-7721000

www.ce.chalmers.se

Author email: feldt@ce.chalmers.se

Vasa Bokbinderi

Göteborg, Sweden, 2002

for Mirjana

my love, light and passion…

Biomimetic Software Engineering
Techniques for Dependability
Robert Feldt

Department of Computer Engineering,Chalmers University of Technology

Abstract

The powerful information processing capabilities of computers have made them an
indispensable part of our modern societies. As we become more reliant on computers
and want them to handle more critical and difficult tasks it becomes important that
we can depend on the software that controls them. Methods that help ensure software
dependability is thus of utmost importance.

While we struggle to keep our software dependable despite its increasing com-
plexity, even the smallest biological system in nature shows features of dependability.
This thesis applies ideas from and algorithms modeled after biological systems in the
research for and development of dependable software.

Based on a theory of software development focusing on the internal models
of the developer and how to support their refinement we present a design for an
interactive software development workbench where a biomimetic system searches for
test sequences. A prototype of the workbench has been implemented and evaluated in
a case study. It showed that the system successfully finds tests that show faults in both
the software and its specification.Like biological systems in nature exploits a niche in
the environment the biomimetic search system exploits the behavior of the software
being developed.

In another study we applied genetic programming to evolve programs for an
embedded control system. Although the procedure did not show much potential for
use in real fault-tolerant software, the program variants could be used to visualize the
difficulty of the problem domain, explore the effects of design decisions and trade
off requirements.

Taken together the works in this thesis support the claim that biomimetic algo-
rithms can be used to explore requirements, design and test spaces in early software
engineering phases and thus help in building dependable software.

Keywords: biomimetic algorithms, software testing, automated testing, software de-
velopment workbench, evolutionary computation, genetic programming, dependabil-
ity, software engineering, design exploration, software visualization

iv

List of Papers

This thesis is based on the following papers:

1. Robert Feldt.A Theory of Software Development, Technical Report no. 02-22,
Department of Computer Engineering, Chalmers University of Technology,
Gothenburg, Sweden, November 2002.

2. Robert Feldt.An Interactive Software Development Workbench based on
Biomimetic Algorithms, Technical Report no. 02-16, Department of Computer
Engineering,Chalmers University of Technology,Gothenburg,Sweden,Novem-
ber 2002,a condensed version of this report has been submitted toIEEE Trans-
actions on Evolutionary Computation.

3. Robert Feldt.An Experiment on Using Genetic Programming to Develop Multi-
ple Diverse Software Variants, Technical Report no. 98-13, Department of Com-
puter Engineering, Chalmers University of Technology, Gothenburg, Sweden,
September 1998.

4. Robert Feldt.Genetic Programming as an Explorative Tool in Early Software
Development Phases, Proceedings of the 1st International Workshop on Soft
Computing Applied to Software Engineering, pp. 11-21, Limerick, Ireland,
12th-14th April, 1999.

5. Robert Feldt.Forcing Software Diversity by Making Diverse Design Decisions
- an Experimental Investigation, Technical Report no. 98-46, Department of
Computer Engineering, Chalmers University of Technology, Gothenburg,
Sweden, December 1998.

6. Robert Feldt and Peter Nordin.Using Factorial Experiments to Evaluate the Ef-
fect of Genetic Programming Parameters, In Riccardo Poli, Wolfgang Banzhaf,
William B. Langdon, Julian F. Miller, Peter Nordin, and Terence C. Fogarty,
editors, Genetic Programming, Proceedings of EuroGP’2000 , volume 1802 of
LNCS , pages 271-282, Edinburgh, 15-16 April 2000. Springer-Verlag.

7. Robert Feldt, Michael O’Neill, Conor Ryan, Peter Nordin, and William B. Lang-
don.GP-Beagle:A Benchmarking Problem Repository for the Genetic Program-
ming Community, In Late Breaking Papers at the 2000 Genetic and Evolutionary

v

Computation Conference, pp. 90-97, Las Vegas, Nevada, USA, July 2000.

Paper 3 includes and extends on the two previously published papers:

• Robert Feldt.Generating Multiple Diverse Software Versions with Genetic Pro-
gramming - an Experimental Study, IEE Proceedings - Software, vol. 145, is-
sue 6, pp. 228-236, December 1998. Special issue on Dependable Computing
Systems.

• Robert Feldt.Generating Multiple Diverse Software Versions with Genetic
Programming,Proceedingsof the 24th EUROMICROConference,Workshop on
Dependable Computing Systems, pp. 387-396, Västerås, Sweden, August 1998.

One component of the WiseR system described in paper 2 was also described in
the book:

• Michael Neumann, Robert Feldt, Lyle Johnson, Jonothon Ortiz, Jason Wong
and Stephen Legrand.Ruby Developer’s Guide.Syngress Publishing, Rockland,
MA, 2002.

vi

Acknowledgements

I want to thank my advisor professor Jan Torin for his support during these years. Jan
never stopped believing in me and allowed me to explore ideas that was not in the
mainstream. I’m very grateful for his courage and support.

During most of my years at Chalmers I’ve been part of the Software Fault
Tolerance group headed by Håkan Edler. Co-advisors during the first years were Dr.
Jörgen Christmansson and Dr. Marcus Rimén. I thank you all for taking the time to
listen to me and for giving advice and encouragement.

I’m also deeply indebted to my colleague and former room-mate Dr. Martin
Hiller. Thank you, Martin for stimulating discussions, your comments and advice
during these years.

I want to thank all who have taken part in my research advisory committees
during these years. In addition to Jan Torin and Håkan Edler, Dr. Jan Jonsson and Dr.
Fredrik Dahlgren helped out during the first years. Later on, Professor Bo Bergman
joined and had interesting ideas on the border between biology and software.

The rest of the department and former colleagues also deserves many thanks for
creating a stimulating atmosphere.

A special credit to Dr. Bengt Månsson for awakening my interest in mathematics
and giving me the first glimpses of its inner beauty.

My wife, my daughter and I are fortunate enough to have a large extended family
living close nearby. Its hard to find words enough to thank Saara, Srecko and Matilda
for helping us out when things get rough and for all the fun we have together. Maja
and Mathias are also an important part of this and their ’new kid on the block’, Eliot,
is a great addition. Thanks for all the fun; we love you all!

I would not be writing this today without the continous support of my fantastic
parents Dan and Elisabet. Your love and devotion is amazing! Thanks for putting so
much effort into the growth and development of your children. I would also like to
thank Helene, the best sister and friend anyone can possibly ask for.

I send warm feelings and love to my little daughter Ebba. She is really the most
fantastic little creature I’m part of creating. But Ebba also recreates me and its both
stimulating, fun and a little scary. I also want to thank you for more directly showing
the explorative and fault-identifying power of a small, biological system1. I hope
you will get a great and fullfilling life and become happy. I promise that I will do

1Ouch, not dad’s camera!Watch that wase…:-)

vii

everything I can to make it so.

Finally, my life companion Mirjana. This has been a long journey with both ups
and downs. I want to thank you for your creativity, laughs, cries, warm embrace and
funny ways. Without you I’m nothing. I love you.

Robert Feldt

Göteborg, November 2002

viii

’The road to wisdom? Well it’s plain

and simple to express:

err

and err

and err again

but less

and less

and less and less…’

A grook by Piet Hein,

Danish mathematician and multi-artist (1905-1996)

ix

x

Contents

1. Introduction 1

1.1. Overall objective and research questions 2

1.2. Main contributions 2

1.3. Thesis structure 3

2. Software Dependability and Biological Systems 5

2.1. Software Dependability 5

2.1.1. Means to achieve software dependability 7

2.2. Biological Systems 8

2.2.1. Characteristics of biological systems 10

2.2.2. Contrasting biological and human-made systems .. 12

2.2.3. A biomimetic algorithm 13

3. Related Work in Biomimetic Dependability 15

3.1. Hardware-related Biomimetic Dependability Research 15

3.1.1. Embryonics 15

3.1.2. Immunotronics 16

3.1.3. Evolving robustness and fault-tolerance 17

3.2. Software-related Biomimetic Dependability Research 17

3.2.1. Evolutionary algorithms for testing 17

3.2.2. Cell-based programming models 19

4. Summary of papers 20

4.1. Paper 1. A Theory of Software Development 20

4.2. Paper 2. An Interactive Software Development Workbench based
on Biomimetic Algorithms 20

4.3. Paper 3. An Experiment on Using Genetic Programming to
Generate Multiple Software Variants 20

4.4. Paper 4. Genetic Programming as an Explorative Tool in Early
Software Development Phases 21

4.5. Paper 5. Forcing Software Diversity by Making Diverse Design
Decisions - an Experimental Investigation 21

4.6. Paper 6. Using Factorial Experiments to Evaluate the Effect of
Genetic Programming Parameters 22

4.7. Paper 7.GP-Beagle:A Benchmarking Problem Repository for the
Genetic Programming Community 22

5. Discussion 23

6. Conclusions and Future Work 25

6.1. Conclusions 25

6.2. Future work 26

References 27

xii

1. Introduction

Software that controls computers is an indispensable part of our modern societies. It
permeates our everyday life and we depend on it for tasks ranging from game playing,
over the handling of economic transactions to the control of life-support machinery.
When software contains faults and fail to provide the service we require it is annoying,
costly or even fatal. We need ways to develop and test software so that we can depend
on it.

Developers and researchers have stepped up to this task by creating numerous
techniques to increase software dependability. We try to prevent faults by reviewing
the software, using development processes that minimize defects and applying formal
methods to prove that parts of it are correct. We try to remove remaining faults by
verifying and validating it. We try to tolerate the remaining faults with redundant units
to shield us from sub-system failures. Taken together our increased control over the
development process and of the resulting software has taken us a long way.

Despite much progress both on the methods and tools we use we still find it
hard to develop software that works without trouble. Partly the reason is that our
expectations have risen. We want our computers to do more, do it faster and for a
lower price.The result is more complex software with many, inter-related components
that affect each other and are used in situations the developers hadn’t foreseen. But
the reason we can’t yet deliver the holy grail of competent, complex, yet fault-free
software might still be in the way we think and the methods we use.

While we struggle to develop dependable software even the smallest biological
system, be it a single-cellular amoeba, an organism, the human immune system or a
whole ecosystem, show signs of robustness and continue to work in spite of faults and
failures. Furthermore, biological systems have developed in a dynamic environment
with ever changing conditions. The impetus for this work is that there must be some-
thing we can learn from biological systems about dependability. If we can mimic what
nature does maybe we can extend our arsenal of techniques for acheiving dependable
software?

The idea of mimicing nature is not new; humanity has been doing that for ages.
Recent examples can be found in material science where researchers have learnt to
build stronger and lighter materials by studying and mimicing spiders webs and
seashells. In computer science and engineering several of the pioneers had ideas on
how to take after nature. John von Neumann, considered as the father of the modern
computer, tried to model self-reproduction in his cellular automata. The increased

1

2 1. Introduction

speed of computers have allowed them to simulate more complex models from nature.
In recent years we have for example seen algorithms that model the evolutionary
process, the human immune system and the neurons in our brains. Can we make use
of these algorithms in our quest for software dependability?

1.1. Overall objective and research questions

The overall objective of the work presented in this thesis was to explore how tech-
niques inspired by biological systems can help develop dependable software. More
specifically we have adressed the following research questions:

• Q1.1 Can biological systems be called dependable in a technical, dependability
engineering sense?

One biomimetic algorithm is genetic programming which searches for computer
programs using an algorithm inspired by the evolutionary process in nature. Since
genetic programming is a form of automatic programming, ie. automatically finding
a program that fulfills a specification, it is potentially very interesting to the field of
software engineering.

• Q2.1Can genetic programming be used to develop software components for fault
tolerant software systems?

In addition to using biomimetic algorithms to develop software we would like to know
if we can use them to find tests for testing human-developed software:

• Q3.1 Can biomimetic algorithms be used to test software?

• Q3.2 Can the tests be meaningful to a developer so that he can motivate them?

1.2. Main contributions

The contributions put forward in this thesis are:

• A design of an interactive software development workbench. Based on a the-
ory of software development focusing on the internal models of the developer
we have designed a workbench that supports the simultaneous refinement of a
program and its specification. It is called WISE, standing for Workbench for In-
teractive Software Engineering and applies biomimetic algorithms to find tests
that show novel features of the software being developed. The system is unique
by searching for test templates from which multiple tests can then be generated.

1.2. Main contributions 3

It is also unqiue by using the feedback from the developer to guide the search
process.

• A prototype of the software development workbench. The WISE design has
been implemented in a prototype called WiseR, WISE for Ruby, for interactive
refinement of specifications, programs and test knowledge in the object-oriented
programming language Ruby. The focus in the prototype is the module for
finding tests, called WiseR-Tests.A case study on the prototype show that it finds
test sequences that identifies problems in the specification and implementation
of a piece of software.

• A procedure for developing diverse software variants with genetic program-
ming. Genetic programming was used to develop multiple software variants for
one and the same problem. By varying parameters to the genetic programming
systems the variants are forced to be different. The procedure was evaluated em-
pirically by developing 80 variants of a software controller. Although failure di-
versity was acheived it was limited for the top performing programs. The pro-
cedure was also used to assess the validity of assumptions made in an important
theorem for N-version programming.

• A proposal to use genetic programing for problem visualization in early
software development phases. We propose that genetic programming can be
used to explore the difficulty of different input data, determine the effects of
different requirements and identify design trade-offs inherent in the problem.
This can be used early in a software development project to reduce the risc of
later phases.

• A technique for evaluating and tuning parameters to evolutionary algo-
rithms.We propose to use statistical techniques for design and analysis of exper-
iments to tune the parameters to GP and EC algorithms.

1.3. Thesis structure

The remainder of this thesis is divided into 5 chapters of this thesis introduction and
three parts with a total of 7 appended papers.

Thesis introduction:

• Chapter 2 gives more background on the two main fields related to this work:
software dependability and biological systems,

• Chapter 3 reviews the related work in Biomimetic Dependability,

4 1. Introduction

• Chapter 4 summarizes the appended papers,

• Chapter 5 discusses the results,

• Chapter 6 concludes and points to the future.

There are three parts of appended papers:

• Part 1 includes two papers on how to support software developers with an inter-
active software development workbench that uses a biomimetic search system
for finding novel tests that highlight important features of the software being de-
veloped.

• Part 2 includes three papers that use genetic programming to evolve software
controllers for an aircraft arrestment system.

• Part 3 includes two papers that propose better experimental methods and test
data so that evolutionary computation can be used and evaluated in better ways.

2. Software Dependability and
Biological Systems

This chapther introduces the basic conceptsand terminology used to describe software
dependability. It also defines what we mean with biological systems and note some
of their characteristics. It then assesses if and how the dependability concepts and
terminology is applicable to biological systems.

2.1. Software Dependability

Dependability is an ’umbrella’ concept introduced to unify the terminology for
reliability, safety and security of computer systems. It is the top-level concept defined
as the trustworthiness of a computer system such that reliance can justifiably be
placed on the service it delivers[20, 5]. In this context, service is the behavior of the
system as viewed by the users, which can be humans or other systems.

An assumption in the definitions of the basic dependability concepts is that a
specification describes the correct service of the system. When the system violates
the specification it has failed. The ultimate cause of a failure is a fault (or several
cooperating faults) somewhere in the system. When a fault is activated it leads to an
error in the state in some part of the system. It is not until the error reaches the system
boundary and affects the service that the failure is said to occur.

Note that since the notion of a failure is not meaningful without a system speci-
fication we are vulnerable to faults in the specification. When the service delivered by
the system does not comply with the specification it might either indicate an error in
the system or in the specification.

There are many different faults that occur in computer systems. A basic classi-
fication scheme for faults can be found in [5] and classifies them according to what
caused them (physical cause or caused by human), the intent behind (accidental or
deliberate), the phase when they were created (development, production or opera-
tion), their domain (physical or informational), and their persistence (permanent or
transient).

In this thesis we focus on accidental faults caused by humans, ie. we are not con-
cerned with acheiving security against deliberate faults. Since we focus on software
the fault domain might be called informational. It is not clear how to differentiate be-

5

6 2. Software Dependability and Biological Systems

tween developmental and production faults for software.When we need to do such dis-
tinctions we will use a more detailed model based on traditional phases of a software
development process with requirements analysis, design, coding, testing, operation
and maintenance. Faults in software are permanent even though the errors they cause
might be transient.

When assessing the dependability of a computer system we can use a number of
different attributes. Originally the attributes were:1

• availability - probability that the system is ready to deliver the correct service,
ie. its readiness for correct service

• reliability - probability that the system will continue to function correctly for a
certain amount of time, ie. its continuity of correct service

• safety- absence of catastrophic consequences on the user and the environment

Here, safety is really an extension to reliability where we consider both the correct
functioning and non-catastrophic failures of a system. In addition to the specification
needed to judge the correct service, safety pre-supposes a safety specification, stating
the catastrophic failures. In later years maintainability has been added as a depend-
ability attribute. A system is considered maintainable if it supports repairs and mod-
ifications [5]. This is important since it will indirectly affect the other attributes: if a
system is reliable but not maintainable it will be difficult to retain the reliability when
changing the system. Changes are frequent in the real world.

Recently, the attribute of survivability has also been proposed as a dependability
attribute [17]. It is interesting since it introduces different levels at which the system
can conform to the specification. For availability and reliability the conformance to
the specification is judged on a binary scale: the system either delivers or it does not
deliver the correct service. A survivable system, on the other hand, has the ability
to continue to provide (a potentially degraded or different) service even if it has
been damaged. This can be captured in the specifications by ordering the functions
(sub-services) that the system should supply from most to least preferred and state the
probability with which each function shall be provided.

A concept related to the dependability concepts that is not covered by them is ro-
bustness.The reason for this is probably that it has not been given a single meaning but
are used in similar but different ways in other research communities [32]. The com-
mon pattern between the many different definitions is that a robust system preserves

1In the original definition of dependability, [20], security was considered as an attribute of dependability
but in later years it has attained a different status [5]. It is now considered a composite concept, much like
dependability itself. Instead, new attributes such as confidentiality and integrity has been added. Since we
focus on unintentional faults we do not consider the security-related notions any further.

2.1. Software Dependability 7

its features and continues to deliver its service even in the prescence of perturberations
to it that has not previously encountered and that has not been considered during its
design. The general term perturberation is used here since we might mean both input
data as well as damages to the system itself.

2.1.1. Means to achieve software dependability

Many techniques has been proposed for how we can develop dependable software.
They are frequently classified according to their purpose ([20, 5]):

• to prevent the introduction or occurence of faults -fault prevention

• to reduce the number or severity of faults -fault removal

• to estimate the number of faults in the system and the consequences they may
have if activated -fault forecasting

• to deliver correct service even though there are faults -fault tolerance

Particular techniques for dependability may not fall cleanly into one of the above
categories but adress multiple of them. Below we present some of the techniques for
dependability that will be of the largest interest to us in the rest of this thesis.For more
detailed coverage see [22, 30, 21].

2.1.1.1. Formal methods

Formal methods is a general term used to describe mathematically based frame-
works for specifying,developing and verifying computer systems [41].By limiting the
language used to write specifications and design documents a formal method can give
guarantees about the properties of the described system.

The focus is on fault prevention, ie. to prevent that faults are introduced into
the system. For example, by writing a specification in a formal language we can find
inconsistencies or ambiguities in the requirements and resolve them at the outset.
There are no such guarantees if we write the specification in a natural language. The
fact that formal methods can help us validate a specification is extra important for
dependable systems since they need to be judged against a specification.

But formal methods can also help with fault removal. As an example a formal
specification can be used to generate test data for verifying the system. When the
testing shows a deviance from the correct behavior there is a fault that needs to be
removed. If we have formally specified the behavior of sub-components of the system
we would get further indications of the locations of the fault.

8 2. Software Dependability and Biological Systems

2.1.1.2. Redundancy: N-version programming

To be able to tolerate faults that remain when the system is in use we can add
redundant components to the system. If we perform multiple computations, either
sequentially or concurrently, that lead to the same result or decision we can tolerate
faults that only arise in some of them.

The technique of N-version modular redundancy was first used to tolerate
harware faults, but was carried over to software in the late 1970’ies [3]. An N-version,
or multi-version, system (NVS) should incorporate several software components
and include a voter that compares their output and chooses the output of the system.
However, the same software component can not simply be replicated several times in
an NVS; all replicates will contain the same fault and all components will fail for the
same input data.

To overcome this special characteristic of software, Avizienis proposed that
several software components, called variants , should be developed.The methodology
for developing these variants was called N-version programming (NVP) and it uses
several development teams, each developing a variant. The different development
efforts should be independent, i.e. no interaction should be allowed between them and
different algorithms and programming languages should be used wherever possible.
The differences in the development efforts are called design diversity and the term
software diversity has been used as a general term to denote differences both between
the development efforts and between the resulting variants.

2.2. Biological Systems

According to the Collins English dictionary biology is’the study of living organisms,
including their structure, functioning, evolution, distribution and interrelationships’
[11]. An introductory biology textbook is even more succinct and simply call biolo-
gy ’the study of life’[10]. Biological would then mean of or relating to living or-
ganisms.

If ’biological’ is a very broad term the situation is even worse for ’system’.
Collins main description is as’a group or combination of interrelated,interdependent,
or interacting elements forming a collective entity’but it also lists seven other mean-
ings [11]. In a similar way the Principia Cybernetica Web site devoted to ’System Sci-
ence’notes that there are dozens of definitions of ’system’ [31].

For our purposes we can use these terms in a broad sense. We are seeking new
ways to obtain dependable software and can take our inspiration from almost any-
where. Thus, in this thesis we use the term biological system to mean a living entity
found in nature that has not been designed by humans. Examples would include a hu-
man body, a beehive or the ecology of a small forest with all the plants and animals

2.2. Biological Systems 9

living next to each other. In all these examples it is clear that we are talking about sys-
tems. A human body is an entity made up of different organs, a beehive of its bees and
the ecology of its plants and animals.

Biological systems have often been the inspiration when man has designed a
new tool or device. In recent years this trend has been stronger and especially in
computer science and engineering.Let us look at two authors noting the dependability
characteristics of biological systems [16, 2, 4].

In his book ’Out of Control’, Kevin Kelly gives examples of how technicians
look to nature for inspiration on how to build complex technical systems. His thesis is
that we are entering a new era where machines will become more biological and the
biological will become more engineered.

Dependability is at the core of Kelly’s thesis. He says that as our technical
systems grow more complex they will not work at all unless they become more similar
to biological systems. We must learn how nature manages its complex systems since
we fail to build them ourselves.

But Kelly also says that when we build more life-like systems inspired by nature
they will be out of our control.

The most extreme reading of Kelly leads to a viewpoint we can call the
biodependability-by-necessity viewpoint:

Definition 2.1 (Biodependability-by-necessity):There are only a few ways to
and principles for building functioning, complex systems and nature has found
and exploited them. When the systems we humans build grow larger we cannot
avoid that they become life-like, if we want them to work.

This may not be so. The biological systems around us are the results of the process
of evolution. It can be thought of as a search through a vast search space. Arbitrary
’choices’1 made early in the search may limit what portions of the space can later be
reached.So one cannot rule out the possibility that we can find techniques for building
complex systems that nature is not using. For example, some formal method could
enable us to build correctly functioning complex systems, but we don’t see any formal
methods being used in the biological systems we know of.

A milder interpretation of Kellys text would be a pragmatic viewpoint on biode-
pendability:

Definition 2.2 (Biodependability-pragmatism): Some biological systemshave
features we want our systems to have so they must be doing something right. By

1The term choice is a bit unfortunate since it indicates an active decision. However, its hard to find a nice,
short substitute.

10 2. Software Dependability and Biological Systems

studying nature we can understand how these features come about and use the
knowledge in our own systems. By imitating nature we may give our systems
some of the desired features.

In contrast to Kelly, the author of this thesis considers himself to be a
biodependability-pragmatist.

Algirdas Avizienis calls the various species of living creatures that have survived
for millions of years’the most dependable information processing systems in exis-
tence’and challenges us to use them as models for more dependable computer sys-
tems [4]. Specifically, he proposes the human immune system as a conceptual model
for high-confidence hardware systems. In this model he likens the hardware of a com-
puter system to the human body and the cognitive processes the body supports to the
software. He notes four features of the immune system as especially relevant:

• it functions continuously and autonomously independent of the higher cognitive
processes

• its elements are distributed to serve all parts of the body

• it has its own communication system

• its elements are redundant and diverse

Avizienis urges the research community to consider how to build such features into
our computer systems.

2.2.1. Characteristics of biological systems

Even though biological systems encompassesa very large number of things they share
some common characteristics. The system aspect with parts-within-parts is typically
present on many different levels and each level build on the level below [10]. Also
there are different distinct processes that affect biological systems.

2.2.1.1. Multiple levels of organization

Biological systems have multiple levels of organization. At each level new properties
arise from the interactions between components. These emergent properties are not
’magical’, they just reflect that the system has properties that cannot be inferred by
looking at its individual components in isolation.An analogy to software might be that
the dynamical interaction of software components might not be apparent by reading
the source code for its components. An everyday analogy would be that we cannot
easily grasp the many different strategies and game states possible in chess from its
simple rules.

2.2. Biological Systems 11

The basic low-level unit of organization in all living systems is the cell.A human
body consists of on the order of 1410 cells. The cells are not identical but come in a
large variety. They aggregate and form larger structures to perform tasks at the next
level in the system. Cells are often specialized to the task they help carry out. Even
though cells are mostly studied in their aspect as the building blocks of larger systems
they are special since they are the smallest biological system performing all the
activities of life [10].

In multi-cellular organisms the next level of organization is tissue. Cells group
into tissue like muscle fiber and nervous tissue. Different type of tissue then group
into organs. They carry out specialized tasks that emerge from the activity of the
constituent tissue. Examples in the human body are liver, heart and lungs.

Sets of organs form systems that take care of several related tasks. Examples
are the nervous system consisting of brain, the spinal cord, the sensory system and
connecting ’wiring’.

An organism is a single body with many interacting systems. Organisms can
reproduce and perform many different tasks. They are open systems that continously
interact with their environment and exchange energy and materials.

On the top level the many interactions between organisms and their environment
and other organisms form an ecosystem. In an ecosystem nutrients circulate between
different organisms. Energy flows into the system from the sun that keeps the
circulation going.

2.2.1.2. Three main biological processes

Biological organisms do not arise out of thin air. They are the products of processes
that create and affect their development. The first process in the creation of an
organism is thedevelopment from an embryo. It is governed by information inherited
from the parents stored in DNA molecules in the core of the cells but it is also affected
by the environment in which development takes place.

When an organism has developed it does not stop changing. The process of
learningnow adapts the organism to better function in its environment.

Just as each organism has a history so the species, the type of organism, it belong
to has. The species has evolved from its early ancestors to its current form. By going
back in time we find that different species have common ancestors. This overarching
development of living organisms, on the population level, is governed by theprocess
of evolution.

12 2. Software Dependability and Biological Systems

2.2.2. Contrasting biological and human-made systems

2.2.2.1. Complexity

Biological systems are often claimed to be complex. How complex are they in
relation to the complexity of the systems we build?1

It is not clear what metric to use to compare complexity of different systems.
There has been attempts to define information theoretic measures. One such measure
would be the minimum number of bits needed to describe the system. This is good
since it would solve the problem with simpler metrics such as counting the atoms.We
don’t need many bits to describe a repetitive pattern such as a crystal even though it
may contain very many atoms.

On the other hand a hot gas, has a large number of atoms running around and
hitting each other and describing the gas in detail would take many bits. The concept
of ’logical depth’ tackles this problem by measuring the amount of computation
needed to produce the minimal bit pattern that describes a system [34, 8].

In practice it is hard to use information theoretical measures such as logical depth
since they have a some input arguments that are generally not known. It is not clear
that we are better off by estimating these arguments and using the proposed formulas
than using a simpler metric. A basic metric would be to compare the number of com-
ponents in each system. Even though a case could be made that individual molecules
are active components in some systems it is too simplistic to compare the number of
atoms. For each system we need to decide on what we consider a system component.

For biological organisms a natural component is the cell. An ant has1010 cells
and a human has 14.10 If we compare this to a 2GHz Pentium 4 processor from Intel
it has 42 million transistors, ie. on the order of710 components.

If we look at software the recently released Windows XP operating system from
Microsoft Corp. is rumoured to have around 40 million lines of source code. In one
sense this could be seen as a more complex system than the Pentium 4 processor; there
are few constraints in software and each line of code could potentially interact with
any other.

It would appear that the most complex system humanity has built would be the
Internet with its about 810 connected computers. If the Internet was viewed as a meta-
computer and we counted the number of transistors in it we would get to the same or-

1We are talking about complexity in the sense of an aggregated structure consisting of many parts, and not
as in hard to understand. No doubt, the two meanings are related, eg. we have a hard time understanding all
the intricacies of the human body since it is such a complex system with many parts.

2.2. Biological Systems 13

der of components as the cells in a human body.But we don’t consider this meaningful
since the individual transistors are not a component in the Internet system.

We conclude that biological systems can be characterized as ’complex’ in some
loose sense and that the systems we build typically are less ’complex’. However, we
note that such statements are hard to formalise. There is not even a consensus on what
complexity is.

2.2.2.2. Self-diagnosing and Self-healing

Biological systems are often massively parallel with many independent but intercon-
nected sub-units. The huge number of units makes for extensive redundancy and the
systems can use this to diagnose and heal themselves in case of damage.

Based on the self-healing capabilities of biological system a team of material
science researchers have developed self-healing polymers (plastic) [40]. The material
heals cracks autonomically by releasing a chemical catalysts that bonds the crack
faces back together. The findings will lead to materials with longer lifetimes and less
requirements for maintenance.

2.2.2.3. Adaptive

Biological systems continously interact with and adapts to their environment. In
contrast to human-engineered systems that have a closed structure and behavior once
designed biological systems tend to be open and changeable.

An example of adaptiveness is homeostasis, the ability of an organism or cell to
maintain internal equilibrium by adjusting its physiological processes. An example is
the regulation of body temperature.

2.2.3. A biomimetic algorithm

In this section we give an example of a biomimetic algorithm by describing evolu-
tionary algorithms. This serves both as an introduction to that specific algorithm and
highlights the issue of biological plausibility.

Evolutionary algorithms mimic the evolutionary process in nature to find
solutions to problems. Genetic programming (GP) is a special form of evolutionary
algorithm in which the solution is expressed as a computer program. It is essentially
a search algorithm that has been shown to be general and effective for a large number
of problems. These algorithms are studied in the area of Evolutionary Computation
(EC) in artificial intelligence.

In the classical view of natural evolution, individuals in a population compete for

14 2. Software Dependability and Biological Systems

resources [10]. The most ’fit’ individuals survive, i.e. they have a higher probability of
having offspring in the next generation. This process is modeled in genetic algorithms
in which the individuals are objects expressing a certain, often partial or imperfect,
solution to the problem investigated. In each generation, each individual is evaluated
as to how good a solution it constitutes. Individuals that are good are chosen for the
next generation with a higher probability than low-fit individuals. By combining
parts of the chosen individuals into new individuals, the algorithm constructs the
population of the next generation. Mutation also plays an important part. At random,
some parts of an individual are randomly altered. This is a source of new variation in
the population.

While a genetic algorithm generally works on data or data structures tailored to
the problem at hand, genetic programming works with individuals that are computer
programs. This technique was introduced by Koza in [18] and has recently spurred
a large body of research [19, 6]. Kozas programs are functions, represented as trees,
which are interpreted in software, but a number of other approaches also exist. For
example, in [25], Nordin evolved machine language programs that control a minia-
ture robot.

A number of GP systems are available. To use one of them to solve a particular
problem, we must tailor it to the problem. This involves choosing the basic building
blocks, such as variables and constants, and functions that are to be used in the pro-
grams, expressing what are good and bad characteristics of the programs, and choos-
ing values for the control parameters of the system and a condition for when to ter-
minate the evolution of programs [18]. The control parameters prescribe, for example,
how many individualsare to be in the population, the probability that a program should
be mutated and how the initial population of programs should be created.

This example of a biomimetic algorithm raises an important question: How sim-
ilar to a biological phenomenon must a computational model or algorithm be for it
to be called biomimetic? The genetic programming algorithm is not very biologically
plausible; it manipulates trees of symbolic information.We see no clear answer to this
question. In any biomimetic work there will be some kind of model that we try to carry
over to an algorithm. The resulting system can be more or less biologically plausible.

3. Related Work in Biomimetic
Dependability

This section reviews the previous work related to biomimetic dependability. We
include hardware-related systems in this review since much more work has been done
on that compared to software. However, our coverage of hardware-related research is
not in any way complete and should only be taken as a brief overview.

3.1. Hardware-related Biomimetic Dependability Research

Most work on biologically inspired computing has been hardware-related.There
are conferences solely devoted to ’Evolvable Hardware’1 with much of the work
applying evolutionary algorithms to the configuration of field-programmable gate
arrays (FPGA) circuits.

But inspiration for novel HW architectures is not limited to evolutionary pro-
cesses. Moshe Sipper et al have introduced the POE model for bio-inspired hardware
systems [33]. The model has taken its name from the three main axes used in its clas-
sification scheme:Phylogeny, Ontogeny and Epigenesis. The terms are used to denote
three major levels at which biological systems change. Phylogeny refers to evolution-
ary processes, in which the genetic information evolve over time. Ontogeny refers to
the development of an individual organism from embryo to adult. Epigenesis is the
development that an organism goes through after its basic structure has been fixed, ie.
its about the learning processes of the organism. In the following we will refer to these
three levels as evolution, development and learning2

3.1.1. Embryonics

Embryonic systems are electronic systems inspired by the embryonal development

1Examples are the NASA and DoD workshop on Evolvable Hardware and the conference ’Evolvable
systems: from Biology to Hardware’
2We do not use the three terms taken from the field of biology since their meaning is not clear and their use
by Sipper et al differs somewhat from how they are commonly used [33, 10]. Epigenesis is commonly used
to denote the theory that an individual is developed by successive differentiation of an unstructured egg
rather than by a simple enlarging of a preformed entity. And Sipper et als description of ontogenesis seems
to focus on cell differentiation, commonly called morphogeneis. However, when refering to the model as a
whole we will call it the POE model.

15

16 3. Related Work in Biomimetic Dependability

of stem cells in biological life forms. Stem cells are born identical and each have the
same DNA information in their cores. Later they develop to carry out specific tasks.
The specialization is based on the cells position in a larger structure; their physical
’address’chooses the function they take on.

Embryonic systems consist of an array of identical processing elements (cells),
all of which are controlled by their own configuration register. The registers contains
configuration information for each cell in the array. Each cell uses its address to look
up its configuration.

The cells also have built-in self-test and can detect when they are faulty. If this
happens the cell will pass data and addressing information straight through without
processing it. This will render it transparent and the cell addresses will change and
affected cells will reconfigure to new functions.As long as there are enough redundant
cells to overtake the responsibility of faulty cells the array as a whole can uphold
its task.

The reliability of embryonic circuits have been analysed [27, 26, 28] and em-
bryonic systems have been implemented and evaluated both in simulations and
in FPGA’s.

The properties of biological systems that embryonics exploit is the repeated use
of similar elements (cells / processing elements) that specialize according to their
position. In the POE model embryonic systems would be characterized as based
on the concept of ontogeny. Recently, other properties of multicellular biological
systems have been exploited in the embryonics field.For example,Jackson and Tyrrell
proposes asynchronous embryonics where the action of the cells are not dictated by a
central authority (global clock) [14].

3.1.2. Immunotronics

The human immune system learns to distinguish between cells and molecules that be-
long to the body and those that are external, ie. bacteria and viruses. It is thus based on
the epigenesis level in the POE model. Artificial immune systems tries to mimic simi-
lar processes in computers.They have been used for computer security, virus detection
and robot control. Recently Bradley and Tyrrell have proposed electronic hardware
based on immunological principles [9]. They call their approach immunotronics.

The immunotronic system includes a finite state machine and a detection system
that detects faulty states and state transitions. The detection system uses the negative
selection algorithm inspired by the human immune system.The detection works on bit
strings representing the state, inputs and transitions of a finite-state machine (FSM).
These strings are called system strings. It is set-up by generating a set of test criteria
and exposing them to correct FSM strings. The ones that do not match correct strings
are retained for later use in the detection system.This negative selection of test criteria

3.1. Hardware-related Biomimetic Dependability Research 17

has given the algorithm its name. During the operation of the FSM the detection
system matches the test criteria against the system strings. Upon a match the system
is said to have failed.

The benefits of the negative selection algorithm is that the failure probabilities
of the detection system can easily be traded off to its memory requirements. A
prerequisite to using the negative selection algorithm is that the number of correct
system strings are much less than the number of faulty ones.

Bradley and Tyrrell have implemented an immunotronic system for a FSM
counter.

3.1.3. Evolving robustness and fault-tolerance

Adrian Thompson and Paul Layzell have used evolutionary algorithms to evolve ro-
bust electronic designs in field-programmable gate arrays (FPGA’s) [36]. By varying
the environmental conditions for the evolutionary system during evolution the re-
sulting designs were robust to temperature variants. Thus the evolutionary algorithm
evolved robustness even though it was not explicitly stated in any fitness function.

In a previous study Thompson showed that evolutionary algorithms could
evolve solutions that were tolerant to faults [35]. The effect arises naturally from an
evolutionary process but can also be explicitly selected for by specifying it in the
fitness function.

3.2. Software-related Biomimetic Dependability Research

There are not many studies applying biomimetic algorithms in a software engineering
domain to acheive depenadbility. This has been noted by for example Harman and
Jones who wrote a ’manifesto’ for more research in this area [13].

3.2.1. Evolutionary algorithms for testing

There has been a number of studies that use genetic algorithms (GA’s) for structural
testing, ie. ensuring that all parts of the implementation are executed by the test set.
Jones et al used a GA to generate test-data for branch coverage [15]. They use the
control-flow graph (CFG) to guide the search. Loops are unrolled so that the CFG is
acyclic. The fitness value is based on the branch value and the branching condition.
They evaluated the approach, with good results, on a number of small programs.

Michael and McGraw at RST corporation have developed Gadget - a tool for
generating test data that give good coverage of C/C++ code [23]. Gadget work for
the full C/C++ syntax and automatically instruments the code to measure the condi-
tion/decision coverage.This requires that each branch in the code should be taken and

18 3. Related Work in Biomimetic Dependability

that every condition (atomic part of a control-flow affecting expression) in the code
should be true at least once and false at least once. Four different algorithms can be
used to search for test data in Gadget: simulated annealing, gradient descent and two
different genetic algorithms. One of the GA’s was the best on a large (2046 LOC) pro-
gram which is part of an autopilot system.However,on synthetic programs the GA had
problems with programs of high complexity. In all of the experiments random testing
fared the worst when the complexity increased.

Pargas et al use a GA to search for test data giving good coverage [29]. They
use the control dependence graph instead of the control flow graph since it gives
more information on how close to the goal node an execution was. Their system uses
the original test suite developed for the SUT as the seed for the GA since it should
cover the programs requirements. To reduce the execution time their system employs
multiple processors. They compare their system to random testing on six small C
programs. For the smallest programs there is no difference but for the three largest
programs the GA-based method outperforms random testing.

Tracey et al presents a framework for test-data generation based on optimisation
algorithms for structural testing [37]. It is similar to both Jones et al and Michael and
McGraw approaches and uses a CFG and branch condition distance functions. They
use both simulated annealing and a genetic algorithm for the optimisation. Their tool
is automated and works with ADA code.

Tracey have used a similar technique for functional (black-box) testing [38].
The formal specification is described with pre- and post-conditions that each function
must obey. The goal is to find indata that will fullfill the pre-condition and the negated
post-condition. These expressions are converted to disjunctive normal form. All pairs
of single disjuncts from pre- and post-conditions are considered targets for the search
since a fault is found when either of them is fulfilled.The search algorithms are guided
by similarity measures that judge how close to violating a post-condition a candidate
test data set is.

The research by Tracey et al is unique in that they have evaluated their techniques
on a real-world safety-critical system [39].The goal was to assist in exception freeness
proofs by finding test data that caused exceptions. The results was very encouraging;
the test-data generation system was able to find test data that caused exceptions and
covered the exception handling code efficiently.

Mueller and Wegener used an evolutionary algorithm to find bounds for the
execution time of real-time programsand compared it to static analysis of the software
[24]. Even though the evolutionary algorithm cannot give any safe timing garantuees
it is universally applicable and only requires knowledge about the programs interface.
Static analysis can give garantuees but only in a theoretical world. It needs extensive
knowledge about the actual hardware if we are to trust the results. Such knowledge

3.2. Software-related Biomimetic Dependability Research 19

may not always be available.

Baudry et al have used genetic algorithms for evolving test sequences for muta-
tion testing of Eiffel programs [7]. Their model is similar to ours in that they focus on
specification, implementation and tests. Their specifications are written with pre- and
post-conditions and invariant. A tool mutates the programs and a genetic algorithm
searches for test sequences that kills the mutants.The GA is seeded with test sequences
written by the developer. Mutants that are not killed by the GA are analyzed by hand
to see if they are mutants that did not change the workings of the software.

3.2.2. Cell-based programming models

Some research groups are studying how programming models inspired by biological
systems can be used to build more robust systems. George et al recently introduced
such a model where cell programs are automatons containing discrete states and
transitions between the states [12]. Cells can sense there immediate neighbourhood
and send out chemicals. They can also divide. The authors believe they will be able to
build self-healing software with the model.

The ’Amorphous Computing’group at MIT studies organizational principles and
programming languages for coherent behavior from the cooperation of myriads of
unreliable parts [1].

4. Summary of papers

4.1. Paper 1. A Theory of Software Development

We present a theory of software development as an incremental learning process. The
focus is on the internal models of the developer. There are two main ways in which a
development process can make progress: by refining an internal model or by refining
an artefact based on an internal model. Refining the internal models is a prerequisite
for being able to write a concrete specification and program that show acceptable
behaviour. The theory has implications for tools to support software development. By
creating novel test cases they can force the developer to question his internal models
and realize where they are incomplete or incorrect.

4.2. Paper 2. An Interactive Software Development Workbench based on
Biomimetic Algorithms

Based on the theory for software development presented in paper 1this paper presents
a design for an interactive workbench to support the iterative refinement of the internal
models of the developer. The goal for the workbench is to expose unknown features
of the software being developed so that the developer can check if they correspond
to his expectations. The workbench employs a biomimetic search system to find tests
with novel features. The search system assembles test templates from small pieces
of test code and data packaged into a cell. We describe a prototype of the workbench
implemented in Ruby and focus on the module used for evolving tests. A case study
show that the prototype supports development of tests that are both diverse, complete
and have a meaning to the developer. Furthermore, the system can easily be extended
by the developer when he comes up with new test strategies.

4.3. Paper 3. An Experiment on Using Genetic Programming to Generate
Multiple Software Variants

Software fault tolerance schemes often employ multiple software variants developed
to meet the same specification. If the variants fail independently of each other, they can
be combined to give high levels of reliability. While design diversity is a means to de-

20

4.3. Paper 3. An Experiment on Using Genetic Programming to Generate
Multiple Software Variants

21

velop these variants, it has been questioned because it increasesdevelopment costsand
because reliability gains are limited by common-mode failures.We propose the use of
genetic programming to generate multiple software variants by varying parameters to
the genetic programming algorithm. We have developed an environment to generate
programs for a controller in an aircraft arrestment system. Eighty programs have been
developed and tested on 10000 test cases. The experimental data shows that failure
diversity is achieved but for the top performing programs its levels are limited.

4.4. Paper 4. Genetic Programming as an Explorative Tool in Early Software
Development Phases

Early in a software development project the developers lack knowledge about the
problem to be solved by the software. Any knowledge that can be gained at an early
stage can reduce the risk of making erroneous decisions and injecting defects that can
be expensive to eliminate in later phases. This paper presents the idea of using genetic
programming to explore the difficulty of different input data in the input space, deter-
mine the effectsof different requirementsand identify design trade-offs inherent in the
problem. Data from a pilot experiment is analysed and the knowledge gained is used
to question and prioritize the requirements on the target system. Coping with high-
dimensional input spaces and establishing the relationship between GP- and human-
developed programs are identified as the major outstanding problems. An extended
experimental environment is proposed based on techniques for visual database ex-
ploration.

4.5. Paper 5. Forcing Software Diversity by Making Diverse Design Decisions -
an Experimental Investigation

When developing software versions for a multi-version system, the probability for co-
incident failures may be decreased by forcing the development efforts to be different
by making diverse design decisions. There are theorems showing that the probability
is minimized by making as diverse design decisions as possible but it is not known if
the assumptions made in proving the theorems are valid in practice.To investigate this
we have developed 435 versions of a software controller for an aircraft braking sys-
tem. The versions were developed using genetic programming. Analyses of the fail-
ure behavior of these versions showed that the assumptions of failure independence
among the decisions were valid, on average, for 74% of the test cases.The assumption
of indifference between methodologies were not valid in a single case which seems to
be the major cause invalidating the theorem. Thus, if we are not indifferent between
design decisions, it is not guaranteed that increased diversity of design decisions will

22 4. Summary of papers

decrease the probability of coincident failures.

4.6. Paper 6. Using Factorial Experiments to Evaluate the Effect of Genetic
Programming Parameters

Evolutionary algorithmssuch asgeneticprogramminghave very many parameters that
affect their effectiveness. Tuning them to the problem at hand can be difficult. This
paper presents one approach to this problem based on statistical techniques for design
and analysis of factorial experiments. The methodology allows both the stand-alone
and combined effects of different parameters on the outcome to be studied.

Three binary classification problems are investigated in a total of seven experi-
ments consisting of 1108 runs of a machine code genetic programming system. The
parameters having the largest effect in these experiments are the population size and
the number of generations. A large number of parameters have negligible effects.The
experiments indicate that the investigated genetic programming system is robust to
parameter variations, with the exception of a few important parameters.

4.7. Paper 7. GP-Beagle: A Benchmarking Problem Repository for the Genetic
Programming Community

Experimental studies in genetic programming often only use a few, artifical problems.
The results thus obtained may not be typical and may not reflect performance on
problems met in the real world. To change this we propose the use of common suites
of benchmark problems and introduce a benchmarking problem repository called
GP-Beagle. The basic entities in the repository are problems, problem instances,
problem suites and usage information. We give examples of problems and suites that
can be found in the repository.

5. Discussion

It is hard to call biological systems dependable in the technical sense of the word since
they have no real notion of a specification. Without a specification we cannot judge
when they fail and we have no basis for evaluating the attributes we use to describe de-
pendable systems. The only way forward seems to be to consider the high-level goals
of survival, procreation etc common to biological organisms as a kind of specification.
However, for biological systems that are not organisms even this approach is not clear-
cut. As an example we find it hard to state the goals for an ecosystem or to even say
that there are any clear goals.Our answer to question 1.1is thus that biological systems
are too different from the human-made systems we ascribe dependability attributes
that we cannot use the dependability nomenclature in any strict sense.

The study reported in paper 3 found that we could use genetic programming
to develop diverse software variants for use in fault tolerant systems. However, the
failure diversity of the variants was limited so the method is of limited practical value.
As an automatic programming technique genetic programming is very immature.
The size of the programs that can realistically be developed is very small compared
to programs developed by humans. This may change in the future with better genetic
programming methods and more powerful computers.

A fundamental problem with using genetic programming to directly develop de-
pendable software is that the solutions found are often orthodox. They make creative
use of language constructs in ways we are not used; understanding the resulting pro-
grams can be very hard. It is doubtful that we would be willing to trust software we do
not understand.However, the question is not clear-cut since we trust systems we do not
understand every day. A counterpoint would be that in many cases there at least exists
someone that understands them. In any case we do not think that direct development
of software for dependable software using genetic programming is an option unless
severe restrictions is put in which part of the system the GP-developed software can
affect.

The study above was not in vain since it showed that the GP-developed software
variants could be used to gain insight about the nature of the problem domain. We
think the technique for problem difficulty visualization reported on in paper 4 has
clear potential, especially since increased computer power will make simulations
increasingly attractive.

The main limitation for using the technique would be how to visualize multi-di-
mensional problem spaces. However, this problem is quite general and much research

23

24 5. Discussion

focus on resolving it. Even if no suitable techniques for visualization can be found the
technique could be of value by giving numerical values for comparing desing deci-
sions and trading off requirements.

Part 1 of this thesis also studies indirect ways of using biomimetic algorithms
for software dependability. Even though the WiseR prototype has so far only been
evaluated on small problems the approach shows great promise. A major cause of
this is that it invites the developer into the loop. The system is designed to be flexible
enough so that the developer can easily extend it. This allows the developer to search
in parts of the space of all tests that he thinks is relevant. Even though this may limit
the creativity of solutions that can be found nothing stops the system from falling
back on more open-ended search when the developer is not around or when no more
progress is done in the more focused searches.

We think that the behavioural specifications that are the end results from WiseR
sessions are a formalism that is attractive to many developers. a possible reason that
traditional formal methods have not yet caught on could be that they require much
from the developers. Developers need to learn a new language and understand new
mathematical concepts. In contrast, the atomic behavioural specifications of WiseR
are a formalism-by-example. They are concrete and show the required behaviour in a
language the developer is familiar with.They are also flexible and allow the developer
that so wishes to add properties that the software should fulfill.

6. Conclusions and Future Work

6.1. Conclusions

Software is an important part of our societies and we need ways to ensure it does not
fail. Software failures are ultimately caused by faults in the software. Since the soft-
ware is developed by humans the cause of the fault can be traced back to a developer
having the wrong view of the real world or making an erroneous decision cause there
was not enough information available. The goal of this thesis has been to explore how
algorithms modeled after biological systems can help the developers avoid or over-
come this.

Part 1 of this thesis presents a workbench for interactive software development
that directly helps the developer by coming up with novel test cases. By browsing and
studying the test cases the developer can identify bugs in the software or problems
with the specification. The system is unique in that it interacts with the developer and
indirectly uses his choices to guide the search for test cases.

The power of the WiseR system comes from its ability to combine test building
blocks in new ways and the ease with which different parts of the system can be ex-
tended.By having a biomimetic search algorithm at its core the system can handle this
flexibility and learn what combinations of building blocks are valid and meaningful.
The biomimetic algorithm is thus used as an explorer.

The explorative capability of evolutionary algorithmswasalso used in the studies
in part 2. Even though the task of developing a program controlling the arrestment of
aircraft on a runway proved to hard for the evolutionary algorithm the results could be
used to visualize the difficult areasof the problem.Thus, the flexibility and explorative
nature of the biomimetic algorithm enabled knowledge about the problem domain
to be gained at an early stage. Based on this we described a system which allows the
developer to play with different alternatives and study how requirements affect the
difficulty of the problem.

In summary, I propose that biomimetic algorithms are a valuable tool in building
developer workbenches for exploring requirements, specifications and implementa-
tions and thus help avoid faults in software. The algorithms most prominent attributes
are that they are easy to set up, are flexible enough to allow for easy extensions, adapt
dynamically to changing conditions and show creativity in the solutions they come up

25

26 6. Conclusions and Future Work

with. This fits with the software development process since it is fundamentally a cre-
ative task with only partly known or even ill-defined boundaries.

6.2. Future work

There are many ways in which the WiseR prototype developed in paper 2 could
be extended. One interesting possibility would be to have it save information about
the actual faults the developer commits in programs. By comparing the faulty with
the corrected implementation the system could build a knowledge base of faults the
developer frequently commits.This information could be used to warn for code that is
similar to previously faulty code. It could also be used for mutation testing so that the
biomimetic system could search for tests that identified mutants.

More experiments should be carried out with the WiseR prototype. It has
currently been used only on small problems.One way to get feedback on the prototype
would be to release it as open source. If the system was adopted by several developers
one could collect knowledge on how different developers interact with the system.

Having several developers using WiseR would also open for experiments on how
to connect the libraries of different WiseR systems. Since the building blocks for test
cases are small snippets of code they can simply be shared but having the libraries
connect directly to each other could allow for more powerful knowledge transfer and
should be investigated.

Even though the goal when designing WISE was for a general system the
detailed design of the prototype is fairly tied to the Ruby programming language.
It is unclear how the power of WISE would be affected if implemented in another
language without Ruby’s dynamic features. Investigating this is an important task for
the future.

This thesis has not explored how biomimetic algorithms can be used online, in
a running software system and how that would affect dependability. Investigating
this unexplored area would be a bold future move. Maybe there are hybrid solutions
that can ensure safety while still allowing the adaptive and dynamic biomimetic
algorithms to play an important role. Safety-caged systems where a a formal safety
specification restricts what the biomimetic algorithm can do? Only time and bold
researchers will tell…

References
[1] Harold Abelson, Don Allen, Daniel Coore, Chris Hanson, George Homsy,

Thomas F. Knight, Radhika Nagpal, Erik Rauch, Gerald J. Sussman and Ron
Weiss. Amorphous Computing.Communications of the ACM43 (5), 74-82
(2000).

[2] Algirdas Avizienis. Building Dependable Systems: Can We Keep Up with
Complexity?. InFTCS-25 Silver Jubilee, 1995.

[3] A. Avizienis. The Methodology of N-version Programming. In Michael R. Lyu
(ed.), Software Fault Tolerance. WileySons, Chichester, England, September
1995.

[4] Algirdas Avizienis. Towards a systeatic design of fault-tolerant systems.IEEE
Computer, 51-58 (April 1997).

[5] Algirdas Avizienis, Jean-Claude Laprie and Brian Randell. Fundamental Con-
cepts of Dependability. InThird Information Survivability Workshop – ISW-
2000, 2000. URLhttp://www.cert.org/research/ isw/ isw2000/ index.html.

[6] Bäck,T.,Hammel,U.and Schwefel,H-P..Evolutionary Computation:Comments
on the History and Current State.IEEE Transactions on Evolutionary Computa-
tion 1, 3–17.

[7] Benoit Baudry, Vu Le Hanh, Yves Le Traon. Testing-for-Trust: The Genetic Se-
lection Model Applied to Component Qualification. InTechnology of Object-
Oriented Languages and Systems (TOOLS 33), 2000.

[8] C.H. Bennett. Logical Depth and Physical Complexity. In R. Herken,The
Universal Turing Machine, A Half-Century Survey. Oxford University Press,
Oxford, 1988.

[9] D. W. Bradley and A. M. Tyrell. The Architecture for a Hardware Immune
System. In Didier Keymeulen and Adrian Stoica and Jason Lohn and Ricardo S.
Zebulum,Proceedings of the 3rd NASA/DoD workshop on Evolvable Hardware,
Long Beach,California, pages 193–200. IEEE Computer Society, 2001.

[10] Neil A. Campbell.Biology. Benjamin Cummings, Menlo Park, CA, 1996.

[11] Collins English Dictionary. HarperCollins Publishers, Glasgow, 1994.

27

28 References

[12] Selvin George, David Evans and Lance Davidson. A Biologically Inspired
Programming Model for Self-Healing systems. InACM SIGSOFT Workshop on
Self-Healing Systems, 2002.

[13] Mark Harman and Bryan F. Jones. Search-based software engineering.Informa-
tion and Software Technology43 (14) (2001).

[14] A. H. Jackson and A. M. Tyrrell. Asynchronous Embryonics with Reconfigu-
ration. InProceedings of 4th International Conference on Evolvable Systems,
Tokyo,Japan, 2001.

[15] B. Jones, H. Sthamer, D. Eyres.. Automatic Structural Testing Using Genetic
Algorithms.Software Engineering Journal11(5), 299–306 (September 1996).

[16] Kevin Kelly. Out of control - the new biology of machines, social systems and
the economic world. Perseus books, Cambridge, MA, 1995.

[17] John C. Knight and Kevin J. Sullivan. Towards a Definition of Survivability.
In Third Information Survivability Workshop – ISW-2000, 2000. URLhttp://
www.cert.org/research/ isw/ isw2000/ index.html.

[18] Koza,J.R..Genetic Programming -on the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, 1992.

[19] Koza, J. R..Proceedings of Second Annual Conf. on Genetic Programming,San
Fransisco,California, July 1997.

[20] Jean-Claude Laprie (ed.).Dependability: Basic Concepts and Terminology.
Springer Verlag, 1992.

[21] Michael R. Lyu (ed.).Handbook of Software Reliability Engineering. McGraw-
Hill, New York, NY, 1995.

[22] Michael R. Lyu (ed.).Software Fault Tolerance. John Wiley and Sons, Ltd.,
Somerset, NJ, 1995.

[23] Christoph C.Michael and Gary McGraw.Automated Software Test Data Genera-
tion for Complex Programs. InProceedings 13th IEEE Conference in Automated
Software Engineering, pages 136–146. IEEE Computer Society, October 1998.
URL citeseer.nj.nec.com/66954.html.

[24] F. Mueller and J. Wegener. A Comparison of Static Analysis and Evolutionary
Testing for the Verification of Timing Constraints. InIEEE Real Time Technology
and Applications Symposium, 1998.

References 29

[25] Nordin, P., and Banzhaf, W.. Real-time Evolution of Behavior and a World
Model for a Miniature Robot Using Genetic Programming. Tech. Rep. (1995),
Department of Computer Science, University of Dortmund.

[26] Cesar Ortega and Andrew M. Tyrrell. Reliability Analysis in Self-Repairing Em-
bryonic Systems. In A.Stoica et al, editors,Proceedings of 1st NASA/DoD Work-
shop on Evolvable Hardware, Pasadena, CA, USA, pages 120-128. IEEE Com-
puter Society, July 1999. URLciteseer.nj.nec.com/ortega99reliability.html.

[27] Cesar Ortega and Andrew M. Tyrrell. Self-Repairing Multicellular Hardware: A
Reliability Analysis. InEuropean Conference on Artificial Life, pages 442-446,
1999. URLciteseer.nj.nec.com/280270.html.

[28] C. Ortega, D.Mange, S.L. Smith and A.M. Tyrrell. Embryonics: A Bio-Inspired
Cellular Architecture with Fault-Tolerant Properties.Genetic Programming and
Evolvable Machines1 (3), 187–215 (July 2000).

[29] Roy P. Pargas and Mary Jean Harrold and Robert Peck. Test-Data Generation
Using Genetic Algorithms.Software Testing, Verification and Reliability9 (4),
263–282 (July 1999). URLciteseer.nj.nec.com/pargas99testdata.html.

[30] Dhiraj K. Pradhan.Fault-Tolerant Computer System Design. Prentice-Hall,
1996.

[31] F.Heylighen,C.Joslyn and V.Turchin.Definition of ’System’at the Principia Cy-
bernetica Web, December 2001. URLhttp://pespmc1.vub.ac.be/SYSTEM.html.

[32] Erica Jen. Working Definitions of Robustness, January 2002. URLhttp://
discuss.santafe.edu/robustness.

[33] M.Sipper, E.Sanchez,D.Mange, M.Tomassini,A.Pérez-Uribe,and A.Stauffer..
A Phylogenetic, Ontogenetic, and Epigenetic View of Bio-Inspired Hardware
Systems.IEEE Transactions on Evolutionary Computation1 (1), 83–97 (April
1997).

[34] Nick Szabo. Measuring Complexity, 1997. URLhttp://szabo.best.vwh.net/
complexity.html.

[35] A.Thompson.Evolutionary Techniques for Fault Tolerance. InProc.UKACC Int.
Conf.on Control 1996 (CONTROL’96), pages 693-698. IEEE, 1996.

[36] A. Thompson and P. Layzell. Evolution of Robustness in an Electronics Design.
In Proc. 3rd Int. Conf. on Evolvable Systems (ICES2000): From biology to
hardware, 2000.

30 References

[37] N J Tracey and J A Clark and K C Mander and J A McDermid. An Automated
Framework for Structural Test-Data Generation. InProceedings 13th IEEE Con-
ference in Automated Software Engineering. IEEE Computer Society, October
1998. URLhttp://www.cs.ukc.ac.uk/pubs/1998/974.

[38] Nigel Tracey and John Clark and Keith Mander. Automated Program Flaw Find-
ing using Simulated Annealing. InSoftware Engineering Notes, Proceedings
of the International Symposium on Software Testing and Analysis, pages 73–81.
ACM SIGSOFT, March 1998. URLhttp://www.cs.york.ac.uk/testsig/publica-
tions/njt-mar98b.html.

[39] N. Tracey, J. Clark, K. Mander, J. McDermid. Automated test-data generation for
exception conditions.Software Practice and Experience30 (2000).

[40] S. R. WHITE, N. R. SOTTOS, P. H. GEUBELLE, J. S. MOORE, M. R.
KESSLER,S.R.SRIRAM,E.N.BROWNS.VISWANATHAN.Autonomic heal-
ing of polymer composites.Nature409, 794-797 (2001).

[41] Jeanette M. Wing. A specifier’s introduction to formal methods.IEEE Computer
9, 8-24 (1990).

Part I.

1. Robert Feldt.A Theory of Software Development, Technical Report no. 02-26, De-
partment of Computer Engineering,Chalmers University of Technology,Gothenburg,
Sweden, November 2002.

2.Robert Feldt.An Interactive Software Development Workbench based on Biomimet-
ic Algorithms, Technical Report no. 02-16, Department of Computer Engineering,
Chalmers University of Technology, Gothenburg, Sweden, November 2002.A con-
densed version of this report has been submitted to IEEE Transactions on Evolution-
ary Computation.

Paper 1.

Robert Feldt.A Theory of Software Development, Technical Report no. 02-26, De-
partment of Computer Engineering,Chalmers University of Technology,Gothenburg,
Sweden, November 2002.

A Theory of Software Development

Robert Feldt

Department of Computer Engineering
Chalmers University of Technology

Gothenburg, Sweden

November, 2002

Abstract

We present a theory of software development as an incremental learning process. The
focus is on the internal models of the developer. There are two main ways in which a
development process can make progress: by refining an internal model or by refining
an artefact based on an internal model. Refining the internal models is a prerequisite
for being able to write a concrete specification and program that show acceptable
behaviour. The theory has implications for tools to support software development. By
creating novel test cases they can force the developer to question his internal models
and realize where they are incomplete or incorrect.

1. Introduction

Our society increasingly relies on computers. Computers are controlled by software
that tells them what to do. It is thus important that we theories of how to develop
this software.

The fundamental problem of software development is that of refining mental
pictures of how a problem could be solved into a program that a computer can run
to actually solve the problem. The problems are typically ill-defined and only partly
known. The mental pictures about possible solutions are similarly incomplete and
fuzzy. Both problems and the mental pictures of how to solve them change over time.
How should a software developer approach this situation?

We wish to consider general problems involving software development. To do
this it is first necessary to identify the various elements involved and define them. We
can then relate them in a model and define what we mean with a software development
process and study which steps advances it.

In this paper we assume that the role of the program is fairly well known, ie. the
development task is not about helping a problem owner explore the potential ways
how a computer plus a program could solve the problem. We assume this connection

- 2 -

between a problem and a computer-based solution has already been established.Even
though a more open-ended development situation may better reflect a majority of
software development situations we here focus on the simpler problem while noting
that more refined theories will be needed in the future.

2. Elements

Our model for software development has five fundamental elements1:

1. A patronwhich has a need for a program to solve a problem.

2. A specificationwhich states how the program should and should not behave.

3. The actual computerprogrambeing developed.

4. A developerthat develops the program.

5. A library containing humanity’s total accumulated knowledge relevant to the
development problem at hand.

In any software development process there are two fundamental types of infor-
mation: the computer program itself and information about how the program should
behave. The software itself is a natural element since we know that the developer has
to write it. Another element is information about what the software should do. A spec-
ification is where the developer collects this knowledge.

The specification and the implementation are the two main artefacts in a software
development process. A third artefact are any tests the developer runs on the software
during development. Even though it is thinkable that in some development processes
no tests are run, in practice there will always be some tests. The reason that tests are
needed is because the implementation is a static artefact. To assess whether it fullfills
the specification it has to be executed.However, tests are not fundamental elements of
our model since we will see that they are proto-requirements. Requirements are part
of the specification.

2.1. Specifications

Informally specifications are any information that specifies the form and behaviour
of a computer program and the process by which it is going to be developed. To us

1In the rest of the paper we will alter between using he and she when referring to the developer and/or the
patron. Of course it does not matter whether they are actually female, male or machines.

- 3 -

the form is not relevant since we are interested in principles and not the specifics of a
particular programming language or the naming of parts of the system. Even though
the development process is our topic of study it is not fundamental to a specification.
Any requirements on the process by which we reach a final software product can only
help or hinder development. In theory it should not affect the final behaviour of the
system itself.

Fundamental to a specification is that it specifies the behaviour of the running
program. Programs are static artefacts we develop to give a computer a certain, useful,
dynamic behaviour. Any development effort would be meaningless if it did not pay
attention to how the resulting system is supposed to behave. A specification can also
describe situations that should never arise, for example inputs that are invalid or
outputs that are forbidden. We call such specifications behavioural.

The atomic parts of a behavioural specification are behavioural requirements.
They describe an invocation of the program and whether its a valid invocation or not.
If its a valid invocation they also state information about different program behaviours
in that situation. If the requirement is permissive it states what behaviour is valid. If
it is dismissive it states what behaviour is invalid. Formally we have:

Definition 1 (Atomic Behavioural Requirement): An atomic behavioural
requirement, denotedρ, is a tuple{σ, ι, ο, χ} where

• σ describes the state the program is in before this invocation

• ι the input to the program in this invocation

• ο the output of the program in this invocation

• χ the information about this invocation or output whereχ is one of

• InvalidState - this state should never occur (ι = ∅, ο = ∅)

• InvalidInput - this input is not allowed in this state (ο = ∅)

• InvalidOutput - this output is not allowed in this state for this input

• DontCare - it is not important how the program behaves in this state
and for this input (ο can be∅)

• Valid - this is the valid behaviour for the program for this invocation

Note that in practice requirements are often not written in this atomic form. Require-

- 4 -

ments in traditional specifications often specify a large number of invocations at once.
An example would be a mathematical expression relating the outputs to the inputs
for some sub-domain of the valid input values. However, for our purposes we simply
consider that a notational convenience.

We note how closely related behavioural requirements are to tests. A typical test
has one part that sets it up and another part describing the inputs to the program1.When
a test runs the program gives some output behaviour. A test can thus be described
with the tuple{σ, ι} and a test run with the tuple{σ, ι, ο}. Thus, a test can be seen
as a half-baked requirement; it simply lacks a statement about the validity of the
invocation and the program behaviour.

A specification is simply a list of individual requirements.

Definition 2 (Behavioural Specification):A behavioural specification,denoted
β, is a finite list of behavioural requirements:β = [ρ1,ρ2,…, ρn].

We also define the space of all possible specifications.

Definition 3 (Specification Space):Thespecification space, denoted
^
Β, is the set

of all possible specifications of the dynamic behaviour of computer programs.

Now for a certain development problem there will typically be many specifications

in
^
Β that specify the wanted behaviour in a way that is good enough for the problem

at hand. This is because there are situations in which we do not care how the system
behaves. Given a development problem we can imagine a set of acceptable specifica-
tions that all describe the behaviour of the sought for program in a way that would be
acceptable for the patron.

Definition 4 (Acceptable Specifications): The acceptable specifications,
denotedΒ, is the set of all possible specifications that describe a behaviour of a
program that would solve the problem at hand in an acceptable way.

We use the termacceptablesince there will always be a trade-off for the resources
we have at hand. A basic goal with a development process must be to get enough
information about the set of ideal specifications that are acceptable so that we can
write a concrete specification that is close enough to the ideal for our purpose and the
resources we have at hand. Formally we write:

Development goal 1:Get to knowΒ ⊂
^
Β enough so that you can write a concrete

specification
−Β ∈ Β.

1Throughout this paper we use input to refer to the wider notion of stimuli, ie. including both the data and
the functions / methods to be called

- 5 -

The ultimate source of information onΒ must be the patron who has given us the
task of developing the program.

2.2. Patrons

Patrons are the owners of the problems that motivate the development process. At
the highest level they are some outside agent (customer, boss, contractor etc) which
needs a program to solve their problem. However, development processes often have
multiple levels and on lower levels the patron might be the developer herself. As an
example this would be the case if the developer has identified a sub-component that
is needed to solve the customers problem. Even though the ultimate adjudicator of
acceptable behaviour is the customer, he might not know how the sub-component
must behave. Thus on this lower level of development the developer might be her
own patron.

One way to learn about the acceptable specifications is by engaging in
Q&A-sessions with the patron. The type of questions that can be answered by the
patron range from basic to very complex. The most basic patron can only distinguish
invalid from valid invocations and valid from invalid program behaviour. Formally

Definition 5 (Least Knowledgeable Patron):Theleast knowledgeable patron,
denoted LKP, is the patron that can only answer questions of the form ’Given a
program invocation{σ, ι, ο} what isχ?’.

At the other end of the scale we could think of an patron that would give a full
acceptable specification if we simply ask her.

Definition 6 (Fully Knowledgeable Patron): Thefully knowledgeable patron,
denoted FKP, can give a full acceptable specification, with a complete and
consistent list of behavioural requirements, if we simply ask.

The LKP requires a process of interactive specification,where the developer generates
questions based on its current knowledge and then updates its knowledge based on the
patrons answers. The FKP does not need any questions at all; she can give a complete
behavioural specification without any knowledge from the developer.

In practice most patrons are typically between these two endpoints and can give
different types of answers depending on the particular invocation.Often they can only
reply to direct questions but sometimes give answers for a whole class of invocations.
One common patron can give expected outputs when given a state and input.

Definition 7 (Expected Output Patron): Theexpected output patron, denoted
EOP, answers withχ andο when asked about the program behaviour for{σ, ι}.

- 6 -

Patron interaction is even more problematic in practice. The patron might not have
the same framework as the developers so might not understand or know the answer
to a question. The developer might have a different picture of the problem than the
patron leading to misunderstanding and confusion. In this theory we do not model this
although we note it as important and a topic for further study.

2.3. Programs

The final product of any software development process is a program. It consists of
source code in one or several programming languages that can be compiled to a form
that a computer can execute.

In a theory we do not want to care about the details of the programming language
or about the form that is needed of the final program so that a computer can under-
stand it. We simply note that a program must be one particular instance in the space
of all possible programs. For a particular development problem there is also a set of
programs that all show acceptable behaviour.

Definition 8 (Program Space):Theprogram space, denoted
^
Π, is the set of all

possible computer programs.

Definition 9 (Program): A program, denotedπ, is a finite list of program
instructions that can be executed by a computer.

Definition 10 (Acceptable Programs):Theacceptable programs, denotedΠ,
is the set of all possible programs that have a behaviour that would solve the
problem at hand in an acceptable way.

In the same way as for specifications we have the obvious goal:

Development goal 2: Get to knowΠ ⊂
^
Π enough so that you can write a

concrete program
−Π ∈ Π.

2.4. The Developer

No theory for a development processcan be complete without modeling the developer.
We need ways to represent the knowledge she has gained about different parts of
the problem and to represent any other knowledge she has that can be put to use
during development.

A basic observation is that the developer cannot directly access eitherΒ, the
acceptable specifications, orΠ, the programs showing acceptable behaviour. At any

- 7 -

step during the development process she has some knowledge about these sets. This
knowledge typically differs in many ways from the ideals she is trying to achieve.
Below we formalize this.

Definition 11 (Developer’s Specification Knowledge at step t):Thedevelop-
er’s specification knowledge, denoted

~
Βi, is any information about the acceptable

specifications,Β, that a developer has at development stepi.

For human developers
~
Βi is the mental picture or idea that the developer has about the

acceptable specifications at a certain development step.

Similarly we have for the program space:

Definition 12 (Developer’s Program Knowledge at step t):Thedeveloper’s
program knowledge, denoted

~
Πi, is any information about the acceptable

programs,Π, that a developer has at development stepi.

Informally a step is an atomic action that drives the development forward. To analyze
what different steps are possible we also need to define different parts of developer
experience.

Definition 13 (Developer’s Experience):Thedeveloper’s experience, denoted
~
Κdev, is any information that the developer has and can brought to bear to help
solve the problem at hand.

When such experience relates to a particular type of development artefact we note the
artefact with a superscript.

~
Κ

spec

dev is any prior knowledge the developer has on how to

write specifications, while
~
Κ

prog

dev is the knowledge pertaining to writing programs.

2.5. The Library

The library represents the total knowledge that humanity and its machines have
accumulated that are relevant to software development processes and that is explicitly
available. We must require that the knowledge has been written down in some form
since it is of no use if it sits within the head of another developer without any way to
access it.

Definition14(Humanity’sTotalExperience): Thehumanity’s total experience,
denotedΚtotal, is any information that humanity has previously acquired and that
can be brought to bear to help solve the problem at hand.

In the same way as with developer knowledge we note the artefact that the experience
relates to with a superscript.

~
Κ

spec

total for example is any developers prior knowledge

- 8 -

on how to define and write specifications, while
~
Κ

prog

total is the knowledge pertaining to
programs.

−Κtotal would be knowledge written down in a form that other developers
can understand.

In fact Κtotal is primarily books and snippets of code for testing and programs
that we can look up and use since it is hard to tap into the parts of if that is in the heads
of other developers. But there is nothing stopping that the library also has a number
of experienced developers that one can ask questions pertaining to the development
problem at hand. However, we think formalizing the knowledge in

~
Κtotal so that it

can be put to direct use in development projects is an important goal for the software
engineering community as a whole.

With the basic elements in place we can now relate them in a model.

3. An Aggregate Model for Software Development

The basic observation on which our theory is built is that a software development
process is a learning process in which the developer needs to refine her internal
models1 of the acceptable specifications and the programs showing such behaviour
to the point where she can clearly formulate this knowledge in executable form. It is
not simply a matter of formalizing existing knowledge. It is about first acquiring that
knowledge and then formalizing it.

For both specifications and programs there are three main entities to keep in
mind: the ideal set, the internal model of the ideal, and the concrete artefact. In the
space of all possible entities

^
Μ there is a sought-for set of ideal enititesΜ. Through

its internal models ofΜ denoted
~

Μ the developer wants to write a concrete entity
−Μ

that as the development process goes on gets closer and closer to the ideals.

From this abstract picture we can see that there are two basic ways to make
progress. The developer can either make

−Μ better reflect
~

Μ or she can make
~

Μ better
reflectΜ. In some sense, the latter is harder and more fundamental. If there is a dis-
crepancy between

~
Μ andΜ the goal we are striving for when writing

−Μ is wrong. We
cannot identify such a situation without extending our view of the goal, ie. refining

~
Μ.

This needs an outside force that cannot be found when operating2 inside
~

Μ. Finding
discrepancies between

−Μ and
~

Μ is easier since it is a matter of reading
−Μ and com-

paring it to the internal model.

Lets now incorporate the other elements into this picture.The patron is the adjudi-
cator of what is and is not insideΒ. To clarify this division we ask her questions about

1For human developers we could say mental models, pictures or ideas
2For human developers we could say thinking

- 9 -

(sets of) invocations and she classifies the behaviour. Based on such Q&A-sessions
with the patron the developer refines

~
Β. Based on this model she can refine

−Β and her
model of what acceptable programs must look like,

~
Π. This model is used to write a

concrete program,
−Π.

The internal models of acceptable specifications and programs depend on the
developers previous knowledge. Some of this knowledge may be explicit in the
sense that the developer can write it down in a formal way (

−Κdev). Some of it is tacit
knowledge, distilled through previous experience (

~
Κdev).

The developer can also tap on some of the total knowledge available in the
library. By default this knowledge is formal in the sense that it has been written down
(
−Κtotal). However, the developer might also be able to tap into tacit portions ofΚtotal

by, for example, asking fellow developers.

From the patrons point of view each development project should include the
best practices inΚtotal that are relevant to this problem. An over-arching goal for the
software development community as a whole should be to support that.

The developers previous knowledge is a bag of models that affects his thinking.
He can widen this knowledge by going to the library and seeking information that
is relevant to the problem at hand. By working with the concrete specification and
program, and by questioning the patron she can refine her internal models of the ideal
specifications and programs. This in turn helps refine the actual artefacts and another
round starts.

With this model we can define what we mean by a software development
process.

Definition 15 (Software Development Process):A software development
processis a sequence of steps in which a developer refines

~
Β and

~
Π to reflectΒ

andΠ faithfully enough so that she can write down
−Β ∈ Β and

−Π ∈ Π.

From this definition we see that a development process is a process of incremental
learning. No matter what previous experience the developer has he must learn what
parts and how to apply his knowledge in this particular case.

To see what propels this process of learning forward we need to see what can
happen in each development step.

3.1. Development steps

There are two main ways in which a development process can make progress: refining
an internal model or refining an artefact based on an internal model.

Both these refinement processes have two main components: identifying a

- 10 -

discrepancyand overcoming it. We call the event that makes the developer identify
a discrepancy atrigger. When the discrepancy has been identified and described
the developer decides to take some action to overcome the discrepancy. We call the
latter theremedyand use the three-part model, of trigger, discrepancy and remedy to
describe important development steps.

Triggers are numerous1. A common trigger is to do a review of an artefact. By
reading the code the developer confronts it with his internal model and can note
omissions, inconsistencies and codification faults. Reviewing the specification has
similar benefits but with the additional possibility of including the patron during the
review. If that is practically possible it is often very valuable since the developers
model will confront the patron’s view of the system.

Another source for triggers is to use check lists. A check list codifies knowledge
that have been important in the past. Each developer has their own internal check lists
with common gripes and problematic points. However, writing them down has the
benefit that the developer will not forget important findings in later projects. It also has
the benefit that check lists can more easily be communicated to others. As an example
a developer could get check lists from the ’library’ and use any additional items not
on their own list when doing a review.

A third common trigger is to write and conduct tests of the system. Since tests
concern themselves with the dynamic behaviour of the system they are a natural link
between the program and the behavioural specification. When the developer writes
a new test she considers how the program behaves in a new situation. Even though
she may not know the expected behaviour, the test is valuable since it can be run and
the program’s output considered. Considering whether a certain output is valid might
be simpler than writing down the expected output since the latter requires creativity
while the latter is a matter of classification. And if the developer realizes she cannot
classify the behaviour of the program she can note that she should ask the patron to
help her.

4. Related work

Exploratory programming (EP) focus on developing a prototype to explore the
problem domain and to discover good solution strategies [6]. The prototype is then
refined until it performs in an adequeate way. The approach is suitable for projects
where a detailed requirements specification cannot be written or for research where it
is not clear if a solution even exists [6]. The model has some similarities to our model
by not forcing developers into writing a specification up-front. However, our model

1We do not consider the trivial trigger of a TODO list listing parts of the program or specification that we
explicitly know of but have not yet written down.

- 11 -

highlights the importance of the specification and promotes that properties that the
program must have are written down as they are found.

Extreme programming (XP) was recently proposed as a lightweight software
development process and it has attracted much interest [1]. It is a package of several
practices and ideas that in isolation are not new but taken together form a different ap-
proach to software engineering [3]. XP focuses on the importance of writing automat-
ically executable tests with tools that support unit testing. In for example JUnit, a tool
supporting the writing of XP-style unit tests for and in Java, you specify how to setup
and execute the test but also the expected results [2].Tests written in such a way would
be behavioural requirements in our model and considered part of the specification.

An important element of XP is the use of pair programming in which two pro-
grammers together program at the same terminal.One takes the driving role and writes
on the keyboard while the other ’looks over the shoulder’ and thinks about strategic
issues.Developers frequently change roles.Both anecdotal evidence and experimental
research have shown that pair programing leads to higher productivity and higher pro-
grammer satisfaction [8].There are possibly many reasons for this effectivenessbut we
note that one possible explanation is that the models of the developers are constantly
rubbed against each other so that they are questioned and discrepancies identified.Our
model supports this explanation by highlighting the importance of having some exter-
nal force that triggers the questioning and refinement of internal models.

In his PhD thesis, Andrew Walenstein presents a framework for understanding
software engineering tools in terms of how they support the cognitive processes of the
developer [7]. His core ideas is that cognition can be usefully modeled as computation
and that the cognitive support offered by the tool is the computational advantage it
provides.The tool together with the developer isseen asa distributed cognitive system.
The stance taken by Walenstein is similar to ours, in that the focus is on the developer
and supporting his cognitive processes. However, Walenstein does not place the same
emphasison the possibility of tools to be creative and help the developer ’think outside
the box’. In particluar his qualitative theory of cognitive support lists four prinicples
of computational advantage:task reduction,algorithmicoptimization,distribution and
specialization. Even though several of them applies in some sense to the creative abil-
ities of a tool (the tool creates a test invocation so reduces the number of invocations
that a developer needs to create) none of them captures it in its entirety.

The capturing and codification of knowledge on software development so that
it can be used automatically has been adressed in the past. An example is the CRE-
ATOR2 system for automatic software design built by Koono et al [4] which uses an
expert system with knowledge about different deisgns to help in designing switching
software.At the core the system isbased on a unified representation scheme for model-
ing the design process and the design product and using multiple strategies in applying
the knowledge. Even though the authors does not explicitly mention it the knowledge

- 12 -

in the system could be exchanged between different sites and thus be a candidate to
put in a library.

5. Discussion

5.1. On assumptions

An assumption in our model is that the ideal artefacts are static in the sense that for
a certain development project there exists a set of ideal solutions. Over time the
environment where the system is used might change as might the user requirements.
This will lead to a possible change in the ideal artefacts. This would complicate the
task of the developer since he is now targeting a moving target. We do not model this
but note it as an important topic for refined models.

5.2. On why tests are not elements of the model

Tests are not as fundamental as specifications and programs. It is thinkable that
development processes exist where there is no need for tests. However, in practice any
development problem of interesting complexity will have a non-empty set of tests.
The reason is that while a program is a static artefact, a specification states its dynamic
behaviour. Tests are needed to bridge the static domain of programs to the dynamic
domain of specifications.

We have chosen not to include the tests since there are other possible verification
and validation activities and it is not clear on what grounds some should be included
but not others.For example, inspections is a fundamental way to identify discrepancies
between an artefact and our model.

However, tests have a special place by being so closely related to specifications.
Tests are incomplete atomic behavioural requirements. They are invocations that lack
values for the output and classification of the behaviour shown by the invocation. A
test can be written{σ, ι, ?, ?} and a test run as{σ, ι, ο, ?} and by filling in the missing
information we get a full requirement.

5.3. On why the specification needs to be written down

There could be situations where it is not needed to write down
−Β but the patron would

take a risk. If the developer is no longer tied to the patron the knowledge aboutΒ is lost.
Also opportunities for automation and tool support is lost if it is not written down.

- 13 -

5.4. On implications for tool support

Writing down a
−Β that covers all of

~
Β can be hard since not all parts of

~
Β is conscious.

There are parts of our models that are implicit and assumptions we make without
thinking about them. However, when shown a particular invocation of a program few
developers have a problem classifying it as valid or invalid. If they cannot say if it is
valid or invalid it has pointed to a lack of knowledge. An opportunity for a tool to
support the incremental learning would be to search for tests that show the current
behaviour of the program in novel situations.

5.5. On why there is only a single developer?

We talk about our developer in singularis although software is often developed in
teams. Even if the learning process would be more complicated for a team, we see no
reason that the principles involved would be different. It would only mean that our
developer could be more competent (even though that is not self-evident and might
depend on the task and individual developers). Multiple developers have a larger
pool of knowledge and experience to draw from and can thus, as a group, make more
informed decisions. There is also the possibility of parallelizing tasks which could
lead to productivity boosts. However, this assumes that the increased communication
burden does not lead to misunderstandings and problems.

5.6. On the connections to Software Engineering

A common factor in definitions of Software Engineering is that they are concerned
with teams of developers and includes issues both of technical and non-technical na-
ture.For example it is important to have good documentation.Our model does not deal
with documentation and neither with maintenance, user interfaces or any of the many
other sub-fields of Software Engineering.We simply note that a fundamental problem
in any software development project is to develop a program that shows acceptable be-
haviour. In relation to this problem many other issues studied in Software Engineering
are, although important, secondary.

5.7. On whether knowledge can be separated into different parts

When modeling the user we separate out different parts of his experience such as
~
Κ

spec

dev

and
~
Κ

prog

dev . Is that not a gross simplification with many hidden assumptions about the
form and structure of human knowledge?

In a sense yes. But we are not claiming that it is plausible to assume that human
knowledge can be separated into independent units of information pertaining to

- 14 -

different aspects of the world. We simply identify that different parts of human
knowledge are relevant to different questions. By collecting that together and giving
it a name we can then reason with it. So essentially the actual form and structure of
human knowledge is not an issue for the theory. This is similar to the argument in [5]
about the ability to delineate a model’s boundaries.

6. Conclusions

A theory for software development was presented built from the five elements funda-
mental to any development process: apatronwhich has a need for a program or pro-
gram component, aspecificationwhich states how the program should and should not
behave, a program, adeveloperwriting it and alibrary containing all of humanities
total knowledge relevant to the problem at hand. Based on these elements a software
development process is defined as an incremental learning process in which there are
two main ways to make progress: refining an internal model of the developer or refin-
ing an artefact based on an internal model. Since the former underlies the latter it was
identified as more fundamental.

The theory has implications for tools supporting software development. They
should trigger the identification of discrepancies between the internal models of the
developer and the ideal artefacts that would lead to acceptable behaviour.One way for
them to do that would be to create novel test invocations for the developer to consider.
If the tool is creative in creating these invocations it could help the developer ’think
outside the box’and realize his knowledge is incomplete.

References

[1] Kent Beck.Extreme Programming Explained:Embrace Change. Addison-Wes-
ley, 1999.

[2] JUnit development team. JUnit -A Cook’s Tour. Tech.Rep. (2002). URLhttp://
junit.sourceforge.net/doc/cookstour/cookstour.htm.

[3] Daniel Karlström. Introducing Extreme Programming - An Experience Report.
In Extreme Programming Conference 2002 (XP2002), 2002.

[4] Z. Koono, B. H. Far, T. Takizawa, M. Ohmori, K. Hatae and T. Baba. Software
Creation: Implementation and Application of Design Process Knowledge in
Automatic Software Design. InThe 5th International Conference on Software
Engineering and Knowledge Engineering,San Fransisco Bay,USA, 1993.

[5] Marvin Minsky. Matter, Mind and Models. Tech. Rep. (1997), MIT’s Artificial

- 15 -

Intelligence Laboratory. URLhttp://web.media.mit.edu/~minsky/papers/Mat-
terMindModels.html.

[6] Ian Sommerville.Software Engineering. Addison-Wesley, 1994.

[7] Andrew Walenstein.Cognitive Support in Software Engineering Tools: A
Distributed Cognition Framework. Ph.D. thesis, Simon Fraser University.

[8] Laurie Williams and Robert Kessler. All I Really Need to Know about Pair
Programming I Learned in Kindergarten.to appear in Communications of the
ACM.

Paper 2.

Robert Feldt.An Interactive Software Development Workbench based on Biomimet-
ic Algorithms, Technical Report no. 02-16, Department of Computer Engineering,
Chalmers University of Technology, Gothenburg, Sweden, November 2002.A con-
densed version of this report has been submitted to IEEE Transactions on Evolution-
ary Computation.

An Interactive Software Development Workbench based on Biomimetic

Algorithms

Robert Feldt

Department of Computer Engineering
Chalmers University of Technology

Gothenburg, SWEDEN

November, 2002

Abstract

Based on a theory for software development that focus on the internal models of the
developer this paper presents a design for an interactive workbench to support the
iterative refinement of developers models. The goal for the workbench is to expose
unknown features of the software being developed so that the developer can check
if they correspond to his expectations. The workbench employs a biomimetic search
system to find tests with novel features. The search system assembles test templates
from small pieces of test code and data packaged into a cell. We describe a prototype
of the workbench implemented in Ruby and focus on the module used for evolving
tests. A case study show that the prototype supports development of tests that are both
diverse, complete and have a meaning to the developer. Furthermore, the system can
easily be extended by the developer when he comes up with new test strategies.

1. Introduction

Developing software without faults is an important task in our modern society. The
effects of faults in software can range from annoying, over costly to fatal.Having tools
that support software developers in avoiding and removing faults is thus important.

One of the most expensive phases of software development is testing. Since
testing does not directly add any functionality to the software there is a risk that
software developers does not prioritize it enough. This is unfortunate since testing is
a crucial step in ensuring the dependability of a piece of software. An important goal
for a software development workbench should therefore be to support developers in
finding and writing good tests and to automate testing processes.

A candidate for automating testing would be evolutionary computation. Evo-
lutionary algorithms (EA) ruthlessly exploit weaknesses in the scaffolding software
needed to support the evolutionary process [5]. In an earlier experiment of ours [9, 10]

- 2 -

the genetic programming (GP) algorithm revealed a fault in our simulator. By out-
putting NotANumber at a crucial step in the simulation the evolving programs could
get a perfect score and quickly solve the task. In that study, we fixed the fault, re-re-
viewed the simulation software for similar or other faults and restarted the experiment.
In effect, the GP algorithm had helped us debug our software. In this paper we inves-
tigate this ability further and design a system that capitalizes on the effect.

Evolutionary algorithms have previously been used to generate test data for soft-
ware testing [19, 26, 30, 37]. The focus has been on finding test data for structural test-
ing although one study investigated black-box testing [38] and another one searched
for test cases for mutation testing [3].

In this paper we propose a system that supports an incremental learning process
for writing code and executable properties of that code. The distinghuishing feature
is a biomimetic algorithm that can search for new test cases that highlights previously
unshown features of the code and the specification. The biomimetic algorithm
employs an evolutionary multi-agent system for the search, an artificial chemistry for
communication between entities in the system and a fitness evaluation distributed on
multiple evaluators that focus on different aspects.The system is interactive in that the
developers actions indirectly affect the search.

In section 2 we give a background to software development and testing and
present a theory for software development. The theory has implications for tools to
support software development and motivates the workbench for interactive software
engineering1 described in section 3. Section 3 also describes the prototype WiseR of
this workbench that we have implemented in the programming language Ruby. The
exeperiments we have conducted with WiseR are described in section 4. Sections 5, 6
and 7 then summarizes related work, discusses the results and draws conclusions.

2. Software development and testing

Software Engineering (SE) is the’application of a systematic,disciplined,quantifiable
approach to the development, operation, and maintenance of software’[18]. Much
effort in SE has gone into finding good development processes. The most traditional
example is the waterfall model with strict separation between requirements analysis,
design, implementation and testing. Other processes have abandoned the strict sepa-
ration between phases since they are often impossible to withhold in practice; during
design we realizewe have overlooked or underspecified some requirementsand during
implementation we realize the design is not complete.

A development process that has received much attention lately takes this stance to

1The workbench was originally named after ’workbench for interactive software evolution’but we changed
evolution to engineering so as not muddle the different uses of evolution in this paper.

- 3 -

a new level. Extreme Programming (XP), highlights testing as a fundamental activity
to ensure quality and puts it in the front seat [4].Some XP proponentseven use the term
’test-first design’. The tests should be one of the major driving forces and developers
start each iteration by writing tests for the code that needs to be implemented.The tests
thus constitutes executable examples of the requirements on the system.

A natural companion to the test-first ideas of XP is a unit testing framework
that supports the writing of tests and automates the execution and result collection
of running them. Kent Beck originally developed SUnit for unit testing of Smalltalk
classes but a number of similar systems have now been developed for other languages
and they are collectively called XUnit [8]. In practice the XUnit frameworks allow
the developer to specify concrete inputs for the software under test and to state the
expected outputs. Even though they focus on unit testing they are general enough to
support integration and system testing.

Although the unit tests written in a XUnit framework constitutes executable
examples they are different from formal specifications.Recently there has been efforts
to overcome this by marrying the JUnit Java unit testing framework with the formal
specification language JML (Java Modeling Language).The contracts written in JML
in the form of pre- and post-conditions that must be valid when calling a method on
a class are used as test oracles in the unit testing. This alleviates the developer from
the task of writing the expected outputs and thus simplifies the task of writing tests.
The developer only need to set up the testing context and specify the inputs and
call sequence.

The type of testing supported by the XUnit frameworks is called behavioural or
black-box testing. It focus on the behavior of the software under test (SUT) and aims
to test the responses of the SUT regardless of its implementation. An example of a
black-box testing technique is boundary-value testing which locates and probes points
around extrema and discontinuities in the input data domain.

Another type of testing is called structural or white-box testing. It focus on the in-
ternals of the implementation, often the control flow. The goal is to find tests that give
good coverage of the program, ie. executes all statements or paths in the program.

A special type of testing is mutation testing which createsmutants of the progam.
The goal is then to devise tests that reveal the mutants. By choosing mutant operations
that resemble faults that programmers frequently introduce the hypothesis is that a test
set revealing mutants should also be good at revealing real faults.

With this background let us now summarize our view of the software develop-
ment problem in a theory and state the implications it has for a development work-
bench. A detailed description of the theory can be found in [11].

Our theory for software development is built from the five elements fundamental
to any development process: apatron which has a need for a program or program

- 4 -

component, aspecificationwhich states how the program should and should not
behave, a program, adeveloperwriting it and alibrary containing all of humanities
total knowledge relevant to the problem at hand. Based on these elements a software
development process is defined as an incremental learning process in which there
are two main ways to make progress: refining an internal model of the developer or
refining an artefact based on an internal model. Since the former underlies the latter it
is more fundamental.

This theory has implications for tools supporting software development. They
should trigger the identification of discrepancies between the internal models of the
developer and the ideal artefacts that would lead to acceptable behaviour.One way for
them to do that would be to create novel test invocations for the developer to consider.
If the tool is creative in creating these invocations it could help the developer ’think
outside the box’and realize his knowledge is incomplete. Furthermore the tool should
support the sharing of recipes for creating novel test invocations. If a system for
sharing such recipes was in wide-spread use it could lead to more general progress in
the area of software development.

The theory also describes tests as half-baked requirements; they are requirements
without a verdict on the actual behavior the program showed. It would be very
powerful to have a tool that generated test sequences and then executed the program
on them and presented the test and the program behavior to the developer. This would
allow the developer to classify the test as valid, invalid or irrelevant and the behavior
as correct or wrong.The tool should then generate the code for setting up and checking
this behavioral requirement. The tool should also allow the developer to note that a
test is important but that they do not know what the expected behavior should be.

It is also important that tests are clearly documented. If a test identifies a fault
we should be able to demonstrate it to others. Also, as the software is completed and
further evolved to meet additional user requirements we want to be able to re-run
previous tests. This regression testing is important since the new additions may affect
previous code so that it fails where it previously worked.

It is also important that the tests are in a form that facilitates automation. Tests
are typically numerous and it would be too cumbersome to execute them by hand.
If they are written in a form that is easily executed this should lower the barrier for
the developers to continously run and monitor the progress on the tests. Such a tight
’feedback loop’ is what Extreme Programming and other similar, recent development
methods prescribe [4, 2].

In all but trivial cases testing cannot be exhaustive; there are far more possible
combinations of indata than we have the time to run. Thus, the tests we choose to
run should represent different classes of inputs. If the software correctly handles the
few examples from an input class it is likely that it will handle all inputs in the class.
This partitioning of the inputs into different classes should be visible from the tests to

- 5 -

justify why we have chosen this particular set of tests.

Many tests often have the same structure and only the test data differs between
them. Our development tools should allow the programmer to express these recurring
patterns in a form so that it can be reused in later projects and by others.

3. WISE - a Workbench for Interactive Software Engineering

WISE is a design for an interactive tool supporting software development based on the
theory above. It is an integrated environment for developing an executable, behavioral
specification and a program that implements it. It also highlights the importance
of tests and their close relation to the behavioral specification. WISE searches for
tests with properties different from the tests it already knows of. Interesting tests are
presented to the developer which can review them and classify them.This interactivity
between the tool and the developer is central to the design of WISE.

A prototype of WISE called WiseR (WISE for and in Ruby) has been implement-
ed in the programming language Ruby. It currently focuses on searching for tests al-
though a simple GUI has been implemented to interact with the system.

WISE draws upon biologically inspired ideas and a running WISE system uses
several biomimetic algorithms. Before we describe the philosophy behind WISE, its
architecture and the WiseR prototype we motivate why biological ideas are used and
the biological processes they resemble.

3.1. Biomimetic ideas in WISE

WISE is based on several ideas inspired by biological systems and uses algorithms
modeled after nature:

• It is continously active even if no developer is present. It searches for better and
more interesting tests or learns how to use the knowledge in the library.

• Few parts of WISE are cast in stone. When there are alternative solutions WISE
implements several of them and then dynamically learns which one works best.

• Templates for tests are built from building blocks resembling cells in biological
organisms. They have a membrane with ports that can connect to ports on oth-
er cells. In this way cells grow into larger clusters showing more complex be-
havior.

• Test cells interact within a biochemical system where proteins can be released
and sensed. Cells communicate both with other cells, other entities in the system
and with the outside world via the biochemical system.

- 6 -

• The basic commodity for cells is energy. Cells compete for energy by producing
data or test runs. Evaluators probe the chemical system for data or test runs that
are novel and give energy to the entities that produced it.

The reasons for this use of biological ideas are manyfold. From a philosophical
viewpoint the problems facing a developer have many similarities with the ones that
biological systems are facing. They are ill-defined. If they were not there would be
no real development task since it is by definition the formalization of a system from
loose beginnings.

The problems facing a developer are also dynamic. As she defines some part
of the system, her choices affects other, yet un-defined parts of the system. As she
learns more the importance of some parts might decrease while other parts becomes
more important. Even worse, the target might change as the patron gets a new idea or
changes the requirements.

In any development process there is room for multiple different choices. The
developer must identify important trade-offs and study how different decisions affect
the behavior of the system. A workbench supporting the developer must support this
playing with alternatives and exploring differing avenues.

Central to any development process is creativity and innovation. The developer
needs to be innovative in finding solutions, refining the specification and writing
tests that show conformance. Above all the developer needs to be creative, and ’think
outside the box’ to identify the faults in her own internal models.

Even though biomimetic methods may not be the best optimizers, they have an
excellent track record when it comes to ill-defined, dynamic, explorative and creative
processes. So from a philosophical viewpoint they are natural candidates as building
blocks in a development workbench.

An additional reason for the use of biomimetic ideas is that evolutionary algo-
rithms in previous studies have revealed faults in scaffolding code used during evo-
lution.

One example was in one of our earlier studies where a GP algorithm evolved
aircraft brake controllers [9, 10]. In this experiment a simulator was used to evaluate
the aircraft controllers.The simulator was faulty by not correctly handling exceptional
conditions from the controllers. In particular the GP algorithm found that by returning
the float value not-a-number (NaN) in a specific state of the simulation it could
trick the simulator into achieving its goal in a non-realistic way without expending
any energy.

In the experiment above the goal was not to test the simulator. But since the so-
lutions produced by the evolutionary algorithm interacted with the simulator it was in
essence tested.The fault in the simulator was not identified automatically but required

- 7 -

human analysis. But it was clearly evident from running the evolutionary system that
something was not right. Since the exploitation of the fault in the simulator was such
an effective means for the EA to reach its goals all solutions in the population soon
used the exploit. By tracing a simulation of one of the solutions the fault was easily
spotted. This also points to the important interplay between the system and a human
in finding and understanding the cause of a fault.

Other EC researchers have had similar experiences although few report on them
in the final papers. In a recent paper [5] the EC researcher Peter Bentley says that when
you work with evolution you

…get a few glimpses of the creativity of evolution through the bugs in
your code: the little loopholes that are ruthlessly exploited by evolution
to produce unwanted and invalid solutions…. Each result fascinating, and
each prevented by the addition of another constraint by the developer.The
bugs are never reported in any publication, and yet they point to the true
capabilities of evolution.

In this paper we extend this fault-revealing ability of EA to the testing of
general software.

3.2. Goals and design philosophy

The goals for WISE are to

1. find new knowledge about the software under test (SUT), and

2. allow the developer to specify test building blocks, test strategies, and novelty
criteria in a flexible way.

While goal 1is obvious,goal 2 is explicitly stated since it is what makes1possible both
for the current SUT but primarily for future development activity. The ’flexibility’ in
goal 2 means that WISE should limit the form in which the developer can describe the
system components as little as possible. It should also make as few assumptions about
them as possible. This leads to the sub-goal that WISE must also find new knowledge
about the system components since we cannot assume the developer has stated (or
knows) all of it.

Central to WISE’s design is to focus on the interaction between the developer
and the system. The developer is the ultimate source of knowledge so if the system
is in trouble it should inform him. The system should also encourage feedback on its
progress.Since testing can never be exhaustive for non-trivial systems we want to find
tests that are meaningful.

- 8 -

Another design principle is to avoid making choices about the values of parame-
ters to the components in the system. With choices we bias what can be expressed and
limit creativity.Thus when there is a choice of different alternativesWISE implements
several alternatives and let the system choose which ones are effective at run time.

3.3. Basic Architecture

The WISE architecture has four main parts: an interface to the developer (UI), a
control module that formulates goals and initiates searches, a knowledge base acting
as a central repository for information in and about the system, and compute daemons
that perform searches.

The UI is centered around the two artefacts that should be the end results of the
development process: the behavioral specification and the program. It can also display
tests to the developer and allows him to classify them. If he classifies a test and the
output from the program as valid the test is transformed to a behavioral requirement
and becomes part of the specification.Central to making this work is the need to make
things explicit. In as far as possible the artefactsare stated in a form that the workbench
can actively use in later steps. Information in comments or ’outside’ the system is a
lost oppportunity since the system has less information to base its decisions on1.

The UI gives the developer access to the knowledge base. The knowledge base is
a local version of the library that is part of the theory presented in [11]. In the future
we envisage that the knowledge base could be an interface to central libraries on the
Internet or directly linking the knowledge bases of for example the developers in a
development team.

The Control module is the main initiator of actions in a WISE system. It can
take commands from the developer and set up searches on a compute daemon. If the
developer does not give any commands it can formulate goals and sub-goals and
initiate actions based on them.As an example, if the user has not written or loaded any
new code that needs to be tested the Controller can consult the knowledge base and
initiate a search for test sequences that creates a certain type of data.

When the controller initiates a search it sends the search description and any
information needed for the search off to a compute daemon. To decouple the WISE
front-end from the compute daemons this communication is inter-process via a Tu-
pleSpace over TCP/IP. This decouples the UI and control module from the com-
pute daemon and allow one WISE front-end to use multiple compute daemons. Even
though high performance is not a goal of this study this separation was deemed nec-
essary since many of the biomimetic algorithms are compute-intensive. Including this
in the design from the beginning should make things easier later.

1Unless this information can be parsed and made useful…

- 9 -

The compute daemons are independent and may work on separate problems
handed out by a WISE front-end. the TupleSpace model was chosen since it allows
for very flexible communication between nodes [15, 39]. The daemons are not ex-
pected to cooperate to solve problems but the simplicity and power of the TupleSpace
model does not disallow it. It decouples the WISE module from the number and type
of daemons. The TupleSpace provides a noteboard where information can be pub-
lished and seen by multiple or only some subset of the daemons. It also allows the
daemons to publish information that can be seen both by the WISE front-end and by
other drones.

The searches in the daemons is done in a dynamically evolving system that
builds test templates that adds novel knowledge. The knowledge can be either about
the piece of software under test (SUT) or about the search builing blocks and how to
assemble them.

3.4. WiseR - the prototype

A prototype WISE implementation has been implemented in the object-oriented pro-
gramming language Ruby [36, 29]. It is called WiseR (Wise for Ruby). Ruby was cho-
sen since it is a high-level language with many features that support fast prototyping.
It belongs to a new class languages that sports dynamic typing and easy access to all
parts of the execution environment. This was deemed necessary in order to allow ex-
perimentation with different parts of the system.

Like the popular languages Java and C++ Ruby is object-oriented. Unlike them
it is dynamically typed ie. there is no type checking at compile-time. In fact, there is no
compile-time since Ruby is not compiled but interpreted1. Even though these aspects
make Ruby non-typical compared to major languages in use today we do not think it
confounds our results. If anything, the dynamic typing makes things harder for a tester.
He cannot simply look at the code and see what types are allowed for parameters. In
some sense, there is less information available in the code and thus more information
needs to be re-discovered. The availability of a compiler would speed up the system,
make the client more responsive and allow for more powerful computations.However,
in research and for a prototype we think other factors are more important. More
detalied information about Ruby can be found in appendix B and in the books [36,
29].

WiseR is both implemented in and supports development of Ruby code.All three
artefacts are expressed as Ruby code. Even though this is not a requirement in WISE
it makes things easier for our prototype. We can reuse common functionality used in
analyzing the artefacts. It is also easier to exchange information between them.

1Although Java was originally and is often used as an interpreted language there are numerous compilers
available. In any case Java is typed so differs from Ruby in this regard.

- 10 -

Figure 1. WiseR GUI main window with the Code window active and loaded with the
Array#maximum source code

- 11 -

The focus when developing WiseR has been on a module that searches for tests,
WiseR-Tests. In addition to WiseR-Tests the system contains of a GUI and small
implementations of the control module and a knowledge base. The main window of
the WiseR GUI is shown in figure 1.

Before going deeper into WiseR-Tests we briefly describe the WiseR GUI and
the support WiseR has for writing specifications.

3.4.1. The WiseR graphical user interface

WiseR’s main window, shown in figure 1, has 5 tab windows for different types of
information. The Specification and Code tabs are always present. They are two edit
windows for writing the specification and the program, respectively. The ’Knowledge
Base’ tab is also always present. It gives an overview of the hierarchical data stored in
the knowledge base and allows the developer to change parameters etc.

In the ’Modules’ menu the developer can load a module. After loading the
WiseR-Tests module it adds to additional tab windows. The ’Pools’ tab shows all the
pools that are currently active and can show some simple statistics for them. The
’Tests’window is the place where tests found by searches in the pools are reported to
the developer.

Examples of how the different tabs look during a run can be found in the case
study section below.

3.4.2. Writing specifications in WiseR

Even though the model for software development introduced in [12] and summarized
in section 2 above considered requirements as atomic invocations of the program
with a state, input stimuli, output and a classification of the invocation, WiseR gives
rudimentary support for writing and checking requirements in a more general form.

A specification in WiseR is written as a set of properties in a class inheriting from
the class Properties. The superclass Properties add some helper methods for defining
the 4 different types of properties supported by WiseR:

• pre - A pre-condition that should hold before a method is called. Gets the
arguments to the method as arguments.

• post - A post-condition that should hold after a method is called. Gets the output
from the method, the object and the arguments for the call as arguments. Can
NOT access the object before the call.

• invariant - A condition that should always hold for objects of the class, both
before and after any call.

- 12 -

• raises_exception - Indicates that the method must raise an exception when called.
Gets the arguments for the call as arguments.

We see that the first three are simply the ones dictated by Bertrand Meyer in his design
by contract method [24, 25]. We added raises_exception since it seemed useful. Not
much thought has gone in to this at this stage though and the way specifications are
written may have to be updated in the future. For example, the post-conditions in
WiseR cannot access attributes of the object before the call was made. This is a rather
serious limitation for expressiveness of specifications and needs to be adressed in
the future.

All of the three first methods above take a symbol that gives the name of the con-
dition and a block of code that implements the condition. The block must evaluate to
true if the condition holds or false if it doesn’t. The latter indicates that the specifica-
tion is not fulfilled.

The raises_exception property takes a name, the class of the raised exception and
a block implementing the condition under which the exception should be raised.

In addition to the four property creating methods above there are two more
to indicate which class and method the properties should hold for. They are called
for_class and for_method, respectively.

Additionally WiseR can add behavioral atomic requirements as described in
section 2 and in paper [12]. They are added in a second class after the properties class
at the bottom of the specification.

An example of a full specification is given in the case study section.

3.5. WiseR-Tests

WiseR-Tests is a WiseR module that searches for test templates with novel features.
It starts a search by creating apooland filling it with cellsthat are thought relevant to
the search.The cells represent recipes for how to create (small) parts of a test template.
Cells communicate with each other by sendingproteinsinto a biochemical fluidin
the pool.Portson the cells have proteinsensorsthat detect proteins flowing by. If the
protein is a product that the port could have use for it saves some of the proteins.When
the cell later ’runs’ it can use the protein to search for and connect to the originating
cell. As cells connect to more cells and grow into cell clusters they can produce and
emit more complex products.

Cells in the pool compete for energy.Without energy a cell hibernates.Cells with
high energy levels can execute more actions and have a higher chance of growing into
mature cell clusters that produce unique products.

The main source of energy is theevaluatorson the surface of the pool. Like

- 13 -

ports they have protein sensors attached to the biochemical fluid of the pool. Different
evaluators sense different types of products. When the sensor of an evaluator fires
the evaluator examines the product to assess its novelty. If the product is novel the
evaluator assigns an energy score to it and boosts the originating cells energy level.An
evaluator also communicates with the outside world by updating the knowledge base
with the knowledge gained from the analyzed products.

With this high-level description of the main components of WiseR-Tests let us
now go into the details on each one of them.

3.5.1. Cells

To construct a test we need an object of the class to be tested, a sequence of calls to
the object, input data for each call and a description of what to do with the generated
results. Essentially a test is a small program itself, invoking the class under test (CUT)
for a specific purpose.

One approach we could take would be to evolve such test cases directly. For
example, a genetic programming algorithm could be used to assemble test programs
from the syntactical elements of the programming language. However, there are a
number of problems with such an approach.

If we evolve source code directly there is no information about the higher level
structure of the test. There is only the code. We will have a hard time writing whole
test strategies with only the syntactic elements of the programing language. How
should we specify what and how things can vary? Strategies are templates for a piece
of source code; not for individual code elements.

When developing tests the goal is not only that they should efficiently test the im-
plementation and show its conformance to the specification. They should also justify
for humans (developers or ’customers’) that the system has been thouroughly tested.
It is hard to see how such a justification could be built at the same time as evolving
the code from atomic syntactic elements. There simply is not enough information to
describe the semantics of the test in human-understandable terms. A possible solution
would be to analyze the evolved test to produce a description of it. This seems very
hard and a backward kind of way.Our representation for evolving tests should support
descriptions at its core so that one and the same representation can be used both for
running the test and generating a description of what it does.

A further problem with an evolutionary process based on low-level syntactical
elements would be that it is unclear how it would scale. Evolutionary algorithms are
used on increasingly larger problems and the evolved solutions are more complex but
there is still a question of how well they will scale to really complex problems. By
evolving the tests from higher-level building blocks we increase the likelihood that it
will scale.

- 14 -

Finally, it is often the case that several tests have the same structure. Only some
constants or input data differs between tests. The representation we choose must
support the easy generation of large number of tests having the same structure.

These problems have led us to define a more powerful representation for test
building blocks than what is traditionally used in for example Genetic Programming.
In fact the design itself is inspired by cells which are the main building blocks of all
biological systems.

The basic building block for our tests are cells. Each type of cell is implemented
as one Ruby class. When writing a new cell there are two things the developer must
do.He must specify the ports of the cell and he must give one method that implements
the functionality of the Cell.

To capture the fact that a single cell can often generate a number of variants. Ex-
ample of variants are a cell OrderingOfElements that can sort the elements in an array.
It has two variants:one for sorting ascendingly and one for sorting descendingly. This
allows one and the same cell to capture related variants together. By varying a variant
specifier when executing the cell we can choose which variant will be chosen.

In addition to variants cells can often generate random examples of a variant.The
OrderingOfElementsabove cannot be randomized1but for example a FixnumGen cell
for generating Fixnums would have no variants but many different randomizations.
Any combination of variants and randomization is possible.

As an example here is the definition of the ArrayGen cell for creating Array’s
filled with objects:

class ArrayGen < DataGenerator
 semantics "Array of size v(:size) filled with t(:element)"

 out_port :out, {:type => Array}

 in_port :size, {:semantics => "Size of generated arrays",
 :type => "Positive Fixnum or zero"}

 in_port :element, {:semantics => "Elements for array",
 :type => Object}

 def max_num_variants
 [port(:size).max_num_variants, port(:element).max_num_variants]
 end

1Well it actually can if it takes input from other cells that can be randomized.

- 15 -

 def run(token)
 Array.new(e(:size)).map {e(:element)}
 end
end

The ArrayGen cell is a data generator and thus inherits from the DataGenerator
base cell class.The semantics line gives the semantics of the cell.Then comes the defi-
nitions of one out port and two in ports. The ports are named and assigned meta-data
that further defines them. Then comes two methods. The max_num_variants method
returns an array with the combined number of variants of the cells connected on the
ports. The run method is the one that will be called when the cell produces a product.
Here it executes the cell connected to port :size, creates an Array of that size and then
fills it by repeatedly calling the cell connected to the element port.

One thing to note is how the string given as the semantics for the cell contains
references to the cells connected to the respective ports. The ’v’method call will insert
the value received on port size while the ’t’ method returns the type of the objects
returned on port element. This simple scheme allows descriptions of the tests to be
built.Since its a simple scheme it will not work in more complex situations but it gives
a reasonable hint.

In addition to DataGenerators there are also CodeGenerators. CodeGenerators
are cells that implement a piece of Ruby code. They can range from simple cell that
call a method to complex test strategies.

A major design goal was to allow flexibility for the developer writing cells. As
few requirements as possible should restrict how cells can be written and how they
work. A cell should be an isolated building block for building a piece of a test. How
to assemble the building blocks to create tests should not be presepcified.

This flexibility is acheived by a flexible cell connection process. Cells connect
through ports. A port has a type which specifies what other ports it can connect to. A
cell can have zero or multiple ports and the number of ports can change dynamically
based on what other cells it has already connected to.

Figure 2 shows an example of a cell cluster for testing the Array#maximum1

method on arrays of Fixnum’s2. It is built from four cells. SizeOfDataStructure gen-
erates common sizes of datastructures such as array’s and hash’es. When executed it
generates a size and sends it through its out port to the in port named size on the Ar-
rayGen. The ArrayGen cell creates an array of the given size and fills it with elements

1In Ruby C#m indicates the instance method named m on an object of class C.
2Fixnum is the Ruby class for 31-bit integers

- 16 -

[prev]
CallInstanceMethod(Array, maximum)

[in]
[next]

[out]

ArrayGen

[size] [elem]

[out]

SizeOfDataStructure

[out]

FixnumGen

Figure 2. Test cell cluster with four cells for testing the Array#maximum method

generated by the FixnumGen cell. Finally the CallInstanceMethod cell calls the max-
imum method on the object received through its in port.

The CallInstanceMethod cell in the figure has two additional ports: a prev and
a next port. They are used to build more complex tests by linking together several
statements.

Cells are active agents in the system and are scheduled to be run depending on
how much energy they have. When a cell runs it selects one of a set of cell actions
and executes it. Every cell has the same set of cell actions but the parameters that
determine the specifics of the action is saved in a genome in the cell. Different cells
have different genomes and can thus evolve to perform different actions. In this way
we need not explicitly tune parameter values in the system and cells with different
functions can evolve different behaviour.

In the WiseR prototype there are currently only 4 different actions:

• Cloner - clones the cell

• Producer - produces a product if we are connected enough to be able to produce
something

• Connector - connects to other cells if we have free ports and any of the port
sensors have picked up something interesting

• Disconnector - disconnects one or more of the cells in the cluster by breaking up
a connection

- 17 -

The actions are implemented as separate Ruby classes inheriting from one and the
same base class.This model makes it very easy to experiment with alternative actions;
you simply write a new action and hooks it up to the base Cell class. An example
would be to implement a crossover action. We have not yet done that since crossover
can be said to emerge from the combined actions of a disconnector and a connector.

All actions cost energy based on how long time they execute. A high-resolution
timer is used to measure this and deduct the energy level of the cell accordingly.

The cloner cell action is typically activated when the energy of the cell is high.
However its activation probability is governed by a constant that is part of the
cell genome. Once activated the cloner simply clones the cell and any cells that is
connected to it. When a cell is cloned its genome can undergo mutations. After a cell
has cloned it must transfer a percentage of its energy to the clone. The percentage is
also part of the genome and undergo evolution.

In contrast to the cloner, the producer cell action is activated pretty often given
that the cell has matured enough so it can produce a product. A cell is mature if it has
only one open port and its either an out port or a left sequence port. The former can
produce a Ruby object while the latter can run a test and produce a TestRun product.

When a cells producer action is activated it will create a token and execute itself
on the token. The token is passed among the cells during production and records
intermediate results, calls to methods and results returned from statements. The token
also selects for a certain variant of the variants the cell can produce and specifies the
random seed to use for randomizations.Both the variant selector and the random seed
are saved and together with a mature cell uniquely determines a test run.

Cell executions are protected in several ways so that invalid connections do not
lead to infinite loops or uncaught exceptions. A time out value is used and terminates
the cell execution after a constant number of seconds that depends on the speed of the
CPU1. The cell execution is also invoked within a protected block that will catch any
exception. If a test run raises an exception it is used as the return value from the test
run. This allows evaluators to check for exceptions and punish the cell clusters that
caused them.

When a cell has been executed it packs up the product in a protein, tags it with
a unique id and ejects it into the fluid. The process of creating proteins cost energy
and that energy is reflected in the concetration of the protein sent out. The amount of
energy to spend on the product protein is determined by the cell genome. The amount
of energy sent is a sort of gamble the cell makes. By sending out more proteins the
potential gain can be higher if an evluator likes the product. However, if they do not
the cell will gain no new energy and the energy spent on producing the protein is lost.

1WiseR tests the speed of the CPU on startup.

- 18 -

Sending out many proteins also increases the likelihood that other cells i need of the
cells product gets the message.

The connector action is pretty straightforward. When activated it checks if any
port sensors have detected interesting products that we could have use for.The method
used to assess if a product is interesting is a parameter and governed by the genome.
One method simply chooses products at random,another ranks the products according
to their semantic match with the ports sementics.

The disconnector action is even simpler than the connector. It can be activated
by chance but the probability that it is activated raises (by how much is governed
by genome) when there are connections in the cluster that cause invalid executions.
The disconnector will choose one of the problematic connections randomly and
disconnect it.

3.5.2. Ports

Cells connect to each other via ports. A port is a placeholder for a piece of the test
coded for by the cell that can vary. Ports are eitherconnectedto another port or are
freefor new connections. Free ports can be further divided intoopenandclosed.An
open port has to be connected for the cell to be mature. Closed ports does not have to
be connected for the cell to be mature. A mature cell can open a closed port so that it
can grow into a more complex test template.Cells can add or delete ports dynamically
if needed.

There are four common types of ports: in port, out port, left sequence port and
right sequence port. In ports are used to receive objects from other cells and out ports
are used to send objects to other cells. In ports can only connect to out ports and out
ports can only connect to in ports.

Sequence ports are used to chain pieces of code together into more complex
templates. Every test template must start with a closed left sequence port; it indicates
the first statement of the test. Right and left sequence ports can only connect to
each other.

Ports are implemented as a separate class and can be easily extended. This way
new type of ports with new semantics can be added.

Ports serve a dual purpose. In addition to being the connection points between
cells they are the cells main medium for communication. Cells can send out informa-
tion through ports and ports have sensors that sense information sent by other entities
in the system.

Ports have a simple form of memory. They keep information about which ports
on other cells they have been connected to and statistics on what was sent and received
by the port during a connection. This information can be exploited by the cell when

- 19 -

deciding which ports and cells to connect to. When a cell dies or when the pool is
halted the information saved in the ports can be mined and entered into the knowledge
base. ’In’ ports are informed by the cell when the information received on the port
resulted in an invalid execution of the cell. The ports can thus keep track of which
other ports it is fruitful or meaningless to connect to. This way we need not require
that the developer specify the exact requirements that needs to be fulfilled for a port
to accept a connection.

As an example lets consider the ArrayGen cell from figure 2. Its in port named
’size’expects a Fixnum value that is larger than equal to 0 since it cannot create arrays
with a negative number of elemets. However, since there is no Ruby class for positive
Fixnums the type expected on the size port is simply stated to be Fixnum.When WiseR
evolves arrays it may happen that NegativeFixnumGen cells connect to the size port.
Since they will never result in valid arrays the size port on ArrayGen will be informed
of this each time the ArrayGen tries to produce a product. The port saves the type of
cell and port it is connected to and calculates an exception rate, ie. the probability that
this connection will cause an exception when the cell produces a product.Connections
with high exception ratesare the primary candidates the Disconnector cell action.Also
when the cell dies and the ports are mined for information the knowledge base will be
updated. The next time the system runs the knowledge base now shows that it is not
a good idea to connect NegativeFixnumGens to the size port on ArrayGen. This will
decrease the probability that such a connection happens again.

Often the developer has detailed knowledge about the port and what kind of
connections it can accept. He can specify such knowledge as meta-data when adding
a port to a cell. It is encouraged that ports at least have meta data describing their
semantics ie. their purpose. This allows the selection of candidates for innjection into
a pool based on semantic similarity as described above. However semantics are not
required. If so the cell will be injected into pools randomly so that the system can learn
about the type of connections it can take part in.

3.5.3. Biochemical fluid

Cells communicate by sending proteins into a simulated biochemical fluid surround-
ing the cells in the pool. Proteins are constructed from a series of acids. An acid is
either an ordinary Ruby object or a special acid used when matching proteins. The
special acids are:

• DontCareAcid - matches any other acid, used when we don’t care what is in a
certain position of the protein

• ClassAcid - wraps a Ruby class, matches any Ruby object that is a kind of the
wrapped class, used to match a whole series of proteins that are similar in

- 20 -

structure but only differ by the actual object

• MultiClassAcid - same as ClassAcid but matches object that is kind of one of
several classes

• NumAcid - encodes a numerical value in the protein, used to indicate the
concentration of the protein

The concentration of the protein indicates how many copies of the protein is sent out
into the fluid.The implementation is simply to release on protein and have the concen-
tration indicate the number of copies.This saves down on the number of computations
the biochemical fluid needs to perform when delivering proteins to sensors.

When a sensor senses a protein there is a reaction that may decrease the conce-
tration of the protein in the fluid. However there are sensor that sense proteins without
reducing their concentration. This is for example used to get a notion of time steps in
the system. For each iteration of the main pool loop that schedules cells for execution
the pool sends out a time chemical in the fluid. Elements in the pool can sense the con-
centration of the time protein without affecting its concentraion.

It is possible to register reactions with the fluid. This can be used to setup up de-
caying proteins whose concentration decrease over time. The prototype only supports
RateDecayReactions that consume a percentage of the currently available concetra-
tion of the protein. They are used for the Frustration protein which is emitted by eval-
uators when they have seen no progress for a long time.The Frustration protein slowly
decays unless more frustration is emitted by evaluators.The level of frustration can be
a good indication of the overall progress the search is making. Sensors for frustration
can also trigger global pool actions. The prototype does not currently use them but an
example would be an Earthquake pool action that triggered on high frustration levels
and randomly killed off cells in the pool. After such an earthquake new types of cells
could be given more room since previously dominating cells have been killed off.

The fluid is implemented as a simple tuplespace. Sensors register with the fluid
object and are organized in a hierarchy depending on the specificity of its matching
protein.When proteins are injected into the pool the fluid object look ups the matching
sensors and lets them react with the protein in a random order until no more sensors
are left or the concetration is zero.So the fluid in the prototype does not model a spatial
structure of protein diffusion. It is as if all sensors and emitters where at the same
distance from each other and the protein randomly reacted with some of them.

3.5.4. Pool

A pool is a container for cells in different stages of development. It has a biochemical
fluid that the cells use to communicate with each other.

- 21 -

Pools allow any entity that has a biochemical sensor or emitter to connect to the
fluid. This allows the WiseR front-end to sense the status of the evolution in the pool
and injectors to inject new cells into the pool when the proteins indicate that progress
is slow. Novelty evaluators connects to the pool to sense products produced by mature
cells and to send them energy based on the products novelty.

The pool is the main actor in the system and drives everything by scheduling
cells that can execute. The pool keeps a list of the cells ordered from highest to lowest
energy. At each time step it randomly select one of the cells from the top 10% of cells
having highest energy.

3.5.5. Novelty Evaluators

Novelty evaluators are the main energy sources in the system. They evaluate products
produced by the cells and clusters and give them energy if the product is novel.

Novelty evaluators sense products in the fluid with a sensor. The sensor reacts
with matching proteins and thus grabs a part of them. If the evaluator likes what they
see they will give energy back to the producing cell in accordance with how many
proteins they grabbed. Cells that send out much proteins thus have a greater chance of
being spotted and getting more energy back.

The actual constants that govern how many proteins an evaluator grab and how
much they give back is evolved with an evolutionary strategy algorithm local to the
evaluator.This was added to the system since it was hard to set the constants manually
and they affected the overall success of the system.

Novelty evaluatorswas added to the system so that many different criteria for test
novelty could be added independently of each other. The approach is similar to [35]
and allows multiple criteria and even contradicting criteria to coexist.

Evaluators that evaluate test runs report their findings to the WiseR GUI. The
GUI uses the information from the evaluators to sort the tests that are presented to the
developer. More novel tests get higher scores and end up higher on the list.

The novelty evaluators that have been implemented for the WiseR proto-
type are:

• ViolatesPostcondition - violates a post-condition in the specification (only active
if there are any postconditions) (10)

• ViolatesInvariant - violates an invariant in the specification (only active if there
are any pre-conditions) (10)

• UnseenException - a previously unseen exception was raised when calling a
method (9)

- 22 -

• UniqueMethodCalls - the number and order of methods called on the test object
differs from previous tests (8)

• UniqueAttributeType - the type of object returned from an attrbiute of the class
differs from previous tests (8)

• UniqueReturnTypes - results from methods have different type than previously
returned results (5)

• UniqueCellTypes - the number and type of cells in the cluster that produced the
test (5)

• UniqueCellConnections - the number and type of connections in the cluster that
produced the test (5)

• UniqueAttributeValue - the object returned from an attribute of the class differs
from previous tests (4)

• UniqueReturnValues- results from methodshave different values than previously
returned results (3)

• UniqueParameterNumber - the number of parameters used when calling a
method are different than what has been previously used (2)

• UniqueParameterValues - the values of the parameters to a method differs from
what has been previously used (1)

The number in parenthesis is an initial weight that the evaluators have. The weight is
updated based on which tests the developer investigates and classifies. The weight is
used to calculate an aggregate novelty score by summing the individual scores from
the evaluators multiplied by their weight.

Many of the evaluators above are of a binary nature and will not change much
during a run. However, when they do apply and give high uniqueness scores they
ensure that the cell cluster that created the condition gets lots of energy.This promotes
the exploration of similar cell clusters since the cells get many changes to run actions
that may clone or disconnect cells and connect to other cell combinations.

However the gist of evaluation are the evaluators that evaluate the uniqueness
of Ruby objects used as parameters in method calls, returned from method calls and
returned from attributes.

These evaluators use distance functions to compare the similarity of Ruby ob-
jects.The distance functions for simple objects like numbers is simply the absolute val-
ue of their difference.For complex objects the evaluator checks the values of attribute
methods on the object. For example for an Array the evaluator would call the length

- 23 -

method to compare the lengths of the Arrays.This need not be prespecified since Ruby
supplies reflective methods so that the evaluator can dynamically find out which meth-
ods are attributes and call them. For objects that can be enumerated (aggrations such
as Array’s,Hashe’setc) the evaluator will recursively apply itself to compare each sub-
object.

3.5.6. Feedback from developer interaction

WiseR continously monitors the actions of the developer and uses this information
to guide the search. When the developer classifies a test the cells that participated in
producing the test gets an energy boost based on how unique the test is according to
the evaluators and by counting how many tests with the same classification that are
already in the specification.

The weight of evaluators that gave the test a high novelty value are also boosted
somewhat.

3.5.7. Controller

The controller in WiseR is very simple. It receivesgoal statements from the UI,divides
them into sub-goals and identifies building blocks that could be useful in searching for
a test meeting the goal.

There are only two goal statements supported by the WiseR prototype:

• ’Test method X on class C’

• ’Co-test methods Y1, Y2, …, YN on class C’

The former tells the system to focus on testing one method while the latter indicates
that a set of methods should be tested together. One example where the latter goal
could be used would be when testing the push and pop methods of a PriorityQueue.
With the second type of goal statement above we could tell the system that these
methods ’go together’so its probably a good idea to call them both in a test.

Upon receiving a goal statement the controller checks whether the method(s) to
be tested are instance or class methods.An instance method is a method on an instance
(object) of a class. A class method is a method on the class itself. The canonical
example of a class method is the method used to create instances1:

Create an array object (instance of Array) of length 3
a = Array.new(3)

1In Ruby the ’#’ character indicates that the rest of the line is a comment

- 24 -

If the method under test (MUT) is an instance method the Controller formulates
the sub-goal of first creating an instance of the class.So the goal of testing an instance
method is broken down into first creating an instance of the class and then testing the
method on the instances. After goal analysis the goals enter a goal queue where they
are served in turn. The current status and history of the goal queue can be inspected
by the developer in the UI.

The controller now takes the next goal from the queue. It first looks in the knowl-
edge base if we already know how to create objects of this type. If not it searches the
knowledge base for Cells with meta-data that is relevant to the goal. A cell is deemed
relevant if it is known to generate objects of the right type or if its semantics match-
es the semantics of the goal. The semantic matching is done by a simple heuristic al-
gorithm based on the edit distance between words. The algorithm used is further de-
scribed in appendix A.

The search for Cells to include as building blocks in the search is repeated in
several steps to ensure that the in-ports of previously chosen Cells has some chance to
connect to other cells.For example if an ArrayGen Cell has been chosen the controller
will in the next round search for Cells with meta-data that is relevant for connecting
to the ArrayGen’s in-ports.

4. Case Study

In this section we describe a case study that have been carried out on the WiseR
system.

4.1. Array#maximum

This experiment is an interactive session with WiseR on a simple example, the
Array#maximum method used throughout this paper. The example is somewhat con-
trived since the implementation of Array#maximum contain a bug on purpose in order
to show the workings of the system.

4.1.1. Experimental set-up

For this experiment we start with WiseR in a clean state, ie. it has no knowledge except
for the standard cells that come with the basic WiseR system. The cells in such a basic
system contains data generators for the common Ruby classes, different ways to call
methods with different number of parameters, many different cells for generating
boundary cases of arrays since they are so common in Ruby programs and cells to
multiplex between datagenerators.

- 25 -

4.1.2. The experiment

The developer needs a method on the Array class that gives the maximum object of
all the objects in the Array. He starts WiseR and chooses the specification window. He
writes a few properties that the method must obey:

class ArrayMaximumProperties < Properties
 in_class Array

 for_method :maximum

 # maximum must be element of array
 post :max_is_an_element do |out, ary|
 ary.include? out
 end

 # maximum must be larger than equal all the elements
 post :max_is_larger_than_equal do |out, ary|
 ary.all? {|element| out >= element}
 end
end

He goes on to the Code window to create an implementation and writes:

class Array
 def maximum
 max = self[0]
 self[1...-1].each do |element|
 max = element if element > max
 end
 max
 end
end

The algorithm simply loops over the elements and keeps the max element in a variable
and then returns it. Note that there is an error in the code for the range specifying
which elements to loop over (-1 refers to the last element in the array and a…b to
the range from a up to but NOT including b). This was introduced for the sake of
the experiment.

As soon as he has entered a valid Ruby program (ie. that parses ok), WiseR
initiates a search by creating a pool and injecting cells into it. The cells are chosen
based on their semantics as described earlier.

- 26 -

As test runs are found by the pool they show up in the Tests window. The
developer goes there to check on the findings. Listed on the top is the entry ’Raises
NameError:undefined method each for nil’. This indicates that the maximum method
has raised an exception. By clicking on the entry it expands to show different test runs
for which this happens. By double-clicking on one of them it can be viewed in the
lower window. Figure 3 is a screen capture of the WiseR window at this point.

The developer views the source code for the test. It shows the test code and
the output from the method in the comment. He realizes he has forgotten about the
boundary case of an array of size 0. He decides that the method should return the nil
object when called on an empty array since this is the standard way in Ruby to handle
empty arrays. He updates the max_is_an_element to

maximum must be element of array or nil if array empty
 post :max_is_an_element_or_nil do |out, ary|
 if ary.length > 0
 ary.include? out
 else
 out == nil
 end
 end

and adds a new first statement in the implementation that returns nil if the length is
zero.When the program or specification is updated all the evolved tests are reexecuted
and the window with tests redrawn.

The previously selected test now returns nil which is the required behavior
so the developer classifies it as being a valid test run. WiseR converts the test into a
requirement and adds it to the specification after the ArrayMaximumProperties class
in the specification window:

class ArrayMaximumSpec < Specification
 def req_1
 # Calling Array#maximum on
 # Array of size 0 filled with Fixnum
 # Array of size 0 filled with String
 # Array of size 0 filled with Symbol
 assert_equal(nil, [].maximum)
 end
 end

We see that WiseR not only added the test we choose that had Fixnum’s as elements
but also the tests that give the same code but are generated in other ways. However,
the algorithm WiseR uses for merging tests is simplistic and should be extended.Right

- 27 -

Figure 3. The Tests window in WiseR showing the ’Array of size 0 filled with Fixnum’s’ test

- 28 -

now it has only very simple heuristics for how to merge test descriptions that do not
work for more complex tests.

At this stage the developer also realizes that the description of this test is not
optimal. The test is labeled ’Array of size 0 filled with Fixnum’ but it is not in-
teresting what type of objects are in an empty array. He decides to update the ca-
pabilities of the system by adding a specialized test cell for this boundary case.
He goes into the knowledge base and clicks down in the hierarchy to Wiser-
Tests/Cells/DataGenerators/Array and chooses ’New cell based on…’ from the con-
text menu accessed by right-clicking the mouse. He gets an edit window with the code
for ArrayGen except that the ArrayGen name has been removed so he can write a new
cell name. He writes ’EmptyArrayGen’ as the name, deletes the two in ports and up-
dates the meta-data and code to execute when running the code. He ends up with (you
can compare this to the code for ArrayGen given above):

class EmptyArrayGen < DataGenerator
 semantics "Empty Array without any elements (length is 0)"

 out_port :out, {:type => Array}

 def run(token)
 Array.new(0)
 end
end

He doesn’t need to define the max_num_variants method since it returns 1 by default
as defined in the DataGenerator class.

Going back to the Tests window there are now a new top-level entry
’Array#maximum violates max_is_larger_than_equal_all_elements’.The tests show-
ing this behavior has two Fixnum or String elements. After ensuring himself that the
max_is_larger_than_equal_all_elements is a valid property to require and that its im-
plementation is flawless the developer examines the tests in close detail. The one with
Fixnum’s look like:

def test_64
 # Calling Array#maximum on
 # Array of size 2 filled with Fixnum
 [-196424314, 837355386].maximum #=> -196424314
end

Something is obviously not right with the implementation and he goes to review it.
Well, the pool has now spotted the problem with the implementation that it never
compares to the last element in the array.Before updating the implementation he turns

- 29 -

the tests into requirements.He classifies them as valid state and valid input but invalid
output so WiseR generates only a skeleton requirement where the developer can fill
in the expected output. Here’s the requirement above after he has filled in the blank:

def req_2
 # Calling Array#maximum on
 # Array of size 2 filled with Fixnum
 assert_equal(837355386, [-196424314, 837355386].maximum)
end

He updates the implementation to use the full range 1..-1. Tests are now rerun based
on the new implementation and he goes back to the Tests window. On top is now
new entries of the form ’Array#maximum raises NameError: undefined method >
for nil’. The tests showing this behavior each have two or more elements that are nil
or symbols. The developer realises that his implementation will only work for objects
that have comparison operators that allow ordering of the elements. He considers
adding a property to ensure this but instead decides that raising this exception is the
correct behavior in such situations so he classifies the tests as valid and the output as
expected.WiseR adds requirements of all the tests. As an example here is the one with
4 symbols:

def req_5
 # Calling Array#maximum on
 # Array of size 4 filled with Symbol.
 assert_raises(NameError) {[:vT, :Ho, :ye, :zZ].maximum}
end

He also adds the property at the top of the specification:

raises_exception :elements_must_be_comparable, NameError do |ary|
 ary.all? {|element| element.kind_of?(Comparable)}
end

Going back to the Tests he sees a new type of entry labeled ’Array#maximum raises
TypeError: failed to convert Fixnum into String’ and examining the test he sees an
array with both Fixnum’s and String’s in it. Aha, not only need they be Comparable
they need to be comparable to each other. In a similar way as before he write a new
property and converts some tests into requirements.

Going back to the Tests window again he examines some of the ’normal’ tests
that do not raise an exception or violates any properties. He examines them and turns
several of them into requirements by classifying them as valid.

He continues doing this until he feels satisfied there are no more errors.

- 30 -

4.1.3. Analysis

The interactive WiseR session reported above shows that WiseR was effective both in
finding bugs in the specification and implementation of the Array#maximum method.
The problem with max_is_an_element was an error in the developer internal model of
what the method should do. There was a boundary case he hadn’t considered. Seeing
the actual test that shows the erroneous behavior gives insight of where the internal
model needs to be refined.

5. Related work

5.1. In evolutionary algorithms for testing

There has been a number of studies that use genetic algorithms (GA’s) for structural
testing, ie. ensuring that all parts of the implementation are executed by the test set.
Jones et al used a GA to generate test-data for branch coverage [19]. They use the
control-flow graph (CFG) to guide the search. Loops are unrolled so that the CFG is
acyclic. The fitness value is based on the branch value and the branching condition.
They evaluated the approach, with good results, on a number of small programs.

Michael and McGraw at RST corporation have developed Gadget - a tool for
generating test data that give good coverage of C/C++ code [26]. Gadget work for full
C/C++ code and automatically instruments the code to measure the condition/decision
coverage. This requires that each branch in the code should be taken and that every
condition (atomic part of a control-flow affecting expression) in the code should
be true at least once and false at least once. Four different algorithms can be used to
search for test data in Gadget:simulated annealing, gradient descent and two different
genetic algorithms. One of the GA’s scored the best on a large (2046 LOC) program
which is part of an autopilot system but on synthetic programs the GA had problems
with programs of high complexity. Simulated annealing fared better here. In all of the
experiments random testing fared the worst when the complexity increased.

Pargas et al use a GA to search for test data giving good coverage [30]. They
use the control dependence graph instead of the control flow graph since it gives
more information on how close to the goal node an execution was. Their system uses
the original test suite developed for the SUT as the seed for the GA since it should
cover the programs requirements. To reduce the execution time their system employs
multiple processors. They compare their system to random testing on six small C
programs. For the smallest programs there is no difference but for the three largest
programs the GA-based method outperforms random testing.

Tracey et al presents a framework for test-data generation based on optimisation
algortihms for structural testing [37]. It is similar to both Jones et al and Michael and

- 31 -

McGraw approaches and uses a CFG and branch condition distance functions. They
use both simulated annealing and a genetic algorithm for the optimisation. Their tool
is automated and works with ADA code.

Tracey have used a similar technique for functional (black-box) testing [38].
The formal specification is described with pre- and post-conditions that each function
must obey. The goal is to find indata that will fullfill the pre-condition and the negated
post-condition. These expressions are converted to disjunctive normal form. All pairs
of single disjuncts from pre- and post-conditions are considered targets for the search
since a fault is found when either of them is fulfilled.

Mueller and Wegener used an evolutionary algorithm to find bounds for the
execution time of real-time programsand compared it to static analysis of the software
[27]. Even though the evolutionary algorithm cannot give any safe timing garantuees
it is universally applicable and only requires knowledge about the programs interface.
Static analysis can give garantuees but only in a theoretical world. It needs extensive
knowledge about the actual hardware if we are to trust the results. Such knowledge
may not always be available.

Baudry et al have used genetic algorithms for evolving test sequences for muta-
tion testing of Eiffel programs [3]. Their model is similar to ours in that they focus on
specification, implementation and tests. Their specifications are written with pre- and
post-conditions and invariant. A tool mutates the programs and a genetic algorithm
searches for test sequences that kills the mutants.The GA is seeded with test sequences
written by the developer. Mutants that are not killed by the GA are analyzed by hand
to see if they are mutants that did not change the workings of the software.

Genetic algorithms have been used to generate test scripts for GUI testing [20].
Even though the tests generated were simple the authors concluded that the GA could
test an application in an unexpected, but not purely random way.

5.2. In evolutionary multi-agent systems

Like WiseR the system developed by Krzysztof Socha and Marek Kisiel-Dorohinic-
ki uses multiple entities, called agents, that together explore a multi-objective search
landscape [34]. Agents exchange a non-renewable resource called life energy in trans-
actions based on comparing their behavior against a fitness function. The traditional
evolutionary processes of selection and inheritance are not governed by some central
authority but happen locally in each agent. When agents have high energy they will
reproduce and when energy goes low they die. Agents have a physical location in the
world they are in and all actions happen locally. The system has been applied to opti-
mization of some numeric test functions with promising results.

Our system differs from Socha’s and Kisiel-Dorohinicki’s by not using locality,
having heterogenous agents, a renewable ’energy’and a dynamically changing fitness

- 32 -

landscape. The agents in our system are cells of diverse constitution. They exist in a
pool without a physical location. Communication thus go to many more other cells.
This is needed since there may be fewer receivers and too strong locality might hinder
progress.More importantly our system does not try to optimize a static fitness function
and the fitness function is not smooth. In these conditions we don’t think it would be
possible to have a non-renewable ’energy’ resource.

5.3. In cell-based programming models

Some research groups are studying how programming models inspired by biological
systems can be used to build more robust systems. George et al recently introduced
such a model where cell programs are automatons containing discrete states and
transitions between the states [16]. Cells can sense there immediate neighbourhood
and send out chemicals. They can also divide. The authors beleive they will be able to
build self-healing software with the model.

The ’Amorphous Computing’group at MIT studies organizational principles and
programming languages for coherent behavior from the cooperation of myriads of
unreliable parts [1].

5.4. In evolutionary design systems

The Agency GP system is used to let designers explore the design space of 3D objects
[35]. It has a very flexible approach to fitness evaluation where agents evaluating one
aspect of fitness can be released into the system and affect fitness evaluation. New
agents can be added as needed. The authors claim that this model is well suited for
fitness evaluation based on conflicting, non-linear and multi-level requirements. Our
model with evaluators is very similar to this agent-based fitness model.

Ian Parmee and colleagues have investigated the use of genetic algorithms for
conceptual engineering design [31]. Their research has focused on different ways to
allow the designer to guide the multi-objective optimization carried out by the genetic
algorithm. They have applied their systems to ’traditional’ engineering disciplines
such as aerospace and civil engineering.

5.5. In biochemically inspired system

Lones and Tyrell have proposed a new representation for genetic programming in-
spired by gene expression and enzymes in the metabolic pathways of cells [22, 23].
The building blocks for the GP algorithm are enzymes containing an activity and a set
of specificities.The activity is the function the enzyme encodesand the specificitiesare
templates that determine which other components the enzyme can connect to. Geno-
types are sets of enzymes and develop into a program by starting the build process

- 33 -

from an output enzyme. The system has been evaluated on the evolution of simple,
non-recurrent digital circuits. The WiseR-Tests system shares many similarities with
Enzyme GP (EGP). Our cells corresponds to EGP’s activities and our ports to EGP’s
specificities.

Many other researchers also build computational models based on modeling cell
communication via chemicals. An overview of different approaches is given in [17]
which also presents an aggregated model taking different parts from the earlier mod-
els.Their system is very similar to ours in that a blackboard is used for communication
between autonomous agents.However, their ultimate goal is to model cells for medical
research.

5.6. In software testing

The QuickCheck system by Claessen and Hughes is a tool for automatic specification-
based testing of programswritten in the functional programming language Haskell [6].
The programmer provides a specification of the program by writing properties that the
functions in the program must satisfy. The programmer can also combine simple test
data generators into more complex ones.The data generators are then used to generate
random data for testing the properties of the specification.

The Ballista system can be used for robustness testing of commercial-off-the-
shelf (COTS) components [21]. They use the very simple criterion ’Crash or not?’ to
determine if the response was valid and thus do not require a behavioral specification.
The reason is that specifications are often not available for COTS software. The test
sets generated by Ballista are exhaustive based on the data types of parameters to each
function. There are generators available for each data type and they return extreme or
boundary values. Our approach with data generators is very similar to Ballista’s with
the exception that we allow multiple generators for each type and generators can be
combined by connecting to each other.

5.7. In methods for semi-automated software development

The Programmer’s Apprentice (PA) was an attempt to build intelligent assistants to
support in requirements analysis, design and implementation of a program [32]. They
sought to automate the programming process by applying techniques from Artificial
Intelligence.As a step towards that long-term goal they built assistants that could help
the developer make intelligent decisions. For example, the implementation assistant
allowed a programmer to construct programs by combining algorithmic fragments
stored in a library.

PA is similar to WISE in that it allows the developer to bypass the system and di-
rectly enter code (or tests in WISE). But PA’s way to represent knowledge is different.

- 34 -

It is based on finding and encoding knowledge in pre-specified formats. Restrictions
are thus put on how people must enter knowledge about the domain. The knowledge
is also represented in a form that is different from the implementation language. In
contrast the format used to represent knowledge in WISE is the same as the program-
ming language itself. This makes things easier for developer since they do not need to
learn another language. Another difference is that the Programmer’s Apprentice sys-
tem does not concern itself with testing.

The approach taken by PA can be called rule-based. A similar approach is the
case-based reasoning approach to automated SE taken by some systems [7]. Like
WISE they use some fuzzy measure of similarity to find components from a library
that are relevant to a task. Like WISE they also learn by allowing the developer to add
knowledge to the system. However, none of them have focused on testing and few of
them produces artefacts that can easily be read by humans [7]. Since WISE focuses on
knowledge about tests and test sequences are often simpler than the software they test
the tasks facing WISE is simpler.However,a possible future work can be to investigate
if and how more complex meta-data and matching schemes, as used in case-based SE
systems, can be used in WISE.

Scheetz et al used an AI planner to generate test cases from an UML class dia-
gram [33]. The UML diagram needs to be augmented with test-specific information.

6. Discussion and future work

6.1. Discussion

On why we did not compare the biomimetic search algorithm to random search.
The interactive aspects of WiseR makes it hard to compare the system to a blind ran-
dom search. If we compare the system without any developer interaction we the sys-
tem is crippled and it is hard to draw conclusions about the full power of the system.
Such an experiment could shed light on the importance and effect of the developer
interaction. However, it is not even clear what should be considered a random search
to which we could compare.What amount of information should we allow the random
search to have? Should it have access to the port memories showing which ports are
valid or invalid to connect to? Should it be allowed to use the semantic matching al-
gorithm to select a set of cells that are promising? It is not clear-cut what the answers
should be and the limited time available for this study did not allow us to investigate
this any further. It is an important point for future work though.

On why it is fast enough even though Ruby is interpreted. Even though Ruby
is interpreted and between 5-100 times slower than compiled C (depending on the
type of task) the WiseR system can find tests in reassonable time. One reason is that

- 35 -

the system can test very many cell clusters while the developer investigates a single
test.Another reason is that much knowledge about potentially good tests is captured in
the cells. They are high-level building blocks that have shown to be useful in previous
testing efforts.

On how tied the system is to Ruby.Even though our goal has been for a general-
ly useful system the WiseR prototype uses many special featuresof Ruby that may not
be available in other languages.Reflection is used in the evaluators to find way to com-
pare unknown objects. The fact that Ruby is interpreted also helps since we can easily
reload tests. But there are not only downsides with going for other languages. A stat-
ically typed language would simplify things since the types of data would be known.

On WiseR’s complexity. The design of WiseR might appear complex on the
surface. Even if there is no absolute way to measure and compare the complexity
of software systems we think a major cause for WiseR’s apparent complexity is
that it utilizes concepts not commonly used in software designs. The fact is that the
complete WiseR system, including rudimentary graphical interfaces and the code
for the test cells, is about 3800 lines of Ruby code1. We do not consider that a major
software system.

On the risc of using automated methods to search for tests. There is a clear
risc with using automated methods such as the one employed by WiseR for finding
tests: we get a false sense of security by seeing the mass of tests that can be fairly
easily added. However, if the system does not have the right information to base the
search on it only searches a small subset of the space of possible input sequences. We
note that this is a potential problem and that further development of WiseR should
try to find methods to at least partyl overcome this. As an example the QuickCheck
system by Claessen and Hughes can summarize the different input data sequences
used in the test to show their disitrbution [6]. Something similar would be of value to
WiseR, possibly combined with some way of visualizing these distributions.

6.2. Future work

6.2.1. Further experiments on WiseR-Tests

The case study described in section 4 are limited and on a very small development
task. To really gauge the power of the developed system we need to perform more
experiments on larger development tasks. Since the developer is such an important
element in the WISE philosophy experiments should be carried out with several
developers on one and the same development task. This could reveal differences in
how developers experience and make use of WiseR’s capabilities.

1Including comments and blank lines

- 36 -

One way to acheive developer feedback about the system could be to release it as
open-source. An intriguing possibility would be to develop WiseR-Tests into a plugin
for the new FreeRide Ruby integrated development environment [13].

6.2.2. Extending WiseR-Tests

There are a multitude of things that can be changed within the current WiseR pro-
totype.

The connection between what cells are available in the CellPool and the tourna-
ments in the Arena could be tighter. This might add important feedback that more
quickly would steer the evolution to interesting areas of the TestSpace. It would also
have the potential of trapping the process in local minima, ie. parts of the TestSpace
where not much new knowledge is to be found. Exploring this trade-off might be
worthwhile.

Improve the descriptions and process of generating test descriptions from a
builder. Even though it currently give valuable information to the developer its a bit
awkward and might be improved upon.

The controller is not currently part of the evolutionary process in WiseR. We
consider this a drawback. This decision was made because we wanted the goal of the
current searches to be visible to the developer. It was not clear how a goal could be
formulated from an ongoing evolutionary process.An interesting area for future work
would be to have a co- or meta-evolutionary search for CellSource’s that could attach
to the running search and add new cell material. Much of the scaffolding needed for
this is already present with the system of triggers that monitor the knowledge base for
when to inject new cell material into the pool.

6.2.3. Additional modules and extending WISE

CodeFaultAnalyser. The WISE system knows when you are correcting the source
code and can thus save information about error corrections that you do. By saving the
faulty and corrected syntax trees these trees can be analyzed.Over time the system can
build a knowledge of your common faults and how to correct them. This information
can be coupled with the Tester module to allow strengthening the tests based on mu-
tation analysis. By basing the mutations on the actual faults of the user we can assure
they are representative.This would be an excellent basis for mutation-based testing in
the spirit of [Baudry et al] but with faults that are relevant for the current developer.

Explicitly representing faults also makes it possible to exchange fault sets
between different developers.Thus over time this could lead to a common database of
faults and how to solve them. Faults and corrections could also be exchanged over the
internet etc.

- 37 -

A basic CodeFaultAnalyser module has been implemented in WiseR. However,
it has not yet been integrated with Tester so that they can cooperate to strengthen the
tests. Future work should strive to integrate these two modules so that they can use
each others knowledge. For example, knowledge about the developers common faults
could be used to create mutant code that tests would have to identify as faulty. A new
novelty evaluator could thus reward tests that killed (new) mutants.

CellExtractor . There are many possibilities for automating the extraction of
test cells, ie. test strategies, test code patterns and test data generators. By analysing
existing test suites the system could find recurring patterns that can be extracted into
new test cells and used for future test evolution.

Extractors could also insert specific data generators tailored to the implemen-
tation at hand. A static analysis of the code to be tested could reveal values that are
boundary cases for this particular implementation and thus are likely to reveal new
information about the system.

7. Conclusions

Based on the theory of software development proposed in [11]we identified opportuni-
ties for a workbench to support the development process.Our design for an integrated
software development workbench,WISE, tries to follow the ideas indicated by the the-
ory. It explicitly represents both the artefacts to be produced during development and
encourage the encoding of meta-information about testing that can be used to derive
meaningful tests.

WISE uses biomimetic algorithms to support the development processes. In par-
ticular,WiseR,our first prototype of WISE implemented in the programming language
Ruby, evolves test templates that generate tests that add interesting information to the
system. A common design theme is flexibility. The developer can continously interact
with the automatic evolutionary process to guide it and turn it to interesting areas of
the design space.

We have performed an initial case study on WiseR. It shows that WiseR can
successfully evolve test sets that are both powerful and meaningful.

Appendix A. Algorithm for calculating semantic similarity

The WiseR prototype uses the following heuristic to compare the semantic similarity
of two strings:

1. Divide both strings into it constituent words while dropping any non-alphanu-
meric characters.

- 38 -

2. Delete the short, ’trivial’words that tend not to carry much information:a, an, the,
in, on, of, and, or.

3. Calculate the edit distance (also called the Levenstein distance [14]) for
all pairs of words in the two strings that share a prefix at least of length
MIN_PREFIX_LENGTH. Inverse this to get a similarity score.

4. Sort all the similarity scores and sum them with a weight that is the inverse of
their rank.

5. For each word that do not share a prefix subtract a MISSING_PENALTY from
the similarity score

The MIN_PREFIX_LENGTH and MISSING_PENALTY constants was optimized
(off-line) with an evolutionary strategy so that the heuristic above gives values that
correspond with common sense on a set of strings. However, no evolution is done
online on these parameters.

No doubt there are better algorithms for doing the semantic matching and
investigating them could be an important future work. However, the above heuristic is
simple and gives an indication of semantic similarity. Since the measure is only used
to select building blocks it is not fundamental to the success of the system.

Appendix B. Short introduction to Ruby and its syntax

Since Ruby is not very well known we here gives a brief introduction to it and its
syntax. This introduction is heavily based on a paper by Michael Neumann [28].

Ruby is an interpreted, object-oriented programming language. It is similar to
both Smalltalk, Perl and Python but the syntax is more like Eiffel, Modula or Ada.
Like Smalltalk everything is an object1, there is a garbage collector, variables don’t
have type, there is only single-inheritance and code can be packaged into objects.
Ruby’s Perl heritage manifests itself in strong support for text-manipulation using
regular expressions and substitution but also iterators. In many regards Ruby is very
similar to Python although many consider the object-orientedness to be somewhat
purer in Ruby than in Python.

In Ruby you declare a class and a method like:

class MyClass
 def my_method
 1

1There are some exceptions to this but they are not important here

- 39 -

 end
end

and can now get an instance (object) of the class and call the method with

o = MyClass.new
o.my_method # Returns 1!

where everything after the # is a comment.

Ruby is dynamic. All classes are open and at any time you can add new methods
to classes1.

Ruby has an eval method so that Ruby code in strings can be evaluated.

eval "1" # Returns 1!

References

[1] Harold Abelson, Don Allen, Daniel Coore, Chris Hanson, George Homsy,
Thomas F. Knight, Radhika Nagpal, Erik Rauch, Gerald J. Sussman and Ron
Weiss. Amorphous Computing.Communications of the ACM43 (5), 74-82
(2000).

[2] Kent Beck, Dave Thomas, Andy Hunt et al. Agilent Develop-
ment Manifesto. Tech. Rep. (2001). URLhttp://citeseer.nj.nec.com/jus-
tice93objectoriented.html.

[3] Benoit Baudry, Vu Le Hanh, Yves Le Traon. Testing-for-Trust: The Genetic Se-
lection Model Applied to Component Qualification. InTechnology of Object-
Oriented Languages and Systems (TOOLS 33), 2000.

[4] Kent Beck. Extreme Programming Explained, 1997.

[5] Peter J.Bentley. Fractal Proteins. Tech.Rep. (2002),Dept.of Computer Science,
University College London.

[6] Koen Claessen and John Hughes. QuickCheck: A lightweight tool for random
testing of Haskell programs. InInternational Conference on Functional
Programming, 2000.

[7] H. Dayani-Fard and J.I. Glasgow and D.A. Lamb. A Study of Semi-Automated

1Unless you explicitly freeze them in which case they are not allowed to change at all

- 40 -

Program Construction. Tech. Rep. AI memo 933A (1998), MIT’s Artificial
Intelligence Laboratory.

[8] Stephane Ducasse. SUnit Explained. Tech. Rep. (2000). URL
http://www.iam.unibe.ch/~ducasse/WebPages/Programmez/OnTheWeb/Eng-
Art8-SUnit-V1.pdf.

[9] Robert Feldt. GeneratingDiverse Software Versionswith GeneticProgramming:
an Experimental Study.IEE Proceedings - Software Engineering145 (6),
228–236 (December 1998). Special issue on Dependable Computing Systems

[10] Robert Feldt. Genetic Programming as an Explorative Tool in Early Software
Development Phases. In Conor Ryan and Jim Buckley,Proceedings of the 1st
International Workshop on Soft Computing Applied to Software Engineering,
pages 11–20, 1999.

[11] Robert Feldt. A Theory of Software Development. Tech. Rep. (2002), Depart-
ment of Computer Engineering, Chalmers University of Technology, Gothneb-
urg, Sweden.

[12] Robert Feldt. A Theoryof SoftwareDevelopment. Tech.Rep.(November 2002),
Department of Computer Engineering, Chalmers University of Technology,
Gothenburg, Sweden.

[13] Curt Hibbs, Rich Kilmer et al.The FreeRide Ruby IDE home page, 2002. URL
http://www.rubyide.org/cgi-bin/wiki.pl?HomePage.

[14] Hal Fulton. The Ruby Way, 2001.

[15] D. Gelernter. Generative Communication in Linda.ACM Transactions on
Programming Languages and Systems7 (1) (1985).

[16] Selvin George, David Evans and Lance Davidson. A Biologically Inspired
Programming Model for Self-Healing systems. InACM SIGSOFT Workshop on
Self-Healing Systems, 2002.

[17] P.P.González Pérez, M.C.Garcia,C.G.Garcia and J.Lagunez-Otero. Integration
of Computational Techniques for the Modelling of Signal Transduction. Tech.
Rep. (2001), Instituto de Quimica, Universidad Nacional Autonoma de Mexico.
URL http://www.cogs.susx.ac.uk/users/carlos/doc/GonzalezEtAl-integration-
of-computational-techniques.pdf.

[18] IEEE Standards Team. IEEE Standard Glossary of Software Engineering
Terminology. Tech. Rep. (1990).

- 41 -

[19] B. Jones, H. Sthamer, D. Eyres.. Automatic Structural Testing Using Genetic
Algorithms. Software Engineering Journal11(5), 299–306 (September 1996).

[20] David Kasik and Harry George. Toward Automatic Generation of User Test
Scripts. InProceedings of the Conf. on Human Factors in Computing Systems:
Common Ground, pages 244-251, 1996.

[21] Nathan P. Kropp and Philip J. Koopman Jr. and Daniel P. Siewiorek. Automated
Robustness Testing of Off-the-Shelf Software Components. InProceedings of
the Fault-Tolerant Computing Symposium, pages 230-239, 1998.

[22] M.A. Lones and A.M. Tyrrell. Biomimetic Representation in Genetic Program-
ming. InProceedings of the Workshop on Computation in Gene Expression at
the Genetic and Evolutionary Computation Conference 2001 (GECCO2001),
2001.

[23] M.A. Lones and A.M. Tyrrell. Crossover and Bloat in the Functionality Model
of Enzyme Genetic Programming. InProc. 2002 World Congress on Computa-
tional Intelligence., 2002.

[24] Bertrand Meyer.Object-Oriented Software Construction. Prentice Hall, 1988.

[25] Bertrand Meyer. Applying ’Design by Contract’.IEEE Computer25(10), 40-51
(October 1992).

[26] Christoph C. Michael and Gary McGraw. Automated Software Test Data Gen-
eration for Complex Programs. InProceedings 13th IEEE Conference in Auto-
mated Software Engineering, pages 136–146. IEEE Computer Society, October
1998. URLciteseer.nj.nec.com/66954.html.

[27] F. Mueller and J. Wegener. A Comparison of Static Analysis and Evolutionary
Testing for the Verification of Timing Constraints. InIEEE Real Time Technol-
ogy and Applications Symposium, 1998.

[28] Michael Neumann. Comparing and Introducing Ruby. Tech. Rep. (Febru-
ary 2002). URL http://www.s-direktnet.de/homepages/neumann/rb/down-
load_ruby.html.

[29] Michael Neumann, Robert Feldt, Lyle Johnson, Jonothon Ortiz.Ruby Develop-
er’s Guide. Syngress, 2002.

[30] Roy P. Pargas and Mary Jean Harrold and Robert Peck. Test-Data Generation
Using Genetic Algorithms.Software Testing, Verification and Reliability9 (4),
263–282 (July 1999). URLciteseer.nj.nec.com/pargas99testdata.html.

- 42 -

[31] Ian Parmee.Evolutionary and Adaptive Computing in Engineering Design: The
Integration of Adaptive Search Exploration and Optimization with Engineering
Design Processes. Springer Verlag UK, 2000.

[32] Charles Rich and Richard C. Waters. The Programmer’s Apprentice:A Program
Design Scenario. Tech.Rep.AI memo 933A (1987),MIT’sArtificial Intelligence
Laboratory.

[33] M.Scheetz,A.von Mayrhauser,R.France,E.Dahlman and A.Howe. Generating
Test Cases from an OO Model with an AI Planning System. InProceedings
of International Symposium on Software Reliability Engineering (ISSRE ’99),
1999.

[34] Krzysztof Socha and Marek Kisiel-Dorohinicki. Agent-based Evolutionary
Multiobjective Optimisation. InProceedings of Congress on Evolutionary
Computation (CEC’02),Honolulu,HI,USA, pages 109-114, May 12-17 2002.

[35] Peter Testa, Una-May O’Reilly and Simon Greenwold. AGENCY GP: Agent-
Based Genetic Programming for Spatial Exploration. InProceedings of the
ACSA, 2002. URLhttp://www.ai.mit.edu/projects/emergentDesign/agency-gp/
ACSA.html.

[36] Dave Thomas and Andy Hunt.Programming Ruby: A Pragmatic Programmer’s
Guide. Addison-Wesley, 2000.

[37] N J Tracey and J A Clark and K C Mander and J A McDermid. An Automated
Framework for Structural Test-Data Generation. InProceedings 13th IEEE
Conference in Automated Software Engineering. IEEE Computer Society,
October 1998. URLhttp://www.cs.ukc.ac.uk/pubs/1998/974.

[38] Nigel Tracey and John Clark and Keith Mander. Automated Program Flaw Find-
ing using Simulated Annealing. InSoftware Engineering Notes, Proceedings
of the International Symposium on Software Testing and Analysis, pages 73–81.
ACM SIGSOFT, March 1998. URLhttp://www.cs.york.ac.uk/testsig/publica-
tions/njt-mar98b.html.

[39] P. Wyckoff. T Spaces.IBM Systems Journal37 (3) (1998). URL http://
www.research.ibm.com/journal/sj/373/wyckoff.html.

Part II.

3. Robert Feldt.An Experiment on Using Genetic Programming to Develop Multi-
ple Diverse Software Variants, Technical Report no. 98-13, Department of Comput-
er Engineering, Chalmers University of Technology, Gothenburg, Sweden, Septem-
ber 1998.

4. Robert Feldt.Genetic Programming as an Explorative Tool in Early Software
Development Phases, Proceedings of the 1st International Workshop on Soft Com-
puting Applied to Software Engineering, pp. 11-21, Limerick, Ireland, 12th-14th
April, 1999.

5. Robert Feldt.Forcing Software Diversity by Making Diverse Design Decisions -
an Experimental Investigation, Technical Report no. 98-46, Department of Comput-
er Engineering, Chalmers University of Technology, Gothenburg, Sweden, Decem-
ber 1998.

Paper 3.

Robert Feldt.An Experiment on Using Genetic Programming to Develop Multiple Di-
verse Software Variants, Technical Report no. 98-13, Department of Computer Engi-
neering, Chalmers University of Technology, Gothenburg, Sweden, September 1998.

This report includes the two previously published papers:

Robert Feldt.Generating Multiple Diverse Software Versions with Genetic Program-
ming - an Experimental Study, IEE Proceedings - Software, vol. 145, issue 6, pp.
228-236, December 1998.

Robert Feldt.Generating Multiple Diverse Software Versions with Genetic Program-
ming, Proceedings of the 24th EUROMICRO Conference, Workshop on Dependable
Computing Systems, pp. 387-396, Västerås, Sweden, August 1998.

Paper 4.

Robert Feldt.Genetic Programming as an Explorative Tool in Early Software De-
velopment Phases, Proceedings of the 1st International Workshop on Soft Com-
puting Applied to Software Engineering, pp. 11-21, Limerick, Ireland, 12th-14th
April, 1999.

Genetic Programming as an Explorative Tool
in Early Software Development Phases

Robert Feldt

Department of Computer Engineering

Chalmers University of Technology

S-412 96 Göteborg, Sweden

Tel: +46 31 772 5217, Fax: +46 31 772 3663

E-mail: feldt@ce.chalmers.se

Abstract

Early in a software development project the developers lack knowledge about the problem to

be solved by the software. Any knowledge that can be gained at an early stage can reduce the

risk of making erroneous decisions and injecting defects that can be expensive to eliminate in

later phases. This paper presents the idea of using genetic programming to explore the

difficulty of different input data in the input space, determine the effects of different

requirements and identify design trade-offs inherent in the problem. Data from a pilot

experiment is analysed and the knowledge gained is used to question and prioritize the

requirements on the target system. Coping with high-dimensional input spaces and

establishing the relationship between GP- and human-developed programs are identified as

the major outstanding problems. An extended experimental environment is proposed based on

techniques for visual database exploration.

1. Introduction

Software engineers transform the, often fuzzy, demands on a new piece of software into an

executable system through a process involving requirements engineering, design,

implementation and testing [Sommerville92]. Despite years of efforts on developing better

software engineering methods, programming languages and development tools some software

projects still fail to meet scheduled milestones and resource limitations. In part, this can be

attributed to the fact that software systems are often ‘one-off’ products and experience from

earlier projects can not be relied on in doing predictions and planning [Sommerville92]. In the

early phases of a software project not much is known about the difficulty of the task, the

inherent trade-offs in the problem or different possible strategies in devising a solution.

If problem-specific knowledge could be obtained early in a development project this could

lead to fewer errors being made in the requirements and design phases that, in turn, could

decrease development time and cost. Many authors have reported that the cost of finding

defects rises sharply in later development phases: a relative time of up to 1000 to one for

finding defects in field use compared to during requirements engineering and 80 to one for

defects in testing compared to design reviews [Humphrey95]. Information about the problem

to be solved that is obtained early in a development project can reduce the risk of making

erroneous decisions and minimize the probability of injecting defects in the system that can be

expensive to eliminate in later phases. Furthermore, this information could be used during

project planning to predict the resources needed.

Soft computing techniques for machine learning can be used when very little is known

about a problem and its possible solutions. The ultimate goal of the soft computing technique

of genetic programming (GP) is to enable automatic programming, i.e. the computer

programming itself [Banzhaf98]. When the requirements on the program have been coded in

an executable form, a fitness function, and the parameters of the genetic programming system

have been initialized, a large number of programs can be obtained from a GP system. In this

paper we propose that problem-specific information be obtained early in a software

development project by using genetic programming to explore the input data space of a

program and the effect of different requirements on the difficulty of the problem. We propose

the term software problem exploration using genetic programming (SPE-GP) for this idea and

try to identify its implications.

A pilot experiment to test the basic idea of SPE-GP is described in section 2 and the

results from the experiment are given in section 3. In section 4, we discuss what knowledge

was gained in the experiment and what limits the conclusions that can be drawn from it. We

also identify important questions for further research. A general framework for software

problem exploration using GP is outlined in section 5. Finally, section 6 concludes the paper.

2. Pilot experiment

In a previous research project we have used a genetic programming system to develop 400

variants of an aircraft arrestment system software [Feldt98] [USAF86]. The programs were

developed using the GPSys genetic programming system running on a SUN Enterprise 10000

with the Sun Solaris OS 2.1 and Java Development Kit 1.2 [Quereshi98]. The GP system was

run 25 times for sixteen different settings of parameters and the best-of-run individuals were

retained for further analysis. These 400 programs were subjected to the same 10000 test cases

and their behavior compared to the requirements. Below we describe the target system, the

GP system and the testing procedure. A more thorough description is given in [Feldt98].

2.1. Target system

The target system is designed to arrest aircraft on a runway. Incoming aircraft attach to a

cable and the system applies pressure on two drums of tape attached to the cable. A computer

that determines the break pressure to be applied controls the system. By dynamically adapting

the pressure to the energy of the incoming airplane the program should make the aircraft come

to a smooth stop. The requirements on a system like this can be found in [USAF86]. The

system has been used in other research at our department and a simulator simulating aircraft

with different mass and velocity is available [Christmansson98].

The main function of the system is to brake aircraft smoothly without exceeding the limits

of the braking system, the structural integrity of the aircraft or the pilot in the aircraft. The

system should cope with aircraft having maximum energy of 8.81*107 J and mass and

velocity in the range 4000 to 25000 kg and 30 to 100 m/s, respectively. More formally the

program should
1
 (name of corresponding failure class in parentheses)

• stop aircraft at or as close as possible to a target distance

• stop the aircraft before the critical length of the tape (335 m) in the system (OVERRUN)

• not impose a force in the cable or tape of more than 360 kN (CABLE)

• not impose a retarding force on the pilot corresponding to more than 2.8g

(RETARDATION)

• not impose a retarding force exceeding the structural limit of the aircraft, given for a

number of different masses and velocities in [USAF86] (HOOKFORCE)

1
 Our system adopts the requirements of [USAF86] with the addition of the allowed ranges for mass and velocity

and a critical length of 335 m (950 feet in [USAF86]).

The programs are allowed to use floating point numbers in their calculations. They are

invoked every 10 meters of cable and calculate the break pressure, for the following 10

meters, given the current amount of rolled out cable and angular velocity of the tape drum.

An existing simulator of the system has been ported from C to Java. It implements a simple

mechanical model of the airplane and braking system and calculates the position, retardation,

forces and velocities in the system. It does not model the inertia in the hydraulic system or

oscillatory movement of the aircraft due to elasticity in the tape. The simulator has been set to

simulate braking with a time step of 62.5 milliseconds.

2.2. Genetic programming system

Our development system is built on top of the GPSys genetic programming system written in

Java by Adhil Quereshi at the University College in London [Quereshi98]. During evolution

GPsys invokes the simulator to evaluate the fitness of programs. Values from the simulation

are used to assign penalty values on the four fitness criteria. The penalties are assigned in a

non-linear fashion with high values when the program fails on the criteria. For the

OVERRUN criteria:

• If the stop position of the aircraft is larger than the critical length of the system a basic

penalty is assigned. The basic penalty was chosen as 80% of the maximum penalty for the

criteria.

• A guiding penalty is assigned if the velocity of the aircraft is larger than zero on the

critical length. The penalty is assigned proportional to the velocity of the aircraft on the

critical length. This is to distinguish programs that almost succeeded in braking the

aircraft from programs that haven’t even tried and “guides” the programs in the direction

of good performance. The guiding penalty was chosen as 20% of the maximum penalty

for the criteria.

• If the aircraft comes to a halt a linear penalty is assigned. It diminishes from its maximum

value at position 0 up to the target distance and then increases up to its maximum again at

the critical length. This is to ensure that a halt position close to the target distance will

give the program a low penalty. The maximum amount of linear penalty is a parameter to

the system but should be much smaller than 80%.

The penalties for the other criteria are assigned in a similar manner. For more details

consult [Feldt98]. The penalty values on the four criteria are summed to give the total fitness

for the test case. The total fitness of the program is the sum of the finesses on all the test

cases. A perfect program would get a fitness value of zero.

The values for the parameters to the GP system that was used in the experiments are

shown in tables 1 and 2.

Parameter Value

Generations 200

Population size 1000

Tournament size 5

Max depth of program trees at creation 7

Max depth of program trees 19

Max depth of mutation trees 3

Functions that were always used Add, Sub, Mul, Div

Create Method Ramped-half-and-half

Table 1. Values of parameters that were not varied during the experiments

Factor Level Description

- No effect.

A
+

The statement IF, and operators LE, AND and NOT can be used in

the programs.

- No effect.
B

+ The functions SIN and EXP can be used in the programs.

-
The average velocity, average retardation, and the index to the

current checkpoint can be used in the programs.

C

+

The angular velocity, current time since start of the braking, the

previous angular velocity and the time of the previous checkpoint

can be used in the programs.

- Programs cannot use any subroutines.

D
+

Two subroutines (automatically defined functions) can be used in

the program. They are evolved in the same manner as the rest of

the program.

-
Maximum penalty on the RETARDATION failure criteria is

1000.0.
E

+
Maximum penalty on the RETARDATION failure criteria is

2000.0.

- Linear penalties are not used.

F
+

Linear penalties are used and a maximum penalty of 30.0 is

assigned on each failure criteria.

-
25 test cases uniformly spread on the range of possible values for

mass and velocity are used to evaluate fitness during evolution.
G

+
25 test cases chosen randomly for each run of the GP system are

used to evaluate fitness during evolution.

- Probability of mutation is 0.05.
H

+ Probability of mutation is 0.6.

Table 2. Parameters that were varied between different runs of the GP system

2.3. Testing procedure

After each run of the GP system the best-of-run individual is evaluated on 10000 test cases

evenly spread on the range of valid masses and velocities. Dividing the range of allowed mass

into 100 locations 212.12 kg apart generates these test cases. For each mass a maximum

velocity is calculated so that the resulting energy does not exceed the 8.81*107 J specified in

[USAF86]. The range [30, max velocity for this mass] is divided into 100 velocities and a

total of 100*100=10000 test cases result.

3. Experimental results

For each test case executed, a trace of the braking of the airplane is returned from the

simulator. Four values are extracted from this trace to classify the behavior of the program:

halt distance of the aircraft, maximum force in the cable, maximum force on the hook of the

aircraft and maximum retardation during the braking. These values correspond to the four

fitness criteria above. We record a failure for a particular version on a particular test case if

any value exceeds its limits. Failure is indicated by one (1) and success by zero (0) and these

binary values are collected into a failure behavior vector giving the failure behavior for each

test case.

The difficulty of a test case is defined as the proportion of GP-developed controllers that

failed on the test case. Since two real-valued numbers characterize each test case the input

data difficulty can be visualized in a 2D contour diagram. The diagram is shown in figure 1.

Figure 1. Contour diagram showing the difficulty of test cases with different mass and
velocity

Darker areas indicate higher difficulty, i.e. indicating test cases where a larger proportion

of the programs fail.

Detailed analysis of the diagram reveals that there are three main areas of difficulty.

Visually these areas are located in the upper left corner, in equidistant clusters in the center

and in the upper right corner, respectively.

For the upper left corner, where aircraft have high velocity and low mass, the programs

generally fail because they violate the requirement on the maximum retardation on the pilot. It

seems plausible that these failures arise because the programs do not properly measure and/or

use a notion of the mass of the incoming aircraft in their control algorithm.

The failures in the center area are mainly due to excessive forces applied to the hook on

the aircraft attaching to the cable of the braking system. A requirement in [USAF86] states the

maximum allowed hook force for certain “points” with specified mass and velocity. The

clusters of failing programs seen in the center of figure 1 are located below (lower velocity)

−−− Increasing mass −−>

−
−

−
 In

cr
ea

si
ng

 v
el

oc
ity

 −
−

>

Test case difficulty

and to the left (lower mass) of these points. These are the areas where the energy of the

aircraft is at a maximum for the requirement of maximum hook force.

The failures in the upper right corner are made up of a combination of failing to restrict

the force on the aircraft hook and failing to brake the aircraft before the end of the runway.

The former can be explained by the same reasoning as above and the latter arises because the

energies of the aircraft take on their largest values this area. If the programs do not exert a

high enough brake pressure in the start of the braking they will not have time to brake the

aircraft before the critical length.

4. Discussion

The experimental results imply that the central challenge in this problem is to cope with the

high energies of heavy airplanes having large velocities. Failure to meet the OVERRUN

criterion is fatal in that the aircraft has not come to a halt. Even though a large majority of the

programs also have problems with the RETARDATION criterion for light airplanes with high

velocities, detailed analysis of the braking behavior shows that the programs often only

slightly exceed the threshold of 2.8g maximum retardation. The center clusters of difficulty

show failures on the HOOKFORCE criterion but it is a smaller proportion of programs that

fail here than on the previously mentioned criteria. The discontinuous property of these

clusters can be attributed to the fact that the maximum hook force was specified at certain

points in the requirements. The CABLE criterion was not violated by any of the programs.

Detailed analysis of the experimental data also reveals that some programs make a trade-off

between meeting different requirements. They trade better performance on the

RETARDATION criterion for worse performance on the OVERRUN criterion. Other

programs do the opposite. This indicates that there is a fundamental trade-off to be made

between these criteria.

The knowledge gained by analyzing the behavior of the GP-developed programs could be

used in a discussion with the client stating the requirements. It can be used to resolve

questions, prioritize the requirements and show requirements that may be too easy to fulfill,

indicating cost savings. An example of the former is to question the HOOKFORCE criterion

that is only specified in certain points. Is this really what the client want or is it wiser to

specify the requirement as a function of the incoming mass and velocity? The fact that the

cable criterion is never violated might indicate that too strong a cable is used in the system.

Based on the information gained from the experiment a weaker, but possibly less expensive,

cable can be proposed. A suggestion to prioritize the requirements can be based on the trade-

off between not retarding light airplanes too much and being able to brake high-energy

airplanes at all. If the latter is preferred the developers can propose that a slight increase in the

threshold for the RETARDATION criterion might change the difficulty, and therefore the

cost, of designing a solution. Or they can question whether light airplanes with high velocities

can be expected to appear.

It should be noted that the reported experiment is limited in several ways. Firstly, the

target application is small, having few requirements and a low-dimensional input space. This

latter feature makes it particularly well suited for visualization; with a high-dimensional input

space visualization will be more difficult. Furthermore, an existing simulator could be used to

evaluate the fitness and failure behavior of the programs. In general a simulator will not be

available in early software development phases and it is unclear if the cost for developing one

is motivated by the knowledge that can be gained. Further research is needed to clarify this.

 Secondly, the presented experiment was not primarily designed to evaluate the SPE-GP

idea put forward in this paper. For example, it would have been interesting to alter some of

the requirements to assess their effect on the difficulty levels and their distribution.

In addition to these practical considerations there is a more fundamental question that

needs to be addressed. If we are to gain any useful knowledge about the software problem at

hand the behavior of the GP-developed programs must be representative for programs

developed by human software developers. There is a risk that the behavioral data will be more

GP-specific than problem-specific. An example of this is seen in our pilot experiment that is

really showing the difficulty for memory-less
2
 controller programs with certain functions and

terminals. If the controllers were allowed to use, for example, indexed memory the difficulty

landscape showed in figure 1 might change. A similar concern can be raised because of the

limited applicability of present-day automatic programming systems, such as GP.

Provided that the SPE-GP technique can be used on more complex problems, the

knowledge gained from using it can be compared to the outcome of the actual development

project. For example, the average difficulty level obtained from using an SPE-GP scheme can

be compared to the total development time. If, over several projects, correlations are found the

average difficulty level can be used in project and resource planning.

Motivated by the deficiencies in the pilot experiment and the outstanding issues that need

to be resolved in order to evaluate the power of SPE-GP we outline an extended environment

for SPE-GP in the following section.

5. An extended environment for software problem exploration using
genetic programming

In an extended environment for software problem exploration using genetic programming we

need to address the problem of a high-dimensional input space. The two main problems with

having many input parameters are the problem of selecting test cases for visualization and the

problem of visualizing high-dimensional data. The former arises because there is a

combinatorial explosion in the number of possible input cases; for most systems exhaustive

testing of all possible combinations is not feasible. The latter problem arises because the high-

dimensional data needs to be presented on our low-dimensional output devices.

One possible solution to the testcase-selection problem is to let the developer do the

selection. Even though the developer might not be expected to have much knowledge about

the problem they might have a hunch about what areas are more or less interesting. This

scheme requires interaction between the developer and the SPE-GP environment. Another

possible solution to the testcase-selection problem would be to use information from the GP

development phase to guide the exploration and visualization system to the most difficult

areas of the input space. One possible solution would be to let the testcases used during

evolution, i.e. the fitness cases, be co-evolved with the programs.

There are a number of techniques for extracting knowledge from high-dimensional data.

Often they involve some statistical technique for dimensional reduction, such as principal

component analysis or multidimensional scaling, or use clever coding schemes to map the

multiple dimensions to our 2D or 3D display devices [Keim97]. One promising approach is

the Visor algorithm of König et al [König94]. Their system combines methods for feature

extraction and class separation with a fast algorithm for visualizing high-dimensional data in

2D. These abilities can be useful in isolating clusters of similar test cases in the input space.

2
 The evolved programs can not access the memory used to calculate the terminals used in the programs.

Techniques for interactive exploration have also been studied in the area of visual database

exploration [Keim97].

The environment we envisage is a developer’s workbench for exploring the effects of

different requirements and finding the difficult, and therefore crucial, areas of the input

domain. With faster computers and more advanced display techniques one can imagine such a

system performing the evolution of the programs in real-time in response to developer

queries.

Figure 2 shows a conceptual diagram of an SPE-GP environment according to the

discussion above. On the left side is the GP system developing a pool of programs that are

tested on the right side to produce data that is displayed for the developer. The developer can

interact with the visualization system to select areas of interest or display the data in different

ways. The developer queries are sent to the test controller that uses existing data from a

database or performs additional tests of the programs. The user can also alter the requirements

and develop new programs that can give further information. Also note the evaluation

controller supplying fitness cases to the evaluation of the programs in the development

system. These fitness cases can be used as starting points for the tests in the exploration

system.

Figure 2. Conceptual diagram of a SPE-GP environment

Developer

Test cases

Parameters

Fitness

GP

Evaluation

Eval

Control

Development
Control

Behavioral data Queries

Test

Control

Data

Exploration & Vis.

Pool of Programs

DB Fitness function

6. Conclusions

Early in a software development project the software engineers lack knowledge about the

problem to be solved by the software. Any knowledge that can be gained at an early stage can

reduce the risk of making erroneous decisions and injecting defects that can be expensive to

eliminate in later phases. Having such knowledge could thus lead to lower development costs

and possibly a higher quality. Furthermore, it could be used in project planning to predict

resource need. We propose that techniques for machine learning, especially genetic

programming, be used to explore the software problem to be solved and to gain knowledge

about difficult areas of the input space, the effects of different requirements and to identify

design trade-offs that need to be addressed.

In an initial experiment, where genetic programming was used to develop 400 controller

programs for an aircraft arrestment system, three main areas of difficulty in the input space

were identified. These areas were related to the requirements, and the knowledge gained could

be used to question and prioritize the requirements as well as indicating areas for cost savings.

However, the target system was simple with few requirements and a low-dimensional input

space well suited for visualization. For problems with high-dimensional input spaces it is

unclear how to select the test cases for testing the programs and how to visualize the resulting

data in a meaningful way for the human developers. We point out some possible solutions to

these problems and outline a general environment for software problem exploration using

genetic programming (SPE-GP).

The central outstanding research question is to establish what data on the behavior of

programs developed using genetic programming tells us about the difficulties facing human

developers. It is not likely that a general answer can be given to this question; the amount of

knowledge gained will likely vary with the actual problem and the power of the genetic

programming system used. We think that the importance of this software engineering problem

motivates further study.

References

Banzhaf, Wolfgang et al. Genetic Programming – An Introduction. Morgan
Kaufmann, San Fransisco, California, 1998.

Christmansson, Jörgen. An exploration of models for software faults and errors, PhD
Dissertation, Department of Computer Engineering, Chalmers University of
Technology, 1998.

Feldt, Robert. Generating Multiple Diverse Software Versions Using Genetic
Programming - an Experimental Study. IEE Proceedings – Software, vol. 145,
Issue 6, December 1998.

Humphrey, Watts. A discipline for software engineering, Addison-Wesley, Reading,
Massachusetts, 1995. ISBN 0-201-54610-8.

Keim, D. A. Visual Techniques for Exploring Databases, Invited Tutorial, Int.
Conference on Knowledge Discovery in Databases (KDD'97), Newport Beach,
CA, 1997.

König, Andreas, Buhlman, Olaf, Glesner, Manfred. Systematic Methods for
Multivariate Data Visualization and Numerical Assessment of Class Separability
and Overlap in Automated Visual Industrial Quality Control, In Proceedings of the
5th British Machine Vision Conference (BMVC’94), pages 195-204, Sept. 1994.

Sommerville, Ian. Software Engineering, Addison-Wesley, Workingham, England,
1992. ISBN 0-201-56529-3.

Quereshi, Adil. GPSys 1.1 Homepage. Web Page. URL:
http://www.cs.ucl.ac.uk/staff/A.Qureshi/gpsys.html. 20 November 1998.

US Air Force. Military Specification: Aircraft Arresting System BAK-12A/E32A;
Portable, Rotary Friction. 1986. MIL-A-38202C, Notice 1.

Paper 5.

Robert Feldt.Forcing Software Diversity by Making Diverse Design Decisions - an
Experimental Investigation, Technical Report no. 98-46, Department of Comput-
er Engineering, Chalmers University of Technology, Gothenburg, Sweden, Decem-
ber 1998.

 1

Forcing Software Diversity by Making Diverse Design Decisions
– an Experimental Investigation

Robert Feldt
Department of Computer Engineering
Chalmers University of Technology

S-412 96 Göteborg, Sweden
Tel: +46 31 772 5217, Fax: +46 31 772 3663

E-mail: feldt@ce.chalmers.se

Abstract

When developing software versions for a multi-version system, the probability for coincident failures

may be decreased by forcing the development efforts to be different by making diverse design

decisions. There are theorems showing that the probability is minimized by making as diverse design

decisions as possible but it is not known if the assumptions made in proving the theorems are valid in

practice. To investigate this we have developed 435 versions of a software controller for an aircraft

braking system. The versions were developed using genetic programming. Analyses of the failure

behavior of these versions showed that the assumptions of failure independence among the decisions

were valid, on average, for 74% of the test cases. The assumption of indifference between

methodologies were not valid in a single case which seems to be the major cause invalidating the

theorem. Thus, if we are not indifferent between design decisions, it is not guaranteed that increased

diversity of design decisions will decrease the probability of coincident failures.

1. Introduction

N-version programming (NVP) has been proposed as a technique to develop multiple
versions of the same software for fault-tolerant software systems [Avizienis95b]. In the
case in which the versions fail independently of each other the reliability of a multi-
version system could be significantly larger than the reliabilities of single versions. How-
ever, empirical and theoretical results have shown that independent failure behavior can
not be expected; apart from the difficulties of making the development efforts independ-
ent varying difficulty of the input data guarantees that the versions will not fail inde-
pendently [Knight86] [Bishop95]. In [Littlewood89], Littlewood and Miller proved theo-
rems showing that the attainable reliability levels can be higher than if independence is
assumed if we force the development efforts to be different. Thus, by actively making di-
verse design decisions in the different development efforts we can force software diver-
sity, i.e. diversity in the structure and / or failure behavior of the resulting software ver-

Forcing Software Diversity by Making Diverse Design Decisions – an Experimental Investigation

 2

sions.
The theorems of Littlewood and Miller further indicate how the diversity of the devel-

opment efforts should be forced: the design decisions should be as diverse as possible to
decrease the probability of coincident failure [Littlewood89]. In order to prove the theo-
rems about the effectiveness of forced design diversity, Littlewood and Miller made a
number of assumptions. They pointed out that these assumptions might not be valid in
practice. In this paper we study if these assumptions are valid on a particular application
and assess how the validity of a theorem of the effectiveness of forced diversity is affected
when the assumptions are not fully valid.

To carry out these analyses in a statistically rigorous way we need failure data from a
large number of versions developed with a number of different design decisions. The cost
of conducting such an experiment would be prohibitively high. In a previous study we
have introduced a procedure for forced design diversity using genetic programming to
develop the software versions [Feldt98b]. Genetic programming (GP) is a technique for
searching for computer programs with desirable properties. In the previous study we
showed that failure diversity can be forced by varying parameters to a GP system and
proposed that this technique can be used as a research tool in software fault-tolerance
[Feldt98a]. In this paper we have used the technique as a tool to develop software control-
lers for an aircraft braking system.

In section 2 we recapitulate the results on forced diversity by Littlewood and Miller
and state the research questions we investigate in this study. Section 3 describes the
method we have used; it introduces genetic programming, the target application and the
experiments we have carried out. The results from the experiments are given in section 4
followed by a discussion in section 5. Finally, we summarize the conclusions that can be
drawn from this study and indicate future work.

2. Forced design diversity

In their seminal paper, Littlewood and Miller extended the model of multi-version pro-
gram development introduced by Eckhardt and Lee, to account for diverse development
methodologies [Littlewood89]. In the model, a development methodology is character-
ized by a mapping, S, giving the probability that a particular program, π, is chosen from
the population of all possible programs, ℘, i.e.

 P(Π = π) = S(π)
where Π is a random variable representing the random selection of a program. A key

average performance measure is θ(x), giving the probability that a randomly chosen
program fails for the input case x (the model can handle varying probabilities of input
cases but we do not consider this in the present study; we assume that all input cases are
equally probable). For a randomly chosen input X, θ(X) is a random variable Θ.

To model diversity between development methodologies Littlewood and Miller intro-
duced the notion of a design decision. An example of a design decision would be the choice
of testing strategy. In general, design decisions can have multiple levels but we focus on
binary decision and associate ‘0’ and ‘1’ with the two possible outcomes of such decisions.

Forcing Software Diversity by Making Diverse Design Decisions – an Experimental Investigation

 3

A development methodology is defined by the outcomes of a number of design decisions
and can be described with a binary vector. For example, in the experiments in this paper
there are seven binary design decisions and methodology number nine is defined by the
descriptor

 (0, 0, 0, 1, 0, 0, 1)

A natural measure of design diversity, i.e. the degree of diversity between develop-
ment methodologies, when using these binary vectors is Hamming distance. We thus de-
fine

the developmental diversity1 between two methodologies M1 and M2 , de-
noted
δ(M1 , M2), as the number of positions in which the descriptors of the
methodologies differ, i.e. their Hamming distance.

The developmental diversity can be used to state an important theorem on forced diver-
sity (theorem 3 in [Littlewood89]) in natural language as: “The greater the developmental
diversity between two methodologies, the lesser chance for coincident failures of two ver-
sions developed with the methodologies”. As Littlewood and Miller point out the theo-
rem holds on average, when we consider all the possible programs that might be devel-
oped with a methodology and check the behavior on all possible input cases; for particu-
lar input or programs it might not hold.

The above theorem is important since it implies a rule for how to develop multi-version
software. If we choose methodologies that have maximum developmental diversity, the
probability of coincident failures is decreased and the reliability of the system should in-
crease.

The proof of the theorem relies on the Cauchy-Schwarz inequality and the following

three assumptions (for a pair of binary design decisions):

• A1, Decision choice independence: The choice taken in the different design decision

should be independent of each other, so that

P(Π ∈ (1,1)) = P(Π ∈ (1,*)) P(Π ∈ (*,1))

where * is used to mark all possible outcomes of the decision.

• A2, Decision failure independence: There is no interaction between the design deci-

sions in their effect on the failure behavior, so that

P(π ∈ (1,1) π fails on x) = P(π ∈ (1,*) π fails on x) P(π ∈ (*,1) π fails on x

)

for all input cases x.

1 We use this term to distinguish it from the more general notion assigned to ‘design diversity’.

Forcing Software Diversity by Making Diverse Design Decisions – an Experimental Investigation

 4

• A3, Methodology indifference: We are indifferent between methodological choices re-

lated by permutations of labels. Two specific instances are used in the proof:

• A3a, Indifference for methodologies with developmental diversity 0:

E(Θ11 , Θ11) = E(Θ01 , Θ01) = E(Θ10 , Θ10) = E(Θ00 , Θ00)

where E(ΘM1 , ΘM2) = P(ΠM1 and ΠM2 both fail on X) = probability that ran-

domly chosen programs from two methodologies both fail on a randomly cho-

sen input.

• A3b, Indifference for methodologies with developmental diversity 1:

E(Θ11 , Θ01) = E(Θ11 , Θ10) = E(Θ00 , Θ10) = E(Θ00 , Θ01)
In their paper, Littlewood and Miller point out that the assumptions they make in

proving their theorems might not be valid in practice. In this study we assess the assump-
tions empirically. Furthermore, we want to investigate how the validity of the theorem is
affected when there are deviations from the assumptions above. The questions we want
to answer in this study can thus be summarized as (for an application X):
1. Is the assumption of failure independence between factors (A2 above) valid for the

application X?
2. Are the assumptions of indifference (A3a and A3b) valid for the application X?
3. If the assumptions (A2 or A3) are not fully valid, how does this affect the validity of

the theorem? Is it still valid but in a restricted form? Which of the assumptions affect
the validity of the theorem the most?

We do not investigate assumption A1 since we can make sure that it is fulfilled by the
choice of design decisions.

3. Method

We have developed 435 versions of a software controller employed in an aircraft braking
system. The versions were developed with a genetic programming system running on a
SUN Enterprise 10000 with the Sun Solaris OS 2.5. The experiment environment, consist-
ing of the genetic programming system GPSys, a simulator of the application and custom-
developed software to interface between them was developed in Java and compiled with
the java-to-C compiler Toba for increased performance [Quereshi98] [Proebsting96]
[Feldt98a]. After development all software versions were subjected to the same 10000 test
cases. The failure behavior on these test cases was analyzed to answer the research ques-
tions of this study.

Below we give a brief introduction to genetic programming and describe the applica-
tion and the experiment we have conducted. Further details on the application can be
found in [Feldt98a] and [Christmansson98]. Figure 1 shows an overview of the experi-
ment environment

Forcing Software Diversity by Making Diverse Design Decisions – an Experimental Investigation

 5

Figure 1. The experiment environment

3.1 Genetic programming

Genetic programming is an algorithm for searching for computer programs with desir-
able properties. The ‘genetic’ part of its name is used because the search process shows
some resemblance with evolutionary processes in biological systems. The technique was
introduced in 1992, is studied under the heading of Evolutionary Computation and have
been successfully applied on a number of different problems [Koza92] [Banzhaf, et al.98]
[Bäck97]. Using biologically inspired ideas in the research and design of fault-tolerant
computers has been previously proposed in [Avizienis95a].

The search space searched by a genetic programming (GP) algorithm can be defined by

GPSys

Evaluation

environment

Simulator
...

Program Fitness

Pool of programs

...

Parameters

Failure

evaluation

Simulator

...

Failure matrix
with outcome for each

program and test case

p1 p2 pN

Development

Forcing Software Diversity by Making Diverse Design Decisions – an Experimental Investigation

 6

the user. Parameters govern which basic building blocks, such as variables, constants and
functions can be used in the programs. Other parameters govern how the search should
proceed in the search space and how the programs should be tested during development.
The tests carried out during development are called fitness evaluations; they assess how
‘fit’ each program is, i.e. how well it adheres to the specification.

Genetic programming is a parallel search procedure having multiple programs that are
used as starting points for further explorations of the search space. In each iteration of the
algorithm the fitness of all the programs is evaluated. Programs are selected based on
how fit they are and combined into new programs by swapping parts between them. Old
programs with low fitness are deleted. When this scenario is repeated there is a tendency
that, after a large number of iterations, programs with increasingly higher fitness are
found. The search procedure is stochastic by nature and running it repeatedly can give
different results.

In a previous study we have proposed that diverse software versions could be devel-
oped by systematically varying parameters to a GP system [Feldt98a]. In this proposal,
the choice of the values of a parameter is analogous to a design choice in Littlewood and
Millers model. In an empirical investigation we showed that diverse failure behavior was
obtained even though it was limited for the parameter settings giving the lowest failure
rate. For more information on these results and on GP in general see [Feldt98a] [Banzhaf,
et al.98].

3.2 Application

The target application is designed to arrest aircrafts on a runway. Incoming aircraft attach
to a cable and the system applies pressure on two drums of tape attached to the cable. A
computer that determines the brake pressure to be applied controls the system. By dy-
namically adapting the pressure to the energy of the incoming aircraft the program
should make the aircraft come to a smooth stop. The requirements on a system like this
can be found in [US Air Force86]. The system has been used in previous research at our
department and a simulator simulating aircraft with different mass and velocity is avail-
able. The system is more fully described in [Christmansson98].

The main function of the system is to brake aircraft smoothly without exceeding the
limits of the braking system, the structural integrity of the aircraft or the pilot in the air-
craft. The system should cope with an aircraft having maximum energy of 8.81*107 J and
mass and velocity in the range 4000 to 25000 kg and 30 to 100 m/s, respectively. More
formally the program should2 (name of corresponding failure class in parentheses)

• stop aircraft at or as close as possible to a target distance (275 m)

• stop the aircraft before the critical length of the tape (335 m) in the system
(OVERRUN)

2 Our system adopts the requirements of [US Air Force86] with the addition of the allowed ranges

for mass and velocity and a critical length of 335 m (950 feet in [US Air Force86]).

Forcing Software Diversity by Making Diverse Design Decisions – an Experimental Investigation

 7

• not impose a force in the cable or tape of more than 360 kN (CABLE)

• not impose a retarding force on the pilot corresponding to more than 2.8g
(RETARDATION)

• not impose a retarding force exceeding the structural limit of the aircraft, given for
a number of different masses and velocities in [US Air Force86] (HOOKFORCE)

The programs are allowed to use floating point numbers in their calculations. They are
invoked for each 10 meters of cable and calculate the brake pressure, for the following 10
meters, given the current amount of rolled out cable and angular velocity of the tape
drum.

An existing simulator of the system has been ported from C to Java. It implements a
simple mechanical model of the airplane and braking system and calculates the position,
retardation, forces and velocities in the system. It does not model the inertia in the hy-
draulic system or oscillatory movement of the aircraft due to elasticity in the tape. The
simulator has been set to simulate braking with a time step of 62.5 milliseconds.

During development of the programs GPSys invokes the simulator and tests the pro-
grams on a number of test cases, i.e. aircraft with different masses and velocities. Critical
values from each braking are used to evaluate if a program has violated any of the re-
quirements above. A penalty is assigned if there is a violation for any of the failure classes
above.

3.3 Experiments

To answer the research questions stated in section 2 we need to choose two design deci-
sions and develop programs with the resulting four methodologies. The outcome of such
an experiment could be highly dependent on the particular choice of decisions. To lessen
this sensitivity to design choices we have identified a group of seven design choices and
studied all C(7,2) = 21 combinations of two choices from them. The seven design choices
were chosen based on our previous experience with the experiment environment; we ex-
cluded choices with a negative effect on the failure rate of the resulting programs. This is
similar to what we would do if we were to develop multiple versions using human soft-
ware developers; we would not take design decisions that are known to give high failure
rate just to increase the diversity of the software versions.

The design choices and their levels, i.e. the outcomes of the decisions, are shown in ta-
ble 1. Decision number one concerns the testing performed by the GP system during evo-
lution of the programs. When on level zero the test cases are equidistantly spread on the
allowed range of mass and velocity of the incoming airplane. On level one the values are
randomly assigned from a uniform distribution.

Design

decision

Level Description

0 36 uniformly spread test cases are used to evaluate fitness.
1

1 25 randomly sampled test cases are used to evaluate fitness.

Forcing Software Diversity by Making Diverse Design Decisions – an Experimental Investigation

 8

0 A guiding penalty of 2% of maximum penalty is used.
2

1 A guiding penalty of 50% of maximum penalty is used.

0 Maximum penalty on the HALTDISTANCE failure criteria is 1000.0.
3

1 Maximum penalty on the HATLDISTANCE failure criteria is 3000.0.

0
Programs can use the pressure at the previous checkpoint and the indices to the

current and previous checkpoints.
4

1
Programs can use the current time since start of the braking, the angular velocity

and time at the previous checkpoint

0 Programs cannot use any subroutines.
5

1 Programs can use a subroutine.

0 No effect.
6

1 Programs can use the statement IF, and operators LE, AND and NOT.

0 Programs can use the function SIN and the terminal PI (3.1415).
7

1 Programs can use the function EXP.

Table 1. The design decisions and their effect

Decisions two and three determine the fitness function used to rank the programs dur-
ing development. For this particular application, the fitness function is calculated as a
penalty assigned as to how much a certain requirement is violated. The fitness score is a
sum of penalties on four criteria, with a penalty of 1000 units assigned when the require-
ment is violated, i.e. the program fail on the criteria. Decision 2 sets the level of the guid-
ing penalty assigned to grade how far from fulfilling the requirement the programs are.
This ‘guides’ the development in the direction of requirement fulfillment. Decision 3 de-
fines the maximum penalty on the HALTDISTANCE criteria. When on its high level, it
indicates that we consider the HALTDISTANCE criteria to be the most important criteria.
The programs have something to gain from trying to fulfill this criterion with high prior-
ity.

Decision 4, 6 and 7 govern which variables (4) and functions (6 and 7) the programs can
use. Decision 5 governs the structure of the programs. When at its high level the pro-
grams can use a subroutine.

Twenty-nine different methodologies were constructed from these seven design deci-
sions. They are all the twenty-one methodologies with all pairs of two decisions chosen
from the seven at their high level, the seven methodologies with each single decision at
it’s high level and the methodology with all decisions at its low level. Decisions that were
not involved in deciding the methodology were held at their ‘0’ level. This choice of
methodologies allows us to test the validity of the theorem for the 21 different pairs of de-
sign decisions. Each methodology was used to develop 15 versions resulting in a total of
435 versions and each version were tested on the same 10000 test cases. The test cases
were equidistantly spread on the allowed ranges for mass and velocity.

Forcing Software Diversity by Making Diverse Design Decisions – an Experimental Investigation

 9

4. Results

In this section we describe the results from the analysis of the failure behavior of the 435
programs. We analyze, in turn, assumption A2, A3 and the validity of the theorem. This
corresponds to research questions 1, 2 and 3 in section 2.

4.1 The assumption of decision failure independence (A2)

For each pair of decisions we can test assumption A2 four times: one for each combination
of decisions 00, 01, 10 and 11. For each of these 21*4 = 84 tests we collected the failure data
of the 4*15 = 60 versions relevant to the test. For each test case where at least one variant
failed we calculated the dependency ratio

rd = P(Π ∈ (1,1)) / (P(Π ∈ (1,*)) P(Π ∈ (*,1)))
which according to assumption A2 should be exactly one (we assigned the value one
when both numerator and denominator were zero).

Table 3 below gives some summary statistics for the 84 tests. Note that the maximum
percentage of ratios equal to 1 were 79.4%.

 Test cases with failure(s) rd < 1 rd = 1 rd > 1 Average rd Stdev of rd

Max 6087 23.9% 79.4% 23.9% 1.0936 0.3889

Average 3955 12.9% 74.2% 12.9% 0.9993 0.2606

Min 2459 4.2% 69.6% 4.2% 0.9192 0.1764

Table 3. Summary statistics for the 84 tests of assumption A2

Only one pair of decisions had a balanced distribution of dependency ratios; the rest
were either skewed to the right or to the left. However, when all ratios were considered
together the distribution was balanced with equal number of ratios below and above in-
dependence at one.

4.2 The assumption of methodology indifference (A3)

To check assumption A3 we calculated the θ(x)-vectors for all 29 methodologies. For our
experimental set-up assumption A3a implies that all the expectations

 E(ΘM , ΘM)
where M is a methodology, should be equal. In our experiment, they are not. The aver-

age, minimum, maximum and standard deviation of these expectations are shown in ta-
ble 4.

Max 0.0636

Average 0.0509

Min 0.0371

Forcing Software Diversity by Making Diverse Design Decisions – an Experimental Investigation

 10

Standard deviation 0.0057

Table 4. Summary statistics for 29 expectations between methods with developmental diver-

sity 0

Assumption A3b implies that all expectations
E(ΘM1 , ΘM2) where δ(M1 , M2) = 1

should be equal. In our experiment, they are not in a single case. There are 49 expecta-
tions of this kind and their summary statistics are shown in table 5.

Max 0.0573

Average 0.0482

Min 0.0379

Standard deviation 0.0042

Table 5. Summary statistics for 49 expectations between methods with developmental diver-

sity 1

4.3 Validity of theorem

The theorem of Littlewood and Miller gives an ordering between groups of expectations
having equal developmental diversity. For each pair of decisions there are three groups
corresponding to the developmental diversities of 2, 1 and 0. The first group contains two
elements and the latter groups four elements each. For each pair of decisions, we tested if
the ordering of the theorem was valid. We also compared the averages of and the mini-
mum expectation in the different groups. The results from these comparisons are shown
in table 6.

 δ = 2 vs. δ = 1 δ = 1 vs. δ = 0

Theorem: Max < Min 0 (0.00%) 0 (0.0%)

Average < Average 17 (80.95%) 21 (100.00%)

Min < Min 5 (23.81%) 12 (57.14%)

Table 6. Number of cases where comparisons between groups of equal development diversity

are valid

When we grouped the different expectations in the respective groups together and per-
formed an analysis of variance there were statistically significant differences between the
groups (p < 0.01). The average expectations for the three groups were 0.0476, 0.0482 and
0.0509 respectively. Thus, the ordering prescribed by the theorem is valid “on average”.
The ANOVA table is shown below.

Source Sum of squares Degrees of freedom Mean square Ratio Significance

Forcing Software Diversity by Making Diverse Design Decisions – an Experimental Investigation

 11

Groups with equal

dev diversity

1.98*10-4 2 9.91*10-5 5.88 0.0037

Residuals 1.97*10-3 117 1.68*10-5

Total 2.17*10-3 119

Table 7. Analysis of variance table

To assess the individual effects of the different assumptions we repeated the test on the
validity once more, this time only including testcases where assumption A2 was valid.
The test cases to include were chosen individually for each pair of design decisions. The
ordering prescribed by the theorem was not valid in any of the 42 cases. The full result of
these comparisons is shown in table 8.

 δ = 2 vs. δ = 1 δ = 1 vs. δ = 0

Theorem: Max < Min 0 (0.00%) 0 (0.00%)

Average < Average 18 (85.71%) 21 (100.00%)

Min < Min 6 (28.57%) 12 (57.14%)

Table 8. Result of comparisons when expectations are calculated on test cases where assump-

tion A2 holds

5. Discussion

We have separated the discussion of the results in two parts. In the first we consider the
results without acknowledging the fact that the programs have been developed with ge-
netic programming. In section 5.2 we discuss how this fact might affect the validity of our
results.

5.1 Implications of the results for forced design diversity

The results tell us that, for this particular application and with this particular choice of
design decisions, the theorem on the effectiveness of forced diversity is not valid. How-
ever, this should not be expected since its assumptions are not fulfilled.

Assumption A2 was on average valid in about 74% of the test cases where at least one
version failed. Furthermore, a majority of methodologies had skewed distributions with
dependency ratios as high as 1.09 and as low as 0.91. This supports the intuitive notion
pointed out by Littlewood and Miller that assumption A2 can not be expected to be valid
in practice since there will be interactive effects between the design decisions. An example
scenario of this would be if one design decision would be between programming lan-
guages where only one of them supports automatic garbage collection and memory han-
dling (such as between C and Java) and a decision on testing governing if the tool pu-
rify is used to analyze the memory behavior during execution. An interactive effect be-

Forcing Software Diversity by Making Diverse Design Decisions – an Experimental Investigation

 12

tween these design decisions seems plausible.
In our experiment, assumption A2 does not seem to be a major cause of theorem inva-

lidity. When we tested the validity of the theorem and forced assumption A2 to be ful-
filled this did not increase the level of theorem validity. This indicates that it might not be
crucial for this assumption to be fulfilled. However, more experiments are needed to set-
tle this.

If A2 is not the major cause of the invalidity of the theorem then this must be due to the
unfulfillment of A3, the assumption of indifference. For all of the 21 pairs of design deci-
sions and all their three groups of methodologies with equal developmental diversity
there is some spread of the expected failure probabilities. Thus, the assumption of indif-
ference is not valid in a single case. The expectations in each group are spread out so that
there is some overlap between the groups. This causes the invalidity of the ordering that
would be seen if the theorem would be valid.

It is interesting that the theorem is still valid in a majority of cases if we look at the av-
erages of each group of developmental diversity. Analytical investigations of this might
reveal extensions of the theorem that need not assume strict indifference. One possible
way to go would be to express the theorem in terms of the amount of variation between
expectations in the same groups. Such investigations would be important since it seems
unlikely that we, in practice, will be strictly indifferent between methodologies. Interac-
tive effects will likely invalidate the indifference assumption.

These results complicate the picture for practical development of multi-version sys-
tems. If indifference is typically not the case, larger developmental diversity will not
guarantee smaller chance of coincident failure; variations among the combinations of
methodologies with equal developmental diversity can alter the ordering. Further em-
pirical and analytical investigations of these questions are needed to clarify the picture.

We would like to stress an important point stated by Littlewood and Miller: in the case
of ignorance of the effect of different decisions the assumption of indifference will be
plausible and, for this "state of knowledge", the theorem will be valid. However, over
several projects developers might build up experience on the effects of different design
decisions that can be used to take more informed design decisions. Extending the theo-
rems of forced design decisions to guide these decisions seems worthy of future studies.
One result in this direction were conjectured by Littlewood and Miller and a natural ex-
tension of this study would be to assess this conjecture and how it can be used when we
have knowledge on the effect of different design decisions. Another important task for re-
search on forced diversity will be to investigate the effect of different design decisions on
diversity.

The model of multi-version development used by Littlewood and Miller uses the set of
all possible programs that could be developed with a methodology and the set of all pos-
sible input cases to the programs. In our experiment we have sampled from these sets and
all our results includes uncertainty as to these samples. We are confident that the sample
from the input cases does not affect the results. In previous experiments with this applica-
tion the qualitative results were not affected when the number of test cases was increased;
only minor alterations in the quantitative results occurred. This could be due to the fact

Forcing Software Diversity by Making Diverse Design Decisions – an Experimental Investigation

 13

that our input space is simply a two-dimensional rectangle of the plane and we can cover
it sufficiently good with a relatively small number of test cases. Furthermore, our applica-
tion is a fairly simple controller with “continuos” characteristics. However, for applica-
tions with more complicated input spaces this would be an important issue.

To assess the effect of the sampling of the programs we repeated all the calculations
and analyses reported above for different numbers of programs from each methodology
in the range from 4 up to 15. This showed a convergence to the results reported above at
the number of 7. This indicates that the results have converged and will not be seriously
affected by increasing the size of the sample any more. However, a full analysis taking
statistical inference into consideration at each step would be valuable.

5.2 Using genetic programming to investigate design diversity

Genetic programming is different from ordinary software development. It can be ques-
tioned if the results and analyses reported here are valid for software developed by hu-
mans. Our stance is that statistical theorems do not differentiate between programs be-
cause they have been developed using different techniques; the theorems should be valid
in general.

There are a number of advantages of using an automated technique, such as genetic
programming. A large number of versions can be developed at a relatively low develop-
ment cost and parameters can be systematically varied to emulate different design deci-
sions. These characteristics are important to get statistically significant results.

Of course, there are also a number of disadvantages of using genetic programming. The
failure probabilities are typically higher than would be the case if we developed the soft-
ware by hand. It is possible that this affects the results so that other behavior will be ob-
served for lower failure probabilities. Furthermore, genetic programming has mostly
been applied to smaller problems and the applicability of our approach is directly tied to
the applicability of GP. If GP can not be used on larger and more complex problems then
neither can our approach. These issues are discussed in more detail in [Feldt98a]. To settle
them studies that compare the use of genetic programming with ordinary software de-
velopment are needed. We are in the process of approaching researchers in the fault-
tolerance area that have conducted studies with replicated-run replicated-variant experi-
ments to try to make such studies possible [Knight86] [Kelly83].

In summary, we think the technique of developing multiple software versions using
genetic programming can be used to investigate the theoretical limits of diversity and
multi-version software. It can be used as a research tool to explore new possibilities and
increase the knowledge on software and design diversity. This could help minimize the
cost and increase the effectiveness of conducting research on multi-version software using
human software developers.

6. Conclusions

We have developed 435 program versions of a software controller braking aircraft com-
ing in to land on a runway. The versions were developed using an automated program

Forcing Software Diversity by Making Diverse Design Decisions – an Experimental Investigation

 14

searching technique called genetic programming. By varying parameters to the genetic
programming algorithm we obtained 29 different development methodologies and de-
veloped 15 versions with each of these methodologies. By analyzing the failure behavior
of the programs we tested the validity of a theorem indicating how to force diversity,
stating that larger diversity between development methodologies, what we call develop-
mental diversity, gives a smaller probability of coincident failures [Littlewood89].

We tested two assumptions that need to be fulfilled for the theorem to be valid: the as-
sumption of independent failure behavior between design decisions (A2) and the as-
sumption of indifference (A3). Assumption A2 was fulfilled in average on about 74% of
the test cases while assumption A3 was never fulfilled. In accordance with this the theo-
rem was only valid in part of one case (2.35% of the possible orderings). The major cause
of theorem invalidity seems to be that assumption A3 is not valid. Thus, if we are not in-
different between design decisions, it is not guaranteed that increased diversity of design
decisions will decrease the probability of coincident failures. An example of this situation
would be if we suspect that two design decisions have an interactive effect; in this situa-
tion it is unclear if maximally forced diversity will give increased reliability.

When we considered averages of the groups of failure probabilities for methodologies
with equal developmental diversity, the orderings predicted by the theorem was valid in
a majority of cases. However, our results show that if we are not indifferent between
combinations of design decisions there can be no theorem stating that the smallest prob-
ability of coincident failures will be in the group with highest developmental diversity.
There can be variations within the groups that invalidate orderings of them. Analytical
and / or empirical investigations into the possibility of extending the theorem based on
the amount of variation in the groups would be valuable.

It may not be the case that these results affect the actual strategies that should be used
when developing multi-version systems. As was pointed out by Littlewood and Miller
the assumptions they make in proving their theorem are plausible given that we do not
know the effect of different design decisions. Our results do not invalidate this and in a
state of ignorance about the effects of different decisions the assumption of indifference
will be plausible and the theorems valid.

Our results have been obtained for one application. We need to investigate more appli-
cations to evaluate the generality of our results. It would be especially interesting to make
comparative studies with previous experiments on multi-version software. In addition,
this would make it possible to assess how software developed using genetic program-
ming differs from software developed by humans. There are large dissimilarities between
the two that could question the validity of our results. However, genetic programming
should be a valuable tool in investigating the theoretical limits and theorems of diversity;
versions are not treated differently depending on how they have been developed.

Genetic programming is a computational technique inspired by biological processes. It
is the author’s opinion that many new and interesting ideas for building and conducting
research on fault-tolerant computer systems can be found by studying nature and bio-
logical systems as was provoked in [Avizienis95a].

Forcing Software Diversity by Making Diverse Design Decisions – an Experimental Investigation

 15

Acknowledgement

The author wishes to acknowledge Jörgen Christmansson, Marcus Rimén, Martin Hiller,
Jan Torin and Håkan Edler whose comments increased the quality of this paper.

References

Avizienis, A. "Building Dependable Systems: How to Keep Up With Complexity." Proceedings of

the Fault-Tolerant Computing Symposium 25th Silver Jubilee (FTCS-25): 1995a. 4-14.

---. "The Methodology of N-Version Programming." Software Fault Tolerance. editor M. Lyu.

Chichester, England: John Wiley & Sons, 1995b. 23-46.

Bäck, T., U. Hammel, and H-P. Schwefel. "Evolutionary Computation: Comments on the History

and Current State." IEEE Transactions on Evolutionary Computation 1.1 (1997): 3-17.

Banzhaf, W., et al. Genetic Programming - an Introduction. San Fransisco, California: Morgan

Kaufmann, 1998.

Bishop, P. "Software Fault Tolerance by Design Diversity." Software Fault Tolerance. (ed.) M. Lyu.

Chichester, England: John Wiley & Sons, 1995. 211-30.

Christmansson, J. "An Exploration of Models for Software Faults and Errors.". Chalmers Univer-

sity of Technology, 1998.

Feldt, Robert. Using Genetic Programming to Systematically Force Software Diversity. Gothen-

burg, Sweden: Chalmers University of Technology, 1998a. 296L Thesis for the degree of Li-

centiate of Engineering.

---. "Generating Multiple Diverse Software Versions Using Genetic Programming - an Experimen-

tal Study." IEE Proceedings - Software (1998b).

Kelly, J. P. J., and A. Avizienis. "A Specification-Oriented Multi-Version Software Experiment."

Proceedings of the 13th Fault-Tolerant Computing Symp. (FTCS-13): 1983. 120-26.

Knight, J. C., and N. Leveson. "An Experimental Evaluation of the Assumption of Independence

in Multiversion Programming." IEEE Transactions on Software Engineering 12.1 (1986): 96-

109.

Den klassiska empiriska stuiden med 27 varianter av Missile Launch Interceptor utvecklade

av student-team på 2 personer. Mycket bra artikel med väl diskuterade forskningsresultat.

Koza, J. Genetic Programming - on the Programming of Computers by Means of Natural

Selection. Cambridge, Massachuchetts: MIT Press, 1992.

Littlewood, Bev, and Douglas R. Miller. "Conceptual Modeling of Coincident Failures in

Multiversion Software." IEEE Transactions on Software Engineering 15.12 (1989): 1596-614.

Forcing Software Diversity by Making Diverse Design Decisions – an Experimental Investigation

 16

Proebsting, T., et al. “Toba: Java for Applications - A Way Ahead of Time (WAT) Compiler”.

Technical report, University of Arizona, 1996.

Quereshi, A. GPSys 1.1 Homepage. Web Page. URL:

http://www.cs.ucl.ac.uk/staff/A.Qureshi/gpsys.html. 20 November 1998.

US Air Force. Military Specification: Aircraft Arresting System BAK-12A/E32A; Portable, Rotary

Friction. 1986. MIL-A-38202C, Notice 1.

Part III.

6. Robert Feldt and Peter Nordin.Using Factorial Experiments to Evaluate the Effect
of Genetic Programming Parameters, In Riccardo Poli, Wolfgang Banzhaf, William
B. Langdon, Julian F. Miller, Peter Nordin, and Terence C. Fogarty, editors, Genetic
Programming,Proceedings of EuroGP’2000 , volume 1802 of LNCS, pages 271-282,
Edinburgh, 15-16 April 2000. Springer-Verlag.

7.Robert Feldt,Michael O’Neill,Conor Ryan, Peter Nordin,and William B.Langdon.
GP-Beagle:A Benchmarking Problem Repository for the Genetic Programming Com-
munity, In Late Breaking Papers at the 2000 Genetic and Evolutionary Computation
Conference, pp. 90-97, Las Vegas, Nevada, USA, July 2000.

Paper 6.

Robert Feldt and Peter Nordin.Using factorial experiments to evaluate the effect of
genetic programming parameters, In Riccardo Poli, Wolfgang Banzhaf, William
B. Langdon, Julian F. Miller, Peter Nordin, and Terence C. Fogarty, editors, Genetic
Programming,Proceedings of EuroGP’2000 , volume 1802 of LNCS, pages 271-282,
Edinburgh, 15-16 April 2000. Springer-Verlag.

Using Factorial Experiments to Evaluate the Effect of Genetic

Programming Parameters

Robert Feldt and Peter Nordin

Dept. of Computer Engineering & Dept. of Physical Resource theory

Chalmers University of Technology

Gothenburg, Sweden
feldt@ce.chalmers.se, nordin@phy.chalmers.se

Abstract. Statistical techniques for designing and analysing experiments are used to evalu-

ate the individual and combined effects of genetic programming parameters. Three binary

classification problems are investigated in a total of seven experiments consisting of 1108

runs of a machine code genetic programming system. The parameters having the largest effect

in these experiments are the population size and the number of generations. A large number of

parameters have negligible effects. The experiments indicate that the investigated genetic pro-

gramming system is robust to parameter variations, with the exception of a few important pa-

rameters.

1 Introduction

The Genetic Programming (GP) method might be the first instance of real automatic pro-

gramming (Koza et al 1999). In an even more general sense, GP could be the first technique to

tell the computer what to do without having to specify how to do it. However, in order for that

to be true the user must be able to run the GP system using only a minimal set of natural pa-

rameters. In an ideal case there should be no parameters or only parameters that make imme-

diate sense to the user's requirements such as maximal search time etc. This is far from true

with present genetic programming systems. A modern GP system with additions such as

Automatically Defined Functions (ADFs), Demes, and Dynamic Subset Selection have a very

large number of parameters and settings creating a combinatorial explosion for the complete

parameter space. This enormous parameter search space makes the search for an optimal or

near optimal parameter setting difficult for the user.

What is even more severe is the theoretical implication of numerous parameters and set-

tings. Each time we set a parameter we supply information to the search algorithm. If we set

too many specific parameters, we might "point out" the solution with the parameters and we

will not get more out of the system than we put in. We are supplying more information than

the system is giving us back or in other words we are spending more effort and intelligence on

the search for the right combination of parameters than the system does for the right solution.

The standard defence against this argument is that GP is very robust and accepts a wide

range setting with little degradation in performance. This is usually only a hunch from GP

researchers since there has been no large, systematic investigation of parameter effect using

genetic programming. Such an investigation would have the additional benefit of enhancing

experiments by providing close to optimal parameter settings. The only broad directions in the

literature are experience-based, rule-of-thumb-type parameter recommendations (Koza 1992),

(Banzhaf et al 1998).

In this works we describe the first series of experiments that address parameter influence in

a broad and systematic way.

The questions that we are addressing are:

• Is GP robust toward different parameter settings or do settings have an effect on perform-

ance?

• If there is an effect on fitness, which parameters have the largest effect?

• Is the parameter effect dependent on single parameter settings or are combinations of pa-

rameters important?

• Can some parameters be ignored and can general guidelines be devised for the most im-

portant ones?

This paper address these questions using statistically sound experimental methods for pa-

rameter screening based on fractional factorial designs (Box et al 1978). Thes methods reduce

the number of runs needed and increases the amount of knowledge that can be gained.

2 Method

To overcome the combinatorial explosion in the number of parameter combinations that

need to be considered we use experimental design methods studied in mathematical statistics.

2.1 Experimental design

Statistical Design of Experiments (DoE) provides a framework to design and analyze com-

parative experiments, ie. experiments with the purpose to determine the quantitative effects of

inputs on some output (Kleijnen 1998) (Box et al 1978). In this context the inputs are called

factors and the output is called the response. The major advantage of using DoE designs is

that experimentation becomes more efficient: both the effects of individual factors and their

interaction can be investigated with limited experimental effort. This is achieved by changing

more than one factor at a time.

A basic DoE experimental design is the factorial design where each factor has a discrete

number of levels. An example of a two-level factor in GP is whether a certain function should

be included in the function set or not. Continuos factors, such as for example the population

size, can be used in factorial experiments if two discrete levels are chosen from their valid

range. In a full two-level factorial design all combination of factor levels are included, result-

ing in 2k different parameter settings, where k is the number of factors. Even for relatively

small k:s the number of combinations needed is impractical. To overcome this fractional fac-

torials are used. They utilize the fact that higher-order interactions between factors, ie that

two or more factors have a combined effect different from each one of them in isolation, often

have negligible effects. By letting lower-order effects, such as the main effects of the parame-

ters and their two-factor interactions, be confounded with each other only a fraction of the full

factorial design needs to be run.

The amount of confounding between effects in a design is determined by the design resolu-

tion. Design resolution refers to the amount of detail, separate identification of factor effects

and interactions, that a design supports. For example, in a design of resolution five the main

effects are confounded with four-factor interactions while two-factor interactions are con-

founded with three-factor interactions. The confounding pattern can be calculated from the

design generators that define how the design is to be constructed. For more information on

factorial designs see (Box et al 1978).

A typical strategy for experimentation using DoE is to make sequential use of designs with

increasing resolution (Box et al 1978). In the first experiment a large number of factors are

included since we do not yet know which of them may have large effects on the response. A

heavily fractionalized design with low resolution is often used to screen out a majority of the

factors. The remaining factors are studied in more detail in later experiments. Later experi-

ments typically have higher resolution to permit separation of main and two-factor effects.

Tradtional DoE have been developed for physical and medical sciences and its development

has been biased by the typical applications in these fields. For example, when an experiment

is conducted in the real world it is often impractical to control more than 15 factors. (Kleijnen

1998) points out that a number of things are different when conducting experiments on a

computer simulation: there are often more factors to be studied, we can practically control

many more factors, and we do not need to randomize the run order of the experiments to get

results that are robust to uncontrolled, and possibly even unknown, factors. These issues ap-

ply, in a similar way to genetic programming experiments.

3 Experiments

A total of 1108 GP runs were performed in seven different experiments on three different

problems. In these runs, a total of about 2.5 billion individuals have been evaluated. Below we

describe the problems, GP system, factors and response variable used in the experiments. We

also describe the design of the experiments.

3.1 Problems

We believe in the importance of evaluating machine learning algorithms over several prob-

lems. In this work we have used three different binary classification problems. However, we

plan to expand the number and types of evaluated problems significantly in future work, see

section 6. The problems used are all standard machine learning problems: Ionosphere, Gaus-

sian, and Pima Indians Diabetes Database.

Ionosphere Problem

This real-world radar echo classification problem has been donated by Vincent Sigillito of

the Space Physics Group at John Hopkins University in the US. It is taken from the UCI Ma-

chine Learning repository (UCI ML Repository 1999). There are 200 instances in the training

set and 151 instances in the validation set. The problem has thirty-four attributes and a binary-

valued response indicating whether the echoes have detected any structure in the ionosphere.

Gaussian Problem

The gaussian classification problem is an artificial problem for heavily overlapping distri-

butions with non-linear separability. The class 0 is represented by a multivariate normal dis-

tribution with zero mean and standard deviation equal to 1 in all dimensions, and the class 1

by a normal distribution with zero mean and standard deviation equal to 2 in all dimensions.

There are 1000 patterns, 500 in each class. We have used a variant of the standard eight-

dimensional version, where there are 16 additional false (random) inputs in addition to the

eight true inputs. Theoretical maximal classification for the pure 8-D problem is 91%. The

problem is probably not easier with the false inputs added.

Pima Indians Diabetes Problem

This real-world medical classification problem has been donated by National Institute of

Diabetes, Digestive and Kidney Diseases in the US. It is taken from the UCI Machine Learn-

ing repository (UCI ML repository 1999). The diagnostic, binary-valued response variable

indicates whether the patient shows signs of diabetes according to World Health Organisation

criteria (i.e., if the 2 hour post-load plasma glucose was at least 200 mg/dl at any survey ex-

amination or if found during routine medical care). The population lives near Phoenix, Ari-

zona, USA. There are 576 instances in the training set and 192 in the validation set. The prob-

lem has eight attributes and a binary-valued response value.

3.2 Genetic programming system, its parameters and their values

For our experiments we used the Discipulus
TM

 system, a commercial implementation of

machine code GP (RML 1999). Discipulus
TM

is based on the AIM-GP approach, a very effi-

cient method for genetic programming formerly knows as CGPS (Nordin 1997). The system

uses a linear representation of individuals and a substring-exchanging crossover. In this survey

we have used most of the parameters in Discipulus
TM

. These parameters are used as factors in

the experiments described below. Their factor identifier (A to Q) and their value at the low

and high level used for the experiments are given in table 1. The levels of the continous pa-

rameters were chosen to represent qualitatively distinct levels based on our previous experi-

ence with the GP system in use. The parameters are briefly described below:

A. PopSize: The number of individuals in the population. At the low level the population size

is 50 and at the high level it is 2000.

B. Generations: The system uses steady-state tournament selection so the generation parame-

ter is the number of generation equivalents computed from number of tournaments. At the

low level 50 generations are used and at the high level 250 are used.

C. MutationsFreq: Mutation frequency is the probability that an offspring will be subject to

mutation. At the low level the mutation frequency is 10% and at the high level it is 90%.

D. CrossoverFreq: Crossover frequency is the probability that an offspring will be subject to

crossover. At the low level the crossover frequency is 10% and at the high level it is 90%.

E. Demes: Determines whether the population is subdivided into subpopulations. In each

experiment with demes we used 5 subpopulations, a crossover rate between demes of 3%

and a migration rate of 3%. At the low level demes are not used and at the high level they

are used.

F. ErrorMeasurement: The error measurement determines whether fitness is the sum of abso-

lute values of errors (parameter at low level) or the sum of squared errors (parameter at

high level).

G. DynamicSubsetSelection: Dynamic Subset Selection (DSS) is a method that only uses a

subset of all the fitness cases in each evaluation. The selection of fitness cases was based

on their individual difficulty (40%), the time since they were last used in fitness calcula-

tion (40%) and randomly (20%) (Gathercole 1994). At the low level DSS is not used and

at the high level it is used.

H. MissClassificationPenalty: The classification problems are mapped to symbolic regression

problems; each class is given a unique number. The fitness value is either the absolute dis-

tance or the squared distance between the actual and desired value. This parameter gov-

erns the amount of extra penalty that is added to the fitness for incorrect (miss) classifica-

tions. At the low level it is 0.0 and at the high level it is 0.25.

I. FunDiv: Determines whether division instructions are in (high level) or not in (low level)

the function set.

J. FunCondit: Determines whether conditional instructions such as comparison, conditional

loads and jumps are in (high level) or not in (low level) the function set.

K. FunTrig: Determines whether trigonometric functions are in (high level) or not in (low

level) the function set.

L. FunMisc: Determines whether other non- trigonometric, non-arithmetic and non-

conditional functions are in (high level) or not in (low level) the function set.

M. InitSize: The maximal initial size of the individuals, measured in number of instructions.

At the low level it is 50 and at the high level it is 100.

N. MaxSize: The maximal allowed size of an individual, in number of instructions. At the

low level it is 128 and at the high level it is 1024.

O. Constants: Determines the number of constants used in each individual. At the low level it

is 1 and at the high level it is 10.

P. MutationDistr: When an instruction block is mutated it can be done on several different

levels; the block level, instruction level or sub-instruction level (RML 1998). At the low

level the distribution between them is 80%, 10%, and 10% respectively, and at the high

level it is 10%, 10% and 80%.

Q. HomologousCrossover: Determines the percentage of crossovers that are performed as

homologous crossover (Nordin et al 1999). At the low level it is 5% and at the high level

it is 95%.

3.3 Response variable

We have used the maximum validation hit rate as the response variable for all problems and

runs. This value was obtained by extracting the best individual on training data and running it

on the validation set. It is reported as the percentage of correctly classified instances in the

validation set.

Our choice of response variable defines the unit for the effects from the analysis of the ex-

perimental data. If, for example, an effect is calculated to be 5 this means that the average

effect that can be expected when changing the factor from its low to its high level will be 5

percentage units (not 5%). Thus if the average response is 65% we would expect 70% on av-

erage with the factor at its high level.

3.4 Experimental designs

We have used three different experimental designs in a sequential fashion, each one based

on the results from the previous one. The first two designs have been used on all three prob-

lems with the settings of factor levels described above. The third design uses different levels

for the factors and has only been used on the gaussian problem. The purpose of the first ex-

periment is to screen the large number of factors down to a more manageable set. Later ex-

periments study the effects of the remaining factors in more detail.

To reduce the number of runs in the screening experiment we have employed a saturated

design first described by Ehlich (Ehlich 1964) (Statlib 1999). This design allows the estima-

tion of the main effects of seventeen factors in eighteen runs. The confounding patterns for

this design is very complicated; main effects are confounded with several two- and higher-

order effects.

The factors that had the largest effect in the screening experiments are varied in the second

round of experiments. The rest of the factors are held constant at intermediate levels (N = 256,

P = (40, 40, 20), Q = 50) or at the level indicated by the sign of its effect from the screening

experiment (I, K, L, M, O at their low level and J at its high). We employ a fractional factorial

experiment of resolution four. In this design the main effects are confounded with three-factor

interactions which are assumed to be negligible. This allows the estimation of all main effects.

Two-factor effects can be estimated but are confounded with each other. The actual design

used is a 28-4 fractional factorial with 16 runs (Box et al 1978). The generators for this design

are D=ABC, E=BCH, F=ACH and G=ABH where a low level is represented by –1 and a high

level by 1.

In order to estimate all two-factor interactions individually we need a design of resolution

five. This is illustrated for the gaussian problem in the third experiment, which uses a 25-1

fractional factorial with 16 runs (Box et al 1978). The generator for this design is H = ABCD.

In this third experiment we study the five factors that had the largest effect in experiment 2

on the gaussian problem. We alter the levels of these factors to gain more knowledge of their

effect. The population size and number of generations had a significant effect and by increas-

ing them (A to (500, 5000) for low and high level respectively and B to (100, 500)) we want

to investigate if this effect holds also for higher levels. By increasing the low level of the mu-

tation and crossover probabilities to 50% and keeping the high level at 95%, we can investi-

gate if the level of 95% was extreme. By altering the values of both the low (to 0.05) and high

levels (to 0.5) of the miss-classification penalty we can investigate if it is only important to

have this penalty regardless of level or if the level in itself is important.

4 Results

Below we document the results for the seven experiments conducted. All values reported

for the effect of factors and for confidence intervals is in the same unit as the response vari-

able, see section 3.3. We have conducted a sensitivity analysis to evaluate how sensitive our

results are to the number of replicates used for each parameters setting. This analysis is briefly

described below.

4.1 Results of the screening experiment on IONOSPHERE

For each of the eighteen factor settings ten (10) replicates were run on the ionosphere prob-

lem. The standard error calculated from these 180 runs was 2.04 giving a 95% confidence

interval of 4.63. The effects that were statistically significant at this confidence level are (in

order of decreasing effect): A, B, G, C, H, D, E, F. The effect of A was about 45% larger than

the effect of F.

4.2 Results of the screening experiment on Gaussian

For each of the eighteen factor settings eight (8) replicates were run on the gaussian prob-

lem. The standard error calculated from these 144 runs was 0.74 giving a 95% confidence

interval of 1.94. The effects that were statistically significant at this confidence level are (in

order of decreasing effect): A, B, C, H, E, D, G, F, J*, O*, P*, L*. However, note that the four

factors marked with an asterisk had much smaller effect than the previous eight. For example

the effect of F is more than four times higher than the effect of J.

4.3 Results of the screening experiment on PIMA-diabetes

For each of the eighteen factor settings, eight (8) replicates were run on the pima-diabetes

problem. The standard error calculated from these 144 runs was 0.33 giving a 95% confidence

interval of 0.96. The effects that were statistically significant at this confidence level are (in

order of decreasing effect): A, C, G, B, F, E, H, D, L*, N*, P*, M*. However, note that the

four factors marked with an asterisk had much smaller effect than the previous eight. For ex-

ample the effect of D is more than eight times the effect of L.

4.4 Result of Second experiment on ionosphere

For each of the sixteen factor settings ten (10) replicates were run on the ionosphere prob-

lem. The standard error calculated from these 160 runs was 0.66 giving a 95% confidence

interval of 1.50. The effects that are statistically significant at this confidence level are shown

in table 4.

Table 4: Factors and their levels for experiment 2

on the ionosphere problem

CON-

TRAST

EF-

FECT

95%

CONF. IN-

TERVALL

A 4.19 +/- 1.50

B 2.23 +/- 1.50

AD + BC +

EH+ FG

2.16 +/- 1.50

AG + BH +

CE + DF

1.89 +/- 1.50

AH + BG + CF +

DE
1.75 +/- 1.50

The population size (A) has the largest effect while the number of generations (B) and three

different two-factor-interaction combinations have similar effects. The values reported in the

table should be interpreted in the following way: if we change the level of factor A from its

low to its high level we can expect an average increase in the validation hit rate by 4.19 units

with a 95% confidence interval from 2.69 to 5.69 units. The same type of interpretation can be

made for all effects reported in this paper.

The average validation hit rate was 92.1%, with a maximum of 98.7% and a minimum of

66.9%. The maximum average for a particular setting of the factors was 98.2% and the mini-

mum 85.8%. These results can be compared with the maximum reported result from the UCI

database describing the ionosphere problem: an average of 96% obtained by a backprop

NN and 96.7% obtained with the IB3 algorithm (UCI ML repository 1999). However, we

measure generalisation in a slightly different way: In the GP community it is common to look

for the best generalizer in the population at reporting intervals in contrast to noting generaliza-

tion capabilities among the best performing solution candidate on the training set. This differ-

ence applies for all experiments in this paper.

4.5 Result of second experiment on gaussian

For each of the sixteen factor settings ten (10) replicates were run on the gaussian problem.

The standard error calculated from these 160 runs was 0.84 giving a 95% confidence interval

of 1.94. The effects that are statistically significant at this confidence level are shown in table

5.

Table 5: Factors and their levels for experiment 2

on the gaussian problem

CON-

TRAST

EF-

FECT

95%

CONF. IN-

TERVAL

A 11.51 +/- 1.94

C 5.21 +/- 1.94

B 5.14 +/- 1.94

AD + BC +

EH+ FG

3.39 +/- 1.94

D 2.82 +/- 1.94
AH + BG + CF +

DE
2.76 +/- 1.94

AF + BE + CH +

DG
2.35 +/- 1.94

The population size (A) clearly has the largest effect with the mutation probability (C) and

number of generations (B) having about half the effect of A. Three different two-factor-

interaction combinations and the crossover probability (D) have smaller effects.

The average validation hit rate was 63.8%, with a maximum of 88.9% and a minimum of

48.6%. The maximum average for a particular factor setting was 83.7% and the minimum

52.3%. This can be compared to the theoretical limit for this problem with a dimensionality of

eight: 91%. However, note that this limit does not take the eight false inputs into account.

4.6 Result of second experiment on pima-diabetes

For each of the sixteen factor settings ten (10) replicates were run on the pima-diabetes

problem. The standard error calculated from these 160 runs was 0.72 giving a 95% confidence

interval of 1.63. The effects that are statistically significant at this confidence level are shown

in table 6.

Table 6: Factors and their levels for experiment 2 on the pima-diabetes problem

CON-

TRAST

EF-

FECT

95%

CONF. IN-

TERVAL

A 5.72 +/- 1.63

B 2.12 +/- 1.63

G 2.02 +/- 1.63

The population size (A) have the largest effect while the number of generations (B) and the

dynamic subset selection (G) have smaller effects.

The average validation hit rate was 65.46%, with a maximum of 77.6% and a minimum of

61.5%. The maximum average for a particular setting of the factors was 72.8% and the mini-

mum 61.5%. These results can be compared with the maximum reported result from the UCI

database describing the pima-diabetes problem: 76% using the ADAP learning algorithm

(UCI ML repository 1999).

4.7 Result of third experiment on gaussian

For each of the sixteen factor settings ten (10) replicates were run on the gaussian problem.

The standard error calculated from these 160 runs was 0.89 giving a 95% confidence interval

of 2.02. The effects that are statistically significant at this confidence level are shown in table

7. Note that the levels used for the factors in this experiment are not the same as for the previ-

ous experiments. Hence, the actual effects are not comparable between experiments 2a and 3.

Table 7: Factors and their levels for experiment 3

CON-

TRAST

EF-

FECT

95%

CONF. IN-

TERVAL

B 9.39 +/- 2.02

A 7.53 +/- 2.02

H 3.71 +/- 2.02

AD -2.30 +/- 2.02

The number of generations (B) and the population size (A) have the largest effects. The

positive effect of the increased miss-classification is smaller but still significant. The same is

true for the interaction between the population size (A) and the crossover probability (D).

Note that since this design has resolution five this two-factor interaction is not confounded

with any other two-factor interaction, as was the case in previous experiments. The somewhat

surprising negative effect of this interaction means that some caution is called for when using

large population sizes; increasing the crossover probability might have a detrimental effect.

The average validation hit rate was 76.4%, with a maximum of 88.9% and a minimum of

61.6%. The maximum average for a particular factor setting was 85.8% and the minimum

65.1%.

5. Discussion

We have presented our first results in a larger project attempting to investigate the effect of

GP parameters. Even though these results stem from a limited number of problems and ex-

perimental designs we believe that some interesting conclusions can be drawn. However, we

are far from settling the questions raised in the introduction, but we can identify interesting

patterns.

In all three screening experiments the same eight parameters had the largest effects with the

remaining nine factors having small or statistically insignificant1 effects. Among these nine

factors that were consistently screened out, we can find the factors determining the function

set, the initial and maximal size of the individuals, the number of constants, the distribution of

different mutation operators and the amount of crossovers that are homologous. It will be in-

teresting to see if this result is valid for other problems and in other ranges of the continuos

parameters.

Consistently, on all three problems, the population size and the number of generations are

the most significant parameters. The population size comes out on top in the second experi-

ments on all three problems with the number of generations a close second or third. However,

note that the effect of the population size is numerically much larger than the other effects;

this indicates that having a large population is important to get good results with GP. Effort

has not been individually targeted in this survey, but it is interesting to note that choosing a

large population size sometimes is more important than a large number of generations. In

other words: a large population size running for very small number of generations could be

better than a small population size running for a “normal“ number of generations. More inves-

tigation is needed on this.

It is interesting to note that the mutation and crossover probabilities have rather large effects

on the gaussian problem. This somewhat contradicts the notion that mutation probability

should be low. However, these factors did not have a statistically significant effect on the two

real-world problems.

Dynamic subset selection can have a positive effect on the performance (Gathercole 1994).

The fact that it, in addition, decreases the execution time of a run considerably would further

speak for a more widespread use.

On both the gaussian and the ionosphere problem there are significant two-factor interac-

tions. Since the design for experiment number two had a resolution of four we cannot separate

the effect of different two-factor interactions. If we would like to do so we could add further

runs to the existing designs or use a design of resolution five. Note that it can often be wise to

use a design with lower resolution first and then add runs to separate between two-factor in-

teractions of interest. In general, this will reduce the total number of runs needed. For exam-

ple, to separate the four two-factor interactions having a combined effect of 3.39 on the gaus-

sian problem in table 5 would require 3 extra experiments. Using a design of resolution five

would require 64 runs; 48 more runs than for the design used herein.

The third experiment on the gaussian problem was included to show an example of a design

of resolution five. Furthermore, the levels of the factors studied were changed to see their ef-

fect in other ranges of values. It is notable that the population size and number of generations

are still the dominant factors. Note, however that the population size is no longer dominating;

this could indicate that there is a limit to what can be gained from increasing the population

size. The positive effect of the miss-classification penalty factor indicates that not only is it

good to have such a penalty, but a relatively large penalty is better than a smaller one.

Our results partly support the notion that GP systems are robust to different parameter set-

tings, as long as we choose the right values for the most important ones: population size and

number of generations. On some problems the crossover and mutation probability can give

good results with large levels. However, the negative interaction between population size and

crossover probability in experiment 3 indicates that some caution must be taken.

1 If an effect is not statistically significant it can not be separated from the natural variation in the response, ie noise.

The methodology used in this work can be used to optimize the results from a GP system.

For example, note that the average response on the third experiment on gaussian is higher than

the average response on the second experiment on the same problem. This is because the lev-

els used in the third experiment were chosen based on the results from the second experiment.

Thus, in addition to giving researchers a way to map out the effect of different parameters,

DoE techniques may be used to optimize the response on a particular problem.

A drawback with the kind of DoE techniques used in this work is that they assume that

higher-order interactions between factors are negligible. The empirical evidence for making

this assumption are abundant; experimental investigations frequently show that the effect can

be explained by a few important factors (Kleijnen 1998). However, we can never be fully sure

and it will probably be wise to conduct full factorial experiments on some problems to vali-

date this assumption. We have also noted that the responses in our experiments are often not

normally distributed but grouped into clusters. In theory this makes statistical analysis of ef-

fects difficult since it violates the assumption of normally distributed responses. In practice,

most statistical techniques have shown to be robust against deviations from normality (Box et

al 1978).

It is worth noting that the GP system consistently performed very well compared to the pre-

viously reported best results on the test problems but with the caveat that generalization is

measured differently. In future work we plan to change generalisation measurements to com-

ply with the methods used in the UCI-database.

7. Conclusions

The Design of Experiments (DoE) techniques, from mathematical statistics, have been in-

troduced as a solid methodology for evaluating the effect of genetic programming parameters.

These techniques can also be used to increase the performance of a GP system, by guiding the

user in choosing ‘good’ parameter combinations.

Our experiments show that, on three binary classification problems, the most important pa-

rameter was the population size followed by the number of generations. On one problem,

large mutation and crossover probabilities had a positive effect. Furthermore, on all three

problems, the same and large number of factors could be screened out because their effect

could not be distinguished from noise. The result supports the notion that GP systems are ro-

bust against parameter settings but highlights the fact that there are a few parameters that are

crucial.

This work reports the first results from a larger project attempting to investigate the effect

of GP parameters. Much more work, involving more detailed designs as well as more varied

test problems, is needed before we can address the questions as to the role and effect of GP

parameters. We believe that such findings can be of great importance to the applicability of

genetic programming in both industry and academia.

Acknowledgements

The authors wish to acknowledge Martin Hiller and Bill Langdon, whose comments in-

creased the quality of this paper. Peter Nordin gratefully acknowledges support from the

Swedish Research Council for Engineering Sciences.

References

Banzhaf, W., Nordin, P. Keller, R. E., and Francone, F. D. (1998). Genetic Programming

 An Introduction. On the automatic evolution of computer programs and its applications.

Morgan Kaufmann, Germany

Box, G. E., Hunter, W. G., Hunter, J. S. (1978). Statistics for Experimenters – an Introduc-

tion to Design, Data Analysis and Model Building. Wiley & Sons, New York, USA.

Ehlich, H. (1964). Determinantenabschatzungen fur binare Matrizen. Math. Z. 83, 123-132.

Gathercole C. and Ross P. (1994) Dynamic Training Subset Selection for Supervised Learn-

ing in Genetic Programming, Chris. In proceedings of the 3
rd

 conference on Parallel Problem

Solving from Nature (PPSN III), Springer-Verlag, Berlin, Germany.

Kleijnen, J. P. C. (1998). Experimental Design for Sensitivity Analysis, Optimization, and

Validation of Simulation Models. In Handbook of Simulation, (ed.) Banks, Wiley & Sons,

New York, USA.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of

Natural Selection. MIT Press, Cambridge, MA., USA.

Koza J.R, Andre D., Bennett F.H., Keane M. A. (1999) Genetic Programming III: Darwin-

ian Invention and Problem Solving. Academic Press/Morgan Kaufmann.

Nordin, J.P. (1997), Evolutionary Program Induction of Binary Machine Code and its Ap-

plication. Krehl Verlag, Muenster, Germany.

Nordin J. P., Banzhaf W., and Francone F. (1999) Efficient Evolution of Machine Code for

CISC Architectures using Blocks and Homologous Crossover. To appear in Advances in Ge-

netic Programming III, (eds.) Langdon, O’Reilly, Angeline, Spector, MIT-Press, USA

RML (1999) Register Machine Learning Incorporated. http://www.aimlearning.com

StatLib (1999), Online Statistical resources library at the Department of Statistics, Carneige

Mellon University, USA, http://lib.stat.cmu.edu/.

UCI ML repository (1999). Files for the Pima-diabetes and Ionosphere problems from the

Machine Learning repository at University of California, Irvine describing the Ionosphere

problem. http:// www.ics.uci.edu/~mlearn.

Paper 7.

Robert Feldt, Michael O’Neill, Conor Ryan, Peter Nordin, and William B. Langdon.
GP-Beagle:A Benchmarking Problem Repository for the Genetic Programming Com-
munity, In Late Breaking Papers at the 2000 Genetic and Evolutionary Computation
Conference, pp. 90-97, Las Vegas, Nevada, USA, July 2000.

GP-Beagle: A Benhmarking Problem Repository for the Geneti

Programming Community

Robert Feldt

feldt�e.halmers.se

Computer Engineering

Chalmers University

SE-412 96, SWEDEN

Mihael O'Neill, Conor Ryan

Mihael.ONeill�ul.ie

Computer Siene

University of Limerik

IRELAND

Peter Nordin

Complex Systems

Chalmers University

SE-412 96, SWEDEN

William B. Langdon

CWI, Kruislaan 413

1098 SJ Amsterdam

NETHERLANDS

Abstrat

Experimental studies in geneti program-

ming often only use a few, arti�al prob-

lems. The results thus obtained may not

be typial and may not reet performane

on problems met in the real world. To

hange this we propose the use of ommon

suites of benhmark problems and introdue

a benhmarking problem repository alled

GP-Beagle. The basi entities in the reposi-

tory are problems, problem instanes, prob-

lem suites and usage information. We give

examples of problems and suites that an

be found in the repository and identify its

WWW site loation.

1 INTRODUCTION

A large fration of geneti programming (GP) researh

is empirial. New ideas are implemented and tested in

experiments on a number of problems. Sometimes the

performane of the new idea is ompared to a base-

line GP system. Even though this an show the rela-

tive merit of the new idea it does not easily extend to

omparing the merits of di�erent GP extensions. Fur-

thermore, the problems used are often arti�ial so the

results may not be representative of the performane

on real-world problems. If real-world data are used the

number of di�erent problems is often limited. This an

lead to happenstane results that is not typial of the

performane on the majority of problems.

In this paper we introdue GP-Beagle, an infrastru-

ture for establishing, maintaining and promoting a

publially available repository of benhmarking prob-

lems for empirial investigation and performane eval-

uation of geneti programming systems. It inludes

both individual problems and benhmarking suites of

problems. It de�nes a nomenlature and struture for

di�erent entities related to benhmarking, spei�es at-

tributes needed to desribe eah problem and suite and

lists the publiations in whih they have been used.

Inspired by the reent suesses of the open soure

movement the repository is available under a GPL-

like usage agreement where the use of the problems is

free but published results must be reported bak to

the repository. This ensures that the repository an

give an up-to-date view of the use of the problems and

the knowledge gained. The GP-Beagle e�ort is sup-

ported by a WWW site, urrently under development,

at http://www.gp-beagle.org.

We believe that GP-Beagle will enable the GP ommu-

nity to make faster progress sine it will promote the

use of sound experimental methods, provide a ommon

ground for omparisons, enable faster elimination of

ideas that are not fruitful and evoke disussions about

the problems we use in our researh and their respe-

tive merits. However, this e�ort will be suessfull

only if we all, as a researh ommunity, make use of

and extend the repository. We hope to onvine you

that taking part in this e�ort will be bene�ial both

to you and to the ommunity as a whole.

There are a number of existing problem databases in

areas related to GP and muh an be gained by using

them

1

. However, we think a new repository is needed

for GP sine GP an attak other types of problems

and existing databases are mainly pools of problems

and do not give an up-to-date view of the use of the

problems. Furthermore, establishing a ommunity-

spei� repository have the potential of raising the

awareness and use of experimental studies far more

than the at of pointing to existing databases.

Setion 2 elaborates on experimental researh and the

pros and ons of using benhmarks. In setion 3,

1

One example is the UCI Mahine Learning repository

with about 100 lassi�ation and regression data sets [1℄.

the omponents and struture of GP-Beagle are intro-

dued and in setion 4 we detail the attributes used

to desribe the entities in the repository. Examples of

problems and suites in the repository are desribed in

setion 5 and setion 6 onludes the paper.

2 EXPERIMENTAL RESEARCH

AND BENCHMARKS

Experimental researh is an important part of the si-

enti� method and it's importane in omputer siene

has been reently stressed [7℄

2

. Even though experi-

ments an never prove a theory they allow us to test

theoreti preditions in reality and to explore areas

where theory an not (yet) reah. The main bene�ts of

onduting experiments is that they help build a reli-

able knowledge base of adequate theories and methods,

they give observations that an lead to unexpeted in-

sights and that they aelerate progress sine they help

to quikly eliminate unfruitful approahes and weed

out erroneous laims. Experiments thus guides engi-

neering pratie and theory development in promising

diretions.

We know of no studies of the urrent level of experi-

mental pratie in GP researh. Studies on the neural

network ommunity and omputer siene in general

have revealed that the amount of experimental evalu-

ation is low [5℄ [8℄. A study of 190 neural networks ar-

tiles published in 1993 and 1994 showed that only 8%

presented results for more than one real-world prob-

lem, 29% did not employ even a single realisti learn-

ing problem and one third did not present any quanti-

tative omparison with a previously known algorithm

[5℄. Even though some of the e�orts in the ANN om-

munity to raise the level of experimental assessment

have probably \spilled over" to the GP ommunity we

suspet that the situation in the GP ommunity is not

muh di�erent. A olletive strive for better assess-

ment praties thus seem alled for.

Benhmarks are an e�etive and a�ordable way of on-

duting experiments and have been suessfully used

in many areas

3

. A benhmark is a olletion of prob-

lems with well-de�ned performane measurements and

a presribed method how to evaluate performane. If

they are hosen in a good way they allow repeatable

and objetive omparisons. The essential requirements

on a benhmark are (based on [6℄):

� Volume: the benhmark should inlude several

2

This setion draws heavily on the two papers [7℄ and

[6℄.

3

A notable example are the \spe" problem suites used

for benhmarking omputer performane.

and diverse problems,

� Validity : ommon errors that invalidate the re-

sults should be avoided,

� Reproduibility : problems and experiments

should be doumented well enough to be repro-

duible,

� Comparability : results should be omparable with

the results in other studies.

Conduting experiments with only a few problems

makes it diÆult to haraterize a new algorithm or

extension. If only problems of the same type are used

the results may not show the typial performane. By

inluding several problems of di�erent types we an

get a fuller piture of how the algorithm performs in

general.

Methodologial errors that threaten validity inlude

the hoie of a problem suited to the investigated al-

gorithm, reporting the result on a data set that was

used for training or using the test data set for tun-

ing parameters. These errors an be avoided by using

a well-de�ned evaluation proedure that separates be-

tween training, validation and testing.

If a paper does not desribe the exat setup of an ex-

periment the result an not be reprodued.

If results of di�erent studies an not be ompared it is

diÆult to hoose between algorithms and ideas pro-

posed in di�erent studies. This slows down progress.

In addition to these four requirements, pratitioners

have the requirement of representability : benhmark

problems should resemble the problems met in the real

world. A risk with using arti�ial problems is that

they have a limited information ontent

4

so that there

is no room to disover and exploit di�erent layers of

omplexity. For example, there might be no use in

having a meta-learning ability, suh as assembling in-

formation on searh diretions while searhing, on the

multiplexer problem. Comparing mahine learning al-

gorithms on simple problems with only one, entral

"idea" to "get" might evaluate problem solving ability

in an unfair way.

The use of benhmarks has some disadvantages. One

risk is that algorithms are spei�ally tailored to per-

form well on the benhmark problems. Another risk is

that benhmarks fous too muh on a single, numer-

ial performane measure. This an hinder progress

4

In an information theoreti sense. For example, a sal-

able arti�al problem, suh as Gaussian desribed in table

1, has the same information ontent (kolmogorov omplex-

ity) regardless of how the parameters are varied.

beause researhers optimize a loal optima instead of

exploring new and innovative avenues of researh. An-

other problem is that it is not lear how fair ompar-

isons should be arried out. For example, it might be

unfair to ompare the auray of two GP algorithms

without taking their exeution time or the time needed

to set them up or the time needed to tune their pa-

rameters into aount. Finally, benhmarks have to

evolve with the needs of the ommunity and applia-

tion areas; if they are stati they will fail to reet new

knowledge and will thus beome irrelevant.

At the urrent level of maturity of experimental pra-

tie in the GP ommunity we think that the advan-

tage of establishing and using ommon problems and

benhmarks outweighs these potential drawbaks. By

onstantly remind ourselves of these pitfalls their neg-

ative e�ets an be avoided. Furthermore we have de-

signed GP-Beagle to expliitly try to address them.

3 THE GP-BEAGLE PROBLEM

REPOSITORY

GP-Beagle is designed to be a one-stop plae for

all information on GP problems and benhmarking

suites of problems. The basi philosophy is that GP-

Beagle should de�ne an open framework that an be

easily extended were suites of problems an evolve as

knowledge is gained on them and the algorithms they

are used to evaluate. Thus, GP-Beagle does not sim-

ply supply a number of problems, it also ollets and

presents information on their use. To guarantee that

the usage information is up-to-date the problems are

supplied under a usage agreement. The agreement

states that the problems an be freely used but that

information on their use should be reported bak to

the repository. It also enourages researhers to sub-

mit new problems to the repository. Any problems are

aepted as long as they meet basi riteria (has been

used in published work and several instanes of the

same type of problem are not already in the reposi-

tory).

Sine evolutionary algorithms are general searh algo-

rithms that an be applied to a large number of areas

it would not be wise to speify one benhmark suite

to be used in all researh. GP-Beagle does not pre-

speify a number of suites but starts by reording the

olletions of problems that are atually used. Thus,

the suites are de fato olletions of problems. Over

time it is antiipated that speial suites will evolve for

di�erent sub-areas of GP researh suh as for exam-

ple lassi�ation, regression or arti�ial problems. It

is also antiipated that when a mass of problems and

usage data have been assembled suites an be on-

struted in a rigorous way, using reent ideas on how

to quantify the features of benhmarking suites [3℄.

GP-Beagle is implemented on a WWW server as a

set of Perl-sripts aessing a MySQL database. The

database onsists of reords for eah of the basi enti-

ties: problems, problem instanes, de fato and benh-

marking suites and usage information. This implemen-

tation minimizes

5

the amount of human resoures

needed to maintain the repository. Statistis on the

use of problems in the repository an be automati-

ally olleted. The struture of the repository and

the GP-Beagle usage agreement is further desribed

below. Setion 4 gives a detailed view of the entities

in the repository.

3.1 STRUCTURE OF THE REPOSITORY

The basi entity of the repository is a problem. A prob-

lem is either a data set, a data generator or a simu-

lator. Both of the latter are programs that generate

data to be used in �tness evaluation. The di�erene

is that a data generator is used o�-line, ie. by gener-

ating a data set prior to starting the GP run, while a

simulator is used on-line in a dynami evaluation of a

GP individual. A problem an be either arti�ial or

real-world.

Speifying whih problem has been used in an exper-

iment is not enough to allow full reproduibility and

omparability of results [6℄ [2℄. For instane it is not

enough to speify whih data set has been used; one

must desribe how the data set have been divided into

training, validation and testing sets. For a simula-

tor or data generator we need to know whih parame-

ters have been used, how many �tness ases have been

generated and so forth. To enompass this level of

detail GP-Beagle introdues the onept of a prob-

lem instane. This is a fully spei�ed desription of

the problem and how it has been used

6

. Thus, eah

problem in the repository an have multiple instanes

but eah instane an only stem from one problem. A

problem de�nes a family of possible instanes.

A olletion of problem instanes that have been used

together in an experimental study is alled a problem

suite. A homogeneous suite onsists of problem in-

stanes from the same problem, while a heterogeneous

suite have instanes from several problems.

5

Human assistane will be needed to review that new

submissions to the repository are omplete, to reate new

benhmarks et.

6

An instane may ontain multiple samples from the

same problem data set.

A speial kind of problem suites are the benhmarking

suites. These suites are not de fato suites that have

already been used in atual researh. Instead they

are expliitly added to the repository to promote new

kinds of experiments or to de�ne suites onsisting of

diverse problem instanes.

In addition to these four basi entities the GP-

Beagle repository ontains usage information. The us-

age information details in whih studies eah prob-

lem instane and suite have been used and the re-

sults and knowledge obtained. This information an

be easily aessed when browsing the repository. GP-

Beagle also ollets statistis on the use of problems so

that hot-lists an be presented. This way a researher

an easily �nd the problems that are often used and

that would thus give good opportunities for ompara-

tive analysis.

3.2 THE GP-BEAGLE USAGE

AGREEMENT

The problems in the GP-Beagle repository are avail-

able free for any aademi or ommerial use as long

as any published information generated by this use is

reported bak to the repository. Spei�ally the infor-

mation that should be reported inludes (general and

suite-spei� information):

1. Referene to paper where the experiment is de-

sribed, and

2. The set of problem instanes used, and

3. The goal of the experiment and a rationale for

hoosing this spei� set of problems (if any), and

4. Any knowledge gained on the set of problems suh

as their suitability for ahieving the goal.

and for eah problem instane used (instane-spei�

information):

1. The result obtained on the performane measure

de�ned for the problem instane, and optionally

2. The exeution time.

A new problem instane an be generated or an exist-

ing instane an be altered as long as the new instane

is supplied bak to the repository together with the

following information:

1. The reason for reating the new instane, and

2. A desription of why the previously existing in-

stanes was not adequate.

4 ATTRIBUTES OF ENTITIES IN

GP-BEAGLE

The following attributes are kept in a reord on a prob-

lem in the repository:

� Name: A unique name for the problem. One

assigned the problem will always have this name

and an thus be uniquely referred to in papers and

disussions.

� Desription: A textual desription of the problem.

Should ideally give some basi knowledge on the

domain, desribe the parameters in a DataGener-

ator or Simulator, if attribute values are missing

in a DataSet et.

� Version: A version number to reet updates to

the problem.

� Type: DataSet / DataGenerator / Simulator

� Sub-type: Regression / Binary Classi�ation / 5-

Classi�ation et.

� Origin: Arti�ial/Real-world. Arti�ial problems

are further haraterized as whether their diÆ-

ulty an be varied.

� Soure: Who submitted the problem.

� Status: Suggested / Reviewed. Indiates if the

problem have been reviewed and thus \oÆially"

entered the repository.

� Number and type of attributes: Total number of

attributes, number of ontinous and disrete at-

tributes.

� Number of instanes: Number of instanes in a

DataSet.

� File: A gzip:ped tar �le with all the �les in the

problem.

The unique attributes of a problem instane reord:

� From problem: The problem that the instane is

derived from.

� Desription: Desribes how the instane was de-

rived from the \parent" problem, what ompo-

nents it onsists of, why previously existing in-

stanes of this problem was not adequate et.

� Reason reated: Reason for reating the instane.

� Performane measure: Desribes the \�tness"

value used to evaluate algorithms on the instane.

� Number of instanes: Number of instanes that

an be used in evolving a solution (ie. these in-

stanes an be divided in validation and training

sets).

� Number of test instanes: Instanes in test set

that annot be used in any way to evolve a solu-

tion.

� GP result: Give an example of a good result ob-

tained with a GP tehnique.

� GP paper: Pointer to a problem instane usage

info reord desribing the paper in whih the good

result was obtained.

� Other result: Give an example of a good result

obtained with a non-GP tehnique.

� Other paper: Briey desribe the tehnique used

and give referene to paper where result an be

found.

� Simple result: Give result ahieved with a simple

tehnique (for example plurality rule in lassi�a-

tion task or a tehnique based on linear separation

in regression).

The reord for a suite ontains the following unique

attributes:

� Type: DeFato / Benhmark.

� Problem instanes: Instanes in the suite.

� Sub-type: Heterogeneous / Homogeneous

� Performane measure: Performane measure for

suite.

In addition to the above, basi entities the repository

ontains two types of usage information reords: in-

stane usage info and suite usage info. The unique

attributes of the instane usage info are (the suite us-

age info reord is similar):

� Paper: Paper where experiment with instane is

desribed. Pointer to GP bibliography.

� Tehnique used: Algorithm or tehnique used.

� Performane obtained: Performane obtained.

� Time: Exeution time to evolve a solution with

the performane above.

We have ontemplated using a standardized way to

report the exeution time but we do not think that

one \right" way to do it is yet available. One possible

way would be to report the atual exeution time nor-

malized with the spe benhmark result for the CPU

used as in [4℄. However, a number of objetions an be

raised to this sheme so we have hosen not to speify

one way on how to measure the time needed.

5 EXAMPLES

Below we give examples of some entries in the reposi-

tory. One is a problem, one is a problem instane, one

is a de fato suite and one is a proposed benhmark.

The desriptions are brief and primarily intended to

give you a piture of the kind of information that an

be found in the repository. More details an be found

at the GP-Beagle web site.

5.1 PROBLEM:

Gaussian(n,�

1

,�

1

,�

2

,�

2

,f ,f

l

,f

h

)

The Gaussian problem is a DataGenerator problem.

It's reord in the GP-Beagle database is shown in ta-

ble 1. The data �le for the problem, gaussian.tar.gz,

ontains the following �les:

� readme.txt - A desription of the �les inluded in

this tar �le, and

� gaussian.desription - The data from the reord

shown in table 1, and

� gaussian. - The DataGenerator implemented in

ANSI-C, and

� usage.info - Desription of how to ompile and use

the DataGenerator, and

� data.info - Desription of the data �le generated

when the generator is run.

The �les are typial of what should be inluded for

a DataGenerator problem; they will di�er for other

types of problems.

5.2 PROBLEM INSTANCE:

KddCup99-distoint-1%

The KddCup99-distoint-1% is a problem instane

sampled from the KDD Cup 1999 data (a real-world

5-lass lassi�ation DataSet problem). The problem

instane reord is shown in table 2. Note that the ref-

erene to the GP paper is given as the bibtex key in the

Table 1: Reord for the Gaussian problem

Name: Gaussian(n,�

1

,�

1

,�

2

,�

2

,f ,f

l

,f

h

)

Type: DataGenerator SubType: Binary Classi�ation Version: 1.0, 2000-05-22

VariableDiÆulty: Yes Status: Suggested Origin: Arti�ial

Instanes: Varying Attributes: Varying # of numerial File: gaussian.tar.gz

Soure: Carla Fredria Gauss, fgauss�math.roks.org

Desription: Disriminate instanes generated from either of two multivariate (n attributes)

gaussian distributions with mean and stddev (�

1

, �

1

) and (�

2

, �

2

), respetively. The 'f'

parameter governs how many false input attributes, uniformly sampled on [f

l

,f

h

℄, should be

added to eah instane.

The diÆulty of the problem (dimensionality, Bayes optimal lassi�ation rate and number of

false attributes) an be varied by varying the parameters of the problem. The Bayes optimal

lassi�ation rate (ultimate unertainty in problem whih no ML algorithm an do better

than) an be alulated for parameter hoies with f equal to 0.

Generalization of a problem from Elena projet.

Table 2: Reord for the KddCup99-distoint-1% problem instane

Name: KddCup99-distoint-1%

FromProblem: KddCup99 Status: Suggested Version: 1.0, 2000-05-18

Instanes: 48984 # TestInstanes: 311029 File: kddup99-distoint-1.tar.gz

PerformaneMeasure: Average ost per test instane aording to spei�ed ost matrix

Soure: Catherine Darwin, darwin�evolution-rules.om

Desription: The data used in the KDD Cup 1999 ompetition had more than 4 million training

instanes and 311,029 testing instanes. This problem instane ontains a 1% sample of the training

instanes but all of the testing instanes. The \distoint" refers to the mapping from disrete input

attributes to numerial integers.

The task is relatively diÆult sine the lass distribution in the test set is di�erent from the lass

distribution in the training set.

ReasonCreated: We wanted to test if a GP system an get ompetitive results even with the

simplest possible mapping (mapping the values of an unordered disrete attribute to integers

imposes an order that does not exist in the original data).

We took a 1% sample beause we wanted to get a more manageable data set that would give

shorter exeution times.

The test set was kept intat sine we wanted to be able to ompare to the results of the algorithms

in the KDD Cup.

GPResult: 0.1985 GPPaper: gpbiblio:darwin:ieeetroe:2001

OtherResult: 0.2331 with bagged and boosted deision trees (winner KDD Cup'99)

OtherPaper: Elkan, C.: Results of the KDD'99 Classi�er Learning Contest, http://www-

se.usd.edu/users/elkan/lresults.html, May 2000

SimpleResult: 0.5220 with plurality rule and 0.2523 with a 1-nearest neighbor lassi�er.

GP bibliography. We are planning to implement on-

netions between GP-Beagle and the GP bibliography

so that papers an easily be loated and searhed.

5.3 DE FACTO SUITE: Proben1-medial

A reent paper by Brameier and Banzhaf used six

problems from the Proben1 benhmark suite to om-

pare GP performane to that of neural nets [2℄. Eah

problem used had three di�erent samples of the same

data set. We have put these three samples in the same

instanes and thus this de fato suite ontains 6 dif-

ferent problem instanes. Its reord is shown in table

3

7

.

5.4 BENCHMARK SUITE:

Classi�ation-diverse18

To give an example of a benhmark suite we have

reated one by adding two large lassi�ation prob-

lems to the suite of 16 lassi�ation problems used in

[4℄. Note that the KddCup99-distoint-1% problem in-

stane desribed in table 2 is one of them. The reord

is shown in table 4. Also note that some of the prob-

lem instanes used are from the same problems used

in the Proben1-medial suite above. Sine a di�er-

ent sampling and evaluation proedure (10-fold ross-

validation vs. 3-fold ross-validation) was used in this

suite the instanes are distint even though they stem

from the same problems.

6 CONCLUSIONS

We have desribed GP-Beagle, an infrastruture for es-

tablishing, maintaing and promoting a publially avail-

able repository of benhmarking problems for empiri-

al studies of geneti programming systems. By using

benhmarks the geneti programming ommunity an

make faster progress sine results from di�erent stud-

ies an be more easily ompared. Furthermore, benh-

marks hosen in a good way promotes sound empirial

studies sine they inlude a broad and diverse set of

problems and presribe the evaluation proedure and

performane measurements to be used.

To address some of the pitfalls of using benhmarks

GP-Beagle is an open framework where benhmarks

and problems an evolve; we have not pre-spei�ed

some benhmarks that must be used. We antiipate

that over time the GP ommunity, in a olletive e�ort,

7

In the paper, Brameier and Banzhaf does not report

an aggregated performane measure as is indiated in table

3.

an assemble benhmarks for di�erent sub-areas of GP

researh in the framework supplied by GP-Beagle.

The basi entities in GP-Beagle are problems, problem

instanes and problem suites. Problem instanes are

onrete instanes of a problem with a full desription

of how they should be used. They allow for full re-

produibility of results. The repository also ontains

information on the use of the problems and suites. All

problems are freely available as long as published re-

sults and problem extensions are reported bak to the

repository.

GP-Beagle is implemented as a set of reords in a

MySQL database. Perl sripts are used to extrat in-

formation and update the data base. The interfae

to the repository is via a web site at http://www.gp-

beagle.org. In order for this e�ort to really take o� we

enourage you to visit the site, start using the reposi-

tory and submitting your problems and results.

Referenes

[1℄ C.L. Blake and C.J. Merz. UCI repository of ma-

hine learning databases, 1998.

[2℄ Markus Brameier and Wolfgang Banzhaf. A om-

parison of linear geneti programming and neural

networks in medial data mining. IEEE Transa-

tions on Evolutionary Computation, in press, 2000.

[3℄ Jozo J. Dujmovi. Universal benhmark suites. In

Pro. 7th Int. Symp. on Modeling, Analysis and

Simulation of Computer and Teleommuniation

Systems, pages 197{205, 1999.

[4℄ T.-S. Lim, W.-Y. Loh, and Y.-S. Shih. A ompar-

ison of predition auray, omplexity, and train-

ing time of thirty-three old and new lassi�ation

algorithms. Mahine Learning, Forthoming, 2000.

[5℄ L. Prehelt. A quantitative study of experimen-

tal evaluations of neural network learning algo-

rithms: Current researh pratie. Neural Net-

works, 9(3):457{462, 1996.

[6℄ Lutz Prehelt. Some notes on neural learning algo-

rithm benhmarking. Neuroomputing, 9(3):343{

347, 1995.

[7℄ W. Tihy. Should Computer Sientist Experiment

More? IEEE Computer, 31(5):32{40, 1998.

[8℄ Walter F. Tihy, Paul Lukowiz, Lutz Prehelt,

and Ernst A. Heinz. Experimental evaluation in

omputer siene: A quantitative study. The Jour-

nal of Systems and Software, 28(1):9{??, January

1995.

Table 3: Reord for the Proben1-medial de fato suite

Name: Proben1-medial

Type: DeFato Status: Suggested Version: 1.0, 2000-05-24

Instanes: 6 Id number: 1 File: proben1-medial.tar.gz

Instanes: Caner-proben1, Diabetes-proben1, Gene-proben1, Heart-proben1,

Horse-proben1, Thyroid-proben1

PerformaneMeasure: Average lassi�ation error on the 3*6=18 test sets

Soure:Markus Brameier and Wolfgang Banzhaf (originally from the Proben1 benh-

mark), banzhaf�not.valid-email.de

Desription: A subset of six medial lassi�ation problems was extrated from the

Proben1 neural network benhmark. Eah instane onsists of three di�erent samples

from one and the same problem.

Table 4: Reord for the Classi�ation-diverse18 benhmark suite

Name: Classi�ation-diverse18

Type: Benhmark Status: Suggested Version: 1.0, 2000-05-24

Instanes: 18 Id number: 2 File: lassi�ation-diverse18.tar.gz

Instanes: Caner-lim, Cm-lim, Dna-lim, Heart-lim, Boston-housing-lim, Led-lim,

Liver-lim, Pima-indians-lim, Satimage-lim, Image-segmentation-lim, Smoking-lim,

Thyroid-lim, Vehile-lim, Voting-lim, Waveform-lim, Ta-evaluation-lim, KddCup99-

distoint-1%, KddCup98-distoint-5%

PerformaneMeasure: Average lassi�ation error rate

Soure: Robert Feldt, feldt�e.halmers.se

Desription: A broad and diverse suite of lassi�ation problems. Inludes �ve

binary, seven ternary, one 4-lass, two 5-lass, one 6-lass, one 7-lass and one 10-

lass lassi�ation problems. On \small" problems (less than 1000 instanes in test

set) 10-fold ross-validation is used to estimate the lassi�ation error rate.

Sixteen of the problems have been used on 33 di�erent ML tehniques in a study

by Tien-Sien Lim et al. This allows for omparisons to a large number of mahine

learning algorithms. Two additional data sets from the 1998 and 1999 KDD Cup

ompetitions were added to the benhmark beause many of the problems used in the

Lim et al study was \small".

