Skip to main content

An Algorithm Based on Grammatical Evolution for Discovering SHACL Constraints

  • Conference paper
  • First Online:
Genetic Programming (EuroGP 2024)

Abstract

The continuous evolution of heterogeneous RDF data has led to an increase of inconsistencies on the Web of data (i.e. missing data and errors) that we assume to be inherent to RDF data graphs. To improve their quality, the W3C recommendation SHACL allows to express various constraints that RDF data must conform to and detect nodes violating them. However, acquiring representative and meaningful SHACL constraints from complex and very large RDF data graphs is very challenging and tedious. Consequently, several recent works focus on the automatic generation of these constraints. We propose an approach based on grammatical evolution (GE) for extracting representative SHACL constraints by mining an RDF data graph. This approach uses a probabilistic SHACL validation framework to consider the inherent errors in RDF data. The results highlight the relevance of this approach in discovering SHACL shapes inspired by association rule patterns from a real-world RDF data graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://lod-cloud.net/.

  2. 2.

    Or <http://www.w3.org/ns/shacl#NodeShape>.

  3. 3.

    https://github.com/Wimmics/CovidOnTheWeb.

  4. 4.

    https://www.wikidata.org/wiki/Wikidata:Main_Page.

  5. 5.

    https://en.wikipedia.org/wiki/Chemokine.

  6. 6.

    https://github.com/RemiFELIN/RDFMining/tree/eurogp_2024.

References

  1. shaclgen 0.2.5.2. https://github.com/uwlib-cams/shaclgen

  2. Ali, M.S., Kshirsagar, M., Naredo, E., Ryan, C.: Autoge: a tool for estimation of grammatical evolution models. In: International Conference on Agents and Artificial Intelligence (2021). https://api.semanticscholar.org/CorpusID:232106265

  3. Boneva, I., Dusart, J., Fernández Alvarez, D., Gayo, J.E.L.: Shape designer for ShEx and SHACL constraints. In: ISWC 2019–18th International Semantic Web Conference, October 2019. https://hal.science/hal-02268667, poster

  4. Cimmino, A., Fernández-Izquierdo, A., García-Castro, R.: Astrea: automatic generation of SHACL shapes from ontologies. In: Harth, A., et al. (eds.) ESWC 2020. LNCS, vol. 12123, pp. 497–513. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49461-2_29

    Chapter  Google Scholar 

  5. Cérés, R., Corby, O., Demairy, E.: Corese, March 2023. https://github.com/Wimmics/corese

  6. Dick, G., Whigham, P.A.: Initialisation and grammar design in grammar-guided evolutionary computation (2022)

    Google Scholar 

  7. Felin, R., Faron, C., Tettamanzi, A.G.B.: A framework to include and exploit probabilistic information in SHACL validation reports. In: ESWC (2023)

    Google Scholar 

  8. Fernandez-Álvarez, D., Labra-Gayo, J.E., Gayo-Avello, D.: Automatic extraction of shapes using shexer. Knowl.-Based Syst. 238, 107975 (2022). https://doi.org/10.1016/j.knosys.2021.107975

    Article  Google Scholar 

  9. Harper, R.: GE, explosive grammars and the lasting legacy of bad initialisation. In: IEEE Congress on Evolutionary Computation, pp. 1–8 (2010). https://doi.org/10.1109/CEC.2010.5586336

  10. Kim, H.-T., Ahn, C.W.: A new grammatical evolution based on probabilistic context-free grammar. In: Handa, H., Ishibuchi, H., Ong, Y.-S., Tan, K.-C. (eds.) Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems - Volume 2. PALO, vol. 2, pp. 1–12. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13356-0_1

    Chapter  Google Scholar 

  11. Kontokostas, D., Knublauch, H.: Shapes constraint language (SHACL). W3C recommendation, W3C (2017)

    Google Scholar 

  12. Lourenço, N., Assunção, F., Pereira, F., Costa, E., Machado, P.: Structured grammatical evolution: a dynamic approach, pp. 137–161 (2018). https://doi.org/10.1007/978-3-319-78717-6_6

  13. Lourenço, N., Ferrer, J., Pereira, F.B., Costa, E.: A comparative study of different grammar-based genetic programming approaches. In: McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., García-Sánchez, P. (eds.) EuroGP 2017. LNCS, vol. 10196, pp. 311–325. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55696-3_20

    Chapter  Google Scholar 

  14. Lourenço, N., Pereira, F., Costa, E.: Unveiling the properties of structured grammatical evolution. Genet. Program. Evolvable Mach. 17 (2016). https://doi.org/10.1007/s10710-015-9262-4

  15. Lourenço, N., Pereira, F.B., Costa, E.: SGE: a structured representation for grammatical evolution. In: Bonnevay, S., Legrand, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2015. LNCS, vol. 9554, pp. 136–148. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31471-6_11

    Chapter  Google Scholar 

  16. Medvet, E.: A comparative analysis of dynamic locality and redundancy in grammatical evolution. In: McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., García-Sánchez, P. (eds.) EuroGP 2017. LNCS, vol. 10196, pp. 326–342. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55696-3_21

    Chapter  Google Scholar 

  17. Mégane, J., Lourenço, N., Machado, P.: Probabilistic grammatical evolution (2021)

    Google Scholar 

  18. Mégane, J., Lourenço, N., Machado, P.: Co-evolutionary probabilistic structured grammatical evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference. ACM, July 2022. https://doi.org/10.1145/3512290.3528833

  19. Mégane, J., Lourenço, N., Machado, P.: Probabilistic structured grammatical evolution. In: 2022 IEEE Congress on Evolutionary Computation (CEC). IEEE, July 2022. https://doi.org/10.1109/cec55065.2022.9870397

  20. Michel, F., et al.: COVID-on-the-web: knowledge graph and services to advance COVID-19 research. In: Pan, J.Z., et al. (eds.) The Semantic Web – ISWC 2020. ISWC 2020. LNCS, vol. 12507, pp. 294–310. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62466-8_19

  21. Nguyen, T.H., Tettamanzi, A.G.B.: An evolutionary approach to class disjointness axiom discovery. In: Barnaghi, P.M., Gottlob, G., Manolopoulos, Y., Tzouramanis, T., Vakali, A. (eds.) WI 2019 - IEEE/WIC/ACM International Conference on Web Intelligence, pp. 68–75. ACM, Thessaloniki, Greece, October 2019. https://doi.org/10.1145/3350546.3352502

  22. Nguyen, T.H., Tettamanzi, A.G.B.: Grammatical evolution to mine OWL disjointness axioms involving complex concept expressions. In: CEC 2020 - IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE, Glasgow, United Kingdom, July 2020. https://doi.org/10.1109/CEC48606.2020.9185681

  23. Nicolau, M., Agapitos, A.: Understanding grammatical evolution: grammar design, pp. 23–53, January 2018. https://doi.org/10.1007/978-3-319-78717-6_2

  24. Nicolau, M., O’Neill, M., Brabazon, A.: Termination in grammatical evolution: grammar design, wrapping, and tails, pp. 1–8, June 2012. https://doi.org/10.1109/CEC.2012.6256563

  25. Omran, P., Taylor, K., Rodríguez Méndez, S., Haller, A.: Learning SHACL shapes from knowledge graphs. Semant. Web 14, 1–21 (2022). https://doi.org/10.3233/SW-223063

  26. O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evol. Comput. 5(4), 349–358 (2001)

    Article  Google Scholar 

  27. Pandit, H., O’Sullivan, D., Lewis, D.: Using ontology design patterns to define SHACL shapes. In: WOP@ISWC, pp. 67–71. Monterey California, USA (2018)

    Google Scholar 

  28. Rabbani, K., Lissandrini, M., Hose, K.: SHACL and ShEx in the wild: a community survey on validating shapes generation and adoption. In: WWW (Companion Volume), pp. 260–263. ACM (2022)

    Google Scholar 

  29. Rothlauf, F., Oetzel, M.: On the locality of grammatical evolution. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 320–330. Springer, Heidelberg (2006). https://doi.org/10.1007/11729976_29

    Chapter  Google Scholar 

  30. Ryan, C., O’Neill, M., Collins, J.J.: Introduction to 20 years of grammatical evolution. In: Ryan, C., O’Neill, M., Collins, J.J. (eds.) Handbook of Grammatical Evolution, pp. 1–21. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78717-6_1

    Chapter  Google Scholar 

Download references

Acknowledgements

This work has been partially founded by the 3IA Côte d’Azur “Investments in the Future” project managed by the National Research Agency (ANR) with the reference number ANR-19-P3IA-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémi Felin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Felin, R., Monnin, P., Faron, C., Tettamanzi, A.G.B. (2024). An Algorithm Based on Grammatical Evolution for Discovering SHACL Constraints. In: Giacobini, M., Xue, B., Manzoni, L. (eds) Genetic Programming. EuroGP 2024. Lecture Notes in Computer Science, vol 14631. Springer, Cham. https://doi.org/10.1007/978-3-031-56957-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56957-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56956-2

  • Online ISBN: 978-3-031-56957-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics