Skip to main content

Inferring Transcription Networks from Data

  • Chapter
Book cover Springer Handbook of Bio-/Neuroinformatics

Part of the book series: Springer Handbooks ((SHB))

Abstract

Reverse engineering of transcription networks is a challenging bioinformatics problem. Ordinary differential equation (ODEs) network models have their roots in the physicochemical base of these networks, but are difficult to build conventionally. Modeling automation is needed and knowledge discovery in data using computational intelligence methods is a solution. The authors have developed a methodology for automatically inferring ODE systems models from omics data, based on genetic programming (GP), and illustrate it on a real transcription network. The methodology allows the network to be decomposed from the complex of interacting cellular networks and to further decompose each of its nodes, without destroying their interactions. The structure of the network is not imposed but discovered from data, and further assumptions can be made about the parametersʼ values and the mechanisms involved. The algorithms can deal with unmeasured regulatory variables, like transcription factors (TFs) and microRNA (miRNA or miR). This is possible by introducing the regulome probabilities concept and the techniques to compute them. They are based on the statistical thermodynamics of regulatory molecular interactions. Thus, the resultant models are mechanistic and theoretically founded, not merely data fittings. To our knowledge, this is the first reverse engineering approach capable of dealing with missing variables, and the accuracy of all the models developed is greater than 99%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACTB:

actin cytoplasmic

COPASI:

complexpathway simulator

EMT:

epithelial-to-mesenchymal transition

GEO:

gene expression omnibus

GP:

genetic programming

NCBI:

National Center for Biotechnology Information

ODE:

ordinary differential equation

RMS:

root-mean-square

RMSE:

root mean squared error

RODES:

reversing ordinary differential equation system

SBW:

Systems Biology Workbench

SSE:

squares due to error

TF:

transcription factor

TGF:

transforming growth factor

mRNA:

messenger RNA

miRNA:

microRNA

References

  1. H. Guo, N.T. Ingolia, J.S. Weissman, D.P. Bartel: Mammalian microRNAs predominantly act to decrease target mRNA levels, Nature 466(7308), 835–840 (2010)

    Article  Google Scholar 

  2. J.R. Koza: Genetic Programming: On the Programming of Computers by Means of Natural Selection (MIT Press, Cambridge 1992)

    MATH  Google Scholar 

  3. V.G. Keshamouni, P. Jagtap, G. Michailidis, J.R. Strahler, R. Kuick, A.K. Reka, P. Papoulias, R. Krishnapuram, A. Srirangam, T.J. Standiford, P.C. Andrews, G.S. Omenn: Temporal quantitative proteomics by iTRAQ 2D-LC-MS/MS and corresponding mRNA expression analysis identify post-transcriptional modulation of actin-cytoskeleton regulators during TGF-β-induced epithelial-mesenchymal transition, J. Proteome Res. 8(1), 35–47 (2009)

    Article  Google Scholar 

  4. G.K. Ackers, A.D. Johnson, M.A. Shea: Quantitative model for gene regulation by lambda phage repressor, Proc. Natl. Acad. Sci. USA 79(4), 1129–1133 (1982)

    Article  Google Scholar 

  5. L. Bintu, N.E. Buchler, H.G. Garcia, U. Gerland, T. Hwa, J. Kondev, R. Phillips: Transcriptional regulation by the numbers: Models, Curr. Opin. Genet. Dev. 15(2), 116–124 (2005)

    Article  Google Scholar 

  6. U. Alon: An Introduction to Systems Biology: Design Principles of Biological Circuits (Chapman Hall/CRC, New York 2006)

    Google Scholar 

  7. M.A. Shea, G.K. Ackers: The OR control system of bacteriophage lambda: A physical-chemical model for gene regulation, J. Mol. Biol. 181(2), 211–230 (1985)

    Article  Google Scholar 

  8. D. Searson: GPTIPS: Genetic programming and symbolic regression for MATLAB (2009) available from http://gptips.sourceforge.net/

  9. D.P. Searson, D.E. Leahy, M.J. Willis: GPTIPS: An open source genetic programming toolbox for multigene symbolic regression, Proc. Int. Multiconf. Eng. Comput. Sci. (IMECS 2010) (2010) pp. 77–80

    Google Scholar 

  10. Y. Setty, A.E. Mayo, M.G. Surette, U. Alon: Detailed map of a cis-regulatory input function, Proc. Natl. Acad. Sci. USA 100, 7702–7707 (2003)

    Article  Google Scholar 

  11. H.M. Sauro, M. Hucka, A. Finney, C. Wellock, H. Bolouri, J. Doyle, H. Kitano: Next generation simulation tools: The systems biology workbench and BioSPICE integration, OMICS 7(4), 353–370 (2003), SBW latest version available free from http://sourceforge.net/projects/jdesigner/

    Article  Google Scholar 

  12. G. Greenburg, E.D. Hay: Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells, J. Cell Biol. 95(1), 333–339 (1982)

    Article  Google Scholar 

  13. C. de Boor: A Practical Guide to Splines (Springer, Berlin, Heidelberg 1978)

    Book  MATH  Google Scholar 

  14. A.G. Floares: Automatic reverse engineering algorithm for drug gene regulating networks, Proc. 11th IASTED Int. Conf. Artif. Intell. Soft Comput. (2007)

    Google Scholar 

  15. A.G. Floares: A reverse engineering algorithm for neural networks, applied to the subthalamopallidal network of basal ganglia, Neural Netw. Spec. Issue 21, 379–386 (2008)

    Article  Google Scholar 

  16. M. Brameier, W. Banzhaf: Linear Genetic Programming (Springer, Berlin, Heidelberg 2007)

    MATH  Google Scholar 

  17. U. Mückstein, H. Tafer, J. Hackermüller, S.H. Bernhart, P.F. Stadler, I.L. Hofacker: Thermodynamics of RNA–RNA binding, Bioinformatics, 22(10), 1177–1182 (2006)

    Article  Google Scholar 

  18. N.G. van Kampen: Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam 1992)

    Google Scholar 

  19. T. Barrett, D.B. Troup, S.E. Wilhite, P. Ledoux, C. Evangelista, I.F. Kim, M. Tomashevsky, K.A. Marshall, K.H. Phillippy, P.M. Sherman, R.N. Muertter, M. Holko, O. Ayanbule, A. Yefanov, A. Soboleva: NCBI GEO: Archive for functional genomics data sets – 10 years on, Nucleic Acids Res., 39(1), D1005–D1010 (2011)

    Article  Google Scholar 

  20. S. Hoops, S. Sahle, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes, U. Kummer: COPASI – A COmplex PAthway SImulator, Bioinformatics 22(24), 3067–3074 (2006)

    Article  Google Scholar 

  21. S. Luke, L. Panait: Lexicographic parsimony pressure, Proc. GECCO-2002 (Morgan Kaufmann, San Fancisco 2002) pp. 829–836

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexandru G. Floares or Irina Luludachi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag

About this chapter

Cite this chapter

Floares, A.G., Luludachi, I. (2014). Inferring Transcription Networks from Data. In: Kasabov, N. (eds) Springer Handbook of Bio-/Neuroinformatics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30574-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30574-0_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30573-3

  • Online ISBN: 978-3-642-30574-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics